Inspection and Teardown of Aged In-Service Bonded Repairs

May 23, 2018

Waruna Seneviratne, John Tomblin, and Brandon Saathoff
Inspection and Teardown of Aged In-Service Bonded Repairs

NIAR
Waruna Seneviratne, PhD
John Tomblin, PhD
Brandon Saathoff
Lakshan Rubesinghe

FAA
Ahmet Oztekin, PhD
(Technical Monitor)
Larry Ilcewicz, PhD
Cindy Ashforth

SNL
Stephen Neidigk
Ray Ely
Program Overview

- The increased use of bonded applications in critical structures raises concerns related to process sensitivity of the bondline, as an improperly accomplished in-service repair could become a safety threat due to a weak bond being susceptible for further degradation in an unpredictable manner when subjected to operational environments and ground-air-ground (GAG) thermo-mechanical loads.
 - Therefore, long-term durability under operational environments and GAG loading must be understood and the aging mechanism must be investigated to support maintenance practices and to establish criteria for structural retirement.
 - Detailed nondestructive inspections (NDI), teardown inspections, and laboratory testing of bonded repairs on aircraft components that have been retired from service provide vital information related to the aging mechanism and any undetected material degradation.
 - Several decommissioned structural members, both metal and composites, with multiple repairs will be subjected to detailed inspections and cyclic loading in order to determine the remaining life of those repairs.
- The main goal of this research program is to evaluate bondline integrity and durability of in-service repairs on composite structures in commercial aircraft in order to provide guidance into AC 65-33 (Development of Training/Qualification Programs for Composite Maintenance Technicians) and AC 43-214 (Repairs and Alterations to Composite and Bonded Aircraft Structure).
Technical Approach

• Phase 1: Acquisition of Aircraft Components with Documented Repairs
• Phase 2: Preliminary inspections at Sandia National Lab (SNL)
 • Upon completion of NDI, SNL will ship components to NIAR along with detailed NDI reports.
• Phase 3:
 • Teardown inspections
 • Assess the quality of the bonded repairs
 • Document findings related to repair integrity and viability on NDI methods
 • Detailed inspections, strain surveys, and material testing during cyclic testing of component/element testing are intended to provide insight into assessing current standard inspection methods to detect material degradation/wearout.
• Phase 4: Documentation of findings
 • Research team will engage in CACRC and CMH-17 activities related to guidance materials and training/qualification programs for composite maintenance technicians and certification approaches.
Overview of Components

- Aircraft Components with Documented Repairs
- Structural Repair Manuals (SRMs)
- Engineering Repair Authorizations (ERAs)

<table>
<thead>
<tr>
<th>Component Number</th>
<th>Repaired Component</th>
<th>Date of Repair</th>
<th>Stored Date</th>
<th>Flight Hours</th>
<th>Metallic Repairs</th>
<th>Composite Repairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flap, Right I/B</td>
<td>5/26/1995</td>
<td>10/1/2009</td>
<td>13448</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Spoiler, NR 7</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Spoiler, NR 9</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Spoiler, NR 10</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>9</td>
<td>Elevator, Right O/B</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Flap, Right O/B</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Flap, Left O/B</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Spoiler, NR 11</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>19</td>
<td>Slat, NR 6</td>
<td>5/4/2011</td>
<td>5/1/2013</td>
<td>85359</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>25</td>
<td>Horizontal Stabilizer</td>
<td>1/16/2011</td>
<td>7/1/2012</td>
<td>75316</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>30</td>
<td>Flap, Right I/B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>19</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>
Component Shipments to NIAR

- Shipment 1: February 2017
 - Components 1, 13, 14, and 30
- Shipment 2: July 2017
 - Components 3, 4, 9, and 12

