Institute of Advanced Materials & Technology (i-AMT)

Director: Alex Jen

The University of Washington
http://depts.washington.edu/iamat/
Founded 2006
Vision

To discover, design and develop

advanced materials to benefit society
Mission

- To work at the intellectual frontiers, and to achieve excellence, in materials research
- To create synergy between researchers working in all areas of materials research on campus
- To enhance UW materials research through active integration of fundamental research and technology transfer
- To nurture entrepreneurial aspirations of researchers and encourage them to be imaginative in translating discoveries into products for the marketplace.
- To serve as a broker between the academic and business community to convert research discoveries to practical commercial products.
Governance

- **Director:** Alex Jen
- **Assoc. Director:** Dan Schwartz
- **Asst. Director:** Hanson Fong

Scientific Thrusts

- **Energy**
 - Sam Jenekhe*
 - Guozhong Cao**

- **Photonics and Optoelectronics**
 - Larry Dalton*
 - David Ginger**

- **Biomaterials and Bionanotechnology**
 - Buddy Ratner*

- **Multifunctional Composites**
 - Mark Tuttle*
 - Raj Bordia*
 - Kuen Lin**

Executive Committee

* Thrust Leaders; ** Associate Thrust Leaders
Intellectual Property Advisory Board

Rick LeFaivre (OVP Ventures Partners)

Graham Mott (Global Brand Innovation & Business Creation; Philips Oral Healthcare)

John Reagh (Washington Research Foundation)

George Renzoni (Christianson, O’Conner, Johnson & Kindness)

Keith Ritala (College of Engineering & i-AMT, UW)

Rad Roberts (College of Arts & Science, UW)

Fiona Wills (UW Tech Transfer)
Goals & Strategies

Research

- Take Leadership in Judiciously Selected Research Areas
- Establish Interdisciplinary Research Facilities
- Promote Interdisciplinary Research Activities
- Establish UW as a National Leader in Materials Research
- Generate Licensable Technologies

Translation

- Identify Technologies Ready for Commercialization
- Facilitate the Transition from Discovery to Commercialization
- Promote Industrial Partnerships
- Successful Licenses and Starts-up Companies from Discoveries Made in i-AMT
Research Strategies

<table>
<thead>
<tr>
<th>Establish Leadership in Judiciously Chosen Research Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Thrusts:</td>
</tr>
<tr>
<td>1. Photonics/Optoelectronics</td>
</tr>
<tr>
<td>2. Biomaterials and Bionanotechnology</td>
</tr>
<tr>
<td>3. Energy</td>
</tr>
<tr>
<td>4. Multifunctional Composites</td>
</tr>
<tr>
<td>• Matching funds & Proposal Endorsements</td>
</tr>
<tr>
<td>• i-AMT led research grants in these Thrust areas e.g. NSF-IGERT on Bio-Energy; DOE-Solar America Initiative</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Establish Interdisciplinary Research Facilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>12,000 ft² of research space in Benjamin Hall building:</td>
</tr>
<tr>
<td>1. Interdisciplinary Research Labs</td>
</tr>
<tr>
<td>2. Shared Instrumentation Facilities</td>
</tr>
<tr>
<td>Space will be ready by end of 2008</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Promote Interdisciplinary Research Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sponsor activities to promote interdisciplinary research & education:</td>
</tr>
<tr>
<td>1. Nanophotonics for Breakfast Seminar Series</td>
</tr>
<tr>
<td>2. Intensive Courses in NanoScience and Nanotechnology @ PNNL</td>
</tr>
<tr>
<td>3. i-AMT Distinguished Seminar Series</td>
</tr>
<tr>
<td>4. Energy & Environment Seminar Series</td>
</tr>
<tr>
<td>• Leverage hiring of key faculty in COE and A&S</td>
</tr>
</tbody>
</table>
Photonics/Optoelectronic Materials & Devices

- Develop transformative materials and devices for next generation information technology and sensing.

