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Abstract
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Chair of the Supervisory Committee:
Professor of Applied Mathematics Bernard Deconinck

Department of Applied Mathematics

Finite-difference schemes are a popular and intuitive approach to numerically solve nonlinear

initial-boundary value problems (IBVPs). Often, this leads to the introduction of ghost points, where

the numerical method depends on grid points outside of the working domain. The usual heuristics of

doing this for second-order problems do not generalize to higher order, and incorporating boundary

conditions and addressing ghost points are serious numerical issues.

Our approach proposes to tackle this problem by the implementation of split-step methods to

separately solve the linear and nonlinear subproblems. In this dissertation, we discuss the Unified

Transform Method (UTM), introduced by A. S. Fokas, and its semi-discrete analogue to devise finite-

difference schemes for the linear problem that appropriately incorporate boundary conditions. The

UTM solution representations are then treated to give analytic continuation formulas that can be

applied at ghost points in the split-step method. We present our developments through examples of

several linear problems and their discretizations on the half-line and finite interval, and the nonlinear

Schrödinger equation on the finite interval. We discuss the continuum limit of the solutions and

numerical results.
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Chapter 1

INTRODUCTION

1.1 Motivation

Consider the numerical solution of the M th-order quasilinear partial differential equation (PDE)

qt = c qMx + F
(
q, qx, . . . , q(M−1)x

)
, c ∈ C \ {0}, (1.1.1)

on the half-line for x ∈ (0,∞) or on the finite interval for x ∈ (0, L) with L > 0. The problem (1.1.1)

is well-posed if its solution is unique and exists globally or for a finite time t, and continuously

depends on the prescribed initial condition q(x, 0) = ϕ(x) and the correct number of boundary

conditions. We additionally impose that initial and boundary data are compatible (at least to

zeroth-order) with sufficient smoothness and decay, so that q(x, t) → 0 uniformly as x → ∞ for

half-line problems.

Arguably the most intuitive approach in solving initial-boundary value problems (IBVPs) is

through the implementation of a finite-difference scheme on a discrete grid with points xn ≡ n∆x

and tj ≡ j∆t. Directly applying such schemes, especially those with high-order spatial stencils,

introduces the dependence on grid points outside of the domain, known as ghost points, see Figure

1.1.1. This embeds a discrepancy into the numerical methodology, since these points originate from

the choice of spatial stencil and not from the original IBVP itself. Note that with periodic boundary

conditions, the issue of ghost points never arises.

One way to avoid this discrepancy for general boundary conditions is to altogether avoid ghost

points by applying certain spatial stencils as we approach the boundaries [10, 63], see Figure 1.1.2.

These stencils are designed, say, using the method of undetermined coefficients, to depend only on

0 1 2 3 4 5 6 7

n

−1−2

Figure 1.1.1: A stencil that requires information at a ghost point.
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0 1 2 3 4 5 6 7

n

−1−2

Figure 1.1.2: A stencil that uses an off-centered stencil near the boundary to avoid introducing the

dependence of a ghost point while maintaining the same order of accuracy as the interior stencil

seen in Figure 1.1.1.

0 1 2 3 4 5 6 7

n

−1−2

Figure 1.1.3: A stencil that assigns a value to the ghost point introduced by the interior stencil near

the boundary.

grid points that lie within the domain and the boundary. The vast freedom in choosing these stencils

lead to discretizations that are unstable or incompatible with the physical interpretations and mod-

eling of the IBVP [22, 35, 60]. Although ghost points are eliminated, these stencils tend to destroy

the normal structure
(
ATA = AAT

)
of the coefficient matrix in a method-of-lines formulation, if

there was one to begin with. The stability analysis is even harder now for these problems, where we

may resort to studying the ϵ-pseudospectrum of the coefficient matrix [31, 43, 67].

Another way to address the discrepancy is to assign artificial conditions to the ghost points

according to reflection principles, interpolations, absorbing conditions, and discretizations of the

given boundary conditions [14, 35, 43, 59], see Figure 1.1.3. This option is commonly applied

whenever a PDE has prescribed derivative boundary conditions, but becomes complicated when

applying higher-order stencils to the PDE that lead to an underdetermined system with too many

unaccounted ghost points, even if we have derivative boundary conditions to discretize. A scenario

like this would require a combination of approaches, like discretizing available data and applying

one-sided stencils near the boundaries to avoid introducing too many unknowns.

The choice of information at ghost points can destabilize numerical methods that are shown to

be stable in the full-line or periodic problem via von Neumann analysis [22, 43]. These heuristic
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methodologies do not easily transfer when treating PDEs with higher-order derivatives, and the

general rules for examining stability in the presence of boundary data are not well developed [10, 14,

31, 59, 63]. Incorporating boundary conditions correctly and addressing ghost points is a non-trivial

numerical issue [35, 60, 67].

Our approach to tackle this problem is set up by the ideas of operator splitting and the imple-

mentation of split-step methods. For our IBVPs of interest, we rewrite the evolution PDE (1.1.1)

as

qt = L (q) +N (q) , (1.1.2)

where L is a constant-coefficient linear differential operator of order M and N is any nonlinear

operator, both operators involving spatial derivatives of q(x, t). The idea behind split-step methods

is to separately solve the M th-order linear IBVP with

qt = L (q) = c qMx, (1.1.3)

and combine it with the solution of the nonlinear IBVP with

qt = N (q) = F
(
q, qx, . . . , q(M−1)x

)
, (1.1.4)

in an iterative way [47]. One of the greatest difficulties when applying split-step methods is the

implementation of non-periodic boundary conditions [42, 44]. As with many other finite-difference

approaches, the use of high-accuracy spatial discretizations of the linear L and nonlinearN operators

might introduce ghost points and their artificial boundary conditions, likely affecting the overall

numerical stability.

We consider the class of semi-discretized PDEs where the most nonlocal stencil is applied to

the linear term c qMx. Hence, the lower-order problem (1.1.4) of (1.1.1) can be approached using

established split-step techniques, while the linear problem (1.1.3) and the ghost points that arise

require special attention. In this dissertation, we treat qt = c qMx using the Unified Transform

Method on the continuous (x, t)-plane and the semi-discrete (n, t)-plane, with an eye towards split-

step methods for (1.1.1).

1.2 Continuous Unified Transform Method

The Unified Transform Method (UTM) or Method of Fokas provides a powerful approach to

solve evolution IBVPs, including all those with linear, constant-coefficient PDEs and some integrable

nonlinear PDEs. The UTM was introduced by A. S. Fokas in 1997 for the purpose of generalizing

the method of inverse scattering to IBVPs on the half-line and on a finite interval [26, 27, 28].

The UTM generates an explicit analytical solution for q(x, t), with the solution written in terms of

integrals along paths in the complex plane of a spectral parameter k ∈ C. Through parametrization

of the contours, these explicit solutions can be numerically evaluated [16, 18, 25]. The application of
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the UTM is systematic, regardless of the types of boundary data, e.g., nonhomogeneous Dirichlet,

Neumann, Robin, etc. conditions. This is one reason the UTM is more general and effective than

standard methods for evolution IBVPs [15]. Further, the method demonstrates how many and which

types of boundary conditions result in a well-posed IBVP, depending on the order M of the PDE

[28].

For either half-line or finite-interval IBVPs, the UTM is applied algorithmically using the fol-

lowing steps [17]:

1. rewrite the PDE in divergence form, depending on a spectral parameter k, to obtain the local

relation and the dispersion relation W̃ (k),

2. integrate over the (x, T )-domain, for a finite T > 0, to obtain the global relation,

3. invert the global relation to obtain a representation of the solution depending on known and

unknown boundary data,

4. determine symmetries ν̃j(k) of W̃ (k),

5. determine where in C the global relations evaluated at ν̃j(k) are valid,

6. if necessary, deform integral paths involving boundary terms appropriately,

7. solve for unknown boundary data using the global relations evaluated at ν̃j(k), and

8. check that integral terms involving q̂(ν̃j , T ) vanish, resulting in a solution representation.

Although the calculations within each step are more intricate for higher-order problems and their

boundary conditions, the UTM ultimately solves an IBVP by solving a set of algebraic equations

involving the dispersion relation and its symmetries.

Due to its systematic implementation for linear PDEs like (1.1.3), we aim to solve the linear

problems in split-step methods with the UTM, regardless of boundary conditions. Undoubtedly, the

computation of these integral representations can be numerically costly [18, 25, 38, 55]. For low-order

problems, the finite-interval UTM solutions can be rewritten into a series representation by deforming

the integral contours down to the singularities on the real line and applying the residue theorem [17].

These series solutions are preferred over the integral representations for numerical computations, but

the rewrite is not always possible, especially for higher-order problems like qt = ± qxxx. Furthermore,

the half-line UTM solutions do not have isolated singularities in their integrands, so they cannot be

represented solely as series. Thus, the efficient computation of these UTM integral representations

is crucial.

The cons of solving an IBVP analytically perhaps outweigh the pros from a numerical standpoint,

so we propose an alternative. Rather than solving the linear split-step IBVP with (1.1.3) using the

UTM for all x and T , we discretize (1.1.3) via finite difference schemes of any arbitrary accuracy and

numerically solve the IBVP. Wherever ghost points develop, we employ the UTM representations

for all T . As straightforward as this alternative seems, the UTM formulations cannot be trivially
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extended to x outside of the original IBVP domains. It was not until recent work with Matthew

Farkas that Taylor-series expansions applied to the half-line UTM representations gave rise to valid

analytic extensions [24]. Expanding this methodology to the finite-interval formulations allows us to

implement our approach on the ghost points when numerically solving the linear IBVP in split-step

methods.

A more consistent approach to the finite difference evaluations is to apply the UTM on the

semi-discrete problem instead of on the continuous one. A method-of-lines formulation allows the

UTM to address ghost points directly by providing an analytical solution to the linear semi-discrete

IBVP.

1.3 Semi-Discrete UTM

The UTM has received a lot of attention for continuous IBVPs, but not nearly as much for semi-

discrete ones, i.e., discretized in space xn = nh for n = 0, 1, 2, . . ., but continuous in time t. Biondini

& Hwang [5], Biondini & Wang [6], and Moon & Hwang [51] study semi-discrete problems in the

context of the semi-discrete UTM (SD-UTM), but from the perspective of a purely semi-discrete

problem on closed contours with discretized Lax pairs and no variable mesh spacing h. While [5]

focuses primarily on the linear and nonlinear Schrödinger difference equations, the theory for semi-

discrete problems is presented via examples in [6] for half-line IBVPs and in [51] for finite-interval

IBVPs. Minimal discussion on the continuum limit for the SD-UTM is presented in [51].

Our goal is to further develop the SD-UTM to help solve IBVPs by addressing complications

that arise with ghost points. Within the split-step method, we want to apply the SD-UTM to the

linear problem, whether that includes solving the linear semi-discrete IBVP entirely or only applying

the method at the ghost points generated from the choice of spatial stencil in the finite-difference

scheme. As we will show, the SD-UTM formulas for the semi-discrete q(xn, t) ≡ qn(t) are simpler

than those from the continuous UTM, but further approximations are needed in order to efficiently

implement them into a split-step method, see Sections 2.5 and 3.5.

In what follows for half-line problems, we consider an explicit mesh parameter h ≪ 1. More

explicitly for finite-interval problems, we define h = L/(N + 1) ≪ 1 for n = 0, 1, . . . , N,N + 1

with N interior-domain grid points, where n = 0 and n = N + 1 correspond to x = 0 and x = L,

respectively. We use the shift operator ∆qn = qn+1 − qn, which effectively replaces the spatial

derivative with a forward difference. For half-line IBVPs with a Dirichlet boundary condition at

x = 0, the Fourier transform pair can be written as

q̂(k, t) = h
∞∑
n=1

e−iknhqn(t), Im(k) ≤ 0, (1.3.1a)

qn(t) =
1

2π

∫ π/h

−π/h
eiknhq̂(k, t) dk, k ∈ C. (1.3.1b)
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If a Dirichlet boundary condition is not given, i.e., if q0(t) is unknown, then (1.3.1a) starts at n = 0

(see Appendix A). For half-line IBVPs, we require qn ∈ l1(N), the space of absolutely summable

sequences, ensuring that q̂(k, t) is bounded for all k ∈ C with Im(k) ≤ 0. For finite interval IBVPs

with Dirichlet boundary conditions on both ends, the Fourier transform pair is written as

q̂(k, t) = h

N∑
n=1

e−iknhqn(t), k ∈ C, (1.3.2)

together with (1.3.1b). If a Dirichlet condition is not given at x = 0, then we start (1.3.2) at n = 0.

Similarly, if there is no Dirichlet data at x = L, the sum ends at N+1. We define the time transforms

of spatial nodes at and near the n = 0 boundary, including ghost points:

fj(W,T ) =

∫ T

0
eWtqj(t) dt, j = . . .− 1, 0, 1, . . . , k ∈ C, (1.3.3)

and, at and near the n = N + 1 boundary, including ghost points:

gj(W,T ) =

∫ T

0
eWtqN+1+j(t) dt, j = . . .− 1, 0, 1, . . . , k ∈ C, (1.3.4)

for an arbitrary finite T > 0 and semi-discrete dispersion relation W (k). Note that time T is used

to denote a fixed final time of interest in the time transforms (1.3.3) – (1.3.4), while t < T refers to

the generic time variable.

Throughout the following half-line examples, we compute the SD-UTM solutions within the

window of interest x ∈ (0, 1] if a Dirichlet boundary condition is specified or x ∈ [0, 1] if a Neumann

boundary condition is given. Similarly for finite-interval problems. The solutions are implemented

in Matlab using built-in functions, such as the vectorized integral(). To reduce computation

time, we analytically evaluate sums, like those defining the forward discrete Fourier transform, and

integrals when possible. In addition, all IBVPs have initial and boundary conditions matching at

(x, t) = (0, 0) and, when applicable, (x, t) = (L, 0).

Like the continuous UTM, we develop and algorithmically apply the following steps for the

SD-UTM:

1. rewrite the semidiscretized equation into divergence form to obtain the local relation and the

dispersion relation W (k),

2. sum over spatial indices and integrate over the temporal domain to obtain the global relation,

3. invert to obtain a representation of the solution that depends on unknown boundary data,

4. determine the symmetries νj(k) of W (k),

5. determine where the global relations with k → νj(k) are valid in C,

6. if necessary, deform integral paths of the boundary terms appropriately,



7

7. if necessary, determine additional boundary conditions from the PDE,

8. appropriately discretize boundary conditions,

9. solve for unknowns using global relations with k → νj(k) and time transforms of discretized

boundary conditions, and

10. check integral terms involving q̂(νj , T ) vanish, resulting in the solution representation depend-

ing only on known quantities.

With the SD-UTM, we propose the notion of “natural” discretizations, which reduce the variety

of stencils down to those that are compatible with the IBVP. The (not necessarily unique) natural

discretization is (i) of the same order as the spatial order of the PDE, (ii) not purely one sided (except

for first-order problems), and (iii) one that optimally aligns with the available boundary conditions.

Once the PDE is discretized, it follows that the available discretizations for any derivative boundary

conditions are dictated by the global relation and its validity under the symmetries νj(k), as we will

see with second-order IBVPs containing Neumann data and third-order IBVPs.

1.4 Organization of the Dissertation

The majority of this dissertation presents the SD-UTM through examples of several linear semi-

discretized IBVPs on the half-line and the finite interval following Steps (1) - (10) from Section 1.3.

Chapter 2 focuses on first and second-order half-line problems, Chapter 3 on first and second-order

finite-interval problems, and Chapter 4 on third-order problems on both the half line and finite

interval. For each of these chapters, the first few concrete examples are followed by higher-order

discretizations where ghost points play a significant role. In some cases, specifically with these higher-

order discretizations, the symmetries given from the semi-discrete dispersion relation are insufficient

or cannot be used to eliminate unknowns (see Sections 2.1, 2.2, 3.1, and 3.2), so discretizations

of boundary conditions must be appropriately used. We also show how to rewrite the SD-UTM

solution formulas as series when possible, which are more suitable for numerical computations than

the integral representations.

In Chapter 5, we derive analytic continuation formulas that are valid at ghost points for several

SD-UTM solutions. Lastly, Chapter 6 presents the split-step finite-difference method that uses

analytic continuation formulas from the UTM to solve nonlinear problems, specifically the nonlinear

Schrödinger equation on the finite interval.
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Chapter 2

HALF-LINE PROBLEMS

We briefly discuss the difficulties of numerically computing the solution to half-line IBVPs via

finite-difference schemes. Conventionally, we truncate the half-line problem x ∈ [0,∞) to a finite-

interval problem x ∈ [0, L̃], where L̃ ∈ R is a large positive constant, so that the artificial numerical

boundary is far from the domain of interest x ∈ [0, L]. At the artificial boundary x = L̃, we can

apply, say, decaying boundary conditions that are compatible with the given initial condition. Now,

the half-line IBVP is recast as a finite-interval problem and the usual finite-difference tactics can be

applied. This approach heavily relies on L̃ ≫ L, so that contributions from the artificial boundary

do not interfere with the window of interest. For dispersive problems, the effect of a tail slowly

approaches zero, and L̃ might have to be prohibitively large, increasing the computational cost to

produce an accurate solution.

An alternative is to apply “absorbing” conditions at the artificial boundary x = L̂ < L̃ that allow

propagation of energy out of the domain of interest, but not into it. Such conditions can be handled

by introducing sponge or dissipation layers for L < x < L̂, in which the same equations are solved

but with additional dissipation terms to absorb energy, or by devising special boundary conditions

that allow energy to exit the domain with minimal reflections, like a one-way wave equation specific

to the original IBVP. The first approach is more general than the second, but may still require

a dense grid, while one-way wave conditions can introduce approximation errors in addition to

those from the discretization errors [22, 53, 66]. For these reasons, we do not compare the half-line

semi-discrete UTM solutions with traditional windowing finite-difference methods. Instead, we only

compare with exact solutions. Although not shown, second-order problem solutions are derived

using classical methods, written out in terms of error functions that are computed with built-in

Matlab routines.

2.1 Advection Equations

To start, we discuss advection equations in some detail, as a way to demonstrate the UTM applied

to semi-discrete problems. At the same time, this will allow us to fix notation and to illustrate the

types of numerical experiments we use throughout the paper.
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2.1.1 Forward Discretization of qt = c qx

We start with the continuous problem on the half-line for the advection equation qt = c qx with

wave-speed c > 0: qt = c qx, x > 0, t > 0,

q(x, 0) = ϕ(x), x > 0.
(2.1.1)

For well posedness, the IBVP requires only the initial condition and no boundary data. Since infor-

mation travels from right to left, it is well known that the forward discretization of qx(x, t) together

with a forward discretization of qt(x, t) is a “natural” discretization, known as the upwind method.

Such a method performs well for this advection equation with periodic boundary conditions or on

the whole real line with limx→±∞ q(x, t) = 0. Let us implement this forward spacial discretization.

We consider

q̇n(t) = c
qn+1(t)− qn(t)

h
, (2.1.2)

followed by using the semi-discrete version of the UTM to exactly solve this system of ODEs, instead

of a time-stepping method to approximately (because of the time discretization) solve the system. As

in the continuous UTM, the local relation is determined by writing the problem into its divergence

form. For this semi-discrete problem, we replace ∂x with the shift operator ∆Qn, and (2.1.2) is

rewritten as

∂t

(
e−iknheWtqn

)
=
c

h
∆
(
e−ik(n−1)heWtqn

)
, (2.1.3)

with dispersion relation

W (k) = c
1− eikh

h
. (2.1.4)

The symmetries of a dispersion relation are those transformations k → ν(k) that leave W (k) in-

variant, i.e., W (ν) = W (k). Using the substitution z = eikh, the fundamental theorem of algebra

guarantees the existence of these symmetries. Here, (2.1.4) only has the trivial symmetry ν0(k) = k

up to periodic copies due to the complex exponential. From the local relation (2.1.3), we obtain the

global relation by taking a time transform over t ∈ [0, T ] and an infinite sum from n = 0 (because

q0(t) is not known):

∞∑
n=0

h

∫ T

0

[
∂t

(
e−iknheWtqn

)
− c

h
∆
(
e−ik(n−1)hqn

)
eWt

]
dt = 0

⇒
∞∑
n=0

h
[
e−iknheWT qn(T )− e−iknhqn(0)−

c

h
∆
(
e−ik(n−1)hfn

)]
= 0

⇒ eWT q̂(k, T )− q̂(k, 0) + ceikhf0 = 0, (2.1.5)
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Im(k)

Re(k)

π
h

−π
h

D

Figure 2.1.1: The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded with the disper-

sion relation (2.1.4).

valid for Im(k) ≤ 0 due to the discrete Fourier transform terms. Solving for q̂(k, T ) and inverting

the inverse transform,

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk − c

2π

∫ π/h

−π/h
eik(n+1)he−WT f0 dk. (2.1.6)

The integrand in the first term is defined for Im(k) ≤ 0, while the integrand in the second term

is defined for all k ∈ C. We refer to the expression above as the “solution,” since f0(W,T ) in the

second integral term is unknown. For all n ∈ N, eik(n+1)h decays in the upper half-plane and e−WT is

bounded in the shaded regions, including the boundary, of Figure 2.1.1. The shaded region denotes

where Re(−W ) ≤ 0. Figure 2.1.1 also shows the integration path for “solution” (2.1.6) from −π/h
to π/h on the real line. Note that the sign of c is essential in determining the location of the region

of exponential growth of the integrand, i.e., the white region in Figure 2.1.1.

We use two approaches to address the unwanted boundary integral term in “solution” (2.1.6).

The first approach is more straightforward, but is not as general as the second approach. In both,

we substitute the definition of f0(W,T ) in order to collect the k dependence:

c

2π

∫ π/h

−π/h
eik(n+1)he−WT f0 dk =

c

2π

∫ π/h

−π/h
eik(n+1)he−WT

[∫ T

0
eWtq0(t) dt

]
dk =

∫ T

0
A(n, T − t)q0(t) dt,

with T − t > 0 and

A(n, T ) =
c

2π

∫ π/h

−π/h
eik(n+1)he−WT dk.
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(i) The first approach uses the transformation z = eikh:

A(n, T ) =
c

2πih

∮
|z|=1

zn exp

[
−
(
1− z

h

)
(T − t)

]
dz = 0,

by analyticity of the integrand for all n. Hence,

c

2π

∫ π/h

−π/h
eik(n+1)he−WT f0 dk = 0.

(ii) The second approach deforms the integration path of A(n, T ) away from the real line. Consider

R > 0. We define the line segment

D =

{
k ∈ C

∣∣∣ −π
h

≤ Re(k) ≤ π

h
and Im(k) = R

}
with left-to-right orientation. Thus, D is a horizontal straight-line path above the real line,

from k = −π/h + iR to k = π/h + iR. Next, we introduce a closed contour that consists of

four straight segments: the original real-line path, the new path D, and two vertical segments

that connect the endpoints of the real-line path with those of D, as illustrated in Figure 2.1.1.

The contribution to the integral from these vertical paths cancel due to periodicity. Hence,

A(n, T ) =
c

2π

∫
D
eik(n+1)he−W (T−t) dk,

by Cauchy’s Theorem. Taking R → ∞ implies taking Im(k) → ∞ in the integrand. Because

of the exponential decay above the real line, A(n, T ) = 0 and

c

2π

∫ π/h

−π/h
eik(n+1)he−WT f0 dk = 0.

It follows that the solution to the half-line IBVP with the forward discretization (2.1.2) depends

only on the initial condition:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk. (2.1.7)

For reference, we solve the IBVP (2.1.1) using the continuous UTM, following the Steps (1) –

(8) from Section 1.2. Briefly, we find the dispersion relation W̃ (k) = −cik, with only the trivial

symmetry ν̃0(k) = k, and the global relation

q̂(k, 0)− eW̃T q̂(k, T ) + cF0 = 0, Im(k) ≤ 0,

where

q̂(k, t) =

∫ ∞

0
e−ikxq(x, t) dx, Im(k) ≤ 0,
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and

Fj(W̃ , T ) =

∫ T

0
eW̃ t ∂

jq

dxj

∣∣∣∣
x=0

dt, k ∈ C.

After inverting the transform and showing there is no dependence on F0(W̃ , T ), the solution repre-

sentation is

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk. (2.1.8)

Taking the limit as h → 0 of (2.1.7), we recover (2.1.8) from the continuous problem, where the

limits of integration approach ±∞ at rate 1/h. Also, limh→0W (k) = −cik = W̃ (k).

As an explicit example, we compute the numerical solution to the IBVPqt = qx, x > 0, t > 0,

q(x, 0) = ϕ(x) = 1
2

[
e−2x (sin(4πx) + 1)

]
, x > 0.

(2.1.9)

The exact (continuous) solution is given by q(x, T ) = ϕ(x + T ), while the semi-discrete solution is

obtained from the representation (2.1.7) with the standard forward discretization stencil. Figure

2.1.2 shows the semi-discrete solution qn(T ) (left panel) and a log-log error plot (right panel) of the

∞-norm of qn(0.5)− q(xn, 0.5), as a function of h.

From the stencil (2.1.2), we know (2.1.7) is a first-order accurate approximation to the solution

q(x, T ) of the IBVP (2.1.1). We can reveal more information about the behavior and structure of

this approximate solution by determining its modified equation [43, 71]. Suppose qn(t) exactly solves

a PDE with dependent variable p(x, t), such that qn(t) ≡ p (xn, t). Substituting this assumption

into the forward stencil (2.1.2) and Taylor-series expanding terms gives

q̇n(t) =
c

h
[qn+1(t)− qn(t)]

⇒ pt(xn, t) =
c

h
[p(xn + h, t)− p(xn, t)]

=
c

h

[
p(xn, t) + px(xn, t)h+

pxx(xn, t)

2!
h2 +

pxxx(xn, t)

3!
h3 +O

(
h4
)
− p(xn, t)

]
pt = c px +

c pxx
2

h+
c pxxx
6

h2 +O
(
h3
)
.

Keeping up to the O(h) term, we find that (2.1.7) is a second-order accurate solution approximation

to the advection-diffusion PDE

pt = c px +
c h

2
pxx, (2.1.10)

so we expect solution profiles of (2.1.7) to travel at the correct speed c, while dissipating in time.

Since c > 0, the diffusion coefficient c h/2 is positive. If we allow c < 0 or if we apply the same

forward stencil to the PDE qt = −a qx with a > 0, we obtain a similar convection-diffusion modified

PDE like above, except with a negative diffusion coefficient that presents an ill-posed problem with
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(a) (b)

Figure 2.1.2: (a) The semi-discrete solution (2.1.7) evaluated at various T with h = 0.01. (b) Error

plot of the semi-discrete solution (2.1.7) relative to the exact solution as h→ 0 with T = 0.5.

exponentially growing solutions. The solution plot 2.1.2a displays the expected shift to the left as

time progresses. For this advection equation, the solution approaches zero as t→ ∞, because q(x, 0)

decays as x→ ∞. Since the dissipation term is O(h), refining the mesh easily reduces this artificial

dissipation. The error plot displays O(h) convergence as h→ 0.

Remark 2.1.1. All forward discretizations produce fj(W,T ) terms with a coefficient Cj e
iγjkh for

some Cj ∈ C and γj ∈ N. Coupled with polynomial dispersion relations W (z), we can remove all

integral terms containing any fj(W,T ) from “solutions” using the steps above. Thus, if we solve

the IBVP (2.1.1) without boundary conditions using a purely forward higher-order stencil, we find

(2.1.7) as the solution, except with a different dispersion relation W (k).

2.1.2 Backward Discretization of qt = −c qx

Next, we consider 
qt = −c qx, x > 0, t > 0,

q(x, 0) = ϕ(x), x > 0,

q(0, t) = u(t), t > 0,

(2.1.11)
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with c > 0. For well posedness, the IBVP requires a Dirichlet boundary condition at x = 0. Since a

forward discretization (2.1.2) for qt = c qx was appropriate, we now apply a backward discretization

to the spacial derivative qx, resulting in

q̇n(t) = −c
(
qn(t)− qn−1(t)

h

)
= c

qn−1(t)− qn(t)

h
. (2.1.12)

Following similar steps as before, the local relation is

∂t

(
e−iknheWtqn

)
=

−c
h

∆
(
e−iknheWtqn−1

)
, (2.1.13)

with dispersion relation

W (k) = c
1− e−ikh

h
. (2.1.14)

As before, we only have the trivial symmetry ν0(k) = k, up to periodic copies. This time, the IBVP

(2.1.11) contains a Dirichlet boundary condition, providing information at n = 0, so we define the

forward transform as

q̂(k, t) = h

∞∑
n=1

e−iknhqn(t),

starting at n = 1. To obtain the global relation, we proceed as before:

∞∑
n=1

h

∫ T

0

[
∂t

(
e−iknheWtqn

)
+
c

h
∆
(
e−iknheWtqn−1

)]
dt = 0

⇒ eWT q̂(k, T )− q̂(k, 0)− ce−ikhf0 = 0, (2.1.15)

valid for Im(k) ≤ 0. Solving for q̂(k, T ) and inverting, we obtain

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk. (2.1.16)

Since e−WT grows in the upper-half plane, see Figure 2.1.3, we cannot remove the dependence on

f0(W,T ) and, hence, (2.1.16) is the actual solution to the backward-discretized IBVP (2.1.11) with

a given Dirichlet boundary condition.

Similar to the IBVP (2.1.1), we solve (2.1.11) using the continuous UTM. We find the dispersion

relation W̃ (k) = cik, with the trivial symmetry ν̃0(k) = k, and

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk +

c

2π

∫ ∞

−∞
eikxe−W̃TF0 dk. (2.1.17)

It is clear that (2.1.16) converges to the continuous solution (2.1.17), where

lim
h→0

fj(W,T ) = lim
h→0

∫ T

0
eWtq(jh, t) dt =

∫ T

0
eW̃ tq(0, t) dt = F0(W̃ , T ),

for any fixed j, limh→0W (k) = W̃ (k), and limh→0 e
ik(n−1)h = eikx with limh→0 nh = x.
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−π
h

π
h

Re(k)

Im(k)

Figure 2.1.3: The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded with the disper-

sion relation (2.1.14).

As an example, we examine the IBVP
qt = −qx, x > 0, t > 0,

q(x, 0) = ϕ(x) = e−x sin (4πx) , x > 0,

q(0, t) = u(t) = − sin (4πt) , t > 0,

(2.1.18)

where the continuous solution is given by

q(x, t) =

u (t− x) , 0 < x < t,

ϕ(x− t) , x > t.

Applying the semi-discrete solution (2.1.16) gives Figure 2.1.4, similar to Figure 2.1.2 for this IBVP,

illustrating the qualitative behavior of the advection equation and the expected O(h) error as h→ 0.

Since we are using a purely-one sided stencil, the standard backward stencil, we expect the solution

to be better approximated near x = 0 and less so for larger x. From the stencil (2.1.12), we

find the convection-diffusion PDE pt = −c px + (ch/2)pxx as its modified PDE. Like (2.1.10), this

modified equation is approximately solved by the semi-discrete solution with second-order accuracy.

The presence of the dissipative term implies (2.1.16) advects the initial and boundary data at the

appropriate speed, but with O(h) damping as time progresses. Indeed, Figure 2.1.5 displays the

dissipation present in the stencil, manifested in its modified PDE, away from the boundary with a

series of plots for various T and h = 0.004.
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(a) (b)

Figure 2.1.4: (a) The semi-discrete solution (2.1.16) evaluated at various T with h = 0.01. (b) Error

plot of the semi-discrete solution (2.1.16) relative to the exact solution as h→ 0 with T = 0.5.

2.1.3 Centered Discretization of qt = −c qx

We consider the same problem as in Section 2.1.2, but using the standard centered discretization:

q̇n(t) = −c
(
qn+1(t)− qn−1(t)

2h

)
. (2.1.19)

With slightly more work, the local relation is

∂t

(
e−iknheWtqn

)
=

−c
2h

∆
(
e−iknheWtqn−1 + e−ik(n−1)heWtqn

)
, (2.1.20)

with dispersion relation

W (k) = c
eikh − e−ikh

2h
=

−c sin(kh)
ih

. (2.1.21)

In this case, the dispersion relation has the trivial symmetry ν0 = k and one nontrivial symmetry

ν1(k) = −k − π

h
,

up to periodic copies. Since we have information at q(0, t) ≡ q0(t), we take an infinite sum starting

at n = 1 and a time transform to obtain the global relation as

eWT q̂(k, T )− q̂(k, 0)− c

[
e−ikhf0 + f1

2

]
= 0, Im(k) ≤ 0. (2.1.22)
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Figure 2.1.5: Several time slices for the solution to IBVP (2.1.18) with h = 0.004.

Taking the inverse transform, we obtain the “solution”

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eiknhe−WT

[
e−ikhf0 + f1

2

]
dk. (2.1.23)

“Solution” (2.1.23) contains the unknown f1(W,T ), but as seen in Figure 2.1.6, we cannot deform off

the real line to remove this dependence as we did with one-sided discretization stencils. Nonetheless,

the global relation (2.1.22) with k → ν1(k) is valid for Im (ν1) ≤ 0, i.e., Im(k) ≥ 0, and can be used

to remove the unknown without the need to deform. Replacing k → ν1 in the global relation

(2.1.22) and substituting

f−1 = −e−iν1hf0 +
2

c

[
eWT q̂ (ν1, T )− q̂ (ν1, 0)

]
, Im(k) ≥ 0,

in the “solution” (2.1.23), we find

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT [c cos (kh) f0 − q̂ (ν1, 0)] dk

+
1

2π

∫ π/h

−π/h
eiknhq̂ (ν1, T ) dk,

(2.1.24)

after simplification.

Removing one unknown from the “solution,” we have introduced another, q̂ (ν1, T ), a transform

of the solution at time T . It is crucial to point out that this last integral term does not have the

exponential factor e−WT . We can eliminate q̂ (ν1, T ) from our “solution” as in the continuous UTM,

or determine its contribution if it is nonzero. To do so, we substitute the definition of the transform

into the integral term:

1

2π

∫ π/h

−π/h
eiknhq̂ (ν1, T ) dk =

1

2π

∫ π/h

−π/h
eiknh

[
h

∞∑
m=1

e−iν1mhqm(T )

]
dk =

∞∑
m=1

(−1)mC(n+m)qm(T ),
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−π
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h

Re(k)

Im(k)

−π
h

π
2h

Figure 2.1.6: The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded with the disper-

sion relation (2.1.21).

where

C(n) =
h

2π

∫ π/h

−π/h
eiknh dk.

Applying the first approach from Subsection 2.1.1 implies that for n > 0, C(n) = 0 via periodicity,

1

2π

∫ π/h

−π/h
eiknhq̂ (ν1, T ) dk = 0.

Therefore, the solution to the centered-discretized advection equation qt = −c qx on the half-line

with a Dirichlet boundary condition is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT [c cos (kh) f0 − q̂ (ν1, 0)] dk. (2.1.25)

From the stencil (2.1.19), we find the modified PDE pt = −c px − (ch2/6)pxxx, preserving the

correct advection speed, but including a dispersive term. Hence, the solution profiles disperse as

time progresses. Since the dispersion coefficient is O
(
h2
)
, these effects are minimal for practical

h≪ 1.

The continuum limit of this semi-discrete solution is less straightforward than the continuum

limit of the backward-discretized solution (2.1.16). The dispersion relation converges to the con-

tinuous one: limh→0W (k) = W̃ (k). It is clear that the first integral term in the semi-discrete

solution (2.1.25) converges to the first integral term in the continuous solution (2.1.17). Since
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limh→0 cos(kh) = 1, the boundary component in the discrete solution also converges to its continu-

ous counterpart.

The solution to the continuous problem requires no additional symmetries, so we expect the

integral term containing q̂ (ν1, 0) to vanish. Note that

q̂ (ν1, t) = h
∞∑
m=1

e−iν1mhqm(t) = h
∞∑
m=1

(−1)meikmhqm(t) = −h
∞∑
u=1

e2ikuhq2u(t) + h
∞∑
v=0

e(2v+1)ikhq2v+1(t),

after separating the even and odd indexed terms. Similar to xn = nh, we introduce dummy variables

wu = uh and yv = vh, so that

lim
h→0

q̂ (ν1, t) = − lim
h→0

h

∞∑
u=1

e2ikuhq2u(t) + lim
h→0

h

∞∑
v=0

e2ikvheikhq2v+1(t)

= −
∫ ∞

0
e2ikwq(2w, t) dw +

∫ ∞

0
e2ikyq(2y, t) dy = 0.

Thus,

lim
h→0

−1

2π

∫ π/h

−π/h
eiknhe−WT q̂ (ν1, 0) dk = 0,

and we recover the continuous solution (2.1.17).

2.1.4 Higher-Order One-Sided Discretization of qt = −c qx

There exist higher-order discretizations that appropriately incorporate the nontrivial symmetries

to remove unknowns, where the steps in the semi-discrete UTM become more intricate and tedious,

yet remain systematic. In some cases, however, the nontrivial symmetries are unusable, but a

solution can still be obtained. Consider the second-order discretized advection equation

q̇n(t) = −c
(
qn−2(t)− 4qn−1(t) + 3qn(t)

2h

)
. (2.1.26)

Following the usual steps, the global relation is

eWT q̂(k, T )− q̂(k, 0)− c

(
4e−ikhf0 − e−2ikhf0 − e−ikhf−1

2

)
= 0, Im(k) ≤ 0, (2.1.27)

with dispersion relation

W (k) = c
e−2ikh − 4e−ikh + 3

2h
, (2.1.28)

and nontrivial symmetry

ν1(k) =
i

h
ln
(
4− e−ikh

)
.
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−π
h

π
h

Re(k)

Im(k)

Im(ν1(k)) ≤ 0

Re(−W ) ≤ 0

Figure 2.1.7: The blue shaded region denotes where the global relation (2.1.27) is valid with k →
ν1(k) and the orange shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded with the

dispersion relation (2.1.28).

Solving for q̂(k, T ) and taking the inverse transform, we obtain

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
c

2π

∫ π/h

−π/h
eiknhe−WT

(
4e−ikhf0 − e−2ikhf0 − e−ikhf−1

2

)
dk.

(2.1.29)

With the given Dirichlet boundary condition, we encounter the ghost point f−1(W,T ), which

is unknown. The global relation (2.1.27) is valid in the blue shaded region of Figure 2.1.7 with

k → ν1(k), but since the path on the real line cannot be deformed to this region, the nontrivial

symmetry cannot be used to eliminate the unknown f−1(W,T ). Instead, we return to the continuous

problem (2.1.11), where the PDE itself gives the Neumann boundary condition from the Dirichlet

condition:

qx(0, t) =
−1

c
qt(0, t) =

−1

c

∂

∂t
q(0, t) =

−u′(t)
c

=
−v(t)
c

, v(t) = u′(t). (2.1.30)

To maintain the same order of accuracy as (2.1.26), we discretize the Neumann condition using

the standard centered stencil:

q1(t)− q−1(t)

2h
=

−v(t)
c

⇒ f1 − f−1

2h
=

−V
c
, V (W,T ) =

∫ T

0
eWtv(t) dt. (2.1.31)
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Doing so, we have introduced data f1(W,T ) at another unknown point, so we require an additional

equation. Again from the PDE and (2.1.30), we know the second spacial derivative at x = 0:

qxx(0, t) =

(
−qt(0, t)

c

)
x

=

(
−qx(0, t)

c

)
t

=

(
v(t)

c2

)
t

=
ṽ(t)

c2
, ṽ(t) = u′′(t).

Keeping the same order of accuracy as (2.1.26) and (2.1.31), the centered approximation to qxx(0, t)

gives

q1(t)− 2q0(t) + q−1(t)

h2
=
ṽ(t)

c2

⇒ f1 − 2f0 + f−1

h2
=
Ṽ

c
, Ṽ (W,T ) =

∫ T

0
eWtṽ(t) dt. (2.1.32)

Using (2.1.31) and (2.1.32) to remove f−1(W,T ) and f1(W,T ) from (2.1.29) gives the second-order

accurate solution

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eiknhe−WT

[(
3e−ikh − e−2ikh

2

)
f0

]
dk

− 1

2π

∫ π/h

−π/h
eik(n−1)he−WT

(
h

2
V +

h2

4
Ṽ

)
dk.

(2.1.33)

As before, as h → 0, the semi-discrete solution (2.1.33) converges to (2.1.17). The semi-discrete

solution correctly loses dependence on the Neumann and second derivative boundary conditions in

the continuum limit, with O(h) and O(h2) leading coefficients, respectively.

Remark 2.1.2. Let us reconsider the backward discretization (2.1.12) with dispersion relation

(2.1.14) and no nontrivial symmetries. With the forward transform q̂(k, t) starting at n = 0 instead

of n = 1, we derive the global relation

eWT q̂(k, T )− q̂(k, 0)− cf−1 = 0, Im(k) ≤ 0, (2.1.34)

with “solution”

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eiknhe−WT f−1 dk, (2.1.35)

depending on q−1(t), which is not directly provided by the IBVP (2.1.11). As above, the advection

equation itself gives the Neumann boundary condition (2.1.30) from the given Dirichlet condition

and allows us to remove the dependence on f−1(W,T ) in 2.1.35. Substituting (2.1.31), the solution

is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eiknhe−WT f0 dk

+
h

2π

∫ π/h

−π/h
eiknhe−WTV dk.

(2.1.36)
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In the continuum limit, the last integral term vanishes and we recover (2.1.17). Both (2.1.16) and

(2.1.36) are solutions to the backward-discretized advection equation (2.1.12) with q0(t) data, but the

transforms q̂(k, t) are defined differently by a shift in the starting index. Using the global relations

(2.1.15) and (2.1.34), one can show that the solutions (2.1.16) and (2.1.36) are equal.

2.2 The Heat Equation

2.2.1 Centered Discretization of qt = qxx with Dirichlet boundary condition

Consider the problem 
qt = qxx, x > 0, t > 0,

q(x, 0) = ϕ(x), x > 0,

q(0, t) = u(t), t > 0,

(2.2.1)

with one Dirichlet boundary condition. We write the centered-discretized heat equation as

q̇n(t) =
qn+1(t)− 2qn(t) + qn−1(t)

h2
. (2.2.2)

Carrying out similar steps as before, the local relation is

∂t

(
e−iknheWtqn

)
=

1

h2
∆
(
e−ik(n−1)heWtqn − e−iknheWtqn−1

)
, (2.2.3)

where

W (k) =
2− eikh − e−ikh

h2
=

2

h2
[1− cos(kh)] , (2.2.4)

with the nontrivial symmetry ν1(k) = −k up to periodic copies. We find the global relation by

summing from n = 1 and integrating in time:

eWT q̂(k, T )− q̂(k, 0)−
[
e−ikhf0 − f1

h

]
= 0, Im(k) ≤ 0. (2.2.5)

Inverting, we obtain the “solution” formula

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
e−ikhf0 − f1

h

]
dk, (2.2.6)

which depends on the unknown f1(W,T ). Using ν1(k) in the global relation (2.2.5) gives

f1 = eikhf0 − h
[
eWT q̂(−k, T )− q̂(−k, 0)

]
, Im(k) ≥ 0. (2.2.7)

We substitute (2.2.7) into (2.2.6), so that

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk − 1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(−k, 0) + 2i sin(kh)

h
f0

]
dk

+
1

2π

∫ π/h

−π/h
eiknhq̂(−k, T ) dk.

