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Summary

Songbird auditory neurons must encode the dynamics
of natural sounds at many volumes. We investigated

how neural coding depends on the distribution of
stimulus intensities. Using reverse-correlation, we

modeled responses to amplitude-modulated sounds
as the output of a linear filter and a nonlinear gain func-

tion, then asked how filters and nonlinearities depend
on the stimulus mean and variance. Filter shape de-

pended strongly on mean amplitude (volume): at low
mean, most neurons integrated sound over many mil-

liseconds, while at high mean, neurons responded
more to local changes in amplitude. Increasing the var-

iance (contrast) of amplitude modulations had less ef-
fect on filter shape but decreased the gain of firing in

most cells. Both filter and gain changes occurred rap-
idly after a change in statistics, suggesting that they

represent nonlinearities in processing. These changes
may permit neurons to signal effectively over a wider

dynamic range and are reminiscent of findings in other
sensory systems.

Introduction

A central problem for all sensory systems is how to rep-
resent complex dynamic stimuli over a wide range of
intensities.

Songbirds, like humans, recognize their vocalizations
whether they are soft or loud (Lohr et al., 2003). How the
brain achieves this level-invariant recognition is unclear.
At its highest levels, the songbird auditory system con-
tains ‘‘feature detectors’’ that respond selectively to in-
dividual learned songs (Margoliash, 1983; Margoliash
and Fortune, 1992; Gentner and Margoliash, 2003).
These areas receive input from an area called field L,
the avian analog of primary auditory cortex (Fortune
and Margoliash, 1992, 1995; Wild et al., 1993). Field L re-
sponds broadly to many classes of auditory stimuli and
shows organized tuning for basic auditory properties
such as spectral frequency and temporal modulations
(Scheich et al., 1979; Muller and Leppelsack, 1985; Heil
and Scheich, 1985; Hose et al., 1987; Lewicki and Arthur,
1996; Gehr et al., 1999; Hausberger et al., 2000; Theunis-
sen et al., 2000; Sen et al., 2001; Grace et al., 2003). Sev-
eral groups have tried to model how song-selective
responses might arise from combinations of field L out-
puts (Lewicki and Konishi, 1995; Drew and Abbott,
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2003). However, few studies have looked at how neural
responses in these areas depend on song or stimulus
intensity.

In the mammalian auditory brainstem and midbrain,
responses to simple tones and noises can depend on in-
tensity in highly nonlinear ways (Young and Voigt, 1982;
Sachs and Young, 1980; Nelken and Young, 1994;
Nelken et al., 1997). In the cortex, the picture is less
clear. Many studies have shown nonmonotonic and
nonlinear responses to tones, intensity modulations,
and ripple stimuli (Phillips and Hall, 1987; Phillips et al.,
1994; Calhoun and Schreiner, 1998), while other studies
have stressed the linearity of cortical responses (Kowal-
ski et al., 1996a, 1996b; Escabi et al., 2003; Barbour and
Wang, 2003). How postthalamic auditory neurons en-
code stimulus features across intensities remains
controversial.

The goal of the present study was to understand how
the responses of field L neurons to complex dynamic
stimuli depend on the intensity of the stimulus. We fo-
cused on coding of amplitude modulations in time, be-
cause these are a prominent feature of both song and
speech and can carry a great deal of the information
present in these signals (Shannon et al., 1995; Theunis-
sen and Doupe, 1998).

To describe the processing of naturalistic amplitude
modulations over different intensity ranges, we devel-
oped a set of synthetic stimuli that capture many as-
pects of song’s amplitude modulations but sample the
space of possible modulations more thoroughly. We
then used reverse-correlation techniques (Eggermont
et al., 1983; Eggermont, 1993; Epping and Eggermont,
1986; Kim and Young, 1994; Brenner et al., 2000; Chan-
der and Chichilnisky, 2001; Fairhall et al., 2001; Depireux
et al., 2001; Kim and Rieke, 2001; Miller et al., 2002; Es-
cabi and Schreiner, 2002; Baccus and Meister, 2002) to
extract a linear receptive field (filter) and a nonlinear gain
function from the responses to these stimuli. Together,
the filter and nonlinearity allowed us to characterize
the feature selectivity, threshold, and gain of each cell
and to predict responses to novel sounds.

We found that our stimuli permitted robust estimates
of filters and nonlinear gain functions for field L neurons.
These models made good predictions of responses to
novel synthetic stimuli and revealed neural sensitivity
to a broad range of stimulus timescales and features.
We then demonstrated that filters and gain functions de-
pend in systematic and specific ways on the mean and
variance of the stimulus amplitude. These changes are
very reminiscent of those observed in the early visual
system (Enroth-Cugell and Lennie, 1975; Chander and
Chichilnisky, 2001; Baccus and Meister, 2002) and
have been shown mathematically to improve coding
efficiency (Atick, 1992). Finally, we examined the time
course of these changes and found that they occurred
on two timescales: a fast change in filter shape and
gain, followed by a slower change in threshold.

Our findings suggest that common computational
strategies underlie sensory processing in multiple do-
mains, but challenge current models of song recognition.
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Figure 1. Construction of a Stimulus with a Power Spectrum and Amplitude Distribution Similar to Natural Sounds

The modulation signal ([A], top panel) specifies the local amplitude of the stimulus in decibels and consists of filtered Gaussian noise with a power

spectrum P(f) = exp(2f/50 Hz) ([A], bottom panel). Exponentiating the modulation signal creates a linear voltage envelope (B) with an exponential

distribution of amplitudes. The envelope modulates a carrier (C) consisting of narrow- or broadband noise. The stimulus (D) is generated by mul-

tiplying together the envelope (B) and the carrier (C). (E) shows responses of a single unit to 100 repeats of the modulation signal shown in (A),

each paired with a different carrier. Each row represents the spike times during one segment repeat. Because the carrier varied across trials,

columns of spikes represent responses to the modulation signal alone. Response peaks follow peaks in the aligned stimulus example above.
Results

Using Amplitude-Modulated Noise Stimuli to Drive
Field L Neurons

To study processing of amplitude modulations in field
L, we developed a stimulus composed of two parts:
a slowly varying modulation envelope and a rapidly vary-
ing noise carrier.

The envelope was designed to capture the temporal
frequency and amplitude distributions of natural sounds
(Attias and Schreiner, 1998; Singh and Theunissen,
2003). Because they are dominated by slow changes in
amplitude, natural sounds have power spectra that
decrease as a function of temporal frequency (Singh
and Theunissen, 2003). Natural communication sounds
also contain many silent periods, giving rise to an expo-
nential distribution of amplitudes but a more Gaussian
distribution of log (dB) amplitudes (Singh and Theunis-
sen, 2003).

To create a stimulus with these temporal frequency
and amplitude properties, we first created a Gaussian
noise signal with a decreasing exponential distribution
of temporal frequencies (Figure 1A, lower panel). This
modulation signal specifies the loudness of the stimulus
in decibels at each point in time (Figure 1A, upper panel).
We then exponentiated the modulation signal to pro-
duce a pressure envelope with an exponential distribu-
tion of linear amplitudes (Figure 1B). Finally, we multi-
plied this envelope with a narrow or broadband noise
carrier (Figure 1C) to generate the full stimulus
(Figure 1D, see Experimental Procedures for full details).

