Astro Lunch

Fall Quarter 2017 (current)

A multi-scale portrait of the circumgalactic medium

PAB305
Speaker: Drummond Fielding (UC Berkeley)

The flow of gas through the circumgalactic medium (CGM) regulates galaxy growth over cosmic time. Observations have recently revealed a complex multi-phase structure in the CGM that has challenged many of the established theories—highlighting significant gaps in our understanding of this critical aspect of galaxy formation. The spatial scales relevant to the CGM span a huge range with its structure and evolution determined by small-scale processes, such as the launching of galactic winds by clustered supernovae and thermal instability in the hydrostatic halo, and large-scale processes, such as cosmological accretion. I will describe my attempts to understand the details and interplay of these multi-scale processes in order to develop a coherent picture of the CGM that is consistent with observations.

The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

PAB305
Speaker: Sumit Sarbadhicary (University of Pittsburgh)

Current mainstream theories of stellar evolution make simple approximations for fundamental processes like convective mixing or mass transfer in close binaries. These approximations can lead to systematic errors in our understanding of the physical properties of galaxies, both local and at high-redshifts. A critical reappraisal of stellar evolution theories is in order. In this talk, I will discuss a method to recover delay-time distributions (DTDs), which can pose powerful observational constraints on stellar evolution scenarios for many classes of stellar objects. To calculate DTDs, one needs a catalog of objects and a map of the star-formation histories of the host galaxy. The technique is particularly effective in the Local Group, where reliable star-formation histories from resolved stellar populations, and high quality surveys are available. I will discuss the application of this method to pulsating variable stars like RR Lyrae and Cepheids. I will also discuss the progress of my group towards the calculation of a DTD from Local Group supernova remnants, with the hope of constraining the long-standing progenitor problem of thermonuclear and core-collapse supernovae.

Jorge Vergara (University of Chile)

PAB305
Speaker: Jorge Vergara (University of Chile)
Pre-processing of data appears as a research area of great interest, mainly because it makes the data intelligible for later analysis. Within the pre-processing techniques is the selection and extraction of features based on mutual information. These are aimed at obtaining a minimum set of features that contain the information necessary to build a model. The advantages of this minimal set of features are to provide greater speed and effectiveness while improving performance in prediction, to have a clearer understanding of the process generating the data, and to reduce the dimensionality of the problem. On the other hand, the use of the metric based on mutual information, allows to perform the pre-processing of data independently of the classifier, and to detect non-linear relationships that exist between the features, independent of the transformations that they have. This presentation will show some well-known techniques of selection and extraction of features based on mutual information and some applications to astronomical data.

Jeremy Bailey (UNSW Sydney)

PAB305
Speaker: Jeremy Bailey (UNSW Sydney)

At UNSW we have built the world’s most sensitive astronomical polarimeter, capable of measuring stellar polarisation down to levels of a few parts per million. I will describe the instrument and the research we have done with it since its commissioning in 2014. One of the main goals of such instruments has been to contribute to the characterisation of exoplanet atmospheres by detecting polarised light reflected from hot-Jupiter type planets. However, we can also learn much about stars using these techniques. We have made some of the first polarimetric observations that directly probe stellar atmospheres and allow us to constrain stellar properties. In order to interpret these observations we have developed methods for modelling the atmospheres of both planets and stars including full polarisation in the radiative transfer. I will also describe future plans including a version of the instrument we are developing for Gemini North.

A tale of two clump masses – a different approach to studying clump formation in simulations

PAB305
Speaker: Samantha Benincasa (McMaster University)

In the Milky Way now, star formation proceeds almost exclusively in Molecular Clouds (MCs) under 106 Msun .  This is not necessarily true at higher redshifts.  The CANDELS survey has shown us a fraction of galaxies host massive kpc-scale stellar clumps (Guo et. al 2015).  This suggests that star formation may proceed in objects at least 100 times more massive than present day MCs.  However, lensing source reconstruction, which has enhanced resolution, has shown us that star formation can still proceed in MC-scale objects at these redshifts (e.g. Johnson et al. 2017).  A natural way to piece two opposing datasets together would be to turn to simulations of clump formation.  However, this produces a similar dichotomy where both large (e.g. Inoue et al. 2016) and small (Tamburello et al. 2016, Behrendt et al. 2016) objects can be formed.  With a wealth of conflicting observational and theoretical data, we find ourselves at a crossroad.  We propose a new approach to studying clump formation in simulations.  We seed clump formation events in isothermal simulations of galaxy disks.  In this way, we can explore a large parameter space in both perturbation size and strength.  We can find a space of likely clump masses for a given galaxy.  We propose this method as a way to stitch together the wealth of data we now have.