<table>
<thead>
<tr>
<th>Component Number</th>
<th>Repaired Component</th>
<th>Date of Repair</th>
<th>Stored Date</th>
<th>Flight Hours</th>
<th>Metallic Repairs</th>
<th>Composite Repairs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Flap, Right I/B</td>
<td>5/26/1995</td>
<td>10/1/2009</td>
<td>13448</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Spoiler, NR 7</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Spoiler, NR 9</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Spoiler, NR 10</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>9</td>
<td>Elevator, Right O/B</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>Flap, Right O/B</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>Flap, Left O/B</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>Spoiler, NR 11</td>
<td>4/30/1995</td>
<td>10/1/2009</td>
<td>13324</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>19</td>
<td>Slat, NR 6</td>
<td>5/4/2011</td>
<td>5/1/2013</td>
<td>85359</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>25</td>
<td>Horizontal Stabilizer</td>
<td>1/16/2011</td>
<td>7/1/2012</td>
<td>75316</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>30</td>
<td>Flap, Right I/B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Total 19 45
Along with shipped components, SNL provided:

- Identification code for each component and individual repairs
- Size and location of each repair
- Detailed NDI reports for each repair (visual, MAUS, IR Thermography)

Repair 14A NDI Results

MAUS V - MIA
- X-Plot
- Y-Plot

MAUS V - RESONANCE
- X-Plot (Amp)
- Y-Plot (Phase)

INFRARED 2D, 6.506s
- Picture

Notes/Observations:
- The repair intersected a line of tape on the surface of the component.
- Core replacement and repair appear to be in good condition.
- One indication observed in the parent material (circled).
Inspection Methods

- Inspection Outline
 - Structural Level (SNL)
 - Visual
 - Mechanical Impedance Analysis
 - Resonance C-scan
 - Thermography
 - Structural Level (NIAR Receiving Inspection)
 - Visual
 - Mechanical Impedance Analysis
 - Resonance C-scan
 - Thermography
 - Panel Level (NIAR)
 - Through Transmission Ultrasonic (TTU)
 - Specimen/Element Level
 - Photomicrographs (cut repair)
 - Computed Tomography (CT) on select repairs
Teardown Procedure

- Decision tree for selecting testing process
 - Level of documentation
 - Quantity of repairs with alike materials and geometry
 - Location of repair
 - Parent structure (underlying features)
 - Resources available to research team
Teardown of Metallic Repairs – Component 13 & 14

• Component 14 Left O/B TE Flap
 • 6 Metallic Bonded Repairs (Specimen/Coupon Level Testing)
• Component 13: Right O/B TE Flap
 • 3 Metallic Bonded Repairs (Specimen/Coupon Level Testing)
Component 14 – O/B Flap (LH)

- Parent Material Identification from SRM

<table>
<thead>
<tr>
<th>Repair</th>
<th>Location</th>
<th>Size [in]</th>
<th>Host Skin Material</th>
<th>Host Core Material</th>
<th>Skin to Core Adhesive</th>
</tr>
</thead>
<tbody>
<tr>
<td>14a</td>
<td>Top Skin</td>
<td>≤5.50</td>
<td>7075-T6 Aluminum</td>
<td>Aluminum Honeycomb</td>
<td>-</td>
</tr>
<tr>
<td>14b</td>
<td>Top Skin</td>
<td>≤6.00</td>
<td>7075-T6 Aluminum</td>
<td>Aluminum Honeycomb</td>
<td>-</td>
</tr>
<tr>
<td>14c</td>
<td>Top Skin</td>
<td>≥9.50 x 6.00</td>
<td>7075-T6 Aluminum</td>
<td>Aluminum Honeycomb</td>
<td>-</td>
</tr>
<tr>
<td>14d</td>
<td>Top Skin</td>
<td>≥10.50 x 7.00</td>
<td>7075-T6 Aluminum</td>
<td>Aluminum Honeycomb</td>
<td>-</td>
</tr>
<tr>
<td>14e</td>
<td>Top Skin</td>
<td>≥7.00</td>
<td>7075-T6 Aluminum</td>
<td>Aluminum Honeycomb</td>
<td>-</td>
</tr>
<tr>
<td>14f</td>
<td>Top Skin</td>
<td>≤6.00</td>
<td>7075-T6 Aluminum</td>
<td>Aluminum Honeycomb</td>
<td>-</td>
</tr>
</tbody>
</table>
C14 - Panel Extractions & Inspections

Panel Extractions

Panel Level TTU C-scans
C14 – Repair Specimen Layout

• Detailed extraction plan following NDI prior to cutting
 • Test Methods
 • Specimen Layout

