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Euler’s equations govern the behavior of gravity waves on the surface of an incompressible,

inviscid, and irrotational fluid (water, in this case). We consider the small-amplitude, peri-

odic traveling-wave solutions of Euler’s equations known as the Stokes waves. Our focus is on

the instabilities of Stokes waves present in the spectrum of the linearized Euler’s equations

about these solutions. These instabilities encompass the Benjamin-Feir (or modulational)

instability as well as the recently discovered high-frequency instabilities. In this dissertation,

we develop a perturbation method to describe the unstable spectral elements associated with

each of these instabilities, allowing us to obtain desirable asymptotic properties that connect

recent numerical and rigorous studies. As a proof of concept, we first develop the method

for simpler, heuristic models of water waves. In all cases, we compare our asymptotic results

with direct numerical computations of these instabilities and find excellent agreement, giving

confidence in the validity of the perturbation method.
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the collided eigenvalues at λ0. (Right) The interval of Floquet exponents that
parameterizes the isola closest to the origin in depth h = 1.5 as a function of
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most unstable eigenvalue on the isola. The colored lines give the Floquet
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and (Top, Left) h = ∞, (Top, Right) h = 1.5, (Bottom, Left) h = 1.4, and
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1, β = 0.7, σ = 1, and small-amplitude parameter ε = 10−3, computed
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2.2 (Left) The interval of Floquet exponents parameterizing the p = 1 high-
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cles indicate the numerical boundaries computed using the FFH method. The
solid red curve gives the Floquet exponent corresponding to the most unstable
spectral element of the isola according to (2.55). The red circles indicate the
numerical result according to FFH. (Right) The real (blue) and imaginary
(red) parts of the most unstable spectral element of the isola as a function of
ε. The solid curves illustrate asymptotic result (2.56). The circles illustrate
numerical results according to the FFH method. . . . . . . . . . . . . . . . 31
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2.3 (Left) The p = 1 high-frequency isola for β = 0.7 and ε = 10−3. The solid red
curve is the ellipse (2.57). The blue circles are a subset of spectral elements
from the numerically computed isola using FFH. (Right) The Floquet param-
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2.4 (Left) The interval of Floquet exponents that parameterizes the p = 1 high-
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The Floquet parameterization of the real (blue) and imaginary (red) parts of
the isola. The solid curves illustrate the asymptotic result (2.65). The dot-
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are a subset of spectral elements from the numerically computed isola using
the FFH method. (Right) The Floquet parameterization of the real (blue) and
imaginary (red) parts of the isola. The solid curves illustrate the asymptotic
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Chapter 1

INTRODUCTION

1.1 Relevant History

1.1.1 Models of Water Waves

In his celebrated Principia, Newton derived a relationship between the speed and wave-

length1 of water waves in infinite depth, becoming one of the first scientists to anticipate

a mathematical study of water waves [27, 72]. It was not until several decades later, when

Euler published his laws of hydrodynamics [40, 41, 42], that more could be said about the

mathematical behavior of water and other fluids. From these laws, Cauchy [20] and Poisson

[80, 81] eventually formulated the governing equations of water waves in finite and infinite

depth. Their formulation of water waves is the starting point of this work.

For simplicity, we consider waves dependent on one horizontal coordinate x, a vertical

coordinate z, and time t. We align the undisturbed surface of the water with the reference

level z = 0 without loss of generality and assume the bottom boundary of the water has

constant bathymetry along z = −h, where h > 0 is the mean depth of the water. We denote

the displacement of the free surface relative to the reference level z = 0 by η = η(x, t) and the

velocity field in the bulk of the water by u = u(x, z, t). In this work, we are concerned only

with periodic water waves, so we assume that η and u are 2π/κ-periodic in the x-direction,

where κ > 0 represents the wavenumber of the periodic disturbance at the surface of the

water, see Figure 1.1 for a schematic.

To obtain governing equations for η and u, we assume the flow of water is ideal, meaning

(i) The flow is irrotational, or free of vorticity. As a result, the velocity field u = u(x, z, t)

1What we now would call the linear dispersion relation.
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Figure 1.1: A schematic of the water wave problem in two spatial dimensions, x and z. The variable η

represents the displacement of the free surface from z = 0. The variable ϕ represents the velocity potential

in the bulk. The spatial gradient of ϕ gives the velocity in the bulk of the water u. In this work, we consider

waves that are 2π/κ-periodic in the x-direction with constant bathymetry along z = −h.

may be represented by the spatial gradient of a velocity potential ϕ = ϕ(x, z, t).

(ii) The water has constant density. Thus, the flow is incompressible, and the divergence

of u vanishes for all time t.

(iii) The water has negligible internal viscosity, implying that the flow of the water is not

dissipative and will not exert tangential forces on the bottom boundary of the domain.

If, in addition to these assumptions, we assume that the water is free of surface tension

and does not escape the free surface2 z = η nor penetrate the bottom surface z = −h, the

governing equations for periodic water waves become

ϕxx + ϕzz = 0, (x, z) ∈ (−π/κ, π/κ)× (−h, η) , (1.1a)

ϕz = 0, z = −h, (1.1b)

ηt + ηxϕx = ϕz, z = η, (1.1c)

ϕt +
1

2

(
ϕ2
x + ϕ2

z

)
+ gη = 0, z = η, (1.1d)

2This implies that the water cannot spray into the atmosphere above.
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together with the periodicity conditions

η(x− π/κ, t) = η(x+ π/κ, t) and u(x− π/κ, z, t) = u(x+ π/κ, z, t), (1.2)

where g represents the magnitude of the vertical acceleration due to Earth’s gravity and

subscripts denote their corresponding partial derivatives. A full derivation of (1.1a)-(1.1d)

is provided in [63, 76, 84], for example. We take these equations as given.

Historically, equations (1.1a)-(1.1d) are attributed to Euler3, and because of such, we

refer to (1.1a)-(1.1d) collectively as Euler’s equations. At the heart of Euler’s equations is

the Laplace equation (1.1a). One might naively conclude that equations (1.1a)-(1.1d) are

easily solved, since the Laplace equation is linear. This would be the case if the domain over

which one solves the Laplace equation was known, but this domain changes in time according

to the nonlinear evolution equations (1.1c) and (1.1d). In reality, Euler’s equations are far

from an “easy” linear problem: not only are they nonlinear because of (1.1c) and (1.1d),

but they are nonlocal because the evolution of the free surface depends on knowledge of the

evolution of the entire bulk of the fluid according to (1.1a).

