Spring 2012 Series

05/29/2012
 
John Armstrong (Weber State University)

Sixty Minutes to Near-Space: Using High Altitude Ballooks as Inexpensive, Mission-driven Experiences in the Space Sciences

 
For the past three years, Weber State University has been using inexpensive high altitude balloons to access extreme atmospheric environments above 100,000 ft. The High Altitude Reconnaissance Balloon for Outreach and Research (HARBOR) is a student-led team of engineers and researchers that provides a platform for exploration of the atmosphere from the surface to altitudes approaching 125,000 feet. These balloon systems are designed, constructed and flown by the students themselves. They are inexpensive to construct, are built with common electronic and hardware components that are easily purchased from commercial vendors, and can be launched and recovered in a single day. The systems are reusable and can be flown many times, allowing students to fly many new experiments during their student lifetime, or to fly a single experiment many times to acquire extended scientific data sets. I'll discuss the results of the last three successful flight seasons, and give an overview of how students and faculty can partner to start a high-altitude ballooning program for experimental access to Mars-like environments and other ideas for using balloons to support mission-driven experiments in astrobiology.
 
 
05/22/2012
 
Jeff Bowman (University of Washington)

Teaching the Teachers: Integrating Astrobiological Concepts into Secondary Education by Reaching Teachers at the Masters Level

 
I will present a course, "Fundamentals of Astrobiology for Science Educators," that was offered at UW Bothell in the fall of 2010. The course emphasized how astrobiology can be used as a bridge to link science concepts typically viewed as unrelated by students and was designed to provide practicing educators with a working overview of key astrobiological concepts within the context of state and national science education standards. We used a combination of lectures, discussions, and classroom activities to help the students integrate astrobiology with their existing curriculum.
 
(Recording Not Available)
 
05/15/2012
 
Lucas Mix (University of Arizona)

The Meaning of "Life": Astrobiology and Philosophy

 
Usually when we speak of the "meaning of life" it has hints of religion associated (or at least Monty Python). The rather abstract question, however, has some very concrete elements based in science. What is the context in which we find life? How do living things relate to one another and to their environment? Our philosophy - particularly our notions of how we know things and what things are talking about - allow us to tie these basic empirical questions into a greater understanding of the universe and ourselves. The talk will explore where the lines are between science, philosophy, and fundamental meaning, particularly in regards to how we define "life."
 
 
05/08/2012
 
Bethany Ehlmann (California Institute of Technology)

The Earliest Aqueous, Habitable(?) Environments on Mars: A View from Orbit

 
The emerging picture of Mars' first billion years includes diverse environments involving liquid water and chemical alteration. Clay, carbonate, chloride, and sulfate minerals have all been detected and mapped from orbit in coherent geologic units. When near-infrared spectroscopic detections of minerals from the orbiting CRISM imaging spectrometer are coupled with high-resolution images of morphology provided by orbiting cameras, distinctive aqueous, potentially habitable, environments can be identified, preserved in the geologic record. I will give a global overview of the most recent findings, delve into the details of transitions recorded in a few key stratigraphic sections, and discuss the hypothesis that the most widespread and long-lived aqueous environments on early Mars were in the subsurface.
 
05/01/2012
 
Everett Shock (Arizona State University)

Geochemistry Meets Biochemistry in Hydrothermal Ecosystems

 
I will ponder how we can move from the traditional geochemical framework of water-rock reactions to the more inclusive and realistic water-rock-organic-microbe processes, and how all of this might be modeled. The focus will be on recent experimental work (largely on recent field work in Yellowstone) and the insights gained from theoretical analysis.
 
 
04/24/2012
 
Antigona Segura (Instituto de Ciencias Nucleares))

Tales of Habitability: The Curious Case of M Dwarf Planets

 
As we discover more exoplanets and improve our observational techniques, we are moving closer to finding planets that are potentially habitable. M dwarfs (main sequence M stars) are the most numerous in the Solar neighborhood. They are also the stars around which it is easiest to detect a rocky planet using the radial velocity method with instruments on the ground. However, these stars also have characteristics that may be harmful for life in planets around them. In this talk I will present the characteristics of M dwarfs, the conditions required for surface habitability, the concept of biosignatures, and review the research on habitability and life detection on rocky planets around M dwarfs.
 
 
03/27/2012
 
Dirk Schulze-Makuch (University of Washington)

The Future of Human Life: Mars, Exoplanets, and the 100-year Starship Project

 
One of the major goals of NASA's Astrobiology Roadmap is to gain insights on the Future of Life. We realize that we are living on a vulnerable planet in a dangerous universe. One solution to make us less vulnerable from catastrophes is to enhance space exploration and ultimately colonize other worlds. The obvious choice is Mars due to its close proximity and available resources. An alternative option is explored by the recent DARPA/NASA initiative for a 100-year Starship Project: to develop the capability to travel to planets outside of our solar system within 100 years. A priority-scheme is introduced of how to determine which of the more than 700 confirmed exoplanets so far may be habitable. The scheme supports the 100-year Starship Project and helps focusing future investigations on which of the exoplanets we might find life.