Strategic placement of specimens considering all NDI data

- ASTM D1876/D3165
- ASTM D5229/D3418
- ASTM E1640
- Core Plug
C14 – Combined Evaluation Matrix

Test Methods
- **Mechanical Testing**
 - T-Peel Testing (ASTM D1876)
 - Lap-Shear Testing (ASTM D3165)
 - Flatwise Tensile Strength (ASTM C297)
 - Climbing Drum Peel (ASTM D1781)
- **Thermal Testing**
 - Dynamic Mechanical Analysis (ASTM E1640)
 - Differential Scanning Calorimetry (ASTM D3418)
- **Chemical Testing**
 - FTIR-ATR (ASTM E1252)
 - Energy Dispersive X-ray Spectroscopy (EDS)

<table>
<thead>
<tr>
<th>Material Definition</th>
<th>Specimen Configuration</th>
<th>Target Result to Achieve</th>
<th>Moisture Configuration</th>
<th>Test Method</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracted Repair Material</td>
<td>-</td>
<td>Peel Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D1876</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apparent Shear Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D3165</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moisture Content of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D5229</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tg of Repair Adhesive</td>
<td>Wet</td>
<td>ASTM E1640</td>
<td>6</td>
</tr>
<tr>
<td>Parent Material</td>
<td>-</td>
<td></td>
<td>As Extracted</td>
<td>ASTM D1781</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair Adhesive Composition</td>
<td>As Extracted</td>
<td>ASTM E1252</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair Adhesive Degree of Cure</td>
<td>As Extracted</td>
<td>ASTM D3418</td>
<td>6</td>
</tr>
<tr>
<td>Baseline Material</td>
<td>(Lab Prepared per SRM)</td>
<td>Peel Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D1876</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apparent Shear Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D3165</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tg of Repair Adhesive</td>
<td>Wet</td>
<td>ASTM E1640</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As Extracted</td>
<td>ASTM E1252</td>
<td>6</td>
</tr>
<tr>
<td>Configuration 1 (AF163-2OST Adhesive)</td>
<td>-</td>
<td>Repair Adhesive Composition</td>
<td>As Extracted</td>
<td>ASTM D1252</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair Adhesive Degree of Cure</td>
<td>As Extracted</td>
<td>ASTM D3418</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peel Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D1876</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apparent Shear Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D3165</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tg of Repair Adhesive</td>
<td>Wet</td>
<td>ASTM E1640</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As Extracted</td>
<td>ASTM E1252</td>
<td>6</td>
</tr>
<tr>
<td>Configuration 2 (AF163-2OST Adhesive with PF on Tacky Side)</td>
<td>-</td>
<td>Repair Adhesive Composition</td>
<td>As Extracted</td>
<td>ASTM E1252</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair Adhesive Degree of Cure</td>
<td>As Extracted</td>
<td>ASTM D3418</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peel Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D1876</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apparent Shear Strength of Repair Adhesive</td>
<td>As Extracted</td>
<td>ASTM D3165</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tg of Repair Adhesive</td>
<td>Wet</td>
<td>ASTM E1640</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As Extracted</td>
<td>ASTM E1252</td>
<td>6</td>
</tr>
<tr>
<td>Configuration 3 (AF163-2OST Adhesive with PF on Mat Surface (Incorrect))</td>
<td>-</td>
<td>Repair Adhesive Composition</td>
<td>As Extracted</td>
<td>ASTM E1252</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repair Adhesive Degree of Cure</td>
<td>As Extracted</td>
<td>ASTM D3418</td>
<td>1</td>
</tr>
</tbody>
</table>
C14 – Repair Specimen Extractions

• Specimen Extraction Documentation
 • Each extraction was documented with pictures prior to photomicrographs
Repair Mechanical Testing – T-Peel

- T-Peel (ASTM D1876)
 - Repair Peel Strength: ≈64% of BL panels
 - Repair failure along interfacial anomaly
 - BL specimens: Cohesive failures

Specimen Preparation

Test Setup

Peel Strength Comparison (Repair vs BL)

