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The discovery of hair cell regeneration in the inner ear of birds

provides new optimism that there may be a treatment for hearing

and balance disorders. In this review we describe the process of

hair cell regeneration in birds; including restoration of function,

recovery of perception and what is currently known about

molecular events, such as growth factors and signalling systems.

We examine some of the key recent findings in both birds and

mammals.
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Abbreviations
FGFR3 fibroblast growth factor receptor 3

Hes hairy and enhancer of split

MAPK mitogen-activated protein kinase

Math1 mammalian atonal homolog 1

TGFa transforming growth factor a
VOR vestibulo-ocular reflex

Introduction
The discovery of hair cell regeneration in the inner ear of

birds following exposure to ototoxic drugs or intense

acoustic stimulation forever changed our views on how

hearing and balance disorders may someday be treated

(Figure 1). The majority of disorders causing permanent

hearing impairment and many balance disorders are

thought to be due to degeneration of the hair cells — the

mechanosensory receptor cells — of the inner ear sensory

epithelia. In mammals, when these cells are lost due to

genetic mutation, disease, exposure to environmental

toxins or aging, hearing and/or vestibular impairments

are permanent. In 1987�88, five seminal papers [1–5] on

hair cell regeneration were published, establishing: first,

that experimental destruction of hair cells in the mature

avian cochlea (basilar papilla) stimulates the proliferation

of support cells and new hair cell production; second, in

the undamaged avian cochlea, there is virtually no mitotic

activity; third, in the mature avian vestibular epithelium,

there is a low rate of cell cycle activity and ongoing

production of new hair cells. These papers stimulated

a new wave of research, the goals of which were, and still

are: first, to understand hair cell regeneration in the inner

ear of birds and other non-mammalian vertebrates; sec-

ond, to examine the functional capabilities of the inner ear

and neural pathways following regeneration; third, to

stimulate replacement of lost or injured hair cells in the

inner ear of mammals. In this review, we comment on

recent progress in each of these areas.

Restoration of auditory and vestibular
function
Once regeneration of hair cells in the inner ear of birds

was confirmed, the question that immediately arose was:

do the regenerated cells restore hearing and balance? To

do this, new hair cells must develop appropriate ion

channels for transduction and be re-innervated by the

VIIIth nerve fibers that make appropriate connections in

the CNS. Additionally, the animal must be able to access

this information to make behaviorally meaningful

responses. A thorough review of the literature up until

1999 on the recovery of auditory processing is available

[6]. Table 1 categorizes this literature and provides addi-

tional references.

Recovery of sensory function: new cells or old cells

with new life?

The earliest attempts to determine whether regenerated

hair cells restore auditory function produced equivocal

results. Studies from several laboratories showed recovery

of electrical responses in the brain in response to acoustic

stimulation and recovery of behavior following noise

damage or aminoglycoside toxicity [7–10]. The problem

was one of interpretation: is recovery of function

mediated by the newly produced hair cells, or by recovery

of hair cells and their associated structures that were

injured, but not fatally so, by the intervention? When

the time course of functional recovery precedes matura-

tion of the new hair cells, interpretation leans toward

recovery of damaged cells [11–14]. When functional

recovery corresponds with the time course of new hair

cell differentiation, or with the particular functional attri-

butes of an area in which all the original hair cells were

destroyed, interpretation favors regenerated hair cells as

the transducers. It appears that both processes can med-

iate recovery under different circumstances.