(2.2.8)
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Removing the boundary term f1(W,T ), we have introduced the transform of the solution at

t = T in the third integral of (2.2.8). Using the definition of the transform,

1

2π

∫ π/h

−π/h
eiknhq̂(−k, T ) dk =

1

2π

∫ π/h

−π/h
eiknh

[
h

∞∑
m=1

eikmhqm(T )

]
dk =

∞∑
m=1

qm(T )

[
h

2π

∫ π/h

−π/h
eik(n+m)h dk

]
.

For n > 0, the integral vanishes due to periodicity, so that

1

2π

∫ π/h

−π/h
eiknhq̂(−k, T ) dk = 0,

and the solution to (2.2.2) with the Dirichlet boundary condition is written as

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk − 1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(−k, 0) + 2i sin(kh)f0

h

]
dk. (2.2.9)

Solving the IBVP (3.2.1) via the continuous UTM gives the dispersion relation W̃ (k) = k2 with

nontrivial symmetry ν̃1(k) = −k [17]. The solution is

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk − 1

2π

∫ ∞

−∞
eikxe−W̃T [q̂(−k, 0) + 2ikF0] dk. (2.2.10)

Taking the continuum limit, (2.2.9) converges to (2.2.10), since limh→0W (k) = k2 = W̃ (k).

As an example, the solution to the IBVP
qt = qxx, x > 0, t > 0,

q(x, 0) = ϕ(x) = 3xe−x, x > 0,

q(0, t) = u(t) = sin (4πt) , t > 0,

(2.2.11)

is written in terms of error functions. Deriving the modified PDE from the centered stencil (2.2.2), we

find that solution (2.2.9) is a fourth-order accurate approximation to the solution of the dissipative

PDE

pt = pxx +
h2

12
p4x. (2.2.12)

The presence of the higher-order dissipation term p4x causes high-frequency oscillations to be damped

for any t > 0. The original heat equation is also dissipative, but solution (2.2.9) might overdamp

in scenarios where the initial data contains high-frequency oscillations or the boundary condition

oscillates in time with large amplitude. Although the dissipation coefficient of p4x is O
(
h2
)
, the

overdamping nature can be troublesome for a practical h ≪ 1 as t increases, but this can be

counteracted by decreasing h. With the SD-UTM solution (2.2.9), the left plot of Figure 2.2.1

shows the gradual decay away from the x = 0 and t = 0 boundaries as time increases and the right

plot shows the expected O
(
h2
)
error as h→ 0.
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(a) (b)

Figure 2.2.1: (a) The semi-discrete solution (2.2.9) evaluated at various T with h = 0.01. (b) Error

plot of the semi-discrete solution (2.2.9) relative to the exact solution as h→ 0 with T = 1.625.

2.2.2 Centered Discretization of qt = qxx with Neumann boundary condition

We consider the continuous half-line problem:
qt = qxx, x > 0, t > 0,

q(x, 0) = ϕ(t), x > 0,

qx(0, t) = v(t), t > 0,

(2.2.13)

with a Neumann boundary condition. How do we discretize this condition so that we may employ

it with the centered-discretized equation (2.2.2)? This choice often leads to instabilities in finite-

difference schemes, especially when dealing with higher-order problems [10, 43, 67]. We show that

the SD-UTM determines which discretizations we can choose.

We proceed with the centered discretization (2.2.2) for the heat equation. This implies we retain

the local relation (2.2.3) and dispersion relation (2.2.4) with nontrivial symmetry ν1(k) = −k. We

cannot use the global relation (2.2.5), because we assumed Dirichlet boundary data to obtain it.

Now, we do not have information at n = 0, so we define our forward transform to start at n = 0:

q̂ (k, t) = h
∞∑
n=0

e−iknhqn(t),
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directly affecting the global relation. From the local relation (2.2.3),

eWT q̂(k, T )− q̂(k, 0)−
[
f−1 − eikhf0

h

]
= 0, Im(k) ≤ 0. (2.2.14)

Solving for q̂(k, T ) and inverting, we obtain

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
f−1 − eikhf0

h

]
dk. (2.2.15)

The global relation (2.2.14) and “solution” (2.2.15) depend on q0(t), as in the previous section,

but also on q−1(t) instead of q1(t). For this Neumann IBVP, neither q−1(t) nor q0(t) are known, so

both f−1(W,T ) and f0(W,T ) are unknowns. Since we only have one nontrivial symmetry to remove

one unknown, we must provide another equation involving f−1(W,T ) or f0(W,T ) in such a way as to

not introduce any new unknowns. If we discretize the Neumann boundary condition qx(0, t) = v(t),

the only approach is to use the standard backward stencil:

q0(t)− q−1(t)

h
= v(t).

Of course, this discretization is O (h), while the centered discretization (2.2.2) for qxx is O
(
h2
)
.

This suggests that the final semi-discrete solution will lose accuracy compared to the case with a

Dirichlet boundary condition, but nonetheless converge to the continuous solution. Upon taking a

time transform,

f0(W,T )− f−1(W,T )

h
= V (W,T ), V (W,T ) =

∫ T

0
eWtv(t) dt. (2.2.16)

The relation (2.2.16) becomes the second equation to remove the second unknown. Solving the

system 
eWT q̂(−k, T )− q̂(−k, 0)−

[
f−1 − e−ikhf0

h

]
= 0,

f0 − f−1

h
= V,

for f−1(W,T ) and f0(W,T ) results in

f−1 − eikhf0
h

= eikhq̂(−k, 0)−
(
1 + eikh

)
V − eWT eikhq̂(−k, T ), Im(k) ≥ 0.

Since (2.2.15) has integration paths on the real line, direct substitution gives

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
eikhq̂(−k, 0)−

(
1 + eikh

)
V
]
dk

− 1

2π

∫ π/h

−π/h
eik(n+1)hq̂(−k, T ) dk.

(2.2.17)
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As before, we introduced an unwanted term that depends on the transform of the solution. We

show the contribution from this term is zero by substituting the definition for q̂(−k, T ):

−1

2π

∫ π/h

−π/h
eik(n+1)hq̂(−k, T ) dk =

−1

2π

∫ π/h

−π/h
eik(n+1)h

[
h

∞∑
m=0

eikmhqm(T )

]
dk

=
∞∑
m=0

[
−h
2π

∫ π/h

−π/h
eik(n+1)heikmh dk

]
qm(T )

= 0,

where the integral vanishes by periodicity. The final solution to this IBVP with a Neumann boundary

condition v(t), discretized as above, is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
eikhq̂(−k, 0)−

(
1 + eikh

)
V
]
dk. (2.2.18)

Similarly as shown in [17], the solution representation for IBVP (3.2.16) using the continuous

UTM is

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk +

1

2π

∫ ∞

−∞
eikxe−W̃T

[
q̂(−k, 0)− 2F1

]
dk. (2.2.19)

Referencing (2.2.18), the continuum limits of the coefficients of q̂(−k, 0) and V (W,T ) converge,

where

lim
h→0

V (W,T ) = lim
h→0

∫ T

0
eWtv(t) dt =

∫ T

0
eW̃ tv(t) dt = F1(W̃ , T ).

As a concrete example, we examine the solution of the IBVP
qt = qxx, x > 0, t > 0,

q(x, 0) = ϕ(x) = e−x cos (3πx) , x > 0,

qx(0, t) = v(t) = −1
4π sin (4πt) , t > 0.

(2.2.20)

Again, the continuous solution is given in terms of error functions, while the semi-discrete solution

is given by (2.2.18). The given Neumann data is discretized using the standard first-order accurate

backward stencil, which reduces the overall accuracy of the solution from O(h2) to O(h). Since the

centered stencil (2.2.2) is used, solution (2.2.18) is a fourth-order accurate approximation to the

dissipative PDE (2.2.12). However, in general this is not the case, because of the discretization of

the Neumann boundary condition. The modified equation for this backward discretization at x = 0

is qx(0, t) = v(t)− (h/2)qxx(0, t). Unless the next several higher-order derivatives of the solution at

the boundary are zero, the standard backward discretization we employed on v(t) is O(h), and so is

solution (2.2.18). This modified PDE at the boundary implies the loss of accuracy is visible in the

solution profiles of Figure 2.2.3 in the form of dissipation near the boundary. With h = 0.01, this

drop in accuracy is illustrated in the error plot of Figure 2.2.2.
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(a) (b)

Figure 2.2.2: (a) The semi-discrete solution (2.2.18) evaluated at various T with h = 0.01. (b) Error

plot of the semi-discrete solution (2.2.18) relative to the exact solution as h→ 0 with T = 0.01.

Remark 2.2.1. We may consider different spacial discretizations of the heat equation in the IBVPs

(3.2.1) or (3.2.16). For example, the standard forward one-sided discretization of the heat equation,

q̇n(t) =
qn+2(t)− 2qn+1(t) + qn(t)

h2
, (2.2.21)

gives rise to the dispersion relation

W (k) =
2eikh − e2ikh − 1

h2
, (2.2.22)

and

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eik(n+1)he−WT

[(
2− eikh

)
f0 − f1

h

]
dk, (2.2.23)

using a forward discrete Fourier transform that starts at n = 0. Regardless of the starting index and

available boundary conditions from the continuous problem, the second integral in the “solution”

has zero contribution, i.e., the solution does not depend on any boundary information at all. This

can be done by deforming off the real line as in Section 2.1.1, since the dispersion relation (2.2.22)

with z = eikh has all nonnegative degrees and e−WT is bounded in the upper half-plane. Thus,

(2.2.21) gives rise to an ill-conditioned semi-discrete problem, relative to its continuous counterpart.
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Figure 2.2.3: Several time slices for the solution to IBVP (2.2.20) with h = 0.01.

A similar issue arises when we consider a backward one-sided discretization for qxx, except here

the dispersion relation

W (k) =
2e−ikh − e−2ikh − 1

h2
, (2.2.24)

does not permit the removal of either unknown from

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0)dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
f−2 −

(
2− e−ikh

)
f−1

h

]
dk. (2.2.25)

Although the discretization is first-order accurate, it has a second-order stencil with a dispersion

relation, which has a nontrivial symmetry. Even so, it is not feasible to deform to the region where

the global relation with this symmetry is valid, see Figure 2.2.4. Thus, this one-sided discretization
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−π
h

π
h

Re(k)

Im(k)

Figure 2.2.4: The shaded region depicts where the global relation of the backward one-sided dis-

cretization of qxx is valid, with k → ν1(k) from (2.2.24).

is also problematic, requiring too much information from boundary nodes.

2.2.3 Higher-Order Discretization of qt = qxx with Dirichlet boundary condition

As in Section 2.1.4, we can apply higher-order discretizations to the heat equation where the

nontrivial symmetries are not enough to eliminate unknowns. Consider the heat equation in (3.2.1)

with the standard centered fourth-order discretization:

q̇n(t) =
−qn−2(t) + 16qn−1(t)− 30qn(t) + 16qn+1(t)− qn+2(t)

12h2
. (2.2.26)

After several tedious steps, the global relation is

eWT q̂(k, T )− q̂(k, 0)− F (k, T ) = 0, Im(k) ≤ 0, (2.2.27)

where

F (k, T ) =
−e−ikhf−1 + 16e−ikhf0 − e−2ikhf0 − 16f1 + eikhf1 + f2

12h
,

with dispersion relation

W (k) =
e−2ikh − 16e−ikh + 30− 16eikh + e2ikh

12h2
. (2.2.28)

Solving for q̂(k, T ) and taking the inverse transform, we obtain

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WTF (k, T ) dk. (2.2.29)
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−π
h

π
h

Re(k)

Im(k)

(a)

−π
h

π
h

Re(k)

Im(k)

Im(ν1(k)) ≤ 0

Im(ν2(k)) ≤ 0

Im(ν3(k)) ≤ 0

(b)

Figure 2.2.5: (a) The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded with the

dispersion relation (2.2.28). (b) The shaded regions depict where the global relation with k → νi(k)

is valid from (2.2.28).

Since we are given the Dirichlet boundary condition, f−1(W,T ), f1(W,T ), and f2(W,T ) are unknown

and must be removed from (2.2.29). The dispersion relation gives the nontrivial symmetries

ν1(k) = −k,

ν2(k) =
i

h
ln

(
e−ikh

2

[
16eikh − e2ikh − 1 +

√
(−16eikh + e2ikh + 1)

2 − 4e2ikh
])

,

ν3(k) =
i

h
ln

(
e−ikh

2

[
16eikh − e2ikh − 1−

√
(−16eikh + e2ikh + 1)

2 − 4e2ikh
])

,

where the branch cut for the square-root function is chosen to be on the positive real line (see

Remark 2.2.2). Figure 2.2.5b depicts where in the complex k-plane the global relation (2.2.27) with

k → νi is valid, while Figure 2.2.5a shows the shaded regions as decay due to e−WT . Both figures

imply that the integration path on the real line need not be deformed to use all three nontrivial

symmetries. Even so, Figure 2.2.5b tells us that both ν2,3(k) may only be used to remove one

unknown, since there is no region where both symmetries are simultaneously valid. Hence, the

three symmetries can only remove two unknowns and we must introduce a fourth equation. With

the given Dirichlet data u(t), the heat equation itself gives all even-derivative boundary conditions,

particularly qxx(0, t) = u′(t) = v(t) and q4x(0, t) = u′′(t) = ṽ(t). Discretizing the second-derivative
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condition with the standard centered fourth-order stencil gives

−q−2(t) + 16q−1(t)− 30q0(t) + 16q1(t)− q2(t)

12h2
= v(t). (2.2.30)

This stencil introduces the additional unknown q−2(t), further requiring one more equation. Gener-

ally, we can find additional equations that relate nodes to derivatives using the method of undeter-

mined coefficients. Since we have q4x(0, t), we derive an equation that does not introduce any more

unknowns, maintains the same order of accuracy as (2.2.26), and is linearly independent to (2.2.30):

q−2(t) + 2q−1(t)− 6q0(t) + 2q1(t) + q2(t)

6h2
= v(t) +

h2

4
ṽ(t). (2.2.31)

Taking the time transforms of (2.2.30) and (2.2.31), we have the closed system of equations for all

unknowns: 

0 = eWT q̂ (−k, T )− q̂ (−k, 0)− F (−k, T ) , Im(k) ≥ 0,

0 = eWT q̂ (ν2, T )− q̂ (ν2, 0)− F (ν2, T ) , Im(ν2) ≤ 0,

0 = eWT q̂ (ν3, T )− q̂ (ν3, 0)− F (ν3, T ) , Im(ν3) ≤ 0,

12h2V = −f−2 + 16f−1 − 30f0 + 16f1 − f2, k ∈ C,

6h2V +
3h4

2
Ṽ = f−2 + 2f−1 − 6f0 + 2f1 + f2, k ∈ C,

where V (W,T ) is the time transform of v(t) and Ṽ (W,T ) is the time transform of ṽ(t). Solving for

the unknowns, we find

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk + 1

2π

∫ π/h

−π/h
eiknhe−WT F̃ (k, T )f0 dk

+
1

2π

∫ π/h

−π/h
eiknhe−WT

[
e−ikh

(
e2ikh − 1

)
h

12
V +

e−ikh
(
e2ikh − 1

)
h3

144
Ṽ

]
dk,

(2.2.32)

after deforming away the integral with q̂(−k, T ), where

F̃ (k, T ) =
e−2ikh

(
14eikh − 14e3ikh + e4ikh − 1

)
12h

.

Note that F̃ (k, T ) has no dependence on ν2,3. In the continuum limit, limh→0 F̃ = −2ik and

the last integral, with derivative boundary conditions, vanishes. Particularly, expanding in Taylor

series the common exponential factor between the derivative boundary conditions in (2.2.32), we

have e−ikh
(
e2ikh − 1

)
= 2ikh+O(h3), such that the coefficients of V (W,T ) and Ṽ (W,T ) vanish like

O(h2) and O(h4), respectively, as h→ 0. Thus, the semi-discrete solution correctly loses dependence

on the derivative boundary conditions in the continuum limit and converges to (2.2.10).

Remark 2.2.2. Since the symmetries are convolved with exponentials and square roots, the regions

of validity are numerically pinned down with the help of symbolic software, like Mathematica, but
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Figure 2.2.6: (a) Contour plot of default |
√
z|. (b) Contour plot of redefined |

√
z|.

a few comments are in order. In general, to obtain any semi-discrete symmetry, an equation with

exponentials must be solved via inverse functions, most notably the natural log function ln(z), and

in this case, along with the square root function z1/2. Both of these are multi-valued functions,

so branch cuts must be chosen. Many software packages like Mathematica, Maple, and Matlab

automatically place the branch cuts for both ln(z) and z1/2 on the negative real line, evident for

the latter in Figure 2.2.6a as the discontinuity in the flow of colors by letting z = reiθ with r > 0

and θ ∈ (−π, π]. Following this standard convention, we find that symmetries of many higher-order

dispersion relation discretizations are numerically ill-defined as h → 0. Instead, the branch cut for

z1/2 must be placed on the positive real line, i.e., letting z = reiθ with now θ ∈ (0, 2π]. We redefine

(
reiθ

)1/2
=


√
reiθ/2, 0 < θ ≤ π,

−
√
reiθ/2, −π < θ ≤ 0,

where
√
· is the default principal-value square root. Visually, our redefined square root function is

displayed in Figure 2.2.6b, where the pasting of the default +
√
z and −

√
z at the negative real line

is noticeable as a blank section across a continuous flow of colors. The branch cut for ln(z) does not

impact the continuum limit to exist numerically – at least on the upper-half k-plane for half-line

problems.

Remark 2.2.3. Like in Section 2.2.2, solving the fourth-order discretization (2.2.26) with a Neu-

mann boundary condition at x = 0 leads to a solution that is one less order of accuracy than that

of the PDE stencil. After inverting the global relation for this IBVP, the “solution” depends on

four unknowns: fi(W,T ) for i = −2, . . . , 1. The three nontrivial symmetries in the global relation
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formulas only remove two fi(W,T ) terms. In order to not introduce more unknowns, two linearly

independent discretizations to eliminate the remaining two unknowns are:

f1 − f−1

2h
= V +

h2

6
Ṽ and

f−2 − 6f−1 + 3f0 + 2f1
6h

= V,

after taking time transforms of v(t) = qx(0, t) and ṽ(t) = v′(t) = qxxx(0, t). The first stencil’s

accuracy is O(h4), while the second’s is O(h3), where the O(h3) terms depend on q4x(0, t). Replacing

this last discretization with a wider, more accurate stencil introduces more unknowns that no linearly

independent discretizations can eliminate. Hence, the SD-UTM solution with these discretizations

is third-order accurate.

2.3 The Linear Schrödinger Equation

We consider the linear Schrödinger (LS) equation

iqt +
1

2
qxx = 0 or qt =

i

2
qxx. (2.3.1)

In contrast to the dissipative heat equation, this problem is dispersive.

2.3.1 Centered Discretization of qt =
i
2qxx with Dirichlet boundary condition

We begin with the half-line IBVP
qt =

i
2qxx, x > 0, t > 0,

q(x, 0) = ϕ(x), x > 0,

q(0, t) = u(t), t > 0,

(2.3.2)

using a centered discretization for qxx,

q̇n(t) =
i

2

(
qn+1(t)− 2qn(t) + qn−1(t)

h2

)
. (2.3.3)

The local and dispersion relations are, respectively,

∂t

(
e−iknheWtqn

)
=

i

2h2
∆
(
e−ik(n−1)heWtqn − e−iknheWtqn−1

)
, (2.3.4)

W (k) =
i

2

(
2− eikh − e−ikh

h2

)
=

i

h2
[1− cos(kh)] . (2.3.5)

With the Dirichlet boundary condition, our transforms begin at n = 1 instead of at n = 0, resulting

in the global relation

eWT q̂(k, T )− q̂(k, 0)− i

2

[
e−ikhf0 − f1

h

]
= 0, Im(k) ≤ 0. (2.3.6)
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To obtain our “solution” formula, we take the inverse transform,

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h

ieiknhe−WT

2

[
e−ikhf0 − f1

h

]
dk. (2.3.7)

The dispersion relation (2.3.5) admits the nontrivial symmetry ν1(k) = −k up to periodic copies.

Hence, the global relation (2.3.6) with ν1(k) is valid in the upper-half plane, including the real line,

so that there is no need to deform in order to eliminate the unknown f1(W,T ) in (2.3.7). We find

f1 = eikhf0 − 2ih
[
q̂(−k, 0)− eTW q̂(−k, T )

]
,

so that

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
i
(
e−ikh − eikh

)
2h

f0 − q̂(−k, 0)

]
dk

+
1

2π

∫ π/h

−π/h
eiknhq̂(−k, T ) dk.

(2.3.8)

As before, one shows that the last term does not contribute. Therefore, the solution to this half-line

IBVP is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk − 1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(−k, 0)− sin(kh)

h
f0

]
dk. (2.3.9)

Since a centered stencil was used to obtain (2.3.9), the modified PDE which this semi-discrete

solution better approximates solutions of is similar to (2.2.12) derived for the heat equation. Instead

of being dissipative, we have the dispersive PDE pt = (i/2)pxx+(ih2/24)p4x. Solution (2.3.9) solves

this modified PDE to fourth-order, where the dispersive behavior of the second term on the right-

hand side is evident for large t and fixed h. Because this term is O
(
h2
)
, we can diminish the excess

dispersion by decreasing h.

The continuous UTM solution [17] to (3.3.1) is

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk − 1

2π

∫ ∞

−∞
eikxe−W̃T [q̂(−k, 0)− kF0] dk, (2.3.10)

with dispersion relation W̃ (k) = ik2/2 and nontrivial symmetry ν̃1 = −k. The semi-discrete solution

(2.3.9) converges to its continuous counterpart solution (2.3.10) in the continuum limit.

We examine the numerical solution to
qt =

i
2qxx, x > 0, t > 0,

q(x, 0) = ϕ(x) = e−x cos (2πx) , x > 0,

q(0, t) = u(t) = cos (5πt) , t > 0,

(2.3.11)

Like the heat equation, the continuous solution to this problem can be written in terms of error

functions of imaginary argument. The semi-discrete solution for the second-order finite-difference

approximation (2.3.3) is given by (2.3.9). Figure 2.3.1 shows the dispersive nature of the real and

imaginary components of the solution, along with the square of the modulus.



35

(a) (b)

(c) (d)

Figure 2.3.1: (a) - (c) Real and imaginary parts and modulus squared of the semi-discrete solution

profiles (2.3.9) at various T for IBVP (2.3.11) with h = 0.01. (d) Error plot of the semi-discrete

solution (2.3.9) relative to the exact solution as h→ 0 with T = 0.1.
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2.3.2 Centered Discretization of qt =
i
2qxx with Neumann boundary condition

We consider the same centered-discretized LS equation as above with a Neumann boundary

condition: 
qt =

i
2qxx, x > 0, t > 0,

q(x, 0) = ϕ(x), x > 0,

qx(0, t) = v(t), t > 0.

(2.3.12)

Here, q0(t) is unknown, and we choose the discrete Fourier transform to start from n = 0 instead of

from n = 1. The local and dispersion relations, (2.3.4) and (2.3.5) respectively, remain unchanged.

The global relation is

eWT q̂(k, T )− q̂(k, 0)− i

2

[
f−1 − eikhf0

h

]
= 0, Im(k) ≤ 0. (2.3.13)

Using the inverse transform,

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h

ieiknhe−WT

2

[
f−1 − eikhf0

h

]
dk. (2.3.14)

Like the heat equation with a Neumann boundary condition at x = 0, we apply the standard

backward discretization to qx(0, t) so as not to introduce new unknowns,

q0(t)− q−1(t)

h
= v(t).

As discussed in Section 2.2.2, this discretization drops the accuracy to O(h), visible in solution

profiles as dissipation near the boundary. The global relation (2.3.13) and the time transform of the

discretized boundary condition give the system
eWT q̂(−k, T )− q̂(−k, 0)− i

2

[
f−1 − e−ikhf0

h

]
= 0,

f0 − f−1

h
= V (t),

for the two unknowns f−1(W,T ) and f0(W,T ), where

V (W,T ) =

∫ T

0
eWtv(t) dt.

Solving the system and substituting into (2.3.14), we have

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫ π/h

−π/h
eiknhe−WT

[
i
(
eikh + 1

)
2

V (t)− eikhq̂(−k, 0)

]
dk,

(2.3.15)
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after applying similar techniques as before to remove the integral term depending on q̂(−k, T ). This
limits to the solution [17] of the continuous problem

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk − 1

2π

∫ ∞

−∞
eikxe−W̃T [iF1 − q̂(−k, 0)] dk. (2.3.16)

Lastly, consider 
qt =

i
2qxx, x > 0, t > 0,

q(x, 0) = ϕ(x) = e−x sin (2πx) , x > 0,

qx(0, t) = v(t) = 2π cos (πt) , t > 0,

(2.3.17)

with the Neumann condition discretized using the standard backward stencil, giving rise to the O(h)

accurate solution (3.3.13), displayed in Figure 2.3.2.

2.4 The Convection-Diffusion Equation

2.4.1 Centered Discretization of qt = c qx + qxx with Dirichlet boundary condition

Suppose the convection-diffusion IBVP is given with a Dirichlet boundary condition:
qt = c qx + qxx, x > 0, t > 0,

q(x, 0) = ϕ(x), x > 0,

q(0, t) = u(t), t > 0,

(2.4.1)

and consider centered discretizations for both spacial derivatives:

q̇n = c

(
qn+1 − qn−1

2h

)
+
qn+1 − 2qn + qn−1

h2
, (2.4.2)

where c ∈ R is the advection speed. Although we saw in Section 2.1 that the natural discretizations

for qx in the advection equations were purely one-sided, this IBVP is second-order, so we proceed with

a stencil that is also second-order to preserve the O
(
h2
)
accuracy from the centered-discretization

of qxx.

The local relation is

∂t

(
e−iknheWtqn

)
= ∆

(
a

h
e−ik(n−1)heWtqn −

b

h
e−iknheWtqn−1

)
, (2.4.3)

with

a =
1

h
+
c

2
, b =

1

h
− c

2
,

and

W (k) =
2

h2
− aeikh + be−ikh

h
. (2.4.4)
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(a) (b)

(c) (d)

Figure 2.3.2: (a) - (c) Real and imaginary parts and modulus squared of the semi-discrete solution

profiles (3.3.13) at various T for IBVP (2.3.17) with h = 0.01. (d) Error plot of the semi-discrete

solution (3.3.13) relative to the exact solution as h→ 0 with T = 1.
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The global relation is then

eWT q̂(k, T )− q̂(k, 0)−
[
be−ikhf0 − af1

]
= 0, Im(k) ≤ 0, (2.4.5)

so that the “solution” is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
be−ikhf0 − af1

]
dk. (2.4.6)

Returning to (2.4.4), the symmetries are found to be ν0(k) = k and

ν1(k) =
−kh− π

h
+
i

h
ln

(
ch+ 2

ch− 2

)
.

Note that regardless of the sign of (ch+ 2)/(ch− 2),

Im (ν1) = −Im(k) +
1

h
ln

∣∣∣∣ch+ 2

ch− 2

∣∣∣∣ ≤ 0 ⇒ Im(k) ≥ 1

h
ln

∣∣∣∣ch+ 2

ch− 2

∣∣∣∣
is the condition for the global relation (2.4.5) with ν1(k) to be valid, namely

eWT q̂(ν1, T )− q̂(ν1, 0)−
[
be−iν1hf0 − af1

]
= 0. (2.4.7)

For convenience, we define

kν =
1

h
ln

∣∣∣∣ch+ 2

ch− 2

∣∣∣∣
and the region H =

{
k ∈ C

∣∣∣ Im(k) ≥ kν

}
, with

∂H =

{
k ∈ C

∣∣∣ −π
h

≤ Re(k) ≤ π

h
and Im(k) = kν

}
,

since we are only interested in the 2π/h interval centered at the origin.

We now consider three different cases for c:

(i) c ̸= ± 2
h

(a) c > 0

(b) c ≤ 0

(ii) c = 2
h

(iii) c = − 2
h ,

where we also address c→ ±∞.

(i) (a) If c > 0 and ignoring c = 2/h for now, we see that kν > 0, such that (2.4.7) is not valid on

our integration path along the real line. SinceW (k) →W (z) would introduce an essential

singularity, the transformation z = eikh will not help remove a boundary term. Therefore,
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Im(k)

Re(k)

π
h

−π
h

H

C

Figure 2.4.1: The shaded region denotes where the global relation (2.4.7) is valid with k → ν1(k)

and the closed contour C.

we must deform our integration path off from the real line, so that we can use (2.4.7).

Consider the counterclockwise contour C in Figure 2.4.1. The first integral in (2.4.6) is

fine how it is, so we must only deform the second integral from [−π/h, π/h] to ∂H like

we have done before. From periodicity and Cauchy’s Theorem, (2.4.6) is deformed to

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫
∂H

eiknhe−WT
[
be−ikhf0 − af1

]
dk, (2.4.8)

where now we can make use of (2.4.7). Solving for f1(W,T ) and plugging into (2.4.8)

gives

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫
∂H

eiknhq̂(ν1, T ) dk

− 1

2π

∫
∂H

eiknhe−WT
[
q̂(ν1, 0) + a

(
eikh − eiν1h

)
f0

]
dk,

(2.4.9)

since b
(
e−ikh − e−iν1h

)
= −a

(
eikh − eiν1h

)
. For the integral term containing q̂(ν1, T ), we

see that

1

2π

∫
∂H

eiknhq̂(ν1, T ) dk =
h

2π

∞∑
m=1

qm(T )

[∫
∂H

eiknhe−iν1mh dk

]
=

h

2π

∞∑
m=1

qm(T )I(n,m)

with

I(n,m) =

∫
∂H

eiknhe−iν1mh dk.
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Since

exp (−iν1mh) = ei(kh+π)m
(
ch+ 2

ch− 2

)m
,

we have

I(n,m) =

∫
∂H

eiknhei(kh+π)m
(
ch+ 2

ch− 2

)m
dk =

(
ch+ 2

ch− 2

)m
eiπm

∫
∂H

eik(n+m)h dk = 0.

Hence, the final solution to our convection-diffusion problem with c > 0 is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂H

eiknhe−WT
[
q̂(ν1, 0) + a

(
eikh − eiν1h

)
f0

]
dk.

(2.4.10)

Lastly, note that as c→ ∞ (advection becomes more dominant than diffusion),

kν → 1

h
ln

∣∣∣∣chch
∣∣∣∣ = 0,

for a fixed h, so that

∂H →
{
k ∈ C

∣∣∣ −π
h

≤ Re(k) ≤ π

h
and Im(k) = 0

}
,

implying no deformation is necessary. This is similar to studying the singular perturbation

problem

qt = qx + ϵ qxx,

for ϵ→ 0.

(b) Unlike c > 0, if c ≤ 0 and ignoring c = −2/h for now, we see that kν ≤ 0, such that (2.4.7)

is valid on our integration path along the real line and there is no need to deform. Solving

for f1(W,T ) like above, (2.4.6) becomes (2.4.10) except back on the interval [−π/h, π/h]:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(ν1, 0) + a

(
eikh − eiν1h

)
f0

]
dk.

(2.4.11)

Of course, for consistency, we could deform to ∂H like for c > 0. Of course, if c = 0, we

are solving the discretized heat equation (2.2.2). As c→ −∞,

kν → 1

h
ln

∣∣∣∣chch
∣∣∣∣ = 0,

for a fixed h, so that

∂H →
{
k ∈ C

∣∣∣ −π
h

≤ Re(k) ≤ π

h
and Im(k) = 0

}
,

implying again no deformation is necessary.
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(ii) If we set c = 2/h, then a = 2/h and b = 0, so that the stencil becomes purely forward one-sided

and the dispersion relation (2.4.4) now only produces the trivial symmetry. However, (2.4.6)

becomes

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk − a

2π

∫ π/h

−π/h
eiknhe−WT f1 dk, (2.4.12)

losing dependence on f0(W,T ). The problem is now ill-posed, because it does not incorporate

the necessary Dirichlet boundary condition. Furthermore, we can argue away the last integral,

because for this case the dispersion relation is written as a polynomial in z with all positive

degrees: W (z) =
(
2/h2

)
(1− z). Deforming to an interval that goes off to +i∞, the solution

when c = 2/h depends only on the initial condition:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk. (2.4.13)

(iii) Lastly, if c = −2/h, we have a = 0 and b = 2/h, so that now the stencil becomes purely back-

ward one-sided and the dispersion relation (2.4.4) again only produces ν0(k) = k. Therefore,

the “solution” (2.4.6) is the final solution, except with a = 0:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

b

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk, (2.4.14)

where we cannot argue away the last integral, since W (z) with z = eikh would introduce

an essential singularity. Note that this resembles the backward discretization problem for

qt = −c̃ qx if we let c̃ = |c| = 2/h.

We next apply the continuous UTM to the IBVP (2.4.1). With dispersion relation W̃ (k) =

k2 − ikc, the global relation is

q̂(k, 0)− eW̃T q̂(k, T )− [F1 + (c+ ik)F0] = 0, Im(k) ≤ 0.

Inverting the transform, we obtain our first “solution:”

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk − 1

2π

∫ ∞

−∞
eikxe−W̃T [F1 + (c+ ik)F0] dk. (2.4.15)

Plugging in the nontrivial symmetry ν̃1(k) = ic− k into the global relation,

q̂(ν̃1, 0)− eW̃T q̂(ν̃1, T )− [F1 − ikF0] = 0, Im(k) ≤ c,

implies we have to lift the integration path off the real line, up to Im(k) = c when c > 0, but no

deformation is necessary if c < 0. With the Dirichlet boundary condition, the solution for c > 0 is

written as

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−WT q̂(k, 0) dk − 1

2π

∫
∂Ω
eikxe−WT [q̂(ν̃1, 0) + (c+ 2ik)F0] dk, (2.4.16)
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where we introduce

∂Ω =
{
k ∈ C

∣∣∣ −∞ ≤ Re(k) ≤ ∞ and Im(k) = c
}
,

and
1

2π

∫
∂Ω
eikxq̂(ν1, T ) dk = 0.

Similarly, if c < 0, the solution is (2.4.16) except back on the real line:

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−WT q̂(k, 0) dk − 1

2π

∫ ∞

−∞
eikxe−WT [q̂(ν̃1, 0) + (c+ 2ik)F0] dk. (2.4.17)

Taking the continuum limit of the dispersion relation (2.4.4) and the nontrivial symmetry ν1(k)

gives us limh→0W (k) = k2 − ikc and limh→0 ν1(k) = ic − k, converging to their continuous coun-

terparts. Therefore, taking the continuum limit of (2.4.10) recovers the continuous solution (2.4.16)

with

lim
h→0

kν = lim
h→0

1

h
ln

∣∣∣∣ch+ 2

ch− 2

∣∣∣∣ = c

for any c and hence limh→0 ∂H = ∂Ω. Since the discrete solution (2.4.11) and continuous solution

(2.4.17) with c < 0 are identical to the solutions with c > 0, it is clear that taking the continuum

limit of (2.4.11) produces (2.4.17).

Remark 2.4.1. The discrete solutions (2.4.13) and (2.4.14) for c = ±2/h exist only in the discrete

realm and are ill-posed as we take h → 0. Neither of the dispersion relations converge to the

continuous one for these cases of c, not to mention the 1/h in the second term of (2.4.14).

2.5 Small-Time Increments

For nonlinear IBVPs, neither the semi-discrete nor the continuous UTM is applicable in general.

Although the UTM can be used to solve IBVPs for integrable PDEs, our goal is broader: we are

interested in numerically solving IBVPs for quasilinear PDEs (1.1.1), where the most nonlocal stencil

is applied to the linear problem. To do so accurately, we can employ split-step methods following

the ideas from operator splitting.

A split-step method requires the repeated computation of the solution to the linear problem

(1.1.3) with t ≪ 1, but the integral representations from semi-discrete UTM can be expensive to

compute. In what follows, we evaluate the semi-discrete UTM solutions using a t≪ 1 approximation

to derive an approximate semi-discrete UTM solution with predetermined accuracy in t. Here, we

demonstrate this procedure for the advection equation qt = −c qx on the half line with the standard

backward stencil (2.1.12) applied to qx, while more details and further investigations will be presented

in a future paper. Since a split-step approach solves an updated IBVP starting from t0, we generalize
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the original IBVP (2.1.11) to 
qt = −c qx, x > 0, t > t0

q (x, t0) = ϕ(x), x > 0,

q(0, t) = u(t), t > t0,

(2.5.1)

where ϕ(x) is the output from the previous step.

Starting from t0, the time transforms from the semi-discrete UTM are redefined as

fj (W, t0, T ) =

∫ T

t0

eWtqj(t) dt, k ∈ C,

which, for the IBVP (2.5.1), gives the global relation

∞∑
n=1

h

∫ T

t0

[
∂t

(
e−iknheWtqn

)
+
c

h
∆
(
e−iknheWtqn−1

)]
dt = 0

⇒ eWT q̂(k, T )− eWt0 q̂ (k, t0)− ce−ikhf0 = 0, (2.5.2)

valid for Im(k) ≤ 0. Solving for q̂(k, T ) and inverting, we obtain

qn (T ; t0) =
1

2π

∫ π/h

−π/h
eiknhe−W (T−t0)q̂ (k, t0) dk +

c

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk. (2.5.3)

Following similar arguments as before, (2.5.3) is the solution to the backward-discretized IBVP

(2.5.1) with a given Dirichlet boundary condition at x = 0 and an initial condition at t = t0. In

what follows, we expand (2.5.3) in τ = T − t0 ≪ 1, around τ = 0, so as to obtain a convenient

approximation to be used in a split-step method.

The first integral of (2.5.3) has time dependence only through e−Wτ . Expanding this exponential

gives a series of integrals that, in general, lead to more computations than necessary and introduce

an approximation error when the series is truncated. Hence, this first integral is kept as is. The

second integral of (2.5.3) has time dependence in both e−WT and f0 (W, t0, T ). We consider these

together:

e−WT f0 = e−WT

∫ T

t0

eWtq0(t) dt = e−Wτ

∫ τ

0
eWt̃q0

(
t̃+ t0

)
dt̃.

Since the limits of integration approach zero as τ → 0, we expand eWt̃q0
(
t̃+ t0

)
about t̃ = 0 up

to arbitrary O (τ r) (r = 3 for demonstration), so that the integrals have polynomial dependence on

time:

e−WT f0 = q0 (t0) τ +
q′0 (t0)−Wq0 (t0)

2
τ2 +

q′′0 (t0)−Wq′0 (t0) +W 2q0 (t0)

6
τ3 +O

(
τ4
)
.
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The second integral of (2.5.3) reduces to

c

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk =

c q0 (t0) τ

h
δ1n +

cτ2

4π

∫ π/h

−π/h
eik(n−1)h

[
q′0 (t0)−Wq0 (t0)

]
dk

+
cτ3

12π

∫ π/h

−π/h
eik(n−1)h

[
q′′0 (t0)−Wq′0 (t0) +W 2q0 (t0)

]
dk +O

(
τ4
)
,

where δij is the Kronecker delta. Therefore, after defining ϕ(x) = q (x, t0) and u(t) = q(0, t), the

solution (2.5.3) is expanded as

qn(τ) =
1

2π

∫ π/h

−π/h
eiknhe−Wτ ϕ̂(k) dk + K1(n)τ + K2(n)τ

2 + K3(n)τ
3 + O

(
τ4
)
, (2.5.4)

with

K1(n) =
c u (t0)

h
δ1n,

K2(n) =
c

4π

∫ π/h

−π/h
eik(n−1)h

[
u′ (t0)−Wu (t0)

]
dk,

K3(n) =
c

12π

∫ π/h

−π/h
eik(n−1)h

[
u′′ (t0)−Wu′ (t0) +W 2u (t0)

]
dk.

A similar process can be repeated for other IBVPs.

As a numerical example, consider the IBVP
qt = −qx, x > 0, t > t0,

q (x, t0) = ϕ(x) =
e−2x (sin (4πx) + 1)

2
, x > 0,

q(0, t) = u(t) =
1

2
+ (1− 2π)te−t, t > t0,

(2.5.5)

with t0 = 0. Figure 2.5.1a depicts the errors, relative to the exact solution, as h → 0 for the semi-

discrete UTM solution (2.1.16) and small-time approximated semi-discrete UTM solution (2.5.4) up

to terms of order 2. Despite only including terms up to second order, the errors in the plot are

indistinguishable, implying we need not include higher-order terms to obtain a suitable small-time

approximate solution (2.5.4). Figure 2.5.1b depicts the errors for the small-time solution (2.5.4) as

τ → 0 for a fixed h, relative to (2.1.16). This plot shows that relatively large values of τ lead to an

accurate approximation to (2.1.16).
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(a) (b)

Figure 2.5.1: (a) The error (green) between the SD-UTM solution (2.1.16) and the exact solution and

the error (maroon) between the exact solution and the small-time approximated SD-UTM solution

(2.5.4) with r = 2 and τ = 10−5 as h→ 0. (b) The error between the SD-UTM solution (2.1.16) and

the small-time approximated SD-UTM solution (2.5.4) (denoted as q̃n(τ) here) for varying order r

of terms kept in the approximated solution as τ → 0 with h = 0.01.
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Chapter 3

FINITE INTERVAL PROBLEMS

Again, we begin by discussing advection equations in some detail to show how the UTM is

applied to semi-discrete problems on the finite interval. The procedure is fairly similar to the

previous chapter, but introducing an additional boundary at x = L can lead to pole singularities

within the SD-UTM integral representations. We will show how to tackle these and other features

that commonly arise in finite-interval problems.

To compare with standard numerical approaches for finite-interval problems, finite-difference

solutions are obtained using a method-of-lines approach with the same spatial discretization as the

semi-discrete UTM approach, so that we set up the full discretization of the PDE into a large, but

sparse, system of ordinary differential equations (ODEs). For example, the centered-discretized heat

equation with Dirichlet boundary conditions is formulated as

qt(x, t) = qxx(x, t) ⇒ q̇n(t) =
qn+1(t)− 2qn(t) + qn−1(t)

h2
⇒ Q̇(t) = AQ(t) + g(t) + p(t),

where Q(t) ∈ RN is a column vector composed of all qn(t), A ∈ RN×N is a sparse tridiagonal matrix,

and both g(t) ∈ RN and p(t) ∈ RN are sparse column vectors that include boundary conditions from

the left and right, respectively. The system of ODEs above is discretized in time and solved via the

forward Euler (FE), Runge-Kutta fourth-order (RK4), backward Euler (BE), and trapezoidal (TR)

methods. In summary, we compare the exact solution of an IBVP to these four classical numerical

solutions and the SD-UTM explicit solution, which exactly solves the spatially discretized problem,

i.e., requires no time-stepping. These finite-difference methods are for comparisons and not the main

focus, so we discuss implementation and other details only when necessary. Of course in practice,

more sophisticated explicit methods would be used, but we proceed with the standard methods for

demonstration purposes. The exact solutions to the example second-order IBVPs are derived using

classical methods, like Fourier sine/cosine series.