Repair Material
- TP-1
- TP-2
- TP-3
- TP-4
- PF-TP-1
- PF-TP-2
- PF-TP-3
- PF-TP-4
- PF-INCOR-TP-1
- PF-INCOR-TP-2
- PF-INCOR-TP-3
- PF-INCOR-TP-5

Repair Material
- BL Config. 1
- BL Config. 2
- BL Config. 3

Peel Strength (lbf/in)

Specimen Preparation

Failure Analysis

Relationship to NDI

5/23/2018
Repair Mechanical Testing – Lap-Shear

- Lap-Shear Testing (ASTM D3165)
 - Repair Shear Strength at failure: \(\approx 50\% \) of BL panels
 - BL specimen failure controlled by adherend tensile strength
 - Repair specimens: Adhesive failure (primer)

Specimen Preparation

1. Core Removal
2. Notch Specimen
3. Lap-Shear Test

Test Setup

Shear Strength Comparison (Repair vs. BL)

- Repair Specimen Failure Mode
 - Post-Test Failure Mode
 - Primer adhesion controlled failure

- BL Specimen Failure Mode
 - Adherend Failure
Interfacial Anomaly

- Component 13/14
 - Noticed in 8 out of 9 repairs
 - Repair on lower surface of C13 (likely different damage event – repaired separately)
 - Controlled performance of bond
 - EDS on surface of failed T-peel specimen
 - Chrome present
 - Layer terminates outside of repair region (=0.5-inches outside repair doubler)
 - Induced from surface preparation for repair

Edge of Repair Cross-Section (Length of Layer Outside of Repair)
Thermal Analysis

- Dynamic Mechanical Analysis
 - As extracted
 - Conditioned: Dry
 - Conditioned: Wet
- Differential Scanning Calorimetry
 - Degree of Cure (%DOC)

Differential Scanning Calorimetry

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Specimen</th>
<th>Exotherm Onset [°C]</th>
<th>Exotherm Peak [°C]</th>
<th>Heat of Reaction of Exotherm [J/g]</th>
<th>Degree of Cure [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncured</td>
<td>AF 163-20ST</td>
<td>125.850</td>
<td>152.20</td>
<td>175.5</td>
<td>-</td>
</tr>
<tr>
<td>BL Material 1</td>
<td>-2OST-DSC</td>
<td>198.370</td>
<td>228.29</td>
<td>9.536</td>
<td>94.57</td>
</tr>
<tr>
<td>BL Material 2</td>
<td>-2OST-PF-DSC</td>
<td>184.960</td>
<td>226.130</td>
<td>14.3</td>
<td>91.85</td>
</tr>
<tr>
<td>BL Material 3</td>
<td>-2OST-PF-INCOR-DSC</td>
<td>191.220</td>
<td>219.260</td>
<td>7.17</td>
<td>95.91</td>
</tr>
<tr>
<td>Repair A</td>
<td>C14-RA-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈100</td>
</tr>
<tr>
<td>Repair B</td>
<td>C14-RB-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈100</td>
</tr>
<tr>
<td>Repair C</td>
<td>C14-RC-6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈100</td>
</tr>
<tr>
<td>Repair D</td>
<td>C14-RD-4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈100</td>
</tr>
<tr>
<td>Repair E</td>
<td>C14-RE-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈100</td>
</tr>
<tr>
<td>Repair F</td>
<td>C14-RF-5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>≈100</td>
</tr>
</tbody>
</table>

Wet (Tg Comparison)

Dry (Comparison)
Metallic Repair Summary – C13 & C14

• **Component 14**
 • Interfacial anomaly between the film adhesive and parent structure when an external patch was bonded over metallic honeycomb core repairs
 • Continuous across all 6 bonded repairs
 • **Mechanical Testing:** Post mechanical test failure analysis showed fracture across interfacial anomaly in all specimens
 • Repair Peel Strength: ≈64% of BL panels
 • Lap Shear Strength: ≈50% of BL panels (BL panel strength controlled by adherend failure)
 • **Thermal analysis**
 • T_g of the repair material to be within 11% of the BL panels in all moisture configurations
 • Average repair adhesive DOC = 100%