Although this stimulus consisted of both fast (carrier)
and slow (envelope) fluctuations, we analyzed re-
sponses only with respect to the slowly varying modula-
tion signal (Figure 1A). Recent studies have suggested
that this log envelope is the property most linearly en-
coded by neurons in field L (Gill et al., 2006). To isolate
responses to the slowly varying signal, we repeated
the same modulation signal but used different noise
segments to form the carrier each time. Figure 1E shows
the response raster of a cell to 100 such repeats: the col-
umns of spikes represent reliable spike patterns driven
by the slow modulation signal.

Half of the 5 s long segments in our stimulus were ran-
domly assigned to be repeats of the same modulation
signal; the remaining signals were unique. Unique sig-
nals were used to broadly sample the space of possible
amplitude modulations and to estimate model parame-
ters. Repeated trials were used to test the model. Be-
cause we used different data to fit and test the model,
we ensured that the quality of our predictions was not
due to over-fitting.

Responses of Field L Neurons Are Well Modeled
Using a Linear-Nonlinear Model

To characterize the temporal response properties of
each cell, we modeled its responses using a linear-non-
linear model (Brenner et al., 2000; Chander and Chi-
chilnisky, 2001; Fairhall et al., 2001; Baccus and Meister,
2002).

Figure 2 illustrates this process for two cells. The lin-
ear filter (Figures 2A and 2D) tells us what feature of
the stimulus best drives the neuron. It is extracted
from the data by computing the average modulation sig-
nal surrounding a spike, then removing the influence of
stimulus correlations from the resulting waveform (Ex-
perimental Procedures). The spike occurs at zero on
the x axis; the filter has structure only to the left of (be-
fore) the spike, as the cell responds causally to features
of the stimulus. Small error bars (dotted lines,
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Figure 2. A Linear-Nonlinear Model Successfully Predicts a Large Fraction of the Response to Our Stimulus

(A and D) Two examples of linear filters derived from the responses of single units to the nonrepeated modulation signals (30 dB mean, 6 dB

variance). The amplitude of each filter is normalized so that the dot product of the filter with itself is 1. Filters thus describe the features that drive

each cell, but not the magnitude of the cell’s response. Dashed lines represent the standard deviation of five independent estimates of each

filter’s shape.

(B and E) Nonlinear gain functions show the relationship between the firing rate of the neuron and the output of the filters in (A) and (D). The x axes

show the projection of the mean-subtracted modulation signal onto each filter and indicate the similarity of the stimulus to the filter. Dotted lines

indicate the standard deviation of five jackknife estimates of the gain function. The flat dashed line in each nonlinearity plot represents the av-

erage spontaneous firing rate of each neuron recorded prior to stimulus playback.

(C and F) Predicted (wide gray) and actual (narrow black) PSTHs of the response to repeated modulation signal segments. The correlation co-

efficients between data and prediction were 0.89 for the cell in (A)–(C) and 0.67 for the cell in (D)–(F).

(G) (Left panel) Filters from four different units show a broad range of temporal frequency preferences. (Right panel) Distribution of the best mod-

ulation frequency (BMF) versus the 50% width of the absolute value of the filter (50% width) for all significant filters (33 from 36 cells). The four

cells shown in the left-hand plot are indicated by colored boxes.

(H) A histogram of correlation coefficients between predicted and actual PSTHs for all the significant filters (33 out of 36 cells recorded with a

30 dB mean and 6 dB standard deviation stimulus) indicates that the linear-nonlinear model performed well. The mean correlation coefficient

was 0.64 6 0.18 (standard deviation).
Experimental Procedures) indicate that our estimates of
filter shape were robust.

The shape of the filter indicates the cell’s preferred
temporal feature. Filters with a single dominant peak be-
have as low-pass ‘‘integrators’’ and produce responses
that look like a smoothed, delayed version of the log
stimulus envelope. A response of this type (from the
cell in Figure 2A) is shown in Figure 1E, where a column
of spikes follows each peak in the stimulus above (Fig-
ure 1D). The sign of the filter peak determines whether
the cell’s firing rate is elevated or depressed by peaks
in the stimulus. Filters with a biphasic shape behave
as band-pass ‘‘differentiators’’ and respond to either
onsets or offsets in the stimulus, depending on the order
of the positive and negative components in the filter.
Most of our cells behave as combinations of integrators
and differentiators, making a strict classification of cell
types difficult. The filter shown in Figure 2A has a small
negative peak followed by a large positive peak; it be-
haves mostly as a positive integrator, but is sensitive
to onsets as well. The filter shown in Figure 2B behaves
mostly as a negative integrator, but also responds
weakly to offsets.

The width of the filter sets an upper limit on the tempo-
ral frequencies to which the cell can respond. Because
the exact frequency response depends both on the
width of the filter and its shape, preferred temporal fre-
quency is best characterized in the frequency domain
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Figure 3. Changes in Stimulus Statistics Lead to Slow Changes in Firing Rate

(A) To explore how coding depends on the statistics of the stimulus, we altered the mean and standard deviation of the modulation signal every

5 s. Statistical conditions were presented in a fixed order: low mean/low variance (gray: 30 dB 6 6 dB), low mean/high variance (green: 30 dB 6

18 dB), low mean/low variance, and high mean/low variance (red: 63 dB 6 6 dB). These colors will be used throughout the paper to indicate

responses to each condition.

(B) Cells adapt at different rates to a change in mean stimulus amplitude. (Top) PSTH of a cell showing rapid decays after the switch from low to

high mean (red: tau = 28 ms) and after the switch from high to low mean (gray: 56 ms). (Bottom) PSTH of a cell showing slow decays. Tau = 574 ms

for the switch from low to high mean, 730 ms for the switch from high to low mean. PSTHs are binned in 5 ms windows. Only the first 2.5 s of the

response after each switch are shown.

(C) Filter width under high mean/low variance versus decay time for both low to high (red) and high to low (gray) transitions. Filter timescales and

decay timescales are poorly correlated (correlation coefficients = 20.2 for low to high mean and 0.04 for high to low mean), suggesting that filter

width and decay time represent independent forms of temporal sensitivity. The two example cells are shown by a blue circle and red square;

open symbols represent low to high mean transitions, and filled symbols represent high to low mean transitions.
(Figures 4A–4C, second column). Figure 2G shows the
50% width of the absolute value of each filter (50%
width) versus the peak of each filter’s power spectrum
(its ‘‘best modulation frequency,’’ or BMF). Each param-
eter has an approximately uniform distribution along its
log axis, suggesting a greater than 10-fold spread in
temporal frequency sensitivities among cells.

The nonlinearity (Figures 2B and 2E) describes the re-
lationship between filter output and firing rate. It is cal-
culated by passing the mean-subtracted modulation
signal through the filter—measuring the similarity of
the stimulus to the filter at each point in time—then com-
paring the filter output to the neuron’s actual firing rate
(Experimental Procedures). Most of the cells we re-
corded had nonlinearities with a flat, subthreshold re-
gion at negative values and a linear coding region at
positive values, when the stimulus most closely resem-
bled the filter. Some, like that in Figure 2B, showed sat-
uration at high positive values.

To assess the quality of our models, we used the filter
and nonlinearity pair to generate a prediction of each
neuron’s response to the repeated modulation signal
(Figures 2C and 2F). We then compared this prediction
(thick gray lines) to the actual PSTH (thin black line).
The correlation coefficient between prediction and
data for the neuron in Figures 2A–2C was 0.89, making
this one of our best models. The neuron in Figures 2D–
2F had a correlation coefficient of 0.67, the median for
our population. The distribution of correlation coeffi-
cients is shown in Figure 2H (n = 33 significant filters
from 36 recorded cells). The strength of these correla-
tions suggests that our model captures a significant por-
tion of the behavior of neurons in our population.