Investigating Quasar Outflows in Absorption and Emission

PAB305
Speaker: Serena Perotta (UC Riverside)

In the last decade, the potential impact of galaxy-scale outflows driven by quasars on their environment has become widely recognized. Quasars not only provide radiative feedback in the form of pressure and photo heating, they also affect the ionization state of the gas in and around the host galaxies. In this talk I show that there is strong evidence of a different ionization state close to the quasar along and across the line of sight. I have exploited the spectra of 100 quasars at emission redshift zem = 3.5 – 4.5 to construct a large sample of narrow absorption line (NAL) systems. The observations have been carried out with VLT/X shooter in the context of the XQ-100 Legacy Survey. I statistically study their physical properties and distribution on different scales. I also present results from stacking Lyman alpha forest absorbers in the XQ-100 sample to look for metals signal at large velocity separation from the zem.

Finally, I briefly talk about the Extremely Red Quasars, a unique red-quasar population with exotic physical conditions. They are candidates to be young objects in a transition stage between dusty starbursts and unobscured blue quasars: the perfect laboratory where to study powerful outflows through their peculiar emission lines.

Hidden in plain sight: Uncovering low-surface-brightness galaxies with the Hyper Suprime-Cam Survey

PAB305
Speaker: Johnny Greco (Princeton)

Low-surface-brightness galaxies (LSBGs) are a significant component of the galaxy population, which provide a unique testing ground for theoretical predictions of galaxy and star formation, stellar feedback processes, and the distribution and nature of dark matter. However, their defining characteristic—central surface brightnesses that are fainter than the night sky—makes them difficult to detect and study, leading to their underrepresentation in previous optical surveys and biasing our view of the full galaxy population. I will present a new view of these elusive galaxies from the Hyper Suprime-Cam (HSC) Survey, a 300-night imaging survey using the 8.2-meter Subaru Telescope on Mauna Kea. After giving an overview of the HSC Survey, I will present our source-detection pipeline and initial catalog of LSBGs within the first ~200 deg^2 of the survey, which will grow to 1400 deg^2 upon survey completion. Our LSBG catalog will facilitate follow-up efforts (which we have already started) to study the physical properties and number densities of these galaxies as a function of environment. Pushing such studies to lower surface brightnesses will be necessary to form a more complete census of the galaxy population, which will ultimately provide one of the strongest tests of the standard LCDM framework.

LSST: Where we are and where we’re going

PAB305
Speaker: John Swinbank (UW)

Starting in the early 2020s, the Large Synoptic Survey Telescope will carry out a decade long survey of the southern sky. Offering a unique combination of breadth, depth and cadence, this survey will enable us to address some of the most profound questions in modern astronomy.

It will also present huge challenges: how can we collect, store, process and — most importantly! — understand the hundreds of petabytes of data which will be produced? How can we combine the statistical and algorithmic rigor needed to enable the next generation of precision cosmology with the speed and agility needed to identify and respond to transients and variable sources? How can we make vast volumes of data available to the community in a way that enables your particular science case?

In this talk, I will briefly review the design and scientific goals of LSST, provide an update on the current status of construction, explore some of the algorithmic and data processing challenges that the LSST Data Management team faces, and describe the key role that members of the Department of Astronomy here at UW are playing in making it all possible.

Nuclear Star Clusters in the Virgo Cluster: Results from Multiband Photometry and Spectroscopy

PAB305
Speaker: Chelsea Spengler (University of Victoria)
The centers of galaxies are home to intriguing central massive objects (CMOs) that, although spatially quite small, have far-reaching effects on galaxy evolution. CMOs manifest as supermassive black holes and/or nuclear star clusters (NSCs), and follow well-known scaling relations with global properties of their host galaxies. The ubiquitousness of CMOs suggests that their formation is a key component of galaxy evolution, but much remains unknown about CMO origins and growth. This is especially true in dwarf galaxies, where the scaling relations are less understood and NSCs are most abundant. In this seminar I will present recent work to constrain the origins of NSCs through a detailed multi-wavelength study of the stellar populations and scaling relations in 39 NSCs and their hosts, capitalizing on a number of ground- and space-based surveys of the Virgo Cluster. I will also introduce ongoing work with full dataset available from the Next Generation Virgo Cluster Survey, which provides a new opportunity to study NSCs of unprecedented faintness.