• **Component 13**
 • Interfacial anomaly found in 2 out of 3 repairs
 • T_g higher for repair with no interfacial anomaly
 • **Thermal analysis**
 • T_g of the repair material to be within 8% of the BL panels in as extracted moisture configuration
 • Average repair adhesive DOC = 97%
C14 Parent Material Mechanical Testing – FWT

- Flat-wise Tensile Strength (C297)
- Top and Bottom Skin Evaluated
- Nuisance Variables
 - Adherend Thickness
 - Core Thickness
 - Curvature of Specimen

Top Skin
Average FWT Strength [psi]: 580.698

Lower Skin
Average FWT Strength [psi]: 815.583

EA9394 (Paste Adhesive) used as facing adhesive

Cohesive Failure (External Side)
C14 Parent Material Mechanical Testing – CDP

- Climbing Drum Peel (ASTM D1781)
 - Configurations:
 - Exterior Side Top Skin
 - Exterior Side Lower Skin
 - Interior Side Top Skin
 - Interior Side Lower Skin
 - Nuisance Factors
 - Thickness of Core
 - Thickness of adherends
 - Curvature of specimen
 - Variation in thickness of adherends accounted for using substituted material to offset torque required to bend the adherend.
 - Average peel load of calibration specimen used to determine peel load of test specimens (approximate)
Non-Metallic Repairs – Components 3, 4, 9, & 12

• Component 3, 4, 9, 12 are similar in construction
 • Composite sandwich construction with thin facesheets
 • Inboard Elevators (3,12):
 • Exterior: 3 Plies (PW)
 • Interior: 2 plies (PW)
 • Outboard Elevators (4,9):
 • Exterior: 4 Plies (PW & UNI)
 • Interior: 4 plies (PW & UNI)
• Wet Layup Repairs
 • 41 repairs total
 • SRM
 • EA9390 Laminating Resin
 • 200°F for 220 minutes
 • 230°F for 180 minutes
Elevator Evaluation

- Structural Level Inspection Findings
 - Visual
 - Repair extended away from surface (not fully flush)
 - Paint Cracking
 - Speckling pattern noticed in many repairs and surrounding structure (Component 4 & 9)
 - Known that honeycomb structure can exhibit long-term degradation due to thermodynamic effects of trapped moisture in the honeycomb cells
 - Note that this can be evaluated away from the repair as it is seen in parent structure

![MAUS V – RESONANCE, 160KHz](image)

![MAUS V – RESONANCE, 270KHz](image)

Repair 4F
Elevator Evaluation

- Test Approaches
 - Element
 - Picture Frame Shear (PFS)
 - 4-Point Bend
 - Coupon
 - CDP
 - FWT
 - Tension (Lap Shear)
 - DMA
 - DSC
 - Void Content

Element Level

Initial Testing

Specimen Level
Elevator Teardown

- Panel Extractions
 - Detailed Inspections
 - TTU C-scans
 - X-ray CT
 - Specimen/Element Extractions

Component 3 (I/B Elevator)

Component 4 (O/B Elevator)

Component 9 (O/B Elevator)
X-ray Computed Tomography (Select Repairs)

- Repair 9b
 - X-ray Computed Tomography
X-ray Computed Tomography (Select Repairs)

- Repair 3e
 - X-ray Computed Tomography
 - No indication of speckling
Status

• Components 13 & 14 (Metallic Repairs)
 • Inspection and Teardown of Aged In-Service Bonded Repairs – Phase I
 • Update in progress to include C13 as well as C14

• Components 3, 4, 9, & 12 (Non-Metallic Repairs)
 • Receiving inspection complete
 • Panel extractions and detailed inspections in progress
 • Specimen/element preparation in progress
 • Feedback on test methods and approach
Looking Forward

• Benefit to Aviation
 • Evaluation of bondline integrity and durability of in-service repairs on composite structures in commercial aircraft
 • Guidance materials for AC 65-33 (Development of Training/Qualification Programs for Composite Maintenance Technicians) and AC 43-214 (Repairs and Alterations to Composite and Bonded Aircraft Structure)

• Future needs
 • Information on stress level and loading modes on repair regions
 • Feedback on test methods and approach
 • Address limited sample size