
©Copyright 2023

Mark S. Bennett



Computations Related to the Construction of Finite Genus

Solutions to the Kadomstev-Petviashvilli Equation

Mark S. Bennett

A dissertation

submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

University of Washington

2023

Reading Committee:

Kenneth P. Bube, Chair

Bernard Deconinck, Chair

Daniele Agostini

Program Authorized to Offer Degree:

Mathematics



University of Washington

Abstract

Computations Related to the Construction of Finite Genus Solutions to the
Kadomstev-Petviashvilli Equation

Mark S. Bennett

Co-Chairs of the Supervisory Committee:
Kenneth P. Bube

Department of Mathematics

Bernard Deconinck
Department of Applied Mathematics

Krichever’s method of integrating certain partial differential equations using algebro-geometric

techniques provides an explicit approach to the construction of finite-genus solutions to the

Kadomtsev-Petviashvili (KP) equation. The closed-form expression that results can be used

as an ansatz provided that the parameters of the ansatz have meaning in the context of this

construction. The mathematical framework that is the basis for the algcurves package,

a Maple package that provided computational tools for working with Riemann surfaces, is

used to produce two procedures: the Krichever Construction Method (KCM), which en-

capsulates the construction of finite-genus solutions to KP using Krichever’s method, and

the Extended Dubrovin Method (EDM), which computes the parameters of the closed-form

expression using no more than a Riemann matrix and a few parameters while extending

ideas in Dubrovin’s 1981 survey ([11, Chapter 4]). Moreover, an approach to computing the

Riemann constant vector that modifies Patterson’s work ([28]) is presented.
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Chapter 1

MOTIVATION, HISTORY & BACKGROUND MATHEMATICS

In this thesis, I am primarily concerned with the explicit computation of finite-genus

solutions of the Kadomtsev-Petviashvili equation.

1.1 The Kadomtsev-Petviashvili equation & its use in modeling shallow-water

waves

The Kadomtsev-Petviashvili (KP) equation can be expressed as

(−4ut + 6uux + uxxx)x + 3σ2uyy = 0, (1.1)

where u is a complex-valued function in the real variables x, y and t, and σ2 = ±1. Typically,

x and y represent spatial variables, while t is seen as a temporal variable. The KP equation

models the time evolution of waves that are long (relative to depth) and have slow dependence

in y. The parameter σ has physical relevance. When σ2 = −1, the waves that are modeled

have high surface tension and equation 1.1 is called the KP1 equation. Whenever σ2 = 1,

the equation is called the KP2 equation and it models waves for which surface tension does

not contribute significantly to the physical behavior of the wave. See [8, 5, 6] for further

discussion on the KP equation relevant to this thesis.

When Kadomtsev and Petviashvili derived these equations from the Korteweg-de Vries

(KdV) equation,

6uux + uxxx = 4ut, (1.2)

they established the fact that KP1 is not stable to perturbations in the y coordinate whereas

KP2 is stable to such perturbations [21]. In this paper, the equation

(−4ut + 6uux + uxxx)x + 3uyy = 0, (1.3)
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will be our primary focus. I will call it the KP equation and will no longer mention KP1 or

KP2.

Figure 1.1: Pictures of physical waves that can be modeled by the KP2 equation

Our motivation is in computing finite-genus solutions that can model the evolution of

water waves in shallow water. It is known that real solutions to equation 1.3 model such

waves (see for example [12, 18, 19]).

1.2 A brief history of finite-genus solutions to KP

I discuss, briefly, the history that led to the development of Krichever’s scheme of integrating

certain partial differential equations using algebro-geometric methods [22]. I recommend

[13] for a more detailed account. To begin I start with the history of finite-genus (or quasi-

periodic) solutions to KdV. It is straightforward to check that the Lax equation,

∂ L

∂t
= [A,L],

where

L = ∂2x + u and A = ∂3x +
3

2
u∂x +

3

4
∂xu,

is equivalent to equation 1.2. The Lax pair L and A can be used to generate scattering data

for the inverse scattering transform (IST). Gardner, Greene, Kruskal and Miura used what

could be described as the inspiration of this machinery in 1967 to obtain explicit expressions
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for solutions of the KdV equation [17]. The system



LΨ = λΨ,

Ψt = AΨ,

along with the requirement that u vanish as |x| → ∞ sufficiently rapidly, were used to pro-

duce the scattering data required for application of the Gel’fand-Levitan-Marchenko equation

[25]. The methods of Gardner et al. provided mathematicians the ability to derive what

are called soliton solutions to KdV. Mathematically, these solutions are localized and stable

with respect to disturbances.1

Naturally, mathematicians sought to generalize these results and there were many direc-

tions to investigate. The summer of 1974 was particularly productive. Dryuma published,

in [10], an explicit description of Lax pairs for KP,

L = ∂2x + u and A = ∂3x +
3

2
u∂x +

3

4
(ux + w) ,

where w = uy. The Lax pair/IST framework was generalized by Shabat and Zakharov ([31]).

Considering solutions to 1.2 that are periodic as analogs to the soliton solutions, Novikov

began to develop the framework for obtaining quasi-periodic solutions to KdV ([27]).

The characterization of quasi-periodic solutions to KdV became a focus for several math-

ematicians. Novikov solved the Cauchy problem for periodic solutions ([27]). He argued that

the appropriate analog of solitons and N -solitons are the potentials that result in a finite

number of gaps in the spectrum of L2. Dubrovin and Novikov provided methods for arriv-

ing at explicit expressions for quasi-periodic solutions ([15]). This was followed by Its and

Matveev who found explicit expressions involving theta functions ([20]). For both groups of

mathematicians, the key to finding expressions was inspiration received from the decade-old

work of Akhiezer ([14]). Essentially, they constructed the eigenfunctions from initial data

using Riemann surface theory.

1A celebrated account by Scott Russell of what he calls the “Wave of Translation” details his surprise
encounter with a soliton while he was watching a boat travel along a channel [29].

2L is self-adjoint and so the spectrum lies on the real line.
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From this foundation, Krichever developed a scheme for obtaining quasi-periodic solutions

to PDEs that can be expressed in Zakharov-Shabot form ([22, 23, 24]):

[
L−∂y, A−∂t

]
= 0. (1.4)

In particular, closed-form expressions of quasi-periodic solutions of the KP equation were

derived. In Chapter 2, I compute so-called rank 1 solutions, following [11, Chapter 3].

1.3 Essential mathematical background

The purpose of this section is to record mathematical facts that will be used in the chap-

ters that follow. In particular, I cite basic facts regarding compact Riemann surfaces and

computational Riemann surfaces. For a more expository account of these topics consider

[3, 11, 30]. I assume a working knowledge of differential manifold theory, real and complex

analysis, and other first-year graduate-level courses.

1.3.1 Notation & conventions

In this thesis I will use the following notations to describe certain mathematical objects.

I use the following notation for subspaces of the Riemann sphere:

C
× = C \ {0} and C∞ = C ∪ {∞}.

Notation 1.1 (Set operations). Let S be a set with topological structure, and let E ⊂
F ⊂ S. The smallest closed set to contain F is called the closure and is denoted by F . An

element of F that is not in E is in the complement of E, and the collection of such elements

is denoted S \ E. The largest open set contained in F is called the interior of F and is

denoted F ◦. The boundary of F is F \ F ◦ and is denoted ∂F .

Notation 1.2 (Vectors and Lists). Vectors will be denoted by boldface symbols. I also

differentiate a vector L ∈ C
d from a list L of size d. The list L, is an ordered set and will not

be used often. The primary difference between L and L is that I allow L to have arbitrary
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objects as elements. For i ∈ {1, . . . , d}, I denote the ith component of L and L by L[i] and

L[i] respectively.

I also need to consider complex projective space.

Notation 1.3 (Complex projective space). Fix r > 1, then

CPr =
{
(z1 : z2 : . . . : zr+1) :

[
z1 z2 · · · zr+1

]
̸= 0

}
.

In many cases, the element (z1 : z2 : . . . : zr+1) of projective space can be treated as any

one of its representatives: (λz1, λz2, . . . , λzr+1) for any λ ∈ C
×. Also, whenever possible,

instead of F defined on CPr, I consider F̃ defined on C
r+1 and given by

F̃ (z) = F (z[1] : z[2] : . . . : z[r + 1]) .

These facts follow from the fact that CPr is the quotient of Cr \{0} by scalar multiplication.

Notation 1.4 (Curves & points on curves). I will typically use f to denote a curve.

• The degree of f , with respect to z, is denoted by deg (f, z). The l-degree of f , with

respect to z is defined to be the smallest power of z that appears in f and is denoted

by ldeg (f, z). The total degree of f is denoted by deg (f).

• I write

P = (u, λ)

for points that satisfy

f(u, λ) = 0.

If a point is denoted P∗, or (u∗, λ∗), for some symbol ∗, this is used across the notation

P∗ = (u∗, λ∗).

• Given u0 there may be more than one point P associated to u0. I use the terminology

P is rooted at u0. If P has property p then I say there is a point, rooted at u0, that

exhibits property p.
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• If z parameterizes a neighborhood of some point P on f then write

P (z) = (u(z), λ(z)).

• Irreducible planar algebraic curves (see Section 1.3.2 and Definition 1.7) are the primary

interest. Unless otherwise mentioned, assume that a curve being considered is of this

type.

1.3.2 Planar algebraic curves & the de-singularized Riemann surface

For our purposes, a planar algebraic curve f is a member of C [u, λ], and for simplicity I refer

to f as a curve. Fix the curve f , and express it as an element of (C[u]) [λ]:

f(u, λ) = an(u)λ
n + · · ·+ a0(u), with n > 0, an ̸= 0. (1.5)

For this thesis, consider λ implicitly defined by u ∈ C. My first task is to provide definitions,

notation, conventions, and results that will be used. From there, I define the de-singularized

Riemann surface associated with f . Most of the ideas from this section are from [3, 9, 16].

Quite simply, we are interested in f−1(0) ⊂ C
2 and its closure in C

2
∞. The closure of

f−1(0) can be obtained explicitly by analyzing the asymptotics of f−1(0) with the use of the

homogenization of f .

Definition 1.5 (Homogenization of a curve). The homogenization of f is a polynomial over

C on CP2 that naturally coincides with f as follows. Let F : C3 \ {0} → C given by

F (u, λ, z) = zNf

(
u

z
,
λ

z

)
, where N = deg f. (1.6)

Then F naturally represents the homogenization of f .

Let F and N be defined as above. The canonical embedding of f−1(0) in CP2 is defined

by

(u, λ) ∈ f−1(0) 7→ (u : λ : 1) .
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On the slice C× C× {1} of C3, F and f coincide:

F (u, λ, 1) = f (u, λ) .

If z ∈ F−1(0) then every multiple of z is also a member of F−1(0). Therefore, we partition

the level set of F according to whether or not the 3rd component is zero. The vectors z

with z[3] ∈ C
× can be scaled so that a multiple of z represents a member of the canonical

embedding. Thus any z ∈ F−1(0), with non-zero 3rd component, is associated with an

element of f−1(0) represented by z/z[3]. The remaining vectors z ∈ F−1(0), characterized

by the fact that z[3] is zero, are called infinite points of f . In this case, we can determine the

asymptotic behavior of f−1(0) as follows. The homogenization F reduces to the homogeneous

polynomial f̃ :

F (u, λ, 0) = f̃ (u, λ) =
N∑

i=0

ciu
iλN−i, where {ci}Ni=1 ⊂ C.

Since

f̃ (u, λ) = 0 if and only if for c ∈ C
× f̃ (cu, cλ) = 0,

we can consider, for example,

f̃

(
1,

λ

u

)
= 0.

This is a polynomial of one variable and the roots fix the ratio λ/u. Let r ∈ C be a root so

that

λ0(u) = ru for u ∈ C, and f̃(u, λ0(u)) = 0.

Then, since

(u : λ0(u) : 1) =

(
1 : r :

1

u

)
and F (1, r, 0) = 0,

we have

F (u, λ0(u), 1) → 0, as |u| → ∞.

Alternatively, as |u| → ∞, we have

f (u, λ0(u)) = F

(
1, r,

1

u

)
→ 0.
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Thus, lim
|u|→∞

(u, ru) is in the closure of f−1(0).

Ultimately, we would like to construct a Riemann surface from what has been explicitly

produced, and since λ is viewed as an implicit function of u we work with the u-plane. The

resultant of two curves will help us determine points that may need special treatment.

Definition 1.6 (Resultant of two curves). Recall the curve f as given by equation 1.5. Let

g be a curve of the form

g (u, λ) = bm(u)λ
m + · · ·+ b0(u), for some m > 1, bm ̸= 0.

The resultant of f and g, with respect to λ, is a polynomial in u, and I denote it by R (f, g).

It is defined by

R (f, g) = det




an . . . . . . a0
. . . . . .

an . . . . . . a0

bm . . . . . . b0
. . . . . .

bm . . . . . . b0




,

and the following property holds:

R (f, g) (u) = 0 if and only if f (u, λ) = g (u, λ) = 0, for some λ.

Before we make use of the resultant, we define what it means for f to be irreducible.

Definition 1.7 (Irreducible curve). The curve f ∈ C [u, λ] is irreducible if f ̸∈ C and

whenever

f = hg, for some h, g ∈ C [u, λ] ,

then either h ∈ C
× or g ∈ C

×.

In what follows, we assume that f is irreducible. Our next objective is to analyze the

structure of f−1(0).
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Definition 1.8 (Points of the curve). Let

Cf =
{
(u, λ) ∈ C

2 : f (u, λ) = 0
}

and denote its closure, in C
2
∞, by Γf . We use the notation of equation 1.4. By calling P a

point of f , we mean P ∈ Γf . If P ∈ ∂Cf then we call P an infinite point of f or a point of

f at ∞.

Proposition 1.3.1. Let g be a curve. The points of g, Γg, form a compact set. Moreover,

if g is irreducible then Γg is connected.

Proof. Since Γg ⊂ C
2
∞ is closed by definition, compactness follows. For the rest of the claim

see [16].

We consider P ∈ Γf as dependent on u. We need to determine points

P (u) = (u, λ(u))

of f that are singular or that cause problems in our scheme. The u associated with such

points can be handled separately from all others.

Definition 1.9 (Smooth & singular points on the curve). Given the curve f , let (u, λ) be a

point of the curve. Whenever

[
fu (u, λ) fλ (u, λ)

]
̸= 0,

we call (u, λ) a smooth point of f . If (u, λ) is not a smooth point of f then it is called a

singular point of f .

Since we will use the u-plane to construct the surface, the associated projection map and

local coordinate expressions will allow us to work primarily with the coordinate u.

Definition 1.10 (The projection map & u-coordinates). Let π : Γf → C∞ be the projec-

tion map of Γf defined by (u, λ) ∈ Γf 7→ u. For any point P0, the restriction of π to a

neighborhood of P0 will be called u-coordinates centered at P0.
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We now define finite subsets of π(Γf ) whose members must be avoided when performing

certain mathematical tasks.

Definition 1.11 (Problem points). Express f according to equation 1.5. Let

S−1 = {u ∈ C∞ : u = ∞ or a singular point of f is rooted at u}, (1.7)

and also

S0 = {u ∈ C∞ : u = ∞ or an(u) = 0 or R (f, fλ) (u) = 0}. (1.8)

An element of S0 is called a problem point of f .