Constraining the Movement of the Spiral Features and the Locations of Planetary Bodies within the AB Aur System

PAB305
Speaker: Jamie Lomax (University of Washington)

The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the spirals in the disk may instead be due to areas of increased density in the envelope and projection effects. I will report polarimetric modeling results of AB Aur designed to begin to place constraints on properties of the envelope such as infall rate and cavity opening angle, compare our results to observations in order to determine the origin of the spiral structures, and place constraints on the location of planetary bodies within the system.

Measuring the Reionization History with Quasar Damping Wings

PAB305
Speaker: Fred Davies (UC Santa Barbara)

The Lyman-alpha damping wing from neutral hydrogen in the intergalactic medium is predicted to be a key signature of the reionization epoch in the spectra of high-redshift quasars. There are substantial challenges in measuring and interpreting this signal, however: the intrinsic spectrum of the quasar near its Lyman-alpha emission line is highly uncertain, and the strength of the damping wing depends on the patchy structure of reionization and the age of the quasar. We have developed a Principal Component Analysis-based machine-learning approach to predict the intrinsic quasar spectrum, and have combined semi-numerical simulations of reionization topology with 1D radiative transfer through hydrodynamical simulations to predict the range of possible damping wing morphologies. Using a Bayesian statistical formalism calibrated with forward-modeled mock spectra we can then translate an observed quasar spectrum into constraints on the global neutral fraction and the length of the luminous quasar phase. I will demonstrate the application of these methods to the highest redshift quasars known to date, and discuss the potential for existing quasar spectra to constrain the reionization history at z > 6.

Spring Quarter 2017

Dan Taranu

PAB305
Speaker: Dan Taranu (CAASTRO)

TBA

Exoplanet Imaging with the Gemini Planet Imager and Beyond

PAA 214
Speaker: Benjamin Gerard (University of Victoria)

Astronomers are entering a new era of exoplanet imaging with the Gemini Planet Imager (GPI), an extreme adaptive optics system at Gemini South. I will present some highlights of the achievable science with high contrast imaging instruments, including the GPI Exoplanet Survey (GPIES), an ongoing 890 hour survey of 600 young nearby stars. I will also present an overview of the technical limitations that prevent GPI from reaching planet masses and separations below ~2 Jupiter masses and ~10 AU, namely contrast and resolution, respectively. To further improve sensitivity to lower exoplanet masses and smaller separations, I will also discuss my ongoing work on new data processing algorithms, as well as possible future upgrades to the instrument in between leaving Gemini South in mid-2018 (when GPIES is planned to finish) and a possible move to Gemini North. For the former, I present an analysis from a new PSF subtraction algorithm that can improve contrast by up to ~45% at angular separations near the diffraction limit, while for the latter I present simulations showing that upgrading GPI with a new focal plane wavefront sensing technique, called the Self-Coherent Camera, could improve contrast by up to a factor of ~20, reaching ~Saturn mass sensitivity.

SURFS: Synthetic UniveRses For Surveys

PAA 214
Speaker: Pascal Elahi (University of Western Australia, ICRAR)

I will present an overview of Synthetic UniveRses For Surveys (SURFS), the next generation of mock observations, following in the footsteps of Millennium and Bolshoi simulations. The SURFS simulation set consists of N-body/Hydro simulations in the Planck concordance LCDM cosmology, sampling scales & halo masses down to 1 kpc and 100 million solar masses in 210 Mpc/h cosmological volumes. These simulation parameters are optimised to understand the galaxy formation physics governing satellite galaxies and chosen so as to produce synthetic analogues to upcoming surveys like WAVES and WALLABY. We use state-of-the-art Halo Finders, Trackers and Semi-Analytic Models (SAM) of galaxy formation to follow not just the evolution of central galaxies/haloes but the active lives of satellites/subhaloes spanning group to low cluster mass scales. I will present preliminary results on the evolution on the cosmic growth and gas accretion history of haloes and how the cosmic web ties into it.