Responses of Field L Neurons to Changes
in Stimulus Statistics

To examine how coding depends on stimulus statistics,
we altered the mean and the variance of amplitude mod-
ulations in our stimulus (Figure 3A). In our baseline con-
dition (gray), the modulation signal had a mean of 30 dB
and a standard deviation of 6 dB. In the high mean con-
dition (red), the mean was raised to 63 dB, while in high
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Figure 4. Filter Shape Depends Strongly on Mean Stimulus Amplitude

(A–C) Linear filters (left) and their power spectra (right) for three different cells under the low mean/low variance (gray) and high mean/low var-

iance (red) conditions. For all three cells, the filter obtained under high mean is narrower and has positive and negative components of more

similar size. Colored dashed lines surrounding each filter represent the standard deviation of five different estimates of the filter (Experimental

Procedures). Black dotted lines at zero represent the time of the spike. Filters are normalized so that the dot product of each with itself is one.

(D) Responses of the unit shown in (A) to 120 ms of the repeated modulation signal (black, bottom panel) under low mean (gray) and high mean

(red) conditions. The stimulus has been shifted forward by 11 ms, the latency of the peak of the low mean filter, to facilitate comparison.
variance (green) the standard deviation was raised to 18
dB. The high mean and high variance conditions were
designed to have approximately the same overall power
(67 dB). Stimulus conditions were presented continu-
ously, and the baseline condition was repeated twice
in the series, which allowed us to characterize the tran-
sitions to and from this condition to the other two.

Changes in Stimulus Mean Produce Systematic

Changes in Firing Rate and Filter Shape
Most of the cells we recorded responded strongly to
a change in stimulus mean, with a rapid change in firing
rate followed by a slow decay (Figure 3B). The rates of
decay varied across cells from approximately 4 ms to
4 s and were generally much slower than would be pre-
dicted by the width of the filters. Decay times were
poorly correlated with filter width (Figure 3D, cc =
20.20 for low to high mean and 0.04 for high to low
mean), suggesting that filter width and decay time repre-
sent two separate forms of temporal sensitivity—one on
the timescale of syllables, and one on the timescale of
motifs or bouts. High and low mean decay times were
weakly correlated (see Figure S3 in the Supplemental
Data available online).

An increase in stimulus mean produced systematic
changes in filter shape. Figure 4 shows three examples
of filters derived from low mean (gray) and high mean
(red) conditions for the same cells. All three show related
changes when the mean increases: the filters become
narrower, and the sizes of the positive and negative
components become more closely matched. These
changes in filter shape are also reflected in the power
spectrum representation of each filter. The narrowing
of the filter in time is reflected in a shift of the power
spectrum peak toward higher frequencies, while the in-
creased balance between positive and negative compo-
nents reduces the response to low frequencies.

The cell shown in Figure 4A was typical, with a nar-
rower filter and a larger negative component at high
mean, but a similar shape—a negative peak followed
by a positive one—in both conditions. Figure 4D illus-
trates the consequences of this filter change by compar-
ing a segment of the cell’s response under low mean
(gray) and high mean (red). Under low mean, the
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Figure 5. Population Analysis of Mean

Effects on Filters

(A) Ratio of positive to negative areas of filters

(Pos/Neg) from high mean (y axis) versus low

mean (x axis) conditions. Most points lie be-

low the dotted line, indicating that negative

components of the filter are larger under the

high mean condition. Black circles indicate

filters that showed a significant change in

Pos/Neg between the two conditions (n =

21/28, p < 0.05). The mean Pos/Neg ratio

across the population was significantly lower

under high mean (0.97 6 0.04, SE) than under

low mean (1.41 6 0.11, p = 5.9e24) and was

not significantly different from one (black

line) at high mean, indicating balanced posi-

tive and negative components. The three ex-

ample cells shown in Figure 4 are indicated

by the pink square (A), blue diamond (B),

and yellow triangle (C).

(B) BMF under high mean/low variance (y

axis) versus low mean/low variance (x axis)

conditions. Most points lie above the dotted

diagonal line, indicating higher BMF under

the high mean/low variance condition. Black

circles indicate significant changes (n = 16/

28, p < 0.05). Example cells are indicated by

the filled symbols.

(C) Filters derived from data with the same

mean make much better predictions (y axis)

than filters from data with a different mean

(x axis). Red dots indicate correlation coeffi-

cients between data and predictions based

on high mean filters (mean correlation coeffi-

cient = 0.59 6 0.03 [SE] for same statistics,

0.03 6 0.07 for different statistics, p =

4.0e29). Gray dots indicate correlation coeffi-

cients between data and predictions based

on low mean filters (mean correlation coeffi-

cient = 0.66 6 0.03 for same statistics, 0.08

6 0.07 for different statistics, p = 2.3e210).

Data for the example cells are indicated by

open (high mean filter predictions) and filled

(low mean filter predictions) symbols.

(D and E) Linear filters for two cells at four dif-

ferent mean levels: 30 dB (gray), 40 dB

(brown), 50 dB (yellow), and 60 dB (red),

with a standard deviation 5 dB. As the stimu-

lus mean increases, the negative component

of each filter grows larger and decreases in

latency, leading to substantial changes in

filter shape.
response resembles a smoothed version of the stimulus:
larger peaks occur only when the stimulus is above its
mean. Under high mean, the response contains many
more rapid peaks, reflecting the faster frequency tuning
and narrower shape of the filter under this condition. The
peaks in this condition are of similar size throughout the
segment, showing that the neuron has largely filtered
out the slow modulations and responds more to local
changes in stimulus intensity.

The cell in Figure 4B shows a more dramatic change in
filter shape: under low mean conditions, it has a positive
integrator shape, while under high mean conditions, it
adopts an offset differentiator shape. The neuron shown
in Figure 4C was the least common. Its filter is almost en-
tirely negative at low mean but gains a small positive
component at high mean.

Together, these examples suggest that when the
mean sound amplitude is low, neurons integrate over
a longer time, while when the mean is high, the same
cells respond more to local changes. These different re-
sponse properties can improve the cells’ ability to signal
effectively in different stimulus regimes (Atick, 1992) and
can help prevent saturation when sounds are loud. To
determine whether these findings were true across the
population, we measured two parameters of the filters:
the ratio of positive to negative parts of the filter (Pos/
Neg) and the best modulation frequency (BMF).

Figure 5A shows the ratio of positive to negative parts
of the filter under high mean (y axis) versus low mean (x
axis; n = 28 cells with significant filters under both con-
ditions). Most points lie below the diagonal, indicating
that most filters have larger negative components at
high mean. The small number of cells that show an in-
crease in Pos/Neg represent filters like the one shown
in Figure 4C that are predominantly negative under low
mean conditions and gain a positive component under



Auditory Adaptation in Songbirds
851
Figure 6. Unlike a Change in Mean, a Change in Variance Does Not Lead to Significant Changes in Filter Shape

(A) Linear filters for the cell shown in Figure 4A under low mean/low variance (gray) and low mean/high variance (green) conditions. Dashed lines

surrounding each filter represent the standard deviation of five different estimates of the filter. The increase in variance has no significant effect

on filter shape.

(B) The balance of positive and negative components across the population shows no systematic change with variance. Ratio of positive to neg-

ative areas in filters derived under low mean/high variance (y axis) versus low mean/low variance (x axis) conditions. Black circles indicate filters

that showed a significant change in Pos/Neg between the two conditions (n = 15/32, p < 0.05). The mean population ratio of positive to negative

areas was not significantly different between high variance (1.53 6 0.15 SE) and low variance (1.43 6 0.10) conditions (p = 0.20). The example cell

shown in (A) is indicated by a red square.

