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Introduction

Introduction

Pole Dynamics:

@ Soliton solutions in terms of complex x
@ Look for poles of the solution

@ Understand the solution by examining the motion of the poles
in the complex plane.
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KdV Equation One Soliton Solution
Two Soliton Solution

One Soliton Solution

One soliton solution in terms of

complex x ¥
Id=2ni/k
u=92n (1 + ekx_kst) .
It has poles when, A9 2 fo 2

1 4 ekx—k3t -0
Pole dynamics given by Velocity proportonial to k2
i(1 + 2n) Pole spacing proportonial to 1/k

xp(t) = p + k%t
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KdV Equation One Soliton Solution

Two Soliton Solution

Analogously, two-soliton pole dynamics are obtained by solving for
complex x

2
1 + eklx—k%t + ekgx—kg't + k]- — k2 eklx—kft—‘erX—kgt — O
ki + k2

Analytical work done by Thickstun.
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KdV Equation One Soliton Solution

Two Soliton Solution

Analogously, two-soliton pole dynamics are obtained by solving for
complex x

2
1 + eklx—k%t + ekgx—kg't + k]- — k2 eklx—kft—‘erX—kg’t — O
ki + k2

Analytical work done by Thickstun.

...we can solve numerically!
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KdV Equation One Soliton Solution
Two Soliton Solution

Two Soliton Solution

For kit =1.8 and k» = 1:

N

-10 L] 10 20

KI<4b 1551 =[]+
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KdV Equation One Soliton Solution
Two Soliton Solution

Two Soliton Solution

For kit =15 and ky = 1:

L L
-10 L] 10 20

K< 51 (=)o)
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KdV Equation One Soliton Solution

Two Soliton Solution

Two Soliton Solution

For kit =2 and ky = 1:

L
-10

K<< 51 (=]
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KdV Equation One Soliton Solution
Two Soliton Solution

More complicated

Things can get more complicated

@ KdV solutions with a finite number of poles
@ KdV solutions in term of elliptic functions

@ Periodic solutions
°

Benjamin-Ono pole expansion
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

Pole Expansion

Let's try with the Bejamin-Ono equation
ur + 2uuy + H(ux)

Propose finite pole expansion inspired by the one-soliton solution

Substituting...
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Pole Expansion
Hamiltonian System
Integration with Lax Pairs

Benjamin-Ono Equation

..and after lots of algebra we get a N-body problem

dx N N
J]
— 42 _— =0
Rl D ZX,_Xk
k=1 k=1
k#j

How can we solve this problem?
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Pole Expansion
Hamiltonian System
Integration with Lax Pairs

Benjamin-Ono Equation

..and after lots of algebra we get a N-body problem

dx N N
J]
— 42 _— =0
Rl D ZX,_Xk
k=1 k=1
k#j

How can we solve this problem?

@ Ask the dark soliton for help...
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Pole Expansion
Hamiltonian System
Integration with Lax Pairs

Benjamin-Ono Equation

..and after lots of algebra we get a N-body problem

dx N N
J]
— 42 _— =0
Rl D ZX,_Xk
k=1 k=1
k#j

How can we solve this problem?

@ Ask the dark soliton for help...

@ ...or try to use what we learned in class

Hamiltonians and Lax Pairs
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

Hamiltonian System

Let's take another time derivative, after more algebra...

d?x;
dt2 Z (XJ — xx)3

This is a N-body problem with a inverse square potential; therefore,
the Hamiltonian should be the “kinetic energy” plus the potential.

=32 (%) 2 ST g

J k;ﬁJ

Notice we duplicated the dimension of the system!
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

Integration with Lax Pairs

Let's look for a Lax Pair L,A:

Ly = My
e = Ay
Such that the compatibility condition L; = [A, L] is our N-body

problem eq.

It is trivial that the Lax Pair is...
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

Integration with Lax Pairs

Let's look for a Lax Pair L,A:

Ly = My
e = Ay
Such that the compatibility condition L; = [A, L] is our N-body

problem eq.

It is trivial that the Lax Pair is...

dx; 1 — 0
ij:5kj7;+IXk_);
1 1 — g
Ay = —id; ' !
kj ! ka (xk — x1)2 + I(Xk )2

I£k
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

N Conserved quantities

Let's find the conserved quantities, for instance the trace of L
tI"[L] = )\1 + )\2 4+ ...

We usually assume A; = 0, therefore

dtr[L] _

0
dt
First conserved quantity! By induction

dtr[L"]
dt 0

We have N conserved quantites. We still need N more.
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

2N conserved quantities

Using X;: = dxjx; we can rewrite the compatibility condition as
Xe=[AX]+L
With this, it's easy to prove that
tr[XL"Y] — tr[L"]t = ¢,

So, now we have 2N conserved quantities!!! We can solve the
problem.
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

Explicit solution

Let's try to solve the problem in the most general way.

Let's consider

With

du
—r =AU Uut =1 U(to) =1

Using the compatibility condition and that A is anti-hermitian, we
can prove that

dK
— =U"Lu
dt
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

Explicit Solution

Furthermore, we can derive again and obtain

d?K
— =0
dt?

therefore
K(t) =G+ (t — to)C2
Determinig the constants matrices

K(t) = X(to) + (t — t0)L(t0)
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Pole Expansion
Hamiltonian System

Benjamin-Ono Equation Integration with Lax Pairs

Explicit solution

Remebering that K(t) = U~1(t)X(t)U(t)

Since X = djxx;, the eigenvalues of X are given by

=

0 = det(M — X) = JT(X = x(t))

k=1

Therefore, the eigenvalues of X are the poles xi(t)
X and K have the same eigenvalues (X is diagonal)

We already know K!!!
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Summary

Summary

KdV
@ Make x complex in soliton solution
@ Look for poles
@ Solve numerically or analitically
Benjamin-Ono
@ Propose pole expansion (inspired by one-soliton solution)
@ Substitute to obtain N-body problem
@ Derivate once more to have a Hamiltonian system
o Find Lax pairs
@ Integrate the system finding 2N conserved quantities
°

Find an explicit solution
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Summary
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