Achieved unprecedented low drive voltage in high-speed E-O modulator devices using UW E-O polymers

Courtesy of M. Lipson
Biomaterials & Bionanotechnology

UWEB (A NSF-funded ERC): Nanostructured scaffolds for tissue engineering

Multifunctional nanoparticles for applications in imaging/sensing and drug delivery

GEMSEC (A NSF-funded MRSEC): Genetically engineered peptides to fabricate materials with better biocompatibility

Particles consisting of a Cu$_2$O core surrounded by a protein shell self-organize on circular DNA (Courtesy of D Schwartz)
To develop alternative energy technologies with long-term sustainability and minimum environmental impact

Newly funded NSF IGERT on Bio-Energy (Courtesy of D Schwartz)

Well-defined nano-porous structures for applications in fuel cells/batteries/capacitors (Courtesy of G Cao)

Large area solar cells for renewable energy

A solid state lighting company based on UW technology (Courtesy of AES)

High efficiency solid state lighting by organic LEDs
Next Generation PV Cells Research at UW

• >$4M current research funding

• >$1.5M in facilities/equipment from DoD, Murdock Foundation, and Intel for organic PV

• DOE BES: $900,000 (07-10) (Jenekhe, Cao, Ginger)

• DOE Solar America Initiative: $900,000 (08-11) (Jen, Luscombe, Rehr, Ginger, Ma)

• NSF Center for Materials and Devices for Information Technology ($40 M/10 yrs)

• Multiple single PI NSF Grants

• Currently is competing for DOE’s Frontier Energy Center (~$4 - 5M/yr funding)
Multifunctional Composites

To develop multifunctional composites beyond the traditional structural applications—tailored material properties for specific performances/functions

Smart Multifunctional Composite Design (Courtesy of R. Bordia)
Advanced fiber reinforced composite (Courtesy of K Lin & B Flinn)
Multifunctional Composites: Green Aviation

• Design aircraft with lighter weight, and lower operating cost, noise, nitrous oxide emissions, fuel burn rate.
• Include environmental constraints at early design stage.
• Multi-criteria Design Optimization (MDO) problem needs powerful optimization algorithms and simulation software that uses finite element analysis.
• “Silent aircraft” (Cambridge-MIT)
iAMT Partners: Complementary Strengths

- **CMDITR**
- **AMTAS**
- **UWEB**
- **GEMSEC**

Nanotechnology Center
• NSF Science and Technology Center (STC), UW is the lead institution, which includes Georgia Tech, Arizona, Caltech, Maryland, Cornell, Central Florida, Norfolk State University
• Develop transformative photonic and electronic materials and devices based on molecular (organic) building blocks
• First five year phase: 18MM, second five years 20MM (07-12)
• CMDITR involves over 300 students, faculty, post docs and staff
• CMDITR is one of eleven STC’s across the US
• Faculty from Chemistry, Physics, Optical Sciences, Materials Science & Engineering, Mechanical Engineering, Electrical Engineering, Applied Physics Laboratory, Chemical Engineering
UWEB: UW Engineered Biomaterials (B. Ratner)

- NSF, Engineering Research Center (ERC)
- “Biomaterials that Heal”
- Eleven years (1996-2007), 35MM plus (total costs)
- Cross-disciplinary team of materials scientists, molecular biologists, biomolecular engineers, biomaterials researchers, bioengineers and physicians, as well as industry leaders in the biomaterials field.
- Three-way partnership involving academe, industry, and NSF
- 20 companies, 100 students, 25 Faculty, 20 technical staff
Center for Nanotechnology (F. Baneyx)

- Established through the UW’s University Initiatives Fund (1997)
- Nanotech User Facility (NTUF) advanced characterization and fabrication instruments and equipment; one of 13 in the National Nanotechnology Infrastructure Network (NNIN)
- Research focus on producing nano safe products
- 75 faculty from Chemistry, Physics, BioEngineering, Chemical Engineering, Electrical Engineering, Materials Science and Engineering, Biochemistry, Genome Sciences, Physiology, Biophysics, Microbiology
AMTAS: Advanced Materials in Aircraft Structures (M. Tuttle)

- Federal Aviation Administration Center of Excellence (2003), UW lead institution
- 10 years, 1.5-2 MM/yr (FAA & 1:1 matching from non-federal sources)
- Consortium of academic institutions, aerospace companies, and government agencies
- Address safety and certification initiatives for existing, near- and long-term applications of composites and advanced materials for large transport commercial aircraft
- 3 academic institutions, 12 industry partners
GEMSEC: Genetically Engineered Materials Science & Engineering Center (M. Sarikaya)

- NSF grant (2005)
- Six years, 7.7MM (UW matching)
- Research to adapt and develop molecular biology and genetics protocols to engineer peptides and proteins
- Marry the science and technology of the two fields, biology and materials sciences and engineering
- Develop and establish Shared Experimental Facilities for interdisciplinary research
- 11 Faculty, 3 industry partners
Shared Instrumentation Facilities (SIF) (M. Hochberg)

- Integrate functions of existing and new facilities to provide strong capabilities in gaining fundamental understanding and cutting-edge devices, subsystems, and applications for translational research.