To simplify some of these difficulties in Euler’s equations, it becomes useful to develop

asymptotic models of water waves. These are simplified equations derived from (1.1a)-(1.1d)

that replicate the full dynamics of water waves in certain parameter regimes. For example,

when the period of the surface waves is large compared to the depth of the water (so that

κh≪ 1) and the amplitude of the waves ε is small compared to the depth (so that ε/h≪ 1),

we have the shallow water equations due to Boussinesq [13]:

ηt = −hux − (ηu)x, (1.3a)

ut = −uux − gηx, (1.3b)

where u represents the horizontal velocity along the bottom surface z = −h. Restricting

further to unidirectional waves that evolve on long time scales, we arrive at

ηt = −
(√

gh
)
ηx −

(
3

2

√
g

h

)
ηηx −

(
1

6

√
gh5
)
ηxxx, (1.4)

3Although Lord Kelvin was the first to write them using the notation in (1.1a)-(1.1d), see [27].
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which is the celebrated Korteweg-deVries (KdV) equation [14] in a frame traveling at the

shallow water velocity cSW =
√
gh. In addition to these equations are countless other asymp-

totic models of Euler’s equations, including the extended KdV equations [68], Kadomtsev-

Petviashvili equation [25], nonlinear Schrödinger equation [78], Zakharov equation [95], and

Davey-Stewartson system [32], to name a few. Each of these models is valid in a distinct

parameter regime of the full governing equations of water waves and, therefore, has its own

set of advantages and disadvantages.

Complementary to the asymptotic models are heuristic models designed to match phe-

nomenological observations of water waves. Many of these models are inspired by Euler’s

equations, but are not consistently derived from them. The Kawahara equation

ηt = αηxxx + βη5x + 2σηηx, (1.5)

with free parameters α, β, σ ∈ R \ {0} is an example of a heuristic model for unidirectional

shallow water waves with dispersion and surface tension [58]. Upon closer inspection, we

see that (1.5) is a rescaled KdV equation with an additional fifth-order dispersion term that

models the effect of surface tension on the waves. For this reason, the Kawahara equation is

sometimes called the super-KdV equation.

A second example of a heuristic model is the Boussinesq-Whitham system introduced by

Hur and Pandey [51]:

ηt = −hux − (uη)x (1.6a)

ut = −gK (ηx)− uux, K(f) =

(
tanh(hD)

hD

)
f, (1.6b)

where D = −i∂x. Here, the Fourier multiplier K is inserted provisionally in the shallow water

equations (1.3a)-(1.3b) so that the linearized dispersion relation of (1.6a)-(1.6b) matches that

of Euler’s equations4. As a consequence, (1.6a)-(1.6b) represents a heuristic model of shallow

4In fact, a Fourier multiplier can be inserted in a number of places in the shallow water equations to
achieve the same effect, leading to an entire family of Boussinesq-Whitham systems [19]. Of all these
systems, (1.6a)-(1.6b) has desirable local well-posedness properties, see [38].
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water waves with full dispersion that captures more intricate phenomena than is observed

in the shallow water equations alone, such as wave peaking [52].

As with the asymptotic models, there are several heuristic models that are used to study

water waves. It is impossible to summarize all of these models here. Rather, we focus on the

two mentioned above: the Kawahara equation and the Hur-Pandey Boussinesq-Whitham

(HPBW) system. As will be seen in Chapters 2 and 3, both of these models capture instabil-

ities of small-amplitude periodic water waves that are central to this thesis and to the study

of periodic water waves as a whole.

1.1.2 Stokes Wave Solutions

Despite the inherent complexities of Euler’s equations, there exists a special class of solutions

that can be understood analytically. In particular, Stokes showed in 1847 how to derive an

asymptotic expansion for the small-amplitude, periodic traveling-wave solutions of Euler’s

equations in infinitely deep water. Seventy-five years later, Nekrasov [71] and Levi-Civita

[64] proved the convergence of Stokes’ series, and Struik [87] extended these considerations

to the case of finite depth. More recently, it has been shown that the Kawahara equation and

HPBW system exhibit similarly behaved solutions, as proved in [48] and [51], respectively.

Today, these special solutions are known as the Stokes waves of Euler’s equations5. With-

out loss of generality, their asymptotic expansion takes the form

ηS(ξ; ε) = ε cos(κξ) +
∞∑
j=2

ηj(ξ)ε
j, (1.7)

where ηS represents the surface displacement of the Stokes wave, ε is a small parameter

that is related to the amplitude of the wave, ηj are 2π/κ-periodic functions of ξ (that have

auxiliary dependence on g, κ, and h), and ξ is the traveling coordinate

ξ = x− ct, (1.8)

5Or of the Kawahara equation or HPBW system, depending on the choice of governing equations.
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where c is the velocity of the Stokes wave. It can be shown (see Chapter 4) that the higher-

order corrections ηj take the form

ηj(ξ) =

j∑
ℓ=2

ℓ even

N̂j,ℓ cos(ℓκξ) for j even, (1.9a)

ηj(ξ) =

j∑
ℓ=3
ℓ odd

N̂j,ℓ cos(ℓκξ) for j odd, (1.9b)

without loss of generality, where the coefficients N̂j,ℓ are explicit functions of κ, h, and g.

Because Euler’s equations are nonlinear, the velocity of the Stokes wave is coupled to its

amplitude so that

c(ε) = c0 +
∞∑
j=1

c2jε
2j, (1.10)

where the leading-order term

c0 = ±
√
g

κ
tanh(κh), (1.11)

is consistent with the linear dispersion relation of the Euler equations. The higher-order

coefficients c2j are explicit functions of g, κ, and h, to be obtained in Chapter 4. That c is even

in ε also follows from work in this chapter. Figure 1.2 compares numerical computations of

the Stokes waves using the numerical continuation method presented in Appendix A against

the asymptotic expansions (1.7) and (1.10) to O (ε4). Excellent agreement between the two

is found in all depths, giving confidence that the expansions above are correct.

To date, Stokes waves remain one of the few nontrivial solutions of Euler’s equations that

are supported by rigorous results and that can be constructed analytically with the help of

perturbation methods. These waves also well-approximate small-amplitude periodic water

waves observed in wave tank experiments, e.g., [9, 43], and in nature [70], which makes them

a useful benchmark to compare predictions of Euler’s equations with real data. The Stokes

waves can also be used to assess the accuracy of new numerical methods for water waves.
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Figure 1.2: (Left) An amplitude vs. velocity bifurcation diagram of a 2π-periodic Stokes waves (i.e., κ = 1)

in depth h = 1 (dashed line), h = 1.5 (dotted line), h = 2 (dot-dashed line), and h = ∞ (solid line), according

to our O
(
ε4
)
asymptotic calculations. The zeroth-order contribution c0 is removed for better visibility. The

numerical results are given by the colored dots. Red dots correspond to h = 1, magenta dots correspond to

h = 1.5, purple dots correspond to h = 2, and blue dots correspond to h = ∞. (Right) Plots of ηS/ε as a

function of ξ when ε = 0.1, κ = 1, and h = 1, 1.5, 2, and ∞ (arranged from top to bottom using the same

line styles as in the left figure). A sampling of numerical results is given by the colored dots using the same

color scheme as in the left figure.