3.1 Advection Equations

3.1.1 Forward Discretization of qt = c qx

We start with the continuous problem for the advection equation qt = c qx with wave-speed c > 0:
qt = c qx, 0 < x < L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L,

q(L, t) = v(0)(t), t > 0.

(3.1.1)



48

For well posedness, the IBVP requires the initial condition and a Dirichlet boundary condition at

x = L. Since information travels from right to left, a forward discretization of qx(x, t) is natural,

and we reconsider (2.1.2):

q̇n(t) = c
qn+1(t)− qn(t)

h
.

Like in Section 2.1.1, (2.1.2) is rewritten as the one-parameter family of problems (2.1.3) with

dispersion relation (2.1.4), which only has the trivial symmetry ν0(k) = k, up to periodic copies.

From the local relation (2.1.3), we obtain the global relation by taking a time transform over t ∈ [0, T ]

and a finite sum from n = 0 (because q0(t) is not known) to n = N (because qN+1(t) is known):

N∑
n=0

h

∫ T

0

[
∂t

(
e−iknheWtqn

)
− c

h
∆
(
e−ik(n−1)hqn

)
eWt

]
dt = 0

⇒ eWT q̂(k, T )− q̂(k, 0)− c
[
−eikhf0 + e−ik(L−h)g0

]
= 0, k ∈ C. (3.1.2)

Solving for q̂(k, T ) and inverting using the inverse transform (1.3.1b),

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eiknhe−WT

[
−eikhf0 + e−ik(L−h)g0

]
dk. (3.1.3)

Since the Fourier transform q̂(k, 0) consists of a finite sum, both integrands of (3.1.3) are defined for

all k ∈ C. We refer to the expression above as the “solution,” since f0(W,T ) in the second integral

term is not known, unlike g0(W,T ). For n = 0, . . . , N , eik(n+1)h decays in the upper-half plane and

e−WT is bounded in the shaded regions, including on the boundary, of Figure 2.1.1.

Following the approach discussed for half-line semi-discrete problems, we show that (3.1.3) does

not depend on f0(W,T ), i.e., no Dirichlet boundary data at x = 0 is required by substituting

the definition of f0(W,T ) and deforming to the new path D+ (see Section 2.1.1). Because of the

exponential decay above the real line,

c

2π

∫ π/h

−π/h
eik(n+1)he−WT f0 dk = 0.

It follows that the solution to the finite interval IBVP with the forward discretization (2.1.2) depends

only on the initial condition and Dirichlet data at x = L:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT g0 dk. (3.1.4)

Note that e−WT grows in the lower-half plane, and we cannot deform and remove the integral

contribution from g0(W,T ) for the same n. Thus, (3.1.4) is the final representation of the solution.

For reference, we solve the IBVP (3.1.1) using the continuous UTM, following Steps (1) – (8)

from Section 1.2. In short, we find the dispersion relation W̃ (k) = −ick, with only the trivial

symmetry ν̃0(k) = k, and the global relation

q̂(k, 0)− eW̃T q̂(k, T ) + c
(
−F0 + e−ikLG0

)
= 0, k ∈ C,
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where

q̂(k, t) =

∫ L

0
e−ikxq(x, t) dx, k ∈ C,

and the time transform at the right boundary is similarly defined as the transform on the left:

Gj(W̃ , T ) =

∫ T

0
eW̃ t ∂

jq

dxj

∣∣∣∣
x=L

dt, k ∈ C.

After inverting the Fourier transform and showing there is no dependence on F0(W̃ , T ), the solution

is represented as

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk +

c

2π

∫ ∞

−∞
eik(x−L)e−W̃TG0 dk. (3.1.5)

Taking the limit as h → 0 of (3.1.4), we recover (3.1.5), where the limits of integration approach

±∞ at rate 1/h, limh→0W (k) = −cik = W̃ , and limh→0 e
ik(nh−L+h) = eik(x−L) with nh = xn → x

and

lim
h→0

gj(W,T ) = lim
h→0

∫ T

0
eWtq(L+ jh, t) dt =

∫ T

0
eW̃ tq(L, t) dt = G0(W̃ , T ),

for any fixed j.

After substituting the definitions of q̂(k, 0) and G0 in (3.1.5), we recover the classical, traveling

wave solution:

q(x, T ) =

ϕ(x+ cT ) , 0 < x < L− cT,

v(0)
(
x−L
c + T

)
, L− cT < x < L.

(3.1.6)

Series Representation

To facilitate numerical computation, we simplify the solution (3.1.4) by substituting the defini-

tions of q̂(k, 0) and g0(W,T ). For the initial-condition integral term with ϕ(xn) ≡ ϕn,

1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk =

N∑
m=0

[
h

2π

∫ π/h

−π/h
eik(n−m)he−WT dk

]
ϕm.

The integral can be evaluated with z = eikh and W (z) = c(1− z)/h:

h

2π

∫ π/h

−π/h
eik(n−m)he−WT dk =

e−cT/h

2πi

∮
|z|=1

zn−m−1e
cT
h z dz = e−cT/hRes

z=0

{
zn−m−1e

cT
h z

}
=

e−cT/h

(m− n)!

(
cT

h

)m−n
.

Since m ≥ n, the initial condition integral gives

1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk =

N∑
m=n

e−cT/h

(m− n)!

(
cT

h

)m−n
ϕm = e−cT/h

N−n∑
m=0

(
cT

h

)m ϕn+m
m!

.
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The boundary integral from (3.1.4) is treated similarly by substituting the definition for g0(W,T )

in terms of v(0)(t):

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT g0 dk = c

∫ T

0

[
1

2π

∫ π/h

−π/h
eik(n−N)he−W (T−t) dk

]
v(0)(t) dt,

after substituting L = (N + 1)h. Again with z = eikh,

1

2π

∫ π/h

−π/h
eik(n−N)he−W (T−t) dk =

e−c(T−t)/h

2πih

∮
|z|=1

zn−N−1e
c(T−t)
h z dz

=
e−c(T−t)/h

h
Res
z=0

{
zn−N−1e

c(T−t)
h z

}
=
e−c(T−t)/h

h

(
c(T − t)

h

)N−n 1

(N − n)!
.

Hence,

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT g0 dk =

c

h

∫ T

0
e−c(T−t)/h

(
c(T − t)

h

)N−n v(0)(t)

(N − n)!
dt.

Thus, (3.1.4) is rewritten as

qn(T ) = e−cT/h
N−n∑
m=0

(
cT

h

)m ϕn+m
m!

+
c

h

∫ T

0
e−c(T−t)/h

(
c(T − t)

h

)N−n v(0)(t)

(N − n)!
dt. (3.1.7)

Unlike for the classical continuous solution (3.1.6), the initial and boundary conditions in the

semi-discrete solution (3.1.7) are inseparable and both contribute at every mesh point. For compu-

tational purposes, the factorials become too large to store in finite precision as we refine h, and one

last rewrite is in order. For the sum in (3.1.7),(
cT

h

)m 1

m!
= exp

[
m ln

(
cT

h

)
− ln [Γ (m+ 1)]

]
,

so that combining with e−cT/h gives

e−cT/h
N−n∑
m=0

(
cT

h

)m ϕn+m
m!

=

N−n∑
m=0

exp

[
m ln

(
cT

h

)
− ln [Γ (m+ 1)]− cT

h

]
ϕn+m.

After a similar rewrite for the integral term, (3.1.7) becomes

qn(T )=

N−n∑
m=0

exp

[
m ln

(
cT

h

)
− ln [Γ (m+ 1)]− cT

h

]
ϕn+m

+ c

∫ T

0
exp

[
(N − n) ln

(
c(T − t)

h

)
− ln [Γ (N − n+ 1)]− c(T − t)

h
− ln(h)

]
v(0)(t) dt.

(3.1.8)
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Using Matlab, we can make use of the built-in integral() and gammaln() functions.

From the stencil (2.1.2), we know that (3.1.4), and hence (3.1.8), is a first-order accurate approxi-

mation to the solution q(x, T ) of the IBVP (3.1.1). However, deriving the modified equation (2.1.10)

implies that (3.1.4) is a second-order accurate solution approximation to the advection-diffusion

PDE, so we expect solution profiles of (3.1.4) to travel at the correct speed c, while dissipating in

time.

As an explicit example, we compute the numerical solution of
qt = qx, 0 < x < 1, t > 0,

q(x, 0) = ϕ(x) = sech [200(x− 0.925)] + sech [40(x− 0.425)] , 0 < x < 1,

q(1, t) = v(0)(t) = ϕ(1 + t), t > 0,

(3.1.9)

with c = 1 and L = 1, so that the boundary condition acts as the continuation of the initial condition

from outside the interval for t > 0. The initial condition consists of two peaks of equal heights, except

the leading peak is wider than the trailing peak. We solve (3.1.9) with the aforementioned finite-

difference numerical methods and the SD-UTM solution (3.1.8) via a first-order spatial forward

discretization. Figure 3.1.1 shows the semi-discrete solution qn(t) (left panel) and a log-log error

plot (right panel) of the ∞-norm of qn(0.25) − q(xn, 0.25), as a function of h, where the finite-

difference schemes use a fixed time step ∆t = 2.5 × 10−3. The (xn, t)-plot in Figure 3.1.2a shows

that both peaks decrease in amplitude and widen as time increases, predicted by the modified PDE

(2.1.10), with the narrow peak quickly dissipating compared to the wider peak. The error plot in

Figure 3.1.2b shows that SD-UTM works well compared to the traditional numerical methods. Of

course, the finite difference methods will only converge when h,∆t → 0 together, but we choose to

keep ∆t constant as h→ 0 to directly show that the SD-UTM solutions do not require any intricate

stability conditions. We similarly keep ∆t fixed for most numerical examples in this thesis (see

Section 3.4 for the exception). The explicit methods become unstable after their CFL conditions

are violated [43] and the implicit methods’ errors are asymptotic to the temporal truncation errors

as h → 0 for a fixed time step ∆t. Figure 3.1.2b demonstrates there is no CFL condition for the

SD-UTM to succeed, while, for example, FE only works well for large h values where ∆t/h ≤ 1. The

implicit methods do not have such restrictions, but have truncation error O (h) + O (∆tp), where

p = 1 for BE and p = 2 for TR. For a fixed ∆t, only the spatial error decreases as h → 0, while

O (∆tp) remains and eventually dominates. The asymptotic limits of BE and TR in Figure 3.1.2b

as h → 0 reveal this temporal truncation error. Figure 3.1.2b implies that the SD-UTM solution

(3.1.8) has a slow convergence rate to the continuous solution for this IBVP, likely due to the sharp

peak, reaching the expected O (h) for h < 10−5.

Figure 3.1.2 compares the exact solution with the numerical solution profiles for all methods,

except FE and RK4 due to their instabilities, with h = 10−4. For the SD-UTM, we simply compute

the solution (3.1.8) at T = 0.25 once, while the finite-difference solutions time-step to T = 0.25
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(a) (b)

Figure 3.1.1: (a) The semi-discrete solution (3.1.8) evaluated at various T with h = 0.005. (b) Error

plot of the semi-discrete solution (3.1.8) and finite-difference schemes relative to the exact solution

as h→ 0 with T = 0.25 and ∆t = 2.5× 10−3.

with step size ∆t = 2.5× 10−3. From the solution plot, it appears that every method is dissipative,

including FE and RK4 (not shown), and TR is also dispersive. With the SD-UTM, both peaks

drop in amplitude and diffuse, while the dispersive nature of TR is apparent near the sharper peak.

Despite the lack of a dispersive tail like the other implicit method, it appears that BE is more

dissipative than all the other tested methods. In summary, the SD-UTM performs better than the

finite-difference methods presented. Even though dissipation is evident, dispersion is not.

3.1.2 Higher-Order One-Sided Discretization of qt = c qx

All forward discretizations produce fj(W,T ) terms with a coefficient Cj e
iγjkh for some Cj ∈ C

and γj ∈ N in the global relation. Coupled with a polynomial dispersion relation W (z), we can

remove all integral terms containing any fj(W,T ) from “solutions” using the steps above. On

the opposite side of the interval, more terms with gj(W,T ) are introduced, but with the help of

symmetries or additional boundary conditions given by the PDE, we can remove the unknown

gj(W,T ) terms. The steps in the semi-discrete UTM become more intricate and tedious, yet remain

systematic.
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(a) (b)

Figure 3.1.2: (a) The numerical solutions to IBVP (3.1.9) at T = 0.25 with h = 10−4 for all the

methods and ∆t = 2.5×10−3 for the finite-difference methods. (b) The difference between the exact

solution and the numerical solutions under the same conditions as (a).

We consider a second-order stencil for a forward discretization of qx(x, t):

q̇n(t) = c
−3qn(t) + 4qn+1(t)− qn+2(t)

2h
. (3.1.10)

We find the local relation

∂t

(
e−iknheWtqn

)
=

c

2h
∆
(
4e−ik(n−1)heWtqn − e−ik(n−1)heWtqn+1 − e−ik(n−2)heWtqn

)
, (3.1.11)

with dispersion relation

W (k) = c
3− 4eikh + e2ikh

2h
. (3.1.12)

Taking a time transform and a finite sum from n = 0 to n = N , the global relation is

eWT q̂(k, T )− q̂(k, 0)− c

2

(
f(k, T ) + e−ikLg(k, T )

)
= 0, k ∈ C, (3.1.13)

where f(k, T ) = e2ikhf0 − 4eikhf0 + eikhf1,

g(k, T ) = 4eikhg0 − e2ikhg0 − eikhg1.
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−π
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Im(k)

Re(k)

π
h

−π
h

(b)

Figure 3.1.3: (a) The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded, for the

dispersion relation (3.1.12). (b) The shaded regions depict where the global relation with k → ν1(k)

is valid, i.e., Im(ν1) ≤ 0.

Solving for q̂(k, T ) and using the inverse transform,

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eiknhe−WT

[
f(k, T ) + e−ikLg(k, T )

2

]
dk.

(3.1.14)

We can deform and remove f(k, T ) from “solution” (3.1.14), so that

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT

[(
4− eikh

)
g0 − g1

2

]
dk.

(3.1.15)

Figure 3.1.3a illustrates this, since e−WT is bounded in the whole upper-half plane. Thus, the second

integral term of (3.1.15) depends only on the transformed Dirichlet data and data at the unknown

ghost point qN+2(T ) = q(L+ h, T ) through g1(W,T ).

The dispersion relation (3.1.12) has the nontrivial symmetry

ν1(k) =
ln
(
4− eikh

)
ih

,

up to periodic copies. The global relation (3.1.13) with k → ν1(k) is valid for all k ∈ C, except for
a bounded region in the lower-half plane shown in Figure 3.1.3b. We solve this global relation for
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the unknown g1(W,T ) to find

g1 = eikhg0 − eikh
(
4− eikh

)N+1
f0 +

(
4− eikh

)N+1
f1 +

2
(
4− eikh

)N
c

[
q̂(ν1, 0)− eWT q̂(ν1, T )

]
,

where eiν1L =
(
4−eikh

)N+1
with L = (N+1)h. Substituting into (3.1.15) does not only reintroduce

dependence on f0(W,T ) and f1(W,T ) that can no longer be deformed away, but it also introduces

a nonzero contribution from q̂(ν1, T ), the transform of the solution itself.

In Section 2.1.4, we presented an alternative route to obtain a valid solution representation. Re-

turning to the continuous problem (3.1.1), the PDE itself gives first and second-derivative boundary

conditions from the Dirichlet condition:

qx(L, t) =
v̇(t)

c
, v̇(t) =

d

dt
v(0)(t), (3.1.16a)

qxx(L, t) =
v̈(t)

c2
, v̈(t) =

d2

dt2
v(0)(t). (3.1.16b)

We discretize the derivative conditions using centered second-order accurate stencils and apply time

transforms:
g1 − g−1

2h
=
V̇

c
, V̇ (W,T ) =

∫ T

0
eWtv̇(t) dt, (3.1.17a)

g1 − 2g0 + g−1

h2
=
V̈

c2
, V̈ (W,T ) =

∫ T

0
eWtv̈(t) dt. (3.1.17b)

Solving (3.1.17a) and (3.1.17b) for g1(W,T ) and g−1(W,T ) gives

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT

[(
3− eikh

)
2

g0

]
dk

− c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT

[
h

2c
V̇ +

h2

4c2
V̈

]
dk.

(3.1.18)

The additional steps of including (3.1.17a) and (3.1.17b) allow (3.1.18) to maintain O(h2) accuracy.

The modified PDE corresponding to the second-order discretization (3.1.10) is the dispersive PDE

pt = cpx − (ch2/3)pxxx, and (3.1.18) is its third-order approximation (the omitted higher-order

term in the modified PDE is O(h3)). The stencils (3.1.17a) and (3.1.17b) are both fourth-order

approximations to their respective modified PDEs with nonzero O(h2) coefficients. As before, the

semi-discrete solution (3.1.18) converges to (3.1.5) as h → 0 and correctly loses dependence on the

Neumann boundary condition in the continuum limit.

Series Representation

We rewrite solution (3.1.18) by substituting the definitions of q̂(k, 0), g0(W,T ), and V̇0(W,T ).

For the initial-condition integral term,

1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk = e−3cT/(2h)

N−n∑
m=0

m/2∑
k=0

4m−2k(−1)k

(m− 2k)! k!

(
cT

2h

)m−2k

ϕm+n. (3.1.19)
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For the boundary integrals from (3.1.18),

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT

[(
3− eikh

)
2

g0 −
h

2c
V̇ − h2

4c2
V̈

]
dk

= 3B0

(
n, T, v(0)

)
−B1

(
n, T, v(0)

)
− h

c
B0(n, T, v̇)−

h2

2c2
B0(n, T, v̈),

with

Bj(n, T, v)=
c

4π

∫ π/h

−π/h
eik(nh−L+h+jh)e−WTV (W,T ) dk

=
ac

2h

(N−j−n)/2∑
k=0

4N−j−n−2k(−1)k

(N − j − n− 2k)! k!

∫ T

0
e−3c(T−t)/(2h)

(
c(T − t)

2h

)N−j−n−2k

v(t) dt, (3.1.20)

and

V (W,T ) =

∫ T

0
eWtv(t) dt,

after substituting definitions and expanding. Combining the initial-condition term (3.1.19) and the

boundary-condition term (3.1.20) allows for a different representation of (3.1.18), and we can use

optimized built-in functions inMatlab and other languages. As for (3.1.7), the initial and boundary

conditions contribute at every interior mesh point.

Remark 3.1.1. The choice of equations to remove additional unknowns is not necessarily unique.

The main challenge is finding equations that are linearly independent and give the desired order

of accuracy. For example, instead of the centered discretization (3.1.17a) for qx(L, t), we apply the

second-order forward stencil:

−3qN+1(t) + 4qN+2(t)− qN+3(t)

2h
=
v̇(t)

c
⇒ −3g0 + 4g1 − g2

2h
=
V̇

c
. (3.1.21)

This choice requires a second equation, different from (3.1.17b), that does not introduce any new

unknowns. We discretize qxx(L, t) using the first-order forward stencil:

qN+1(t)− 2qN+2(t) + qN+3(t)

h2
=
v̈(t)

c2
⇒ g0 − 2g1 + g2

h2
=
V̈

c2
. (3.1.22)

Interestingly, both pairs of discretizations, (3.1.17a) – (3.1.17b) and (3.1.21) – (3.1.22), give the

same expression for the unknown g1(W,T ) and the same second-order accurate solution (3.1.18). It

is noteworthy that g1(W,T ) in (3.1.17a) and (3.1.21) arises as g1/h. Similarly rewriting the g1(W,T )

term in (3.1.17b) and (3.1.22), we have

g1 − 2g0 + g−1

h
= h

V̈

c2
+O(h3),

g0 − 2g1 + g2
h

= h
V̈

c2
+O(h2),
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respectively, so that g1(W,T ) is solved (at least) to O(h2) as in (3.1.17a) and (3.1.21). To remove

g1(W,T ) from (3.1.15) without introducing new unknowns, we can discretize the Neumann condition

(3.1.16a) using the standard forward stencil to find

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT

[(
3− eikh

)
2

g0 −
h

2c
V̇

]
dk. (3.1.23)

Because of the discretization of the Neumann condition, the accuracy of (3.1.23) is O(h) in-

stead of the expected O(h2). In fact, from this discretization, the modified PDE px(L, t) =

v̇(t) + (h/2)pxx(L, t) implies local dissipation near the x = L boundary. Even so, solution (3.1.23)

converges to (3.1.5) and loses dependence on the Neumann boundary condition as h→ 0. Note that

an integral term with h2V̈ /(4c2) is the only difference between (3.1.18) and (3.1.23).

Remark 3.1.2. Unlike for the half-line problem, on a finite interval, the semidiscretized IBVPs for

the advection equation qt = −c qx (c > 0) are similar to those for qt = +c qx, except we now apply

backward stencils to qx(x, t) instead of forward ones.

Remark 3.1.3. For the half-line problem in Section 2.1.3, the centered discretization also yields a

suitable SD-UTM solution that maintains O(h2) accuracy through use of the nontrivial symmetry

ν1(k) = −k−π/h from the dispersion relation (2.1.21). In the finite interval problem, however, this

is not the case. For the IBVP (2.1.11) with c > 0 and a centered discretization, the global relation

is

eWT q̂(k, T )− q̂(k, 0)− c

[
e−ikhf0 + f1 − e−ikL

(
e−ikhg0 + g1

)
2

]
= 0, k ∈ C, (3.1.24)

so that the “solution” contains three unknowns: f1(W,T ) and both gj(W,T ) terms. Figure 2.1.6

implies we cannot argue away dependence on all gj(W,T ) terms, since we have regions of exponential

growth in both the upper and lower halves of the complex k-plane. Deforming the integration paths

onto the boundaries of the shaded regions in Figure 2.1.6 (see [17, 26, 27, 28] and future sections on

higher-order discretizations), the global relation (3.1.24) with k and k → ν1 provides two equations to

remove one fj(W,T ) and one gj(W,T ) terms, say f1(W,T ) and g1(W,T ). We require a third equation

that relates g0(W,T ) to at least one of the other fj(W,T ) or g1(W,T ) terms. Unless we have periodic

boundary conditions, there is no such relation that does not introduce more unknowns. Hence, the

SD-UTM shows that a solution to the centered-discretized IBVP (2.1.11) does not exist. As in the

higher-order discretization in Section 3.1.2, we could derive and discretize the Neumann and second-

derivative boundary conditions, qx(0, t) = −u̇(t)/c and qxx(0, t) = ü(t)/c2 respectively, given by the

PDE from the available Dirichlet condition u(0)(t), with u̇(t) = du(0)(t)/dt and ü(t) = d2u(0)(t)/dt2.

However, this approach only serves to remove f1(W,T ) from the “solution,” impairing the global

relation equations with k and k → ν1 to remove the remaining g0(W,T ) and g1(W,T ). We reach
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a similar conclusion for the centered-discretized IBVP (3.1.1) with a Dirichlet condition at x = L.

Lastly, the excess unknown terms occur near the interval’s boundary where there is no prescribed

condition, so this result does not change whether or not we take into consideration the known

boundary points (the starting and ending index) in the Fourier transform q̂(k, t) definition (1.3.1a).

3.2 The Heat Equation

3.2.1 Centered Discretization of qt = qxx with Dirichlet boundary conditions

Consider the problem 

qt = qxx, 0 < x > L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L,

q(0, t) = u(0)(t), t > 0,

q(L, t) = v(0)(t), t > 0,

(3.2.1)

with Dirichlet boundary conditions on both sides of the interval. Writing the centered-discretized

heat equation as in (2.2.2) again gives the local relation (2.2.3) and dispersion relation (2.2.4). The

global relation is obtained by summing the local relation from n = 1 to n = N and integrating in

time:

eWT q̂(k, T )− q̂(k, 0)−

[
e−ikhf0 − f1 + e−ikL

(
eikhg0 − g−1

)
h

]
= 0, k ∈ C. (3.2.2)

Inverting, we obtain the “solution” formula

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
e−ikhf0 − f1

h

]
dk

+
1

2π

∫ π/h

−π/h
eik(nh−L)e−WT

[
eikhg0 − g−1

h

]
dk,

(3.2.3)

which depends on the unknowns f1(W,T ) and g−1(W,T ). With both trivial ν0(k) = k and nontrivial

ν1(k) = −k symmetries, we have two equations to solve for two unknowns:
0 = eWT q̂(k, T )− q̂(k, 0)−

[
e−ikhf0 − f1 + e−ikL

(
−g−1 + eikhg0

)
h

]
,

0 = eWT q̂(−k, T )− q̂(−k, 0)−

[
eikhf0 − f1 + eikL

(
−g−1 + e−ikhg0

)
h

]
,

(3.2.4)

both valid for k ∈ C.
To remove both unknowns with (3.2.4), we first need to deform the integration path of the

second integral with the fj(W,T ) terms away from the integration path of the gj(W,T ) terms. Let
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P1
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P3

−π
h

π
h

Re(k)
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−π
h

∂V +

∂V −

π
h

Re(k)

Im(k)

(b)

Figure 3.2.1: (a) The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded, for the dis-

persion relation (2.2.4). The integration paths that constitute P are also shown. (b) The integration

paths ∂V ±.

us deform the fj(W,T ) terms to the upper-half plane in order to abide with well-posedness as h→ 0.

We introduce

V ± =
{
k ∈ C±

∣∣∣Re(−W ) ≤ 0
}
.

With hindsight, we define the integration path P = P1+P2+P3, shown in Figure 3.2.1a, where the

two horizontal paths P1,3 are at height Im(k) = R > 0 above the real line and P2 is on the boundary

of V + up to Im(k) = R. Using periodicity, we deform the second integral of “solution” (3.2.3) to P ,

so that

1

2π

∫ π/h

−π/h
eiknhe−WT

(
e−ikhf0 − f1

h

)
dk =

1

2π

∫
P
eiknhe−WT

(
e−ikhf0 − f1

h

)
dk.

Since P1,3 are in regions of exponential decay, we let R→ ∞, so that the integrals on P1,3 vanish, the

endpoints of P2 are extended to +i∞ approaching the vertical asymptotes Re(k) = ±π/(2h), and
limR→∞ P2 = ∂V + (the entire boundary of V + in the upper-half plane). Figure 3.2.1b shows ∂V ±,

where ∂V − is obtained in a similar fashion for the third integral of “solution” (3.2.3) containing the
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gj(W,T ) terms. Hence,

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫
∂V +

eiknhe−WT

(
e−ikhf0 − f1

h

)
dk

− 1

2π

∫
∂V −

eik(nh−L)e−WT

(
eikhg0 − g−1

h

)
dk.

(3.2.5)

Note the path directions, which have introduced a minus sign on the third integral. Now that the

fj(W,T ) and gj(W,T ) terms are on different integration paths, we solve the two global relation

equations (3.2.4) for f1(W,T ) and g−1(W,T ), obtaining
e−ikhf0 − f1

h
=
h
[
q̂(−k, 0)− e2ikLq̂(k, 0) + e2ikLeWT q̂(k, T )− eWT q̂(−k, T )

]
+ 2i sin(kh)

(
f0 − eikLg0

)
h (e2ikL − 1)

,

e−ikL
(
−g−1 + eikhg0

)
h

=
h
[
q̂(k, 0)− q̂(−k, 0) + eWT q̂(−k, T )− eWT q̂(k, T )

]
− 2i sin(kh)

(
f0 − eikLg0

)
h (e2ikL − 1)

.

(3.2.6)

Both left-hand sides are analytic in k, thus the roots of the denominator, kℓ = πℓ/L, ℓ ∈ Z, are
removable singularities, including at the ends of the interval [−π/h, π/h] and at the origin k0 = 0.

Since we are only interested in this interval, we can restrict ℓ to −(N + 1) ≤ ℓ ≤ N + 1, using

L = (N + 1)h. For any finite h, the number of singularities is finite and increasing as h → 0. Our

integration paths are off the real line except at the origin. To avoid passing through the removable

singularity k0, it is convenient to deform ∂V ± to ∂Ṽ ±, which is entirely off the real line as depicted

in Figure 3.2.2a. Of course, ∂Ṽ ± now crosses into the unshaded regions where e−WT grows, but this

growth is bounded on this segment. On ∂Ṽ ±, “solution” (3.2.5) becomes

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫
∂Ṽ +

eiknhe−WT

(
e−ikhf0 − f1

h

)
dk

− 1

2π

∫
∂Ṽ −

eik(nh−L)e−WT

(
eikhg0 − g−1

h

)
dk.

(3.2.7)

Using (3.2.6),

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫
∂Ṽ +

eiknhe−WT

[
q̂(−k, 0)− e2ikLq̂(k, 0)

e2ikL − 1
+

2i sin(kh)
(
f0 − eikLg0

)
h (e2ikL − 1)

]
dk

− 1

2π

∫
∂Ṽ −

eiknhe−WT

[
q̂(k, 0)− q̂(−k, 0)

e2ikL − 1
−

2i sin(kh)
(
f0 − eikLg0

)
h (e2ikL − 1)

]
dk + S(n),

(3.2.8)

where

S(n) =
1

2π

∫
∂Ṽ +

eiknh
[
e2ikLq̂(k, T )− q̂(−k, T )

e2ikL − 1

]
dk − 1

2π

∫
∂Ṽ −

eiknh
[
q̂(−k, T )− q̂(k, T )

e2ikL − 1

]
dk.
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Figure 3.2.2: (a) The integration paths ∂Ṽ ± deformed away from the origin. (b) Deforming ∂Ṽ +

to D̃+ in the upper-half plane. Without decay from e−WT , the shaded region depicts where eiknh

decays.

We wish to determine the contributions from S(n). Since the exponential e−WT is not present,

our aim is to close the contours using a path at infinity. First, we truncate the infinite paths ∂Ṽ ±

and close the curves by introducing

D̃± =

{
k ∈ C

∣∣∣ −π
2h

≤ Re(k) ≤ π

2h
and Im(k) = ±R

}
,

with R > 0, so that D̃± is a horizontal interval above/below ∂Ṽ ± in the complex k-plane, as shown

in Figure 3.2.2b for D̃+, and limR→∞ D̃± = ±∂Ṽ ±.

Now,

S(n) = lim
R→∞

(
1

2π

∫
D̃+

eiknh
[
e2ikLq̂(k, T )− q̂(−k, T )

e2ikL − 1

]
dk +

1

2π

∫
D̃−

eiknh
[
q̂(−k, T )− q̂(k, T )

e2ikL − 1

]
dk

)
.

Notice the sign change for D̃−. For the first integral on D̃+, q̂(k, T ) grows exponentially as R→ ∞.

However, we rewrite the first term as

1

2π

∫
D̃+

eik(nh+2L)

e2ikL − 1
q̂(k, T ) dk =

1

2π

∫
D̃+

eik(nh+2L)

e2ikL − 1

[
h

N∑
m=1

e−ikmhqm(T )

]
dk

=
h

2π

N∑
m=1

qm(T )

[∫
D̃+

eik(n−m+2N+2)h

e2ikL − 1
dk

]
,
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after using L = (N + 1)h. For all n and m, n −m + 2N + 2 > 0. Letting R → ∞ on D̃+ implies

eik(n−m+2N+2)h → 0 and e2ikL → 0. In this limit, the integrand approaches zero and we recover the

original integration paths, so that

1

2π

∫
∂Ṽ +

eik(nh+2L)

e2ikL − 1
q̂(k, T ) dk = 0,

for all n. The second term with q̂(−k, T ) on D̃+ similarly goes to zero as R → ∞. The third term

is rewritten as

1

2π

∫
D̃−

eiknh

e2ikL − 1
q̂(−k, T ) dk =

h

2π

N∑
m=1

qm(T )

[∫
D̃−

eik(n+m)h

e2ikL − 1
dk

]
.

On D̃−, eik(n+m)h and e2ikL grow as R→ ∞ for all n and m, but

eik(n+m)h

e2ikL − 1
∼ eik(n+m)h

e2ikL
= eik(n+m−2N−2)h.

Since n < N+1 and m < N+1, n+m−2N−2 < 0, and the integrand approaches zero, as R→ ∞.

Thus,
1

2π

∫
∂Ṽ −

eiknh

e2ikL − 1
q̂(−k, T ) dk = 0,

for all n. Similarly, the fourth term is zero. Hence, S(n) = 0 and the final representation for

the solution to the finite-interval problem for the heat equation (2.2.2) with Dirichlet boundary

conditions is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫
∂Ṽ +

eiknhe−WT

[
q̂(−k, 0)− e2ikLq̂(k, 0)

e2ikL − 1
+

2i sin(kh)
(
f0 − eikLg0

)
h (e2ikL − 1)

]
dk

− 1

2π

∫
∂Ṽ −

eiknhe−WT

[
q̂(k, 0)− q̂(−k, 0)

e2ikL − 1
−

2i sin(kh)
(
f0 − eikLg0

)
h (e2ikL − 1)

]
dk.

(3.2.9)

For the IBVP (3.2.1), using the continuous UTM [17], we find the dispersion relation W̃ (k) = k2

and define

Ω± =
{
k ∈ C±

∣∣∣Re(−k2) ≤ 0
}
,

to use the integration paths ∂Ω̃± as illustrated in Figure 3.2.3. As in the semi-discrete case, there

is a (removable) singularity at the origin, so ∂Ω± is deformed to ∂Ω̃±. The solution is

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk

+
1

2π

∫
∂Ω̃+

eikxe−W̃T

[
q̂(−k, 0)− e2ikLq̂(k, 0) + 2ik

(
F0 − eikLG0

)
e2ikL − 1

]
dk

− 1

2π

∫
∂Ω̃−

eikxe−W̃T

[
q̂(k, 0)− q̂(−k, 0)− 2ik

(
F0 − eikLG0

)
e2ikL − 1

]
dk.

(3.2.10)
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∂Ω̃+

∂Ω̃−

Re(k)

Im(k)

Figure 3.2.3: The shaded regions depict where Re(−W̃ ) ≤ 0 and eW̃T is bounded, with the bound-

aries ∂Ω̃± approaching ∂Ω± asymptotically as |k| → ∞.

Taking the continuum limit, it is clear that limh→0W (k) = W̃ (k) and thus limh→0 ∂Ṽ
± = ∂Ω̃±,

as well. In addition, the coefficient of the boundary terms from either ∂Ṽ ± integral converge to

2ik/(e2ikL − 1) with limh→0

(
f0 − eikLg0

)
= F0 − eikLG0, so that the SD-UTM solution (3.2.9)

converges to the continuous UTM solution (3.2.10).

Unlike for the heat equation on the half-line and the previous advection IBVPs, the integration

paths of the last two integral terms in (3.2.9) are off the real line, avoiding the integrands’ simple

poles. To numerically evaluate the integrals, we design any contour path that is within the shaded

regions of Figure 3.2.2a and off the real line, with endpoints that have real part ±π/h. For com-

putational purposes, having paths off of the boundaries ∂Ṽ ± is preferred in order to have some

exponential decay. Since we are taking h ≪ 1 in practical settings, we must orient our contours so

that in the continuum limit, the semi-discrete solution converges to the continuous one. There are

several approaches to tackle this task for the UTM integrals of continuous IBVPs [18, 25, 27, 38, 55]

that can be adapted for SD-UTM integrals.

Series Representation

To bypass complex integration paths, we derive a series representation equivalent to (3.2.9), as

before. For any n, we deform the first integral term to ∂Ṽ +, since q̂(k, 0) is valid for all k ∈ C and

the bounds on the integral with respect to k are finite. Combining with the other initial condition
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−π
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h
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Im(k)

Figure 3.2.4: The semi-circle integration paths ∂Ṽ ±
ϵ around singularities on the real line.

terms on ∂Ṽ +, solution (3.2.9) becomes

qn(T ) =
−1

2π

(∫
∂Ṽ +

+

∫
∂Ṽ −

)
A(n, T, k) dk +

i

πh

(∫
∂Ṽ +

+

∫
∂Ṽ −

)
B(n, T, k) dk, (3.2.11)

with

A(n, T, k) = eiknhe−WT

[
q̂(k, 0)− q̂(−k, 0)

e2ikL − 1

]
and B(n, T, k) = eiknhe−WT

[
sin(kh)

(
f0 − eikLg0

)
e2ikL − 1

]
.

Next, we deform the paths back to the real line, excluding the 2(N+1)+1 singularities on [−π/h, π/h]
using half-circles with radius ϵ smaller than half the distance between singularities, see Figure 3.2.4.

The horizontal line segments for both ∂Ṽ ±
ϵ are on the real line, but are drawn above and below for

illustrative purposes. We obtain

qn(T ) =
−1

2π

(∫
∂Ṽ +

ϵ

+

∫
∂Ṽ −

ϵ

)
A(n, T, k) dk +

i

πh

(∫
∂Ṽ +

ϵ

+

∫
∂Ṽ −

ϵ

)
B(n, T, k) dk. (3.2.12)

Taking the limit of (3.2.12) as ϵ → 0, the integrals give rise to residue contributions and principal

value integrals. For instance, the first term above becomes

−1

2π

∫
∂Ṽ +

ϵ

A(n, T, k) dk =
i

4

[
Res

k=−π/h
A(n, T, k) + Res

k=π/h
A(n, T, k)

]
+
i

2

N∑
ℓ=−N

Res
k=kℓ

A(n, T, k)

− 1

2π
−
∫ π/h

−π/h
A(n, T, k) dk.
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We have two contributions of the quarter-circle contours from the singularities on the edges of

the integration path plus contributions from the half-circle contours from the inner singularities.

Similarly, for the second term in (3.2.12),

−1

2π

∫
∂Ṽ −

ϵ

A(n, T, k) dk =
i

4

[
Res

k=−π/h
A(n, T, k) + Res

k=π/h
A(n, T, k)

]
+
i

2

N∑
ℓ=−N

Res
k=kℓ

A(n, T, k)

+
1

2π
−
∫ π/h

−π/h
A(n, T, k) dk.

Combining the two rewrites above cancels the integrals, so that

−1

2π

(∫
∂Ṽ +

ϵ

+

∫
∂Ṽ −

ϵ

)
A(n, T, k) dk = i

[
1

2
Res

k=−π/h
A(n, T, k) +

N∑
ℓ=−N

Res
k=kℓ

A(n, T, k) +
1

2
Res
k=π/h

A(n, T, k)

]
.

Similarly, the B(n, T, k) integrals in (3.2.12) are rewritten using residue contributions, so that sub-

stituting into (3.2.12) gives an expression with residue contributions only:

qn(T ) = i

[
1

2
Res

k=−π/h
A(n, T, k) +

N∑
ℓ=−N

Res
k=kℓ

A(n, T, k) +
1

2
Res
k=π/h

A(n, T, k)

]

+
1

h

[
Res

k=−π/h
B(n, T, k) + 2

N∑
ℓ=−N

Res
k=kℓ

B(n, T, k) + Res
k=π/h

B(n, T, k)

]
.

(3.2.13)

Next, we determine these residues, starting with the A(n, T, k) residues for ℓ = −N−1, . . . , N+1,

where the lone residues at k = ±π/h or ℓ = ±(N + 1) follow trivially. Since we only have simple

poles at k = kℓ,

Res
k=kℓ

A(n, T, k) = eikℓnhe−W (kℓ)T

[
q̂ (kℓ, 0)− q̂ (−kℓ, 0)

2iL

]
.

Using the definitions of q̂(±k, 0),

q̂ (kℓ, 0)− q̂ (−kℓ, 0) = −2ih
N∑
m=1

sin

(
πℓmh

L

)
ϕm = −iLbℓ, bℓ =

2h

L

N∑
m=1

sin

(
πℓmh

L

)
ϕm.

Note that b0 = b±(N+1) = 0, b−ℓ = −bℓ, k−ℓ = −kℓ, andW (kℓ) =W (−kℓ). Using these observations,

N∑
ℓ=−N

Res
k=kℓ

A(n, T, k) =
−1

2

N∑
ℓ=−N

eikℓnhe−W (kℓ)T bℓ = −i
N∑
ℓ=1

e−W (kℓ)T sin

(
πℓnh

L

)
bℓ.

Similarly,

Res
k=kℓ

B(n, T, k) = eikℓnhe−WℓT sin

(
πℓh

L

)
H(Wℓ, T )

2iL
,
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where we have introduced Wℓ ≡W (kℓ) for brevity, with

H(Wℓ, T ) = f0(Wℓ, T ) + (−1)ℓ+1g0(Wℓ, T ).

As with the residues of A(n, T, k), one can show there are no contributions from the poles at the

endpoints and at the origin. After rearranging,

N∑
ℓ=−N

Res
k=kℓ

B(n, T, k) =
1

L

N∑
ℓ=1

e−WℓT sin

(
πℓh

L

)
sin

(
πℓnh

L

)
H(Wℓ, T ).

Returning to (3.2.13), we recover the classical series solution:

qn(T ) =
N∑
ℓ=1

e−WℓT sin

(
πℓnh

L

)[
bℓ +

2

Lh
sin

(
πℓh

L

)
H(Wℓ, T )

]
. (3.2.14)

From a numerical point of view, this solution representation is favored over the integral representa-

tion (3.2.9).

As an example, the exact solution to the IBVP



qt = qxx, 0 < x < 1, t > 0,

q(x, 0) = ϕ(x) = 2x+ sin(5πx), 0 < x < 1,

q(0, t) = u(0)(t) = 0, t > 0,

q(1, t) = v(0)(t) = 2, t > 0,

(3.2.15)

is q(x, t) = 2x + sin(5πx)e−25π2t. We have chosen time-independent boundary conditions for sim-

plicity only. We solve the IBVP (3.2.15) with the centered finite-difference methods and the series

SD-UTM solution (3.2.14). Deriving the modified PDE from the centered stencil (2.2.2), we find

that (3.2.9), and hence (3.2.14), is a fourth-order accurate approximation to the solution of the

dissipative PDE (2.2.12). With the SD-UTM solution (3.2.9), the left plot of Figure 3.2.5 shows the

exponential decay as time increases and the right plot shows the expected O(h2) error as h → 0.

The SD-UTM solution outperforms the traditional numerical methods in the continuum limit, where

the explicit methods become unstable and the implicit methods are asymptotic to their respective

temporal truncation error as h → 0. The finite-difference solutions have stability conditions that

must be satisfied, but Figure 3.2.5b shows that there is no such restriction for the SD-UTM to

succeed. The dips in this error plot are due to mesh points being placed near stationary points in

the solution. With these boundary conditions, we know that limt→∞ q(x, t) = 2x. Hence, mesh

points on the initial condition that are near q = 2x tend to stay there as t increases.
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(a) (b)

Figure 3.2.5: (a) The semi-discrete solution (3.2.14) evaluated at various t with h = 0.01. (b) Error

plot of the semi-discrete solution (3.2.14) and finite-difference schemes relative to the exact solution

as h→ 0 with T = 0.01 and ∆t = 6.25× 10−4.