Anchoring the distance scale and providing new insights into stellar physics using high-precision observations of classical Cepheids

PAB305
Speaker: Richard I. Anderson (Johns Hopkins University)

Classical Cepheid variable stars (henceforth: Cepheids) are best-known for their crucial role in calibrating the cosmic distance scale, and thus, for investigating dark energy. Yet, Cepheids continue to be objects of high interest for stellar physics and rank among the most-studied types of variable stars.

This talk presents recent observational work aimed at increasing the accuracy of extragalactic distance measurements as well as providing new insights into stellar pulsations via highly precise observations obtained with state-of-the-art instrumentation from the ground and from space. Specifically, I present how high-precision radial velocity measurements of Cepheids a) support unprecedented parallax accuracy, b) reveal systematic uncertainties of Baade-Wesselink-type distances, and c) have enabled the discovery of atmospheric velocity field perturbations that are presently not understood. Related irregular variability patterns discovered via high-precision photometric and interferometric observations are also discussed.

The ongoing ESA mission Gaia is expected to revolutionize stellar astrophysics and provide a highly accurate anchor for the extragalactic distance scale. As this talk shows, high-precision observations can expose secrets of seemingly well-understood stars and play a crucial role for leveraging Gaia’s full potential.

Winter Quarter 2017

AU Mic’s Debris Disk Color Revealed Using Optical Coronagraphic Spectroscopy

PAB305
Speaker: Jamie Lomax (University of Washington)

I will present the first coronagraphic spectroscopy of the AU Mic debris disk system obtained with HST/STIS as part of GO-12512. Spectra of the system were taken by placing a long slit in the disk direction while blocking out the central star with an occulting bar. A naked star of similar spectral type was likewise observed for a PSF subtraction. This procedure results in a two dimensional spectrum as a function of disk position between 5200 and 10,200 angstroms for the system. I will report the results of these AU Mic spectra, which can be used to help determine the dust grain composition of the system by characterizing the disk’s color as a function of radial distance along the its midplane. In addition, I compare the spectra on either side of the disk in order to probe the presence of any compositional and structural asymmetries.  This reveals the dynamical perturbations and chemical processing occurring within the disk and traces the potential composition and architecture of any planetary bodies in the system.

Gas-rich Protoplanetary Disks within 100 pc: Observing Planet Formation at Close Range

PAB305
Speaker: Joel Kastner (RIT)

I will present an overview of the identification and investigation of the handful of “young solar system analogs” — star/disk systems — that lie within a mere ~100 pc of Earth. I describe advances in our understanding of protoplanetary disk structure and evolution enabled by these systems, with particular emphasis on the new discovery space that is now being opened by high-resolution imaging with ALMA as well as extreme AO cameras on large ground-based optical/IR telescopes.

Non-standard DM models and where to find them

PAB305
Speaker: Fabio Governato (University of Washington)

I will review a few recent results on theoretical models of galaxy formation in non standard DM models, with a focus on Warm Dark Matter and Self Interacting DM.

Connecting Nuclear Astrophysics to Cosmological Structure Formation

PAB305
Speaker: Benoit Côté (University of Victoria)

Galactic chemical evolution is a multidisciplinary topic that involves nuclear physics, stellar evolution, galaxy evolution, and cosmology. Observations, experiments, and theories need to work together in order to build a comprehensive understanding of how the chemical elements synthesized in astronomical events are ejected and spread inside galaxies and recycled into new generations of stars. Nuclear physics provides nuclear reaction rates, stellar models provide the composition of stellar ejecta, galaxy models follow the evolution of chemical species driven by multiple stellar populations, cosmological simulations dictate how galaxies form and evolve in general, and observations provide constraints to test and improve numerical recipes driven by theories. During this talk, I will address the topic of galactic chemical evolution and present our efforts to create permanent connections between different fields of research (including nucleosynthesis and gravitational wave physics). Our ultimate goal is to better understand the origin of the elements in the universe and to explain the diverse chemical evolution patterns observed in nearby galaxies.