Proposition 1.3.2 (Properties of S0 and its complement). Given S−1 and S0, as defined in

definition 1.11, we record the following basic facts.

1. S−1 ⊂ S0 and S0 is finite.

2. If P0 ∈ Γf \ π−1(S0), then there is a neighborhood U0 of P0 for which π|U0 is invertible,

and the function λ0(u) on π(U0), defined implicitly by

f(u, λ0(u)) = 0 for u ∈ π(U0),

is invertible. Moreover,

(π|U0)
−1 (u) = (u, λ0(u)) .

3. Suppose P0 is defined according to (2). Let P1 be defined similar to P0: replace 0 with

1 in (2). If U0∩U1 is not empty, then the maps defined in (2) agree on the intersection

of U0 and U1.

Proof. We omit the proof as it is straightforward. We do note that item 2 is a consequence

of the inverse function theorem.

It is well known that for any point of f there exist local coordinates constructed using

Puiseux series and that are compatible with the conformal structure of the surface. I utilize

results in [3, 9, 28], and use the puiseux command to compute these coordinates explicitly.
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Theorem 1.1 (Coordinates determined by Puiseux series). For any point P0 ∈ Γf , there is

a unique non-zero integer r0 and integer N0 such that, on a sufficiently small coordinate ball

B0 at 0, the map ϕ0 defined by

(u, λ) 7→ (u− u0)
1
r0 for (u, λ) satisfying (u− u0)

1
r0 ∈ B0

and its inverse ϕ−1
0 defined by

z ∈ B0 7→ (zr0 + u0,

∞∑

N0=k

ckz
k)

determine local coordinates in the neighborhood U0 of P0, where

U0 = {(u, λ) : for some z ∈ B0, u = zr0 + u0 and λ =
∞∑

N0=k

ckz
k}.

Proof. We omit the proof. This is established in many books on Riemann surfaces. See

[3, 16, 30].

Definition 1.12 (p-coordinates of a curve). Let P0 ∈ Γf . Then we call the coordinates of

Theorem 1.1, defined by

P (z) = (u(z), λ(z)) =

(
zr0 + u0,

∞∑

N0=k

ckz
k

)
,

the p-coordinates of P0.

Definition 1.13 (Riemann surface). A Riemann surface is a tuple (Γ, {ψα}α∈A) with the

property that Γ is a 2-dimensional, connected topological manifold and for each α ∈ A the

chart (Uα, ψα) defined by the local coordinate ψα : Uα → ψα(Uα) satisfies the following

properties.

1. The collection {Uα}α∈A forms a cover of Γ by open sets

Γ ⊂
⋃

α∈A

Uα.
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2. For α, β ∈ A so that Uα∩Uβ is non-empty, the transition map ψα◦ψ−1
β that transitions

from chart (Uβ, ψβ) to (Uα, ψα) is bi-holomorphic.

I note that this definition assumes that our topological manifolds are Hausdorff spaces

and have countable bases.

Definition 1.14 (Conformal isomorphisms). Let M1 and M2 be Riemann surfaces and

suppose Φ : M1 → M2. Then Φ is a conformal isomorphism if it is a homeomorphism

such that every local coordinate representation of Φ is bi-holomorphic. In this case, M1 is

conformally isomorphic to M2.

Now that we have a conformal structure we can discuss how Γf can be viewed as a

Riemann surface. If the points of f that do not admit a local inverse to π are removed, then

a Riemann surface can be formed. This surface is the most natural surface to associate with

f , and it covers, under π, the punctured u-plane. However, in light of Theorem 1.1 we can

de-singularize points of f .

The formulation of the de-singularization of Γf can proceed in multiple ways. For in-

stance, in [16, Section 9.3], a collection of charts {(Uα, ψα)}α∈A is formed and then inverted

to form a collection of inverted charts {(ψα (Uα) , ψ−1
α )}α∈A. This collection is then patched

together by forming a disjoint union. From this point, a quotient is formed using the com-

patibility of charts. At each stage of this construction, a map is naturally defined via the

collection {ψ−1
α }α∈A. The final map constructed via this process is called the resolution of

singularities of Γf .

Other approaches exist but what they all have in common is that the singular points of

the curve are resolved in a manner compatible with solving the primary problem.

We follow the procedure used in the algcurves package to de-singularize f using the

Puiseux series ([9]).

Definition 1.15 (The de-singularized Riemann surface of a curve). Let the collection of

charts {UP , ψP}P∈Γf be defined so that, for P ∈ Γf , UP and ψP are defined via the p-

coordinates (Definition 1.12). Then (Γf , {UP , ψP}P∈Γf ) satisfies Definition 1.13 and is a
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Riemann surface. Each singular point P is now made distinct by using Puiseux series in the

construction of the chart (UP , ψP ).

We call the Riemann surface constructed above the de-singularized Riemann surface

associated with f .

The final statement of this section is the fact that every compact Riemann surface can

be obtained as prescribed in this section.

Theorem 1.2. Let Γ be a compact Riemann surface. Then Γ is conformally isomorphic to

a Riemann surface of an irreducible curve.

Proof. I recommend [30, Chapters 4 & 5] for a detailed proof.

1.3.3 Essential topological considerations

Let f be an irreducible curve. Assume that all of the mathematical objects associated with f

of the previous section are also defined. It is well known that compact, orientable topological

manifolds are homeomorphic to a g-holed torus. In this section, I make clear the relevant

topological structures, needed for the rest of the thesis.

Definition 1.16 (Genus of Γf ). The compact Riemann surface Γf is of genus g if it is

homemorphic to torus with g holes.

Definition 1.17 (Symplectic Homology basis of Γf ). The symplectic homology basis of Γf

is denoted by {αi, βi}gi=1 and has the following intersection indicies:

αi ◦ αj = βi ◦ βj = 0, αi ◦ βj = δij, for i, j ∈ {1, . . . , g}.

This basis can be used to represent Γf as a quotient of a polygonal region in the complex

plane.

Definition 1.18 (The 4g-gon). Let Γ̃ denote the regular 4g-gon embedded in R
2 with its

center at 0. Its boundary ∂Γ̃ is a closed loop composed of 4g edges. Choose any edge and
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label it a1. Then, by successive labeling and recording edges of the boundary in a counter

clockwise fashion, we have encoded the names and order of the edges that form the boundary

by the word

α1β1α
−1
1 β−1

1 α2β2α
−1
2 β−1

2 . . . αgβgα
−1
g β−1

g .

Recall that systematically cutting the Riemann surface along the loops in {αi, βi}gi=1

homeomorphically transforms the surface into a quotient space on Γ̃. If we retain the labels

of the edges described in Definition 1.18 and the encoded word

α1β1α
−1
1 β−1

1 α2β2α
−1
2 β−1

2 . . . αgβgα
−1
g β−1

g ,

then the standard topological gluing operations define the quotient space homeomorphic to

Γf . As an example, if (1− t)e1+ te2 and (1− t)ℓ1+ tℓ2 are parameterizations of edges named

a1 and a−1
1 respectively, then glue together (1− t)e1 + te2 and tℓ1 + (1− t)ℓ2.

Definition 1.19 (Cohomology basis of Γ). The co-homolgy basis consist of g differentials,

so that the ith differential of the basis is denoted by ωi, for i ∈ {1, . . . , g}. The vector of the
cohomology basis is denoted by ω with

ω[i] = ωi, for each i.

We express the basis in local coordinates (u-coordinates)

ωi = hi (u, λ) du, for each i. (1.9)

For each i, ωi is holomorphic, which means that for any chart (U, z) the local representation

is of the form

ωi = Hi(z)dz

for some holomorphic function Hi. These differentials form a basis of the holomorphic

differentials of Γf : every holomorphic differential can be expressed as cT
0
ω, for c0 ∈ C

g.

The holomorphic differentials are also called Abelian differentials of the first kind. I

define the the Abelian differentials.
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Definition 1.20 (Abelian differentials of Γf ). Let ω be a differential. The Abelian differ-

entials of the first kind were defined in Definition 1.19, and ω is of the first kind if, for an

arbitrary chart (U, z), the local coordinate representation satisfies

ω = H(z)dz, H(z) is holomorphic.

The differential ω is of the second kind if there is a unique P0 ∈ Γf and N0 > 0 such

that, for a chart (U0, z) centered at P0, ω is of the form

ω = H(z)dz, and H(z) has a pole of multiplicity N0 + 1 at 0.

In this case we re-express H(z) so that

H(z) =
c0

zN0+1
+H ′(z), H ′ is holomorphic and c0 ∈ C

×.

We call the meromorphic portion of ω, c0/z
N0+1dz, the principal part of ω.

Finally, ω is a differential of the third kind if there are two points P1 and P2 and some

r ∈ C
× so that P1 is a simple pole with residue r and P2 is a simple pole with residue −r.

We now begin integrating differentials along the homology basis.

Definition 1.21 (The a and b periods of a differential). Let ω be any Abelian differential.

The a-periods of ω are the g integrals {
∮
αj
ω}gj=1 and similarly the b-periods are the g integrals

{
∮
βj
ω}gj=1.

The g × g matrices ΠA and ΠB defined by

(ΠA)i,j =

∮

αj

ωi and (ΠB)i,j =

∮

βj

ωi, for each i, j (1.10)

are called the matrix of a-periods and matrix of b-periods, respectively.

The utility of Γ̃ will be demonstrated in what follows. It is not hard to show that
(
Γ̃f

)◦

is homeomorphic to

U = {P ∈ Γf : P is not on the cycles αi, βi, for each i}.
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If P0 ∈ U is identified with z0 ∈
(
Γ̃f

)◦
, then fix any z1 ∈ Γ̃f and let γ be a straight line

from z0 to z1. This ensures that in the worst case γ(1) is on a edge. Hence, for a closed

differential ω on Γ̃ the expression

f(z1) =

∫ z1

z0

ω =

∫ 1

0

ωγ(t)(γ
′(t))dt

is well-defined. Moreover, the pull-back with respect to the homeomorphism ensures that

we could have alternatively defined f on Γf . Integration on this space is used to simplify

calculations and prove results, such as the ones below.

Theorem 1.3. Let ω and ω′ be closed differentials on Γf . Then

1. for the a-periods and b-periods of ω, {Ai, Bi}gi=1, and the a-periods and b-periods of

ω′, {A′
i, B

′
i}gi=1, we have

∫

Γf

ω ∧ ω′ =

g∑

i=1

(AiB
′
i − A′

iBi) ;

2. if ω is holomorphic and each of the a-periods of ω are 0, then ω is identically zero.

Proof. See [11].

Consider ω as defined in Definition 1.19 and also the associated matrix of a-periods ΠA

defined in Definition 1.21. It is well known that ΠA is invertible. Indeed, since

(
ΠT
Av
)
j
=

g∑

i=1

v[i]

∮

αj

ωi =

∮

αj

g∑

i=1

v[i]ωi,

we see that, by Theorem 1.3, the fact that ω forms a basis implies ΠA must be invertible.

Definition 1.22 (Normalization of Abelian differentials & the Riemann matrix). The vector

whose components consist of the normalized cohomology basis is

ωℓ = Π−1
A ω, with ωℓ[i] = ωℓi . (1.11)
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The a-periods of this basis are
∮

αj

ωℓi = δij, for each i and j.

Let ω be an Abelian differential of the either second kind or third kind. If C ∈ C
g is

given by

C[i] =

∫

αi

ω.

Then ω −CTωℓ and ω have the same principal part. However,
∮

αi

ω −CTωℓ =

∮

αi

ω −Ci = 0,

for each i.

Hence the normalization of an Abelian differential of the second or third kind is a differ-

ential ω with the same principal part and zeros for a-periods.

Definition 1.23 (Riemann matrix). A Riemann matrix B is symmetric and has the property

that ImB is positive definite. Moreover, if B can be considered the normalized b-periods of a

cohomology basis with respect to some Riemann surface, then we say that B can be obtained

from a curve.

Theorem 1.4 (Periods of differentials of 2nd & 3rd kind). With respect to Definition 1.22.

1. Let ω be the normalized differential of the second kind with a singularity at P0 of

multiplicity N0 + 1 , with N0 > 1. Let (U0, z) be a centered at P0. Then for each i,

ωℓj = Hj(z)dz

and ∮

βi

ωN0
P0

=
1

N0!

(
dN0

dzN0
Hi

)
(0).

2. Let ω be the normalized differential of the third kind with simple poles at P1 and P−1

of residue 1 and −1 respectively. Then, for each i,
∮

βi

ω =

∫ P1

P2

ωℓi .

Proof. Essentially, this is a restatement of [11, Lemma 2.1.2].
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1.3.4 The Abel map, The Riemann Theta function, & Jacobi inversion

Let f and be a curve expressed as in equation 1.5 and fix all of the mathematical objects of

the previous sections that are associated to f . Fix a point Pℓ ∈ Γf to be used throughout

this section.

Since B is a Riemann matrix of f it makes sense to define Riemann theta functions.

Definition 1.24 (The Riemann theta function). Let B′ be a Riemann matrix, as in Defini-

tion 1.23. The Riemann theta function, or just theta function, of B′ is the map

θ (z|B′) =
∑

n∈Zg

e
2πi

(
nT B

′

2
n+nT z

)

. (1.12)

When it is clear what matrix is being used as a parameter of the Riemann theta function we

write θ (z).

Proposition 1.3.3. Let B′ be a Riemann matrix and let θ be the Riemann theta function

of B′. Then, for z ∈ C
g,

(a) θ (z +N +B′M ) = e
−2πi

(
MT B

′

2
M+NT z

)

θ (z) , for M , N ∈ Z
g, and

(b) θ (−z) = θ (z).

We use the algcurves command RiemannTheta to work with theta functions numerically

(see [7]).

Next, we consider the Abel map and properties.

Definition 1.25 (The Abel map). The map A : Γ2
f → C

g defined by

(A (P1, P2))i =

∫ P2

P1

ωℓi , for i ∈ {1, . . . , g} (1.13)

is called the Abel map. The algcurves command AbelMap allows us to compute the Abel

map using Puisuex series expansions via the algcurves command puisuex.

If, for any P , the path from Pℓ to P has been fixed, then we write

AP
ℓ = A (Pℓ, P ) .
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Definition 1.26 (Divisors of Γf ). A divisor, D, is a formal, finite sum of points in Γf :

D =
N∑

i=1

niDi, for {Di}Ni=1 ⊂ Γf , and {ni}Ni=1 ⊂ Z. (1.14)

The degree of D is

deg(D) =
N∑

i=1

ni

and if L is a linear map on Γf it is naturaly extended to the divisor D:

L(D) =
N∑

i=1

niLDi.

The theta function is defined on C
g and it is quasi-periodic, whereas Aℓ maps into C

g and

a different choice in paths only adds integer multiples of the periods to the theta function.

We now consider the Jacobian of Γf .

Definition 1.27 (Jacobian of Γf ). The Jacobian of Γf , denoted by J (Γf ) is the quotient of

C
g via the equivalence: z1 ∼ z2 if

z1 − z2 = N +BM (N ,M ∈ Z
g) .

Theorem 1.5 (Abel’s Theorem). For N > 0 and points {Pi, Qi}Ni=1 ⊂ Γf ,

N∑

i=1

APi
ℓ −

N∑

i=1

AQi
ℓ ≡ 0

if and only if there is a meromorphic function on Γf whose N zeros are the points Pi and

the N poles are the points Qi.