Direct evidence for recovery mediated by the regen-

erated hair cells requires that all of the hair cells respon-

sive to a particular sound attribute are destroyed, leading

to a failure of the response (either physiological or
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behavioral), and that this is followed by recovery of the

response with a time course consistent with the produc-

tion and differentiation of new hair cells. This scenario

was partially achieved by some early studies using record-

ings of responses to pure tone stimuli [9,15], and has been

more definitively shown by several studies examining the

responses of single VIIIth nerve axons [6,16,17��]. For-

mally, however, one could still argue that the response

Figure 1
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Scanning electron micrographs showing hair cell regeneration in the starling basilar papilla (BP) after aminoglycoside treatment. Each panel shows a

low power scanning electron microscope image of the basal half of the BP, and two high power photomicrographs from the positions indicated. (a)
shows the control untreated case; (b) shows a BP after drug treatment; and (c) shows a BP 20 weeks after drug treatment. Note that immediately after

aminoglycoside treatment, almost all hair cells disappear from the basal end; apically, there is also a significant loss of hair cells. After 142 days (c), a

normal complement of hair cells returns, but the mosaic is somewhat abnormal. The asterisks indicate the approximate location along the BP of the

high power images shown below. These images came from the work of Marean et al. [18��].
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properties of the cochlea change following damage to a

subset of hair cells, allowing a different subset to restore

the response properties initially lost. Such changes are not

unprecedented. For example, the frequency/place repre-

sentation in the cochlea of birds and mammals changes

dramatically during the early stages of hearing develop-

ment, and small reversible changes in the tonotopic

representation in the brainstem auditory nuclei of chicks

are reported after hair cell damage [12].

One way to conduct a definitive test of the involvement of

regenerated hair cells in recovery of function is to remove

the regenerated cells after restoration of function and

observe the specificity of the changes. This was achieved

by behavioral studies examining the loss and recovery of

high frequency sensitivity in starlings after aminoglyco-

side treatment. After recovery stabilized, a second ami-

noglycoside treatment, designed to kill hair cells only in

the area of regeneration, reversed the recovery of high

frequency sensitivity [18��]. This result argues strongly

for the involvement of the regenerated hair cells in

recovery of auditory function in birds. Although evidence

for the participation of regenerated hair cells in functional

recovery is now convincing, the recovery is not perfect.

Most studies have reported residual long-term deficits,

such as mild sensitivity impairments and mild to mod-

erate tuning impairments (e.g. see [17��]).

In summary, both behavioral and physiological studies

provide convincing evidence that regeneration of hair

cells restores near normal vestibular reflexes and response

properties in the vestibular afferents to the brain [19–21].

Does this same process occur in mammals to a limited

extent, and has gone unnoticed? Alternatively, is the

process started and then aborted before the differentia-

tion of new hair cells? One report [22] suggests that

extensive regeneration of mammalian vestibular hair cells

can be induced by local application of growth factors and

leads to recovery of vestibular reflexes. However, the lack

of direct evidence for mitotic regeneration casts doubts on

these claims.

Recovery of perceptual processing and behavioral

plasticity

Although many reports have examined the role of hair cell

regeneration in the recovery of sensory information pro-

cessing, few have examined more complex properties of

perceptual processing and behavioral plasticity. In gen-

eral, studies have found that temporal and frequency

resolution gradually return to normal or near normal in

conjunction with the return of sensitivity [23,24,25��,26].

But what about the recognition and production of vocal

signals that depend on hearing and are necessary for

communication? And what about the stability of behavior,

or its plasticity, as the receptor system and central path-

ways are experiencing such profound alterations in infor-

mation flow? A few recent studies have examined these

questions and provided new insights into, as well as new

tools to investigate, old questions.

Dooling et al. [25��] used budgerigars (domesticated para-

keets) to examine the perception of vocalizations. These

birds are classical mimics who readily learn new vocaliza-

tions throughout life. Birds were trained to match their

vocalizations to specific acoustic templates, and then sub-

jected to a profound high frequency hearing loss by ami-

noglycoside injections. As their hearing recovered, the

birds were retested with the same acoustic templates.

The vocal mimicry initially declined, but was restored to

pre-injection levels quite rapidly,before the full recoveryof

thresholds or discrimination abilities. This result suggests

that relatively little acoustic feedback is necessary to guide

previously learned vocal abilities, and that regeneration of

only a few hair cells is sufficient to restore that feedback.