3.2.2 Centered Discretization of qt = qxx with Neumann boundary conditions

We consider the same centered-discretized heat equation (2.2.2), now with Neumann boundary

conditions at both ends of the interval:



qt = qxx, 0 < x < L, t > 0,

q(x, 0) = ϕ(t), 0 < x < L,

qx(0, t) = u(1)(t), t > 0,

qx(L, t) = v(1)(t), t > 0.

(3.2.16)

We can discretize the Neumann data with many different stencils, but we show that the SD-UTM

restricts which of these are available to be paired with (2.2.2).

With the centered discretization (2.2.2), we retain the local relation (2.2.3) and dispersion relation

(2.2.4) with nontrivial symmetry ν1(k) = −k. We cannot use the global relation (3.2.2), because

we assumed Dirichlet boundary data to obtain it. Without information at n = 0 or n = N + 1, we



68

define the forward transform to start and end at these points like in Section 2.2.2:

q̂ (k, t) = h
N+1∑
n=0

e−iknhqn(t),

directly affecting the global relation. From the local relation (2.2.3),

eWT q̂(k, T )− q̂(k, 0)−

[
f−1 − eikhf0 + e−ikL

(
g1 − e−ikhg0

)
h

]
= 0, k ∈ C. (3.2.17)

Solving for q̂(k, T ) and inverting, we obtain

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫ π/h

−π/h
eiknhe−WT

[
f−1 − eikhf0 + e−ikL

(
g1 − e−ikhg0

)
h

]
dk,

(3.2.18)

with unknowns f−1(W,T ), f0(W,T ), g0(W,T ), and g1(W,T ). In order to use the global relation

(3.2.17) with k and k → −k, we separate and deform the integration paths of the fj(W,T ) terms

from the gj(W,T ) terms. As in (3.2.7) with Dirichlet boundary conditions, we deform the boundary

terms in “solution” (3.2.18) off the real line to ∂Ṽ ±:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫
∂Ṽ +

eiknhe−WT

[
f−1 − eikhf0

h

]
dk

− 1

2π

∫
∂Ṽ −

eik(nh−L)e−WT

[
g1 − e−ikhg0

h

]
dk.

(3.2.19)

Through the time transforms, the global relation (3.2.17) contains boundary nodal information

n = −1, 0 at the interval’s left boundary and n = N +1, N +2 at the right, leading us to backward-

discretize qx (0, t) and forward-discretize qx (L, t) with O(h) stencils to obtain

q0(t)− q−1(t)

h
= u(1)(t) and

qN+2(t)− qN+1(t)

h
= v(1)(t). (3.2.20)

Second-order discretizations, both in stencil width and accuracy, introduce additional unknowns, de-

spite having information of all odd derivatives at either boundary. Without even derivatives, one can

show these discretizations are linearly dependent through the method of undetermined coefficients

and the Casoratian [75], the discrete analogue of the Wronskian. Taking the time integrals of the

O(h) discretizations above, we have four equations to remove four unknowns f−1(W,T ), f0(W,T ),
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g0(W,T ), and g1(W,T ):



eWT q̂(k, T )− q̂(k, 0)−

[
f−1 − eikhf0 + e−ikL

(
g1 − e−ikhg0

)
h

]
= 0,

eWT q̂(−k, T )− q̂(−k, 0)−

[
f−1 − e−ikhf0 + eikL

(
g1 − eikhg0

)
h

]
= 0,

f0 − f−1

h
= U (1),

g1 − g0
h

= V (1),

(3.2.21)

with

U (1)(W,T ) =

∫ T

0
eWtu(1)(t) dt, and V (1)(W,T ) =

∫ T

0
eWtv(1)(t) dt.

Solving (3.2.21),



f−1 − eikhf0
h

=
1

e2ik(L+h) − 1

[
e2ik(L+h)eWT q̂(k, T )− e2ik(L+h)q̂(k, 0) + eikheWT q̂(−k, T )

−eikhq̂(−k, 0) +
(
1 + eikh

)
U (1) −

(
eik(L+h) + eik(L+2h)

)
V (1)

]
,

e−ikL
(
g1 − e−ikhg0

)
h

=
1

e2ik(L+h) − 1

[
− eikheWT q̂(−k, T ) + eikhq̂(−k, 0)− eWT q̂(k, T ) + q̂(k, 0)

−
(
1 + eikh

)
U (1) +

(
eik(L+h) + eik(L+2h)

)
V (1)

]
,

(3.2.22)

with (removable) singularities at kℓ = πℓ/(L + h) for −(N + 2) ≤ ℓ ≤ N + 2. Since the boundary

integrals of (3.2.19) are off the real line, substituting (3.2.22) into (3.2.19) gives

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂Ṽ +

eiknhe−WT

[
e2ik(L+h)q̂(k, 0) + eikhq̂(−k, 0)

e2ik(L+h) − 1
−
(
1 + eikh

) (
U (1) − eik(L+h)V (1)

)
e2ik(L+h) − 1

]
dk

− 1

2π

∫
∂Ṽ −
eiknhe−WT

[
eikhq̂(−k, 0) + q̂(k, 0)

e2ik(L+h) − 1
−
(
1 + eikh

) (
U (1) − eik(L+h)V (1)

)
e2ik(L+h) − 1

]
dk.

(3.2.23)

after checking that the integrals with q̂(k, T ) and q̂(−k, T ) vanish by deforming the paths to D̃±

and taking R→ ∞.
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The solution representation for IBVP (3.2.16) using the continuous UTM [17] is

q(x, T ) =
1

2π

∫ π/h

−π/h
eikxe−W̃T q̂(k, 0) dk

− 1

2π

∫
∂Ω̃+

eikxe−W̃T

[
e2ikLq̂(k, 0) + q̂(−k, 0)

e2ikL − 1
−

2
(
F1 − eikLG1

)
e2ikL − 1

]
dk

− 1

2π

∫
∂Ω̃−

eikxe−W̃T

[
q̂(−k, 0) + q̂(k, 0)

e2ikL − 1
−

2
(
F1 − eikLG1

)
e2ikL − 1

]
dk,

(3.2.24)

where Ω̃± is illustrated in Figure 3.2.3. Referencing (3.2.23), the continuum limits of the coefficients

of q̂(±k, 0), U (1), and V (1) converge to their continuous counterparts, where

lim
h→0

U (1) = lim
h→0

∫ T

0
eWtu(1)(t) dt =

∫ T

0
eW̃ tu(1)(t) dt = F1,

lim
h→0

V (1) = lim
h→0

∫ T

0
eWtv(1)(t) dt =

∫ T

0
eW̃ tv(1)(t) dt = G1.

Series Representation

Following similar steps to those in Section 3.2.1, we deform ∂Ṽ ± to ∂Ṽ ±
ϵ , so that the integral

representation of (3.2.24) is rewritten in terms of residue contributions:

qn(T ) = i

(
N+1∑

ℓ=−N−1

Res
k=kℓ

A(n, T, k)−
N+1∑

ℓ=−N−1

Res
k=kℓ

B(n, T, k)

)
, (3.2.25)

with

A(n, T, k) = eiknhe−WT

[
eikhq̂(−k, 0) + q̂(k, 0)

e2ik(L+h) − 1

]
,

and

B(n, T, k) = eiknhe−WT

[(
1 + eikh

) (
U (1) − eik(L+h)V (1)

)
e2ik(L+h) − 1

]
.

There are no contributions from the residues at the endpoints k±(N+2) = ±π/h as in Section 3.2.1,

but we find a nonzero contribution at k0 = 0. Specifically,

N+1∑
ℓ=−N−1

Res
k=kℓ

{A(n, T, k)} =
L

i (L+ h)

[
b0
2

+

N+1∑
ℓ=1

e−WℓT bℓ cos

(
πℓ
(
n+ 1

2

)
h

L+ h

)]
,

N+1∑
ℓ=−N−1

Res
k=kℓ

{B(n, T, k)} =
2

i(L+ h)

[
H(W0)

2
+
N+1∑
ℓ=1

e−WℓT cos

(
πℓh

2 (L+ h)

)
cos

(
πℓ
(
n+ 1

2

)
h

L+ h

)
H(Wℓ)

]
,

where Wℓ ≡W
(
kℓ
)
,

bℓ =
2h

L

N+1∑
m=0

cos

(
πℓ
(
m+ 1

2

)
h

L+ h

)
ϕm, H(Wℓ, T ) = U (1)(Wℓ, T ) + (−1)ℓ+1V (1)(Wℓ, T ).
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Returning to (3.2.25), we find

qn(T ) =
L

L+ h

N+1∑
ℓ=1

e−WℓT cos

(
πℓ
(
n+ 1

2

)
h

L+ h

)[
bℓ −

2

L
cos

(
πℓh

2 (L+ h)

)
H(Wℓ)

]
+

Lb0
2(L+ h)

− H(W0)

L+ h
.

(3.2.26)

Using the series representation (3.2.26) and the finite-difference schemes, we examine the solution

of the IBVP 

qt = qxx, 0 < x < 1, t > 0,

q(x, 0) = ϕ(x) = 12x− 10x2 +
1

2
sin(20πx3), 0 < x < 1,

qx(0, t) = u(0)(t) = 12, t > 0,

qx(1, t) = v(0)(t) = 30π − 8, t > 0.

(3.2.27)

The exact solution to (3.2.27) is given by

q(x, t) = (15π − 10)x2 + 12x+ (30π − 20) t+ a0 +
∞∑
n=1

ane
−(nπ)2t cos (nπx) ,

with

a0 =

∫ 1

0

[
sin(20πx3)

2
− 15πx2

]
dx, and an = 2

∫ 1

0

[
sin(20πx3)

2
− 15πx2

]
cos (nπx) dx.

The given Neumann data is discretized using the first-order accurate stencils (3.2.20), which reduce

the overall accuracy of the solution from the expected O(h2) to O(h). With the centered stencil

(2.2.2), solutions (3.2.23) and (3.2.26) are fourth-order accurate approximations to the dissipative

PDE (2.2.12). However, the modified equations from the Neumann boundary conditions are

qx(0, t) = u(1)(t)−
(
h

2

)
qxx(0, t), and qx(L, t) = v(1)(t) +

(
h

2

)
qxx(L, t),

implying the loss of accuracy is through the form of dissipation near the boundaries. Even so, the

solution profiles from Figure 3.2.6a depict the general diffusive behavior of the heat equation, quickly

damping the high-frequency oscillations. Evaluating a0 and an numerically, we obtain the error plot

in Figure 3.2.6b. For consistency, the finite-difference schemes there also incorporate the Neumann

boundary conditions using the first-order stencils (3.2.20).

3.2.3 Higher-Order Discretization of qt = qxx with Dirichlet boundary conditions

As in Section 3.1.2, we can apply higher-order centered discretizations to the heat equation.

As before, we need extra equations in addition to the global relation formulas with k → νj(k)
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(a) (b)

Figure 3.2.6: (a) The semi-discrete solution (3.2.26) evaluated at various T with h = 0.01. (b) Error

plot of the semi-discrete solution (3.2.26) and finite-difference schemes relative to the exact solution

as h→ 0 with T = 0.005 and ∆t = 6.25× 10−4.

to eliminate unknowns. As an example, consider the Dirichlet problem (3.2.1) with the standard

centered fourth-order discretization (2.2.26). After some tedious steps, the global relation is

eWT q̂(k, T )− q̂(k, 0)−
[
f(k, T ) + e−ikLg(k, T )

12h

]
= 0, k ∈ C, (3.2.28)

where f(k, T ) = −e−ikhf−1 + 16e−ikhf0 − e−2ikhf0 + eikhf1 − 16f1 + f2,

g(k, T ) = e−ikhg−1 + 16eikhg0 − e2ikhg0 − eikhg1 + g−2 − 16g−1,

with dispersion relation (2.2.28). Solving for q̂(k, T ) and taking the inverse transform, we obtain

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

[
f(k, T ) + e−ikLg(k, T )

12h

]
dk, (3.2.29)

which depends on the six unknowns f−1(W,T ), f1(W,T ), f2(W,T ), g−2(W,T ), g−1(W,T ), and

g1(W,T ). The dispersion relation has the trivial symmetry ν0(k) = k and three nontrivial symme-
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−π
h

∂Ṽ +

∂Ṽ −

π
h

Re(k)

Im(k)

Figure 3.2.7: The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded, for the dispersion

relation (2.2.28). The integration paths for ∂Ṽ ±, deformed away from the singularities on the real

line, are also shown.

tries:

ν1(k) = −k,

ν2(k) =
i

h
ln

(
e−ikh

2

[
16eikh − e2ikh − 1 +

√
(−16eikh + e2ikh + 1)

2 − 4e2ikh
])

,

ν3(k) =
i

h
ln

(
e−ikh

2

[
16eikh − e2ikh − 1−

√
(−16eikh + e2ikh + 1)

2 − 4e2ikh
])

,

where the branch cut for the square-root function is chosen to be on the positive real line. We

separate f(k, T ) from g(k, T ) in the last integral of (3.2.29) and, anticipating singularities, deform

that integration path to ∂Ṽ ±, as shown in Figure 3.2.7:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫
∂Ṽ +

eiknhe−WT

[
f(k, T )

12h

]
dk

− 1

2π

∫
∂Ṽ −

eik(nh−L)e−WT

[
g(k, T )

12h

]
dk.

(3.2.30)

In contrast to the half-line problem [11], the global relations with k → ν2,3(k) are valid for all

k ∈ C. Using all symmetries, including ν0(k), the global relations give four equations to remove four

unknowns, specifically two fj(W,T ) and two gj(W,T ) contributions. To remove the remaining pair

of fj(W,T ) and gj(W,T ) terms, we must introduce (at least) one more equation for each unknown.
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Using the given Dirichlet data, the heat equation itself gives all even-derivative boundary conditions,

particularly qxx(0, t) = u̇(t) and q4x(0, t) = ü(t) on the left, and qxx(L, t) = v̇(t) and q4x(L, t) = v̈(t)

on the right, where u̇ = du(0)(t)/dt, ü = d2u(0)(t)/dt2, v̇ = dv(0)(t)/dt, and v̈ = d2v(0)(t)/dt2.

Discretizing the second-derivative conditions with the standard centered fourth-order stencils gives

−q−2(t) + 16q−1(t)− 30q0(t) + 16q1(t)− q2(t)

12h2
= u̇(t), (3.2.31)

−qN−1(t) + 16qN (t)− 30qN+1(t) + 16qN+2(t)− qN+3(t)

12h2
= v̇(t). (3.2.32)

These stencils introduce an additional unknown, each requiring two more equations. We can find

additional equations that relate nodal points with derivatives using the method of undetermined

coefficients. Since we know q4x(0, t) and q4x(L, t), we derive the last pair of equations that does

not introduce any more unknowns, maintains the same order of accuracy as (2.2.26), and is linearly

independent of (3.2.31) – (3.2.32):

q−2(t) + 2q−1(t)− 6q0(t) + 2q1(t) + q2(t)

6h2
= u̇(t) +

h2

4
ü(t), (3.2.33)

qN−1(t) + 2qN (t)− 6qN+1(t) + 2qN+2(t) + qN+3(t)

6h2
= v̇(t) +

h2

4
v̈(t). (3.2.34)

Taking the time transforms of (3.2.31) – (3.2.34), we have a closed system of eight equations for all

unknowns:



0 = eWT q̂(k, T )− q̂(k, 0)−
[
f(k, T ) + e−ikLg(k, T )

12h

]
,

−f−2 + 16f−1 − 30f0 + 16f1 − f2
12h2

= U̇ ,

0 = eWT q̂(−k, T )− q̂(−k, 0)−
[
f(−k, T ) + eikLg(−k, T )

12h

]
,

−g−2 + 16g−1 − 30g0 + 16g1 − g2
12h2

= V̇ ,

0 = eWT q̂(ν2, T )− q̂(ν2, 0)−
[
f(ν2, T ) + e−iν2Lg(ν2, T )

12h

]
,

f−2 + 2f−1 − 6f0 + 2f1 + f2
6h2

= U̇ +
h2

4
Ü ,

0 = eWT q̂(ν3, T )− q̂(ν3, 0)−
[
f(ν3, T ) + e−iν3Lg(ν3, T )

12h

]
,

g−2 + 2g−1 − 6g0 + 2g1 + g2
6h2

= V̇ +
h2

4
V̈ ,

where U̇(W,T ) is the time transform of u̇(t), Ü(W,T ) is the time transform of ü(t), etc. Solving the
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system, we substitute our findings into (3.2.30):

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫
∂Ṽ +

eiknhe−WT

[
q̂(−k, 0)− e2ikLq̂(k, 0)

e2ikL − 1

]
dk +

1

2π

∫
∂Ṽ −
eiknhe−WT

[
q̂(−k, 0)− q̂(k, 0)

e2ikL − 1

]
dk

+
1

2π

(∫
∂Ṽ +

+

∫
∂Ṽ −

)
eiknhe−WT

[(
e−2ikh − 14e−ikh + 14eikh − e2ikh

) (
f0 − eikLg0

)
12h (e2ikL − 1)

]
dk (3.2.35)

− 1

2π

(∫
∂Ṽ +

+

∫
∂Ṽ −

)
eiknhe−WT

[
e−ikh

(
e2ikh − 1

)
12 (e2ikL − 1)

(
h U̇ +

h3

12
Ü

)]
dk

+
1

2π

(∫
∂Ṽ +

+

∫
∂Ṽ −

)
eik(nh+L)e−WT

[
e−ikh

(
e2ikh − 1

)
12 (e2ikL − 1)

(
h V̇ +

h3

12
V̈

)]
dk,

after showing integral terms with q̂(±k, T ) vanish. Note that (3.2.35) has no dependence on ν2,3(k)

and the integration paths ∂Ṽ ± are above/below the singularities given by kℓ = πℓ/h, exactly as for

the heat equation discretized to second order (2.2.2). To the best of our knowledge, (3.2.35) is the

first explicit solution expression to this fourth-order discretized IBVP.

In the continuum limit,

lim
h→0

e−2ikh − 14e−ikh + 14eikh − e2ikh

12h
= 2ik.

Expanding the common factor between the derivative boundary conditions in (3.2.35),

e−ikh
(
e2ikh − 1

)
12 (e2ikL − 1)

=
ik

6 (e2ikL − 1)
h+O(h3),

so that the coefficients of U̇ and V̇ are O(h2), while the coefficients for Ü and V̈ are O(h4). Hence,

the SD-UTM solution loses dependence on the second and fourth-derivative boundary conditions

in the continuum limit and the semi-discrete solution (3.2.35) converges to (3.2.10). Although the

expressions are tedious to derive, a series representation can be written down as before.

Remark 3.2.1. To avoid the need for the additional equations (3.2.33) – (3.2.34), we can discretize

the second-derivative boundary conditions with O(h2) centered stencils:

q−1(t)− 2q0(t) + q1(t)

h2
= u̇(t),

qN (t)− 2qN+1(t) + qN+2(t)

h2
= v̇(t).

Together with the four global relation formulas, we solve for the original six unknowns in (3.2.30),

which gives rise to a second-order accurate SD-UTM solution. As a consequence, there is a drop in

accuracy from the intended O(h4). This solution is exactly (3.2.35), but without the inclusion of

h3Ü/12 and h3V̈ /12.
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Remark 3.2.2. As in Section 3.2.2, solving the fourth-order discretization (2.2.26) with Neumann

boundary conditions leads to a solution that is one order of accuracy less than that of the PDE

stencil. After inverting the global relation for this IBVP, the “solution” depends on eight unknowns:

fi(W,T ) for i = −2, . . . , 1 and gj(W,T ) for j = −1, . . . , 2. The four symmetries result in four

global relation formulas to remove two fi(W,T ) and two gj(W,T ) terms after deforming off the real

line to ∂Ṽ ±, as illustrated in Figure 3.2.7. In order to not introduce more unknowns, four linearly

independent discretizations to eliminate the remaining four unknowns are:

f1 − f−1

2h
= U (1) +

h2

6
U̇ ,

g1 − g−1

2h
= V (1) +

h2

6
V̇ ,

and
f−2 − 6f−1 + 3f0 + 2f1

6h
= U (1),

g−2 − 6g−1 + 3g0 + 2g1
6h

= V (1),

after taking time transforms. Here,

U̇(W,T ) =

∫ T

0
eWtu̇(t) dt, V̇ (W,T ) =

∫ T

0
eWtv̇(t) dt,

where u̇(t) = du(1)(t)/dt and v̇(t) = dv(1)(t)/dt. The first pair of discretizations is O(h4), but the

second is O(h3), where the O(h3) terms depend on q4x(0, t) and q4x(L, t), respectively. Replacing

this last pair of discretizations with a wider, more accurate stencil introduces more unknowns that

no linearly independent discretizations can eliminate. Hence, the SD-UTM solution with these

discretizations is third-order accurate.

3.3 The Linear Schrödinger Equation

3.3.1 Centered Discretization of qt = (i/2)qxx with Dirichlet boundary conditions

The finite-interval IBVP with Dirichlet boundary conditions at both ends is

qt =
i
2qxx, 0 < x < L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L,

q(0, t) = u(0)(t), t > 0,

q(L, t) = v(0)(t), t > 0.

(3.3.1)

Using the second-order centered discretization (2.3.3), the local and dispersion relations are (2.3.4)

and (2.3.5), respectively. Starting the forward transform at n = 1 and ending at n = N gives the

global relation

eWT q̂(k, T )− q̂(k, 0)− i

2

[
e−ikhf0 − f1 + e−ikL

(
eikhg0 − g−1

)
h

]
= 0, k ∈ C. (3.3.2)
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P6

P7

−π
h
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Re(k)

Im(k)

(a)

−π
h

π
h

Re(k)

Im(k)

∂V +

∂V −

P+
6

P−
6

(b)

Figure 3.3.1: (a) The shaded regions depict where Re(−W ) ≤ 0 and e−WT is bounded, for the dis-

persion relation (2.3.5). The integration paths that constitute P are also shown. (b) The integration

paths ∂V ± and P±
6 .

We obtain our “solution” formula by solving for q̂(k, T ) and taking the inverse transform:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h

ieiknhe−WT

2

[
e−ikhf0 − f1

h

]
dk

+
1

2π

∫ π/h

−π/h

ieik(nh−L)e−WT

2

[
eikhg0 − g−1

h

]
dk.

(3.3.3)

The dispersion relation (2.3.5) has the symmetries ν0(k) = k and ν1(k) = −k up to periodic

copies, which can be used to remove the unknowns f1(W,T ) and g−1(W,T ) from (3.3.3). First,

we separate the integral with the fj(W,T ) terms from the integral with gj(W,T ), and deform both

integration paths off the real line (where we have singularities after solving for the unknowns). For

the integral with the left boundary terms, consider the integration contour P = P1 + . . . + P7,

depicted in Figure 3.3.1a. Note that not all paths are straight lines. We define the integration
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paths’ start and end points as

P1 : from − π

h
to 0, P5 : from ic to

π

h
i,

P2 : from 0 to
π

h
, P6 : from

π

h
i to − π

h
+ iδ,

P3 : from
π

h
to

π

h
+ iδ, P7 : from − π

h
+ iδ to − π

h
,

P4 : from
π

h
+ iδ to ic,

where δ, c ∈ R+ are nonzero constants. The point that connects P4 to P5 can be conveniently chosen,

fixed or varying with respect to h, but the choice must keep the area underneath P4 small, since this

path is in the region of exponential growth. It is vital, however, for the curve P4 to asymptotically

approach the real line from above as h → 0, so δ ≪ 1 but never zero for a finite h. The path P6

is chosen as a straight line also for convenience, but any curved path suffices. From periodicity,

P3 = −P7, so that

1

2π

∫ π/h

−π/h

ieiknhe−WT

2

(
e−ikhf0 − f1

h

)
dk =

1

2π

(∫
−P4

+

∫
−P5

+

∫
−P6

)
ieiknhe−WT

2

(
e−ikhf0 − f1

h

)
dk

=
1

2π

∫
∂Ṽ +

ieiknhe−WT

2

(
e−ikhf0 − f1

h

)
dk,

after defining ∂V + = −P4−P5 and ∂Ṽ
+ = ∂V ++P+

6 with P+
6 = −P6. Following similar arguments

to deform the integral containing the right boundary information, (3.3.3) becomes

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫
∂Ṽ +

ieiknhe−WT

2

(
e−ikhf0 − f1

h

)
dk

− 1

2π

∫
∂Ṽ −

ieik(nh−L)e−WT

2

(
eikhg0 − g−1

h

)
dk,

(3.3.4)

where ∂Ṽ − = ∂V − + P−
6 , as shown in Figure 3.3.1b. Now off the real line, solving the system

eWT q̂(k, T )− q̂(k, 0)− i

2

[
e−ikhf0 − f1 + e−ikL

(
eikhg0 − g−1

)
h

]
= 0,

eWT q̂(−k, T )− q̂(−k, 0)− i

2

[
eikhf0 − f1 + eikL

(
e−ikhg0 − g−1

)
h

]
= 0,

for f1(W,T ) and g−1(W,T ) gives

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂Ṽ +

eiknhe−WT

[
e2ikLq̂(k, 0)− q̂(−k, 0)

e2ikL − 1
+

sin(kh)
(
f0 − eikLg0

)
h (e2ikL − 1)

]
dk

− 1

2π

∫
∂Ṽ −

eiknhe−WT

[
q̂(k, 0)− q̂(−k, 0)

e2ikL − 1
+

sin(kh)
(
f0 − eikLg0

)
h (e2ikL − 1)

]
dk,

(3.3.5)
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Re(k)

Im(k)

∂Ω̃+

∂Ω̃−

Figure 3.3.2: The shaded regions depict where Re(−W̃ ) ≤ 0 and eW̃T is bounded. The integration

paths ∂Ω̃± are also shown.

after removing the integral terms with q̂(±k, T ). The simple poles at kℓ = πℓ/L, the same as in

(3.2.9) to the second-order discretized heat equation, do not interfere with the integration paths

∂Ṽ ±. When numerically evaluating the integrals above, the paths P4 in ∂Ṽ ± are parameterized as

exponentially-decaying curves toward the real line as Re(k) → ∞.

With the integration paths Ω̃± illustrated in Figure 3.3.2 and the dispersion relation W̃ (k) =

ik2/2, the continuous UTM solution [17] to (3.3.1) is

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk

− 1

2π

∫
∂Ω̃+

eikxe−W̃T

[
e2ikLq̂(k, 0)− q̂(−k, 0) + k

(
F0 − eikLG0

)
e2ikL − 1

]
dk

− 1

2π

∫
∂Ω̃−

eikxe−W̃T

[
q̂(k, 0)− q̂(−k, 0) + k

(
F0 − eikLG0

)
e2ikL − 1

]
dk.

(3.3.6)

Taking the continuum limit, we find limh→0W (k) = W̃ (k) and limh→0 ∂V
± = Ω̃±, where ∂Ṽ ± =

∂V ± + P±
6 . For P+

6 in the upper-half plane, we have

lim
h→0

1

2π

∫ π
h
i

−π
h
+iδ

eiknhe−WT

[
e2ikLq̂(k, 0)− q̂(−k, 0)

e2ikL − 1
+

sin(kh)
(
f0 − eikLg0

)
h (e2ikL − 1)

]
dk

=
1

2π

∫ i∞

−∞+iδ
eikxe−W̃T

[
e2ikLq̂(k, 0)− q̂(−k, 0) + k

(
F0 − eikLG0

)
e2ikL − 1

]
dk. (3.3.7)
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With R≫ 1,

1

2π

∫ iR

−R+iδ
eikxe−W̃T

[
e2ikLq̂(k, 0)− q̂(−k, 0)

e2ikL − 1

]
dk

=
1

2π

∫ L

0

[∫ iR

−R+iδ
eikxe−W̃T

(
e2ikLe−iky − eiky

e2ikL − 1

)
dk

]
q(y, 0) dy.

Because the integration path is in the shaded region of Figure 3.3.2, taking R → ∞ implies the

integrand

eikxe−W̃T

[
eik(2L−y) − eiky

e2ikL − 1

]
→ 0,

since every exponent is positive and decays in the integration region. Similarly for (3.3.7). Hence,

1

2π

∫ i∞

−∞+iδ
eikxe−W̃T

[
e2ikLq̂(k, 0)− q̂(−k, 0) + k

(
F0 − eikLG0

)
e2ikL − 1

]
dk = 0,

and in the continuum limit,

lim
h→0

1

2π

∫
P+
6

eiknhe−WT

[
q̂(−k, 0)− e2ikLq̂(k, 0)

e2ikL − 1
+

sin(kh)
(
eikLg0 − f0

)
h (e2ikL − 1)

]
dk = 0.

We reach a similar conclusion for the P−
6 integral. Therefore, the SD-UTM solution (3.3.5) converges

to its continuous counterpart (3.3.6).

Series Representation

Although this is a dispersive problem, the series representation of (3.3.5) is obtained following

almost exactly the same steps as those in Section 3.2.1 for the heat equation with Dirichlet boundary

conditions. Deforming the integration paths ∂Ṽ ± to the singularities on the real line and determining

the residue contributions gives

qn(T ) =
N∑
ℓ=1

e−WℓT sin

(
πℓnh

L

)[
bℓ +

i

Lh
sin

(
πℓh

L

)
H(Wℓ, T )

]
, (3.3.8)

where W (kℓ) ≡Wℓ and

bℓ =
2h

L

N+1∑
m=0

sin

(
πℓmh

L

)
ϕm, H(Wℓ, T ) = f0(Wℓ, T ) + (−1)ℓ+1g0(Wℓ, T ).

Using (3.3.8), we examine the numerical solution to

qt =
i
2qxx, 0 < x < 1, t > 0,

q(x, 0) = ϕ(x) = 2(6 + 5i)x− 10(1 + i)x2 +
1

2
sin
(
4πx3

)
, 0 < x < 1,

q(0, t) = u(0)(t) = 0, t > 0,

q(1, t) = v(0)(t) = 2, t > 0.

(3.3.9)
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For this IBVP, the continuous solution is traditionally determined using Fourier series. The modified

PDE is pt = (i/2)pxx + (ih2/24)p4x, which is dispersive. Figure 3.3.3 shows the dispersive nature of

the real and imaginary components of the SD-UTM solution, along with the square of the modulus.

Once more, the SD-UTM outperforms the standard finite-difference methods, where BE’s dissipative

behavior practically dampens all oscillations. From the error plot in Figure 3.3.3d, TR attempts to

capture these oscillations, but not as accurately as the SD-UTM.

3.3.2 Centered Discretization of qt = (i/2)qxx with Neumann boundary conditions

Lastly, we consider the second-order discretization (2.3.3), but with Neumann boundary condi-

tions at both ends of the interval:

qt =
i
2qxx, 0 < x < L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L,

qx(0, t) = u(1)(t), t > 0,

qx(L, t) = v(1)(t), t > 0.

(3.3.10)

The local and dispersion relations, (2.3.4) and (2.3.5) respectively, transfer over from the previous

section and half-line problems. Now without Dirichlet data, q0(t) and qN+1(t) are unknown, and

the global relation is

eWT q̂(k, T )− q̂(k, 0)− i

2

[
f−1 − eikhf0 + e−ikL

(
g1 − e−ikhg0

)
h

]
= 0, k ∈ C. (3.3.11)

Solving for q̂(k, T ) and using the inverse transform, we obtain

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h

ieiknhe−WT

2

[
f−1 − eikhf0

h

]
dk

+
1

2π

∫ π/h

−π/h

ieik(nh−L)e−WT

2

[
g1 − e−ikhg0

h

]
dk.

(3.3.12)

The global relations (3.3.11) with k and k → −k remove two of the four unknowns. To not introduce

new unknowns, we apply the first-order backward discretization to qx(0, t) and the first-order forward

discretization to qx(L, t). Upon taking time transforms, we solve the system

eWT q̂(k, T )− q̂(k, 0)− i

2

[
f−1 − eikhf0 + e−ikL

(
g1 − e−ikhg0

)
h

]
= 0,

eWT q̂(−k, T )− q̂(−k, 0)− i

2

[
f−1 − e−ikhf0 + eikL

(
g1 − eikhg0

)
h

]
= 0,

f0 − f−1

h
= U (1),

g1 − g0
h

= V (1),
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to remove all four unknowns from “solution” (3.3.12), where

U (1)(W,T ) =

∫ T

0
eWtu(1)(t) dt, and V (1)(W,T ) =

∫ T

0
eWtv(1)(t) dt.

Doing so and substituting into (3.3.12) after deforming to ∂Ṽ ±, depicted in Figure 3.3.1b, gives the

first-order accurate solution

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂Ṽ +

eiknhe−WT

[
e2ik(L+h)q̂(k, 0) + eikhq̂(−k, 0)

e2ik(L+h) − 1
−
i
(
1 + eikh

) (
U (1) − eik(L+h)V (1)

)
2
(
e2ik(L+h) − 1

) ]
dk

− 1

2π

∫
∂Ṽ −

eiknhe−WT

[
q̂(k, 0) + eikhq̂(−k, 0)

e2ik(L+h) − 1
−
i
(
1 + eikh

) (
U (1) − eik(L+h)V (1)

)
2
(
e2ik(L+h) − 1

) ]
dk,

(3.3.13)

after applying similar techniques as before to remove the integral terms depending on q̂(±k, T ). In
the continuum limit, (3.3.13) converges to the continuous UTM solution [17]:

q(x, T ) =
1

2π

∫ π/h

−π/h
eikxe−W̃T q̂(k, 0) dk

− 1

2π

∫
∂Ω̃+

eikxe−W̃T

[
e2ikLq̂(k, 0) + q̂(−k, 0)− i

(
F1 − eikLG1

)
e2ikL − 1

]
dk

− 1

2π

∫
∂Ω̃−

eikxe−W̃T

[
q̂(−k, 0) + q̂(k, 0)− i

(
F1 − eikLG1

)
e2ikL − 1

]
dk,

(3.3.14)

where limh→0 U
(1) = F1 and limh→0 V

(1) = G1.

Series Representation

Proceeding as in the previous sections, the series representation for (3.3.13) is

qn(T ) =
L

L+ h

N+1∑
ℓ=1

e−WℓT cos

(
πℓ
(
n+ 1

2

)
h

L+ h

)[
bℓ −

i

L
cos

[
πℓh

2 (L+ h)

]
H(Wℓ, T )

]
+
Lb0 − iH(W0, T )

2(L+ h)
.

(3.3.15)

where

bℓ =
2h

L

N+1∑
m=0

cos

(
πℓ
(
m+ 1

2

)
h

L+ h

)
ϕm, H(Wℓ, T ) = U (1)(Wℓ, T ) + (−1)ℓ+1V (1)(Wℓ, T ).
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For a numerical example, consider the IBVP (3.3.9), but with Neumann boundary conditions:

qt =
i
2qxx, 0 < x < 1, t > 0,

q(x, 0) = ϕ(x) = 12x− 10x2 +
1

2
sin
(
4πx3

)
, 0 < x < 1,

qx(0, t) = u(1)(t) = 12, t > 0,

qx(1, t) = v(1)(t) = 6π − 8, t > 0.

(3.3.16)

The dispersive nature of the LS equation is captured by the SD-UTM solution (3.3.15) in the three

(xn, t)-plots of Figure 3.3.4, while its first-order accuracy is presented in Figure 3.3.4d.

3.4 Computational Comparisons

For each of the previous numerical examples, we compared the performance of the SD-UTM

solutions to standard finite-difference schemes as h → 0 for a fixed time step. In this section, we

compare all numerical methods in terms of wall-clock time needed to achieve a target accuracy. We

use the IBVP (3.3.9) as an example, which poses the challenge of accurately capturing dispersive

behavior as T increases. Note that the initial and boundary conditions here are not first-order

compatible, i.e., ϕ′′(0) ̸= 0 ̸= ϕ′′(1).

For all methods, we impose a mild target accuracy ∥q(xn, T )− qn(T )∥∞ ≈ E with E = 10−2 for

10−2 ≤ T ≤ 101. First, we determine the number of spatial grid points Nx needed for the SD-UTM

solution to reach the target accuracy. Using this spatial grid, we determine the number of time

steps Nt needed for each finite-difference solution to reach a similar accuracy. We use the SD-UTM

series representation (3.3.8) with f0(Wℓ, T ) = 0 and g0(Wℓ, T ) = 2
(
1− e−WℓT

)
/Wℓ, while the finite

difference solutions are set up in a standard method-of-lines approach with sparse tridiagonal linear

systems that are efficiently solved. For every T , Figure 3.4.1 presents Nx and Nt together (left

panel) and the methods’ wall-clock computation times TC (right panel) when solving the IBVP

to the target accuracy E. The simulations were conducted in Matlab R2021b on an Intel Core

i7-8705G processor with 12GB of RAM.

Starting from T = 10−2, we stop computing the finite-difference solutions if TC > 103 seconds

for the most recent T . This threshold roughly translates to 91 million time steps for FE, 4 million

time steps for RK4, 11 million time steps for BE, and 2 million time steps for TR, which we deem

impractical, and terminate the computations to avoid excessive wall-clock times in trying to reach

the final T = 10. All methods achieved an accuracy of E ± 10−4 for all successful T . Although

the SD-UTM solution itself does not rely on a time-stepping procedure, we must refine the spatial

mesh as T increases to remove higher-order dispersive effects (see Section 3.3.1 for the modified

PDE). Note that at the finest mesh of 3810 grid points, the computation time is still less than

1 second. In addition, the finite-difference time steps shown in Figure 3.4.1a are abnormal under
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practical circumstances. We could re-run these simulations allowing an upper-bound target accuracy

of E + 10−3 or even E + 10−2 to reduce the number of time steps.

3.5 Small-Time Increments

For half-line problems in Section 2.5, we showed how to derive small-time approximate solutions

with predetermined accuracy for SD-UTM integral representations. A similar approach is applied

for finite-interval SD-UTM integral representations. For the forward-discretized advection equation

(2.1.2), we show how to briefly derive these approximate solutions.

To include an arbitrary initial time t0, we generalize the original IBVP (2.1.1) to


qt = c qx, 0 < x < L, t > t0,

q(x, t0) = ϕ(x), 0 < x < L,

q(L, t) = v(0)(t), t > t0,

(3.5.1)

where ϕ(x) is the output from the previous split-step. Following the procedure in Section 3.1.1, the

solution to (3.5.1) is

qn(τ) =
1

2π

∫ π/h

−π/h
eiknhe−Wτ q̂(k, t0) dk +

c

2π

∫ π/h

−π/h
eik(nh−L+h)e−WT g0 dk, (3.5.2)

where

gj (W, τ) =

∫ τ

0
eW (t+t0)qN+1+j(t+ t0) dt, k ∈ C,

after making the substitution τ = T−t0 ≪ 1. We expand (3.5.2) around τ = 0 to obtain a convenient

approximation for a split-step method. We do not expand the initial-condition integral term, since

the only time dependence is through e−Wτ . For this term, we simply follow the steps in Section

3.1.1 to rewrite the integral as a series. The boundary-condition term of (3.5.2) has a more intricate

dependence on time. Rewriting this integral into a series and then expanding the time-dependent

terms leads to representations unique to the IBVP that generally cannot be addressed (see Remark

3.5.1). First, we expand the integrand and then rewrite each of the resulting expansion terms as

finite series. Doing so up to third-order terms, we have

qn(τ) = e−cτ/h
N−n∑
m=0

(cτ
h

)m ϕn+m
m!

+ K1(n)τ + K2(n)τ
2 + K3(n)τ

3 + O(τ4), (3.5.3)
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where L = (N + 1)h and

K1(n) =
c

2π

∫ π/h

−π/h
eik(n−N)hv(0)(t0) dk =

cv(0)(t0)

h
δNn,

K2(n) =
c

4π

∫ π/h

−π/h
eik(n−N)h

[
v̇(0)(t0)−Wv(0)(t0)

]
dk,

K3(n) =
c

12π

∫ π/h

−π/h
eik(n−N)h

[
v̈(0)(t0)−Wv̇(0)(t0) +W 2v(0)(t0)

]
dk.

The only dependence on k within the integrands of Kℓ(n) for ℓ = 1, 2, . . ., are through eik(n−N)h and

powers of W (k, τ), and we want to rewrite

Im(n) =

∫ π/h

−π/h
eik(n−N)hWm dk, m = 0, 1, . . . ,

as a series in terms of

Kℓ(n) =
c

2π · ℓ!

ℓ−1∑
j=0

Iℓ−1−j(n)
djv(0)(t)

dtj

∣∣∣∣∣
t=t0

.

With z = eikh, the dispersion relation for this IBVP gives

Im(n) =
1

ih

( c
h

)m ∮
|z|=1

(1− z)m

zN−n+1
dz =

2π(−1)N−n

h(N − n)!

( c
h

)m m!

(m−N + n)!
.

Note that Im(n) is nonzero only for m + n ≥ N . Substituting into Kℓ(n) yields the small-time

approximation (3.5.3), free of integral computations, where

Kℓ(n) =
(−1)N−n

(N − n)! ℓ!

ℓ−1∑
j=0

(−1)j(ℓ− 1− j)!

(ℓ− 1− j −N + n)!

( c
h

)ℓ−j djv(0)(t)
dtj

∣∣∣∣∣
t=t0

.

A similar process can be repeated for other IBVPs.

Remark 3.5.1. Although the process of rewriting an SD-UTM integral representation into a series

is straightforward, the resulting formulas are specific to the IBVPs and their dispersion relations.

To obtain these small-time approximation solutions in general, we must start from the integral

representations – not the series.
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(a) (b)

(c) (d)

Figure 3.3.3: (a) - (c) Real and imaginary parts and modulus squared of the semi-discrete solution

(3.3.8) evaluated at various T for IBVP (3.3.9) with h = 0.01. (d) Error plot of the semi-discrete

solution (3.3.8) and finite-difference schemes relative to the exact solution as h → 0 with T = 0.1

and ∆t = 3.90625× 10−4.
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(a) (b)

(c) (d)

Figure 3.3.4: (a) - (c) Real and imaginary parts and modulus squared of the semi-discrete solution

(3.3.15) evaluated at various T for IBVP (3.3.9) with h = 0.01. (d) Error plot of the semi-discrete

solution (3.3.15) and finite-difference schemes relative to the exact solution as h → 0 with T = 0.2

and ∆t = 1.5625× 10−3.
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(a) (b)

Figure 3.4.1: (a) The blue curve denotes the number of spatial grid points Nx required for the SD-

UTM solution to approximately reach the accuracy E = 10−2 when solving the IBVP (3.3.9). Using

this information, every finite-difference method uses the same spatial grid for each T to determine

how many time-steps Nt are required to reach a similar accuracy as the SD-UTM solution. (b)

The wall-clock computation time (averaged over 10 runs to rule out any effects due to background

processes) required for each method to solve the IBVP (3.3.9) with the selected Nx and Nt that

approximately give an accuracy E.
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Chapter 4

THIRD-ORDER PROBLEMS

The Korteweg–de Vries (KdV) equation is commonly given as

qt + 6qqx + qxxx = 0,

such that linearizing around the trivial solution, we obtain the linear KdV equation: qt + qxxx = 0.