(C) Best modulation frequencies across the population do not change significantly with variance. BMF under low mean/high variance (y axis)

versus low mean/low variance (x axis) conditions. Black circles indicate significant changes (n = 4/32). The example cell is indicated by a red

square. Black circles here and in Figure 7D indicate nonlinearities that show significant changes, p < 0.05.

(D) Filters derived from low variance and high variance conditions make similar predictions. Green dots indicate correlation coefficients between

data and predictions based on high variance filters (mean correlation coefficient = 0.54 6 0.03 [se] for same statistics, 0.56 6 0.03 for different

statistics, p = 0.41). Black dots indicate correlation coefficients between data and predictions based on low variance filters (mean correlation

coefficient = 0.66 6 0.03 for same statistics, 0.52 6 0.03 for different statistics, p = 6.5e28). Data for the example cell are indicated by open

(high variance filter prediction) and filled (low variance filter prediction) squares.
high mean. Most points lie close to the line y = 1, which
represents balanced positive and negative components
under high mean.

To examine whether neurons as a population became
sensitive to faster modulations at high mean, we plotted
the BMF for all cells under high mean versus low mean
(Figure 5B). In this graph, most points lie above the diag-
onal, indicating that most cells are more sensitive to
faster modulations at the high mean. The circled points
represent cells that showed a significant increase in best
modulation frequency (n = 16/28, one-tailed t test, p <
0.05). Together these data suggest that an increase in
stimulus mean leads to filters that behave more like dif-
ferentiators and to a shift in the sensitivity of cells toward
high temporal frequencies.

Are the differences we observe in filter shape due to
true differences in responses, or do they represent dif-
ferent approximations to the neuron’s response? To an-
swer this question, we compared predictions made by
filters with the same mean to predictions made by filters
with different means. In all cases, data used to test the
model were distinct from data used to generate the
model.

Filters generated under both conditions performed
similarly when predicting responses to novel stimuli of
the same condition: the mean correlation coefficient
between data and prediction was 0.59 6 0.18 (SD) under
high mean and 0.66 6 0.18 under low mean. However,
both sets of filters were much worse at predicting re-
sponses to the other condition. Figure 5C shows the
correlation coefficients between predicted and actual
PSTHs using filters with the same mean (self-prediction
CC) versus filters with a different mean (cross-prediction
CC). Self-predictions are significantly better than cross-
predictions for both high and low mean data. This con-
firms that the changing filter shapes capture a real
change in the features to which the neurons respond.

Filters Change Gradually as a Function of Mean

To better understand how changes in filter shape oc-
cur—particularly the most dramatic switches from onset
to offset selectivity—we varied the stimulus mean ran-
domly among four levels (30, 40, 50, or 60 dB) while hold-
ing the variance at 5 dB. Figures 5D and 5E show filters
calculated under these four conditions for two cells—
one that retains an onset shape across levels and one
that switches gradually from onset sensitivity at low
mean (gray trace) to offset or acceleration sensitivity (in-
dicated by a triphasic filter) at high mean (red trace). In
both cells, a negative peak that is small at 30 dB grows
larger and decreases in latency as the mean increases.
This suggests that even very striking changes in filter
shape might arise through simple mechanisms, such
as a change in the relative strength and latency of inhib-
itory inputs to the cell. Population data from 13 cells
(Figure S3) support the finding that filters change grad-
ually and systematically as a function of mean stimulus
amplitude.

Changes in Stimulus Variance Do Not Produce

Systematic Changes in Filter Shape
In contrast to the effect of mean amplitude, changing the
stimulus variance had little effect on mean firing rate or
filter shape. Figure 6A shows the effects of an increase
in standard deviation from 6 to 18 dB on the cell shown
in Figure 4A. Although the change in variance produces
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Figure 7. Effects of Mean and Variance on Nonlinearities

(A and B) Nonlinearities for two cells, calculated under three conditions: low mean/low variance (gray), high mean/low variance (red), and low

mean/high variance (green). An increase in mean increases gain in one cell (B) and decreases it in the other (A). An increase in variance decreases

gain in both cells. Colored dotted lines represent the standard deviation of five jackknife estimates of the nonlinearity (see Experimental Proce-

dures). The black dashed lines represent the spontaneous firing rates of each cell.

(C) An increase in mean produced no net change in gain across the population. Nonlinear gain (Hz/dB) under high mean/low variance (y axis)

versus low mean/low variance (x axis) conditions. The dotted diagonal line indicates no change. The red line represents the average population

ratio of 1.17. It is not significantly different from one (p = 0.32).

(D) An increase in variance produced a systematic decrease in gain across the population. Nonlinear gain under low mean/high variance (y axis)

versus low mean/low variance (x axis) conditions. The green line represents the average population ratio of 0.58. It is significantly less than 1

(p = 3.7e25). The dashed blue line represents a decrease in gain proportional to the increase in the standard deviation.

(E) Distribution of adaptation scores (see Experimental Procedures) for all cells comparing low mean/low variance (gray) to low mean/high var-

iance (green, n = 32). An adaptation score of 1 indicates that gain under high variance was exactly 1/3 of gain under low variance. 0 indicates no

change in gain between conditions.
the same increase in stimulus power as did the change
in mean, the cell shows little significant change in filter
shape.

Across our population, correlation coefficients be-
tween high variance and low variance filters (mean =
0.84 6 0.03, SE) were significantly higher than the corre-
lation coefficients between high mean and low mean fil-
ters (0.12 6 0.10, p = 5.0e28), confirming that variance
had much less effect on filter shape than did mean am-
plitude. Changing stimulus variance also had fewer ef-
fects on the ratio of positive to negative filter compo-
nents (Figure 6B) and on best modulation frequency
(Figure 6C).

Similar to the filters generated under high mean, filters
generated under high variance did well at predicting re-
sponses to stimuli with the same statistics. The mean
correlation coefficient between data and prediction
was 0.54 6 0.17 (SD) under high variance and 0.66 6
0.18 under low variance. However, predictions made
by swapping filters—using high variance filters to pre-
dict low variance data and vice versa—were only slightly
worse than predictions made with matched filters
(Figure 6D). Although an increase in variance caused
changes in the shapes of some filters, these changes
were smaller, less common, and less systematic than
those observed with an increase in mean.
Effects of Mean and Variance on Nonlinearities

Although variance had only small effects on filter shape,
it had a significant effect on neural gain. To examine the
effects of stimulus mean and variance on the gain of the
neural response, we calculated the nonlinear relation-
ship between the filtered stimulus and the instantaneous
firing rate under each condition (Experimental Proce-
dures). Filters were normalized such that the variance
of their output was equal to the variance of their input
(Baccus and Meister, 2002) to ensure that changes in
gain were not due to changes in filter shape.

Figures 7A and 7B show the effects of increased mean
and variance on the nonlinearities of two cells. An in-
crease in mean (high mean [red] versus low mean
[gray]) led to a decrease in the gain of the cell in Figure 7A
and an increase in the gain of the cell in Figure 7B. An in-
crease in variance (high variance [green] versus low var-
iance [gray]) led to a decrease in the gain of both cells.
These decreases in gain with variance may be consid-
ered adaptive, as they allow the cells to maintain a simi-
lar range of firing rate fluctuations when the range of
stimulus fluctuations increases, and so to take better
advantage of their signaling capacity.

