The Projection Method

A High Performance Algorithm for Numerically Solving Stokes Flow
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Fluid Dynamics of Red Blood Cells

* Organisms that can fill their cells
with a sugar, increasing viscosity to
stop cell metabolism (hibernation).

* Can this method be applied to red
blood cells to replace
cryopreservation?

* Biologists will greatly benefit from
having a model to simulate the fluid
dynamics.




Assumptions for Regime Selection

* The fluid is Newtonian and incompressible.
* Red blood cells are modeled as vesicles (cell wall only).
* Modeled in two dimensions.




Incompressible Navier Stokes Equation

* Non-dimensionalize the full Incompressible Navier Stokes Equation:

Re(u; +Vu-u) = -Vp+ V- (u(Vua+vVul)) +f

V-u=20
- Re is the Reynolds Number.

+ p is the density, 1 is the viscosity coefficient, u is
the flow velocity, p is the pressure, and f is the
body force.



Reynolds Number

* The Reynolds Number is the ratio of the inertial forces to the viscous
forces:

=g

Re =

htltz‘b’

+ 1 is velocity of the blood flow
- 1 1s the viscosity of the blood
. L is the radius of the blood cell

+ Thus, L << 1= &' = Re =0

I,



Stokes Equation
Re(u; +Vu-u) = -Vp+ V- (u(Vu+ Vul)) +f

V-u=0

Becomes:

0=—-Vp+V-(uVu+vul))+f

V-u=0



Decoupling Method

* |f U is spatially constant, solve for p, u, and v by decoupling the variables into
separate vectors.

* Take the divergence of both sides of the Stokes Equation.
* Rearrange the mixed partial derivatives and group the terms.
* Apply the divergence-free condition.

0=V (=Vp+ pAu+f)
Px Uz T Uy fl
( [p y] / [?/‘:IJ.’I‘ -+ Uyy f2

0= _(p;m? + py-y) + N‘(U;rw:z: + Uyyax + Vzay + "L"yyy) + fll + f2-y
Ap=V - f



Decoupling Method (Continued)

* The addition of this independent equation for p makes the other two
equations for u and v fully determined, allowing them all to be solved
independently using the following system:

1.

DPaxx T Pyy :fla:‘l‘fzg
2.

H(ua::c + Uyy) = p, — f1
3.

(Ve + Vyy) = py — f2



Decoupling Method (Continued)

* Descretize p, u, and v each into P11
grids of size M x M, P21 Pu | Po | P | Pu
e Stack the M? discretized points [ I I
into a column vector for each X = | Pm1 oo o
variable. D12
Py Py P y2m
PM M |




Decoupling Method (Continued)

e Construct an M? x M* matrix A and a right hand side vector b that
consists of the normal second order finite difference approximations.

* Solve Ax = b once for each variable for three total solves, using the
Matlab “\” operator.

* This algorithm is only possible if i is spatially constant, otherwise the
divergence operator will generate extra terms and the pressure will
not be successfully decoupled.



Saddle-Point Method

* Traditional way of solving the
system when K is spatially
variant.

* Discretize u, v, and p into a
grid of size M x M.

e Stack u, v, and p into a single
column vector.

P11

PM1

PM M
Uil

UM M

| UMM |



Saddle-Point Method (Continued)

e If 14 is spatially constant,V - (u(Vu + Vu')) = pAu, and the system

becomes:
0=—-Vp+ pAu+f.

V-u=90

* Construct the system Ax = b and use the Matlab “\” operator to
solve: Ax — b

K1



Fluid in a Pipe

* As a demonstration of concept, the
Saddle-Point Method is applied to a
fluid in a pipe problem.

* No-Slip top and bottom for u.

* Dirichlet conditions on the left and »
right to create a pressure gradient.

* Neumann for u on the left and right
sides.

* Neumann for p on the top and
bottom.
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Fluid in a Pipe (continued)

* Incorrect solution:
“Checkerboard” Pattern. R

e Caused by the first derivative
finite difference formula for p.

e Uses the two neighboring
pressure cells, but not the actual
pressure cell being described.

* Information ends up skipping
every other cell.




Fluid in a Pipe (continued)

 To address this issue, create a
staggered grid.

* In the staggered grid, The p
nodes are a distance of &~
and 2Y away from the u and
v nodes.

Py Uy P Uy D3 U3 Py Uy Pis
Yin Vi2 Vi3 Vis Vis

Py Uy Pn Uy P lys P Uy Prs
Yo Vo Va3 Vig Vis
Py Uz Py Uz Ps3 Uz P34 Uz Pss
Vi Va Vi3 Vi Vis
Py Uy Py Uy Py Uy Py Uy Pss
Vi Vi Vi3 Vi Vis

Ps1 Us Ps Us Ps3 Uss Pss | Usy Pss




Fluid in a Pipe (continued)

e A consists of the normal second order finite difference
approximations, with the exception of Vp.