1.1.3 Spectral Instabilities of Stokes Waves

After a lull in research activity following Nekrasov, Levi-Civita, and Struik, Stokes waves

regained scientific interest in the early 1960s as a result of wave tank experiments by Benjamin

and Feir at the University of Cambridge. Initial experiments by Benjamin and Feir suggested

that Stokes waves become unstable in the direction transverse to their velocity6, challenging

preconceived notions of the day that Stokes waves are stable [50]. Upon recreating these

instabilities at the National Physics Lab in London a few years later, Benjamin and Feir

6In our case, the waves propagate in the x-direction so that the transverse direction is the y-direction.
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published their results [9], and Benjamin, in particular, sought to investigate the stability of

the Stokes waves analytically.

By brute-force formal calculations, Benjamin showed in 1967 that Stokes waves lose the

permanence of their shapes due to longitudinal7 sideband8 perturbations provided κh >

αBW = 1.36278... [8]. This same threshold of instability was derived concurrently and

independently by Whitham using variational techniques [91, 92]. By the end of the 1960s,

it became clear that Stokes waves are indeed unstable in sufficiently deep water and that

the resulting instability modulates the original periodic wavetrain into wave packets. Today,

we refer to this instability as the modulational instability, sideband instability, or, in the

context of water waves, the Benjamin-Feir instability.

In the years since the pioneering work of Benjamin, Feir, and Whitham, several papers

have explored the Benjamin-Feir instability experimentally, numerically, and analytically.

We highlight a few works below that are most relevant to this thesis, but by no means do

we give a complete account of all related works. For a more comprehensive history of the

Benjamin-Feir instability, see [27, 45, 94] and, in different contexts, [35, 61, 96].

In the 1970s, Bryant [17, 18] studied the stability of Stokes waves in shallow water (κh <

αBW ) with respect to co-periodic longitudinal and transverse perturbations, respectively.

Around the same time, Longuet-Higgins [65, 66] considered the stability of Stokes waves

with respect to sub- and super-harmonic longitudinal perturbations in infinitely deep water.

These are perturbations that are an integer multiple or integer quotient of the fundamental

period of the Stokes wave, respectively. In 1982, McLean [69] generalized the results of

Bryant and Longuet-Higgins by investigating the stability of Stokes waves in finite depth

with respect to sub- and super-harmonic transverse perturbations. McLean is often credited

as the first to address the transverse modulational instabilities originally observed in the

experiments of Benjamin and Feir.

The results of Bryant and Longuet-Higgins are obtained by perturbing a Stokes wave

7In the direction of propagation of the Stokes waves.

8Meaning the perturbations had nearly the same period as the Stokes waves themselves.
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with a quasi-periodic function in the ξ-direction:

η(ξ, t; ε, ρ) = ηS(ξ; ε) + ρeiµκξ+λtw(ξ; ε) + c.c.+O(ρ2). (1.12)

Here, µ ∈ [−1/2, 1/2) is a free parameter called the Floquet exponent that specifies the de-

gree of quasi-periodicity of the perturbation, w(ξ; ε) is a sufficiently smooth, 2π/κ-periodic

function, λ ∈ C is the exponential growth rate of the perturbation, and c.c. denotes the

complex conjugate of what immediately preceeds. Linearizing Euler’s equations with re-

spect to the small parameter ρ in a frame traveling with the Stokes waves, one arrives at

a spectral problem whose eigenfunctions are w(ξ; ε) and corresponding eigenvalues are λ.

Upon choosing a mesh for µ, this problem is solved numerically using methods such as the

Floquet-Fourier-Hill (FFH) method [34], yielding estimates for the exponential growth rates

of the perturbations. The results of McLean follow in a similar way if a transverse variable

y is introduced appropriately in (1.12) [69]. In this thesis, we only consider the stability of

Stokes waves with respect to the quasi-periodic longitudinal perturbations given by (1.12).

The union of λ over µ ∈ [−1/2, 1/2) is referred to as the stability spectrum of the Stokes

wave. For fixed wave amplitude ε, this spectrum decomposes into a countable set of finite-

multiplicity eigenvalues for each Floquet exponent µ, resulting in a purely continuous spec-

trum when the union of µ ∈ [−1/2, 1/2) is taken. This spectrum is analytic with respective

to ε for almost all values of µ, as Akers and Nicholls show in [5, 6, 74]. Because Euler’s

equations are Hamiltonian [95], the stability spectrum is also symmetric about the real and

imaginary axes [47], see Figure 1.3 for a visualization. Hence, for a Stokes wave with ampli-

tude ε to be spectrally stable, its stability spectrum must be a subset of the imaginary axis.

Otherwise, there exists a perturbation of the Stokes wave that grows exponentially in time,

leading to spectral instability.

When ε = 0, the stability spectrum is purely imaginary, implying that a Stokes wave

of zero amplitude (i.e., flat water) is spectrally stable. When 0 < ε ≪ 1, MacKay and

Saffman [67] derived two necessary conditions for eigenvalues to leave the imaginary axis via

a Hamiltonian-Hopf bifurcation:
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Figure 1.3: A schematic of the stability spectrum for a small-amplitude Stokes wave in sufficiently deep

water. The Benjamin-Feir figure-eight curve is colored blue, while the high-frequency instabilities are colored

orange. The spectrum is purely continuous and parameterized by the Floquet exponent µ ∈ [−1/2, 1/2) for

fixed ε. Because of the Hamiltonian structure of Euler’s equations, the stability spectrum has quadrafold

symmetry about the real and imaginary axes.

(i) Eigenvalues leave the imaginary axis in pairs because of the quadrafold symmetry of

the stability spectrum.

(ii) If a pair of eigenvalues leaves the imaginary axis, these eigenvalues must have opposite

Krein signatures.

The Krein signature of an eigenvalue is defined as the sign of the curvature of the Hamil-

tonian of the linearized Euler equations evaluated at the corresponding eigenfunctions [62].

Often, though not always, condition (i) implies condition (ii), allowing one to skip the Krein

signature calculation, see [36] for examples.

The Benjamin-Feir instability is a consequence of eigenvalues colliding at the origin of

the complex spectral plane for 0 < ε≪ 1. The seminal work of Bridges and Mielke [15] uses

spatial dynamics and center manifold theory to prove the existence of unstable eigenvalues

generated by this collision when kh > αBW and 0 < ε≪ 1, effectively proving the existence
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of the Benjamin-Feir instability. The proof is valid for any finite depth but fails in water of

infinite depth for reasons that we address in Chapter 5 of this thesis. Only in the past two

years have Nguyen and Strauss [73] developed a proof based on Lyapunov-Schmidt reduction

that works in both finite and infinite depth. Another proof based on periodic Evans functions

appeared in the literature more recently [53].

In 2011, Deconinck and Oliveras [35] revisited the numerical computations of McLean

and others. Their numerical results showed for the first time a fully resolved plot (to within

machine precision) of the stability spectrum for sufficiently small-amplitude Stokes waves.

The Benjamin-Feir instability appears in this spectrum as a figure-eight centered at the

origin of the complex spectral plane, as depicted in Figure 1.3. Extensive work by Berti,

Maspero, and Ventura [10, 11] has recently proven this result using Kato’s theory of similarity

transformations [57] and KAM theory.