The trends that we observed in these examples con-
tinued across our population. An increase in stimulus
mean led to both increases and decreases in gain,
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with no net change in gain across the population. An in-
crease in stimulus variance led to systematic decreases
in gain. To quantify changes in gain, we calculated the
average slope of each nonlinearity, excluding sub-
threshold and saturation regions where the slope fell be-
low 5% of its maximum (Experimental Procedures).
Figure 7C shows slopes under high mean versus low
mean: points are distributed on both sides of the diago-
nal, indicating no systematic change in gain. Figure 7D
shows slopes under high variance versus low variance.
Here, most points (27/32) lie below the diagonal, indicat-
ing a decrease in gain.

The fly H1 neuron has been shown to reduce its gain in
proportion to the increase in the standard deviation of
the stimulus (Brenner et al., 2000; Fairhall et al., 2001).
If our cells adapted proportionally, the increase in
mean should produce no change in gain, but the in-
crease in variance should decrease gain by a factor of
1/3 (blue dashed line in Figure 7D), to compensate for
a 3-fold increase in the standard deviation.

To quantify the amount of variance adaptation in each
cell, we calculated an adaptation index (see Experimen-
tal Procedures). The adaptation index is 0 if there is no
change in gain with variance and 1 if the gain under
high variance is exactly 1/3 of the gain under low vari-
ance. The distribution of adaptation scores is shown in
Figure 7E and is highly skewed (median = 0.74): many
of the cells show close to proportional adaptation, while
some show less than proportional adaptation. A few
cells showed no adaptation or adaptation in the oppo-
site direction.

Time Course of Changes in Filter Shape and Gain
Our analysis of field L response properties in different
statistical conditions indicates that their encoding
changes with both mean and variance. Are these
changes due to time-dependent mechanisms, or do
they represent fixed nonlinearities, for example differ-
ences in the relative strength of excitatory and inhibitory
inputs at different intensities? To examine this question,
we looked at the time course of changes in filter shape
and gain.

To ask how fast filter shapes changed, we calculated
filters from different epochs of the response before and
after the step change in mean. Figure 8A shows filters
derived from three epochs surrounding the switch
from low to high mean: the last 500 ms of the low
mean response (black), the first 100 ms after the switch
to high mean (purple), and the last 500 ms of the high
mean response (gray). Although the mean firing rate is
still changing during the first 100 ms after the switch,
the filter derived from these data (purple) has the nar-
rower shape and larger negative component character-
istic of the fully adapted high mean filter (gray); it is quite
different from the wide integrator shape of the filter
under low mean (black).

To ask whether filters changed this fast across our
population, we calculated correlation coefficients be-
tween filters from these three epochs (Figure 8B). Corre-
lation coefficients between early (first 100 ms) and late
(last 500 ms) filters from the same condition were signif-
icantly greater than correlation coefficients between
early filters and filters from the end of the previous con-
dition. Correlation coefficients between early and late
filters were not significantly different from correlation
coefficients between two fully adapted filters taken
4500 ms and 4900 ms after the switch. Together, these
data suggest that filters change shape within 100 ms
after a change in mean stimulus level.

To look at the time course of changes in gain, we cal-
culated nonlinearities from different epochs before and
after a change in variance. Figure 8C shows nonlinear-
ities calculated during three epochs around the switch
from low to high variance. The nonlinearity calculated
from the last 500 ms of the low variance condition has
a high gain (black), while nonlinearities taken from the
first 100 ms (purple) and last 500 ms (gray) of the high
variance response both show a lower gain.

This rapid change in gain can also be seen in the
PSTHs of this cell’s response to repeated trials. If the de-
crease in gain occurred slowly, we would expect firing
rate fluctuations under high variance to be initially
much larger than firing rate fluctuations under low vari-
ance. As shown in Figure 8D, firing rate fluctuations un-
der high and low variance are nearly identical by the time
of the first large peak, about 50 ms after the switch, indi-
cating that the gain of the cell has decreased by this
time.

To quantify the speed of gain change across the pop-
ulation, we compared the gain of nonlinearities taken
from the three epochs of the response. The gain of non-
linearities derived from the first 100 ms of data were sig-
nificantly different from the gain of nonlinearities under
the previous condition (p = 3.7e25 for increased vari-
ance, p = 2.5e25 for decreased variance) but were not
significantly different from the gain measured later un-
der the same condition (p = 0.75 for increased variance,
p = 0.43 for decreased variance). Together, these data
indicate that nonlinear gain changes within 100 ms of
a change in stimulus variance.

Our analyses indicate that changes in filter shape and
nonlinear gain occur quickly, well before the mean firing
rate has finished adapting. This suggests that gradual
firing rate adaptation corresponds to a change in the
threshold or set-point of firing, rather than to a change
in gain or in temporal feature selectivity. To ask whether
firing rate adaptation is correlated with a change in
threshold, we plotted nonlinearities from several epochs
around the switch from low to high mean. Figure 8E
shows these nonlinearities for a single cell. Following
the increase in mean, the nonlinearity undergoes a rapid
shift upward and to the left (purple versus thin black), as
well as a small change in slope. The shift occurs imme-
diately and is probably due to the change in filter shape
rather than to a change in neural sensitivity. Over the
next 500 ms, the nonlinearity moves gradually back to-
ward the center (violet and light blue), but does not
change slope. The slow decay in firing rate thus seems
to determine the shifting position of the nonlinearity.

To confirm that this trend was consistent across our
population, we calculated the correlation between the
mean firing rate during each 100 ms long epoch and
the y intercept of the nonlinearity measured during that
epoch. The average correlation coefficient across cells
was high—0.82 6 0.02 (SE)—suggesting that firing rate
adaptation is best considered as a change in the posi-
tion or set-point of the nonlinearity.
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Figure 8. Changes in Filter Shape and Gain Both Occur within 100 ms of a Change in Stimulus Statistics

(A) An example of rapid filter change. (Top) PSTHs showing the mean firing rate of a single cell around the switch from low to high mean. Black,

last 500 ms of low mean; purple, first 100 ms of high mean; gray, last 500 ms of the high mean. (Bottom) Filters derived from each of the three

epochs shown above. The filter derived from the first 100 ms of high mean (purple) resembles the filter from the last 500 ms of high mean (gray)

much more than it does the filter from the last 500 ms of low mean (black).

(B) Comparisons of filter similarity across the population. First column: average correlation coefficient between filters derived from the first

100 ms and last 500 ms of the same condition (red: high mean, 0.20 6 0.03, SE; gray: low mean, 0.14 6 0.04). Second column: average correlation

coefficient between filters derived from the first 100 ms of one condition and from the last 500 ms of the previous condition (red: low mean to high

mean transitions, 20.03 6 0.03; gray: high mean to low mean transitions, 20.04 6 0.03). Correlation coefficients between early and previous

filters were significantly smaller than those between early and late filters (p = 3.0e25 for high mean, p = 1.3e23 for low mean). Third column:

average correlation coefficient between filters derived from two 100 ms epochs at the end of the same condition (red: high mean, 0.22 6

0.03; gray: low mean, 0.19 6 0.04). Correlation coefficients between early and late filters were not significantly different from those between

two late filters (p = 0.33 for high mean, p = 0.15 for low mean). These data indicate that filters from the first 100 ms after the switch were signif-

icantly different from filters under the previous condition, but were no more different from the fully adapted filters than two fully adapted filters

were from each other.