Abel’s theorem defines an equivalence on the set of divisors. Other results, in partic-

ular the Riemann-Roch theorem, can be used to analyze divisors by degree, among other

properties. I define the most relevant terminology.

Definition 1.28 (More divisor terminology). I define a divisor of a meromorphic function

and differential, linear equivalence between divisors, and special types of divisors.
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1. For any meromorphic function h on Γf , let (h) denote the divisor

(h) = (P1 + P2 + · · ·+ PN)− (Q1 +Q2 + · · ·+QN)

consisting of the N zeros P1, P2, . . . , PN and N poles Q1, Q2, . . . , QN of h. For any

Abelian differential ω, let (ω) be the zeros and poles defined similarly.

2. Linear equivalence is the equivalence relation on the divisors, given by

D1 ∼ D2 if deg (D1) = deg (D2) and AD1
ℓ ≡ AD2

ℓ .

The canonical class C consists of divisors of Abelian differentials.

3. A divisor
∑

i niDi whose coefficients are positive integers will be called positive. A

positive divisor D of degree g is special if there is a meromorphic function whose

poles are the g points of D. Otherwise, it is called non-special. A point P is called

a Weierstrass point if there is a meromorphic function with a single pole at P of

multiplicity g or less.

Key to what remains of this section is the Vector of Riemann Constants Kℓ defined by

(Kℓ)i =
1 + Bii

2
−
∑

j ̸=i

∮

αℓj

(
ωℓj

∫ P

Pℓ

ωℓi

)
, for each i. (1.15)

Theorem 1.6 (Jacobi inversion). Let ζ ∈ C
g be fixed and consider

F (P ) = θ
(
AP
ℓ − ζ

)
.

There are only two possibilities: if F ≡ 0, then

ζ = AQ
ℓ +Kℓ

for some special divisor Q of degree g; otherwise, F has g zeros and

ζ = AD
ℓ +Kℓ

for a non-special divisor D of degree g. Moreover, the zeros of F are the g points of D.
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1.3.5 Theta functions with characteristics, half-periods, & theta constants

We continue from the preceding section. Theta functions can be generalized to theta func-

tions with characteristics.

Definition 1.29 (Theta functions with characteristics). Let B′ be a Riemann matrix. Then

θ [α,β] denotes a theta function with characteristics, with α,β ∈ R
g, and is defined as

θ [α,β] (z) = e
2πi

(
α
TB′

α

2
+αT z+β

)

θ (z + β +B′α) .

Proposition 1.3.4. Let B′ be a Riemann matrix. And let θ [α,β] denote a theta function

with characteristics [α,β]. Then, for z ∈ C
g,

θ [α,β] (z +N +B′M ) = e
−2πi

(
M
TB′

M

2
+MT (z+β)−αTN

)

θ [α,β] (z) , for M , N ∈ Z
g.

We are primarily interested in θ [α,β] with α, β ∈ Z/ (2Z).

Definition 1.30 (Half-periods). We call [α,β] α, β ∈ Z/ (2Z) a half-period. This definition

extends to the associated vector β +B′α under identification.

To simplify notation, we first introduce an enumeration of Z/ (2Z).

Definition 1.31 (Enumeration of half-periods). For h, h′ ∈ Z/ (2Z), define

I(h,h′) = min{i : h[i] ̸= h′[i]},

Level(h) =

g∑

i=1

h[i].

Then, for h,h′ ∈ Z/ (2Z), we write h < h′ if

Level(h) < Level(h′)

or

Level(h) = Level(h′) and h[I(h,h′)] < h′[I(h,h′)].
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Using this order, let

H = {hn}2
g

n=1

denote the enumerated half-periods. We also identify (Z/2Z)g with binary numbers under

the mapping

h ∈ (Z/2Z)g 7→ bh = h[g]h[g − 1]. . .h[1].

Notation 1.32 (Half-periods). With respect to Definition 1.31. We let h(i,j) denote

h(i,j) =
B′hi

2
+

hj

2

for i, j ∈ {1, . . . 2g}. For h(i,0) we write hi. This, at times, identifies h(i,0) with H and we

allow the context to resolve the ambiguity.

Now we define the theta constants.

Definition 1.33 (Theta constants). Let hs ∈ H. Then the theta constants associated with

hs are

θ̂s = θ [hs] (0|2B′), (1.16)

θ̂sij = ∂2zizj (θ [hs] (z|2B′))
∣∣
z=0

, (1.17)

θ̂sijkl = ∂4zizjzkzl (θ [hs] (z|2B
′))
∣∣
z=0

, (1.18)

θ̂sU =
∑

ijkl

uiujukulθ̂
s
ijkl. (1.19)

The following proposition is of importance to the work in Chapter 3.

Proposition 1.3.5 (Non-singularity condition). Let

M ′ =




θ̂111 θ̂112 . . . θ̂11g θ̂122 . . . θ̂1gg θ̂1

...
...

...
...

...
...

θ̂2
g

11 θ̂2
g

12 . . . θ̂2
g

1g θ̂2
g

22 . . . θ̂2
g

gg θ̂2
g


 .

If B′ is a matrix that comes from a surface, then M ′ is of full rank. On the other hand, if

B′ can be expressed as a block matrix, then M ′ is not of full rank.

Proof. This statement follows from [11, Lemma 4.3.1] and its proof.
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1.3.6 Construction of explicit representation of Γf

The previous sections build off of each other to construct a Riemann surface Γf . However,

this is not the complete picture when computing and working numerically with a Riemann

surface is desired. The key difference is that every step must be made explicit and we must

start on the u-plane.

First, we must obtain the monodromy group so that we can obtain a homology basis. To

do this, the u-plane must be punctured. Constructing S0, from Definition 1.11, is easy to

do, as it involves finding the zeros of specific polynomials in u. A set S1 can be formed by

adding a finite number of points to S0, for instance by adding bounding points or even uQ of

proposition 2.2.1. Next, a starting point must be determined. We denote this point by Pℓ.

Using uℓ as the base point for all paths, π is used to compute the monodromy group. This

requires generators of the fundamental group of C \ S1 to be formed. Enumeration of the

points rooted at uℓ gives a label to sheets of the cover π, and numerical analytic continuation

encodes the monodromy action of the fundamental group on the sheets as a permutation.

The monodromy command of the algcurves package allows us to compute this group. For

more details see [3, Chapter 2] as well as [9] and [28].

Once the monodromy behavior of the generators is cataloged, an explicit symplectic ho-

mology basis {αℓi , βℓi}gi=1 can be formed (see [9]). The command homology of the algcurves

package computes this for a given curve. It should be noted that there are other approaches

to getting an explicit basis. For example, see [4]. In [4], the generators of the fundamen-

tal group are formed from a Voronoi diagram; however, it is not configured for use with

homology. This can be done, but I do not detail this here.

Once the homology has a representation, the next task is to obtain a basis for the co-

homology. The differentials command of the algcurves package obtains a basis for the

cohomology ([9]), and this can be numerically integrated against the representations of the

homology. This allows for an explicit representation of the normalized cohomology.

Provided local representations of the cohomology basis are known and used, integration
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against the representatives of the homology becomes a quadrature problem. See [26] for an

excellent resource. We use the AbelMap command of algcurves to integrate between paths.

It should be noted that defining a function on Γf requires a consistent choice of paths.

Moreover, some quantities are only well-defined once representatives for the symplectic basis

have been fixed (see Section 2.2.4).

Once the data above is made explicit, computing the Riemann matrix presents no greater

difficulty. Having access to a command, such as the RiemannTheta command of algcurves,

we can then compute everything desired in this thesis explicitly.

The discussion above suggests that an appropriate mathematical framework for comput-

ing an explicit Riemann surface is the analytic continuation of a germ. It can be shown that

constructing the representative of Γf and then choosing a starting point Pℓ is equivalent to

constructing the ramified Riemann surface of the germ defined by (uℓ, λℓ, f).

Definition 1.34 (Explicit Riemann surface). An explicit representation, or realization, of

the Riemann surface associated with f consists of a base point Pℓ, a finite collection of points

S1 that contains S0, a fixed collection of loops on C \ S1 that start at uℓ and generate the

fundamental group, a cohomology basis ω, an integration scheme so that Aℓ can be defined,

and local coordinates at the points rooted in S0 that can be used to numerically integrate

points near problem points.

1.4 Contributions of this thesis

This thesis details the implementation of two Maple procedures, Krichever’s Construction

Method (KCM) and Extended Dubrovin’s Method (EDM), that compute finite-genus solutions

of KP. The approaches contrast: KCM encapsulates Krichever’s construction, as discussed

in Chapter 2, using knowledge of the underlying Riemann surface, whereas EDM extends

Dubrovin’s work in [11, Chapter 4], as discussed in Chapter 3, using only a Riemann matrix

and a few parameters.

A primary problem that is addressed in this thesis is the determination of the Vector of
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Riemann Constants Kℓ, defined by equation 1.15 and discussed in Section 2.2.4. I demon-

strate that if the Riemann surface is constructed explicitly so that a base point Pℓ as well as

representatives for the homology and cohomolgy are fixed, then under reasonable assump-

tions the half-period hℓ that relates Kℓ to the canonical class can be determined uniquely

(Proposition 2.2.6). This result gives an affirmative answer to a problem posed by Patterson

in his thesis [28, page 104].

As mentioned, in conjunction with this thesis, Maple procedures have been developed.

These procedures are stored in a Maple package and can be found at the Git repository

https://github.com/MSBennett21/kp.git.

https://github.com/MSBennett21/kp.git
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Chapter 2

KRICHEVER’S METHOD FOR COMPUTING FINITE-GENUS

SOLUTIONS OF THE KADOMTSEV-PETVIASHVILI

EQUATION

Establishing a closed form expression for periodic and quasi-periodic solutions to KdV in

terms of Riemann theta functions gave insight on the relationship between spectral theory of

certain differential operators and algebraic geometry. From this insight, Krichever developed

a method for constructing solutions of nonlinear partial differential equations that can be

expressed in the form of equation 1.4 where L and A are linear differential operators in x,

and each has coefficients that are matrix functions of x, y and t [22].

As one of the primary goals of this thesis is to compute finite-genus solutions to equation

1.3, it will be of great benefit to examine Krichever’s scheme applied to KP, as described

in [11]. From there, I detail how certain quantities are computed. In particular, a proof is

given of a conjecture posited by Patterson ([28, Page 104]): there are conditions that can be

enforced that uniquely determine the half-period associated to Kℓ of equation (Proposition

2.2.6). After detailing how I compute parameters, I present Krichever’s Construction Method

(KCM), along with numerical data from its application.

2.1 Krichever’s construction

Before we analyze the construction, I define Baker-Akhiezer functions.

Definition 2.1 (Baker-Akhiezer function). Fix any point PQ on a compact Riemann surface

Γ. Choose any coordinates z = k−1 centered at PQ and any g-divisor

D = D1 + · · ·+Dg.

Then Ψ : Γ → C∞ is a Baker-Akhiezer function if
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i. Ψ is meromorphic on Γ \{PQ}, with exactly g poles at the points Di for i ∈ {1, . . . , g},
and

ii. there is a constant c such that Ψ(P ) ∼ cexk+yk
2+tk3 for P near PQ.

It is easy to see that Baker-Akhiezer functions form a vector space. However, when D is

non-special, as in Definition 1.28, even more can be said.

Proposition 2.1.1. For a fixed z and non-special g divisor D, the space of functions that

satisfy Definition 2.1 form a one-dimensional linear space.

Proof. This follows from [11, Theorem 3.1.1].

Krichever’s construction, as described in [11, Chapter 3], is essentially a constructive

proof of the following result.

Theorem 2.1 (Krichever’s construction). Let Γ be a compact Riemann surface of genus

g > 0, and let f be an irreducible planar algebraic curve with the property that Γ can be

realized as

Γf = {(u, λ) : f (u, λ) = 0} .

Then, for any point

(uQ, λQ) = PQ ∈ Γf ,

there is a family of finite-genus solutions to equation 1.3 parameterized by PQ.

Proof. Fix Γf and PQ ∈ Γf .

Begin by fixing an explicit representation of Γf (as described in Section 1.3.6). A base

point Pℓ and paths to points on the surface can always be chosen so that Pℓ ̸= PQ and PQ

is not in the image of the paths to be traveled. By de-singularizing as in Definition 1.15, we

can also assume that f is not singular (see [22, Page 17]). In particular, we have explicit

representatives
{
αℓi , β

ℓ
i

}g
i=1

of the symplectic homology basis, as well as a cohomology basis

{ωi}gi=1, and the normalized basis
{
ωℓi
}g
i=1

. The Abel map, given in Definition 1.25, is well
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defined, and so is the linear extension of this map that arises by allowing P to be a g-divisor

(definition 1.26).

Each family depends on a choice of local coordinates and a g divisor. Let z denote any

local coordinate centered at PQ, and choose any positive, non-special g divisor D. Write

k = z−1, q(k) = xk + yk2 + tk3, and D = D1 + · · ·+Dg.

Let Ω be the normalized Abelian differential of the second kind, as in Definition 1.22,

determined by the principal part of

dq = xdk + ydk2 + tdk3.

A Baker-Akhiezer function ΨQ can be defined explicitly:

ΨQ(P ) = e
∫ P
Pℓ

Ω θ(AP
ℓ −AD

ℓ −Kℓ +U dq)

θ(AP
ℓ −AD

ℓ −Kℓ)
, (2.1)

where

(U dq)i =

∮

βℓi

Ω, for each i,

Kℓ is the Vector of Riemann Constants, (equation 1.15), and B is the Riemann matrix whose

entries are the normalized βℓ-periods of the cohomology basis.

It is straightforward to see that ΨQ(P ) is in the vector space of Baker-Akhiezer functions

associated with the parameters given. It can be shown that the definition of ΨQ(P ) is

independent of the choice made when determining all paths; see [11]. By construction, ΨQ(P )

is meromorphic on Γf \ {PQ}. In fact, the non-special nature of D allows us to determine

the zeros of the denominator. By the Jacobi inversion Theorem 1.6, θ
(
AP
ℓ −AD

ℓ −Kℓ

)
has

exactly g zeros and they are the points Di, for each i. Similarly, for almost every x, y and z,

the vector AD
ℓ −U dq corresponds to a non-special divisor and there are exactly g zeros of the

numerator θ(AP
ℓ −AD

ℓ −Kℓ +U dq), none of which are points of D. It is also worth noting

that, by construction, PQ cannot be Pℓ, but we have not ruled out the possibility that PQ

could be a point of D. Since Ω has vanishing αℓ-periods,

Ω = dq + cTAP
ℓ , with c[i] = −

∮

αℓi

dq,
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and, for P close to PQ, ∫ P

Pℓ

Ω = q(k(P ))− q(Pℓ) + cTAP
ℓ ,

where q(Pℓ) is the expression obtained by analytically continuing q(k) along the path from

Pℓ to P , in reverse order. This shows that

hQ(P ) = ΨQ(P )e
−q(k) → c as P → PQ, (2.2)

where

c =





∞ whenever PQ = Di for some i ∈ {1, . . . , g},

e−q(Pℓ)+λ·A
PQ
ℓ

θ(A
PQ
ℓ

−AD
ℓ
−Kℓ+Udq)

θ(A
PQ
ℓ

−AD
ℓ
−Kℓ)

otherwise.