* Creating a Taylor Expansion about the u and v nodes yields a modified
second order difference formula for Pz andPy :

_ Pit+1,5 — Pij
Px =
Ax
_ Pigj+1 — Dij




Fluid in a Pipe (continued)

* Pressure and horizontal velocity solution with the staggered grid:

pressure Horizontal Velocity

200 4
180"
1604

140"

1204

O<y< 0 0

O<x<1



Time Analysis

* As a worst-case scenario, assume the “\” operator will use Gaussian
Elimination to solve Ax = b.

* The number of multiplications and additions to convert A to Reduced
Row Echelon form will be a sum of squares.

e This will require O(n”) Floating Point Operations (FLOPS), where n is
the number of rows in A.



Time Analysis (Continued)

* Decoupling Method

e For each solve, A has M? rows, because x is a column vector containing each
value for u, v, or p on the M x M discretized grid.

e The number of FLOPS is 3 - O(n?) =3 - O(M®) wheren = M*,
e Saddle-Point Method

A has 3M? rows because x is a stacked vector containing u, v, and p for each
value on the M x M discretized grid.

* Since nis three times as large as it is in the Decoupling Method, this will
require O(n3) = O(27M?°) FLOPS.



The Need for a New Algorithm

* The Saddle-Point Method is slow, scaling very badly as M increases.

* The Decoupling Method can only be used when pt is spatially
constant.

* Construct a new method that decouples u, v, and p yet can still solve
a system with spatially varying viscosity.
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Projection Method

* Helmholtz-Hodge Decomposition Theorem:

A vector field ¥ defined on a simply connected do-
main can be uniquely decomposed into a divergence-free
component, I', and a curl-free component, V®:

v=I+Vo

* Align the Navier Stokes Equation:
V- (u(Vu+Vul)) — Re(Vu-u) +f = Re(u,) + Vp



Projection Method (Continued)

* General Strategy:

* Advance u" forward in time using an iterative
approximation.

* The errors in this approximation will take u”
off of the divergence-free solution space where it

Surface of
Divergence-Free
Vector Fields

+1

belongs. Rew, = RH S5
1
* Assign this solution to a temporary vector u*. u"t —u” - n
> Re ~ RHS
* Project U back onto the divergence-free » At
solution space to find the correct value of U™, a" o u” HRHS”
Re
At

K T _RHan
u u +Re



Projection Method (Continued)

* Define the projection operator, P(a) as the projection of vector a onto
the divergence-free solution space:
< a,Vp >

P(a) =a—
(a) = a < Vp,Vp >

Vp.

* It can be shown that the Dirichlet boundary conditions u-n =0 are
sufficient to cause the following properties to hold:



Projection Method (Continued)

* Apply the P operator to both sides of the Navier Stokes Equation.
e Use the properties of the P operator to eliminate Vp .

* For reasons that will become clear later, Add and subtract - u; on the
inside and the outside of the P operator.

* These steps result in:

1 1
Re(u;) =P (—Re(Vu u) + V- (w(Vu+vVul)) +f + A_tu> N



Projection Method (Continued)

* Integrate both sides with respect to t.

* Apply a left hand rectangular approximation to the first integral, and
a right hand approximation to the second integral to create a
relationship between u” and u"*!:

tn+l

. - ' 1 1 tnt1
Re(u™ —u"™) = / P (—Re(Vu u) + V- (u(Vu+vul)) +f + —u) — — / u
t‘”..

At At f,

1

n—+1
—u At.
At

Re(u" —u"tH) =P (—RG(VU” cu) + V- (u(Va" + V™)) + £ + Eu”) At —



Projection Method (Continued)

* Apply the small Reynolds Number, Re — 0, and solve for u"*':

u't = P(V - (u(Vu" + V(u™)1)) At + Atf™ +u™)
* It is now apparent how to define u™:

u =u" + AV (p(Vu" + V(™)) + ")
* This simplifies the equation to:

u"tt = P(u*)
* Expanding the projection operator:
. <uf,Vp" >
< Vp™, Vp" >

un—l— 1 — 1q* n

u

Vp



Projection Method (Continued)

<u*, Vp"™ >

= At.
< vpn’ Vp’n >

e It can be shown that:

* Thus, u"™' =u" — AtVp”,

* To find an equation for p, rearrange the above equation and take the
divergence of both sides:

N u* — un—i—l
VPR =T
1
Apn — Ktv ) (u* o un—l—l)
1
Ap" = —V.-u"



Projection Method (Continued)

* The algorithm is complete:
1.

u' =u" + AUV - ((Vu" + V(")) +£7)

1
Ap" — .
P Atv u

u" = u* — Atvp”



Projection Method (Continued)

* This system is decoupled and can still be solved with a spatially
varying viscosity.

* The Saddle-Point Method can solve with spatially varying viscosity,
but it is slow.