(C) An example of rapid change in nonlinear gain. (Top) PSTH showing the mean firing rate of a single cell around the switch from low variance to

high variance. Black, last 500 ms of low variance; purple, first 100 ms of high variance; gray, last 500 ms of high variance. (Bottom) Nonlinearities

derived from each epoch after the switch from low variance to high variance. The nonlinearity derived from the first 100 ms (purple) and last 500

ms (gray) of high variance both have a lower gain than the low variance nonlinearity (black).

(D) Rapid gain adaptation is evident in responses to repeated trials. PSTH of the response of the neuron in (C) to the first 280 ms after the switch

from low to high variance (green), and after the switch from high to low variance (gray). The peaks are approximately the same within 50 ms after

the switch, indicating that the cell is already compensating for the difference in the magnitude of stimulus fluctuations.

(E) Slow decays in firing rate represent shifts in the nonlinearity. Nonlinearities from different epochs after the switch from low to high mean.

Black, 500 ms preceding the switch; purple, 0–100 ms after the switch; violet, 200–300 ms after the switch; light blue, 400–500 ms after the switch;

gray, last 500 ms of the high mean response. Immediately after the switch from low mean to high mean, the nonlinearity shifts up and to the left,

then moves slowly back down and to the right.
Discussion

The goal of our study was to investigate how coding of
complex amplitude modulations in a primary auditory
area depends on the distribution of stimulus intensities.
To characterize coding, we developed a stimulus that
mimics several features of natural song stimuli while still
permitting a randomized and systematic search of pos-
sible stimuli. From responses to these stimuli, we were
able to generate linear-nonlinear models that success-
fully predict many features of the neurons’ responses
to novel stimuli.
The filters we extracted from our neurons revealed
sensitivity to a range of temporal features and time-
scales. Peak temporal frequency sensitivities varied
from 10 to 150 Hz. Neurons showed sensitivity to many
combinations of onsets, offsets, and continuous stimu-
lation. This range of sensitivities may be important for
tracking the complex contours of zebra finch syllables.
Previous studies in this area found a lower range of tem-
poral frequency sensitivities and a preponderance of
onset units (Sen et al., 2001; Woolley et al., 2005). Our
results support findings in other species showing
a broader range of temporal frequency sensitivities
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and response types in unanesthetized animals (Liang
et al., 2002; Wang et al., 2005).

To examine how coding changes with the distribution
of stimulus amplitudes, we altered the mean and the var-
iance of amplitude modulations in our stimulus. Gener-
ating linear-nonlinear models under three different sta-
tistical conditions revealed that changes in mean and
variance led to distinct types of adaptive changes in
coding.

The first adaptive change that we described was a re-
modeling of filter shape that depends on the mean am-
plitude of the stimulus. Under low mean conditions, neu-
rons act more like low-pass integrators. As the stimulus
mean increases, negative components of the neural fil-
ter grow stronger and decrease in latency, causing neu-
rons to behave more like band-pass differentiators. This
transition could help prevent firing rate saturation at high
sound levels. It could also allow cells to signal effectively
over a wider range of stimulus levels. The amplitudes of
natural sounds tend to be similar at nearby points in time
(Attias and Schreiner, 1998; Singh and Theunissen,
2003), so responding only to changes in amplitude—
which are more rare—may be efficient at high signal-
to-noise levels. At low signal-to-noise levels, however,
integrating over a longer time can improve the chance
of detecting a quiet sound.

Several groups (Woolley et al., 2005; Narayan et al.,
2005) have shown that analyzing songs with band-
pass or differentiating filters allows for better theoretical
discrimination of different individuals’ songs. However,
these studies only analyzed songs under high signal-
to-noise conditions. It would be interesting to ask
whether low-pass filters permit better song discrimina-
tion when songs are soft or noise is prevalent.

Changes in filter properties similar to those we de-
scribe have also been observed in retinal ganglion cells.
At low light intensities, ganglion cells lose their receptive
field surrounds and increase their integration times (En-
roth-Cugell and Lennie, 1975). Atick (1992) used infor-
mation theory to show how these changes in receptive
field structure can maximize information transmission
in bright versus dim conditions. Similar principles
should apply to the changes we observe in auditory re-
ceptive field structure when the volume of an auditory
signal changes.

The second adaptive change we described was a re-
duction in gain when the stimulus variance increased.
This reduction in sensitivity allows the cell to match its
range of outputs more closely to its range of inputs. Sim-
ilar properties have been described in the auditory mid-
brain (Dean et al., 2005) and in several areas of the visual
system, including the retina (Chander and Chichilnisky,
2001; Baccus and Meister, 2002), the LGN (Mante
et al., 2005), and the fly H1 neuron (Brenner et al.,
2000; Fairhall et al., 2001). In the fly, gain adaptation is
proportional to the increase in the standard deviation
of a velocity stimulus. In our system, neurons showed
a distribution of variance adaptation. Many cells showed
close to proportional gain adaptation, while some
showed weaker adaptation, and a few showed no adap-
tation or adaptation in the opposite direction. The differ-
ence between the fly motion-detection system and the
songbird auditory system may be related to the number
of neurons involved. In the fly, a single neuron must
encode visual motion under all behavioral conditions,
while in the songbird, a population of neurons may allow
some specialization for different statistical regimes.

If changes in filter shape and gain arose through some
time-dependent process, we would expect them to oc-
cur slowly after a step change in stimulus statistics. In-
stead, we found that both these changes occur within
100 ms of the switch in stimulus statistics. In a few cells
(data not shown), we attempted to estimate filters from
even shorter time intervals and found that they changed
essentially within the timescale of the filter—as fast as
we could measure them. Fast changes in sensitivity
have also been described in retinal filters (Baccus and
Meister, 2002) and in the fly H1 neuron (Brenner et al.,
2000; Fairhall et al., 2001). This does not rule out the pos-
sibility that these changes are due to adaptive pro-
cesses operating within a few tens of milliseconds—
such as fast adaptation measured in cortical cells
(Nowak et al., 2003; McCormick et al., 1985) or fast
adaptive processes acting in the cochlea (LeMasurier
and Gillespie, 2005). However, it suggests that the
changes we observed may best be described and mod-
eled as ‘‘adaptive nonlinearities’’ in processing rather
than as traditional time-dependent adaptations (Borst
et al., 2005).

The fact that these changes occur so quickly can con-
strain models of how these properties might arise. One
hypothesis is that the positive and negative peaks in
our filters reflect excitatory and inhibitory inputs, whose
latency and relative strength depend differently on the
volume of the stimulus. Dramatic changes in filter shape
with mean stimulus amplitude will arise if inhibitory in-
puts have a higher threshold than excitatory inputs
and if their gain rises more steeply as a function of stim-
ulus amplitude. This arrangement of inhibition has been
described in several parts of the ascending auditory sys-
tem, particularly in type IV units of the dorsal cochlear
nucleus (Nelken and Young, 1994; Yu and Young, 2000).

Properties related to those we describe have also
been seen in the ventral cochlear nucleus. The temporal
modulation transfer functions of VCN chopper units
show a transition from low-pass to band-pass temporal
frequency sensitivity with increased stimulus volume
(Frisina et al., 1990). In the inferior colliculus (IC), a similar
transition from low-pass to band-pass sensitivity has
been observed (Rees and Moller, 1987; Krishna and
Semple, 2000). This transition could arise in the cochlear
nucleus and be filtered to lower frequencies as it is prop-
agated through the ascending auditory system. Alterna-
tively, it could arise anew at each stage of processing
due to inhibitory interactions like those we hypothesize.