- Develop sustainable user-fee based facilities to provide well maintained and state-of-the-art instruments.

- Establish partnership with WTC, Nanotech User Facilities (NTUF) and the new Institute of Molecular Engineering at UW.
Shared Instrumentation Facilities (SIF)

SIF 1. Shared Optoelectronic Device Test Facility
to provide testing capabilities for nanoscale Si and hybrid photonic devices (The proposal is being evaluated by the Murdock Foundation)

Images show integrated silicon devices from Luxtera with couplers, fabricated in a commercial foundry by Luxtera Corp. (Courtesy of Luxtera)

SIF 2. High Throughput Electron Beam Lithography Facility for fabricating nanostructures with high reproducibility over large areas at high speed ($2.5 M NSF MRI proposal with $1.2M matching from Washington State EDC)
SIF 3. *Inert Atmosphere System* for Fabrication and Characterization of Thin-Film Organic Electronics and Photonics (obtained $1M from DoD DURIP & Murdock Foundation)

SIF 4. *Multi-user Facility for Synthetic Scale up and Purification* in Benjamin Hall Building
Institute Facilities and Space

- 12,000 ft² of space in Benjamin Hall Building
 - Dedicated and shared space for translational research
 - Space for state-of-the-art laboratories for interdisciplinary research
 - Space for Shared Instrumentation Facilities
 - Space for offices and a conference room

- 6,000 ft² of newly renovated wet chemistry labs in Bagley Hall

- DURIP and Murdock Charity grants for organic electronic fabrication and testing drybox; cryogenic facility
Translational Strategies

Promote Industrial Partnerships and Collaborations:
- Partnerships with Intel, Boeing, Micron, Lumera and other industrial companies in the NW region
- Promote research capabilities & discoveries through active marketing

Identify Technologies Ready for Commercialization:
- IP Advisory Board review of selected discoveries
 - Commercial potential
 - Applications & Markets
 - Patent strategy
 - Links to licensees & research partners
- Work with inventors to facilitate patenting & commercialization

Facilitate the Transition from Discovery to Commercialization:
- ~3000 ft² of industrial lab suites, shared instrument facilities, & office space to support translational research
- Identify critical market needs in thrust areas & develop research programs to address

Toward functioning as an incubator for UW inventors!
Initial Industrial Partnerships

Intel - UW research partnership in high-efficiency solar energy high-speed EO modulation research

Boeing – UW partnership to develop materials and devices to next generation aviation needs

Build on established Lumera – UW partnership to expand into new electro-optic and protein array technology
Possible Models for i-AMT

<table>
<thead>
<tr>
<th>Model</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consortium</td>
<td>• Membership fees are unrestricted</td>
<td>• Dilution of exclusive licensing opportunities</td>
</tr>
<tr>
<td></td>
<td>• Wide range of potential member cos.</td>
<td>• Fees may prohibit small companies from joining</td>
</tr>
<tr>
<td>Federally-supported Research Center (e.g., I/UCRC, STC, DOE Frontier Energy Center)</td>
<td>• Leverage industry research funding to attract federal $$</td>
<td>• Highly competitive review process</td>
</tr>
<tr>
<td></td>
<td>• Validates mission</td>
<td>• Unlikely to cover entire range of technologies</td>
</tr>
<tr>
<td>Incubator</td>
<td>• Provides a platform for spin-off & start-ups</td>
<td>• May need to operate separately from UW</td>
</tr>
<tr>
<td></td>
<td>• Strong need exists in Seattle area</td>
<td>• Start-up funding req’d. until self-sustaining</td>
</tr>
</tbody>
</table>
Next Steps

• Form Scientific Advisory Board
• Identify and pursue potential funding sources
• Establish policies for handling confidential & proprietary information
• Host ‘Open House’ workshop to link researchers with industry