For the following sections, we will be discretizing

qt = ±qxxx (4.0.1)

in various stencils, depending on the sign of the right-hand side. For the “positive” linear KdV

equation qt = qxxx, the half-line problem requires two boundary conditions at x = 0, while the

“negative” equation qt = −qxxx requires only one.

This type of third-order problem was first solved using the UTM and its systematic implemen-

tation [17], so we next show how the SD-UTM performs for this class of third-order problems on

both the half-line and finite interval.

4.1 Half-Line IBVPs

4.1.1 Off-Centered Backward Discretization of qt = qxxx

Consider the half-line IBVP for the “positive” linear KdV equation:

qt = qxxx, x > 0, t > 0,

q(x, 0) = ϕ(t), x > 0,

q(0, t) = u(0)(t), t > 0,

qx(0, t) = u(1)(t), t > 0,

(4.1.1)

and a first-order accurate, off-centered discretization that leans backward:

q̇n =
1

h3
(−qn−2 + 3qn−1 − 3qn + qn+1) . (4.1.2)

The local relation is found to be

∂t

(
e−iknheWtqn

)
=

1

h3
∆
(
e−iknheWtqn−2 − 3e−iknheWtqn−1 + e−ik(n−1)heWtqn

+ e−ik(n+1)heWtqn−1

) (4.1.3)
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with dispersion relation

W (k) =
1

h3

(
3− 3e−ikh − eikh + e−2ikh

)
, (4.1.4)

and its symmetries

ν0(k) = k, (4.1.5a)

ν1(k) =
i

h
ln

e
−ikh

(
3eikh − 1 +

[(
1− 3eikh

)2 − 4e3ikh
]1/2)

2

 , (4.1.5b)

ν2(k) =
i

h
ln

e
−ikh

(
3eikh − 1−

[(
1− 3eikh

)2 − 4e3ikh
]1/2)

2

 . (4.1.5c)

Since the half-line problem (4.1.1) has a Dirichlet boundary condition u(0)(t), we know the informa-

tion at q(0, t) ≡ q0(t) for all t. From (4.1.3), we determine the global relation by using a summation

starting from n = 1:

⇒ eWT q̂(k, T )− q̂(k, 0)− 1

h2

[
−e−ikhf−1 + e−ikh

(
3− e−ikh

)
f0 − f1

]
= 0, Im(k) ≤ 0. (4.1.6)

It follows that the “solution” is written as

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫ π/h

−π/h
eiknhe−WT

[
−e−ikhf−1 + e−ikh

(
3− e−ikh

)
f0 − f1

h2

]
dk.

(4.1.7)

Based on the fj(W,T ) functions above, we can apply the standard backward, center, or forward

discretizations for the Neumann boundary condition qx(0, t) = u(1)(t) so as to not introduce any

further unknown fj(W,T ). Since the main stencil (4.1.2) leans backward, we choose the standard

first-order backward discretization:

q0(t)− q−1(t)

h
= u(1)(t) ⇒ f0(W,T )− f−1(W,T )

h
= U (1)(W,T ),

after taking time transforms, where

U (1)(W,T ) =

∫ T

0
eWtu(1)(t) dt.

Now, only f1(W,T ) remains unknown, which can be removed with the given nontrivial symme-

tries (4.1.5b) - (4.1.5c). First let us determine where the global relation (4.1.6) with the substituted

symmetries is valid in the complex k-plane. By defining the branch cut for z1/2 on the positive

real line (see Remark 2.2.2), Figure 4.1.1a depicts shaded regions where the global relation (4.1.6)
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−π
h

π
h

Re(k)

Im(k)

Im(ν1(k)) ≤ 0

Im(ν2(k)) ≤ 0

(a)

Im(k)

Re(k)

π
h

−π
h

(b)

Figure 4.1.1: (a) Valid regions of the global relation (4.1.6) with k → νj(k). (b) The shaded regions

depict where Re(W ) ≤ 0 and e−WT is bounded with the dispersion relation (4.1.4).

is valid with each of the nontrivial symmetries. Figure 4.1.1a implies that the global relation with

either symmetry is not valid across the entire half-plane, such that both symmetries must be used

simultaneously to remove one unknown. We see that the global relation with ν1(k) is valid for all

Im(k) ≥ 0 with −π/h ≤ Re(k) ≤ 0 and the global relation with ν2(k) is valid for all Im(k) ≥ 0 with

0 ≤ Re(k) ≤ π/h. Hence, we must split up the integration path of the second term in (4.1.7). With

some hindsight, we want these new paths to align with the exponential decay of e−WT , depicted as

the shaded regions in Figure 4.1.1b.

We introduce contour paths in Figure 4.1.2a as P = (P1 + P2) + (P3 + P4 + P5) + (P6 + P7),

where P3,4,5 outline the middle wedge and the straight-line paths P1,4,7 are all at a fixed height

R > 0 above the real line. By Cauchy’s Theorem, it is clear that

1

2π

∫
∂P3,4,5

eiknhe−WT

[
−e−ikhf−1 + e−ikh

(
3− e−ikh

)
f0 − f1

h2

]
dk = 0,

so that (4.1.7) becomes

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫
P
eiknhe−WT

[
−e−ikhf−1 + e−ikh

(
3− e−ikh

)
f0 − f1

h2

]
dk,
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P1

P2

P3

P4

P5

P6

P7

Im(k)

Re(k)

π
h

−π
h (a)

∂V1 ∂V2

Im(k)

Re(k)

π
h

−π
h (b)

Figure 4.1.2: (a) Integration path P and (b) modified integration paths ∂V1 and ∂V2 for (4.1.2).

after deforming the path on the negative real line k ∈ [−π/h, 0] to P1 + P2 and the other path on

the positive real line k ∈ [0, π/h] to P6 + P7. The vertical integration paths on the boundary of the

domain cancel each other by periodicity, but only at the boundary where Re (ν1) = −Re (ν2) and

Im (ν1) = Im (ν2). Since paths P1,4,7 are in regions of exponential decay, we deform them to i∞,

such that R→ ∞, effectively extending the adjacent vertical paths off to i∞ as well. We now define

the integration paths ∂V1 = limR→∞ (P2 + P3) and ∂V2 = limR→∞ (P5 + P6), as depicted in Figure

4.1.2b, where V =
{
k ∈ C+

∣∣∣Re(−W ) ≤ 0
}

and ∂V = ∂V1 ∪ ∂V2. Thus,

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫
∂V1

eiknhe−WT

[
−e−ikhf−1 + e−ikh

(
3− e−ikh

)
f0 − f1

h2

]
dk

+
1

2π

∫
∂V2

eiknhe−WT

[
−e−ikhf−1 + e−ikh

(
3− e−ikh

)
f0 − f1

h2

]
dk.

(4.1.8)

Note that the integral path ∂V1 in (4.1.8) lies in the second quadrant of the complex k plane, while

∂V2 lies in the first quadrant. Deforming the path allows us to eliminate the unknown f1(W,T ) by

use of both nontrivial symmetries. Employing ν1(k) into the global relation (4.1.6), we find

f1 = h2e−2iν1h

[
e2iν1hq̂ (ν1, 0)− e2iν1heWT q̂ (ν1, T ) +

2eiν1h − 1

h2
f0 +

eiν1h

h
U (1)

]
,
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valid in the blue region of Figure 4.1.1a. Employing ν2(k), we correspondingly find

f1 = h2e−2iν2h

[
e2iν2hq̂ (ν2, 0)− e2iν2heWT q̂ (ν2, T ) +

2eiν2h − 1

h2
f0 +

eiν2h

h
U (1)

]
,

now valid in the orange region of Figure 4.1.1a. Respectively substituting into (4.1.8),

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫
∂V1

eiknhe−WT

[
2e−ikh − e−2ikh − 2e−iν1h + e−2iν1h

h2
f0 +

e−ikh − e−iν1h

h
U (1) − q̂ (ν1, 0)

]
dk

+
1

2π

∫
∂V2

eiknhe−WT

[
2e−ikh − e−2ikh − 2e−iν2h + e−2iν2h

h2
f0 +

e−ikh − e−iν2h

h
U (1) − q̂ (ν2, 0)

]
dk

+ S(n),

with

S(n) =
1

2π

∫
∂V1

eiknhq̂ (ν1, T ) dk +
1

2π

∫
∂V2

eiknhq̂ (ν2, T ) dk.

Lastly, we want to show that S(n) vanishes for all n and T . We deform ∂V1,2 to D1,2, respectively,

where

D1 =

{
k ∈ C

∣∣∣ −3π

4h
≤ Re(k) ≤ −π

4h
and Im(k) = R

}
,

and

D2 =

{
k ∈ C

∣∣∣ π
4h

≤ Re(k) ≤ 3π

4h
and Im(k) = R

}
,

with positive R → ∞ as denoted in Figure 4.1.3, where we recall the definition of cumulative path

P from Figure 4.1.2a. Note that the orientation of paths D1,2 are reversed with a minus sign and

the integrands on paths ∂V1,2 are identical up to which symmetry is being used. Hence, the vertical

integration paths cancel each other, so that

S(n) =
1

2π

∫
D1

eiknhq̂ (ν1, T ) dk +
1

2π

∫
D2

eiknhq̂ (ν2, T ) dk,

with R → ∞. From the global relation (4.1.2) and Figure 4.1.3, we know that as R → ∞, q̂ (ν1, T )

will exponentially decay for k ∈ D1 and q̂ (ν2, T ) will exponentially decay for k ∈ D2. Therefore,

S(n) = 0 and the final solution to this IBVP is

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

+
1

2π

∫
∂V1

eiknhe−WT

[
2e−ikh − e−2ikh − 2e−iν1h + e−2iν1h

h2
f0 +

e−ikh − e−iν1h

h
U (1) − q̂ (ν1, 0)

]
dk

+
1

2π

∫
∂V2

eiknhe−WT

[
2e−ikh − e−2ikh − 2e−iν2h + e−2iν2h

h2
f0 +

e−ikh − e−iν2h

h
U (1) − q̂ (ν2, 0)

]
dk.

(4.1.9)
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∂V1 ∂V2

−π
h

π
h

Re(k)

Im(k)

Im(ν1(k)) ≤ 0

Im(ν2(k)) ≤ 0

−D1 −D2

Figure 4.1.3: Deforming ∂V1,2 to D1,2 with R→ ∞.

With anticipation, we constructed ∂V1,2 so that in the continuum limit, these integration paths

approach those from the continuous problem [17, 28]. The integration paths from the continuous

problem must contain paths on the real line, which then requires the integration of highly-oscillatory

integrals, since these real-line paths involve no decay from either eikx nor e−WT . This differs from

the semi-discrete problem, where in Figures 4.1.1 – 4.1.2, we deformed all integration paths off

the real line, which became P1,2 and P6,7 for the negative line and positive line paths, respectively.

Unlike the continuous problem, we have decay on the real line due to e−WT . For numerical purposes,

it is beneficial to leave the real-line paths on the real line, especially since the boundary between

the unshaded and shaded region becomes vertical and extends to +i∞, effectively trading a finite

integration path for an infinite one.

Figure 4.1.4 depicts possible computation paths ∂C1,2 for the integration paths ∂V1,2, where

the dots are the waypoints implemented into Matlab’s integral() function when numerically

evaluating the solution above. Note that the top wedge paths are off the boundary of decay/growth

due to e−WT , placed closer to the positive imaginary axis. In addition, the paths no longer pass

directly through the origin, now slightly curved above it. This modification is legitimate analytically,

but if the curve is placed far into the unshaded regions of exponential growth, the integrand may

grow uncontrollably and not converge when implemented numerically. The general structures of

∂C1,2 persist as h→ 0.

Applying the continuous UTM to (4.1.1) gives the global relation

q̂(k, 0)− eW̃T q̂(k, T )−
(
−k2F0 + ikF1 + F2

)
= 0, Im(k) ≤ 0, (4.1.10)
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∂C1 ∂C2

Im(k)

Re(k)

π
h

−π
h

Figure 4.1.4: Computation paths ∂C1,2.

and dispersion relation

W̃ (k) = ik3, (4.1.11)

with symmetries ν̃0(k) = k, ν̃1(k) = αk, and ν̃2(k) = α2k. Figure 4.1.5 depicts the regions where

the global relation (4.1.10) with the two nontrivial symmetries is valid. Introducing

Ω =
{
k ∈ C

∣∣∣Re(−W̃) > 0
}
,

we define the path ∂Ω = ∂Ω1 + ∂Ω2 as depicted in Figure 4.1.6. Like in the semi-discrete case,

Figure 4.1.5 implies we can employ only ν̃1(k) on ∂Ω1 and only ν̃2(k) on ∂Ω2 to remove the same,

single unknown F2(W,T ) function. Then, the solution to the linear “positive” KdV half-line problem

(4.1.1) is

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk

− 1

2π

∫
∂Ω1

eikxe−W̃T
[
k2
(
α2 − 1

)
F0 − ik(α− 1)F1 + q̂(αk, 0)

]
dk

− 1

2π

∫
∂Ω2

eikxe−W̃T
[
k2 (α− 1)F0 − ik(α2 − 1)F1 + q̂(α2k, 0)

]
dk.

(4.1.12)

When numerically evaluating the solution above, the paths of ∂Ω1,2 that are on the real line will be

the most troublesome to deal with, since the integrand contains no decay from eikx nor e−W̃T . The

top wedge paths, however, can be further deformed toward the imaginary line to exploit the decay

from both exponential terms.

We want to show that the semi-discrete solution (4.1.9) converges to the continuous solution

(4.1.12) as h → 0. It is straightforward to show that limh→0W (k) = ik3. For the nontrivial
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Re(k)

Im(k)

Im(ν̃1(k)) ≤ 0

Im(ν̃2(k)) ≤ 0

Figure 4.1.5: Regions where the global relation (4.1.10) is valid with k → ν̃j(k).

symmetries, we take Taylor series expansions about h = 0, so that

ν1(k) =
1

2
i
(
i+

√
3
)
k +

k2

2
√
3
h+O

(
h2
)
, ν2(k) =

1

2
i
(
i−

√
3
)
k − k2

2
√
3
h+O

(
h2
)
,

where k ∈ C with Im(k) ≥ 0 implies z1/2 =
√
z. Thus, taking the continuum limit,

lim
h→0

νj(k) = αjk,

which further implies that

lim
h→0

q̂ (νj , 0) = q̂
(
αjk, 0

)
.

Graphically, these limits appear in Figure 4.1.7, depicting Im (νj) ≤ 0 for comparison with Figure

4.1.5.

Similarly, the coefficient for f0(W,T ) on the integration path ∂V1 gives

2e−ikh − e−2ikh − 2e−iν1h + e−2iν1h

h2
=

1

2
k2
(
3 + i

√
3
)
−
k3
(√

3− 3i
)

6
h+O

(
h2
)
.

Hence,

lim
h→0

2e−ikh − e−2ikh − 2e−iν1h + e−2iν1h

h2
= −

(
α2 − 1

)
,

the coefficient of F0(W,T ) on ∂Ω1, where−
(
α2 − 1

)
=
(
3 + i

√
3
)
/2 and limh→0 f0(W,T ) = F0(W,T ).

In the same fashion, we can show that the coefficient for U (1)(W,T ) on ∂V1 converges to the co-

efficient of F1(W,T ) on ∂Ω1. We follow similar steps to show that the second integral of (4.1.9)

converges to the second integral of (4.1.12).
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∂Ω1

∂Ω2

Im(k)

Re(k)

Figure 4.1.6: The shaded regions depict where Re(W̃ ) ≤ 0 and e−W̃T is bounded with the dispersion

relation (4.1.11).

Remark 4.1.1. Note that if k ∈ C with Im(k) ≤ 0, then our branch cut implies

lim
h→0

ν1(k) = lim
h→0

[
1

2
i
(
i−

√
3
)
k − k2

2
√
3
h+O

(
h2
)]

= α2k,

lim
h→0

ν2(k) = lim
h→0

[
1

2
i
(
i+

√
3
)
k +

k2

2
√
3
h+O

(
h2
)]

= αk.

This is also seen in Figure 4.1.7. However, for the half-line problem and eventually the finite-interval

problem, this discrepancy is not an issue.

Remark 4.1.2. What if we had chosen a discretization other than the backward-leaning stencil

(4.1.2)? Another option that would give us the same number of total symmetries is the off-centered

discretization that leans forward:

q̇n =
1

h3
(−qn−1 + 3qn − 3qn+1 + qn+2) ,

the same one we will use for the “negative” linear KdV equation qt = −qxxx (see Section 4.1.2).

Briefly, the dispersion relation is W (k) =
(
e−ikh − 3 + 3eikh − e2ikh

)
/h3, where Figure 4.1.8 depicts

the shaded regions of decay due to e−WT . Note that the real line is unshaded and a path here cannot

be deformed without containing a path in a region of exponential growth, i.e., whatever solution we

obtain will contain integrands that grow uncontrollably for large k ∈ R and any given h – just like

the time-reversed heat equation (see Appendix B), even though limh→0W (k) = ik3. Therefore, we

will refer to the leaning-backward discretization (4.1.2) as the natural discretization for this IBVP.
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Re(k)

π−π
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Figure 4.1.7: Im (νj) ≤ 0 for symmetries (4.1.5b) and (4.1.5c) in the continuum limit (see Figures

4.1.1a and 4.1.5).

4.1.2 Off-Centered Forward Discretization of qt = −qxxx

We next study the “negative” linear KdV equation on the half-line:


qt = −qxxx, x > 0, t > 0,

q(x, 0) = ϕ(t), x > 0,

q(0, t) = u(0)(t), t > 0.

(4.1.13)
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Im(k)

Re(k)

π
h

−π
h

Figure 4.1.8: The shaded regions depict where Re(W ) ≤ 0 and e−WT is bounded with the dispersion

relation from the forward-leaning discretization for qt = qxxx.

Applying a first-order accurate, off-centered discretization to qt = −qxxx that leans forward gives

q̇n =
−1

h3
(−qn−1 + 3qn − 3qn+1 + qn+2) . (4.1.14)

The local relation is found to be

∂t

(
e−iknheWtqn

)
=

−1

h3
∆
(
e−iknheWtqn−1 − 3e−ik(n−1)heWtqn + e−ik(n−1)heWtqn+1

+ e−ik(n−2)heWtqn

)
,

(4.1.15)

with dispersion relation

W (k) =
−1

h3

(
−3 + e−ikh + 3eikh − e2ikh

)
. (4.1.16)

From (4.1.15), we determine the global relation as

eWT q̂(k, T )− q̂(k, 0) +
1

h2

[
−e−ikhf0 +

(
3− eikh

)
f1 − f2

]
= 0, Im(k) ≤ 0, (4.1.17)

Note that the sum began at n = 1 instead of n = 0, because we have the known Dirichlet boundary

condition at x = 0, i.e., at n = 0. It follows that

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫ π/h

−π/h
eiknhe−WT

[
−e−ikhf0 +

(
3− eikh

)
f1 − f2

h2

]
dk.

(4.1.18)
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−π
h

π
h

Re(k)

Im(k)

Im(ν1(k)) ≤ 0

Im(ν2(k)) ≤ 0

(a)

Im(k)

Re(k)

π
h

−π
h (b)

Figure 4.1.9: (a) Valid regions of the global relation (4.1.17) with k → νj(k). (b) The shaded regions

depict where Re(W ) ≤ 0 and e−WT is bounded with the dispersion relation (4.1.16).

Since we only have the Dirichlet boundary condition u(0)(t), we need to eliminate dependence from

f1(W,T ) and f2(W,T ). To determine the symmetries, we solve W (ν) =W (k) for ν(k) and find

ν0(k) = k, (4.1.19a)

ν1(k) =
i

h
ln

[
3eikh − e2ikh −

(
eikh − 1

) (
e2ikh − 4eikh

)1/2
2

]
, (4.1.19b)

ν2(k) =
i

h
ln

[
3eikh − e2ikh +

(
eikh − 1

) (
e2ikh − 4eikh

)1/2
2

]
. (4.1.19c)

Like with the symmetries of the discretization (4.1.2) for qt = +qxxx, we relocate the branch

cut of z1/2 onto the positive real line. We introduce Figure 4.1.9a, depicting shaded regions where

Im (νj) ≤ 0 holds for j = 1, 2. In order to remove two unknowns, we require the use of both

symmetries, such that the second integral term of (4.1.18) must be deformed off the real line.

With some hindsight when taking the continuum limit, we want these new paths to align with the

exponential decay of e−WT , depicted as the shaded regions in Figure 4.1.9b. Similar to the stencil

(4.1.2) for the “positive” linear KdV IBVP (4.1.1), we define integration paths P = P1 + P2 + P3,

shown in Figure 4.1.10, where the horizontal paths P1,3 are at some fixed height R > 0 above the

real line. Through periodicity, we deform the second integral of (4.1.18) to P , so that
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P1

P2

P3

Im(k)

Re(k)

π
h

−π
h

Figure 4.1.10: Integration path P for (4.1.14).

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
P
eiknhe−WT

[
−e−ikhf0 +

(
3− eikh

)
f1 − f2

h2

]
dk.

(4.1.20)

Since P1,3 are in regions of exponential decay, we can take R → ∞, so that P1,3 vanish and the

endpoints of P2 are extended to +i∞, with ∂V = limR→∞ P2, as outlined in Figure 4.1.11, where

V =
{
k ∈ C+

∣∣∣Re(−W ) ≤ 0
}
. Hence, “solution” (4.1.20) becomes

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂V
eiknhe−WT

[
−e−ikhf0 +

(
3− eikh

)
f1 − f2

h2

]
dk.

(4.1.21)

Of course, taking R→ ∞ effectively traded three finite paths P1,2,3 for one infinite path ∂V .

With both symmetries valid on the integration path ∂V , we use the global relation (4.1.17) with

k → ν1(k) and k → ν2(k):


eWT q̂ (ν1, T )− q̂ (ν1, 0) +

1

h2

[
−e−iν1hf0 +

(
3− eiν1h

)
f1 − f2

]
= 0,

eWT q̂ (ν2, T )− q̂ (ν2, 0) +
1

h2

[
−e−iν2hf0 +

(
3− eiν2h

)
f1 − f2

]
= 0,

(4.1.22)
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∂V

Im(k)

Re(k)

π
h

−π
h

∂V

−π
h

π
h

Re(k)

Im(k)

Im(ν1(k)) ≤ 0

Im(ν2(k)) ≤ 0

Figure 4.1.11: Integration path ∂V .

to solve for the two unknowns f−1(W,T ) and f1(W,T ). After some algebra, (4.1.21) becomes

qn(T ) =
1

2π

∫ π/h

−π/h

eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂V

eiknhe−WT

[(
eikh − eiν2h

)
q̂(ν1, 0) +

(
eiν1h − eikh

)
q̂(ν2, 0)

eiν1h − eiν2h

]
dk

+
1

2π

∫
∂V

eiknhe−WT

[
e−ikh−i(ν1+ν2)h

(
eikh − eiν1h

) (
eikh − eiν2h

)
h2

f0

]
dk − S(n),

(4.1.23)

with

S(n) =
1

2π

∫
∂V
eiknh

[(
eiν2h − eikh

)
q̂(ν1, T ) +

(
eikh − eiν1h

)
q̂(ν2, T )

eiν1h − eiν2h

]
dk,

or substituting in ν1(k) and ν2(k),

qn(T ) =
1

2π

∫ π/h

−π/h

eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂V

eiknhe−WT

[(√
eikh − 4 + 3eikh/2

)
q̂(ν1, 0) +

(√
eikh − 4− 3eikh/2

)
q̂(ν2, 0)

2
√
eikh − 4

]
dk

+
1

2π

∫
∂V

eiknhe−WT

[
e−ikh − 3eikh + 2e2ikh

h2
f0

]
dk + S(n),

(4.1.24)

with

S(n) =
1

2π

∫
∂V
eiknh


(
3eikh/2 +

√
eikh − 4

)
q̂(ν1, T )−

(
3eikh/2 −

√
eikh − 4

)
q̂(ν2, T )

2
√
eikh − 4

 dk.
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Note that we have already made the correct branch cut choice in “solution” (4.1.24).

From (4.1.23), it would appear that the second integral and S(n) terms have poles at

k(1)α =
−4πα

h
, k

(2)
β =

−4πβ − i ln(4)

h
, k(3)γ =

−4πγ − 2π

h
, k

(4)
δ =

−4πδ − 2π − i ln(4)

h

for α, β, γ, δ ∈ Z. In fact, all of these singularities are removable. We could show this by taking limits

of the integrands in question, but due to their intricacies, it is beneficial to instead determine their

Taylor-series expansions about these singularities after making substitutions of q̂ (ν1, 0), q̂ (ν2, 0),

q̂ (ν1, T ), and q̂ (ν2, T ). Since we only care about the plane (Re(k), Im(k)) = [−π/h, π/h]×(−∞,∞),

the singularities of interest are k
(1)
0 = 0 and k

(2)
0 = −i ln(4)/h. After substituting definitions of

q̂ (νj , 0), the integrand in the second integral term expanded about k = k
(1)
0 becomes(

eikh − eiν2h
)
e−iν1mh +

(
eiν1h − eikh

)
e−iν2mh

eiν1h − eiν2h
= 1− ikmh+O

(
k2
)
.

It is clear that the limit exists for this integrand as k → k
(1)
0 , such that k

(1)
0 is a removable singularity.

Similarly for k
(2)
0 , the same integrand expands to(

eikh − eiν2h
)
e−iν1mh +

(
eiν1h − eikh

)
e−iν2mh

eiν1h − eiν2h

= (−2)m(1 + 9m) + ih(−1)m2m−1m [9m(3m+ 2) + 7]

(
k +

i ln(4)

h

)
+O

[(
k +

i ln(4)

h

)2
]
.

Taking the limit as k → k
(2)
0 , we see that k

(2)
0 is also a removable singularity. Likewise, one can show

that the singularities are removable for the S(n) integrands.

From (4.1.24), it would also appear that the second integral and S(n) terms have poles at

kb =
2πb− i ln(4)

h

for b ∈ Z or setting b = 0, at

k0 =
−i ln(4)

h
= k

(2)
0 .

Following the same procedure as above, the integrand in the second integral term expanded about

k = k0 has the same expansion from (4.1.23) about k = k
(2)
0 :(√

eikh − 4 + 3eikh/2
)
q̂(ν1, 0) +

(√
eikh − 4− 3eikh/2

)
q̂(ν2, 0)

2
√
eikh − 4

= (−2)m(1 + 9m) + ih(−1)m2m−1m [9m(3m+ 2) + 7]

(
k +

i ln(4)

h

)
+O

[(
k +

i ln(4)

h

)2
]
.

Thus, both (4.1.23) and (4.1.24) have removable singularities in their integrands. For simplicity, we

proceed solely with (4.1.24), although the next steps could be repeated with (4.1.23).



104

∂V

−D

−π
h

π
h

Re(k)

Im(k)

Im(ν1(k)) ≤ 0

Im(ν2(k)) ≤ 0

Figure 4.1.12: Deforming ∂V to D with R→ ∞.

To determine the contribution from S(n), we again substitute the definition of the transforms

for q̂(ν1, T ) and q̂(ν2, T ), so that we have

S(n) =
h

2π

∞∑
m=1

qm(T )I(n,m),

with

I(n,m) =

∫
∂V
eiknh


(
3eikh/2 +

√
eikh − 4

)
e−iν1mh −

(
3eikh/2 −

√
eikh − 4

)
e−iν2mh

2
√
eikh − 4

 dk.
To remove the unwanted integral terms, we deform ∂V to D, where

D =

{
k ∈ C

∣∣∣ −π
2h

≤ Re(k) ≤ π

2h
and Im(k) = R

}
,

with positive R → ∞ as denoted in Figure 4.1.12. The orientation of path D is reversed with a

minus sign. Of course, the global relations (4.1.22) are still valid on D. Hence, due to analyticity

and with R→ ∞, we can write

I(n,m) =

∫
D
eiknh


(
3eikh/2 +

√
eikh − 4

)
e−iν1mh −

(
3eikh/2 −

√
eikh − 4

)
e−iν2mh

2
√
eikh − 4

 dk.
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For all nonzero n and m, we take R→ ∞, so that

I(n,m) =

∫
D

eiknh

2m


(
3eikh/2 +

√
eikh − 4

) [
3eikh − e2ikh − e

ikh
2

(
eikh − 1

)√
eikh − 4

]m
2
√
eikh − 4

−

(
3eikh/2 −

√
eikh − 4

) [
3eikh − e2ikh + e

ikh
2

(
eikh − 1

)√
eikh − 4

]m
2
√
eikh − 4

 dk

∼
∫
D

eiknh

2m

(3eikh/2 + 2i
) [

3eikh − e2ikh + 2ie
ikh
2

]m
4i

−

(
3eikh/2 − 2i

) [
3eikh − e2ikh − 2ie

ikh
2

]m
4i

 dk
∼ 0,

since all the exponentials decay. Therefore, S(n) = 0 for all n = 1, 2, 3, . . . and (4.1.24) becomes

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫
∂V
eiknhe−WT


(√

eikh − 4 + 3eikh/2
)
q̂(ν1, 0) +

(√
eikh − 4− 3eikh/2

)
q̂(ν2, 0)

2
√
eikh − 4

 dk
+

1

2π

∫
∂V
eiknhe−WT

[
e−ikh − 3eikh + 2e2ikh

h2
f0

]
dk.

(4.1.25)

Note that numerically evaluating these integrals might be troublesome as h → 0, because as

shown in the left plot of Figure 4.1.11, ∂V is along the region satisfying Re(−W ) = 0, such that

there is no exponential decay due to e−WT . Integrating along this path, for large |k|, could be

problematic as any machine error introduced could place the integration path into the unshaded

regions of exponential growth, allowing the integrand to grow uncontrollably in magnitude. Thus,

we must modify the analytical integration path ∂V to a computation path ∂C, depicted in Figure

4.1.13. These paths are numerically better suited when evaluating the second integral term of

(4.1.25), where ∂C continues to be within both regions of validity for the global relations with ν1(k)

and ν2(k). Note that the visible points in Figure 4.1.13 are the complex waypoints implemented

into Matlab’s integral() function. The general structure of ∂C persists as h→ 0.

Applying the continuous UTM to IBVP (4.1.13) gives the dispersion relation W̃ (k) = −ik3 and

solution

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk

− 1

2π

∫
∂Ω
eikxe−W̃T

[
3k2F0 − αq̂(αk, 0)− α2q̂(α2k, 0)

]
dk,

(4.1.26)
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Figure 4.1.13: Computation path ∂C.

where Ω =
{
k ∈ C

∣∣∣Re(−W̃) > 0
}
.

We now show that the continuum limit of the SD-UTM solution (4.1.25) converges to (4.1.26).

Following similar steps from the previous section, we Taylor expand the nontrivial symmetries with

the appropriate choice of branch cut for z1/2 on the positive real line and take the continuum limit:

ν1(k) =
i

2

(
i+

√
3
)
k − k2

2
√
3
h+O

(
h2
)
, ν2(k) =

i

2

(
i−

√
3
)
k +

k2

2
√
3
h+O

(
h2
)
,

so that limh→0 νj(k) = αjk, which further implies limh→0 q̂(νj , 0) = q̂(αjk, 0). From the second

integral of the semi-discrete solution, we have

lim
h→0

(√
eikh − 4 + 3eikh/2

)
q̂(ν1, 0) +

(√
eikh − 4− 3eikh/2

)
q̂(ν2, 0)

2
√
eikh − 4

= − i

2

(
i+

√
3
)
q̂ (αk, 0)− i

2

(
i−

√
3
)
q̂
(
α2k, 0

)
= −αq̂ (αk, 0)− α2q̂

(
α2k, 0

)
,

and from the third integral,

lim
h→0

e−ikh − 3eikh + 2e2ikh

h2
= −3k2.

Therefore, we recover exactly the continuous solution (4.1.26) with limh→0 f0 = F0.
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4.2 Finite Interval IBVP

4.2.1 Off-Centered Backward Discretization of qt = qxxx

We return to the first-order accurate, off-centered discretization (4.1.2) from Section 4.1.1, except

now for the finite interval problem

qt = qxxx, 0 < x < L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L,

q(0, t) = u(0)(t), t > 0,

qx(0, t) = u(1)(t), t > 0,

q(L, t) = v(0)(t), t > 0.

(4.2.1)

The local relation (4.1.3) and dispersion relation (4.1.4) give rise to the global relation

eWT q̂(k, T )− q̂(k, 0)− 1

h2

(
f + e−ikLg

)
= 0, k ∈ C, (4.2.2)

where f(k, T ) = −e−ikhf−1 + e−ikh
(
3− e−ikh

)
f0 − f1,

g(k, T ) = g−2 +
(
e−ikh − 3

)
g−1 + eikhg0,

so that

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

∫ π/h

−π/h
eiknhe−WT

(
f + e−ikLg

h2

)
dk. (4.2.3)

Based on the fj(W,T ) above, we can use standard backward, center, or forward discretizations for

qx(0, t) = u(1)(t) as to not introduce any further unknown fj(W,T ) functions. We choose the third

option for now, such that

q1(t)− q0(t)

h
= u(1)(t) ⇒ f1 − f0

h
= U (1),

after taking time transforms, where

U (1)(W,T ) =

∫ T

0
eWtu(1)(t) dt.

Thus, we have the four equations

0 = eWT q̂ (ν0, T )− q̂ (ν0, 0)−
1

h2
[
f + e−iν0Lg

]
,

0 = eWT q̂ (ν1, T )− q̂ (ν1, 0)−
1

h2
[
f + e−iν1Lg

]
,

0 = eWT q̂ (ν2, T )− q̂ (ν2, 0)−
1

h2
[
f + e−iν2Lg

]
,

f1 − f0
h

= U (1),
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to remove the four unknowns f−1(W,T ), f1(W,T ), g−2(W,T ), and g−1(W,T ), where f0(W,T ) and

g0(W,T ) are known from the Dirichlet boundary conditions u(0)(t) and v(0)(t). In order to substitute

our findings from simultaneously solving the equations above, we must first deform f(W,T ) from

g(W,T ) within (4.2.3). For the sake of taking the continuum limit later, let us deform g(W,T ) off

the real line. Figure 4.1.1b depicts where e−WT decays as shaded regions.

Let us focus first on the f(W,T ) terms. Like in the half-line case, we introduce contour paths in

Figure 4.1.2a as P = (P1 + P2) + (P3 + P4 + P5) + (P6 + P7), where P3,4,5 outline the middle wedge

and the straight-line paths P1,4,7 are all at a fixed height R > 0 above the real line. By Cauchy’s

integral theorem, it is clear that

1

2π

∫
∂P3,4,5

eiknhe−WT

(
f

h2

)
dk = 0,

so that
1

2π

∫ π/h

−π/h
eiknhe−WT

(
f

h2

)
dk =

1

2π

∫
P
eiknhe−WT

(
f

h2

)
dk,

after deforming the path on the negative-real line k ∈ [−π/h, 0] to P1 + P2 and the other path on

the positive-real line k ∈ [0, π/h] to P6 + P7. The vertical integration paths on the boundary of the

domain cancel each other by periodicity, but only there at the boundary where Re (ν1) = −Re (ν2)

and Im (ν1) = Im (ν2). In addition, since paths P1,4,7 are in regions of exponential decay, we deform

them to i∞, such that R → ∞, effectively extending the adjacent vertical paths off to i∞ as well,

so that now we define the integration paths

∂V +
1 = lim

R→∞
(P2 + P3) and ∂V +

2 = lim
R→∞

(P5 + P6) .

We similarly deform g(W,T ):

1

2π

∫ π/h

−π/h
eik(nh−L)e−WT

( g
h2

)
dk =

−1

2π

∫
∂V −

eik(nh−L)e−WT
( g
h2

)
dk,

below the real line. See Figure 4.2.1a. Hence, we deform (4.2.3):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

(∫
∂V +

1

+

∫
∂V +

2

)
eiknhe−WT

(
f

h2

)
dk

− 1

2π

∫
∂V −

eik(nh−L)e−WT
( g
h2

)
dk.

(4.2.4)

With some hindsight, we further deform the paths off the origin, as depicted in Figure 4.2.1b, so

that now

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

(∫
∂Ṽ +

1

+

∫
∂Ṽ +

2

)
eiknhe−WT

(
f

h2

)
dk

− 1

2π

∫
∂Ṽ −

eik(nh−L)e−WT
( g
h2

)
dk.

(4.2.5)
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∂V +
1 ∂V +
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Re(k)

π
h

−π
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∂Ṽ +
1 ∂Ṽ +
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∂Ṽ −

Im(k)

Re(k)

π
h

−π
h (b)

Figure 4.2.1: (a) Integration paths ∂V +
1,2 and ∂V −. (b) Modified integration paths ∂Ṽ +

1,2 and ∂Ṽ −.

With (4.2.5) off the origin, let us return to solving the four equations for the four unknowns

f−1(W,T ), f1(W,T ), g−2(W,T ), and g−1(W,T ). Substituting, we find

f

h2
=

1

λ(k)

{
eikL

(
eiν2h − eiν1h

)
q̂(k, 0) + eiν1(h+L)−ikh

(
eikh − eiν2h

)
q̂ (ν1, 0)

+ eiν2(h+L)−ikh
(
eiν1h − eikh

)
q̂ (ν2, 0)− η1(k)f0 + η2(k)U

(1) + η3(k)g0

}
+
eWT

λ(k)

{
eikL

(
eiν1h − eiν2h

)
q̂(k, T ) + eiν1(h+L)−ikh

(
eiν2h − eikh

)
q̂ (ν1, T )

+ eiν2(h+L)−ikh
(
eikh − eiν1h

)
q̂ (ν2, T )

}
,

and

e−ikLg

h2
=

1

λ(k)

{[
eiν2L

(
eiν1h − eikh

)
+ eiν1L

(
eikh − eiν2h

)]
q̂(k, 0)− eiν1(h+L)−ikh

(
eikh − eiν2h

)
q̂ (ν1, 0)

− eiν2(h+L)−ikh
(
eiν1h − eikh

)
q̂ (ν2, 0) + η1(k)f0 − η2(k)U

(1) − η3(k)g0

}
+
eWT

λ(k)

{[
eiν2L

(
eikh − eiν1h

)
+ eiν1L

(
eiν2h − eikh

)]
q̂(k, T )− eiν1(h+L)−ikh

(
eiν2h − eikh

)
q̂ (ν1, T )

− eiν2(h+L)−ikh
(
eikh − eiν1h

)
q̂ (ν2, T )

}
,

where

λ(k) = eiν1h+ikL − eikh+iν1L − eiν2h+ikL + eikh+iν2L + eiν2h+iν1L − eiν1h+iν2L,
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Figure 4.2.2: Numerically determined roots of λ(k) with h = 1/6 (left) with zoomed in view of the

poles on the positive imaginary axis (right).

and

η1(k) =
1

h2

[
e−2ik−iν1h−iν2h

(
eikh − eiν1h

) (
eikh − eiν2h

) (
eikh+iν2(h+L)+iν1h − eikh+iν2h+iν1(h+L)

+ eiν2h+iν1L − eiν1h+iν2L
)]
,

η2(k) =
1

h

[
e−ikh

(
eiν1L − eiν2L

) (
eikh − eiν1h

) (
eikh − eiν2h

)]
,

η3(k) =
1

h2

{
2iei(ν1+ν2)h

[
sin
(
h (k − ν1)

)
− sin

(
h (k − ν2)

)
+ sin

(
h (ν1 − ν2)

)]}
.

The roots of λ(k) must be determined numerically, but note that the origin is a root, since λ(0) =

eiν1(0)h − eiν1(0)L − eiν2(0)h + eiν2(0)L + eiν2(0)h+iν1(0)L − eiν1(0)h+iν2(0)L = 0, where

ν1(0) =
i

h
ln

[
1

2

(
3− 1 +

[
(1− 3)2 − 4

]1/2)]
= 0,

ν2(0) =
i

h
ln

[
1

2

(
3− 1−

[
(1− 3)2 − 4

]1/2)]
= 0.

Figure 4.2.2 depicts the numerical roots of λ(k) for L = 1 and N = 5, i.e., h = 1/6, with the

shaded regions of exponential decay due to e−WT . It turns out that with the choice of forward

discretization for the Neumann boundary condition, we have a total of 3N + 1 roots within the

domain of interest
(
Re(k), Im(k)

)
∈ [−π/h, π/h] × (−∞,∞). Figure 4.2.2 depicts three curves of

roots: the two “wings” in the bottom half-plane and the vertical structure on the positive imaginary

line. Excluding the root at the origin, each curve contains N roots – the wings appear to be evenly

spaced away from the origin, while the roots on the imaginary line tend to clump near the uppermost
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root. Varying L only has the effect of scaling the locations of the roots. It is important to note that

all of the roots are placed in the shaded regions and do not interfere in any way with the integration

paths ∂Ṽ +
1,2 and ∂Ṽ −. So, in view of this observation, we make the substitutions into (4.2.5):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

(∫
∂Ṽ +

1

+

∫
∂Ṽ +

2

)
eiknhe−WTA(k, T ) dk

− 1

2π

∫
∂Ṽ −

eiknhe−WTB(k, T ) dk + S(n),

(4.2.6)

where

A(k, T ) =
1

λ(k)

{
eikL

(
eiν2h − eiν1h

)
q̂(k, 0) + eiν1(h+L)−ikh

(
eikh − eiν2h

)
q̂ (ν1, 0)

+ eiν2(h+L)−ikh
(
eiν1h − eikh

)
q̂ (ν2, 0)− η1(k)f0 + η2(k)U

(1) + η3(k)g0

}
,

B(k, T ) =
1

λ(k)

{[
eiν2L

(
eiν1h − eikh

)
+ eiν1L

(
eikh − eiν2h

)]
q̂(k, 0)− eiν1(h+L)−ikh

(
eikh − eiν2h

)
q̂ (ν1, 0)

− eiν2(h+L)−ikh
(
eiν1h − eikh

)
q̂ (ν2, 0) + η1(k)f0 − η2(k)U

(1) − η3(k)g0

}
,

and

S(n) =
1

2π

(∫
∂Ṽ +

1

+

∫
∂Ṽ +

2

)
eiknh

λ(k)

{
eikL

(
eiν1h − eiν2h

)
q̂(k, T ) + eiν1(h+L)−ikh

(
eiν2h − eikh

)
q̂ (ν1, T )

+ eiν2(h+L)−ikh
(
eikh − eiν1h

)
q̂ (ν2, T )

}
dk

− 1

2π

∫
∂Ṽ −

eiknh

λ(k)

{[
eiν2L

(
eikh − eiν1h

)
+ eiν1L

(
eiν2h − eikh

)]
q̂(k, T )− eiν1(h+L)−ikh

(
eiν2h − eikh

)
q̂ (ν1, T )

− eiν2(h+L)−ikh
(
eikh − eiν1h

)
q̂ (ν2, T )

}
dk.