Now, consider the formal differential operators

L = ∂2x + u, (2.3)

A = ∂3x +
3

2
u∂x + w. (2.4)

We will show that u is a solution of equation 1.3 by showing that



[L− ∂y] Ψ = 0,

[A− ∂t] Ψ = 0,

where

Ψ = rΨQ(P ) for some r ∈ C∞.

With c defined in equation 2.2, we can disregard the case c = ∞, since in this case we see

that u and w are identically zero and there is nothing to show. Since we have no interest in

constant functions, suppose that c ̸= ∞. Then, we expand ΨQ in local coordinates,

ΨQ = eq
(
c+

ξ̄1
k

+
ξ̄2
k2

+ . . .

)
. (2.5)

The normalized Baker-Akhiezer function Ψ is defined by

Ψ = eq
(
1 +

ξ1
k

+
ξ2
k2

+ . . .

)
; (2.6)
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however, the asymptotic behavior near PQ of any non-constant Ψ0 ∈ Λ (D) gives us

Ψ =
Ψ0

c0
, for some c0 ∈ C

×.

Next, formally, we express Ψ as

Ψ = eq
∞∑

s=0

ξsk
−s,

and apply the differential operators to this expansion. Applying L− ∂y yields

[L− ∂y] Ψ =
∞∑

s=0

[L− ∂y] (e
qξs) k

−s

=
∞∑

s=0

(
(ξsk

2 + 2ξsxk + ξsxx)− (ξsk
2 + ξsy) + uξs

)
eqk−s

=
∞∑

s=0

(
2ξsxk

1−s + (ξsxx + uξs − ξsy)k
−s
)
eq

= eq
(
Eqn0 + Eqn1k

−1 +O(k−2)
)
,

where 


Eqn0 = uξ0 + 2ξ1x,

Eqn1 = ξ1xx + uξ1 − ξ1y + 2ξ2x.

Similarly, applying A− ∂t we obtain

[A− ∂t] Ψ =
∞∑

s=0

[A− ∂t] (e
qξs) k

−s

=
∞∑

s=0

(
(ξsk

3 + 3(ξsxk
2 + ξsxxk) + ξsxxx) +

3

2
(uξsk + uξsx)− (ξsk

3 + ξst) + wξs

)
eqk−s

=
∞∑

s=0

(
3ξsxk

2−s + 3(ξsxx +
u

2
ξs)k

1−s + (ξsxxx +
3

2
uξsx − ξst + wξs)k

−s

)
eq

= eq
(
Eqn2k + Eqn3 + Eqn4k

−1 +O(k−2)
)
,

where 



Eqn2 =
3
2
uξ0 + 3ξ1x,

Eqn3 = wξ0 + 3ξ1xx +
3
2
uξ1 + 3ξ2x,

Eqn4 = ξ1xxx +
3
2
uξ1x − ξ1t + wξ1 + 3ξ2xx +

3
2
uξ2 + 3ξ3x.
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A key assumption in the construction process is that Ψ behaves well at the essential singu-

larity PQ. This is achieved by enforcing the vanishing of coefficients (see [11, Lemma 3.1.1]).

In this case, we enforce

Eqni = 0, for i ∈ {0, 2, 3},

so that we have the expressions

u = −2ξ1x,

w = −3ξ1xx −
3

2
uξ1 − 3ξ2x.

This also implies

[L− ∂y] Ψ = O(k−1)eq and [A− ∂t] Ψ = O(k−1)eq,

which are actually global relations on the surface. To see this, note that [L− ∂y] Ψ and

[A− ∂t] Ψ are Baker-Akhiezer functions that vanish as PQ is approached. Since D is non-

special, they both must be the zero function. The fact that these relations are global yields

more equations in u, w, and their derivatives. These equations, together with the enforcement

of the compatibility condition for the operators in equations 2.3 and 2.4,

[L− ∂y, A− ∂t] = 0,

can be used to derive equation 1.3 in u. This establishes u as a finite-genus solution of 1.3,

parameterized by the choice of z and D.

Now, consider the Baker-Akhiezer function

Ψ̃ = eq
θ(AP

ℓ −AD
ℓ −Kℓ +U dq)

θ(AP
ℓ −AD

ℓ −Kℓ)
,

with an expansion in k of the form

Ψ̃ = eq

(
ξ̃0 +

ξ̃1
k

+
ξ̃2
k2

+ · · ·
)
.

Since Ψ− Ψ̃ ∈ Λ (D), its behavior near PQ allows us to assert

ξ̃1 = c̃x+ ay + bt+ ξ1, for some c̃, a, b ∈ C. (2.7)
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Expand Aℓ locally, in k and apply Theorem 1.4: for P near PQ,

AP
ℓ = APQ

ℓ + ωℓ(PQ)k
−1 +O(k−2)

= APQ
ℓ −U k−1 +O(k−2),

where, for each i,

(U )i =

∮

βℓi

dk + · · · ,

and the dots indicate regular terms. Next, note that

log
(
Ψ̃
)
= log eq + log

θ(AP
ℓ −AD

ℓ −Kℓ +U dq)

θ(AP
ℓ −AD

ℓ −Kℓ)
,

and so the k−1 order behavior of Ψ̃ can be obtained by computing the k−1 order behavior of

log
θ(AP

ℓ
−AD

ℓ
−Kℓ+Udq)

θ(AP
ℓ
−AD

ℓ
−Kℓ)

. This means

ξ̃1 =
d

dz
log

θ(AP
ℓ −AD

ℓ −Kℓ +U dq)

θ(AP
ℓ −AD

ℓ −Kℓ)

∣∣∣∣∣
P=PQ

= −
∑g

i=1 θi(A
PQ
ℓ −AD

ℓ −Kℓ +U dq)U i

θ(APQ
ℓ −AD

ℓ −Kℓ +U dq)
+

∑g

i=1 θi(A
PQ
ℓ −AD

ℓ −Kℓ)U i

θ(APQ
ℓ −AD

ℓ −Kℓ)

= −∂x log θ(AP
ℓ −AD

ℓ −Kℓ +U dq)

∣∣∣∣∣
P=PQ

+

∑g

i=1 θi(A
PQ
ℓ −AD

ℓ −Kℓ)U i

θ(APQ
ℓ −AD

ℓ −Kℓ)
.

If we differentiate with respect to x,

ξ̃1x = −∂2x log θ(AP
ℓ −AD

ℓ −Kℓ +U dq)

∣∣∣∣∣
P=PQ

, (2.8)

the equation

ξ̃1x = ξ1x + c̃ (2.9)

is obtained. We have seen that

u = −2ξ1x;

hence it follows that

u(x, y, z) = 2∂2x log θ
(
APQ
ℓ −AD

ℓ −Kℓ +U dq

)
+ 2c̃. (2.10)
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2.2 Krichever’s construction method

In this section, I describe Krichever’s Construction Method (KCM): a Maple procedure

whose primary function is to encapsulate the proof given for Theorem 2.1, within the scope

of producing finite-genus solutions to equation 1.3. First, I present my model for KCM in

the form of a proposition (Proposition 2.2.1). Then, I discuss computational considerations

such as the computation of parameters that describe a solution u and local coordinates. This

is followed by a results section in which I provide an algorithm that implements KCM and

data that demonstrates the capabilities of the approach taken in KCM.

2.2.1 Modeling & encapsulation

Suppose that we are given Γ, PQ, z, and D as defined in the previous section. In order

to produce finite-genus solutions that agree with Krichever’s construction in Section 2.1,

we need only construct the parameters in equation 2.10. Thus, it suffices for KCM to be

a black-box program that outputs these parameters, given user input. Both the input and

output can be reduced to mathematical objects that are more favorable to our computational

framework.

The model used as a framework for KCM is best described in a proposition.

Proposition 2.2.1 (KCM Framework). Let f be an irreducible planar algebraic curve,

PQ = (uQ, λQ), with f(PQ) = 0,

local coordinates z = k−1 centered at PQ, and

D = D1 + · · ·+Dg, with f(Di) = 0, Di ̸= PQ, for each i.

Suppose that Γf has been constructed explicitly, as in Definition 1.34, and that the base point

Pℓ ̸= PQ with f(Pℓ) = 0,
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is chosen to be a regular point on f . Then u is a finite-genus solution to equation 1.3

whenever u is of the form

u(x, y, z) = 2∂2x log θ (xU + yV + zW +Φ|B) + C, (2.11)

where B is the g×g matrix of βℓ-periods of the normalized cohomology basis; U ,V ,W ∈ C
g

are vectors of βℓ-periods of normalized Abelian differentials with principal parts dk, dk2 and

dk3 respectively; and both Φ ∈ C
g and C ∈ C can be arbitrary. Moreover, if it is the case

that

Φ ≡ APQ
ℓ −AD

ℓ −Kℓ, (2.12)

where equivalence is on the Jacobian (Definition 1.27) and

C = 2c̃, with c̃ defined by equation 2.7,

then u can be viewed as a finite-genus solution of equation 1.3 obtained directly from Krichever’s

construction.

Proof. Consider Krichever’s construction with the input Γf , PQ, z, and D. This provides us

the finite-genus solution u derived and expressed in equation 2.10. The vector of βℓ-periods

of dq can be simplified: for each i,

(U dq)i =

∮

βℓi

(
xdk + ydk2 + tdk3 −

∑

j

(∮

αℓj

dq

)
ωℓj

)
,

= x (U dk)i + y (U dk2)i + z (U dk3)i ,

where

(U dkm)i =

∮

βℓi

(
dkm −

∑

j

(∮

αℓj

dkm

)
ωℓj

)
for m ∈ {1, 2, 3}. (2.13)

The rest of the proposition is immediate from equation 2.10 and elementary calculus.

2.2.2 Computing Wave vectors U , V , & W

In this section, I provide an algorithm for computing the wave vectors U , V , and W in the

context of Krichever’s Construction. The dependence of the vectors on the choice of local

coordinate z is made explicit. The use of fixed internal coordinates is discussed.
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In the context of finite-genus solutions of KP, the wave vectors are

U = U dk, V = U dk2 , and W = U dk3 ,

with U dkm for m ∈ {1, 2, 3} defined by equation 2.13 and as seen in Proposition 2.2.1. Thus,

considering u in equation 2.11 as an ansatz requires an additional non-trivial assumption

on the parameters that cannot be ignored. There are special cases: for example, when

g < 4, there are ways to work with wave vectors that seemingly have little to do with the

construction. In fact, for small genus these vectors are often used to understand and model

shallow water wave phenomena (see [12], [18],[19]). Methods of computing solutions outside

of the framework presented here do exist, such as the method I discuss in the next chapter.

Fortunately, the calculation of wave vectors in regards to equation 2.11 is simple and

efficient. In what follows, fix i. Express the ith differential of the cohomology basis ωi in

local coordinates. Specifically, write

ωi = hi (u, λ) du

so that

ωℓi = Hi (u, λ) du =
∑

j

(ΠA)
−1
ij hi (u, λ) du.

Then, fixing m ∈ {1, 2, 3}, since
dkm =

−m
zm+1

dz,

Proposition 1.6 yields

U dkm = −m
∮

βℓi

(
dz

zm+1
−
∑

j

(∮

αℓj

dz

zm+1

)
ωℓj

)
=

−1

m− 1!

dm−1

dzm−1

(
Hi(P (z))

du

dz

) ∣∣∣∣∣
z=0

.

(2.14)

Suppose that z is the local coordinate derived from the Puiseux series expansion at PQ,

or an approximation of this local coordinate. Such is the case when the command puiseux

of algcurves is called. Recall that z is called the p-coordinates of PQ as in Definition 1.12.

Then the relationship between the u and z coordinates is given by

P (z) = (u(z), λ(z)) =


zrQ + uQ,

∑

m=NQ

amz
m


 , (2.15)
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for some rQ, NQ ∈ Z with rQ ̸= 0. Furthermore, the change of coordinates comes with the

associated changes in the local representation of the differentials and derivatives

d

dz
=
du

dz

d

du
= rQt

rQ−1 d

du
= rQ (u− uQ)

rQ−1

rQ
d

du
, (2.16)

du =
du

dz
dz = rQt

rQ−1dz, (2.17)

where
d

du
= ∂u +

dλ

du
∂λ and

dλ

du
= −fu

fλ
.

It is well known that differentials in the cohomology basis can be chosen to be of the form

ωi =
pi (u, λ(u))

fλ (u, λ(u))
du, (2.18)

where each pi is a polynomial. For example this is what is done using the command

differential of algcurves [9].

Proposition 2.2.2. Suppose the cohomology basis is locally expressed as in equation 2.18

and consider the p-coordinates of equation 2.15. Then

U = Π−1
A Ũ , V = Π−1

A Ṽ , and W = Π−1
A W̃ ,

with

(
Ũ
)
i
= −

(
du

dz
hi

)
(0) = −

(
du

dz

pi
fλ

)
(0) , (2.19)

(
Ṽ
)
i
= −

(
d2u

dz2
hi +

du

dz

2dhi
du

)
(0) , (2.20)

and

(
W̃
)
i
= −

(
1

2

d3u

dz3
hi +

3

2

(
d2u

dz2
du

dz

)
dhi
du

+
1

2

(
du

dz

)3
d2hi
du2

)
(0). (2.21)

If PQ is regular, these formulas reduce to equations 2.25.

Furthermore, the only errors that occur are in expressing λ as a function of z, in con-

structing ΠA, and in inverting ΠA.
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Proof. The non-normalized cohomology basis ω̃ is normalized using matrix-vector multipli-

cation:

ω = Π−1
A ω̃, where, for each i, j, (ΠA)ij =

∮

αℓj

ωi.

Therefore, for a fixed i,

Hi(z) =
du

dz
hi =

∑

j

(ΠA)
−1
ij

du

dz

p̃j (u(z), λ(z))

fλ (u(z), λ(z))
.

Since equation 2.14 relates the wave vectors to hi, we see that

U = Π−1
A Ũ , V = Π−1

A Ṽ , and W = Π−1
A W̃ ,

for some Ũ , Ṽ , and W̃ . For fixed z near 0, let us define

Ũ z = ΠA




−H1 (z)
...

−Hg (z)


 , Ṽ z = ΠA




− d
dz

(H1) (z)
...

− d
dz

(Hg) (z)


 , and W̃ z = ΠA




− d2

dz2

(
H1

2

)
(z)

...

− d2

dz2

(
Hg
2

)
(z)


 .

Now fix i. We have

du

dz
hi =

du

dz

pi
fλ
, (2.22)

d

dz

(
du

dz
hi

)
=
d2u

dz2
hi +

du

dz

2
d

du
(hi) , (2.23)

d2

dz2

(
du

dz
hi

)
=
d3u

dz3
hi + 3

(
d2u

dz2
du

dz

)
d

du
(hi) +

(
du

dz

)3
d2

du2
(hi) . (2.24)

Since

hi
du

dz
dz =

pi
fλ
du = ωi,

hi
du

dz
is holomorphic at 0. Moreover,

Π−1
A




−du
dz

p̃1
fλ

(z)
...

−du
dz

p̃g
fλ

(z)


 = U , which implies Ũ = Ũ 0 =




−
(
du
dz

p̃1
fλ

)
(0)

...