In addition to the Benjamin-Feir figure-eight, Deconinck and Oliveras found evidence

of instabilities away from the origin, now called the high-frequency instabilities, that were

ignored in McLean’s original work. These additional “isolas” (or bubbles) of instability are

parameterized by narrow intervals of the Floquet exponent that drift with ε, making them

difficult for numerical methods to detect without additional information, see Figure 1.4.

Unlike the Benjamin-Feir instability, the high-frequency instabilities persist in numerical

computations for all kh, suggesting that Stokes waves are not only unstable in sufficiently

deep water, but unstable in all depths. In addition, the high-frequency instabilities can even

dominate the Benjamin-Feir instability in certain depths, see Figure 1.5, for instance.

High-frequency instabilities are not unique to Euler’s equations. They exist for an entire

class of dispersive, Hamiltonian equations with Stokes-like solutions [36]. This includes the

Kawahara equation [29, 89] and the HPBW system [28], as will be seen. Unlike the Benjamin-

Feir instability, high-frequency instabilities have yet to be observed in experiments or in

nature, and it appears unlikely that results in either setting will be found any time soon,

at least on this planet. Using the growth rates of high-frequency instabilities computed in

[35, 90], a Stokes waves of period 0.1m in a tank of depth 1m would require the length of
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Figure 1.4: (Left) The high-frequency isola closest to the origin for a 2π-periodic Stokes wave in depth

h = 1.5 with amplitude ε = 2 × 10−3 (orange), ε = 4 × 10−3 (red), ε = 6 × 10−3 (magenta), ε = 8 × 10−3

(purple), and ε = 10−2 (blue). The imaginary axis is recentered to show the drift of the isola from the

collided eigenvalues at λ0. (Right) The interval of Floquet exponents that parameterizes the isola closest to

the origin in depth h = 1.5 as a function of the amplitude. The solid black lines indicate the boundaries

of this interval, while the dashed black line gives the Floquet exponent corresponding to the most unstable

eigenvalue on the isola. The colored lines give the Floquet exponents corresponding to the similarly colored

isolas in the left figure. The Floquet axis is recentered to show the drift of the parameterizing interval from

the Floquet exponent µ0 that corresponds to the collided eigenvalues.

the tank to be ∼ 1000km before a high-frequency instability would become visible. By that

point, other physics, such as internal viscosity, may have already arrested the growth of

these instabilities. Presumably, high-frequency instabilities can appear in contexts outside

of water waves as well, for example, in crystalline structures or nonlinear optics, provided

a Hamiltonian-Hopf bifurcation takes place in the associated spectral stability problem. At

present, these applications have yet to be explored in full detail.

Both the Benjamin-Feir and high-frequency instabilities play an important role not only

in the hydrodynamic stability of periodic water waves, but also in problems where these

waves are slightly perturbed due to nonconstant bottom bathymetry, vorticity, density strat-



13

-5 0 5

10
-5

-2

-1

0

1

2

Figure 1.5: The stability spectrum of a 2π-periodic Stokes wave with amplitude ε = 0.01 and (Top, Left)

h = ∞, (Top, Right) h = 1.5, (Bottom, Left) h = 1.4, and (Bottom, Right) h = 1. The Benjamin-Feir

figure-eight is in blue, the high-frequency isolas are in red, and purely imaginary eigenvalues are in black. A

zoom-in of the Benjamin-Feir and high-frequency instabilities is inlaid in the top, left plot.

ification, shear layers, or surface tension, for instance. Irrespective of the source of these

perturbations, one’s first inclination when faced with these problems is always to linearize

Euler’s equations about the Stokes waves, which leads to a spectral problem whose elements

are precisely the stability spectrum. The unstable elements of this spectrum correspond to

modes of the unperturbed problem that resonate with the perturbations themselves, giving

the unstable spectra immense significance from a phenomenological perspective. Moreover,
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if the approximate whereabouts of the unstable eigenvalues are known ahead of time (at

least in Floquet space), this allows for more efficient numerical resolution of this resonance

between the unperturbed problem and the perturbations themselves.

1.2 Overview of the Dissertation

Almost all investigations of high-frequency instabilities, apart from the author’s recent con-

tributions in [28, 29, 30], have been numerical in nature [22, 35, 36, 89, 90] and limited to

the first few isolas. It is conjectured, however, that the stability spectrum of Stokes waves

has an infinite number of high-frequency isolas. One of the primary challenges in finding the

remaining isolas is to obtain their Floquet parameterizations, as the intervals corresponding

to these parameterizations become increasingly more narrow as one considers high-frequency

isolas further from the origin. A second challenge concerns the size of the isolas themselves.

Outside of the first few, most have maximum real component smaller than what standard

double precision affords, making them undetectable in typical computational settings.

In 2015, Akers [3] introduced a perturbation method to predict Floquet exponents µ for

which the stability spectrum in infinite depth loses analyticity with respect to sufficiently

small ε. This method can be modified to predict the interval of Floquet exponents that

parameterizes the high-frequency isolas, as the boundaries of this interval correspond pre-

cisely to those Floquet exponents for which the spectrum is not analytic in ε. A major goal

of this thesis is to develop this perturbation method for high-frequency isolas in both finite

and infinite depth and push the method to produce high-order asymptotic approximations of

these isolas and their Floquet parameterizations. From these expansions, we hope to provide

new insights into the following questions:

(i) How many high-frequency isolas exist in the stability spectrum of Stokes waves?

(ii) What are asymptotic estimates for the growth rates of each isola? How do these growth

rates change with ε?
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(iii) What are the asymptotically correct intervals of the Floquet exponent µ that param-

eterize each isola? How do these intervals change with ε?

(iv) In what depths can we expect high-frequency isolas to appear in the stability spectrum?

Ideally, we want to address these questions for the Stokes waves of Euler’s equations, but for

simplicity and as a proof of concept, we first develop our perturbation method in the context

of heuristic models. In particular, in Chapter 2, we apply the perturbation method to high-

frequency instabilities of the Kawahara equation. This allows for a nice introduction to the

essential ingredients of the perturbation method, as the Kawahara equation is a scalar partial

differential equation with nonlinearities that are less severe than those in Euler’s equations.

In Chapter 3, we increase the difficulty by studying the high-frequency instabilities of the

HPBW system, which can be viewed as a vector equation that introduces a nonlocal integro-

differential operator. Finally, in Chapter 4, we consider the full extension of the perturbation

method to Euler’s equations in finite and infinite depth, using a powerful reformulation of

the governing equations. In all three chapters, we obtain asymptotic approximations of the

high-frequency isolas that match the numerical computations of [22, 35, 36, 89, 90] and, in

the case of Chapter 4, have even inspired recent rigorous results [53].

In addition to the high-frequency isolas, we can modify the perturbation method to obtain

high-order asymptotic approximations of the Benjamin-Feir figure-eight curve in finite and

infinite depth. We consider this modification in Chapter 5. Our expansions of the figure-

eight are compared directly with numerical computations and recent rigorous results by

[10, 11], to excellent agreement. Using results in Chapters 4 and 5, we compare the growth

rates of the Benjamin-Feir and high-frequency instabilities analytically for the first time.