Two other studies in the mammalian IC described
properties related to those seen here. Dean et al.
(2005) showed that IC neurons change their rate-level
functions depending on the local distribution of stimulus
amplitudes. However, because that study calculated
rate-level functions by directly comparing stimulus am-
plitude and firing rate, it could not discriminate changes
in neural sensitivity (gain) from changes in feature selec-
tivity (filter shape). Kvale and Schreiner (2004) also saw
small changes in neural gain and filter shape of IC units
when the stimulus variance changed, but in contrast to
our results, these changes occurred gradually during
adaptation. We think it is likely that the adaptive
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properties we describe first arise early in the ascending
auditory system but may be augmented by processing
at many stages.

In addition to the filter and gain changes, we observed
a range of slow decays in firing rate following a change in
the mean amplitude of the stimulus, similar to the wide
range of decay times described in auditory cortex by
Ulanovsky et al. (2004) and by Bartlett and Wang
(2005). The rate of decay was not related to the width
of each cell’s filter, nor did this decay arise from a change
in filter shape or gain—because both of those changes
occurred very quickly. Instead, slow decays appear to
be related to a shift in the setpoint or threshold of firing:
as time progresses, a fixed amount is subtracted from
the neuron’s response to the same feature.

A striking feature of our results is their similarity to
findings in the visual system (e.g., Enroth-Cugell and
Lennie, 1975; Baccus and Meister, 2002), particularly
in the retina, where techniques similar to ours have
been most employed. In both systems, neural filters be-
come more differentiating as stimulus intensity in-
creases. In both systems, neural gain decreases with in-
creased stimulus contrast. And in both systems these
changes occur rapidly, perhaps within the timescale of
filtering, and independent of slower decays in firing
rate. Although the neurons we studied lie at a very differ-
ent stage in the sensory hierarchy from these retinal
cells, they seem to share common computational strat-
egies. These may represent solutions to common prob-
lems faced by all sensory systems that must represent
a wide dynamic range of signals.

The changes in coding that we describe may help neu-
rons to accurately encode stimulus characteristics in
very different regimes, but they raise problems for cur-
rent models of encoding and decoding natural stimuli.
For instance, several existing models of primary audi-
tory cortex assume that spectro-temporal features are
encoded by a bank of linear filters (Chi et al., 2005).
Models of complex song-selective neurons in higher
areas of the avian brain also assume that the inputs to
these cells are static and largely linear (Margoliash,
1983; Lewicki and Konishi, 1995; Drew and Abbott,
2003). In contrast, our study suggests that the inputs
to higher-order auditory areas are highly nonlinear but
change in systematic ways that could be effectively
modeled. A model that incorporates the nonlinearities
we describe should not only make better predictions
about how primary neurons respond to complex stimuli
but will also be crucial to understanding how the brain
constructs high-level feature detectors such as song-
or face-selective neurons.

Experimental Procedures

Chronic Recording and Electrophysiology

We used chronically implanted microdrives (Hessler and Doupe,

1999) to record single units from five adult male zebra finches. A de-

tailed description of microdrive construction and implantation is

given in that paper. Electrodes (two to three tungsten electrodes,

4–5 MOhms, MicroProbe Inc, Gaithersburg, MD) were implanted

1.5 mm lateral (left) and 1.5 mm rostral to the posterior border of the

branch point of the central sinus, at an initial depth of 400 mm.

During recording, the bird was attached to a commutator by a flex-

ible lead and op-amp. Electrical traces were digitized, amplified

(10003), filtered (300–5000 Hz), and recorded using TDT System 3
hardware (Tucker-Davis Technologies, Alachua, FL) interfaced

with custom-written Matlab software. The electrode bundle was ad-

vanced manually in small steps (40–160 mm). Putative single units

were identified on the oscilloscope by their stable spike waveform

and clear refractory period. All spikes were resorted offline using

a custom-written software window discriminator (Matlab) based

on the similarity of overlaid spike waveforms and on clustering of

waveform projections in a two-dimensional principal component

space. Neural recordings were considered single units if they con-

tained fewer than one violation of 1 ms refractoriness per thousand

spikes after sorting (Figure S1). Units that responded to auditory

stimuli were found at depths of 1000–2500 mm. Between each re-

cording session, the electrodes were retracted to a position above

where the first auditory units were found.

After the final recordings, histological sections were prepared to

confirm that electrode tracks, and in some cases marker lesions,

were located in field L. Birds were lethally anesthetized and perfused

with saline followed by 4% paraformaldehyde. Alternate 40 mm sec-

tions of fixed brain tissue were Nissl-stained and labeled for enkeph-

alin (mouse anti-leucine enkephalin monoclonal antibody, Accurate

Chemical & Scientific Corporation), a marker for the nucleus inter-

face (NIf), which abuts the anterior end of field L2a. All sites were

identified to be in field L layers L1, L2, and very occasionally L3. Al-

though the preferred frequency and linearity of cells varied across

these areas as described in Sen et al. (2001), we saw no systematic

differences in the sensitivity to stimulus statistics across layers.

Stimulus Presentation

During recording, the bird was placed inside a small cage (20 cm 3 20

cm floor area) within a sound-attenuating chamber (Acoustic Sys-

tems). The chamber lights were kept off to minimize movement, and

birds were monitored using an infra-red camera. Birds generally sat

in one corner of the cage for the duration of the experiment although

the commutator permitted free movement within the cage. Auditory

stimuli were presented free-field from a small speaker (Bose) located

50 cm from the center of the bird’s cage. Using a calibrated micro-

phone (B&K) we verified that 250 Hz to 10 kHz tones designed to

playat80 dB appearedat79.6 6 2.3dB, and that thehighest harmonic

distortion peak observed was less than 23.3 dB (65.9 6 8.7 dB SNR).

Stimulus Construction

Although it is likely that field L neurons respond to other paramerters

of acoustic stimuli (Elhilali et al., 2004), we designed our stimulus to

isolate responses to modulations of the log amplitude envelope. Re-

cent studies in field L (Gill et al., 2006) and in mammalian inferior col-

liculus (Escabi et al., 2003) suggest that modulations of the log enve-

lope drive cells better and are more linearly encoded than

modulations of the linear envelope. Our stimulus consisted of two

parts: a slowly varying envelope with fixed statistics that was re-

peated exactly in every experiment, and a rapidly varying carrier

that could be adjusted for the frequency preference of each cell.

The log envelope, or ‘‘modulation signal’’ [n(t)], consisted of

Gaussian noise filtered to have an exponential power spectrum:

PðfÞ= e 2 f=50Hz (1)

After filtering, the modulation signal was normalized to have unit

standard deviation and zero mean. To generate a linear voltage en-

velope [E(t)] from the logarithmic modulation signal [n(t)], we expo-

nentiated it according to:

EðtÞ= 1e2 5 3 10½m + s 3 nðtÞ�=20 (2)

where m is the mean amplitude of the stimulus in dB, and s is the

standard deviation. When multiplied by a noise carrier with unit stan-

dard deviation, this produces a sound whose local amplitude in dB is

given by

AðtÞ= m + s 3 nðtÞ (3)

and whose overall RMS amplitude in dB is given by

RMS = m +
logð10Þ

20
s2 (4)

We presented stimuli with three different statistics: low mean/

low variance (30 6 6 dB SD, RMS = 34 dB), low mean/high variance
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(30 6 18 dB, RMS = 67 dB), and high mean/low variance (63 6 6 dB,

RMS = 67 dB). The low mean/high variance and high mean/low var-

iance stimuli were designed to have the same RMS power. Stimulus

statistics changed abruptly every 5 s, with the low mean/low vari-

ance condition appearing in between each presentation of low

mean/high variance or high mean/low variance. A single trial con-

sisted of 400 continuous 5 s segments, half repeats of the same seg-

ment, and half unique. Repeated and unique segments were ran-

domly distributed throughout the sequence.