−
(
du
dz

p̃g
fλ

)
(0)


 .
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Equation 2.22 gives us

Ṽ =




−
(
du
dz2
h1 +

du
dz

2 d
du

(h1)
)
(0)

...

−
(
du
dz2
hg +

du
dz

2 d
du

(hg)
)
(0)


 , and W̃ =




−
(

1
2
d3u
dz3
h1 +

3
2

(
d2u
dz2

du
dz

)
dh1
du

+ 1
2

(
du
dz

)3 d2h1
du2

)
(0)

...

−
(

1
2
d3u
dz3
hg +

3
2

(
d2u
dz2

du
dz

)
dhg
du

+ 1
2

(
du
dz

)3 d2hg
du2

)
(0)


 .

Now, u(z) defined in equation 2.15 and hi(u, λ) do not include any errors as they are

exact. The same is true of the z derivatives of u and the u derivative of hi. If PQ is regular,

then
du

dz
= 1, so that

Ũ =




−
(
p1
fλ

)
(uQ, λQ)

...

−
(
pg
fλ

)
(uQ, λQ)


 , Ṽ =




−dh1
du

(uQ, λQ)
...

−hg
du

(uQ, λQ)


 , and W̃ =




−1
2
d2h1
du2

(uQ, λQ)
...

−1
2

d2hg
du2

(uQ, λQ)


 . (2.25)

The only source of numerical error will be in expressing λ as a function of z.

To compute U , V , and W we just need to multiply by Π−1
A , which may introduce

numerical error.

What follows is an algorithm that encapsulates the approach I have outlined in this

section.

getUVW (2.1)

INPUT: f (u, λ) = 0, PQ = (uQ, λQ) such that f(uQ, λQ) = 0.

1: Call procedures to obtain ΠA, ω̃, and z coordinates (eqns 2.15) for PQ.

2: Store {hi}gi=1, defined in equation 2.18, in a vector Hu0, and

symbolically compute and store the vectors of derivatives Hu1 and Hu2:
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Continuation of getUVW (2.1)

for m ∈ {1, 2},

(Hum)i =
dm−1

dum−1hi = ∂u
(
Hu(m−1)

)
i
− fu
fλ
∂λ
(
Hu(m−1)

)
i
, for i from 1 to g.

3: Symbolically, compute the analogous vectors

Hzm, for m ∈ {0, 1, 2},

given by either equations 2.19-2.21 or equation 2.25. Do not evaluate.

4: Let F be a command that takes as input a rational function
p

q
of z, and

is defined by

F

(
p

q

)
= [p̄(0), q̄(0)], with

p

q
=
p̄

q̄
and GCD(p̄, q̄) ∈ C.

Then, for i from 1 to g, numerically compute

Ũ i = F ((Hz0)i) , Ṽ i = F ((Hz1)i) , and W̃ i = F ((Hz2)i) .

6: Set

Ũ i = −Ũ i[1]

Ũ i[2]
, Ṽ i = −Ṽ i[1]

Ṽ i[2]
, W̃ i = −1

2

W̃ i[1]

W̃ i[2]
, for i from 1 to g.

7: Numerically compute Π−1
A and

U = Π−1
A Ũ , V = Π−1

A Ṽ , W = Π−1
A W̃ , for i from 1 to g.

OUTPUT: The wave vectors U , V , W of Krichever’s construction associated

local coordinates given by Puisuex expansions (equations 2.15).
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2.2.3 Local coordinate considerations

Let f and PQ be fixed. In this section, we consider how a local coordinate z̃ relates to the

p-coordinates (equations 2.15) z.

Proposition 2.2.3. Consider the proof of Theorem 2.1 with Γ = Γf , PQ, any non-special g

divisor D, and coordinates z̃. Write

z̃ = k̃−1 and z = k−1,

and expand k̃−1 in z,

k̃−1 = λz−1 + α + bt+
∞∑

j=2

cjz
j.

Then

Ũ = λU , (2.26)

Ṽ = λ2V + 2λαU , (2.27)

W̃ = λ3W + 3λ2αV + 3(λα2 + λ2b)U , (2.28)

where Ũ , Ṽ , W̃ are the wave vectors obtained from Krichever’s construction using local

coordinates z̃, and U , V , and W are defined similarly but with respect to local coordinates

given by Puisuex expansions (equations 2.15) and calculated in Proposition 2.2.2.

Proof. In what follows regular terms of the differential are denoted by · · · . Recall that the

wave vectors Ũ , Ṽ , and W̃ are defined to be the βℓ periods of the differentials dk̃, dk̃2, and

dk̃3, respectively. Applying d to the expansion of k̃ in k, we have

dk̃ = d
(
λk + α + bt+O

(
z2
))

= λdk + · · · .

This implies equation 2.26 holds. Similarly,

dk̃2 = d
(
λk + α + bt+O

(
z2
))2

= λ2dk2 + 2λαdk + · · · ,

as well as

dk̃3 = d
(
λ3k3 + 3λ2αk2 + 3

(
λα2 + λ2b

)
k +O (1)

)
= λ3dk3+3λ2αdk2+3

(
λα2 + λ2b

)
dk+· · · ,
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so that equations 2.27 and 2.28 hold, respectively. The claim follows.

Proposition 2.2.2 makes computing wave vectors associated to p-coordinates explicit

whereas Proposition 2.2.3 demonstrates that all other wave vectors can be obtained from

these ones. Thus, using p- coordinates internally is justified. Another benefit is that other

quantities can be made explicit. For example, for P near PQ,

dq = −xdz
z2

− 2y
dz

z3
− 3t

dz

z4
=


 −x

(u− uQ)
1+rQ
rQ

+
−2y

(u− uQ)
2+rQ
rQ

+
−3t

(u− uQ)
3+rQ
rQ


 du

rQ
.

The importance of this calculation is the following: given a numerical analytic continuation

scheme we can compute q at any point on the surface and, therefore, numerically integrate dq.

If the numerical analytic continuation is sufficiently accurate and efficient, the asymptotic

behavior of Baker-Akhiezer functions in equation 2.2 can be used to compute quantities,

such as the value of C in equation 2.11, with less dependence on the evaluation of theta

functions. This could result in a very efficient method for calculating C.

2.2.4 The phase shift Φ and the Vector of Riemann Constants Kℓ

Accurate calculation of the quantity Φ, defined in Proposition 2.2.1 and expressed here as

Φ = APQ
ℓ −AD

ℓ −Kℓ,

depends on both the accuracy of the Abel map Aℓ and on the accuracy of the Vector of

Riemann Constants Kℓ in equation 1.15. However, computing Kℓ requires analysis. For

example, applying Theorem 1.6 to the components of Kℓ,

(Kℓ)i =
1 + Bii

2
−
∑

j ̸=i

∮

αℓj

ωℓj

∫ P

Pℓ

ωℓi , P ∈ αℓj,

we see that (Kℓ)i can be expressed as

(Kℓ)i =
1 + Bii

2
−
∑

j ̸=i

∮

αℓj

ωℓj

∮

βℓi

ωPPℓ , P ∈ αℓj,
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where ωωPPℓ is the normalized differential of the third kind characterized by the simple poles

Pℓ (with residue −1) and P (with residue 1) (as in Definition 1.22). For a fixed P , the

expression
∮
βi
ωPPℓ is ambiguous without an explicit representation of a homology basis (see

[30, Proplem 7.5]). Thus, not only must I compute Kℓ accurately, I must ensure that it is

computed without ambiguity.

Since the framework includes a realized Riemann surface Γf , this is less of a concern.

Proposition 2.2.4. Let P0 ∈ Γf . Then the vector of Riemann constants with base point P0

is

KP0 ≡ (g − 1)AP0
ℓ +Kℓ,

where ≡ is with respect to the Jacobian 1.27. Thus, the phase shift, defined in equation 2.11,

is invariant with respect to the base point:

Φ ≡ A (P0, PQ)−A (P0, D) +KP0 .

Proof. This relies on the following calculation:

(KP0)i =
1 + Bii

2
−
∑

j ̸=i

∮

αℓj

ωℓj

∫ P

P0

ωℓi ,

=
1 + Bii

2
−
∑

j ̸=i

∮

αℓj

ωℓj

(∫ Pℓ

P0

ωℓi +

∫ P

Pℓ

ωℓi

)
,

=

(
1 + Bii

2
−
∑

j ̸=i

∮

αℓj

ωℓj

∫ P

Pℓ

ωℓi

)
+ (g − 1)

∫ P0

Pℓ

ωℓi .

Now that we have the relation involving Kℓ,

Φ ≡
(
A (P0, PQ)−AP0

ℓ

)
−
(
A (P0, D)− gAP0

ℓ

)
+
(
KP0 − (g − 1)AP0

ℓ

)

= A (P0, PQ)−A (P0, D) +KP0 .

For g = 1, computing Kℓ is straightforward:

Kℓ =

(
1 + B11

2

)
.
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Therefore, in what follows I make the assumption that g > 1. In this case, I make use of the

well known fact that, for any divisor, C, in the canonical class (see Definition 1.28),

2Kℓ ≡ −AC
ℓ .

To use this relation I need to fix C. This will lead to a relation on C
g:

2Kℓ = −AC
ℓ +BMℓ +Nℓ, Mℓ,Nℓ ∈ Z

g;

and so Kℓ and AC
ℓ are related by a theta characteristic hℓ:

Kℓ = −AC
ℓ

2
+B

Mℓ

2
+

Nℓ

2
= −AC

ℓ

2
+ hℓ. (2.29)

Since our primary interest in computing Kℓ is the roll it plays in calculating the zeros of the

theta function (as in Theorem 1.6), we can restrict hℓ to restrict to half-periods; see Section

1.3.5. There are 4g possible choices for hℓ and I do not know if this number can be reduced.

Any choice of Abelian differential will work to obtain C. I believe that there are better

choices than others. In the KCM framework, the zeros and poles of a member of the non-

normalized cohomology basis ω is chosen. Specifically

ωj = hjdu =
pj
fλ
du (2.30)

is chosen among the components of ω with minimal deg(pj, λ) in λ and among this sub

collection the one with minimal deg(pj, u) is chosen (lexicographic order with respect to λ,

u).

The following proposition is the basis for the method I use to obtain the divisor of ωj.

Proposition 2.2.5. Let

ω = h du =
p(u, λ)

fλ(u, λ)
du

be a holomorphic differential that is given and also suppose that P0 and the associated p-

coordinates are given:

P (z) = (u(z), λ(z)) =

(
zr0 + u0,

∑

m=N0

amz
m

)
, with P0 = (u0, λ0) = P (0).
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If P0 is a point of the divisor (ω), as in Definition 1.28, then it can only be a zero. Moreover

either (a) P0 is a zero of p, (b) u0 is infinite, or (c) there is a branch point or singularity at

u0.

Proof. Suppose that P0 is a point of the divisor h du. Since the differential is holomorphic,

the local representation h
du

dz
is holomorphic and therefore vanishes at 0. Now, if r0 = 1,

then the holomorphic local expansion takes on the form

h
du

dz
=
p (z + u0, λ (z + u0))

fλ (z + u0)
,

so that, for a holomorphic function g and s ∈ Z,

h(z) = zsg(z), with g(0) ̸= 0, s > 0.

This can only occur if p vanishes at u0. The exponent r0 is negative if and only if u0 is

infinite. Finally, if r0 > 1, then u0 cannot be infinite. This implies that u0 corresponds to a

branch point.

Below is an algorithm that obtains the divisor of ωj.

getDivisor (2.2)

INPUT: f (u, λ) = 0, hj =
p

fλ
as in equation 2.30.
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Continuation of getDivisor (2.2)

1: Call a procedure to obtain the problem points S0 (Section 1.3.6) of f:

S0 = {u0 : u0 = ∞, fy(u0) = 0}.

2: Let R (p, f) denote the resolvent of p and f with respect to λ (Definition

1.6) and let ‘‘solve’’ be a command that computes the zeros of a polynomial

of one variable. Compute and store the zeros Z0 of p:

Z0 =





∅, if p ∈ C,

solve (p(u) = 0) , if degree(p, y) = 0,

solve (R (p, f) = 0) , if degree(p, y) > 0.

3: Initialize

Tdeg = 0 and C = [ ].

For every u0 ∈ S0

⋃
Z0,

3.i: Obtain p-coordinates for each point rooted at u0: Xu0.

3.ii: For each pair of z-coordinates, Pu0 ∈ Xu0,

Pu0(z) =

(
u = zr0 + u0, λ =

∑

m=N0

amt
m

)
,

express p and fλ in these coordinates and expand.

3.iii: Let ldeg(g, z) be as in Notation 1.4.
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Continuation of getDivisor (2.2)

Then compute

crtdeg = ldeg(p, z)− ldeg(fλ, z) + r0 − 1.

3.iv: If crtdeg < 0, terminate with an error. If crtdeg > 0, update C:

Add [Pu0 , crtdeg] to C and set Tdeg = Tdeg + crtdeg.

4: If

Tdeg ̸= 2g − 2,

then terminate with an error.

OUTPUT:

An explicit representation of a member of the canonical class

C = [ [Pu1 , crtdeg1
], . . . , [Pun , crtdeg

n

] ].

Now that we have C, we have reduced the problem of computing Kℓ to the sub-problem

of determining hℓ. For a half-period h and any non-special g divisor D, define the vector

Kh = h − AC
ℓ

2
,

as well as the function

FD
h (P ) = θ

(
AP
ℓ −AD

ℓ −Kh

)
.

Proposition 2.2.6. Suppose Pℓ is not a Weierstrass point, and further suppose

D = D1 + · · ·+Dg

is a non-special g divisor with the property that

Di ̸= Dj, whenever i ̸= j, and Di ̸= Pℓ for each i.

If the half period h has the properties that



47

1. FD
h (P ) ̸= 0 for some P ∈ Γ, and

2. h minimizes the map

h0 7→
g∑

i=1

|FD
h0
(Di)|+ |θ(Kh0)|,

then

h = hℓ,

and Kh is the Vector of Riemann Constants.

Proof. First note that such a D exists. For example, choose any g distinct points in Γf \{Pℓ}
and form the g divisor D̃. If D̃ is special, there are non-special g divisors in every one of its

neighborhoods. By choosing a non-special divisor sufficiently close to D̃, we can ensure that

it exhibits the desired properties.

In what follows, I make use of Theorem 1.6 multiple times. Since Pℓ is not a Weierstrass

point gPℓ is not special. This means

F gPℓ
hℓ

= θ(AP
ℓ −Kℓ)

is not identically zero. Suppose h satisfies the claim in the hypothesis. Then h minimizes

h0 7→
g∑

i=1

|FD
h0
(Di)|+ |θ(Kh0)|. (2.31)

Then since, Kℓ satisfies
g∑

i=1

|FD
hℓ
(Di)|+ |θ(Kℓ)| = 0,

it must be the case that

FD
h (D1) = · · · = FD

h (Dg) = 0 and θ(Kh) = 0.

Now, since

Kh = (h − hℓ) +Kℓ
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is a zero of the theta function, Kh can be expressed as

Kh ≡ AD0

ℓ +Kℓ

for some non-special g divisor D0, and thus

(h − hℓ) ≡ AD0

ℓ .