This comparison suggests three regimes for Stokes waves: (i) shallow water (κh < αBW =

1.36278...), in which only high-frequency instabilities exist, (ii) intermediate water (αBW <

κh < αDO(ε) = 1.43080... + O (ε2)), in which both instabilities exist but high-frequency

instabilities dominate, and (iii) deep water (κh > αDO(ε)), in which both instabilities are

present, but the Benjamin-Feir instability dominates.
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To summarize, this thesis completely characterizes the asymptotic behavior of the unsta-

ble spectrum for small-amplitude Stokes waves in finite and infinite depth. The asymptotic

behavior of the high-frequency instabilities is presented in the first three chapters, first for

heuristic models of water waves and then for Euler’s equations. Excellent agreement between

asymptotic and numerical computations of these instabilities is found in all cases. In the

final chapter, we derive the asymptotic behavior of the Benjamin-Feir instability, which is

also in agreement with numerical computations and the recent rigorous results of [10, 11].
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Chapter 2

HIGH-FREQUENCY INSTABILITIES OF THE KAWAHARA
EQUATION

2.1 About the Kawahara Equation

In this chapter, we study the Kawahara equation

ηt = αηxxx + βη5x + 2σηηx, (2.1)

where α, β, σ ∈ R \ {0} are free parameters. This equation was first proposed in [58] as a

shallow water model for unidirectional waves with surface tension. The Kawahara equation

is dispersive, with linear dispersion relation

ω(k) = αk3 − βk5. (2.2)

The equation is also canonically Hamiltonian

ηt = ∂x
δH
δη
, (2.3)

with

H =

∫ π/κ

−π/κ

(
−α
2
η2x +

β

2
η2xx +

σ

3
η3
)
dx, (2.4)

assuming η is 2π/κ-periodic.

The relevant solutions of (2.1) are the small-amplitude, 2π/κ-periodic traveling waves,

which can be expressed as a power series in a small parameter related to the amplitude of

the solutions, see [48] and Section 2.2 below for more details. Because of their similarities to

the Stokes waves of Euler’s equations, we refer to these solutions as the Stokes waves of the

Kawahara equation throughout this chapter.



18

Perturbing the Stokes waves by functions bounded in space and exponential in time

yields a spectral problem whose elements characterize the temporal growth rates of the

perturbations, as discussed in the Introduction and, in more detail, Section 2.3 below. The

collection of these spectral elements yields the stability spectrum of the Stokes waves.

In contrast with the completely integrable KdV equation (β = 0) [33, 75, 77], considerably

less is known about the stability spectrum of Stokes waves to (2.1). Haragus, Lombardi, and

Scheel [48] prove the spectrum is imaginary for small-amplitude Stokes waves in a particular

scaling regime. Such solutions are, therefore, spectrally stable. More recently, Trichtchenko,

Deconinck, and Kollár [89] determine regimes for which the Stokes waves are unstable to high-

frequency instabilities. An example of a spectrum in this regime is given in Figure 2.1. Notice

the presence of a high-frequency isola. This isola, as well as the rest of the stability spectrum

in Figure 2.1, is obtained numerically using the Floquet-Fourier-Hill (FFH) method, see

Appendix B or [31, 34] for details.

We focus on the regime of the Kawahara equation for which high-frequency instabilities

are present and develop a spectral perturbation method that obtains the following properties

of these high-frequency instabilities:

(i) the asymptotic range of Floquet exponents that parameterize the high-frequency isolas

observed in numerical computations of the stability spectrum,

(ii) asymptotic estimates of the most unstable spectral elements of the high-frequency

isolas, and

(iii) expressions for curves asymptotic to these isolas, as seen in Figure 2.1.

These asymptotic results are then compared directly with numerical results from the FFH

method to give confidence in the perturbation method.
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Figure 2.1: (Left) The stability spectrum of Stokes wave solutions of (2.1) with α = 1, β = 0.7, σ = 1,

and small-amplitude parameter ε = 10−3, computed using the FFH method. A uniform grid of 103 Floquet

exponents between [−1/2, 1/2) approximates the imaginary point spectra but misses the high-frequency

isolas. A uniform grid of 4× 103 Floquet exponents in the interval described by (2.54) captures these isolas,

as will be shown. (Right) A zoom-in of the high-frequency isola boxed in the left plot (with fewer point

spectra shown for ease of visibility). The red curve is obtained in this chapter and approximates the isola.

2.2 Stokes Wave Solutions

To obtain the Stokes waves of the Kawahara equation, we first move to a traveling frame so

that x→ x− ct, where c is the velocity of the waves. Then, equation (2.1) becomes

ηt = cηx + αηxxx + βη5x + 2σηηx. (2.5)

Because the Stokes waves are time-independent in the traveling frame, we equate the time

derivative in (2.5) to zero and integrate in x, arriving at

cη + αηxx + βη4x + ση2 = C, (2.6)
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where C is a constant of integration. Using the Galilean symmetry of (2.1), there exists a

boost ψ such that, with c→ c+ ψ and η → η + ψ, C can be omitted from (2.6), yielding

cη + αηxx + βη4x + ση2 = 0. (2.7)

Remark 2.2.1. As a consequence of removing the constant C from (2.6), the average value

of η over one period will be nonzero. Often in applications, it is useful to require the Stokes

waves to have zero average. In that case, C is retained in (2.6) and later expanded as a power

series in ε to enforce the zero-average constraint on the Stokes wave expansion. For the

purpose of studying the high-frequency instabilities, there are no differences in the outcomes

of these calculations, so we choose to remove C for simplicity.

Given α ̸= 0, we divide (2.7) by α and redefine the constants c, β, and σ appropriately.

Rescaling x and η according to x → x/κ and η → η/(σκ2), respectively, and redefining c

and β one final time allows us to consider 2π-periodic solutions of

cη + ηxx + βη4x + η2 = 0, (2.8)

without loss of generality.

A standard Lyapunov-Schmidt argument [48] proves the existence of an ε-parameter

family of 2π-periodic solutions to (2.8) provided c = c(ε) and ε is sufficiently small. We

denote these solutions by ηS = ηS(x; ε), similar to the Stokes waves of Euler’s equations

in the Introduction. The parameter ε is defined to be twice the first Fourier coefficient of

ηS(x; ε). More explicitly, we have

ε = 2F1[ηS(x; ε)] =
1

π

∫ π

−π

ηS(x; ε)e
−ixdx, (2.9)

where

Fk[f(x)] =
1

2π

∫ π

−π

f(x)e−ikxdx, (2.10)

denotes the Fourier transform of f(x) on the interval (−π, π). Because the L2(−π, π) norm

of ηS(x; ε) scales with ε when |ε| ≪ 1, we call ε the small-amplitude parameter.
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From [48], expansions for ηS(x; ε) and c(ε) take the form

ηS(x; ε) =
∞∑
j=1

ηj(x)ε
j, (2.11a)

c(ε) =
∞∑
j=0

c2jε
2j, (2.11b)

where ηj(x) is analytic and 2π-periodic for each j. Exploiting the invariance of (2.8) under

x → −x and x → x+ ϕ for any ϕ ∈ R, we can always arrange for ηj(x) = ηj(−x), implying

that ηS(x; ε) is even in x without loss of generality. Substituting these expansions into (2.8)

and following a Poincaré-Lindstedt perturbation method [79], one finds corrections to ηS(x; ε)

and c(ε) order by order in ε.