Autumn Quarter 2016

Massive Stars – Singles versus Couples

PAB356 (reading room)
Speaker: Claus Leitherer (STScI)

TBA

Wolf-Rayet Stars in the Local Group Galaxies

PAB356 (reading room)
Speaker: Kathryn Neugent (Northern Arizona University)

TBA

Massive White Dwarfs in Massive Binaries

PAB305
Speaker: Marina Orio (Padova/Wisconsin)

After briefly reviewing what is known and what we still need to know in order to correctly identify the supernovae Ia progenitors in different populations, I will talk about massive white dwarfs that are accreting mass in binary systems and are burning hydrogen in shell. I will review what we know about symbiotics and Be+white dwarf systems as possible progenitors of type Ia supernovae, and I will present new observational data about some of the hottest and massive white dwarf binaries in the Local Group.

Joe Burchett

PAB305
Speaker: Joe Burchett (UMass Amherst)

TBA

Jen Sobeck

PAB305
Speaker: Jen Sobeck (University of Virginia)

TBA

Ben Montet

PAB305
Speaker: Ben Montet (University of Chicago)

TBA

Study of AGN variability with the Palomar Transient Facility data

PAB305
Speaker: Neven Caplar (Institute for Astronomy, ETH Zurich)

TBA

Gwendolyn Eadie

PAB305
Speaker: Gwendolyn Eadie (McMaster University)

TBA

Spring Quarter 2016

Rotation and Activity in Low-mass Hyades and Praesepe Members, and the Implications for Gyrochronology

PAB356 (reading room)
Speaker: Stephanie Douglas (Columbia University)

TBA

Alireza Hojtat on lensing

Speaker: Alireza Hojtat

Key Processes of Galaxy Formation at High Redshift

PAB356 (reading room)
Speaker: Avishai Dekel (Hebrew University of Jerusalem)

TBA.

Winter Quarter 2016

Galactic winds on FIRE: the role of circumgalactic outflows in galaxy evolution

PAB356 (reading room)
Speaker: Sasha Muratov (UC San Diego)

Galactic winds blow through galaxies of all shapes and sizes, but they are particularly ubiquitous in high-redshift star-forming galaxies, where they may be driving galactic evolution by regulating the baryon cycle. Due to recent advances in the modeling of stellar feedback, cosmological simulations of galaxy formation can now generate galactic winds explicitly, while also matching many observed properties of galaxies at various epochs. We can therefore study simulated winds as an emergent phenomenon, and derive insights into galaxy evolution to compliment current observational knowledge. In my talk, I will discuss my progress in characterizing galactic outflows in the Feedback in Realistic Environments (FIRE) simulations. I will quantify the overall prevalence and intensity of galactic winds, their connection to physical galactic properties, and the observational implications of wind-driven evolution for galaxies and the circumgalactic medium.

APO General Update

PAB356 (reading room)
Speaker:

Please join us in the reading room on Tuesday Jan 12 at 4pm for a general meeting about APO, including new instrumentation on the 3.5m telescope, planning that is starting now for the 2.5m Sloan telescope in the 2020’s time frame (“After Sloan 4”), and current usage and availability of ARCSAT, the 0.5m photometric telescope.

You are particularly encouraged to participate if you have input about the new spectrograph (currently in planning stage) to replace DIS on the 3.5m. A committee is actively soliciting input from the users community for science requirements to determine design goals.

UW Ombud

PAB356 (reading room)
Speaker: Chuck Sloane

Intradepartment Research Talks

PAB356 (reading room)
Speaker: Various

Join us for 10 min talks by Chris Laws, Nicole Silvestri Kelly, Toby Smith, Oliver Fraser, Ana Larson, and Joe Huehnerhoff!

The GrayStar project: Moving computational stellar astrophysics into the Web browser

PAB356 (reading room)
Speaker: Ian Short (Saint Mary’s University, Halifax)