By hypothesis FD
h is not the zero map and has exactly g zeros. Express FD

h in terms of Kℓ

and observe that, for each i, both

FD
h (Di) = θ

(
ADi
ℓ − (h − hℓ)−AD

ℓ −Kℓ

)
and FD

hℓ
(Di) = θ

(
ADi
ℓ −AD

ℓ −Kℓ

)

vanish. Since, FD
h is not identically zero, the vanishing of FD

h is equivalent to the Jacobi

inversion problem with respect to (h − hℓ) + AD
ℓ : there is a non-special g divisor, D̃, such

that

AD̃
ℓ ≡ (h − hℓ) +AD

ℓ ≡ AD0

ℓ +AD
ℓ . (2.32)

Thus (h − hℓ)+AD
ℓ and D̃ are determined uniquely by the zeros of FD

h , which are precisely

the points that make up D. It follows that

D̃ = D and 0 ≡ (h − hℓ) ≡ AD0

ℓ .

The non-speciality of gPℓ then ensures D0 = gPℓ and thus the claim is valid.

The algorithm below encapsulates this idea.

getVRC (2.3)

INPUT: f (u, λ) = 0, C (obtained from Algorithm getDivisor (2.2)), D, and Pℓ

(that satisfy the hypotheses of Proposition 2.2.6).
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Continuation of getVRC (2.3)

1: Compute the Abel map, with respect to Pℓ, of

AC
ℓ = AC1

ℓ + · · ·+ACj
ℓ + · · ·+AC2g−2

ℓ ,

AD̂i
ℓ =

∑

j ̸=i

ADj
ℓ , for each i from 1 to g.

2: Populate a list H containing all 4g half periods; store the vector

AC =
AC
ℓ

2
.

3: For each h ∈ H, replace h with

Hh =
[
h, θ (h−AC) , θ

(
−AD̂1

ℓ − (h−AC)
)
, . . . , θ

(
−AD̂g

ℓ − (h−AC)
)]
.

4: Select among Hh the list that minimizes

|Hh[2]|+ |Hh[3]|+ · · ·+ |Hh[g + 2]|.

OUTPUT:

An explicit representation of Kℓ as in equation 1.15,

Kℓ = h−AC.

It should be noted that the terms in the sum 2.31 can be replaced. For example, the

term |θ(Kh0)| can be replaced with K|θ(Kh0)|, for any K > 0.

2.2.5 The constant C

The constant C of Proposition 2.2.1 can be computed in a variety of ways. For example, at

the end of Section 2.2.3, we discussed a method that may avoid the use of theta functions.

The method for computing C that I utilize involves the use of Hirota’s Bilinear Form:
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Theorem 2.2. Let u be given by equation 2.11 and let θ(z), with

z = xU + yV + tW +Φ,

be the associated theta function. Then, there is some d ∈ C, such that for all x, y, t ∈ R,

θ4xθ − 4θ3xθx + 3θ2xx − 4θxtθ + 4θxθt + 3θyyθ − 3θ2y + 8dθ2 + 6Cθxxθ − 6Cθ2x = 0. (2.33)

if and only if u solves equation 1.3.

Proof. See [11].

Assuming u is a solution, evaluating the left hand side of equation 2.33 and enforcing

vanishing will give approximations to both C and d. A better approach would be to choose

a phase shift Φ so that

θ(Φ) = 0,

g∑

i=1

U iθi (Φ) ̸= 0. (2.34)

Then,

C = −2

3

θ3x
θx

+
1

2

(
θxx
θx

)2

+
2

3

θt
θx

− 1

2

(
θy
θx

)2

, with z = Φ,

and C can be calculated explicitly. In practice, candidates for such a Φ are numerous. For

example, Kℓ is a good candidate as well as any odd half period that satisfies equation 2.34.

If the search takes too long, we can employ methods from Chapter 3 to obtain an accurate

d, so that C can be computed.

2.3 Results

In the previous sections, we reduced various portions of Krichever’s construction to modular

components. This compartmentalization can be brought together to produce an encapsula-

tion of the construction.
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KCM (2.4)

INPUT: f (u, λ) = 0, [uQ, λQ], [D1, . . . , Dg] such that

PQ = (uQ, λQ) and D = D1 + · · ·+Dg,

as specified in Proposition 2.2.1, and λ, α, b ∈ C with λ ̸= 0, as specified in

Proposition 2.2.3.

1: Construct Γf explicitly as 1.34. This includes procedures to obtain

ΠA, ΠB, B, ω̃, and p-coordinates for Pℓ, PQ, and Di for i from 1 to g.

2: Using ωj, as defined in the discussion of equation 2.30, call Algorithm

getDivisor (2.2) to obtain an explicit representative of the canonical class

C.
3: Find a g-divisor D̃ that satisfies the condition in Proposition 2.2.6

and compute AC
ℓ ; then call Algorithm getVRC (2.3) to obtain Kh.

4: Using the computed data, call Algorithm getUVW (2.1) to obtain the wave

vectors corresponding to U , V , and W with respect to p-coordinates at

PQ.

5: Use λ, α and b in the formulas of Proposition 2.2.3 to transform the

wave vectors U , V and W into the desired wave vectors Ũ , Ṽ and W̃ .

6: Compute C using the ideas in Section 2.2.5, and compute Φ according to

the formula in equation 2.12.

OUTPUT: The parameters U , V , W , Φ, and C that parameterize a solution

of equation 1.3 derived from Krichever’s construction in Section 2.1.

2.3.1 Genus 3 example

Consider the surface Γf defined by

f(u, λ) = 144(u4 + λ4)− 225(u2 + λ2) + 350u2λ2 + 810 = 0.
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Figure 2.1: Left: The intersection of f(u, λ) = 0 with the real plane. Right: The constructed

solution at t = 0, −1 ≤ x ≤ 1, and 0 ≤ y ≤ 2.

For input we use

PQ = (0, 1) , (λ, α, b) = (1, 0, 0) , and D = [D1, D2, D3],

where

D1 =

(
−1

2
,

√
−
√
2135i+ 275

24

)
, D2 =

(
1

2
,

√
−
√
2135i+ 275

24

)
,

and

D3 =

(
i

2
,

√
−
√
53665 + 625

24

)
.

I obtain the following parameters as output. The Riemann matrix

B =




1 + 1.80507i −1− 0.90254i 1 + 0.90254i

−1− 0.90254i 0.19129 + 1.22883i −0.80871− 1.016883i

1 + 0.90254i −0.80871− 1.016883i 0.19129 + 1.22883i




and the base point

Pℓ = (−1.1,−1.12762i)
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are obtained from the monodromy and periodmatrix commands from the algcurves pack-

age. Using the differential and puiseux commands within Algorithm 2.1, the wave

vectors are approximately

U =




0.57344

0.12154− 0.55728i

0.12154 + 0.69194i


 ,V =




0.57344

−0.12154− 0.35405i

−0.12154 + 0.21939i


 ,

and

W =




2.01549i

0.42718− 2.29389i

0.42718 + 2.76720i


 .

The phase

Φ = AQ
ℓ −AD

ℓ −Kh

is

Φ =




−0.49069− 1.68604i

0.98160 + 0.42829i

−0.83214 + 0.08543i


 ,

with

AQ
ℓ =




0.17580− 0.19777i

0.21225 + 0.24358i

−0.36568 + 0.04581i


 , AD

ℓ =




0.51808 + 1.30296i

−0.27197 + 0.29650i

−0.19202− 0.41530i


 ,

and

Kh =




0.14841 + 0.18531i

−0.49737− 0.48121i

0.65849 + 0.37569i


 .

Finally,

C = −1.52741− 0.84712i,

and the constant d that appears in equation 2.33 is

d = 4.00856 + 4.43536i.
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The absolute error in equation 2.33 at (x, y, t) = (0, 0, 0) is on the order of 10−45 (if all

the digits obtained in the calculation are used) and this scales with the global precision. As

the wave vectors are computed via formulas, the error here is important in measuring the

error in C and d.

As for the error in Kh , I computed each term of the sum

|FD
h (D1)|+ |FD

h (D2)|+ |FD
h (D3)|+ 3|θ(Kh)|,

where FD
h was defined in Section 2.2.4. Each term is on the order of 10−24, and the sum was

also of this order. Moreover, for any other choice of half period, the sum was significantly

larger: on the order of 10−1. This suggests that this is indeed the correct choice. Recall the

order on half-periods, as defined in Notation 1.32 in Section 1.3.5. The h obtained was

bh = 100 000,

when represented in binary. This corresponds to

h = B
e1

2
, with eT

1
=
[
1 0 0

]
.

Moreover, this half-period was obtained in each test, as the number of digits were increased.

2.3.2 Genus 4 example

Consider the surface Γf defined by

f(u, λ) = (u2 − 1)(u2 − 4)(u2 − 16)(u2 − 25)(u2 − 36) + λ2 = 0.

With

PQ =
(
−11,

√
12029472000

)
, (λ, α, b) = (1, 0, 0) ,

and

D = [D1, D2, D3, D4],

with

D1 =
(
−12,

√
32934021120

)
, D2 =

(
−13,

√
81226696320

)
,
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Figure 2.2: The intersection of f(u, λ) = 0 with the real plane.

Figure 2.3: (Left): The constructed solution at t = 0 and −10 ≤ x, y ≤ 10. (Right):A slice

of the constructed solution with y = 0 and −1000 ≤ x ≤ 1000.
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D3 =
(
−12,−

√
32934021120

)
, D4 =

(
−13,−

√
81226696320

)
.

Of concern is the accuracy of the Riemann Constant Vector Kh . Let Tdi be

Tdi = |FD
h (D1)|+ |FD

h (D2)|+ |FD
h (D3)|+ |FD

h (D4)|+ 4|θ(Kh)|,

at di digits of precision.

di= bh Tdi |FD
h (D1)| |FD

h (D2)| |FD
h (D3)| |FD

h (D4)| 4|θ(Kh)|
10 1110 1010 0.24095 0.08663 0.05982 0.046287 0.04822 1.3755× 10−24

20 1110 1010 0.22281 0.06795 0.04733 0.044123 0.06341 1.4876× 10−44

100 1110 1010 0.15145 0.04860 0.03895 0.040696 0.02317 1.6134× 10−205

20 1110 1011 0.41334 0.12328 0.08971 0.08416 0.11619 1.850× 10−44

Table 2.5: Recorded values

The final column of Table 2.5 demonstrates that the obtained Riemann Constant Vector

Kh for the half-period h = 1110 1010 is a zero of the theta function. As Table 2.5 also

shows, values of the absolute error Tdi are not as close to zero as in the genus 3 example

above. Moreover, h = 1110 1010 is not the only half-period for which |θ(Kh)| is small, as is

pointed out by the final row. This suggests that the remaining error is not coming from the

AC
ℓ term; otherwise, I would expect to obtain nonzero values for |θ(Kh)|. I also see that the

sum, however, does indeed decrease as the number of digits increases. Moreover, the same

half-period h = 1110 1010 is obtained as the number of digits increases. At 20 digits, the

2nd smallest value of the sum is achieved by half-period 1110 1011 and has the values 0.4.

Also observed is the fact that any half-period, not including h, has the property that one of

the terms, |FD
h (Di)|, is larger than the corresponding term in row 2 of table 2.5, by a whole

order of magnitude.
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2.3.3 Conclusion

Initial testing suggests that the procedure works when there is an hℓ that can be obtained.

However, there are times for which the sum of Proposition 2.2.6 is not as small as we would

like. In this case, one hopes that using more digits can resolve the discrepancy. To be

conclusive, however, more analysis would be needed.

There are a number of places where improvements could be made to the code (including

programs the code calls). The current implementation could be ported to the most recent

version of Maple. Moreover, the code is not integrated within the algcurves package. This

lack of integration makes it harder to control precision at each stage of the computation, and

can result in run-time errors due to incompatibility of different parts of the whole package.

Once these issues are resolved, an error analysis of the program could be pursued, with

the goal of being able to guarantee upper bounds on the errors in the output of the code.

Such an analysis would require knowledge of several items as inputs to the analysis, including

1. the error in the input values,

2. the error that results from the choice of integration scheme,

3. the error in the computation of the Riemann theta function and its derivatives.
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Chapter 3

EXTENDING DUBROVIN’S EFFECTIVIZATION OF

FINITE-GENUS SOLUTIONS

Krichever’s method for constructing finite-genus solutions of KP establishes the fact that,

given any irreducible planar curve and any point on the curve, there is an associated family

of finite-genus solutions to KP. To use the closed-form expression of such a solution requires a

Riemann matrix B that can be derived from the periods of a Riemann surface. Now, even if it

were known that a Riemann matrix B comes from a surface, the remaining parameters must

still be computed and they are non-trivially related to B through the underlying surface.

Thus, quantifying the parameters in the closed-form expression in equation 2.11 correctly is

a non-trivial endeavor.

In this chapter, we treat the closed-form expression for u as an ansatz, with the goal of

computing the different parameters. Certain choices are made to “normalize” this expres-

sion. This expression can be used to derive a system of 2g quartics, in the components of

U , V , and W , that must simultaneously vanish. First, we essentially follow Dubrovin’s

approach in [11, Chapter 4] to compute solutions of genus g ≤ 3. Then, a scheme, the

Extended Dubrovin’s Method (EDM), is described that provides a mathematical framework

for computing parameters for higher genus solutions. This is followed by a discussion on

implementation considerations and results. We wrap up the chapter with a discussion on

how this relates to the constructive Schottky problem.

It is worth noting that an alternate approach to this problem has already been developed.

In [2], an algorithm for computing solutions of KP using the system of quartics was proposed.

This algorithm was developed in [1] and has been used to numerically reconstruct the curve.
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3.1 Normalization of solutions & Dubrovin quartics

Using the Lie-point symmetries of the KP equation, Dubrovin [11] shows that it suffices to

consider the ansatz

u (x, y, t) = 2∂2x log θ (xU + yV + tW ) , (3.1)

where the phase vector Φ can be reintroduced if so desired, without any change in the other

parameters. The components of the wave vectors are unknown, and we use ui, vi, and wi in

place of U [i], V [i], and W [i].

The ansatz (3.1) is used in equation 1.3. Elementary manipulations lead to

θ4xθ − 4θ3xθx + 3θ2xx − 4θxtθ + 4θxθt + 3θyyθ − 3θ2y + 8d θ2 = 0, (3.2)

for x, y, t ∈ R and some d ∈ C. Here I drop the argument z of the theta functions,

z = xU + yV + tW .

This expression can be exploited further, leading to the Dubrovin quartics. First, enumerate

the half-periods according to Definition 1.31:

H = {hn}2
g

n=1.

Using theta constants, as in Definition 1.33, the system of Dubrovin quartics is a 2g-

dimensional system of polynomial equations in the components of the wave vectors, given

by

θ̂nU +
∑

1≤i,j≤g

(
−uiwj +

3

4
vivj

)
θ̂n(i,j) + d θ̂n = 0, 1 ≤ n ≤ 2g. (3.3)

The following useful statements are given without proof (for details see [11]).

Proposition 3.1.1 (Properties of the ansatz u). Let B be a Riemann matrix that comes

from a surface. Then

1. u, defined by equation 3.1, is a solution of equation 1.3 if and only if equation 3.3 is

valid for some d ∈ C.
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2. The Dubrovin quartics are invariant with respect to transformations of the form

U 7→ λU ,

V 7→ ±
(
λ2V + 2λαU

)
,

W 7→ λ3W + 3λ2αV + 3λα2U ,

d 7→ λ4d.