Table 1

Studies evaluating the functional properties of regenerated hair cells

Level of analysis Dependent variable Type of damage Recovery period studied References

Inner ear Ototacoustic emissions Intense sound exposure 1 wk - 8 wks [52–54]
Aminoglycosides 1 wk - 22 wksþ

Endocochlear potential Aminoglycosides 1 day - 4 wks [55–57]

Intense sound exposure 0 day - 12 day

Vestibular hair cell physiology Aminoglycosides [58,59]

Eighth nerve Compound evoked responses Intense sound exposure 0 days - 30 days [7,60–68]

Aminoglycosides 2 days - 20 weeks [9,10,69–72]

Single unit responses Intense sound exposure 0 days - 4 mo [66,73–77]

Aminoglycosides 2 days - 20 wks [6,14,16,17��,21]

CNS Single unit responses Intense sound exposure 0 days & 12 days [11,12]

Metabolic influences Intense sound exposure 2 days - 43 days [78–81]

Aminoglycosides

Behavioral studies Basic psychoacoustics Intense sound exposure 1 day - 4 mo [8,18��,23,24,26,82,83]

Aminoglycosides

Complex behaviors Aminoglycosides 5 days - 23 wks [25��,84]

Vestibular reflexes Aminoglycosides [20,29,85]
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A second study examining complex communication beha-

vior following hair cell regeneration was recently com-

pleted in our laboratory [27��]. Male Bengalese finches

(Lonchura striata domestica) are songbirds that learn a

single sequence of ‘syllables’ early in life from their father

and reliably produce the same song throughout life,

provided that hearing is normal. After recording each

animal’s song and verifying its stability, the birds were

treated with a combination of low frequency noise expo-

sure and aminoglycosides to cause a severe hearing loss

that included both high and low frequencies. The songs

rapidly deteriorated after the treatments, just as they do

following surgical deafening [28]. As hearing was restored

by hair cell regeneration, the song returned to its pre-

exposure structure. Thus, restoration of hearing allows

each bird to access a stored ‘template’ of its own learned

vocalization and gradually match its new vocalizations to

this stored memory. Remarkably, this period of hearing

recovery also appeared to reinstate or unmask a capacity

for behavioral plasticity not usually apparent in adult

songbirds of this type. After the recovery of their normal

(pre-deafening) song, some birds altered individual sylla-

bles so as to ‘copy’ portions of their cagemate’s song. That

is, as adults, they incorporated new elements from their

acoustic environment into their otherwise stable song.

Hair cell regeneration in the avian vestibular system can

also be used to study behavioral plasticity [29]. The

vestibulo-ocular reflex (VOR) and the vestibulo-colic

reflex normally disappear after hair cells in the crista of

the semicircular canals are killed; these reflexes reappear

as the hair cells regenerate (These reflexes involving the

vestibular organs in the inner ear and the extraocular eye

muscles (VOR) or the neck musculature (VCR) are

essential for maintaining a steady gaze while the body

is in motion) [19,20]. However, when an animal is sub-

jected to an environment devoid of smoothly changing

visual stimuli, by maintaining it in stroboscopic illumina-

tion, normal VOR recovery fails to occur. Apparently, by

depriving the animal of retinal slip information, the

central gain control system cannot be calibrated. Remark-

ably, however, just 48 h (and maybe even less) of normal

visual environment is long enough to reinstate a normal

VOR. This study and the one by Woolley and Rubel

[27��] discussed above suggest that hair cell regeneration

in birds may be a very useful new way to study how

sensory information shapes neural structure and function.