One difficulty occurs at leading order of this perturbation method. Substituting expan-

sions (2.11) into (2.8) and collecting terms of O(ε), we find

(
c0 + ∂2x + β∂4x

)
η1(x) = 0. (2.12)

Applying the Fourier transform to (2.12) and evaluating at the first mode yields

(c0 − 1 + β)F1[η1(x)] = 0, (2.13)

which implies that

c0 = 1− β, (2.14)

since F1[η1(x)] = 1/2 from our definition of ε above. By inspection,

η1(x) = cos(x) (2.15)

is a solution to (2.12) that is analytic, 2π-periodic, even in x, and satisfies the normalization

F1[η1(x)] = 1/2. However, if β = 1/(1 +N2) for any integer N > 1, then

u1(x) = cos(x) + CN cos(Nx), (2.16)
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where CN is an arbitrary real constant, is an equally valid solution. In this case, the Stokes

waves exhibit resonance, resulting in Wilton ripples [93]. Expansions (2.11) must be modified

as a result, see [4, 7, 49], for instance.

In this chapter, we restrict to nonresonant Stokes waves:

β ̸= 1

1 +N2
, (2.17)

so that (2.14) and (2.15) are the unique leading-order behaviors of c(ε) and ηS(x; ε), respec-

tively. From this point on, the Poincaré-Lindstedt method follows as usual. Terminating

this method after third-order in ε, we obtain the following expansions:

ηS(x; ε) = εη1(x) + ε2η2(x) + ε3η3(x) +O(ε4)

= ε cos(x) + ε2
1

2

(
− 1

c0
+

2

Ω(2)
cos(2x)

)
+ ε3

3

Ω(2)Ω(3)
cos(3x) +O(ε4), (2.18a)

c(ε) = c0 + c2ε
2 +O(ε4)

= 1− β +

(
1

c0
− 1

Ω(2)

)
ε2 +O(ε4), (2.18b)

where Ω is the linear dispersion relation of the Kawahara equation (2.1) (with α = 1 = σ)

in a frame traveling at velocity c0. Explicitly,

Ω(k) = −c0k + k3 − βk5. (2.19)

2.3 The Spectral Stability Problem

We perturb the Stokes waves ηS(x; ε) according to

η(x, t) = ηS(x; ε) + ρv(x, t) +O(ρ2), (2.20)

where |ρ| ≪ 1 is a small parameter independent of ε and v(x, t) is a sufficiently smooth,

bounded function of x on the whole real line for each t ≥ 0. Substituting (2.20) into (2.1)

(with α = 1 and σ = 1) and linearizing in ρ, we find by formally separating variables

v(x, t) = eλtW (x) + c.c., (2.21)
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where c.c. denotes the complex conjugate of what precedes and W (x) satisfies the spectral

problem

LεW (x) = λW (x), (2.22)

for the linear operator

Lε = c(ε)∂x + ∂3x + β∂5x + 2ηS(x; ε)∂x + 2ηS,x(x; ε). (2.23)

According to Floquet theory [47], all solutions of (2.22) that are bounded over R take the

form

W (x) = eiµxw(x), (2.24)

where µ ∈ [−1/2, 1/2) is the Floquet exponent and w(x) is 2π-periodic in an appropriately

chosen function space.

Remark 2.3.1. The conjugate of W (x) is a solution of (2.22) with corresponding spectral

parameter conjugate to λ. Since the spectrum of Lε is invariant under conjugation according

to [47], one can restrict µ to the interval [0, 1/2] without loss of generality.

Upon substituting (2.24) into (2.22), our spectral problem for fixed ε becomes the family

of spectral problems

Lµ,εw(x) = λw(x), (2.25)

where Lµ,ε is Lε with ∂x → iµ + ∂x. In light of (2.25), we require w(x) ∈ H5
per(0, 2π) so

that Lµ,ε is a closed operator densely defined on the separable Hilbert space L2
per(0, 2π) for

a given µ. Then, Lµ,ε has a discrete spectrum of eigenvalues λ for each µ and the union

of these eigenvalues over all µ ∈ [−1/2, 1/2) yields the purely continuous stability spectrum

of the Stokes waves. Since (2.1) is Hamiltonian, the stability spectrum exhibits quadrafold

symmetry, meaning Stokes waves are only spectrally stable if their stability spectrum is a

subset of the imaginary axis.



24

2.4 Necessary Conditions for High-Frequency Instabilities

If ε = 0, the operator Lµ,ε reduces to

Lµ,0 = c0(iµ+ ∂x) + (iµ+ ∂x)
3 + β(iµ+ ∂x)

5, (2.26)

which is constant-coefficient. As a result, the eigenvalues and eigenfunctions of this operator

are known exactly:

λµ,0,n = −iΩ(µ+ n), (2.27)

and

w0,n(x) = γne
inx, (2.28)

respectively, where n ∈ Z, Ω is the linearized dispersion relation given in the previous section,

and γn is an arbitrary complex constant. Since Ω is real-valued for all µ and n, we see that

the eigenvalues are imaginary, implying that the zero-amplitude solution of the Kawahara

equation is spectrally stable, as one would hope.

However, though the eigenvalues (2.27) are imaginary, not all of them have algebraic

multiplicity equal to one. In fact, using the theory developed in [60] and [89], one can show

that there exists collided eigenvalues away from the origin in the ε = 0 spectrum that could

lead to instability when 0 < ε≪ 1. The precise statement and its proof are as follows:

Theorem 2.4.1. For each p ∈ N, there exists a unique Floquet exponent µ0 ∈ [0, 1/2] and

unique integers m and n such that

λµ0,0,m = λµ0,0,n ̸= 0, (2.29)

for m - n = p, provided the parameter β is nonresonant (2.17) and satisfies the inequality

max

(
3

5p2
,

1

1 + p2

)
< β < min

(
6

5p2
,

1(
p
2

)2
+ 1

)
for p < 3,

1

1 + p2
< β <

1

1 +
(
p
2

)2 for p ≥ 3.

(2.30)
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Proof. Define

F (k; p) =
Ω(k + p)− Ω(k)

p
. (2.31)

Using the definition of the dispersion relation Ω,

F (k; p) = 5βk4 + 10βpk3 + (10βp2 − 3)k2 + (5βp3 − 3p)k

+ βp4 − (p)2 + 1− β.
(2.32)

A direct calculation shows that

F (k, p) = F (−(k + p), p). (2.33)

Hence, the graph of F is symmetric about k = −p/2, a fact we make extensive use of in the

arguments below. We will show by cases that F has a negative root k∗ for each p ∈ N such

that Ω(k∗) ̸= 0, which will imply the desired result.