The carrier was a Gaussian noise stimulus, digitally created and fil-

tered online. Upon encountering a cell, we first determined its fre-

quency preference using broad- (500–8000 Hz), and narrowband

(500 Hz wide, 750–7750 Hz center frequencies) noise bursts, pre-

sented at 60 dB SPL. If broadband noise drove the cell robustly,

a broadband carrier was used (n = 21/36), otherwise we chose the

narrowband carrier that best drove the cell. At several sites (n = 8)

we repeated the experiment using both a narrowband and a broad-

band carrier. Changing the carrier altered the precise shape of the

filter but did not affect our basic findings about changes with

mean and variance or the distribution of filter widths. Because the

carrier was varied throughout the experiment, responses to re-

peated trials represent the response to the modulation signal, aver-

aged over many carriers.

We used a variation of this stimulus to characterize filters at 30, 40,

50, and 60 dB. This stimulus consisted of unique segments only. All

segments had a standard deviation of 5 dB, and the order of statis-

tical conditions was completely randomized.

Extraction of Filters and Nonlinearities

Filters were calculated in the Fourier domain according to:

FðuÞ= <s�ðuÞrðuÞ>
<s�ðuÞsðuÞ> (5)

where F(u) is the Fourier transform of the filter, s(u) is the Fourier

transform of the normalized log stimulus envelope n(t), and r(u) is

the Fourier transform of the spike train. The * indicates the complex

conjugate. The numerator in this equation is equal to the spike-trig-

gered average, while the denominator is equal to the power spec-

trum of the log stimulus envelope, which by design is exponential

(Equation 1). We verified that deviations of the full stimulus power

spectrum from this predicted power spectrum did not significantly

impact our calculations (Figure S2).

In practice, division or decorrelation by the power spectrum re-

sults in a noisy estimate of the filter, because it boosts power in

high frequencies that are poorly sampled in n(t). To recover mean-

ingful filters, we placed an exponential cutoff on F(u), given by

cðuÞ= 1forjuj<cutoff

cðuÞ= e 2 ju 2 cutoffj=10forjujRcutoff
(6)

The cutoff frequency for each cell was placed where the power

spectrum of the raw spike-triggered average fell below two standard

deviations of the power spectrum of an average of random spike

times. The highest cutoff across conditions was used for all calcula-

tions involving a single cell. Cutoffs ranged from 23 to 167 Hz.

Filters were considered significant if at least 10 ms of the filter lay

outside three standard deviations of the random-triggered average.

Nonsignificant filters arose exclusively when the firing rate during

a particular condition was extremely low. All but one cell recorded

produced significant filters under at least two conditions. To esti-

mate the error in our filter calculations, we divided our spikes into

five random pools and calculated separate filters from each. The

standard deviation of these five estimates are shown as error bars

in the figures.

The nonlinearity describes the probability of spiking given a value

of filter output, PðspikejF5stimÞ, and was calculated using a Bayes-

ian formula described in Brenner et al., (2000).

PðspikejF5stimÞ= PðF5stimjspikeÞPðspikeÞ
PðF5stimÞ (7)

where P(spike) is the mean firing rate over the stimulus condition.

PðF5stimÞ is the distribution of the mean-subtracted filtered stimu-
lus, and PðF5stimjspikeÞ is the distribution of spike-triggered

mean-subtracted filtered stimulus segments.

The slope of the nonlinearity depends on the scale of the filter F: if

the amplitude of F is increased, the width of the distribution

PðF5stimÞ will also increase, decreasing the slope of the nonlinear-

ity. We normalized each filter so that the variance of its output was

equal to the variance of its input (Baccus and Meister, 2002). This en-

sured that changes we measured in slope were not due to changes

in filter shape. The mean was subtracted from each stimulus prior to

calculating the nonlinearity to minimize a leftward shift due to the de-

crease in the integral of the filter with increased mean. To ensure that

the nonlinearity was well sampled, we restricted our analysis to a re-

gion from two standard deviations below the mean of the filtered

stimulus distribution, to two standard deviations above. To measure

the reliability of the nonlinearity, we performed a jackknife operation,

where 1/5 of the spikes were excluded in each of five estimates of

the nonlinearity. Error bars on nonlinearities shown in figures repre-

sent the standard deviation of the jackknife estimate (Sen et al.,

2001):

std =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2 1

n

X
j

ðxj 2 <xj>Þ2
s

(8)

where n is the number of jackknife estimates, and xj is the jth esti-

mate of the nonlinearity. To calculate nonlinearities as a function

of time for a single condition, we used the filter obtained by pooling

all data from that condition, as our analysis showed that filters do not

change over this time period.

To predict responses to the repeated modulation signal, we con-

volved it with the neural filter, quantized the result, then transformed

the quantized signal according to the nonlinearity. PSTHs were ob-

tained by smoothing the mean spike count per 1 ms bin with an 8 ms

wide hanning window. When comparing actual and predicted

PSTHs, we omitted the first 500 ms when mean firing rates were

strongly adapting, as our filters were not designed to capture this

response feature. The quality of the prediction depended strongly

on the amount of data recorded.

Analysis of Filters and Nonlinearities

Parameters of filters were defined as follows: the 50% width was the

duration in milliseconds over which the absolute value of the filter

was greater than or equal to half its maximum absolute value. The

best modulation frequency (BMF) of a filter was the frequency at

which its power spectrum was maximum. To minimize noise, power

spectra were calculated from a segment of each filter, from 25 ms

before the absolute value of the filter reached 25% of its maximum,

to the time of the spike. The ratio of positive to negative filter com-

ponents (Pos/Neg) was obtained by dividing the sum of all positive

parts of the filter by the absolute value of the sum of all negative

parts of the filter. Each parameter was measured on five estimates

of the filter to obtain error bars.

To eliminate subthreshold and saturation regions from our esti-

mates of nonlinear gain, values of the nonlinearity slope less than

5% of the maximum gain under any condition were excluded prior

to averaging. To compare gain across conditions, we compared

the log ratio of gain under the two conditions to zero.

Analysis of Decay Times

To estimate the decay time following a change in mean, we fit a single

exponential of the form

r
�
t
�

= A + DR 3 eð2 t=tÞ (9A)

to the unsmoothed PSTH. In this formula, r(t) is the PSTH, DR is the

magnitude of the decay, t is the decay time constant, and A is the

steady-state firing rate. Although several decays exhibited complex

transients, we focused our analysis on the final slow decay. To avoid

mistakes in fitting introduced by transients, we fit only a portion of

the response:

r
�
tlat : end

�
= A + DR 3 eð2 t=tÞ (9B)

where tlat was a latency parameter from 1 to 500 ms. Fits for latency

values that did not converge were excluded. Of the remaining fits,

we chose the one that resulted in the smallest mean squared error
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between the actual PSTH and the exponential model. A few PSTHs

were fit with only a subset of latency values (n = 4). Decay time con-

stants were considered significant only if they plateaued within our

5 s trial (all cells but one) and if they decayed over a range of greater

than 5 Hz (32/35 cells under high mean, 31/35 cells under low mean).

Supplemental Data

The Supplemental Data for this article can be found online at http://

www.neuron.org/cgi/content/full/51/6/845/DC1/.
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