The goal of the GrayStar project is to turn any WWW browser running on any device into a didactic “teaching and learning” virtual star equipped with user-friendly input parameter knobs and instrumented with virtual observables and more advanced modeling outputs, so that stellar astronomy instructors can use physics education research (PER) methods in class. No special technical specifications are required of the user’s device, nor any special computational savviness on the part of the user. GrayStar3 is a physics-based general stellar atmosphere and spectral line modeling code written in JavaScript that displays its output in HTML. It is scientifically credible for pedagogical demonstration purposes, yet it adopts enough simplifying approximations to be almost instantaneously responsive and is suitable for classroom demonstration and lab-style homework projects. The HTML user interface is adaptable to be appropriate for a broad range of pedagogical levels, and there are more advanced physics modules that can be turned on to produce more realistic output and to address topics relevant at the introductory graduate level. GrayStar is publicly discoverable on-line and its accessibility as a WWW “activity” potentially “normalizes” the idea of scientific computational modeling and parameter inference. As JavaScript and HTML become more sophisticated, and as personal computational devices become more powerful, this approach may become increasingly important to the scientific education and research community. The application may be found here, and is most reliably responsive in the Chrome and Opera WWW browsers. Users are encouraged to download their own local installation and to modify it. Time permitting, I will address a recent extension of this idea, GrayStarServer, that performs on-demand spectrum synthesis on a server at Saint Mary’s and displays the result in the GrayStar client UI.

Dwarf galaxies and near-field cosmology in the APOSTLE simulations

PAB356 (reading room)
Speaker: Kyle Oman (University of Victoria)

TBA.

Intradepartment Research Talks (Grads)

PAB356 (reading room)
Speaker: Grads

10 min astro lunch talks by graduate students.

Fred Davies

Speaker: Matt McQuinn

The Fluctuating UV Background Across Cosmic Time

Intradepartment Research Talks (Grads)

PAB356 (reading room)
Speaker: Grads

10 min astro lunch talks by graduate students.

Cluster Cosmology: Models, Simulations and Reality?

PAB356 (reading room)
Speaker: Gus Evrard (University of Michigan)

TBA

Autumn Quarter 2015

Testing Asteroseismology with Red Giants in Eclipsing Binaries

PAB356 (reading room)
Speaker: Meredith Rawls (NMSU)

Oscillating stars in eclipsing binaries are powerful tools for testing stellar models because binarity allows for independent computation of physical stellar parameters. Thanks to advances in asteroseismology, red giants have become astrophysical laboratories for studying stellar evolution and probing the Milky Way. In this talk, I highlight an interesting pair of oscillating red giants in the eclipsing binary KIC 9246715, and I discuss work underway to characterize the 20 known red giants with eclipsing companions observed by Kepler. These are rapidly becoming some of the best-studied stars and an important benchmark for asteroseismology.

Astro Lunch

PAB356 (reading room)
Speaker: Various Faculty

This is the first of a series of astro lunches featuring short (10 minute) talks by the faculty in October. This event will contain talks by Julianne, Matt, Emily, Fabio, and Paula. See you there!

Rocky Planets and Rocks on Planets

PAB356 (reading room)
Speaker: Lauren Weiss (UC Berkeley)

I will discuss my work to determine the compositions of small planets.  The density-radius distribution of 72 exoplanets smaller than 4 Earth radii peaks at 1.5 Earth radii.  Planets smaller than 1.5 Earth radii usually increase in density with increasing planet radius, suggesting that planets up to 1.5 Earth radii can have rocky surfaces.  However, planets larger than 1.5 Earth radii typically decrease in density with increasing planet radius, suggesting that at around 1.5 Earth radii, planets begin to accrete volatile envelopes that reduce their bulk density. This trend is exemplified in two systems for which I present updated planet masses.  By simultaneously fitting radial velocities and transit timing variations with TTVFast, I determined that (1) Kepler-11 has six planets with volatile envelopes; and (2) Kepler-10 has one rocky planet, one planet with a volatile envelope, and one non-transiting planet candidate.  Finally, I will describe an instrument I am developing for topographic compositional mapping of rocks and ices on solar system worlds.

Astro Lunch (Faculty Research Talks)

PAB356 (reading room)
Speaker:

10 minute faculty research talks at noon in the reading room. Join us!

Astro Lunch (Postdoc/Researcher Talks)

PAB356 (reading room)
Speaker:

10 minute post-doc/research scientist research talks (+ 1 faculty member).

Astro Lunch (Postdoc/Researcher Talks)

PAB356 (reading room)
Speaker:

10 minute post-doc/research scientist research talks (+ 1 faculty member)

Astro Lunch (Postdoc/Researcher Talks)

PAB356 (reading room)
Speaker:

10 minute post-doc/research scientist research talks

Supermassive black hole formation in cosmological simulations

PAB356 (reading room)
Speaker: Melanie Habouzit (Institut d’Astrophysique de Paris)

TBA