At this point, we apply the same tactics as before to remove S(n) and all of its unwanted terms.

Although the algebra involved may be messy, the process is clear and is easily completed with the

help of symbolic software. From (4.2.6), the final solution to this off-centered discretization of the

IBVP for qt = qxxx is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

(∫
∂Ṽ +

1

+

∫
∂Ṽ +

2

)
eiknhe−WTA(k, T ) dk

− 1

2π

∫
∂Ṽ −

eiknhe−WTB(k, T ) dk.

(4.2.7)

It is important to note that the standard backward stencil,

q0(t)− q−1(t)

h
= u(1)(t),
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is better aligned with the main off-centered backward discretization (4.1.2) of the PDE. Furthermore,

this discretization of the boundary condition will be feasible when comparing with finite-difference

methods, assuming we want to apply the stencil (4.1.2) to all of the interior mesh points. Employing

the same integration paths and following a similar approach as above, we find the alternative solution:

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

1

2π

(∫
∂Ṽ +

1

+

∫
∂Ṽ +

2

)
eiknhe−WT Ã(k, T ) dk

− 1

2π

∫
∂Ṽ −

eiknhe−WT B̃(k, T ) dk,

(4.2.8)

where

Ã(k, T ) =
1

λ̃(k)

{
eik(L+h)

(
eiν2h − eiν1h

)
q̂(k, 0) + eiν1(h+L)

(
eikh − eiν2h

)
q̂ (ν1, 0)

+ eiν2(h+L)
(
eiν1h − eikh

)
q̂ (ν2, 0) + η̃1(k)f0 + η̃2(k)U

(1) − η̃3(k)g0

}
,

B̃(k, T ) =
1

λ̃(k)

{[
eikh+iν1(L+h) − eikh+iν2(L+h) − eiν1(L+h)+iν2h + eiν2(L+h)+iν1h

]
q̂(k, 0)

− eiν1(h+L)
(
eikh − eiν2h

)
q̂ (ν1, 0)− eiν2(h+L)

(
eiν1h − eikh

)
q̂ (ν2, 0)

− η̃1(k)f0 − η̃2(k)U
(1) + η̃3(k)g0

}
,

with

λ̃(k) = eik(L+h)+iν1h − eikh+iν1(L+h) − eik(L+h)+iν2h + eikh+iν2(h+L) + eiν1(L+h)+iν2h − eiν2(L+h)+iν1h

and

η̃1(k) =
1

h2

[
e−2ik−iν1h−iν2h

(
eikh − eiν1h

)(
eikh − eiν2h

)(
eikh+iν1h+iν2L − 2eikh+iν2(h+L)+iν1h − eikh+iν2h+iν1L

+ 2eikh+iν2h+iν1(h+L) − eiν1(h+L)+iν2h + eiν2(h+L)+iν1h
)]
,

η̃2(k) =
1

h

[
e−ikh

(
eiν1L − eiν2L

) (
eikh − eiν1h

)(
eikh − eiν2h

)]
,

η̃3(k) =
1

h2

[(
eiν1h − eiν2h

)(
eikh − eiν1h

)(
eikh − eiν2h

)]
.

The roots of λ̃(k) exhibit a comparable structure to those of λ(k), as seen below in Figure 4.2.3,

except now the three curves of roots each contain N + 1 roots instead of N . Hence, with the root

at the origin, λ̃(k) contains 3N +4 total roots within the domain of interest. As we will see, (4.2.8)

tends to produce a smaller ∞-norm error than (4.2.7).
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Figure 4.2.3: Numerically determined roots of λ̃(k) with h = 1/6 (left) with zoomed in view of the

poles on the positive imaginary axis (right).

For this third-order problem, there does not exist a purely series representation solution like for

the previous first-order problems (advection equations) and second-order (heat and LS equations).

We must directly evaluate the integral representation for arbitrary initial and boundary conditions.

From our derivations, we saw that the main constraint of deformation originates from the growth

of e−WT , so we are permitted to deform anywhere in the shaded regions of Figure 4.1.1b, relative

Im (k) from the eiknh term. We chose the deformation paths ∂Ṽ +
1,2 and ∂Ṽ

− for analytic convenience,

but note that we have decay on the real line due to e−WT . For numerical purposes, it is beneficial to

leave the real-line paths that were deformed to ∂Ṽ +
1,2 on the real line, especially since the boundary

between the unshaded and shaded region becomes vertical and extends to +i∞, effectively trading

a finite integration path for an infinite one. A similar argument can be made for ∂Ṽ −, in the sense

that in order to benefit from exponential decay due to e−WT , we can stop the deformations before

reaching the boundary of no decay, such that the new integration path sits between this boundary

and the distribution of poles in the bottom half-plane.

We introduce Figure 4.2.4 with the computation integration paths ∂C+
1,2 and ∂C−, where the

dots represent the waypoints implemented into Matlab’s integral() function. Relative to ∂Ṽ +
1,2,

the top wedges of ∂C+
1,2 are truncated from stretching to +i∞ and are shifted closer to the imaginary

line, making use of exponential decay from e−WT . The general structure persists as h→ 0, but for

h very small, it is beneficial to additionally truncate the ends of ∂C− and the paths on the real line

of ∂C+
1,2 in order to not only avoid NaN outputs due to underflow, but to also spare computation

power on machine-error integration contributions. Other truncation analyses can be done for these

integrands [25, 38].
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Figure 4.2.4: Computation paths ∂C+
1,2 and ∂C−.

Applying the continuous UTM to the IBVP (4.2.1) gives the dispersion relation W̃ (k) = ik3 and

solution

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−W̃T q̂(k, 0) dk +

1

2π

(∫
∂Ω̃+

1

+

∫
∂Ω̃+

2

)
eikxe−W̃TH+

(
W̃ , T

)
dk

+
1

2π

∫
∂Ω̃−

eikxe−W̃TH−
(
W̃ , T

)
dk,

(4.2.9)

where α = e2πi/3,

H+
(
W̃ , T

)
=

1

Λ(k)

{
− αeikLq̂(k, 0) + (α+ 1)eiαkLq̂(αk, 0)− eiα

2kLq̂(α2k, 0)

− k2
(
α2 − 1

) [(
α2 + 1

)
eiα

2kL − (α+ 1)eiαkL
]
F0

+ ik
(
α2 − 1

) (
eiα

2kL − eiαkL
)
F1 + αk2(α− 1)2(α+ 1)G0

}
,

H−
(
W̃ , T

)
=

1

Λ(k)

{
−
[
(α+ 1)eiαkL − eiα

2kL
]
q̂(k, 0) + (α+ 1)eiαkLq̂(αk, 0)− eiα

2kLq̂(α2k, 0)

− k2
(
α2 − 1

) [(
α2 + 1

)
eiα

2kL − (α+ 1)eiαkL
]
F0

− ik
(
α2 − 1

) (
eiαkL − eiα

2kL
)
F1 + αk2(α− 1)2(α+ 1)G0

}
,

and

Λ(k) = eiα
2kL + αeikL − (α+ 1)eiαkL.
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Figure 4.2.5: Modified integration paths ∂Ω̃+
1,2 and ∂Ω̃−.

Figure 4.2.5 depicts the integration paths ∂Ω̃+
1,2 and ∂Ω̃−, where the black dots denote the poles of

Λ(k) and

Ω± =
{
k ∈ C

∣∣∣Re [−W̃ (k)
]
> 0 and Im (k) ≷ 0

}
.

Recall that we derived two solutions from the backward off-centered discretization to the linear

KdV equation in IBVP (4.2.1): solution (4.2.7) by discretizing the Neumann data via the standard

forward stencil and solution (4.2.8) by discretizing the Neumann data via the standard backward

stencil. Since the latter better aligns with the PDE discretization, we show its continuum limit to

solution (4.2.9), but the continuum limit of (4.2.7) is similarly obtained.

Because limh→0W (k) = ik3, limh→0 ∂Ṽ
+
1,2 = ∂Ω̃+

1,2, respectively, and limh→0 ∂Ṽ
− = ∂Ω̃−. We

make use of symbolic mathematical software to calculate Taylor series expansions around h = 0

and to show symmetries and coefficients of solutions converge to their continuous counterpart. For

example, we first find

ν1(k) =
i

2

[
ik +

√
3
(
k2
)1/2]− k

(
k2
)1/2

2
√
3

h+O
(
h2
)
.

Since k ∈ C, we must consider k in the upper-half plane C+ and k in the lower-half plane C−,

implying we must consider the ∂Ṽ +
1,2 and ∂Ṽ − integral terms separately, respectively.

Let us first look at k ∈ C+. Here, our choice of branch cut for the square-root function tells us

z1/2 = +
√
z, such that

lim
h→0

ν1(k) = lim
h→0

[
i

2

(
i+

√
3
)
k − k2

2
√
3
h+O

(
h2
)]

= αk.
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Similarly,

ν2(k) =
i

2

[
ik −

√
3
(
k2
)1/2]

+
k
(
k2
)1/2

2
√
3

h+O
(
h2
)
,

so that

lim
h→0

ν2(k) = lim
h→0

[
i

2

(
i−

√
3
)
k +

k2

2
√
3
h+O

(
h2
)]

= α2k.

Turning to the solutions (4.2.8) and (4.2.9), let us look at the coefficient of the q̂(k, 0) term in the

∂Ṽ +
1,2 and ∂Ω̃+

1,2 integrals. From the semi-discrete solution, denote this coefficient as

c1 =
eik(L+h)

(
eiν2h − eiν1h

)
eik(L+h)+iν1h − eikh+iν1(L+h) − eik(L+h)+iν2h + eikh+iν2(h+L) + eiν1(L+h)+iν2h − eiν2(L+h)+iν1h

,

and from the continuous solution,

C1 =
−αeikL

eiα2kL + αeikL − (α+ 1)eiαkL
.

Taylor-series expanding c1 about h = 0, we find

c1 =
2
√
3
(
k2
)1/2

e
1
2

[√
3(k2)

1/2
+3ik

]
L

3ik
[
e
√
3(k2)1/2L − 1

]
+
√
3 (k2)1/2

[
e
√
3(k2)1/2L − 2e

1
2

(√
3(k2)1/2+3ik

)
L
+ 1

] + O(h).

Since Im(k) ≥ 0, the leading-order term as h→ 0 becomes

2
√
3
(
k2
)1/2

e
1
2

[√
3(k2)

1/2
+3ik

]
L

3ik
[
e
√
3(k2)1/2L − 1

]
+
√
3 (k2)1/2

[
e
√
3(k2)1/2L − 2e

1
2

(√
3(k2)1/2+3ik

)
L
+ 1

]
=

2
√
3ke

1
2(

√
3k+3ik)L

3ik
(
e
√
3kL − 1

)
+
√
3k
(
e
√
3kL − 2e

1
2(

√
3k+3ik)L + 1

)
=

2
√
3e

1
2(

√
3+3i)kL

3i
(
e
√
3kL − 1

)
+
√
3
(
e
√
3kL − 2e

1
2(

√
3+3i)kL + 1

)
=

2
√
3e

1
2(

√
3+3i)kL

3ie
√
3kL − 3i+

√
3e

√
3kL − 2

√
3e

1
2(

√
3+3i)kL +

√
3

=
2
√
3e

1
2(

√
3+3i)kL(√

3 + 3i
)
e
√
3kL − 2

√
3e

1
2(

√
3+3i)kL − 3i+

√
3

=
−αeikL

−αeikL
2
√
3
e

−1
2 (

√
3+3i)kL

[(√
3 + 3i

)
e
√
3kL − 2

√
3e

1
2(

√
3+3i)kL − 3i+

√
3
] .

(4.2.10)

Taking a closer look at the denominator and applying

α =
i

2

(
i+

√
3
)
, and α2 =

i

2

(
i−

√
3
)
= −(α+ 1),
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we have

−αeikL
2
√
3
e

−1
2 (

√
3+3i)kL

[(√
3 + 3i

)
e
√
3kL − 2

√
3e

1
2(

√
3+3i)kL − 3i+

√
3

]
= −α

2

(
1 +

√
3i
)
eikLe

−1
2 (

√
3+3i)kLe

√
3kL + αeikL + α

2

(√
3i− 1

)
eikLe

−1
2 (

√
3+3i)kL

= −α
(
−α2

)
e
1
2(−i+

√
3)kL + αeikL + α (α) e

1
2(−1−

√
3)kL

= e
−α2

i kL + αeikL + α2e
−α
i kL

= eiα
2kL + αeikL − (α+ 1)eiαkL.

The leading order term of c1 simplifies:

2
√
3
(
k2
)1/2

e
1
2

[√
3(k2)

1/2
+3ik

]
L

3ik
[
e
√
3(k2)1/2L − 1

]
+

√
3 (k2)1/2

[
e
√
3(k2)1/2L − 2e

1
2

(√
3(k2)1/2+3ik

)
L
+ 1

]
=

−αeikL

eiα2kL + αeikL − (α+ 1)eiαkL

= C1,

such that limh→0 c1 = C1.

Next, denote the coefficients of q̂ (ν1, 0) and q̂ (αk, 0), respectively, as

c2 =
eiν1(h+L)

(
eikh − eiν2h

)
eik(L+h)+iν1h − eikh+iν1(L+h) − eik(L+h)+iν2h + eikh+iν2(h+L) + eiν1(L+h)+iν2h − eiν2(L+h)+iν1h

,

and

C2 =
(α+ 1)eiαkL

eiα2kL + αeikL − (α+ 1)eiαkL
.

In a similar fashion as before, we expand c2 about h = 0 to find

c2 =
3ik −

√
3
(
k2
)1/2

3ik
[
e
√
3(k2)1/2L − 1

]
+
√
3 (k2)1/2

[
e
√
3(k2)1/2L − 2e

1
2

(√
3(k2)1/2+3ik

)
L
+ 1

] +O(h).

Since k ∈ C+, we know that limh→0 q̂ (ν1, 0) = q̂ (αk, 0) , so that we expect limh→0 c2 = C2. The

leading order term of the expansion for c2 simplifies to

3ik −
√
3
(
k2
)1/2

3ik
[
e
√
3(k2)1/2L − 1

]
+
√
3 (k2)

1/2
[
e
√
3(k2)1/2L − 2e

1
2 (

√
3(k2)1/2+3ik)L + 1

]
=

3ik −
√
3k

3ik
(
e
√
3kL − 1

)
+

√
3k
[
e
√
3kL − 2e

1
2 (

√
3k+3ik)L + 1

]
=

3i−
√
3(√

3 + 3i
)
e
√
3kL − 2

√
3e

1
2 (

√
3+3i)kL − 3i+

√
3
.
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Since the denominator is equivalent to the denominator of the line above (4.2.10), showing that

(α+ 1)eiαkL

3i−
√
3

=
−αeikL

2
√
3
e

−1
2 (

√
3+3i)kL, or

(α+ 1)eiαkL

3i−
√
3

+
αeikL

2
√
3
e

−1
2 (

√
3+3i)kL = 0,

is equivalent to proving limh→0 c2 = C2. Indeed, note that the exponentials from the second term

simplify to

eikLe
−1
2 (

√
3+3i)kL = exp

[(
i−

√
3

2
− 3

2
i

)
kL

]
= exp

[
−α
i
kL
]
= eiαkL.

Then, we see that[
(α+ 1)

3i−
√
3
+

α

2
√
3

]
eiαkL =

[
2(α+ 1)

√
3 + α

(
3i−

√
3
)

6i
√
3− 6

]
eiαkL

=

[
−2α2

√
3 + α

(
3i−

√
3
)

6
(
i
√
3− 1

) ]
eiαkL

=

[
−2
(
i
2

) (
i−

√
3
)√

3 +
(
i
2

) (
i+

√
3
) (

3i−
√
3
)

6
(
i
√
3− 1

) ]
eiαkL

=

(1 + i
√
3
)√

3 +
(
−1
2 + i

√
3

2

) (
3i−

√
3
)

6
(
i
√
3− 1

)
 eiαkL

=

[√
3 + 3i−

√
3− 3i

6
(
i
√
3− 1

) ]
eiαkL,

= 0.

Thus, limh→0 c2 = C2.

The coefficients of q̂ (ν2, 0) and q̂
(
α2k, 0

)
are, respectively,

c3 =
eiν2(h+L)

(
eiν1h − eikh

)
eik(L+h)+iν1h − eikh+iν1(L+h) − eik(L+h)+iν2h + eikh+iν2(h+L) + eiν1(L+h)+iν2h − eiν2(L+h)+iν1h

and

C3 =
−eiα2kL

eiα2kL + αeikL − (α+ 1)eiαkL
.

For our chosen square-root function branch cut, we know that limh→0 q̂ (ν2, 0) = q̂
(
α2k, 0

)
for k ∈ C+

and expect limh→0 c3 = C3. The leading order term of the series expansion for c3 simplifies to

−
[
3ik +

√
3
(
k2
)1/2]

e
√
3(k2)

1/2
L

3ik
[
e
√
3(k2)1/2L − 1

]
+
√
3 (k2)

1/2
[
e
√
3(k2)1/2L − 2e

1
2 (

√
3(k2)1/2+3ik)L + 1

]
=

−
(
3ik +

√
3k
)
e
√
3kL

3ik
(
e
√
3kL − 1

)
+
√
3k
[
e
√
3kL − 2e

1
2 (

√
3k+3ik)L + 1

]
=

−
(
3i+

√
3
)
e
√
3kL(√

3 + 3i
)
e
√
3kL − 2

√
3e

1
2 (

√
3+3i)kL − 3i+

√
3
.
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Like before, showing limh→0 c3 = C3 is equivalent to showing

eiα
2kL(

3i+
√
3
)
e
√
3kL

+
αeikL

2
√
3
e

−1
2 (

√
3+3i)kL = 0.

We know that the exponentials from the second term can be rewritten as eikLe
−1
2 (

√
3+3i)kL = eiαkL,

so looking at the exponentials from the first term,

eiα
2kLe−

√
3kL = exp

[(
iα2 −

√
3
)
kL
]
= exp

[
−1

2

(
i+

√
3
)
kL

]
= eiαkL.

Then, [
1

3i+
√
3
+

α

2
√
3

]
eiαkL =

[
2
√
3 + α

(
3i+

√
3
)

6 + 6i
√
3

]
eiαkL

=

[
2
√
3 + i

2

(
i+

√
3
) (

3i+
√
3
)

6
(
1 + i

√
3
) ]

eiαkL

=

2√3 +
(
−1
2 + i

√
3

2

) (
3i+

√
3
)

6
(
1 + i

√
3
)

 eiαkL
=

[
2
√
3− 2

√
3− 3i

2 + 3i
2

6
(
1 + i

√
3
) ]

eiαkL,

= 0.

Thus, limh→0 c3 = C3. Sparing the details, we could show that the coefficients of f0(W,T ), U(W,T ),

and g0(W,T ) from the ∂Ṽ +
1,2 integrals likewise converge to their continuous counterparts from the

∂Ω̃+
1,2 integrals, where we always limh→0 f0 = F0, limh→0 U = F1, and limh→0 g0 = G0 for all k ∈ C.
Lastly, we consider the continuum limit of the ∂Ṽ − integral to the ∂Ω̃− integral. Since the

integration path ∂Ṽ − is in the lower-half plane, our choice of branch cut for k ∈ C− implies
lim
h→0

ν1(k) = lim
h→0

[
i

2

(
i−

√
3
)
k +

k2

2
√
3
h+O

(
h2
)]

= α2k,

lim
h→0

ν2(k) = lim
h→0

[
i

2

(
i+

√
3
)
k − k2

2
√
3
h+O

(
h2
)]

= αk.

Let us look at the coefficient

c4 =
eikh+iν1(L+h) − eikh+iν2(L+h) − eiν1(L+h)+iν2h + eiν2(L+h)+iν1h

eik(L+h)+iν1h − eikh+iν1(L+h) − eik(L+h)+iν2h + eikh+iν2(h+L) + eiν1(L+h)+iν2h − eiν2(L+h)+iν1h

of q̂(k, 0) from the semi-discrete solution and the coefficient

C4 =
(α+ 1)eiαkL − eiα

2kL

eiα2kL + αeikL − (α+ 1)eiαkL
,
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of q̂(k, 0) from the continuous solution. Following similar steps from above, we expand c4 to find

that the leading-order term becomes

−
√
3
(
k2
)1/2 [

e
√
3(k2)

1/2
L + 1

]
− 3ik

[
e
√
3(k2)

1/2
L − 1

]
3ik
[
e
√
3(k2)1/2L − 1

]
+
√
3 (k2)

1/2
[
e
√
3(k2)1/2L − 2e

1
2 (

√
3(k2)1/2+3ik)L + 1

]
=

√
3k
(
e−

√
3kL + 1

)
− 3ik

(
e−

√
3kL − 1

)
3ik
(
e−

√
3kL − 1

)
−
√
3k
[
e−

√
3kL − 2e

1
2 (−

√
3k+3ik)L + 1

]
=

√
3
(
e−

√
3kL + 1

)
− 3i

(
e−

√
3kL − 1

)
3i
(
e−

√
3kL − 1

)
−

√
3
[
e−

√
3kL − 2e

1
2 (−

√
3k+3ik)L + 1

]
=

√
3 + 3i+

(√
3− 3i

)
e−

√
3kL(

3i−
√
3
)
e−

√
3kL + 2

√
3e

1
2 (−

√
3+3i)kL − 3i−

√
3

=

√
3 + 3i+

(√
3− 3i

)
e−

√
3kL(

3i−
√
3
)
e−

√
3kL + 2

√
3e

1
2 (−

√
3+3i)kL − 3i−

√
3

· e
√
3kL

e
√
3kL

=

(√
3 + 3i

)
e
√
3kL +

√
3− 3i

3i−
√
3 + 2

√
3e

1
2 (

√
3+3i)kL −

(
3i+

√
3
)
e
√
3kL

=
−
(√

3 + 3i
)
e
√
3kL −

√
3 + 3i(

3i+
√
3
)
e
√
3kL − 2

√
3e

1
2 (

√
3+3i)kL − 3i+

√
3
.

Showing limh→0 c4 = C4 is the same as showing

(α+ 1)eiαkL − eiα
2kL

−
(√

3 + 3i
)
e
√
3kL −

√
3 + 3i

+
αeikL

2
√
3
e

−1
2 (

√
3+3i)kL = 0,

since we obtain the same denominator as before. After some manipulations like in previous steps,

we indeed satisfy the equality above, such that limh→0 c4 = C4.

Next, denote the coefficient of q̂ (ν1, 0) as

c5 =
−eiν1(h+L)

(
eikh − eiν2h

)
eik(L+h)+iν1h − eikh+iν1(L+h) − eik(L+h)+iν2h + eikh+iν2(h+L) + eiν1(L+h)+iν2h − eiν2(L+h)+iν1h

.

Since ∂Ṽ − is in the lower-half plane where limh→0 ν1(k) = α2k, we expect limh→0 c5 = C5, the

coefficient of q̂
(
α2k, 0

)
:

C5 =
eiα

2kL

eiα2kL + αeikL − (α+ 1)eiαkL
.

Expanding c5 in a Taylor series about h = 0 and applying our choice of branch cut for k ∈ C−, we
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find the O(1) term as

√
3
(
k2
)1/2 − 3ik

3ik
[
e
√
3(k2)1/2L − 1

]
+
√
3 (k2)

1/2
[
e
√
3(k2)1/2L − 2e

1
2 (

√
3(k2)1/2+3ik)L + 1

]
=

−
√
3k − 3ik

3ik
(
e−

√
3kL − 1

)
−

√
3k
[
e−

√
3kL − 2e

1
2 (−

√
3k+3ik)L + 1

]
=

−
√
3− 3i

3i
(
e−

√
3kL − 1

)
−
√
3
[
e−

√
3kL − 2e

1
2 (−

√
3k+3ik)L + 1

]
=

−
√
3− 3i(

3i−
√
3
)
e−

√
3kL + 2

√
3e

1
2 (−

√
3+3i)kL − 3i−

√
3

=
−
√
3− 3i(

3i−
√
3
)
e−

√
3kL + 2

√
3e

1
2 (−

√
3+3i)kL − 3i−

√
3

· e
√
3kL

e
√
3kL

=
−
(√

3 + 3i
)
e
√
3kL

3i−
√
3 + 2

√
3e

1
2 (

√
3+3i)kL −

(
3i+

√
3
)
e
√
3kL

=

(√
3 + 3i

)
e
√
3kL(

3i+
√
3
)
e
√
3kL − 2

√
3e

1
2 (

√
3+3i)kL − 3i+

√
3
.

Without going through the algebraic steps, we find

eiα
2kL(√

3 + 3i
)
e
√
3kL

+
αeikL

2
√
3
e

−1
2 (

√
3+3i)kL = 0,

so that limh→0 c5 = C5 as expected.

The remaining coefficient of q̂ (ν2, 0) in the ∂Ṽ − integral must converge to the coefficient of

q̂ (α, 0) in the ∂Ω̃− integral. In the same manner, we expand the semi-discrete coefficient about

h = 0, so that after simplifications from the branch cut and manipulations, we derive the condition

−(α+ 1)eiαkL√
3− 3i

+
αeikL

2
√
3
e

−1
2 (

√
3+3i)kL = 0,

which can be shown to be true, implying the continuum limit holds. The reader is encouraged

to continue confirming that every coefficient in the semi-discrete solution converges to their corre-

sponding coefficient in the continuous solution via the steps outlined above – although tedious, it

can be done. Therefore, we conclude that the continuum limit is achieved. On a final note, Figure

4.2.6 depicts how the poles of the semi-discrete problem approach the poles of the continuous one

as h→ 0.
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Figure 4.2.6: Roots of Λ(k) (black) and λ̃(k) (green) as h→ 0.
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Chapter 5

ANALYTIC CONTINUATION

Together with Deconinck & Farkas, in [24] we produce solution formulas that are valid for x (and

its discretized version xn) outside of the original domain of definition for several linear IBVPs. As

we have seen, the UTM and SD-UTM are applied systematically to linear PDEs, so we use these

methods as a starting point to derive analytic continuation formulas. With them, we determine

information at ghost points when solving linear problems with high-order finite-difference schemes

or simply when Neumann data is given (see Chapter 6).

In the following sections, we present the derivations of those semi-discrete formulas for a handful

of half-line problems. Although omitted, we could apply these steps to higher-order problems like

those discussed in Chapter 4.

5.1 Advection Equations

5.1.1 Backward Discretization of qt = −c qx

We return to the advection problem (2.1.11) on the half-line with wave-speed c > 0 in Section

2.1.2. Discretizing the spacial derivative qx using the standard backward stencil (2.1.12) gives

solution (2.1.16):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk,

with dispersion relation (2.1.14). According to Figure 2.1.3, setting n → −n for n ∈ Z+ allows us

to deform both integrals arbitrarily below the real line, such that q−n(T ) = 0. Note that in the

continuum limit, (2.1.16) converges to (2.1.17), where one can also show q(−x, T ) = 0 for x > 0.

Let us look at the first integral term of solution (2.1.16). Substituting the definition of q̂(k, 0)

gives us

1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk =

∞∑
m=1

[
h

2π

∫ π/h

−π/h
eik(n−m)he−WT dk

]
qm(0).

Making the substitution z = eikh into the integral produces

h

2π

∫ π/h

−π/h
eik(n−m)he−WT dk =

1

2πi

∮
|z|=1

zn−m−1 exp

[
−c
(
1− z−1

h

)
T

]
dz

= e−cT/hRes
z=0

{
zn−m−1 exp

(
cT

h

1

z

)}
.
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Expanding the exponential, we see that

zn−m−1 exp

(
cT

h

1

z

)
= zn−m−1

∞∑
ℓ=0

(
cT

h

)ℓ z−ℓ
ℓ!

=

∞∑
ℓ=0

(
cT

h

)ℓ z−ℓ+n−m−1

ℓ!
.

The z−1 term occurs when ℓ = n−m, so that the residue reads as

h

2π

∫ π/h

−π/h
eik(n−m)he−WT dk = e−cT/h

(
cT

h

)n−m 1

(n−m)!
.

Hence,

1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk = e−cT/h

∞∑
m=1

(
cT

h

)n−m qm(0)

(n−m)!
.

We follow a similar procedure for the second integral term of solution (2.1.16), except here we

substitute the definition of f0(W,T ):

c

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk = c

∫ T

0

[
1

2π

∫ π/h

−π/h
eik(n−1)he−W (T−t) dk

]
u(t) dt.

With z = eikh, the inner integral becomes

1

2π

∫ π/h

−π/h
eik(n−1)he−W (T−t) dk =

1

2πih

∮
|z|=1

zn−2e−W (T−t) dz

=
e−c(T−t)/h

h
Res
z=0

{
zn−2 exp

(
c(T − t)

h

1

z

)}
=
e−c(T−t)/h

h

(
c(T − t)

h

)n−1 1

(n− 1)!
,

and then,

c

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk =

c

h(n− 1)!

∫ T

0
e−c(T−t)/h

(
c(T − t)

h

)n−1

u(t) dt.

Therefore, solution (2.1.16) is rewritten as

qn(T ) = e−cT/h
∞∑
m=1

(
cT

h

)n−m qm(0)

(n−m)!
+ I(n, T ), (5.1.1)

where

I(n, T ) =
c

h(n− 1)!

∫ T

0
e−c(T−t)/h

(
c(T − t)

h

)n−1

u(t) dt.

Here, q−n(T ) = 0 still, so a closer look at the formulation is required. The first term is rewritten

using 1/(n −m)! = 1/Γ(n −m + 1), which may be evaluated for n < 0. Since 1/Γ(α) has simple
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zeros at nonpositive integers α, the first term does not contribute for n < 0. We focus on the second

term. With the substitution s = c(T − t)/h, we obtain

I(n, T ) =
1

(n− 1)!

∫ cT/h

0
e−ssn−1u

(
T − h

c
s

)
ds

=
1

(n− 1)!

∫ cT/h

0
e−ssn−1

∞∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ
sℓ ds

=
1

(n− 1)!

∞∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ ∫ cT/h

0
e−ssn+ℓ−1 ds

I(n, T ) =
1

Γ(n)

∞∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ
γ

(
n+ ℓ,

cT

h

)
,

where γ (α, y) is the lower incomplete gamma function. Now, (5.1.1) is written as

qn(T ) = e−cT/h
∞∑
m=1

(
cT

h

)n−m qm(0)

(n−m)!
+

∞∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ γ (n+ ℓ, cTh
)

Γ(n)
, (5.1.2)

for n ≥ 1. Note that the representation above is only valid for ℓ ≥ 1− n and nonzero for n ≥ 1 due

to the ratio γ (n+ ℓ, cT/h) /Γ(n). To evaluate the above expression at any n ∈ Z, we must rewrite

this ratio. Recursively applying Γ(k + 1) = k Γ(k), we find

Γ(a− b) = (a− b− 1)(a− b− 2) · . . . · (−b) Γ(−b) = (−1)a Γ(b+ 1)Γ(−b)
Γ(b− a+ 1)

. (5.1.3)

In addition, we derive a power series expression for γ(a, y) by expanding the exponential in the

definition:

γ(a, y) =

∫ y

0
ta−1e−t dt =

∞∑
k=0

(−1)k

k!

∫ y

0
ta+k−1 dt =

∞∑
k=0

(−1)k

k!
· y

a+k

a+ k

=

∞∑
k=0

(−1)k ya+k Γ(a+ k)

k! Γ(a+ k + 1)
. (5.1.4)
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Combining (5.1.3) and (5.1.4) with y = cT/h, we have

γ (n+ ℓ, y)

Γ(n)
=

1

Γ(n)

∞∑
k=0

(−1)k yn+ℓ+k Γ(n+ ℓ+ k)

k! Γ(n+ ℓ+ k + 1)

=
∞∑
k=0

(−1)k yn+ℓ+k

k! Γ(n+ ℓ+ k + 1)
· Γ(ℓ+ k + n)

Γ(n)

=
∞∑
k=0

(−1)k yn+ℓ+k

k! Γ(n+ ℓ+ k + 1)
· (−1)k+ℓ Γ(1− n) Γ(n)

Γ(1− n− k − ℓ) Γ(n)

= (−1)ℓ
∞∑
k=0

yn+ℓ+k Γ(1− n)

k! Γ(1 + n+ k + ℓ) Γ(1− n− k − ℓ)

=
(−1)ℓ yn+ℓ−n−ℓ Γ(1− n)

(−n− ℓ)!
,

γ (n+ ℓ, y)

Γ(n)
=

(−1)ℓ Γ(1− n)

Γ(1− n− ℓ)!
.

This representation is now valid for n ≥ 0 and nonzero for ℓ ≤ −n. Hence, treating the evaluation

as a limiting process for any n ∈ Z,

lim
α→n

qα(T ) = lim
α→n

[
e−cT/h

∞∑
m=1

(
cT

h

)α−m qm(0)

(α−m)!
+

∞∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ γ (α+ ℓ, cTh
)

Γ(α)

]

⇒ qn(T ) = e−cT/h
∞∑
m=1

(
cT

h

)n−m qm(0)

(n−m)!
+

∞∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ
lim
α→n

γ
(
α+ ℓ, cTh

)
Γ(α)

, (5.1.5)

where

lim
α→n

γ
(
α+ ℓ, cTh

)
Γ(α)

=



γ
(
n+ ℓ, cTh

)
Γ(n)

, ℓ ≥ 1− n and n ≥ 1,

(−1)ℓΓ(1− n)

Γ(1− n− ℓ)
, n ≤ 0 and ℓ ≤ −n,

0, otherwise.

Then,

I(n, T ) =



−n∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ
· (−1)ℓΓ(1− n)

Γ(1− n− ℓ)
=

−n∑
ℓ=0

u(ℓ) (T )

ℓ!

(
h

c

)ℓ Γ(1− n)

Γ(1− n− ℓ)
, n ≤ 0

∞∑
ℓ=max(1−n,0)

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ
·
γ
(
n+ ℓ, cTh

)
Γ(n)

=

∞∑
ℓ=0

u(ℓ) (T ) (−1)ℓ

ℓ!

(
h

c

)ℓ γ (n+ ℓ, cTh
)

Γ(n)
, n ≥ 1.

Now, we have the solution qn(T ) for n ≥ 1 as written in (5.1.2) and the solution q−n(T ) for n ≥ 0

as

q−n(T ) = I(−n, T ) =
n∑
ℓ=0

u(ℓ) (T )

ℓ!

(
h

c

)ℓ Γ(1 + n)

Γ(1 + n− ℓ)
. (5.1.6)
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Since (5.1.2) originates from (2.1.16), we combine both solutions (2.1.16) and (5.1.6) to create a

formulation valid for all n ∈ Z as

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eik(n−1)he−WT f0 dk

+

−n∑
ℓ=0

u(ℓ) (T )

ℓ!

(
h

c

)ℓ Γ(1− n)

Γ(1− n− ℓ)
,

(5.1.7)

where the integral terms only contribute for n ≥ 1 and the sum only contributes for n ≤ 0.

Note that q0(T ) = u(T ), and, like the true continuous solution

q(−x, T ) = u
(
T + x

c

)
, x > 0 (5.1.8)

to this advection equation, the negative half-line solution (5.1.6) depends on only the boundary

condition. Let us show that we recover (5.1.8) by taking h → 0 of (5.1.6). By recursively applying

Γ(z + 1) = zΓ(z), we have

f(n, ℓ) =
Γ(1 + n)

Γ(1 + n− ℓ)
=

ℓ−1∏
p=0

(n− p) =


1, ℓ = 0,

ℓ−1∑
p=0

apn
p+1, ℓ ≥ 1,

such that f(n, ℓ) is a polynomial in n of degree ℓ with leading coefficient aℓ−1 = 1. Hence,

q−n(T ) =

n∑
ℓ=0

u(ℓ) (T )

ℓ!

(
h

c

)ℓ
f(n, ℓ)

=

n∑
ℓ=0

u(ℓ) (T )

ℓ!

(
h

c

)ℓ (
nℓ + aℓ−2n

ℓ−1 + . . .
)

=
n∑
ℓ=0

u(ℓ) (T )

ℓ!

[(
nh

c

)ℓ
+ aℓ−2

(
h

c

)(
nh

c

)ℓ−1

+ . . .

]
,

such that taking h→ 0 gives

lim
h→0

q−n(T ) = lim
h→0

n∑
ℓ=0

u(ℓ) (T )

ℓ!

[(
nh

c

)ℓ
+ aℓ−2

(
h

c

)(
nh

c

)ℓ−1

+ . . .

]

⇒ q(−x, T ) =
∞∑
ℓ=0

u(ℓ) (T )

ℓ!

(x
c

)ℓ
= u

(
T + x

c

)
.

Figure 5.1.1 depicts the semi-discrete UTM solutions for n ∈ Z with formulas (2.1.16) and (5.1.6)

on the left and formula (5.1.7) on the right with h = 0.008 for the IBVP
qt = − qx, x > 0, t > 0,

q(x, 0) =

(
sin(4πx) + 1

2

)
e−2x, x > 0,

q(0, t) =
1

2
+ (1− 2π)te−t, t > 0.

(5.1.9)
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Figure 5.1.1: Extensions of half-line solution (2.1.16).

5.1.2 Centered Discretization of qt = −c qx

Next we study discretizing qx using the standard centered stencil from Section 2.1.3 with disper-

sion relation (2.1.21) and nontrivial symmetry ν1(k) = −k − π/h. The SD-UTM solution (2.1.25)

is

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk +

c

2π

∫ π/h

−π/h
eiknhe−WT cos (kh) f0 dk.

With this representation, one can show that q−n(T ) = (−1)n+1qn(T ) for n ∈ Z+.

Like in the previous section, we substitute the definitions for q̂(k, 0) and q̂ (ν1, 0) into the first

integral term of (2.1.25) to obtain

1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk =

∞∑
m=1

I(n, T,m)qm(0),
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where

I(n, T,m) =
h

2π

∫ π/h

−π/h
eiknhe−WT

(
e−ikmh − e−iν1mh

)
dk

=
h

2π

∫ π/h

−π/h
eik(n−m)he−WT dk − (−1)mh

2π

∫ π/h

−π/h
eik(n+m)he−WT dk

=
1

2πi

∮
|z|=1

zn−m−1 exp

[
−cT
2h

(
z − 1

z

)]
dz − (−1)m

2πi

∮
|z|=1

zn+m−1 exp

[
−cT
2h

(
z − 1

z

)]
dz

= (−1)m−nJ

(
m− n,

cT

h

)
− (−1)mJ

(
m+ n,

cT

h

)
,

after making the substitution z = eikh to use the Bessel function of the first kind:

J(n, a) =
1

2πi

∮
|z|=1

exp

[
a

2

(
z − 1

z

)]
1

zn+1
dz =

∞∑
ℓ=0

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)

(a
2

)2ℓ+n
,

with the two vital properties J(−n, a) = J(n,−a) = (−1)nJ(n, a) for n ∈ Z and (2n/a)J(n, a) =

J(n− 1, a) + J(n+ 1, a). Hence,

1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk =

∞∑
m=1

(−1)m
[
(−1)nJ

(
m− n,

cT

h

)
− J

(
m+ n,

cT

h

)]
qm(0).

The second integral term of (2.1.25) is similarly rewritten as

c

2π

∫ π/h

−π/h
eiknhe−WT cos (kh) f0 dk =

c

h

∫ T

0

[
h

2π

∫ π/h

−π/h
eiknhe−W (T−t)

(
eikh + e−ikh

2

)
dk

]
u(t) dt

=
c

2h

∫ T

0

[
J

(
−n− 1,

−c(T − t)

h

)
+ J

(
−n+ 1,

−c(T − t)

h

)]
u(t) dt

= n

∫ T

0
J

(
n,
c(T − t)

h

)
u(t)

T − t
dt.

Therefore, solution (2.1.25) is written as

qn(T ) =
∞∑
m=1

(−1)m
[
(−1)nJ

(
m− n,

cT

h

)
− J

(
m+ n,

cT

h

)]
qm(0) +M(n, T ), (5.1.10)

with

M(n, T ) = n

∫ T

0
J

(
n,
c(T − t)

h

)
u(t)

T − t
dt.

Note that setting n→ −n for n ∈ Z+ gives

q−n(T ) =

∞∑
m=1

(−1)m
[
(−1)−nJ

(
m+ n,

cT

h

)
− J

(
m− n,

cT

h

)]
qm(0)− n

∫ T

0
J

(
−n, c(T − t)

h

)
u(t)

T − t
dt

= −(−1)n
∞∑
m=1

(−1)m
[
(−1)nJ

(
m− n,

cT

h

)
− J

(
m+ n,

cT

h

)]
qm(0)− (−1)nn

∫ T

0
J

(
n,
c(T − t)

h

)
u(t)

T − t
dt

= (−1)n+1qn(T ).
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One can show that further breaking apart the first term of (5.1.10) via the expansions of J (m− n, cT/h)

and J (m+ n, cT/h) does not provide a helpful representation when n→ −n for n ∈ Z+. Let us take

a closer look at the second term of (5.1.10) instead. Making use of s = c(T − t)/h and expanding,

we have

M(n, T ) = n

∫ cT/h

0

J (n, s)

s
u

(
T − h

c
s

)
ds

= n

∫ cT/h

0

J (n, s)

s

∞∑
p=0

u(p)(T )(−1)p

p!

(
h

c

)p
sp ds

= n
∞∑
p=0

u(p)(T )(−1)p

p!

(
h

c

)p ∫ cT/h

0
J (n, s) sp−1 ds

=
n

2n

∞∑
p=0

u(p)(T )(−1)p

p!

(
h

c

)p ∞∑
ℓ=0

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)22ℓ

∫ cT/h

0
s2ℓ+n+p−1 ds

= n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!
L(n, T, p),

where

L(n, T, p) =

∞∑
ℓ=0

(−1)ℓ

ℓ!

(
cT

2h

)2ℓ 1

Γ(ℓ+ n+ 1)(2ℓ+ n+ p)
.

Suppose n ∈ Z and assume ℓ ̸= 0 ̸= p for now. Then, L(n, T, p) = 0 for ℓ ≤ −n−1 and ℓ ̸= (−n−p)/2.
When ℓ = (−n−p)/2, 1/Γ(ℓ+n+1) = 2ℓ+n+p = 0, so a careful consideration is in order. Applying

relation (5.1.3), we find

1

Γ(ℓ+ n+ 1)(2ℓ+ n+ p)
=

1

Γ(ℓ+ n+ 1)
· Γ(2ℓ+ n+ p) · 1

Γ(1 + 2ℓ+ n+ p)

=
(−1)ℓ+p+1 Γ(−n− ℓ)

Γ(1− 2ℓ− n− p) Γ(1 + 2ℓ+ n+ p)
,

which is only valid for ℓ ≤ −n − 1. In fact, the left hand-side is nonzero only for n = −2ℓ − p or

p = −2ℓ− n. Therefore, we can split the sum as

L(n, T, p) =
−n−1∑
ℓ=0

(−1)ℓ

ℓ!