Proof. See [11] for (1). For (2), apply the transformation directly to a quartic equation in

the system of quartic equations.

3.2 Dubrovin’s effectivization

Suppose that B comes from a surface. We are interested in computing finite-genus solutions

of equation 1.3 that are of the form given in equation 3.1 for g ∈ {1, 2, 3} in a manner that

encapsulates the primary ideas used in [11, Chapter 4]. We justify transformations using

Proposition 3.1.1.

The g = 1 case is trivial. Any choice of parameters,

U, V, and W ∈ C, with U ̸= 0,

gives rise to a solution. To see this, note that the Lie-point symmetry transformation with

λ =
1

U
and α = − V

2U2

demonstrates that u is equivalent to

u (x, y, t) = 2∂2x log θ

(
x+ y

(
V

U2
+ 2α

)
+ t

(
W

U3
+ 3

αV

U2
+ 3α2

))
= 2∂2x log θ (x+ tξ)

for some ξ.

Next, consider the g = 2 case. Then, as in Definition 1.31, the half-periods are enumerated

as

H = {hn}2
g

n=1 =

[
0,

e1

2
,
e2

2
,
e1 + e2

2

]
.
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Start with an arbitrary choice for U ,

UT =
[
z1 z2

]

with z1, z2 ∈ C and, without loss of generality assume that z2 ̸= 0. Scale the parameters,

using

λ = z−1
2 , α = 0,

and relabel so that,

U =


ẑ1
1


 , V =


v1
v2


 , and W =


w1

w2


 ,

with

ẑ1 =
z1
z2
.

Since

u2 = 1,

we can transform again, using

λ = 1 and α = −v2
2
,

so that

U =


ẑ1
1


 , V =


v1
0


 , and W =


w1

w2


 .

Using the notation of Definition 1.33, compute the matrix

MU =




θ̂1U θ̂111 θ̂112 θ̂122 θ̂1

θ̂2U θ̂211 θ̂212 θ̂222 θ̂2

θ̂3U θ̂311 θ̂312 θ̂322 θ̂3

θ̂4U θ̂411 θ̂412 θ̂422 θ̂4



.

Since B is from a surface, the submatrix

M ′ =




θ̂111 θ̂112 θ̂122 θ̂1

θ̂211 θ̂212 θ̂222 θ̂2

θ̂311 θ̂312 θ̂322 θ̂3

θ̂411 θ̂412 θ̂422 θ̂4



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is invertible (Proposition 1.3.5). Compute

X ′ (U ) = − (M ′)
−1

v (U ) ,

where

(v (U ))T =
[
θ̂1U θ̂2U θ̂3U θ̂4U

]

is the first column of MU . It follows that the linear system,

MUX (U ) = 0 with X (U ) =


 1

X ′ (U )


 ,

can be used to solve equation 3.3, as I now make clear. Drop the argument of X and relate

the computed components of X to the appropriate relationships amongst the components

of the wave vectors:

X[2] = −u1w1 +
3

4
v21 = −ẑ1w1 +

3

4
v21,

X[3] = −u1w2 − u2w1 +
3

2
v1v2 = −ẑ1w2 − w1,

X[4] = −u2w2 +
3

4
v22 = −w2,

X[5] = d.

This system can be solved completely: d and w2 are determined immediately, then w1 is

determined, and then finally v1 is determined. It should be noted that the vector V can only

be determined up to a sign. After choosing the sign for v1, a solution to the linear system

is obtained. Moreover, by replacing X with these relations we can recover the Dubrovin

quartics, thereby ensuring that we have a solution.1

Next, suppose that g = 3. The half-periods are enumerated according to

H = {hn}8n=1 =

[
0,

e1

2
,
e2

2
,
e3

2
,
e1 + e2

2
,
e1 + e3

2
,
e2 + e3

2
,
e1 + e2 + e3

2

]
.

1This procedure also works for g = 1: Choosing U = z1 and V = z2, compute the 2× 3 matrix MU and
use M ′ to solve for W and d.
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The matrices, MU and M ′, are easy to express in symbols:

MU =




θ̂1U θ̂111 θ̂112 θ̂113 θ̂122 θ̂123 θ̂133 θ̂1

θ̂2U θ̂211 θ̂212 θ̂213 θ̂222 θ̂223 θ̂233 θ̂2

θ̂3U θ̂311 θ̂312 θ̂313 θ̂322 θ̂323 θ̂333 θ̂3

θ̂4U θ̂411 θ̂412 θ̂413 θ̂422 θ̂423 θ̂433 θ̂4

θ̂5U θ̂511 θ̂512 θ̂513 θ̂522 θ̂523 θ̂533 θ̂5

θ̂6U θ̂611 θ̂612 θ̂613 θ̂622 θ̂623 θ̂633 θ̂6

θ̂7U θ̂711 θ̂712 θ̂713 θ̂722 θ̂723 θ̂733 θ̂7

θ̂8U θ̂811 θ̂812 θ̂813 θ̂822 θ̂823 θ̂833 θ̂8




, M ′ =




θ̂111 θ̂112 θ̂113 θ̂122 θ̂123 θ̂133 θ̂1

θ̂211 θ̂212 θ̂213 θ̂222 θ̂223 θ̂233 θ̂2

θ̂311 θ̂312 θ̂313 θ̂322 θ̂323 θ̂333 θ̂3

θ̂411 θ̂412 θ̂413 θ̂422 θ̂423 θ̂433 θ̂4

θ̂511 θ̂512 θ̂513 θ̂522 θ̂523 θ̂533 θ̂5

θ̂611 θ̂612 θ̂613 θ̂622 θ̂623 θ̂633 θ̂6

θ̂711 θ̂712 θ̂713 θ̂722 θ̂723 θ̂733 θ̂7

θ̂811 θ̂812 θ̂813 θ̂822 θ̂823 θ̂833 θ̂8




.

The matrix M ′ is full rank, by Proposition 1.3.5. However, this time M ′ is not square. Since

MU is square, we exploit the fact that MU must have a non-trivial null space, which implies

that

0 = det(MU ) =
8∑

i=1

(−1)i−1θ̂iU detM1i, (3.4)

where M1i is the submatrix of MU obtained by removing its first column and ith row. The

determinant is quartic in the components of U . It follows from the full rank of M ′ that at

least one of the terms detM1i is non-trivial.

Start with an arbitrary choice z1, z2 ∈ C for the first two components of U , with the

third component u3 to be determined,

UT =
[
z1 z2 u3

]
,

and without loss of generality assume that z2 ̸= 0. Apply the transformations analogously

to what was done in the previous case and relabel so that

U =




ẑ1

1

u3


 , V =




v1

0

v3


 , and W =




w1

w2

w3


 .

Equation 3.4 gives four choices for u3. In what follows, let U correspond to any one of these

choices.
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Our next task is to compute X, given U . A natural way to do this would be to find an

invertible 7×7 submatrix A of the 8×7 matrixM ′. We present this computation in a manner

more amenable to generalization. SinceM ′ is full rank, search the 8 rows for a collection of 7

rows that form an linearly independent set. There are only 8 possible candidates for A. For

each i ∈ {1, . . . , 8}, let Ai be the submatrix ofM ′ with rows associated with the half-periods

Fi = {hnk : nk ̸= i, k = 1, . . . , 7}; (3.5)

Ai here is the same as M1i in equation 3.4. Choose i so that Ai is invertible. With

vT =
[
θ̂1U · · · θ̂8U

]
, and vTFi =

[
θ̂n1
U · · · θ̂n7

U

]
,

compute

X ′ = − (Ai)
−1

vFi .

Since U was chosen so that MU has a non-trivial null space and M ′ is of full rank, it follows

that, using X defined as before,

MUX = v +M ′X ′ = 0.

The final step is to solve the appropriate system of equations:

X[2] =− u1w1 +
3

4
v21 = −ẑ1w1 +

3

4
v21,

X[3] =− u1w2 − u2w1 +
3

2
v1v2 = −ẑ1w2 − w1,

X[4] =− u1w3 − u3w1 +
3

2
v1v3 = −ẑ1w3 − u3w1 +

3

2
v1v3,

X[5] =− u2w2 +
3

4
v22 = −w2,

X[6] =− u2w3 − u3w2 +
3

2
v2v3 = −w3 − u3w2,

X[7] =− u3w3 +
3

4
v23,

X[8] = d.

Here the unknowns quantities are w1, w2, w3, v1, v3 and d. Both d and w2 are determined

immediately. Then w1 and w3 follow. To obtain the components of V , we must choose a
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sign. Solve for v1 and choose a sign. Then v3 can be computed, and it must satisfy the

equation whose left-hand side is X[4]. This solves the system, and we now have a list

L1 = [U , V , W , d]

for the choice U . If we replace X with the relations, we can again recover the quartic

equations, thereby ensuring we have a solution. We can repeat this for the remaining three

possibilities for u3. This gives four lists.

We have shown that given z1, z2 with z2 ̸= 0 we can obtain finite-genus solutions for

g = 2 and g = 3. The same holds if we instead require z1 ̸= 0. In the case that g = 3 and

z1 = z2 = 0, we can set v3 to zero and choose a sign for either v1 or v2. Then V , d, and w3

are known immediately. This gives the remaining components of W .

3.3 Extending Dubrovin’s approach

We now generalize this approach for use in higher genus settings. For the remainder of this

section, let B be a fixed Riemann matrix of genus g > 3 that can be derived from a Riemann

surface. Further assume that B together with the g-dimensional vectors

UT =
[
u1 u2 . . . ug

]
, V T =

[
v1 v2 . . . vg

]
,

and

W T =
[
w1 w2 . . . wg

]
,

solve the quartic equations 3.3. The goal of this section is to develop a scheme that can

determine U , V , and W from an explicit B and a few parameters.

3.3.1 Chapter-specific conventions & notation

Before proceeding, we give labels to a few quantities that will appear throughout the remain-

der of this chapter.

Let

r =
g(g + 1)

2
+ 1,
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and equip

IJ = {(i, j) : 1 ≤ i ≤ j ≤ g}

with the following order:

(i1, j1) ≤ (i2, j2), if i1 < i2 or i1 = i2 and j1 ≤ j2.

I will call (i, j) ∈ IJ a pair. For i ∈ {1, . . . , g}, define the integers Ai inductively:




Ai = 1, provided i = 1,

Ai = Ai−1 + g − (i− 1), whenever 1 < i ≤ g.

(3.6)

Proposition 3.3.1. The map ind on IJ defined by

(i, j) 7→ Ai + j,

for Ai defined in equation 3.6, maps IJ onto the integers in the interval from 2 to r. Moreover,

ind is bijective and order preserving. In particular, if

I = [c0, (1, 1), · · · , (i, j), · · · , (g, g), c−1]

for some c0, c−1 ∈ C, then I is a list of size r+1 with the pairs ordered in I accordingly, and

Iind((i,j)) = (i, j).

Proof. Fix i ∈ {1, . . . , g} and consider any pair (i, j) with j ∈ {i, . . . , g}. If i = 1, then it is

straightforward to see that

ind((1, j)) = A1 + j = 1 + j,

and

Iind((1,j))
= (1, j).

Suppose i > 1. Further, suppose that

Iind((m,j0))
= (m, j0), whenever 1 ≤ m < i and j0 ∈ {m, . . . , g}.
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Then, by hypothesis,

Iind(((i−1),g))
= ((i− 1), g),

and thus

Iind(((i−1),g))+1
= (i, i).

By definition of Ai and of ind,

ind((i, i)) = Ai + i,

= Ai−1 + g + 1,

= ind (((i− 1), g)) + 1.

Hence, we have shown that

Iind((i,i))
= (i, i),

and it follows that

Iind((i,j))
= (i, j).

By establishing the fact that a pair (i, j) is mapped to the index ind((i, j)) of I, the rest of

the claim is immediate.

Instead of explicitly using ind we use the shorthand

I(i,j) = ind((i, j)). (3.7)

To illustrate the ordering we have defined, let g = 6. Then

A2 = g = 6,

A3 = 2g − 2 = 10,

A4 = 3g − 5 = 13,

A5 = 4g − 9 = 15,

A6 = 5g − 14 = 16.
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Moreover, if we construct the 23 dimensional array I and compare the indices and entries of

elements of I, we see that

I(1,1) = A1 + 1 = 2, and I2 = (1, 1),

I(2,2) = A2 + 2 = 8, and I8 = (2, 2),

I(3,3) = A3 + 3 = 13, and I13 = (3, 3),

I(4,4) = A4 + 4 = 17, and I17 = (4, 4),

I(5,5) = A5 + 5 = 20, and I20 = (5, 5),

I(6,6) = A6 + 6 = 22, and I22 = (6, 6).

3.3.2 Expressing quantities as functions of U

In this section, we compute certain quantities required for determining the solution u using

the undetermined vectors U , V , W and undetermined d, which appears in the quartic

equation 3.3. We use these quantities to express V , W , and d as functions of the components

of U . Once these goals are achieved, determining a solution will be entirely dependent on

computing the components of U , at least theoretically.

Since B can be obtained from a Riemann surface, there is a curve f that can be used

in Krichever’s construction to obtain a solution. Thus, the system of Dubrovin quartics 3.3

is satisfied for some choice of wave vectors and some d. We can assume that the unknowns

satisfy the Dubrovin quartics. Let hα ∈ H. Then the quartic equation associated with hα,

θ̂αU +
∑

1≤i,j≤g

(
−uiwj +

3

4
vivj

)
θ̂αij + d θ̂α = 0,

can be re-expressed as

0 = θ̂αU +
∑

1≤i≤j≤g

(
−uiwj +

3

4
vivj + (1− δij)

(
−ujwi +

3

4
vjvi

))
θ̂αij + d θ̂α

= θ̂αU +mαX
′,
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where mα denotes

mα =
[
θ̂α11 θ̂α12 . . . θ̂α1g θ̂α22 . . . θ̂αgg θ̂α

]
, (3.8)

andX ′ is the r-vector of all of the coefficients (but the first, which is 1) of the theta constants;

note that X ′ is independent of the index α. For U , we have shown that the quartics are

equivalent to

MUX = 0, with XT =
[
1 X ′T

]
, (3.9)

and

MU =




θ̂1U θ̂111 θ̂112 . . . θ̂11g θ̂122 . . . θ̂1gg θ̂1

...
...

...
...

...
...

...

θ̂2
g

U θ̂2
g

11 θ̂2
g

12 . . . θ̂2
g

1g θ̂2
g

22 . . . θ̂2
g

gg θ̂2
g


 . (3.10)

Let v be the first column of MU and define the 2g × r sub-matrix M ′ according to the

partition

MU =
[
v M ′

]
. (3.11)

Proposition 3.3.2. Suppose that B comes from a surface and consider MU , v and M ′ as

defined in equations 3.10-3.11. Then the linear system

MUX = 0

(where we have fixed X[1] = 1) can be re-expressed as

M ′X ′ = −v.

Moreover, X and X ′ are uniquely determined by U , and as a function of the components

of the wave vectors and the unknown d, X depends only on the components of U .

Proof. By definition of X,

0 =MUX = v +M ′X ′.