* The Decoupling Method is faster, but it cannot solve with spatially
varying viscosity.

* The Projection Method gets the best of both worlds: It is decoupled
and fast, and can solve a system with spatially varying viscosity.

* If the viscosity is spatially constant, the Projection Method can still be
used, and step 1 becomes:

u* — uTL _|_ At(MAuTL _|_ f?’b)



The Vesicle Force Problem

* This model will be solved by all T L
three algorithms to verify N
convergence and measure of et b,
execution times. XN s

* Model the reactionary force of a i 2 R
vesicle membrane in non-moving B R

(Y VN

incompressible fluid T L

* The cell wall resists bending and AR l PR
compression from the fluid by 0 S —

X

applying an outward force

20



The Vesicle Force Problem (continued)

e Define z as the distance from the membrane.
* Implement a smoothed Dirac Delta function at the membrane:

1—|—cos(7TTz) e < <
5(z) — { 5 i e < z<e€

0 otherwise




The Vesicle Force Problem (continued)

* Define the force as follows:

1

1 .
* B isthe curvature.

* The more compressed the cell wall is, the harder it will push back
against the fluid.

 n jsthe outward pointing normal vector.



The Vesicle Force Problem (continued)

* The force is radially symmetric

* The analytic solution can be obtained by converting to polar
* Make the ansatz that u =0 and solve yu=0=Vp— f in polar.

e The result:

(

\

2 (1—-2—Ztsin(nr2)) if —e<z<e
_% if 2 < —e
0 if 2> €



Convergence Testing

Error for P {Pressure)

Error for U {(Horizontal Velocity)

* Projection Method solution 10" 7 0™
vs. the analytic solution to o | o P
the vesicle force problem, // //
one time step. L Ea L :
10 10 107 10

e L2 Norm Of the Error . Errorfor‘v‘(\/ertical\/elocity)ﬁ
graphed against varying
values of Az, log-log scale.

» Reference line of slope 2

* Note: The graph is the same
across indefinite time steps.
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Surface Plots

* The following plots are from the Projection Method solution:

P.t=1.000000

0054 T 1"”31\‘1"11"]‘1:""'

’in n
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Surface Plots (continued)

* The following plots are from the Projection Method solution:

U, t=1.000000 Y, t=1.000000
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Time Analysis of the Projection Method

* Step 1: O(n) assignments for each of the n = M* discretized points.
e Step 2: matrix solve for the M* values of p.

* The size of Ais M? x M?. Thus, step 2 requires O(n?) flops, where the
size of nis n = M~

* Step 3: Same as step 1.
* Neglecting the linear assighments, the total complexity is O(M?®).

* This should result in an increase in performance over the Decoupling
Method, which is 3-O(M?®), and a substantial increase over the
Saddle-Point Method, which is O(27M?9).



Execution Times (Decoupling Method

Execution Time (s)

14

12

10

Discretization Points (M)

Execution Time (s)

25 0.0184
50 0.1301
75 0.4659
100 1.2452
150 4.1129
200 12.0575

Table 1: Run Times for the Decoupling Method

Execution Time vs. Number of Discretization Points
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Execution Times (Saddle-Point Method

Discretization Points (M) | Execution Time (s)
25 0.0519
50 0.5195
75 2.6204
100 9.0459
150 40.9595
200 149.6981

Table 2: Run Times for the Saddle-Point Method

Execution Time vs. Number of Discretization Points
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Execution Times (Projection Method

Discretization Points (M) | Execution Time (s)
25 0.0124
50 0.0715
75 0.2266
100 0.5742
150 1.7194
200 4.7079

Table 3: Run Times for the Projection Method

Execution Time vs. Number of Discretization Points
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Excecution Times (All)
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Ratios of Execution Times

Ratio

Ratio of Projection Run Time vs. Decoupling Run Time

Ratio of Projection Run Time vs. Saddle Run Time
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Conclusions

* The Projection Method is much faster than the Saddle-Point Method.
* It is also faster than the Decoupling Method.
* The larger M is, the more of an advantage it gains.

* It is difficult to tell exactly how much faster
* Overhead from other operations in the code
» Matlab “\” operator is best case O(n) and worst case O(n?’)

* Projection Method gains the best of both worlds: Decoupled and
fast, but can solve with spatially varying viscosity.

* Modeling of red blood cells will need to simulate the changing
VISCOSity.



Future Steps

* Add an initial fluid flow to the vesicle force problem
* Add a time dependent force
* Add a spatially varying viscosity



Bitbucket Repositories

e Saddle-Point Method Code:
 https://rhermle@bitbucket.org/rhermle/saddle-point-vesicle.git

* Decoupling Method Code:
* https://rhermle@bitbucket.org/rhermle/decouplingmethod.git
* Projection Method Code:

* https://rhermle@bitbucket.org/rhermle/2d-stokes-predictor-
corrector.git
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