(
cT

2h

)2ℓ

· (−1)ℓ+p+1 Γ(−n− ℓ)

Γ(1− 2ℓ− n− p) Γ(1 + 2ℓ+ n+ p)

+
∞∑

ℓ=max(−n,0)

(−1)ℓ

ℓ!

(
cT

2h

)2ℓ

· 1

Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

= (−1)p+1
−n−1∑
ℓ=0

Γ(−n− ℓ)

ℓ! Γ(1− 2ℓ− n− p) Γ(1 + 2ℓ+ n+ p)

(
cT

2h

)2ℓ

+

∞∑
ℓ=max(−n,0)

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ

.
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Now L(n, T, p) is valid for all n ∈ Z. Returning to M(n, T ), we have

M(n, T ) = −n
(
cT

2h

)n ∞∑
p=0

u(p)(T )T p

p!

−n−1∑
ℓ=0

Γ(−n− ℓ)

ℓ! Γ(1− 2ℓ− n− p) Γ(1 + 2ℓ+ n+ p)

(
cT

2h

)2ℓ

+ n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=max(−n,0)

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ

.

The first coupled sums reduce to

−n
(
cT

2h

)n ∞∑
p=0

u(p)(T )T p

p!

−n−1∑
ℓ=0

Γ(−n− ℓ)

ℓ! Γ(1− 2ℓ− n− p) Γ(1 + 2ℓ+ n+ p)

(
cT

2h

)2ℓ

= −n
(
cT

2h

)n −n−1∑
ℓ=0

Γ(−n− ℓ)

ℓ!

(
cT

2h

)2ℓ ∞∑
p=0

u(p)(T )T p

p! Γ(1− 2ℓ− n− p) Γ(1 + 2ℓ+ n+ p)

= −n
(
cT

2h

)n −n−1∑
ℓ=0

Γ(−n− ℓ)

ℓ!

(
cT

2h

)2ℓ

· u
(−2ℓ−n)(T )T−2ℓ−n

(−2ℓ− n)!

= −n
( c

2h

)n −n/2∑
ℓ=0

u(−2ℓ−n)(T )
( c

2h

)2ℓ (−n− ℓ− 1)!

ℓ! (−2ℓ− n)!
,

so that

M(n, T ) = −n
( c

2h

)n −n/2∑
ℓ=0

u(−2ℓ−n)(T )
( c

2h

)2ℓ (−n− ℓ− 1)!

ℓ! (−2ℓ− n)!

+ n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=max(−n,0)

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ

.

Therefore, solution (5.1.10) becomes

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk

− n
( c

2h

)n −n/2∑
ℓ=0

u(−2ℓ−n)(T )
( c

2h

)2ℓ (−n− ℓ− 1)!

ℓ! (−2ℓ− n)!

+ n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=max(−n,0)

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ

,

(5.1.11)

where we replaced the initial condition sum from (5.1.10) by the integral in (2.1.25). If n ∈ Z+, then

the representation (5.1.11) reduces to (5.1.10), and hence, the original solution (2.1.25), since the

first sum of (5.1.11) vanishes and max(−n, 0) = 0. In addition, the representation (5.1.11) allows

us to recover the boundary condition at n = 0. Here, the first two terms vanish. Let us expand the
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third sum, where we choose to start the ℓ-indexed sum at ℓ = 0, but we could similarly repeat the

following with ℓ = −n as the starting index. We have

n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ

= n

(
cT

2h

)n [ ∞∑
ℓ=0

u(T ) (−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n)

(
cT

2h

)2ℓ

+
∞∑
p=1

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ


= n

(
cT

2h

)n [ u(T )

Γ(n+ 1)n
+

∞∑
ℓ=1

u(T ) (−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n)

(
cT

2h

)2ℓ

+
∞∑
p=1

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ


=
u(T )

Γ(n+ 1)

(
cT

2h

)n
+ n

(
cT

2h

)n ∞∑
ℓ=1

u(T ) (−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n)

(
cT

2h

)2ℓ

+ n

(
cT

2h

)n ∞∑
p=1

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ

.

Replacing the above into the representation (5.1.11) and setting n = 0 indeed gives q0(T ) = u(T ).

Let us treat the representation (5.1.11) with n and −n separately for n ∈ Z+. With this

restriction, we have

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk

+ n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

ℓ! Γ(ℓ+ n+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ

,

(5.1.12)

and

q−n(T ) =
1

2π

∫ π/h

−π/h
e−iknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk

+ n
( c

2h

)−n n/2∑
ℓ=0

u(n−2ℓ)(T )
( c

2h

)2ℓ (n− ℓ− 1)!

ℓ! (n− 2ℓ)!

− n

(
cT

2h

)−n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=n

(−1)ℓ

ℓ! Γ(ℓ− n+ 1)(2ℓ− n+ p)

(
cT

2h

)2ℓ

.
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Note that, with the re-indexing ℓ→ ℓ− n, the last term becomes

−n
(
cT

2h

)−n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=n

(−1)ℓ

ℓ! Γ(ℓ− n+ 1)(2ℓ− n+ p)

(
cT

2h

)2ℓ

= −n
(
cT

2h

)−n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ+n

(ℓ+ n)! Γ(ℓ+ 1)(2ℓ+ n+ p)

(
cT

2h

)2ℓ+2n

= (−1)n+1n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

Γ(ℓ+ n+ 1) ℓ! (2ℓ+ n+ p)

(
cT

2h

)2ℓ

.

Thus, using (5.1.12),

q−n(T ) =
(−1)n+1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk

+ n

(
2h

c

)n n/2∑
ℓ=0

u(n−2ℓ)(T )
( c

2h

)2ℓ (n− ℓ− 1)!

ℓ! (n− 2ℓ)!

+ (−1)n+1n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

Γ(ℓ+ n+ 1) ℓ! (2ℓ+ n+ p)

(
cT

2h

)2ℓ

= (−1)n+1

[
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂ (ν1, 0)] dk

+n

(
cT

2h

)n ∞∑
p=0

u(p)(T )(−T )p

p!

∞∑
ℓ=0

(−1)ℓ

Γ(ℓ+ n+ 1) ℓ! (2ℓ+ n+ p)

(
cT

2h

)2ℓ


+ n

(
2h

c

)n n/2∑
ℓ=0

u(n−2ℓ)(T )
( c

2h

)2ℓ (n− ℓ− 1)!

ℓ! (n− 2ℓ)!

q−n(T ) = (−1)n+1qn(T ) + n

(
2h

c

)n n/2∑
ℓ=0

u(n−2ℓ)(T )
( c

2h

)2ℓ (n− ℓ− 1)!

ℓ! (n− 2ℓ)!
. (5.1.13)

Due to the entirely dispersive nature of the centered discretization (see Section 2.1.3), if the

boundary function u(t) and the initial condition ϕ(x) are not compatible (i.e. u(t) ̸= ϕ(−ct) ), this
solution exhibits “dispersive shock” behavior for xn < 0. Because of the “dispersive” shock, the

continuum limit for (5.1.13) will have a limit as n → ∞ if and only if the initial and boundary

conditions are compatible. The “dispersive shock” travels upwind at a speed of c. To illustrate this

behavior, consider the IBVP (5.1.9) from the previous section. Figure 5.1.2 depicts the semi-discrete

UTM solution with formulas (2.1.25) and (5.1.13) for n > 0 and n < 0, respectively, with h = 0.04

on the left and h = 0.008 on the right. Note that the oscillations do not diminish as h→ 0, implying
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Figure 5.1.2: Extensions of half-line solution (2.1.25) for IBVP (5.1.9) with h = 0.04 (left) and

h = 0.008 (right).

the growing error to the left of the x = 0 boundary is due to the choice in discretization – evidence

this centered stencil is not the natural discretization for this PDE.

For c < 0, (2.1.11) does not specify a boundary condition, but the solution (2.1.25) still requires

one, so we choose the compatible boundary condition u(t) = ϕ(−ct). Hence, for analytic ϕ(x), we

will not see the “dispersive shock” behavior. However, if we start with a discontinuous (or non-

analytic) u0(x) we see the “dispersive shock” for x > 0 (n > 0), demonstrating that this behavior

is not a feature in the continuation formula (5.1.13), but a characterization of the inappropriate

discretization (2.1.19) [43].

It is interesting to note that one can “average” out the “dispersive shock” wave to get the

extension formula

q−n(T ) =
n

2

n∑
k=0

u(k)(T )

(
2h

c

)k Γ
(
n+k
2

)
k!
(
n−k
2

)
!
, (5.1.14)

which is second-order accurate, but does not solve the discretized equation (2.1.19).
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5.1.3 Higher-Order One-Sided Discretization of qt = −c qx

Applying the backward second-order discretization (2.1.26) to the IBVP (2.1.11) gives global

relation (2.1.27), dispersion relation (2.1.28), and solution (2.1.33):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk +

c

2π

∫ π/h

−π/h
eiknhe−WT

[(
3e−ikh − e−2ikh

2

)
f0

]
dk

− 1

2π

∫ π/h

−π/h
eik(n−1)he−WT

(
h

2
V +

h2

4
Ṽ

)
dk,

where V (W,T ) and Ṽ (W,T ) are the time transforms of v(t) = u′(t) and ṽ(t) = u′′(t), respectively.

From Figure 2.1.7, one can show that (2.1.33) gives q−n(T ) = 0 for n ∈ Z+, similarly how (2.1.17)

gives q(−x, T ) = 0 for x ∈ R+. If we introduce

Bm(n, T, g) =
1

4π

∫ π/h

−π/h
eik(n−m)h−WTGdk, G(W,T ) =

∫ T

0
eWtg(t) dt, (5.1.15)

for the boundary terms, then the semi-discrete solution is rewritten as

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT û(k, 0) dk + 3cB1(n, T, u)− cB2(n, T, u)

− hB1(n, T, v)−
h2

2c
B1(n, T, ṽ).

(5.1.16)

Leaving the initial-condition as is, we focus on Bm(n, T, g). We have

Bm(n, T, g) =
1

4π

∫ π/h

−π/h
eik(n−m)h−WT

[∫ T

0
eWtg(t) dt

]
dk =

∫ T

0
Im(n, T, t)g(t) dt,

with

Im(n, T, t) =
1

4π

∫ π/h

−π/h
eik(n−m)h−W (T−t) dk =

1

4π

∮
|z|=1

zn−me−W (T−t) dz

ihz

=
e

−3c(T−t)
2h

2h
Res
z=0

{
zn−m−1 exp

[(
−z−2 + 4z−1

) c(T − t)

2h

]}

=
e

−3c(T−t)
2h

2h

n−m
2∑

k=0

(−1)k

22kk!(n−m− 2k)!

(
2c(T − t)

h

)n−m−k
.

A tedious calculation shows that there is no contribution if n −m is odd. Using the substitution
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s = 3c(T − t)/(2h) and expanding about h = 0, we have

Bm(n, T, g) =

∫ T

0

e−3c(T−t)
2h

2h

n−m
2∑

k=0

(−1)k

22kk!(n−m− 2k)!

(
2c(T − t)

h

)n−m−k
 g(t) dt

=
1

3c

n−m
2∑

k=0

(−1)k

22kk!(n−m− 2k)!

(
4

3

)n−m−k
[∫ 3cT

2h

0
e−ssn−m−kg

(
T − 2h

3c
s

)
ds

]

=
1

3c

n−m
2∑

k=0

(−1)k

22kk!(n−m− 2k)!

(
4

3

)n−m−k ∞∑
p=0

g(p)(T )(−1)p

p!

(
2h

3c

)p ∫ 3cT
2h

0
e−ssn−m−k+p ds

=
1

3c

n−m
2∑

k=0

(−1)k

22kk!(n−m− 2k)!

(
4

3

)n−m−k ∞∑
p=0

g(p)(T )(−1)p

p!

(
2h

3c

)p
γ

(
n−m− k + p+ 1,

3cT

2h

)
.

Applying relations (5.1.3) and the power series of the lower incomplete gamma function (5.1.4), we

have

lim
α→n

γ
(
α−m− k + p+ 1, 3cT2h

)
Γ(α−m− 2k + 1)

=



γ
(
n−m− k + p+ 1, 3cT2h

)
Γ(n−m− 2k + 1)

, p ≥ k − n+m, k ≤ n−m
2 ,

(−1)k+pΓ(m+ 2k − n)

Γ(m+ k − p− n)
, k ≥ 1+n−m

2 , p ≤ m+ k − n− 1,

0, otherwise.

(5.1.17)

Collecting the summands in S(n, T, k, p) and relaxing the upper bound on the summation over k

(again by adding zero terms), we write

Bm(n, T, g) =
∞∑
k=0

∞∑
p=0

S(n, T, k, p)

=


n−m
2∑

k=0

+
∞∑

k=max
(
1+n−m

2 ,0
)

m+k−n−1∑

p=0

+

∞∑
p=max(k−n+m,0)

S(n, T, k, p)

=

n−m
2∑

k=0

∞∑
p=max(k−n+m,0)

S(n, T, k, p) +
∞∑

k=max
(
1+n−m

2 ,0
)
m+k−n−1∑

p=0

S(n, T, k, p),

where the other terms are shown to vanish. For n > 0, the second of the double sums above vanishes,

and the first can be rewritten in the integral form from (2.1.33). For n < 0, the first pair vanishes.
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We let n→ −n for n > 0 from here on. Relaxing the bounds (re-introducing zero contributions),

Bm(−n, T, g) =
∞∑

k=max
(
1−n−m

2 ,0
)
m+k+n−1∑

p=0

S(−n, T, k, p)

=
1

3c

∞∑
k=0

∞∑
p=0

(−1)k

22kk!

(
4

3

)−n−m−k g(p)(T )(−1)p

p!

(
2h

3c

)p (−1)k+pΓ(m+ 2k + n)

Γ(m+ k − p+ n)

=
1

3c

(
3

4

)n+m ∞∑
p=0

g(p)(T )

p!

(
2h

3c

)p ∞∑
k=0

1

22kk!

(
3

4

)k Γ(m+ 2k + n)

Γ(m+ k − p+ n)

=
1

3c

(
3

4

)n+m ∞∑
p=0

g(p)(T )

p!

(
2h

3c

)p
Γ(m+ n) 2F̃1

(
m+n
2 , m+n+1

2 ;m+ n− p; 34
)
, (5.1.18)

where 2F̃1(a, b; c; z) = 2F1(a, b; c; z)/Γ(c) is the regularized hypergeometric function [19]. In sum-

mary, the solution for n > 0 is given by (2.1.33), while the analytic continuation for negative values

is

q−n(T ) = 3cB1(−n, T, u)− cB2(−n, T, u)− hB1(−n, T, v)−
h2

2c
B1(−n, T, ṽ), (5.1.19)

since the initial-condition integral vanishes.

Lastly, let us show that (5.1.19) converges to q(−x, T ) = u(T + x
c ) in the continuum limit. For

the boundary terms with the given Dirichlet boundary condition u(t), we have

3cB1(−n, T, u)− cB2(−n, T, u)

=

(
3

4

)n+1 ∞∑
p=0

u(p)(T )

p!

(
2h

3c

)p
Γ(1 + n) 2F̃1

(
1+n
2 , n+2

2 ; 1 + n− p; 34
)

− 1

3

(
3

4

)n+2 ∞∑
p=0

u(p)(T )

p!

(
2h

3c

)p
Γ(2 + n) 2F̃1

(
2+n
2 , 3+n2 ; 2 + n− p; 34

)
=

∞∑
p=0

u(p)(T )

p!

(
h

c

)p{ 3n+1−p

22n+2−p

[
Γ(1 + n) 2F̃1

(
1+n
2 , n+2

2 ; 1 + n− p; 34
)
− Γ(2 + n)

4
2F̃1

(
2+n
2 , 3+n2 ; 2 + n− p; 34

)]}

=
∞∑
p=0

u(p)(T )

p!

(
h

c

)p
f(n, p),

where

f(n, p) =
3n+1−p

22n+2−p

[
Γ(1 + n) 2F̃1

(
1+n
2 , n+2

2 ; 1 + n− p; 34
)
− Γ(2 + n)

4
2F̃1

(
2+n
2 , 3+n2 ; 2 + n− p; 34

)]
=

p∑
ℓ=0

cℓ n
p−ℓ,
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with c0 = 1. Hence,

3cB1(−n, T, u)− cB2(−n, T, u) =
∞∑
p=0

u(p)(T )

p!

(
h

c

)p (
np + c1n

p−1 + . . .
)

=
∞∑
p=0

u(p)(T )

p!

[(
nh

c

)p
+
c1h

c

(
nh

c

)p−1

+ . . .

]

⇒ lim
h→0

[
B3c

1 (−n, T, u)−Bc
2(−n, T, u)

]
= lim

h→0

∞∑
p=0

u(p)(T )

p!

[(
nh

c

)p
+
c1h

c

(
nh

c

)p−1

+ . . .

]

=

∞∑
p=0

u(p)(T )

p!

(x
c

)p
= u

(
T +

x

c

)
.

For the Neumann boundary term,

hB1(−n, T, u̇) =
∞∑
p=0

u(p+1)(T )

p!

(
h

c

)p+1 [ 3n−p

22n+2−pΓ(1 + n) 2F̃1

(
1+n
2 , 2+n2 ; 1 + n− p; 34

)]

=

∞∑
p=0

u(p+1)(T )

p!

(
h

c

)p+1

f̃(n, p),

where

f̃(n, p) =
3n−p

22n+2−pΓ(1 + n) 2F̃1

(
1+n
2 , 2+n2 ; 1 + n− p; 34

)
=

1

2

p∑
ℓ=0

c̃ℓ n
p−ℓ,

with c̃0 = 1. Thus,

hB1(−n, T, u̇) =
∞∑
p=0

u(p+1)(T )

2p!

(
h

c

)p+1 (
np + c̃1n

p−1 + . . .
)

=
∞∑
p=0

u(p+1)(T )

2p!

[(
h

c

)(
nh

c

)p
+ c̃1

(
h

c

)2(nh
c

)p−1

+ . . .

]
,

and limh→0 hB1(−n, T, u̇) = 0. We reach a similar conclusion for the second-order derivative term:

limh→0 h
2/(2c)B1(−n, T, ü) = 0. Therefore,

lim
h→0

q−n(T ) = lim
h→0

[
3cB1(−n, T, u)− cB2(−n, T, u)− hB1(−n, T, u̇)−

h2

2c
B1(−n, T, ü)

]
= u

(
T +

x

c

)
= q(−x, T ).

5.2 The Heat Equation

5.2.1 Centered Discretization of qt = qxx with Dirichlet condition

Next, we consider the heat equation on the half-line (3.2.1) with the standard centered stencil

(2.2.2) that gives dispersion relation (2.2.4) and global relation (2.2.5). The SD-UTM gives solution
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(2.2.9):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk − i

πh

∫ π/h

−π/h
eiknhe−WT sin(kh)f0 dk.

From this formulation, one could show that q−n(T ) = −qn(T ) for n ∈ Z+ and q0(T ) = 0. In the

continuum limit, solution (2.2.9) converges to (2.2.10), where one can also show q(−x, T ) = −q(x, T )
for x > 0.

Let us look at the first term of (2.2.9) to introduce notation. Substituting the definitions of

q̂(±k, 0), we have

1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk =

1

2π

∫ π/h

−π/h
eiknhe−WT

[
h

∞∑
m=1

(
e−ikmh − eikmh

)
qm(0)

]
dk

=
∞∑
m=1

I(n, T,m)qm(0),

where

I(n, T,m) =
h

2π

∫ π/h

−π/h
eiknh

(
e−ikmh − eikmh

)
e−WT dk = I1(n, T,m) − I1(n, T,−m),

with

I1(n, T,m) =
h

2π

∫ π/h

−π/h
eik(n−m)he−WT dk,

for brevity. The transformation z = eikh allows

I1(n, T,m) =
h

2π

∮
|z|=1

zn−m exp

[
−
(
2− z − z−1

h2

)
T

]
dz

ihz

=
e−2T/h2

2πi

∮
|z|=1

zn−m−1 exp

[
1

2

(
2T

h2

)(
z +

1

z

)]
dz

= e−2T/h2B

(
m− n,

2T

h2

)
, (5.2.1)

where

B(n, a) =
1

2πi

∮
|z|=1

exp

[
a

2

(
z +

1

z

)]
1

zn+1
dz ≡

∞∑
ℓ=0

1

ℓ! Γ(ℓ+ n+ 1)

(a
2

)2ℓ+n
,

is the modified Bessel function of the first kind with the two vital properties: B(−n, a) = B(n, a)

for n ∈ Z and B(n, a) = 2(n+ 1)B(n+ 1, a)/a+B(n+ 2, a). Returning to I(n, T,m),

I(n, T,m) = e−2T/h2
[
B

(
m− n,

2T

h2

)
−B

(
m+ n,

2T

h2

)]
,
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so that the first term of solution (2.2.9) is

1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk = e−2T/h2

∞∑
m=1

[
B

(
m− n,

2T

h2

)
−B

(
m+ n,

2T

h2

)]
qm(0).

Let us now look at the second term of solution (2.2.9) in a similar fashion:

i

πh

∫ π/h

−π/h
eiknhe−WT sin(kh)f0 dk =

i

πh

∫ π/h

−π/h
eiknhe−WT sin(kh)

[∫ T

0
eWtu(t) dt

]
dk

=
i

πh

∫ T

0
J(n, T − t)u(t) dt,

with

J(n, T − t) =

∫ π/h

−π/h
eiknhe−W (T−t) sin(kh) dk

=

∫ π/h

−π/h
eiknhe−W (T−t)

(
eikh − e−ikh

2i

)
dk

=
1

2i

∫ π/h

−π/h
eik(n+1)he−W (T−t) dk − 1

2i

∫ π/h

−π/h
eik(n−1)he−W (T−t) dk

=
π

ih
I1(n, T − t,−1)− π

ih
I1(n, T − t, 1)

=
πe−2(T−t)/h2

ih

[
B

(
−1− n,

2(T − t)

h2

)
−B

(
1− n,

2(T − t)

h2

)]
=
πe−2(T−t)/h2

ih

[
B

(
n+ 1,

2(T − t)

h2

)
−B

(
n− 1,

2(T − t)

h2

)]
J(n, T − t) =

−nhπe−2(T−t)/h2

i(T − t)
B

(
n,

2(T − t)

h2

)
.

Hence, the second term simplifies to

i

πh

∫ π/h

−π/h
eiknhe−WT sin(kh)f0 dk = −n

∫ T

0

e−2(T−t)/h2

T − t
B

(
n,

2(T − t)

h2

)
u(t) dt.

Solution (2.2.9) is now rewritten as

qn(T ) = e−2T/h2
∞∑
m=1

[
B

(
m− n,

2T

h2

)
−B

(
m+ n,

2T

h2

)]
qm(0) + K(n, T ), (5.2.2)

where

K(n, T ) = n

∫ T

0

e−2(T−t)/h2

T − t
B

(
n,

2(T − t)

h2

)
u(t) dt.

Like solution (2.2.9), it is clear that this formulation continues to give q−n(T ) = −qn(T ) and

q0(T ) = 0.
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Following a similar technique from the advection equation, we take a closer look at the second

integral term of (5.2.2). With the transformation s = 2(T − t)/h2, we have

K(n, T ) = n

∫ 2T/h2

0

e−s

s
B (n, s)u

(
T − h2

2
s

)
ds

= n

∫ 2T/h2

0

e−s

s
B (n, s)

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p
sp ds

= n
∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∫ 2T/h2

0
e−sB (n, s) sp−1 ds

= n

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∫ 2T/h2

0
e−s

[ ∞∑
ℓ=0

1

ℓ! Γ(ℓ+ n+ 1)

(s
2

)2ℓ+n]
sp−1 ds

= n
∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! Γ(ℓ+ n+ 1) 22ℓ+n

∫ 2T/h2

0
e−ss2ℓ+n+p−1 ds,

K(n, T ) =
n

2n

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! Γ(ℓ+ n+ 1) 22ℓ
γ

(
2ℓ+ n+ p,

2T

h2

)
.

Now, to apply any n ∈ Z, we take the limit:

lim
α→n

K(α, T ) = lim
α→n

α

2α

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! 22ℓ
γ
(
2ℓ+ α+ p, 2T

h2

)
Γ(ℓ+ α+ 1)

K(n, T ) =
n

2n

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! 22ℓ
lim
α→n

γ
(
2ℓ+ α+ p, 2T

h2

)
Γ(ℓ+ α+ 1)

,

where the relations (5.1.3) and (5.1.4) with y = 2T/h2 tell us

γ (2ℓ+ n+ p, y)

Γ(ℓ+ n+ 1)
=

1

Γ(ℓ+ n+ 1)

∞∑
k=0

(−1)k y2ℓ+n+p+k

k! Γ(1 + 2ℓ+ n+ p+ k)
· Γ(2ℓ+ n+ p+ k)

=
Γ(1− n− ℓ− 1)

(−1)ℓ+1 Γ(1− n) Γ(n)

∞∑
k=0

(−1)k y2ℓ+n+p+k

k! Γ(1 + 2ℓ+ n+ p+ k)
· (−1)2ℓ+p+k Γ(1− n) Γ(n)

Γ(1− 2ℓ− n− p− k)

= (−1)ℓ+p+1 Γ(−n− ℓ)

∞∑
k=0

y2ℓ+n+p+k

k! Γ(1 + 2ℓ+ n+ p+ k) Γ(1− 2ℓ− n− p− k)

= (−1)ℓ+p+1 Γ(−n− ℓ) · y
2ℓ+n+p−2ℓ−n−p

(−2ℓ− n− p)!
,

γ (2ℓ+ n+ p, y)

Γ(ℓ+ n+ 1)
=

(−1)ℓ+p+1 Γ(−n− ℓ)

Γ(1− 2ℓ− n− p)
,
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so that

lim
α→n

γ
(
2ℓ+ α+ p, 2T

h2

)
Γ(ℓ+ α+ 1)

=



γ
(
2ℓ+ n+ p, 2T

h2

)
Γ(ℓ+ n+ 1)

, 2ℓ+ p ≥ 1− n and ℓ ≥ −n,

(−1)ℓ+p+1Γ(−n− ℓ)

Γ(1− n− 2ℓ− p)
, ℓ ≤ −n− 1 and 2ℓ+ p ≤ −n,

0, otherwise.

Hence, let us split the ℓ and p-indexed sums. For brevity, define

S(n, T, ℓ, p) =
u(p)(T )(−1)p

p!

(
h2

2

)p
1

ℓ! 22ℓ
lim
α→n

γ
(
2ℓ+ α+ p, 2T

h2

)
Γ(ℓ+ α+ 1)

,

so that

K(n, T ) =
n

2n

∞∑
p=0

∞∑
ℓ=0

S(n, T, ℓ, p) =
n

2n

∞∑
ℓ=0

∞∑
p=0

S(n, T, ℓ, p)

=
n

2n

−n−1∑
ℓ=0

+
∞∑

ℓ=max(−n,0)

−n−2ℓ∑
p=0

+
∞∑

p=max(−n−2ℓ+1,0)

S(n, T, ℓ, p),

K(n, T ) =
n

2n

−n−1∑
ℓ=0

−n−2ℓ∑
p=0

S(n, T, ℓ, p) +
n

2n

∞∑
ℓ=max(−n,0)

−n−2ℓ∑
p=0

S(n, T, ℓ, p)

+
n

2n

−n−1∑
ℓ=0

∞∑
p=max(−n−2ℓ+1,0)

S(n, T, ℓ, p) +
n

2n

∞∑
ℓ=max(−n,0)

∞∑
p=max(−n−2ℓ+1,0)

S(n, T, ℓ, p).

Consider n < 0, so that the ℓ-indexed sum from the second pair of sums begins at ℓ = −n, which
then gives the upper bound of the p-indexed sum as −n − 2ℓ = n < 0. Since the starting index

is p = 0, this pair of sums does not contribute for n < 0. Now consider n ≥ 0, so that ℓ = 0 is

the starting index for the first sum, which gives −n − 2ℓ = −n ≤ 0 for the upper bound of the

p-indexed sum. Thus, this pair of sums does not contribute for any n ∈ Z. The third pair of sums

likewise vanishes for all n ∈ Z, since S(n, T, ℓ, p) = 0 for these ranges of ℓ and p, regardless of

limα→n γ
(
2ℓ+ α+ p, 2T

h2

)
/Γ(ℓ+ α+ 1). We then have

K(n, T ) =
−n
2n

−n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

−n−2ℓ∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(1− n− 2ℓ− p)

+
n

2n

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ+1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p, 2T
h2

)
Γ(ℓ+ n+ 1)

.
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In the first coupled sum, we relax the upper bound of the p-indexed sum allowing us to interchange

the sums themselves:

−n
2n

−n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

−n−2ℓ∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(1− n− 2ℓ− p)
=

−n
2n

−n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

∞∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(1− n− 2ℓ− p)

=
−n
2n

∞∑
p=0

u(p)(T )

p!

(
h2

2

)p −n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ
Γ(−n− ℓ)

Γ(1− n− 2ℓ− p)

=
−n
2n

∞∑
p=0

u(p)(T )

(
h2

2

)p
L(n, p)

where

L(n, p) =
1

p!

−n−p
2∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ
Γ(−n− ℓ)

Γ(1− n− 2ℓ− p)
=

2n+p(−1)n+pπ C
(p)
−n−p(1)

p! sin(πn) Γ(1− p)
,

with the Gegenbauer polynomial

C(m)
n (1) =

Γ(2m+ n)

Γ(2m) Γ(n+ 1)
.

By grouping terms, we can employ relation (5.1.3) to give

Γ(1 + n+ p) =
(−1)1+n Γ(1− p) Γ(p)

Γ(−p− n)
=

(−1)1+p Γ(1− n) Γ(n)

Γ(−p− n)

⇒ Γ(1− p) =
(−1)p+n Γ(1− n) Γ(n)

Γ(p)
.

Thus,

L(n, p) =
2n+p(−1)n+pπ

Γ(p+ 1) sin(πn)
· C(p)

−n−p(1) ·
1

Γ(1− p)

=
2n+p(−1)n+p Γ(1− n) Γ(n)

Γ(p+ 1)
· Γ(2p− n− p)

Γ(2p) Γ(1− n− p)
· Γ(p)

(−1)p+n Γ(1− n) Γ(n)

=
2n+p Γ(p− n)

Γ(1− n− p)
· Γ(p)

Γ(p+ 1)Γ(2p)

=
2n+p Γ(p− n)

Γ(1− n− p)
· 2

Γ(2p+ 1)

=
2n+p+1 Γ(p− n)

Γ(1− n− p) Γ(2p+ 1)
.

Returning to the first pair of sums in K(n, t), we find

−n
2n

−n−p
2∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

∞∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(1− n− 2ℓ− p)
=

−n
2n

∞∑
p=0

u(p)(T )

(
h2

2

)p
· 2n+p+1 Γ(p− n)

Γ(1− n− p) Γ(2p+ 1)

= −2n

−n∑
p=0

u(p)(T )h2p Γ(p− n)

Γ(1− n− p) Γ(2p+ 1)
,
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where the infinite sum can be truncated to start from p = 0 and end at p = −n. Hence, K(n, T )

becomes

K(n, T ) = −2n
−n∑
p=0

u(p)(T )h2p Γ(p− n)

Γ(1− n− p) Γ(2p+ 1)

+
n

2n

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ+1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p, 2T
h2

)
Γ(ℓ+ n+ 1)

,

so that the solution representation (5.2.2) is now

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk − 2n

−n∑
p=0

u(p)(T )h2p Γ(p− n)

Γ(1− n− p) Γ(2p+ 1)

+
n

2n

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ+1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p, 2T
h2

)
Γ(ℓ+ n+ 1)

,

(5.2.3)

where we have replaced the initial conditions terms from (5.2.2) by those from the original repre-

sentation (2.2.9).

If we now consider n > 0 only, the second term above vanishes and we have

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk

+
n

2n

∞∑
ℓ=0

1

ℓ! 22ℓ

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p, 2T
h2

)
Γ(ℓ+ n+ 1)

,

(5.2.4)

which can, of course, reduce back to the original representation (2.2.9). If we consider n ≤ 0 or
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n→ −n for n ≥ 0, then, with a re-index ℓ→ ℓ− n, we have

q−n(T ) =
1

2π

∫ π/h

−π/h
e−iknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk + 2n

n∑
p=0

u(p)(T )h2p Γ(p+ n)

Γ(1 + n− p) Γ(2p+ 1)

− n

2−n

∞∑
ℓ=n

1

ℓ! 22ℓ

∞∑
p=max(n−2ℓ+1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ− n+ p, 2T
h2

)
Γ(ℓ− n+ 1)

=
−1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk + 2n

n∑
p=0

u(p)(T )h2p Γ(p+ n)

Γ(1 + n− p) Γ(2p+ 1)

− n

2−n

∞∑
ℓ=0

1

(ℓ+ n)! 22ℓ+2n

∞∑
p=max(−n−2ℓ+1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p, 2T
h2

)
Γ(ℓ+ 1)

=
−1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk + 2n

n∑
p=0

u(p)(T )h2p Γ(p+ n)

Γ(1 + n− p) Γ(2p+ 1)

− n

2n

∞∑
ℓ=0

1

ℓ! 22ℓ

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p, 2T
h2

)
Γ(ℓ+ n+ 1)

= 2n
n∑
p=0

u(p)(T )h2p Γ(p+ n)

Γ(1 + n− p) Γ(2p+ 1)
−

[
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk

+
n

2n

∞∑
ℓ=0

1

ℓ! 22ℓ

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p, 2T
h2

)
Γ(ℓ+ n+ 1)

 ,
q−n(T ) = 2n

n∑
p=0

u(p)(T )h2p Γ(p+ n)

Γ(1 + n− p) Γ(2p+ 1)
− qn(T ). (5.2.5)

To recover the boundary condition at n = 0, first extract the first term of the sum:

q−n(T ) = 2n

u(T )
n

+
n∑
p=1

u(p)(T )h2p Γ(p+ n)

Γ(1 + n− p) Γ(2p+ 1)

− qn(T )

= 2u(T ) − 2n
n∑
p=1

u(p)(T )h2p Γ(p+ n)

Γ(1 + n− p) Γ(2p+ 1)
− qn(T ),

so that q0(T ) = 2u(T )− q0(T ) = u(T ).

The analytic continuation of the continuous solution [24] is

q(−x, T ) = 2

∞∑
p=0

u(p)(T )

(2p)!
x2p − q(x, T ). (5.2.6)
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We can recover (5.2.6) from the continuum limit of (5.2.5) by noting that

f(n, p) =
nΓ(p+ n)

Γ(1 + n− p)
=

p−1∏
ℓ=0

(n− ℓ)(n+ ℓ) =


1, p = 0,
p∑
ℓ=1

aℓ n
2ℓ, p ≥ 1,

such that f(n, p) is a polynomial in n of degree 2p with leading coefficient ap = 1. Hence,

q−n(T ) = 2
n∑
p=0

u(p)(T )h2p

(2p)!
f(n, p)− qn(T )

= 2
n∑
p=0

u(p)(T )h2p

(2p)!

(
n2p + ap−1n

2p−2 + . . .
)
− qn(T ),

q−n(T ) = 2
n∑
p=0

u(p)(T )

(2p)!

[
(nh)2p + ap−1h

2(nh)2p−2 + . . .
]
− qn(T )

⇒ lim
h→0

q−n(T ) = lim
h→0

2 n∑
p=0

u(p)(T )

(2p)!

[
(nh)2p + ap−1h

2(nh)2p−2 + . . .
]
− qn(T )


= 2

∞∑
p=0

u(p)(T )

(2p)!
x2p − q(x, T ).

As an example, solving the IBVP
qt = qxx, x > 0, t > 0,

q(x, 0) = 3xe−x, x > 0,

q(0, t) = sin(4πt), t > 0,

(5.2.7)

gives Figure 5.2.1 on two different spatial grids.

5.2.2 Centered Discretization of qt = qxx with Neumann Condition

For the Neumann half-line problem (3.2.16), the same centered stencil from the previous section

gives the SD-UTM solution (2.2.18):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(k, 0) + eikhq̂(−k, 0)

]
dk − 1

2π

∫ π/h

−π/h
eiknhe−WT

(
1 + eikh

)
U dk.

From here, one could show that q−n(T ) = qn−1(T ) for n ∈ Z+, while the continuous UTM solution

(2.2.19) gives q(−x, T ) = q(x, T ) for x > 0.

Following the usual tactics from this chapter, the first term of (2.2.18) is rewritten as

1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(k, 0) + eikhq̂(−k, 0)

]
dk = e−2T/h2

∞∑
m=1

[
B

(
m− n,

2T

h2

)
+B

(
m+ n+ 1,

2T

h2

)]
qm(0).
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Figure 5.2.1: Extensions of half-line solution (2.2.9) for IBVP (5.2.7) with h = 0.2 (left) and h = 0.05

(right).

Next, we substitute the definition of U(W,T ) into the second term of (2.2.18) to obtain

1

2π

∫ π/h

−π/h
eiknhe−WT

(
1 + eikh

)
U dk =

1

h

∫ T

0
Ĩ(n, T, t)u(t) dt,

with

Ĩ(n, T, t) =
h

2π

∫ π/h

−π/h
eiknhe−W (T−t)

(
1 + eikh

)
dk

=
h

2π

∫ π/h

−π/h
eiknhe−W (T−t) dk +

h

2π

∫ π/h

−π/h
eik(n+1)he−W (T−t) dk

= I1(n, T − t, 0) + I1(n, T − t,−1)

= e−2(T−t)/h2
[
B

(
n,

2(T − t)

h2

)
+B

(
n+ 1,

2(T − t)

h2

)]
,

where I1(n, T − t,m) is defined in (5.2.1) when solving the heat equation with a Dirichlet boundary

condition. Then,

1

2π

∫ π/h

−π/h
eiknhe−WT

(
1 + eikh

)
U dk =

1

h

∫ T

0
e−2(T−t)/h2

[
B

(
n,

2(T − t)

h2

)
+B

(
n+ 1,

2(T − t)

h2

)]
u(t) dt.

Hence, solution (2.2.18) is rewritten as

qn(T ) = e−2T/h2
∞∑
m=1

[
B

(
m− n,

2T

h2

)
+B

(
m+ n+ 1,

2T

h2

)]
qm(0)− P (n, T ), (5.2.8)
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where

P (n, T ) =
1

h

∫ T

0
e−2(T−t)/h2

[
B

(
n,

2(T − t)

h2

)
+B

(
n+ 1,

2(T − t)

h2

)]
u(t) dt.

Even with this representation, setting n→ −n for n ∈ Z+ gives q−n(T ) = qn−1(T ).

Let us take a closer look at the second term of (5.2.8). With the substitution s = 2(T − t)/h2,

we have

P (n, T ) =
1

h

∫ 0

2T/h2
e−s [B (n, s) +B (n+ 1, s)]u

(
T − h2

2

)(
−h2

2

)
ds

=
h

2

∫ 2T/h2

0
e−s [B (n, s) +B (n+ 1, s)]u

(
T − h2

2

)
ds

=
h

2

∫ 2T/h2

0
e−s [B (n, s) +B (n+ 1, s)]

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p
sp ds,

P (n, T ) =
h

2

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∫ 2T/h2

0
e−s [B (n, s) +B (n+ 1, s)] sp ds.

Note that

B (n, s) +B (n+ 1, s) =
∞∑
ℓ=0

1

ℓ! Γ(ℓ+ n+ 1)

(s
2

)2ℓ+n
+

∞∑
ℓ=0

1

ℓ! Γ(ℓ+ n+ 2)

(s
2

)2ℓ+n+1

=
∞∑
ℓ=0

1

ℓ! 22ℓ+n

[
s2ℓ+n

Γ(ℓ+ n+ 1)
+

s2ℓ+n+1

2Γ(ℓ+ n+ 2)

]
,

so that

P (n, T ) =
h

2

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∫ 2T/h2

0
e−s

∞∑
ℓ=0

1

ℓ! 22ℓ+n

[
s2ℓ+n

Γ(ℓ+ n+ 1)
+

s2ℓ+n+1

2Γ(ℓ+ n+ 2)

]
sp ds

=
h

2n+1

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! 22ℓ

∫ 2T/h2

0

[
e−ss2ℓ+n+p

Γ(ℓ+ n+ 1)
+
e−ss2ℓ+n+p+1

2Γ(ℓ+ n+ 2)

]
ds

=
h

2n+1

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! 22ℓ

[
γ
(
2ℓ+ n+ p+ 1, 2T

h2

)
Γ(ℓ+ n+ 1)

+
γ
(
2ℓ+ n+ p+ 2, 2T

h2

)
2Γ(ℓ+ n+ 2)

]

=
h

2n+1

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! 22ℓ
·
γ
(
2ℓ+ n+ p+ 1, 2T

h2

)
Γ(ℓ+ n+ 1)

+
h

2n+2

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! 22ℓ
·
γ
(
2ℓ+ n+ p+ 2, 2T

h2

)
Γ(ℓ+ n+ 2)

= P̃ (n, T ) + P̃ (n+ 1, T ),
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where we have introduced

P̃ (n, T ) =
h

2n+1

∞∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p ∞∑
ℓ=0

1

ℓ! 22ℓ
·
γ
(
2ℓ+ n+ p+ 1, 2T

h2

)
Γ(ℓ+ n+ 1)

,

for brevity. Applying relations (5.1.3) and (5.1.4) with y = 2T/h2, we find

γ (2ℓ+ n+ p+ 1, y)

Γ(ℓ+ n+ 1)
=

1

Γ(ℓ+ n+ 1)

∞∑
k=0

(−1)k y2ℓ+n+p+k+1

k! Γ(2ℓ+ n+ p+ k + 2)
· Γ(2ℓ+ n+ p+ k + 1)

=
Γ(1− n− ℓ− 1)

(−1)ℓ+1 Γ(1− n) Γ(n)

∞∑
k=0

(−1)k y2ℓ+n+p+k+1

k! Γ(2ℓ+ n+ p+ k + 2)
· (−1)2ℓ+p+k+1 Γ(1− n) Γ(n)

Γ(−2ℓ− n− p− k)

= (−1)ℓ+p Γ(−n− ℓ)
∞∑
k=0

y2ℓ+n+p+k+1

k! Γ(2ℓ+ n+ p+ k + 2)Γ(−2ℓ− n− p− k)

=
(−1)ℓ+p Γ(−n− ℓ)

Γ(−2ℓ− n− p)
,

so that

lim
α→n

γ
(
2ℓ+ α+ p+ 1, 2T

h2

)
Γ(ℓ+ α+ 1)

=



γ
(
2ℓ+ n+ p+ 1, 2T

h2

)
Γ(ℓ+ n+ 1)

, 2ℓ+ p ≥ −n and ℓ ≥ −n,

(−1)ℓ+p Γ(−n− ℓ)

Γ(−2ℓ− n− p)
, ℓ ≤ −n− 1 and 2ℓ+ p ≤ −1− n,

0, otherwise.