Case 1. Suppose p = 1. Then, k1 = 0 and k2 = −1 are roots of F by inspection. The

remaining roots are

k3,4 =
−1±

√
12
5β

− 3

2
. (2.34)

Because β satisfies (2.30), one can show that

0 <
12

5β
− 3 < 1, (2.35)

so that k3,4 ∈ (k2, k1). Because F is symmetric about k = −p/2, we have k3 ∈ (−1/2, 0) and

k4 ∈ (−1,−1/2).

Each of these wavenumbers kj is mapped to a Floquet exponent µ ∈ (−1/2, 1/2] according

to

µ(k) = k − [k], (2.36)

where [·] denotes the nearest integer function1. Both k1 and k2 map to µ = 0. One checks that

µ(k3) = −µ(k4) ̸= 0 and |µ(k3)| = |µ(k4)| < 1/2, since k4 = −(k3 + 1) and −1/2 < k3 < 0.

1In borderline cases, the convention here is [p/2] = (p− 1)/2 for p odd.
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Thus, the requisite µ0 ∈ (0, 1/2) is µ(kj), where j is either 3 or 4 depending on which has

the correct sign. Then, n = [kj] and m = n+ p. These are unique by the uniqueness of kj.

Case 2. Suppose p = 2. A calculation of F (−1; 2) and Fk(−1; 2) shows that k1,2 = −1

is a double root. The remaining roots are

k3,4 = −1±
√

3

5β
− 2. (2.37)

Clearly, µ(k1,2) = 0. Since k4 = −(k3 + 2), we again have µ(k3) = −µ(k4). Also, from the

formula for k3 above, we have that −1 < k3 < 0 by (2.30), so µ(k3) is nonzero. Thus, µ(kj)

is the requisite µ0 ∈ (0, 1/2], where j is either 3 or 4 depending on which has the correct

sign. Again, n = [kj] and m = n+ p are uniquely defined. Unlike in the first case, note that

we cannot guarantee µ0 ̸= 1/2. Indeed, this value can be achieved when β = 4/15.

Case 3. Suppose p ≥ 3. The discriminant of F (k; p) with respect to k is

∆k[F ] = 5β
[
p2 − 4

] [
β(p2 + 4)− 4

] [
5β
(
β
(
p4 + 4

)
− 2

(
p2 + 2

))
+ 9
]2
. (2.38)

For β satisfying inequality (2.30), we have ∆k[F ] < 0, implying there are two distinct real

roots of F . These roots must be nonpositive by an application of Descartes’ Rule of Signs

on F . Without loss of generality, suppose k2 < k1. Then, by the symmetry of F about

k = −p/2, k2 = −(k1 + p). It follows that µ(k1) = −µ(k2). Thus, µ(kj) is the requisite

value of µ0 ∈ [0, 1
2
], where j = 1 or 2 depending on which has the correct sign. The integers

n and m are uniquely defined as before. In each of these cases, we have found kj < 0 such

that F (kj; p) = 0. We now check that Ω(kj) ̸= 0 for such kj. Suppose instead Ω(kj) = 0.

A direct calculation shows that kj = ±1, 0, or k2j = (1 − β)/β. The cases kj = 0 or 1 give

immediate contradictions. If kj = −1, then F (−1; p) = 0 implies β = 1/[(p− 1)2 +1], which

contradicts (2.17) when p ̸= 2. If p = 2, β = 1/2, which contradicts (2.30).

It remains to be seen if k2j = (1− β)/β leads to contradiction. Indeed, a straightforward

(although tedious) calculation shows that, if k2j = (1−β)/β and F (kj; p) = 0, then β = 0, β =

1/[1+(p/2)2], β = 1/[1+(p−1)2], or β = 1/[1+(p+1)2]. All of these lead to contradictions

of (2.17) or (2.30). Therefore, we must have Ω(kj) = Ω(µ0+n) = Ω(µ0+m) ̸= 0 in all cases,

as desired.
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Remark 2.4.1. A similar statement holds for p < 0. The collided eigenvalues in this case

are conjugate to those in the theorem above.

Remark 2.4.2. The eigenfunctions corresponding to the collided eigenvalues take the form

w0,m,n(x) = γme
imx + γne

inx, (2.39)

where γm, γn are arbitrary complex constants and m and n are given by the theorem above.

Notice this eigenspace is two-dimensional, reflecting the higher-multiplicity of the collided

eigenvalues.

At first glance, it appears there exists a countable number of collided eigenvalues away

from the origin in the ε = 0 spectrum: one for each value of p. However, as p → ∞, β

eventually falls outside the requisite interval (2.30). Thus, there can only be a finite number

of collisions away from the origin when ε = 0. This is in contrast to the HPBW system and

Euler’s equations, for which there are an infinite number of eigenvalue collisions when ε = 0.

For high-frequency instabilities to appear when 0 < ε≪ 1, not only must collided eigen-

values exist when ε = 0, but these collided eigenvalues must have opposite Krein signature

per MacKay and Saffman [67]. It is shown in [36, 60, 89] that this condition is equivalent to

(µ0 +m)(µ0 + n) < 0, (2.40)

where µ0, m, and n are obtained from (2.29). A direct calculation shows that (2.40) au-

tomatically holds for any β satisfying (2.17) and (2.30) and any µ0, m, and n satisfying

(2.29). Thus, all nonzero collided eigenvalues of the ε = 0 spectrum have opposite Krein

signature. This sets the stage for a finite number of high-frequency instabilities to develop

when 0 < ε≪ 1. These instabilities are enumerated by p ∈ N.

2.5 Asymptotic Description of the p = 1 High-Frequency Instability

2.5.1 The O (ε0) Problem

For simplicity, we investigate the p = 1 high-frequency instability first. Let m and n be

the unique integers that satisfy condition (2.29) with m − n = p = 1, and let µ0 be the
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corresponding unique Floquet exponent in [0, 1/2]. Then, the spectral data of Lµ0,0 giving

rise to the p = 1 high-frequency instability are

λµ0,0,m = −iΩ(µ0+m) = λµ0,0,n = −iΩ(µ0 + n) ̸= 0, (2.41a)

w0,m,n(x) = γme
imx + γne

inx. (2.41b)

For ease of notation, we denote the collided eigenvalue λµ0,0,m and its corresponding eigen-

function w0,m,n by λ0 and w0, respectively, for the remainder of this section.

As ε increases from zero, we assume the spectral data (2.41) depend analytically on ε for

0 < ε≪ 1 so that

λ(ε) = λ0 + ελ1 +O(ε2), (2.42a)

w(x; ε) = w0(x) + εw1(x) +O(ε2), (2.42b)

where λ(ε) and w(x; ε) are eigenpairs of the spectral problem (2.25). Since λ0 is a semi-

simple and isolated eigenvalue of Lµ0,0 and Lµ,ε, in general, inherits Hamiltonian structure

from the Kawahara equation, expansions (2.42a) and (2.42b) may be justified using results

of analytic perturbation theory, provided µ0 is fixed [57]. If the Floquet exponent is fixed

in this way, however, one obtains at most two eigenvalues on the high-frequency isola for

sufficiently small ε. Typically, these eigenvalues do not have the largest real part on the isola,

making it impossible to derive the maximum growth rates of the high-frequency instability.