Molecular events leading to hair cell
regeneration
The events leading up to the regeneration of the auditory

and vestibular epithelia after damage in chicks have been

the focus of much study; hopefully, understanding these

phenomena will point the way to regeneration in the

mammalian inner ear. To understand the molecular

mechanisms of hair cell regeneration, three general

approaches have been taken: the first looks at which

proteins might be expressed or repressed during the

regeneration process; the second examines the effects

of exogenous signals such as growth factors on the regen-

eration process; and the third studies the intracellular

signals that play a role in the progression of quiescent

support cells into the G1 and S phases of the cell cycle.

Figure 2 provides a schematic of the steps involved in the

regeneration of hair cells.

Proteins expressed during hair cell regeneration

Following the first approach, Lomax et al. [30] recently

used differential display of expressed genes to show that a

novel member of the ubiquitin ligase gene family is

upregulated in response to noise-induced damage in

the chick basilar papilla. In a directed screen for receptor

Figure 2
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Schematic representation of hair cell regeneration after damage. Blue cells represent hair cells and yellow cells denote supporting cells. After

damage, the hair cells are extruded to the lumen and some of the support cells are triggered to divide. The M phase of the cell cycle takes place at the

lumenal surface of the sensory epithelium. After division, the new cells, shown in white, go on to differentiate into hair cells and supporting cells.

SE, sensory epithelium composed of hair cells and support cells; BM, basement membrane; TBC, tympanic border cells. Drawing courtesy of

Dr Jennifer S Stone.
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tyrosine kinase genes expressed in support cells, we [31]

found that the growth factor receptor fibroblast growth

factor receptor 3 (FGFR3), which is highly expressed in

the support cells of the auditory sensory epithelium, is

rapidly downregulated after damage, and begins to be

expressed again after the cells exit the cell cycle. These

results suggest that FGFR3 plays a role in maintaining

support cells in their quiescent state. Interestingly, this

same gene is found to be upregulated after noise damage

in the rat; thus, a system that does not regenerate appears

to regulate this gene in the opposite direction [32]. An

actin-interacting protein, WD40 repeat protein (WDR1),

is also upregulated in the supporting cells of the chick

basilar papilla after noise damage [33]. The expression of

this gene is likely involved in actin turnover; the inves-

tigators propose that it might be important in the restora-

tion of cytoskeletal integrity after damage. Many other

developmentally important genes are likely to be upre-

gulated in the regenerating regions of the basilar papilla.

For example, Delta1 and Notch1 expression are upregu-

lated during the process of regeneration, when new hair

cell genesis is at its peak [34].

The role of signaling molecules and growth factors in

hair cell regeneration

To identify factors that might promote regeneration,

several investigators have tested defined signaling mole-

cules and growth factors in assays of hair cell regeneration.

Insulin-like growth factor 1 stimulates DNA synthesis in

the chick vestibular sensory epithelium in a dose-depen-

dent manner [35]. This factor has also been shown by

PCR analysis to be upregulated after damage [36]. By

contrast, FGF2 inhibits DNA synthesis in avian vestib-

ular and auditory sensory epithelia [37]. IGFs and FGFs

are important regulators of progenitor cell mitotic activity

in other regions of the nervous system; thus, these results

again demonstrate that regeneration is likely to be regu-

lated by the same factors normally involved in embryonic

development.

It has been known for some time that transforming growth

factor a (TGFa) and epidermal growth factor in the

presence of insulin stimulate cell proliferation in the

cultured mature mammal vestibular epithelium [38,39].

Recent studies show that infusion of TGFa and insulin

directly into the inner ear of adult rats stimulated DNA

synthesis in the vestibular sensory receptor epithelium

[40]. Corwin and colleagues [41–43] investigated various

intracellular signal transduction pathways using in vitro
cultures of utricular sensory epithelial sheets derived

from both mature avian and neonatal mammalian inner

ears. Although cell proliferation in both the avian and

mammalian sensory epithelia was reduced by inhibitors of

several key signaling intermediates, including phospha-

tidyl inositol 30 kinase (PI3K), target of rapamycin (TOR),

mitogen-activated protein kinase (MAPK), and protein

kinase C [41–43], these investigators found that the

MAPK pathway plays a more significant role in the avian

cultures than in similar mammalian cultures.