By the non-singularity condition, Proposition 1.3.5, M ′ is full rank and thus injective. The

only claim that needs consideration is the independence of X with respect to d and the

components of V and W . However, this is immediate since M ′ is a constant matrix and so

the only dependence on parameters appears in the vector v, and v depends only on U .
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Notation 3.1 (Invertible submatricies). Suppose that A ⊂ H has r elements and that the

associated r × r submatrix A of M ′, consisting of the r rows of M ′ corresponding to the

elements of A, is invertible. Choose an hβ ∈ H \ A, let

Aβ = A ∪ {hβ},

and let MA be the (r + 1) × (r + 1) submatrix of M consisting of the r + 1 rows of MU

corresponding to the elements of Aβ. We will suppress the dependence ofMA on β, assuming

that β is chosen and fixed.

In addition, for any subset S ⊂ H, let vS denote the subvector of v consisting of the

entries of v corresponding to the elements of S.

Proposition 3.3.3. Suppose A and G are both subcollections of the enumerated half-periods

H, consisting of r elements each, such that both associated submatrices A and G of M ′

are invertible, as in Notation 3.1. Assume also that A ∪ G is not all of H. Choose hβ ∈
H \ (A ∪ G) and consider Aβ, Gβ (note: with the same hβ), MA, and MG as in Notation

3.1. Let C be the r × r invertible matrix C = GA−1; so we have G = CA. Then,

1. the linear system given in equation 3.9 can be solved using either A or G:

X ′ = −A−1vA; and X ′ = −G−1vG.

2. vG = CvA.

3. Let PA and PG be the (r + 1)× (r + 1) permutation matrices that move the hβ row of

MA to the bottom and move the hβ row of MG to the bottom, respectively, keeping the

other rows in order. Then

PGMG =


C 0

0 1


PAMA. (3.12)

4. The null space of MG is the same as the null space of MA.
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Proof. Since equation 3.9 holds,

AX ′ = −vA and GX ′ = −vG,

and (1) follows; (2) follows immediately from (1).

By the definition of PA and PG,

PGMG =


 vG G

v[β] mβ


 =


CvA C A

v[β] mβ


 =


C 0

0 1




 vA A

v[β] mβ


 =


C 0

0 1


PAMA,

giving (3); (4) follows because the other three (r+1)× (r+1) matrices in equation 3.12 are

all invertible.

Let A andMA be as in Proposition 3.3.3. The importance ofMA in extending Dubrovin’s

approach can be seen by noting that, for g = 3,

MA =MU .

In this previous case, the unknown component of U was determined by requiring it to be a

zero of detMU . Here, instead of using the matrix MU which is rectangular for genus g > 3,

we use the determinant of the (r+1)× (r+1) square submatrixMA, setting it equal to zero,

to get an equation involving U . Let

pA(U ) = detMA =
r+1∑

ℓ=1

(
(−1)(ℓ−1) detAℓ

)
θ̂nℓU , (3.13)

where Aℓ is the r × r submatrix of MA obtained by removing its first column and ℓth row.

It follows from Proposition 3.3.3 that if U is any vector in C
g for which the linear system

MUX = 0 has a non-trivial solution X, and A, Aβ, A, and MA are as in Notation 3.1, then

MA is singular, the null space of MA is the same as the null space of MU , and

pA(U ) = 0. (3.14)

Equation 3.14 is thus a necessary condition for a vector U ∈ C
g to be a wave vector.
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Next, we use the notation introduced in Section 3.3.1 to define some vectors. Let XIJ

and XJI be r − 1 dimensional vectors defined by

(
XIJ

)
I(i,j)−1

= −uiwj +
3

4
vivj, and

(
XJI

)
I(i,j)−1

= −ujwi +
3

4
vjvi, (3.15)

for each pair (i, j). The vector of relations Xrel is defined by

(
Xrel

)
I =





(
XIJ

)
I(i,j)−1

+ (1− δij)
(
XJI

)
I(i,j)−1

, if I = I(i,j) − 1,

d, if I = r.

(3.16)

Proposition 3.3.4. Suppose that U is computed and it is known that

MUX = 0.

Further suppose that V , W , and d are found and satisfy

X ′ = Xrel

when, for each i, ui, vi, and wi are replaced with U [i],V [i], and W [i], and d is replaced with

X ′[r]. Then u, as defined in equation 3.1, is a solution of equation 1.3 for the parameters

B, U , V , and W , and d.

Proof. Fix hα ∈ H. Then under the assumptions of the claim we have

0 = v[α]−mαX
′

= θ̂αU +
∑

1≤i≤j≤g

X ′[I(i,j) − 1]θ̂α(i,j) +X ′[r]θ̂α

= θ̂αU +
∑

1≤i≤j≤g

(
−uiwj +

3

4
vivj +

(
1− δ(i,j)

)(
−ujwi +

3

4
vjvi

))
θ̂α(i,j) + dθ̂α

= θ̂αU +
∑

1≤i,j≤g

(
−uiwj +

3

4
vivj

)
θ̂α(i,j) + dθ̂α.

Comparing with equation 3.3, we see that the claim follows.

To wrap up this section, V , W , and d are expressed in terms of U .
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Proposition 3.3.5. Let z1 ∈ C and σ be a choice of sign. By enforcing

X ′ = Xrel,

we can express V , W , and d in terms of U .

Proof. In this proof, let I(j,i) denote I(i,j) for i < j. Note that by Proposition 3.3.3

d = X ′[r] = −
r∑

k=1

(
A−1
r+1

)
rk
θ̂nkU .

Since an explicit expression for d in terms of the components of U has been found, denote

d by d (U ). We use this convention also for the components of V and W .

Let ψ ∈ {1, . . . , g} be such that the ψ component of U is non-zero. Then set this

component to z1, using the transformation

λ0 =
z1
uψ
, α0 = 0.

Next, apply the transformation

λ1 = 1, α1 = − vψ
2z1

.

This transforms the ψ component of V to 0.

These choices allow W to be computed right away. First,

wψ(U ) = −
X ′

I(ψ,ψ)−1

z1
.

For j ̸= ψ,

X ′

I(ψ,j)−1 = −ujwψ(U )− z1wj,

and thus

wj(U ) = −
X ′

I(ψ,j)−1 + ujwψ(U )

z1
.

Next, we need formulas for V . Let ξ ̸= ψ. Then

X ′

I(ξ,ξ)−1 = −uξwξ (U ) +
3

4
v2ξ ,
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and, using the sign σ,

vξ (U ) = σ

√
4

3

(
X ′

I(ξ,ξ)−1 + uξwξ (U )
)
.

Let j be such that j ̸= ψ and j ̸= ξ. Then

X ′

I(ξ,j)−1 = −uξwj (U )− ujwξ (U ) +
3

2
vξ (U ) vj,

and it is clear that vj is also expressible only in terms of U . If when choosing ξ there was

no component that satisifed

X ′

I(ξ,ξ)−1 + uξwξ (U ) ̸= 0,

then

V = 0.

Otherwise, with ξ such that

X ′

I(ξ,ξ)−1 + uξwξ (U ) ̸= 0,

we can express the components of V :

vj (U ) =
2

3

X ′

I(ξ,j)−1 + uξwj (U ) + ujwξ (U )

vξ (U )
.

3.4 Implementation

Let B be a Riemann matrix that comes from a surface. The scheme can be compartmental-

ized into four parts.

3.4.1 Procedure 1: Construct MU

Construct MU , M ′, v according to equation 3.10 and equation 3.11.

It must be noted that the computation of MU requires the evaluation of a number of

theta functions, which are g-fold sums over Zg. As g increases, the complexity of numerically

calculating a theta function grows (according to [7]) and the number of theta functions that
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must be evaluated grows exponentially. One way to reduce computation is to exploit the

structure of the theta constants. For example, let hα ∈ H and consider the theta function

with double period

θ[hα](z|2B) = e2πi(h
T
αBhα+hTαz)θ(z + 2Bhα|2B).

By Proposition 1.3.4, this is an even function. Express this function as

g0 = eKf0,

where g0, K and f0 depend on

z = xU + yV + tW .

For a function h(z), let ĥ denote h(0), and if h is h0, then let hi denote ∂
i
xh0. For K note

that

∂xK = πiUT (2hα) = Kx.

Then

g1 = eK (Kxf0 + f1) ,

and

g2 = eK
(
K2
xf0 +Kx2f1 + f2

)
.

Since g1 is a odd function,

ĝ1 = 0, which implies that −Kxf̂0 = f̂1.

Hence

ĝ2 = eK̂
(
−K2

xf̂0 + f̂2

)
.

In a similar way, the formula for ĝ4 is obtained:

ĝ4 = eK̂
(
f4 − 6K2

xf2 + 5K4
xf0
)
.
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For i ∈ {0, 2, 4}, note that ĝi is the theta constant we desire and f̂i is the ith x-derivative of

θ(z + 2Bhα|2B) evaluated at 0. The same reasoning applies for partial derivatives. Let the

subscript n denote application of ∂zn , and let

Kn = πiU [n](2hα)n,

so that

Ki1...im =
m∏

j=1

Kij .

The formulas are now

ĝij = eK̂
(
−Kij f̂0 + f̂ij

)

and

ĝijkl = eK̂
(
f̂ijkl − 5Kijklf̂0 −Kij f̂kl −Kikf̂jl −Kilf̂jk −Kjkf̂il −Kjlf̂il −Kklf̂ij

)
.

Although many computations are still required, these formulas reduce the number of com-

putations needed.

3.4.2 Procedure 2: Search for A

An invertible r × r submatrix of M ′ is needed. It may be preferable to try to find rows of

M ′ that give the best condition number. Once A is computed, construct MA by adding a

row hβ. The determinant of MA, pA, will be needed. In practice, coefficients of pA can take

on extremely small values (relative to the number of digits of precision used).

3.4.3 Procedure 3: Compute U

Next U must be determined. One approach would be to choose U that satisfies equation

3.14, pA (U ) = 0, which is a necessary condition on U .

Proposition 3.4.1. Suppose U ∈ C
g satisfies equation 3.14. Then U satisfies

MAX = 0

for some X ∈ C
r+1 (with X[1] = 1).
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Proof. Equation 3.14 immediately implies the existence of a nonzero X ∈ C
r+1 satisfying

MAX = 0. Since the submatrix A of MA (as in Notation 3.1) is invertible, it follows that

there is such an X with X[1] ̸= 0, and the result follows by scaling X. The invertibility of

A also implies that such an X with X[1] = 1 is unique.

Another approach for determining U is to require a subset of the components of U to

be predetermined.

3.4.4 Procedure 4: Compute V and W

After U is known, X ′ can be computed and the vectors V , W , and the number d must

be determined. The procedure outlined in Proposition 3.3.5 gives formulas and a general

procedure for computing V , W , and d. If these parameters are chosen so that

X ′ = Xrels,

where Xrels is defined in equation 3.16, then the formulas of equation 3.15 can be used to

recover the Dubrovin quartics.

3.5 Results

The current implementation takes a genus g matrix as input along with g−1 parameters for

the vector U . An invertible matrix A is found and pA is computed. The g − 1 parameters

are used in pA to determine 4 possible wave vectors U . This extends Dubrovin’s approach

and in higher genus cases reduces computational complexity; however U need not result in

a solution. Errors are measured in two ways. First, equation 3.2 is used to measure if a

given u is indeed a solution with the parameters computed. Second, to obtain W and V ,

only a few of the relations in Xrels are used. Since X ′ is explicit, evaluation of all of the

components of

X ′ −Xrels

allows for a measure of error. Since the formulas for V and W introduce small, controllable

errors, this is a better measure of X ′.
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Figure 3.1: Waves recovered from [12] at t = 0 and on −10 ≤ x, y ≤ 10. (Left): A genus 2

solution that is symmetric as defined in [12, Page 143]. (Right): A genus 3 solution.

3.5.1 Recovery of wave parameters found in literature

The current implementation has been used to recover data from [12] and from [2]. In [12],

wave vectors are given with respect to the form of the KP equation used in the paper and

are not given completely. We have recovered the wave vectors from this paper with the same

level of accuracy. Figure 3.1 shows two solutions obtained this way.

In [2], a genus 3 curve is given and a solution is plotted. After comparing the dif-

ferentials and periods used in the paper with the differentials and periods obtained from

differentials, periodmatrix, and Siegel commands, I was able to determine input for

EDM that would give the solution depicted.

Besides correctness, these examples demonstrate that EDM can be used to study shallow

water wave phenomena according to patterns in wave vectors. See [12] for more details on
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this approach.

Figure 3.2: First two solutions recovered from the genus 4 M-curve at t = 0 and on

−10 ≤ x, y ≤ 10.

3.5.2 Confirmation of data from genus 4 M-curve

To test whether or not EDM extends the method that Dubrovin uses, data from higher genus

cases need to be tested. In particular, EDM should be able to recover a full set of data (the

exact values of wave vectors and of d) using only a partial set. This is exactly what has taken

place. I was given data from a M -curve of genus 4: a matrix B and 4 sets of parameters

for the wave vectors. Using partial data from each of the four sets, I recovered the set of

parameters with the same level of precision. Figure 3.2 and Figure 3.3 are snapshots of the

solutions obtained.
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Figure 3.3: Final two solutions recovered from the genus 4 M-curve at t = 0. (Left):

Solution from third parameter set given with 0 ≤ x, y ≤ 50. (Right): Solution from fourth

parameter set given with −10 ≤ x, y ≤ 10.

3.6 Final remarks: towards a constructive approach to the Schottky problem

I conclude this thesis with a brief discussion on how the results of this chapter relate to the

Schottky problem.

So far, I have avoided an important point: a Riemann matrix need not come from a

surface Γf . For example, a Riemann matrix B that is of the form

B =


B1

B2




cannot be from a Riemann surface. The problem of determining what Riemann matrices B

come from a Riemann surface is known as the Schottky problem.

Krichever’s construction, as detailed in Chapter 2, establishes the fact that a Riemann
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matrix of a Riemann surface can be used to construct finite-genus solutions to the KP

equation 1.3. Novikov conjectured that this property characterizes Riemann matrices that

can be derived from a Riemann surface: if B can be used to construct a finite-genus solution

to KP, it must be derivable from a Riemann surface. Shiota proved this conjecture to be

true and in doing so solved the Schottky problem.

Although the problem has a resolution there are aspects that still deserve investigation.

The constructive Schottky problem is the problem of determining relations that can be used

to distinguish matrices B that come from a surface from those that do not.

In this chapter we have considered only Riemann matrices B that come from a surface.

We can recast some of the results in this chapter to consider the case when it is not known

whether B comes from a surface. Thus, the importance of EDM can be encapsulated by the

following proposition:

Proposition 3.6.1. Let B be a Riemann matrix of genus g. Suppose that the submatrix M ′

of MU is constructed as in equations 3.10 and 3.11. (Recall that M ′ is a constant matrix,

independent of U .) Then there are three possibilities:

1. M ′ is not of full rank, and then B is decomposable;

2. M ′ is of full rank, but there is no U ∈ C
g \ {0} that satisfies

MUX(U ) = 0,

and thus B is not a Riemann matrix from a Riemann surface; or,

3. M ′ is of full rank, and there is a vector U ∈ C
g \ {0} that satisfies

MUX(U ) = 0;

in this case, B is a Riemann matrix from a Riemann surface.

Proof. This is an application of the non-singularity condition of Proposition 1.3.5 and the

results of Chapter 3.
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