To be concise, denote

S(n, T, ℓ, p) =
u(p)(T )(−1)p

p!

(
h2

2

)p
· 1

ℓ! 22ℓ
lim
α→n

γ
(
2ℓ+ α+ p+ 1, 2T

h2

)
Γ(ℓ+ α+ 1)

,
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so that splitting the sum similar to those in Section 5.2.1, we obtain

P̃ (n, T ) =
h

2n+1

∞∑
p=0

∞∑
ℓ=0

S(n, T, ℓ, p) =
h

2n+1

∞∑
ℓ=0

∞∑
p=0

S(n, T, ℓ, p)

=
h

2n+1

−n−1∑
ℓ=0

+
∞∑

ℓ=max(−n,0)

−n−2ℓ−1∑
p=0

+
∞∑

p=max(−n−2ℓ,0)

S(n, T, ℓ, p)

=
h

2n+1

−n−1∑
ℓ=0

−n−2ℓ−1∑
p=0

S(n, T, ℓ, p) +
h

2n+1

∞∑
ℓ=max(−n,0)

−n−2ℓ−1∑
p=0

S(n, T, ℓ, p)

+
h

2n+1

−n−1∑
ℓ=0

∞∑
p=max(−n−2ℓ,0)

S(n, T, ℓ, p) +
h

2n+1

∞∑
ℓ=max(−n,0)

∞∑
p=max(−n−2ℓ,0)

S(n, T, ℓ, p)

=
h

2n+1

−n−1∑
ℓ=0

−n−2ℓ−1∑
p=0

u(p)(T )(−1)p

p!

(
h2

2

)p
· 1

ℓ! 22ℓ
· (−1)ℓ+p Γ(−n− ℓ)

Γ(−2ℓ− n− p)

+
h

2n+1

∞∑
ℓ=max(−n,0)

∞∑
p=max(−n−2ℓ,0)

u(p)(T )(−1)p

p!

(
h2

2

)p
· 1

ℓ! 22ℓ
·
γ
(
2ℓ+ n+ p+ 1, 2T

h2

)
Γ(ℓ+ n+ 1)

=
h

2n+1

−n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

−n−2ℓ−1∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(−2ℓ− n− p)

+
h

2n+1

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 1, 2T
h2

)
Γ(ℓ+ n+ 1)

.

For the first pair of sums, we relax the upper bound on the p-indexed sum, so that we can now

interchange the sums and tighten the upper bound on the ℓ-indexed sum:

h

2n+1

−n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

−n−2ℓ−1∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(−2ℓ− n− p)
=

h

2n+1

−n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

∞∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(−2ℓ− n− p)

=
h

2n+1

∞∑
p=0

u(p)(T )

(
h2

2

)p
L(n, p),

where

L(n, p) =
1

p!

−n−p−1
2∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ
Γ(−n− ℓ)

Γ(−2ℓ− n− p)
=

2n+p+1 Γ(1 + p− n)

Γ(−n− p) Γ(2p+ 2)
,

after similar procedures from the previous section. Hence,

h

2n+1

−n−1∑
ℓ=0

(−1)ℓ

ℓ! 22ℓ

−n−2ℓ−1∑
p=0

u(p)(T )

p!

(
h2

2

)p
Γ(−n− ℓ)

Γ(−2ℓ− n− p)
= h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(1 + p− n)

Γ(−n− p)
,
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so that

P̃ (n, T ) =
h

2n+1

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 1, 2T
h2

)
Γ(ℓ+ n+ 1)

+ h
∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(1 + p− n)

Γ(−n− p)
,

and

P̃ (n+ 1, T ) =
h

2n+2

∞∑
ℓ=max(−n−1,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ−1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 2, 2T
h2

)
Γ(ℓ+ n+ 2)

+ h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p− n)

Γ(−n− p− 1)
.

Returning to P (n, T ), we find

P (n, T ) =
h

2n+1

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 1, 2T
h2

)
Γ(ℓ+ n+ 1)

+
h

2n+2

∞∑
ℓ=max(−n−1,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ−1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 2, 2T
h2

)
Γ(ℓ+ n+ 2)

+ h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(1 + p− n)

Γ(−n− p)
+ h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p− n)

Γ(−n− p− 1)
.

The last two finite sums simplify:

h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(1 + p− n)

Γ(−n− p)
+ h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p− n)

Γ(−n− p− 1)

= h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

[
Γ(1 + p− n)

Γ(−n− p)
+

Γ(p− n)

Γ(−n− p− 1)

]

= h

∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

[
(p− n) Γ(p− n)

Γ(−n− p)
+

(−n− p− 1) Γ(p− n)

Γ(−n− p)

]

= h
∞∑
p=0

u(p)(T )h2p

(2p+ 1)!

[
Γ(p− n)

Γ(−p− n)
(p− n− n− p− 1)

]

= −(2n+ 1)h

−n−1∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p− n)

Γ(−p− n)
,



152

so that

P (n, T ) =
h

2n+1

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 1, 2T
h2

)
Γ(ℓ+ n+ 1)

+
h

2n+2

∞∑
ℓ=max(−n−1,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ−1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 2, 2T
h2

)
Γ(ℓ+ n+ 2)

− (2n+ 1)h

−n−1∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p− n)

Γ(−p− n)
.

Therefore, combining the solution representations (2.2.18) and (5.2.8), we obtain a lengthy repre-

sentation valid for all n ∈ Z:

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(k, 0) + eikhq̂(−k, 0)

]
dk

− h

2n+1

∞∑
ℓ=max(−n,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 1, 2T
h2

)
Γ(ℓ+ n+ 1)

− h

2n+2

∞∑
ℓ=max(−n−1,0)

1

ℓ! 22ℓ

∞∑
p=max(−n−2ℓ−1,0)

u(p)(T )(−1)p

p!

(
h2

2

)p γ (2ℓ+ n+ p+ 2, 2T
h2

)
Γ(ℓ+ n+ 2)

+ (2n+ 1)h
−n−1∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p− n)

Γ(−p− n)
.

(5.2.9)

If we are interested in the negative half-line only, letting n→ −n for n ≥ 1, we have

q−n(T ) = (1− 2n)h

n−1∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p+ n)

Γ(n− p)
+ qn−1(T ). (5.2.10)

We can also recover the Neumann boundary condition u(T ) from (5.2.10). Note that

n−1∑
p=0

u(p)(T )h2p

(2p+ 1)!

Γ(p+ n)

Γ(n− p)
= u(T ) +

n−1∑
p=1

u(p)(T )h2p

(2p+ 1)!

Γ(p+ n)

Γ(n− p)
,

so that

q−n(T ) = (1− 2n)hu(T ) + (1− 2n)h
n−1∑
p=1

u(p)(T )h2p

(2p+ 1)!

Γ(p+ n)

Γ(n− p)
+ qn−1(T ).

Since qx(0, t) was discretized via the standard backward stencil, we have

q0(T )− q−1(T )

h
=
q0(T ) + hu(T )− q0(T )

h
= u(T ).

From [24], the analytic continuation to the continuous problem is

q(−x, T ) = q(x, T )− 2

∞∑
p=0

u(p)(T )x2p+1

(2p+ 1)!
. (5.2.11)
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We now show the semi-discrete continuation (5.2.10) converges to (5.2.11) in the continuum

limit. Let

f(n, p) =
Γ(p+ n)

Γ(n− p)
=


1, p = 0,

2p−1∑
ℓ=0

aℓ n
2p−ℓ, p ≥ 1,

with a0 = 1. Then, we have

q−n(T ) = qn−1(T ) + (h− 2nh)
n−1∑
p=0

u(p)(T )h2p

(2p+ 1)!
f(n, p)

= qn−1(T ) + (h− 2nh)
n−1∑
p=0

u(p)(T )h2p

(2p+ 1)!

(
n2p + a1 n

2p−1 + . . .
)

q−n(T ) = qn−1(T ) + (h− 2nh)
n−1∑
p=0

u(p)(T )

(2p+ 1)!

[
(nh)2p + a1 h(nh)

2p−1 + . . .
]

⇒ lim
h→0

q−n(T ) = lim
h→0

qn−1(T ) + (h− 2nh)
n−1∑
p=0

u(p)(T )

(2p+ 1)!

[
(nh)2p + a1 h(nh)

2p−1 + . . .
]

q(−x, T ) = q(x, T )− 2x
n−1∑
p=0

u(p)(T )

(2p+ 1)!
x2p.

Solving the IBVP 
qt = qxx, x > 0, t > 0,

q(x, 0) = e−x cos(3πx), x > 0,

qx(0, t) =
− sin(4πt)

4π , t > 0,

(5.2.12)

gives Figure 5.2.2 for two different h values.

5.2.3 Higher-Order Discretization of qt = qxx with Dirichlet Condition

For our last example, we return to Section 2.2.3 with the fourth-order centered discretization

(2.2.26) to the heat equation with a Dirichlet boundary condition. After several steps, the dispersion

relation (2.2.28) and global relation (2.2.27) give solution (2.2.32):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk + 1

2π

∫ π/h

−π/h
eiknhe−WT F̃ (k, T ) dk,

with

F̃ (k, T ) =
e−2ikh

(
14eikh − 14e3ikh + e4ikh − 1

)
12h

f0 +
he−ikh

(
e2ikh − 1

)
12

V +
h3e−ikh

(
e2ikh − 1

)
144

Ṽ ,

where V (W,T ) is the time transform of v(t) = u′(t) and Ṽ (W,T ) of ṽ(t) = u′′(t).
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Figure 5.2.2: Extensions of half-line solution (2.2.18) for IBVP (5.2.12) with h = 0.02 (left) and

h = 0.004 (right).

Like (2.2.9), one can show that (2.2.32) gives q−n(T ) = −qn(T ) for n ∈ Z+. Following similar

steps from the previous sections, albeit more laborious, we can obtain the valid analytic extension

for the negative half-line solution. We introduce

Bm(n, T, g) =
1

24πh

∫ π/h

−π/h
eik(n+m)h−WTGdk, G(W,T ) =

∫ T

0
eWtg(t) dt,

for the boundary terms, so that (2.2.32) is rewritten as

qn(T )=
1

2π

∫ π/h

−π/h
eiknhe−WT [q̂(k, 0)− q̂(−k, 0)] dk + 14B−1(n, T, u)− 14B1(n, T, u) +B2(n, T, u)

−B−2(n, T, u) + h2B1(n, T, v)− h2B−1(n, T, v) +
h4

12
B1(n, T, ṽ)−

h4

12
B−1(n, T, ṽ).

(5.2.13)

Breaking down Bm(n, T, g) by replacing the definition for G(W,T ), we have

Bm(n, T, g) =

∫ T

0

[
1

24πh

∫ π/h

−π/h
eik(n+m)h−W (T−t) dk

]
g(t) dt =

∫ T

0
Jm(n, T, t)g(t) dt,
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where

Jm(n, T, t) =
1

24πh

∫ π/h

−π/h
eik(n+m)h−W (T−t) dk

=
e

−5(T−t)

2h2

12h2
Res
z=0

{
zn+m−1 exp

[(
−z−2 + 16z−1 + 16z − z2

) T − t

12h2

]}
.

After determining the residues, we find

Bm(n, T, g) =
1

30

∞∑
j=−∞

(−1)j
∫ 5T

2h2

0
e−sIj(s/15)I−n−m−2j(16s/15)g

(
T − 2h2

5
s

)
ds.

At this stage, we take Taylor series expansions about h = 0, rewrite ratios of Gamma functions,

and determine which summation terms contribute for negative n. These tedious steps are left to the

reader.
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Chapter 6

SPLIT-STEP FINITE-DIFFERENCE METHOD

6.1 Background

Our goal is to solve nonlinear IBVPs with finite difference schemes, while addressing ghost points

and the complications they present. We propose a split-step method that separately solves the linear

subproblem (1.1.3) and the nonlinear subproblem (1.1.4).

A split-step method owes part of its success to the fact that it avoids solving a nonlinear al-

gebraic system at each time step. Instead, it decomposes the original problem (1.1.2) into simpler

subproblems, building an approximate solution of the original problem by using exact or approx-

imate solutions of subproblems in a given sequential order [54]. How that sequential order takes

place determines the order of accuracy of the split-step method [34, 49].

Many approaches have been developed over the years to efficiently solve the linear subproblem

(1.1.3) with numerical methods, but two main ones stand out. The first approach relies on Fourier

methods, using the (discrete) Fourier transform and computing approximate solutions with fast

Fourier techniques [33, 48, 65]. However, this requires periodic boundary conditions on the interval,

often in contrast to actual physical problems with outflow and inflow boundary data. The second

approach uses finite-difference methods that provide an approximate solution by discretizing the

spatial derivative and applying a time-stepping method (see Section 1.1 and Chapter 3) [32, 36, 70].

This approach is more general and is better equipped to handle non-periodic boundary conditions

than the Fourier methods, but wide discretization stencils lead to ghost points, which in turn lead

to numerical instabilities [68]. Other popular approaches, like Chebyshev spectral methods, do not

introduce ghost points, but often introduce stability conditions that are restrictive and challenging

to analyze when applied to boundary problems [66]. Most numerical studies center on full-line

problems with sufficiently decaying boundary conditions to treat them as homogeneous or finite

interval problems with periodic boundary conditions [20, 58, 72]. Others develop unique tactics to

address the difficulties with non-periodic IBVPs, but struggle to be generalizable to higher-order

problems [2, 39, 40, 69, 73, 74]. Additionally, when full-line or half-line problems are truncated to

a finite domain, the common argument is that these artificial boundaries are merely placed “far

enough” apart in order to not interfere with dispersive effects within the window of interest (see the

introduction to Chapter 2). In general, non-periodic finite-interval IBVPs for nonlinear evolution

equations, most notably dispersive PDEs, have received little attention [56, 57].

In order to tackle the vast class of PDEs (1.1.1) and their given boundary conditions, we treat the
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linear subproblem (1.1.3) in split-step methods with finite-difference schemes. Hence, we refer to this

as a split-step finite-difference (SSFD) method. Since the PDEs are quasi-linear, the spatial stencil of

accuracy O(hr) applied to (1.1.3) is at least as nonlocal as stencils of O(hr) applied to the nonlinear

subproblem (1.1.4), when no exact solution can be provided for the latter. In practice, (1.1.3) is

most affected by boundary conditions and ghost points. As discussed in Section 1.2, the UTM can be

applied to solve (1.1.3) with general boundary conditions, but the evaluation of the resulting integral

representations are numerically costly, especially when computing the solution several hundreds or

thousands of times within a split-step implementation, and series representations cannot be obtained

for all orders M of (1.1.1). Unfortunately, similar arguments can be made against the SD-UTM

solutions and their representations.

Thus, we apply the UTM or SD-UTM at only the ghost points of a spatial discretization of

(1.1.3). Although Chapters 2 – 4 lay out the framework for SD-UTM, with Chapter 5 presenting

the semi-discrete analytic-continuation formulas, we first tackle our goal with UTM and the analytic

continuation formulas produced by Farkas et al. [24].

6.2 The Nonlinear Schrödinger Equation

We consider the nonlinear Schrödinger (NLS) equation on the finite interval with, say, Dirichlet

boundary conditions: 

qt = iσqxx + iλ|q|2q, 0 < x < L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L,

q(0, t) = u(0)(t), t > 0,

q(L, t) = v(0)(t), t > 0,

(6.2.1)

where σ, λ ∈ R. The NLS equation is one of the most widely applicable equations in the physi-

cal sciences used to characterize nonlinear dispersive phenomena, like waves in plasmas, nonlinear

optics, water, and molecular dynamics [52]. In many real-world applications, like propagation of

a laser beam in an optical fiber, the domain is finite, so physical boundaries and the numerical

implementations of the boundary conditions are vital [1, 9, 33].

A split-step method applied to the NLS equation consists of iteratively combining the separate

solutions to the linear, dispersive subproblem



qt = iσqxx, 0 < x < L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L,

q(0, t) = u(t), t > 0,

q(L, t) = v(t), t > 0,

(6.2.2)
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and the nonlinear subproblem, qt = iλ|q|2q, 0 < x < L, t > 0,

q(x, 0) = ϕ(x), 0 < x < L.
(6.2.3)

Note that (6.2.3) is an ODE in time that has an exact solution and has no dependence on the

given boundary conditions, while (6.2.2) incorporates the boundary data appropriately derived from

the full problem (6.2.1) [42, 44]. Many works have studied various orders of accuracy for split-step

methods that solve the NLS equation [3, 4, 7, 23, 37, 45, 46, 50, 54, 61]. For simplicity, we implement

second-order Strang splitting to solve (6.2.1), where (6.2.2) is solved once and (6.2.3) is solved twice

per time-step [36]. We denote the split-step time step between iterations as τ = T/Nt,SS for Nt,SS

total time steps. Details of the split-step implementation itself are discussed where necessary.

To solve (6.2.2) with a finite-difference scheme, suppose we apply a fourth-order spatial dis-

cretization, so that the linear Schrödinger equation from (6.2.2) becomes

q̇n = iσ

(
−qn−2 + 16qn−1 − 30qn + 16qn+1 − qn+2

12h2

)
. (6.2.4)

Since we have Dirichlet data at n = 0 and n = Nx + 1, (6.2.4) is used at n = 1, . . . , Nx with

h = L/(Nx+1). Precisely, at n = 1, (6.2.4) introduced the dependence on a ghost point at n = −1,

while at n = Nx, we have a ghost point at n = Nx + 2:
q̇1 = iσ

(
−q−1 + 16u(t)− 30q1 + 16q2 − q3

12h2

)
,

q̇Nx = iσ

(
−qNx−2 + 16qNx−1 − 30qNx + 16v(t)− qNx+2

12h2

)
.

(6.2.5)

The sections that follow address the standard and alternative approaches when dealing with ghost

points when solving (6.2.2). They are also applicable to not only other discretizations of the NLS

equation, but to other PDEs as well.

6.2.1 Standard Approach

The standard approach is to altogether avoid these ghost points by applying certain spatial sten-

cils near the boundaries, i.e., at n = 1 and n = Nx. The method of undetermined coefficients derives

approximations to derivatives up to a desired order of accuracy and is perhaps the most straight-

forward approach that generalizes to other cases, like higher-order accurate methods, nonuniform

grids, and higher-order derivative boundary conditions [43, 73]. Instead of applying the centered

stencil (6.2.4), we solve systems of equations to obtain one-sided stencils of accuracy O(h4). When
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respectively applied at n = 1 and n = Nx, they do not introduce ghost points:
q̇1 = iσ

(
10u(t)− 15q1 − 4q2 + 14q3 − 6q4 + q5

12h2

)
,

q̇Nx = iσ

(
qNx−4 − 6qNx−3 + 14qNx−2 − 4qNx−1 − 15qNx + 10v(t)

12h2

)
.

(6.2.6)

Writing the main stencil (6.2.4) for n = 2, . . . , Nx − 1 and the boundary stencils (6.2.6) into a

method-of-lines formulation gives

Q̇(t) = AQ(t) + Lu(t) +Rv(t), (6.2.7)

where Q(t), L,R ∈ RNx×1 and A ∈ RNx×Nx . Note that A, L, and R are sparse and contain stencil

coefficients. Here, we apply our choice of ODE solver to obtain an approximate solution in space

and time to (6.2.2). Usually, this formulation allows for von Neumann stability analysis of finite-

difference schemes via eigenvalues of A if A is normal
(
ATA = AAT

)
(at least in the full-line or

periodic problem, but if either of these is unstable, then it is likely that the finite interval problem

will also be unstable [43]). However, many times with this standard approach of deriving new stencils

near the boundaries, A can be highly nonnormal, such that the familiar eigenvalue stability analysis

for the linear problem is misleading and unhelpful, having to resort to studying the ϵ-pseudospectrum

[31, 43, 67]. This is the case for the coefficient matrix A in the system (6.2.7).

6.2.2 Analytic Continuation

Alternative to the standard approach above, we propose to keep whatever ghost points develop

and determine their data according to the analytic continuation formulas for that linear IBVP. The

UTM solution to the second-order IBVP (6.2.2) is

q(x, T ) =
1

2π

∫ ∞

−∞
eikx−iσk

2T q̂(k, 0) dk

+
1

2π

∫
∂Ω̃+

eikx−iσk
2T

[
q̂(−k, 0)− e2ikLq̂(k, 0)− 2kσ

(
F0 − eikLG0

)
e2ikL − 1

]
dk

− 1

2π

∫
∂Ω̃−

eikx−iσk
2T

[
q̂(k, 0)− e2ikLq̂(−k, 0) + 2kσ

(
F0 − eikLG0

)
e2ikL − 1

]
dk,

(6.2.8)

where Ω± = {k ∈ C±
∣∣∣Re (−iσk2) > 0} and ∂Ω̃± is along the boundary of Ω± while avoiding the

singularities along the real line in the complex k-plane [17]. After substituting definitions into (6.2.8)

and applying Taylor series expansions [24], the following relations are valid outside of the original

interval [0, L], but near it:

q(−x, T ) = 2

∞∑
ℓ=0

x2ℓ

(2ℓ)!(iσ)ℓ
u(ℓ)(T )− q(x, T ), (6.2.9a)
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q(L+ x, T ) = 2
∞∑
ℓ=0

x2ℓ

(2ℓ)!(iσ)ℓ
v(ℓ)(T )− q(L− x, T ), (6.2.9b)

where u(ℓ)(T ) and v(ℓ)(T ) denote the ℓth derivatives of the respective boundary conditions at T = t.

The information for ghost points that develop in (6.2.5) are given as
q−1(T ) = 2

∞∑
ℓ=0

h2ℓ

(2ℓ)!(iσ)ℓ
u(ℓ)(T )− q1(T ),

qNx+2(T ) = 2
∞∑
ℓ=0

h2ℓ

(2ℓ)!(iσ)ℓ
v(ℓ)(T )− qNx(T ),

(6.2.10)

so that (6.2.5) is written as
q̇1 = iσ

(
16u(T )− 29q1 + 16q2 − q3

12h2

)
− 2iσ

12h2

∞∑
ℓ=0

h2ℓ

(2ℓ)!(iσ)ℓ
u(ℓ)(T ),

q̇Nx = iσ

(
−qNx−2 + 16qNx−1 − 29qNx + 16v(T )

12h2

)
− 2iσ

12h2

∞∑
ℓ=0

h2ℓ

(2ℓ)!(iσ)ℓ
v(ℓ)(T ).

(6.2.11)

With these relations, the method-of-lines formulation becomes

Q̇(t) = AQ(t) + Lu(t) +Rv(t) + LAC(t) +RAC(t). (6.2.12)

which differs from (6.2.7) with the addition of time-dependent terms LAC(t), RAC(t) ∈ RNx×1.

Because the main fourth-order stencil (6.2.4) was applied at all points and no special stencils were

introduced near the boundaries, it can be shown that the coefficient matrix A exhibits a normal

structure. However, the main complication with this alternative approach is that the analytic

continuation terms LAC(t), RAC(t) are time-dependent and consist of infinite sums. However, we

can choose how many terms to include in the sums based on how quickly the sum converges. In

(6.2.11), note that specifically the ratio h2ℓ/(2ℓ)! → 0 as ℓ→ ∞ and as h→ 0. In fact, the numerical

examples that follow show that these sums rarely require more than 2 terms.

6.2.3 Numerical Examples

Let us clarify the notation used to solve the overall original problem (6.2.1) with the SSFD

method. We denote the number of time steps in the split-step method as Nt,SS with time step

τ = T/Nt,SS , where T > 0 is the time over which we are solving the original problem. For the

finite-difference method to solve the linear subproblem (6.2.2), we denote the number of interior

spatial grid points as Nx with uniform spacing h = L/(Nx + 1), and the number of time steps as

Nt,FD with time step k = τi/Nt,FD ,where τi is the i
th time interval we are solving (6.2.2) across in

a given split-step iteration.
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For the following examples, the linear subproblem (6.2.2) is always solved with the fourth-order

spatial stencil (6.2.4) and time-stepped with the trapezoidal method (TR). The Strang splitting for

the overall problem implies the numerical solutions are fourth-order accurate in space and second-

order accurate in time. What varies is the approach we use to address ghost points: either the

standard approach (SA) of introducing new stencils near the boundaries to avoid ghost points or

the analytic continuation (AC) formulas to determine information at the ghost points.

Soliton Solution

The easiest readily available solution to the NLS equation is the soliton solution, based on the

full-line problem. For a given explicit solution, we can impose an initial condition and boundary

conditions to generate a well-posed finite interval IBVP. The first numerical example we consider is

a truncated soliton solution from [64] with σ = −1 and λ = −2:

q̃(x, t) =
2ηe−i[2xξ−4(ξ2−η2)t+ψ0+π/2]

cosh (2ηx− 8ηξt− x0)
, (6.2.13)

where η, ξ, ψ0, and x0 are parameters. From here, we want to now solve

qt = −iqxx − 2i|q|2q, 0 < x < 1, t > 0,

q(x, 0) = ϕ(x) = q̃(x, 0), 0 < x < 1,

q(0, t) = u(t) = q̃(0, t), t > 0,

q(1, t) = v(t) = q̃(1, t), t > 0.

(6.2.14)

The exact solution (6.2.13) allows us to easily compare numerical solutions.

With Nx = 27 − 1, Nt,FD = 24, and Nt,SS = 25, we solve (6.2.14) up to T = 0.1 with the SA

and AC formulations. The real part of the solutions is depicted as green curves in Figure 6.2.1. At

least graphically on the same grid and time-stepping parameters, we see that the AC formulation

leads to a better approximation with less numerical oscillations than the SA formulation. The blue

dashed lines in Figure 6.2.1 show the differences between the exact and SSFD solutions. The TR

method is dispersive itself, so if the finite-difference solution to the linear subproblem is not well

resolved, numerical dispersion is introduced into the solution. Although not shown, the imaginary

component and the modulus squared of the SSFD solutions show similar behavior as in Figure 6.2.1.

For Figure 6.2.1b, the AC formulation used ℓ = 4 summation terms at each of the ghost points

(6.2.11). In fact, Figure 6.2.2 shows that 2 terms would have sufficed, reaching an ∞-norm error

between qn(0.1)− q(xn, 0.1) of order 10
−5. Note that ℓ = 0 reduces (6.2.10) to a reflection principle

with error around 0.4, while simply including one term drastically reduces the error by a factor of

100, down to nearly 0.003 in the ∞-norm. After just 2 terms, the error plateaus and other errors

from the numerical method dominate, such as from the finite-difference time stepping.
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(a) (b)

Figure 6.2.1: The real part of the SSFD solutions to IBVP (6.2.14) with (a) the SA formulation and

(b) the AC formulation for the linear subproblem.

Figure 6.2.3 shows the convergence of the split-step method as we refine the spatial grid with

small split-step time-steps τ and vary the finite-difference time-step k in the TR method. Both plots

in Figure 6.2.3 exhibit the expected O(h4) convergence rate, but the AC formulation appears to be

more consistent and produces slightly more accurate results on a coarse grid compared to the SA

formulation. As h → 0, the temporal truncation errors begin to dominate, causing the curves to

plateau for smaller h. Of course, the smaller the time-steps in the Strang splitting and TR methods,

the more accurate the SSFD solution on a fixed spatial grid. To confirm this, we include Figure 6.2.3

for this example, depicting the O(τ2) convergence rate from the second-order splitting as τ → 0

for both SA and AC formulations. Once again, both formulations perform similarly, with the AC

approach slightly outperforming SA in generating smaller errors.

Incompatible Corner

Our final example attempts to capture the dispersive nature of the NLS equation by tackling an

IBVP that has a discontinuity at (x, t) = (1, 0), i.e., the initial condition is incompatible with the

right boundary condition at t = 0. For t > 0, a dispersive wave train develops at the right boundary,

quickly spreading toward the left boundary. Hence, we focus on small T for this IBVP where we
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Figure 6.2.2: The ∞-norm error of the AC-formulated SSFD solution to IBVP (6.2.14) with ℓ terms.

aim to capture these oscillations specifically near x = 1. Consider the IBVP

qt = iqxx + i|q|2q, 0 < x < 1, t > 0,

q(x, 0) = ϕ(x) = 1, 0 < x < 1,

q(0, t) = u(t) = e−t, t > 0,

q(1, t) = v(t) = cos(2πt)/2, t > 0.

(6.2.15)

Of course, there is no exact solution to (6.2.15). Instead, we must solve the IBVP on a very fine grid

with small split-step and finite-difference time-steps in order to guarantee an accurate solution to

this highly dispersive problem. We take the SSFD solution with an SA formulation and Nx = 215,

Nt,FD = 27, and Nt,SS = 28 to be the “exact” solution to (6.2.15). We solve the problem across the

entire unit interval, but the following figures depict results for the narrowed window x ∈ [0.9, 1].

Figure 6.2.5 shows the real part of the solutions to (6.2.15) with SA and AC formulations at

T = 10−5 when Nx = 212, Nt,FD = 25, and Nt,SS = 24. Again, the AC formulation used ℓ = 4

summation terms at each of the ghost points (6.2.11). Although both formulations are treated with

the same finite-difference and splitting methods, it is clear that the AC formulation outperforms

the SA formulation (see the blue dashed lines in Figure 6.2.5). Both approaches capture the large

oscillations near the boundary and both eventually fail as xn → 0+, but when the SA formulation is

implemented, the numerical dispersion introduced by the TR method significantly overpowers the

true dispersive nature of the NLS equation. For larger T ∼ 10−1, the wave train reaches the left

boundary and induces further oscillations where even the most tailored methods struggle to solve
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(a) (b)

Figure 6.2.3: Error plot as h→ 0 of the SSFD solutions to IBVP (6.2.14) with (a) the SA formulation

and (b) the AC formulation for the linear subproblem. We vary the number of finite-difference time

steps Nt,FD in each plot.

the NLS equation.

Figure 6.2.6 shows a faster convergence than Figure 6.2.2 from the previous section, with the

error plateauing after ℓ = 1. Since the error is less than 10−2, we could save computational power

in computing the SSFD-AC solutions by solely considering u(t) and its first derivative. In this case,

the ℓth derivative of the right boundary condition has a closed form, but this is not the case in more

complicated examples, like with IBVP (6.2.14). In general for sufficiently smooth derivatives, one

could symbolically determine the ℓth derivative, but this adds to the overall computational costs.

Lastly, Figure 6.2.7 shows the O(h4) convergence rate, but only for sufficiently small h where the

SSFD solutions are refined enough to capture both the magnitude and phase of the oscillations within

the narrow window x ∈ [0.9, 1]. Once the solutions satisfy this “threshold,” the SA formulations lead

to an uptick in the ∞-norm errors for relatively large finite-difference time-steps. The SSFD-AC

formulations follow a more expected plateauing behavior as h → 0, where the temporal truncation

errors begin to dominate for small enough h.
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(a) (b)

Figure 6.2.4: Error plot as τ → 0 of the SSFD solutions to IBVP (6.2.14) with (a) the SA formulation

and (b) the AC formulation for the linear subproblem.

(a) (b)

Figure 6.2.5: The real part of the SSFD solutions to IBVP (6.2.15) with (a) the SA formulation and

(b) the AC formulation for the linear subproblem.
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Figure 6.2.6: The ∞-norm error of the AC-formulated SSFD solution to IBVP (6.2.15) with ℓ terms.

(a) (b)

Figure 6.2.7: Error plot as h→ 0 of the SSFD solutions to IBVP (6.2.15) with (a) the SA formulation

and (b) the AC formulation for the linear subproblem. We vary the number of finite-difference time

steps Nt,FD in each plot.
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Chapter 7

CONCLUSION AND FUTURE WORK

Finite difference methods continue to be one of the most intuitive and direct ways to solve IBVPs.

Setting out to solve quasi-linear IBVPs, the application of wide spatial stencils leads to troublesome

ghost points that are commonly tackled in limited approaches that do not easily generalize to higher-

order problems.

Chapters 2 – 4 discuss the semi-discrete UTM and its continuum limit when applied to half-

line and finite interval IBVPs of various orders and discretizations. With minor differences in the

calculations, the procedure for the semi-discrete UTM is almost identical to that from the continuous

UTM, with Steps (7) and (8) added. The steps themselves become more tedious for higher-order

problems, but like the continuous UTM, the SD-UTM reduces the burden of solving a semi-discrete

IBVP to solving for the roots of polynomials and dealing with a set of algebraic equations.

For a given discretization of a PDE, the global relation and its regions of validity under the

symmetries νj(k) impose which stencils can be selected for derivative boundary conditions, as we

saw with the higher-order discretizations and the Neumann problems. Similar to how the continuous

UTM determines which types of boundary conditions result in a well-posed problem [28], “natural”

discretizations reduce the variety of stencils to those that are compatible with the IBVP. We re-

iterate that a natural discretization for a PDE is (i) of the same order as the spatial order of the

PDE, (ii) not purely one sided (except for first-order problems), and (iii) the one that optimally

aligns with the available boundary conditions.

Lastly, the extended semi-discrete solutions presented in Chapter 5 and in [24] provide informa-

tion at ghost points, i.e., outside of the original domain of definition. Chapter 6 capitalizes on these

analytic continuation formulas to develop split-step finite-difference methods for quasi-linear IBVPs,

like the NLS equation. These methods are comparable to existing approaches that solve this class

of problems, but most notably preserve the normal structure of the coefficient matrix in a method-

of-lines formulation where the usual eigenvalue analysis can be done. The systematic derivation for

these methods will open doors to novel numerical techniques that efficiently solve dispersive IBVPs.

Specifically, some of the directions for future research include:

(i) Derive and implement small-time approximations to the UTM formulas. Like we

did in Sections 2.5 and 3.5 for SD-UTM integral representations, one could repeat the steps

for the continuous UTM. Choosing the same order of temporal accuracy as the splitting and

finite-difference method to solve the linear subproblem, these small-time approximations could
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lead to more efficient SSFD-AC methods with analytic continuation formulas that are easier

to implement.

(ii) Apply the SD-UTM extension formulas within SSFD methods. Chapter 6 exhibits

SSFD methods with AC formulations that derive from the continuous UTM that could be

replaced with the SD-UTM extension formulas following the ideas from Chapter 5. Throughout

the bulk of this dissertation, we have seen that the SD-UTM representations tend to be simpler

to work with than the continuous UTM representations, so perhaps the SSFD-AC formulas

could increase efficiency while retaining the same level of spatial accuracy. The small-time

approximations from Section 3.5 could similarly be tested.

(iii) Explore alternative approaches when solving the full quasi-linear IBVP. There

exist quasi-linear PDEs where the nonlinear subproblem does not have an exact solution. Now,

both linear and nonlinear subproblems require finite-difference schemes, potentially introducing

ghost points at each subproblem if all spatial derivatives have stencils applied to them of the

same order of accuracy. For these types of IBVPs, it might be beneficial to solve the original

problem entirely without any splitting [65, 68]. Two approaches are worth exploring in this

context. The first is to apply the linear analytic continuation formulas at the ghost points

directly, such that information there is known. However, this requires the evaluation of the

linear solution at ghost points for general, high-order IBVPs, perhaps creating too much of a

discrepancy between ghost and the (nonlinearly-related) interior points. Solving this nonlinear

system with additional time-dependencies might be time consuming and problematic near

boundaries. The second approach is to apply the linear analytic continuation formulas to

relate the ghost points back into the domain and solve them with the rest of the interior

points (closely related to Section 6.2.2). We expect this approach to be more efficient than

the first, without the need to compute the linear solution itself. Although the relations are

linear at the ghost points, the grid points for the full nonlinear problem are all solved together

simultaneously. Note that both approaches are equivalent for linear, monomial PDEs.

(iv) Set up a black-box solver. Ideally, we want to culminate all of these findings into a black-

box solver that could potentially be applied to a variety of IBVPs. There is an emphasis to focus

on dispersive problems, like NLS-type and KdV-type equations. With an expansive numerical

solver, we could additionally treat dissipative problems, like nonlinear heat equations.
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Appendix A

STARTING INDEX ON SEMI-DISCRETE TRANSFORM PAIR

Let us define the discrete transform pair for the half-line problems as:

q̂(k, t) = h

∞∑
n=a

e−iknhqn(t), a ∈ Z (A.1a)

qn(t) =
1

2π

∫ π/h

−π/h
eiknhq̂(k, t) dk, n = a, a+ 1, a+ 2, . . . , (A.1b)

where we will call (A.1a) the forward transform and (A.1b) the inverse transform. Of course, we

usually set a = 0, but let us proceed in a general manner. For comparison, recall the continuous

Fourier transform pair for half-line problems:

q̂(k, t) =

∫ ∞

0
e−ikxq(x, t) dx,

q(x, t) =
1

2π

∫ ∞

−∞
eikxq̂(k, t) dk.

In the continuous pair, we assume that q(x, t) = 0 for x < 0. This is not necessary in the discrete

pair: we do not have to assume that qn(t) = 0 for all n ≤ a − 1. If we do so, then there will be

contradictions when ghost points develop in the global relation. Instead, we ignore qn(t) for all

n ≤ a− 1 and treat them as unknowns; they may be zero or nonzero, but will not matter until they

come into play.

The transform pair (A.1a) and (A.1b) still hold for any a, regardless of qn(t) for n ≤ a − 1.

In a way, we are defining (A.1a) and (A.1b) as the half-line transform pair ourselves, instead of

originating from the full-line (bi-lateral) transform pair

q̂(k, t) = h

∞∑
n=−∞

e−iknhqn(t)

qn(t) =
1

2π

∫ π/h

−π/h
eiknhq̂(k, t) dk, n = . . . ,−1, 0, 1, . . .

and assuming qn(t) = 0 for all n ≤ a− 1 to obtain (A.1a) and (A.1b).

So, using the definitions (A.1a) and (A.1b), let us show these are still inverses of each other,
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regardless of a and qn(t) for n ≤ a− 1. Plugging the inverse transform into the forward transform:

qn(t) =
1

2π

∫ π/h

−π/h
eiknhq̂(k, t) dk

=
1

2π

∫ π/h

−π/h
eiknh

[
h

∞∑
m=a

e−ikmhqm(t)

]
dk

=
h

2π

∞∑
m=a

qm(t)

[∫ π/h

−π/h
eik(n−m)h dk

]

=
h

2π

∞∑
m=a

qm(t)

[
1

ih

∮
|z|=1

zn−m−1 dz

]
, z = eikh

=
h

2π

∞∑
m=a

qm(t)

[
2π

h
δnm

]
= qn(t).

Note that the range of n nor m was not important. All we cared about was whenever n = m.

Instead of plugging the forward transform into the inverse transform, let us write out what the

forward transform is:

q̂(k, t) = h
∞∑
n=a

e−iknhqn(t)

q̂(z, t) = h

∞∑
n=a

z−nqn(t), z = eikh

1

h
q̂(z, t) =

qa(t)

za
+
qa+1(t)

za+1
+
qa+2(t)

za+2
+ . . .+

qn(t)

zn
+ . . .

zn−1

h
q̂(z, t) =

qa(t)

za+1−n +
qa+1(t)

za+2−n +
qa+2(t)

za+3−n + . . .+
qn(t)

z
+ . . . .

It follows that

qn(t) = Res
z=0

[
zn−1

h
q̂(z, t)

]
=

1

2πi
· 2πiRes

z=0

[
zn−1

h
q̂(z, t)

]
=

1

2πih

∮
|z|=1

zn−1q̂(z, t) dz

=
1

2πih

∫ π/h

−π/h
eik(n−1)hq̂(k, t) iheikh dk

qn(t) =
1

2π

∫ π/h

−π/h
eiknhq̂(k, t) dk.

Again, the starting index of n was not important, as long as it was finite. Only the qn(t) for

n = a, a+ 1, a+ 2, . . . showed up.
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So, if we treat qn(t) for n ≤ a−1 as unknowns instead of setting them to zero, the transform pair

(A.1a) and (A.1b) still hold for any a. That way, when the Unified Transform Method introduces

ghost points, they are treated as legit unknowns and there is no clashing of previously setting them

to zero.

A similar approach can be shown for the finite-interval transform pair:

q̂(k, t) = h
A∑
n=a

e−iknhqn(t), a, A ∈ Z with a < A (A.2a)

qn(t) =
1

2π

∫ π/h

−π/h
eiknhq̂(k, t) dk, n = a, a+ 1 . . . , A. (A.2b)
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Appendix B

THE “TIME-REVERSED” HEAT EQUATION

It is well known that the “time-reversed” (TR) heat equation

qt = −qxx (B.1)

leads an ill-posed problem, but not to be confused with the “backward” discretization for the heat

equation qt = qxx. For this continuous problem, UTM fails when taking the inverse transform of

the global relation, since W̃ (k) = −k2 does not allow the integral representation to be valid for any

nonzero x ∈ R. We show next that the SD-UTM integral representation is well-posed for a finite h,

but becomes ill-posed in the continuum limit.

Suppose we study the standard centered discretization. The TR equation is written as

q̇n =
−qn+1 + 2qn − qn−1

h2
, (B.2)

such that the local relation is the same as (2.2.3), except the right-hand side has a minus:

∂t

(
e−iknheWtqn

)
= − 1

h2
∆
(
e−ik(n−1)heWtqn − e−iknheWtqn−1

)
(B.3)

with

W (k) =
eikh + e−ikh − 2

h2
. (B.4)

The global relation

eWT q̂(k, T )− q̂(k, 0) +

[
e−ikhf0 − f1

h

]
= 0.

gives rise to the “solution”

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk − 1

2π

∫ π/h

−π/h
eiknhe−WT

[
e−ikhf0 − f1

h

]
dk, (B.5)

such that (B.5) is composed of proper integrals, so it is valid for all k ∈ C, unlike in the continuous

case, where we have to verify that the “solution” is valid at least on the real line. With the same

nontrivial symmetry ν1(k) = −k, suppose we have a Dirichlet boundary condition, so that we solve

for f1(W,T ) and substitute into (B.5):

qn(T ) =
1

2π

∫ π/h

−π/h
eiknhe−WT q̂(k, 0) dk

− 1

2π

∫ π/h

−π/h
eiknhe−WT

[
q̂(−k, 0)− 2i sin(kh)f0

h

]
dk

(B.6)
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after removing the integral term with q̂(−k, T ). Taking the continuum limit, is clear that (B.6)

converges to

q(x, T ) =
1

2π

∫ ∞

−∞
eikxe−WT q̂(k, 0) dk − 1

2π

∫ ∞

−∞
eikxe−WT [q̂(−k, 0)− 2ikF0] dk,

where the integrals are not defined with limh→0W (k) = −k2. Therefore, we see that the semi-

discrete problem is well-posed for a relatively large h, but ill-posed as h → 0. In fact, the integrals

in (B.6) exponentially grow, such that any attempt at numerically evaluating it for a practical h is

futile.
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