Cell cycle regulation in hair cell regeneration

Once support cells in the sensory epithelia are enticed to

enter and progress through the cell cycle, it is necessary

for one or both daughter cells to receive the correct signals

to differentiate into hair cells. Recently, mammalian

atonal homolog 1 (Math1), a basic helix�loop�helix

transcription factor, has been shown to be necessary for

hair cell differentiation; mice deficient in this gene fail to

develop hair cells in either the auditory or vestibular

epithelia [44��]. Another class of related molecules, mam-

malian hairy and enhancer of split homologs (Hes1 and

Hes5), act as negative regulators of hair cell differentia-

tion, and deletion of Hes1 and Hes5 in mice leads to an

overproduction of hair cells [45��]. The precise control of

these activators and suppressors of hair cell fate leads to

the patterned array of hair cells that is critical to the

proper functioning of this system. The experimental

manipulation of this system has led to a potential strategy

for hair cell replacement. Results from two groups show

that overexpression of Math1 in cultures of neonatal

mouse inner ear leads to the production of extranumerary

hair cells from the greater epithelia ridge in the case of the

cochlea, and from the support cells in the case of utricles

[46�,47]. This is an exciting finding because it suggests

the potential of replacing lost hair cells using endogenous

tissue. It is not clear, however, whether these new hair

cells would make the correct functional connections with

the spiral ganglion.

Another strategy for hair cell replacement in mammals

has emerged from recent studies of cell cycle regulators in

the inner ear [48,49]. The numbers and timing of hair cell

and support cell production in the auditory and vestibular

epithelium is highly regulated. For example, in mice

deficient for the cell cycle inhibitor p27 (Kip1), hair cells

are initially overproduced; later, a massive degeneration

of hair cells occurs, particularly in the basal region of the

organ of Corti, leading to hearing impairment. This study

[49] does, however, demonstrate that production of hair

cells can be extended into the postnatal period under the

right conditions.

The finding that stem cells can be isolated from the CNS

has lead to widespread speculation that they will lead to

cures for many neurodegenerative diseases. Limited suc-

cess has been achieved to date, but research in this arena

is still in its formative stages. Recently Ito et al. trans-

planted neural stem cells into the mammalian inner ear

[50��]. They showed that these cells survive and appear to

integrate into various structures up to four weeks after

transplant. They even saw some cells that appeared to

take on the morphology of hair cells. Although these

findings are encouraging, the extent to which such cells

can develop into specialized sensory cells is unclear. For
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example, stem cells transplanted into the eye integrated

and took on the morphology of retinal neurons but failed

to express any retinal-specific markers [51].

Conclusion and future directions
In summary, over 15 years of studies on hair cell regen-

eration in the inner ear of birds has taught us that a quick

and easy ‘cure’ for sensory neural hearing loss is unrea-

listic. It is impossible to predict when these efforts will

lead to a therapy for the hearing impaired. However, 15

years is but a short time in the history of science and great

progress has been achieved in these years. The phenom-

enology of hair cell loss and regeneration has been well

described in birds; new in vitro and in vivo preparations

have been developed and cell lines are beginning to

become available. Functional recovery due to regener-

ated hair cells has been confirmed and we are beginning

to unravel some of the molecular signals that stimulate

and inhibit regeneration in birds. Limited postnatal pro-

liferation and ectopic hair cell expression has been

achieved in mammals. Of most importance, hair cell

regeneration has become a legitimate and exciting field

of interest and exploration. That is the major change in

the field that will someday lead to therapeutic interven-

tions for the hearing impaired. The discovery of the

structure of DNA was only half a century ago, yet we

seem on the verge of promised cures for various conditions.

It is exciting to speculate on the impact the next half-

century of research will have on hair cell regeneration.
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