For this reason, we expand the Floquet exponent about its resonant value

µ = µ(ε) = µ0 + εµ1 +O(ε2). (2.43)

This is a purely formal assumption but is absolutely crucial to the analysis. We will see

aposteriori that µ1 assumes an interval of values parameterizing a curve asymptotic to the

entire p = 1 high-frequency isola. Corrections beyond O (ε) deform this interval.

Like Akers [3], we impose the following normalization condition on the eigenfunction w

for convenience:

Fn[w(x; ε)] = 1, (2.44)
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where Fn is the Fourier transform evaluated at the nth mode. Substituting (2.42b) into this

normalization condition, we find Fn[w0(x)] = 1 and Fn[wj(x)] = 0 for j ∈ N, meaning that

the leading-order behavior w0 entirely supports the nth Fourier mode of the full eigenfunction

w. As a consequence, (2.41) becomes

w0(x) = einx + γ0e
imx, (2.45)

where we have also made the replacement γm → γ0 for reasons that will become clear as our

calculation proceeds. Although w0 does not appear to be unique at this order, we will find

an expression for γ0 at the next order.

2.5.2 The O (ε) Problem

Substituting expansions (2.42a), (2.42b), and (2.43) into the spectral problem (2.25) and

equating terms of O(ε) yields

(Lµ0,0 − λ0)w1(x) = λ1w0(x)− L1w0(x), (2.46)

where

L1 = ic0µ1 + 3iµ1(iµ0 + ∂x)
2 + 5iβµ1(iµ0 + ∂x)

4 + 2η1(x)(iµ0 + ∂x) + 2η1,x(x). (2.47)

Using (2.18) to replace η1, (2.45) to replace w0, and m− n = 1 to simplify, (2.46) becomes

(Lµ0,0 − λ0)w1(x) = [λ1 + iµ1cg(µ0 + n)− iγ0(µ0 + n)] einx (2.48)

+ [γ0 (λ1 + iµ1cg(µ0 +m))− i(µ0 +m)] eimx

− i(µ0 + n− 1)ei(n−1)x − iγ0(µ0 +m+ 1)ei(m+1)x,

where cg(k) = dΩ/dk is the group velocity of Ω.

If (2.48) can be solved for w1(x) ∈ H5
per (−π, π), the Fredholm alternative requires that

the inhomogeneous terms of (2.48) are orthogonal (in the L2
per (−π, π) sense) to the nullspace

of the hermitian adjoint of Lµ0,0 − λ0, denoted (Lµ0,0 − λ0)
†. A quick computation shows
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that Lµ0,0 − λ0 is skew-Hermitian. Thus, the nullspace of (Lµ0,0 − λ0)
† coincides with the

eigenspace of the zeroth-order problem:

Null
(
(Lµ0,0 − λ0)

†
)
= Span

(
einx, eimx

)
. (2.49)

As a result, the solvability conditions of (2.48) are〈
einx,

[
λ1 + iµ1cg(µ0 + n)− iγ0(µ0 + n)

]
einx
〉
= 0,

=⇒ λ1 + iµ1cg(µ0 + n)− iγ0(µ0 + n) = 0, (2.50a)〈
eimx,

[
γ0 (λ1 + iµ1cg(µ0 +m))− i(µ0 +m)

]
eimx

〉
= 0,

=⇒ γ0 (λ1 + iµ1cg(µ0 +m))− i(µ0 +m) = 0, (2.50b)

where ⟨·, ·⟩ is the standard complex inner product on L2(−π, π).

Remark 2.5.1. Both solvability conditions act to remove secular inhomogeneous terms in

(2.48). The first solvability condition (2.50a) also coincides with the normalization condition

Fn[w1(x)] = 0 for the first-order eigenfunction correction.

The solvability conditions (2.50a) and (2.50b) yield a nonlinear system for λ1 and γ0.

The solutions of this system are

λ1 =λ1,r + iλ1,i, (2.51a)

γ0 =
i(µ0 +m)

λ1 + iµ1cg(µ0 +m)
, (2.51b)

where

λ1,r = ±

√
−µ2

1

[
cg(µ0 +m)− cg(µ0 + n)

2

]2
− (µ0 +m)(µ0 + n), (2.52a)

λ1,i = −µ1

(
cg(µ0 +m) + cg(µ0 + n)

2

)
. (2.52b)

If µ1 ∈ (−M1,M1) for

M1 =
2
√

−(µ0 +m)(µ0 + n)

|cg(µ0 +m)− cg(µ0 + n)|
, (2.53)
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Figure 2.2: (Left) The interval of Floquet exponents parameterizing the p = 1 high-frequency isola for

β = 0.7 as a function of ε. The solid blue curves indicate the asymptotic boundaries of this interval

according to (2.54). The blue circles indicate the numerical boundaries computed using the FFH method.

The solid red curve gives the Floquet exponent corresponding to the most unstable spectral element of the

isola according to (2.55). The red circles indicate the numerical result according to FFH. (Right) The real

(blue) and imaginary (red) parts of the most unstable spectral element of the isola as a function of ε. The

solid curves illustrate asymptotic result (2.56). The circles illustrate numerical results according to the FFH

method.

it follows that λ1 has nonzero real part, since (µ0 +m)(µ0 + n) < 0 by the Krein condition

and choice of β. Therefore, the p = 1 high-frequency instability is parameterized by

µ ∈ (µ0 − εM1, µ0 + εM1) +O
(
ε2
)
. (2.54)

This interval agrees with numerical results using the FFH method for |ε| ≪ 1, see Figure

2.2. The interval is also well-defined for all β since cg(µ0 +m) ̸= cg(µ0 + n) by the following

theorem:

Theorem 2.5.1. Fix p ∈ N and choose β so that (2.17) and (2.30) are satisfied. Let

µ0 ∈ [0, 1/2] correspond to the unique solution of Ω(µ0 + m) = Ω(µ0 + n) for the unique
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integersm,n such thatm−n = p. Suppose, in addition, that µ0 solves cg(µ0+m) = cg(µ0+n),

where cg(k) = dΩ/dk. Then, p = 2 and µ0 = 0 necessarily.

Proof. If Ω(µ0 +m) = Ω(µ0 + n) and cg(µ0 +m) = cg(µ0 + n), then k0 = µ0 +m is a double

root of F (k; p) = (Ω(k + p)− Ω(k)) /p. Working through the cases from our theorem in

Section 2.4, we see that F only has a double root when p = 2. This double root occurs at

k0 = −1, which implies µ0 = 0, as desired.

For p = 2 and µ0 = 0, the eigenvalues collide at the origin of the complex spectral plane,

which does not correspond to a high-frequency instability and, therefore, is not of interest

to us in this chapter. It follows that cg(µ0 + m) ̸= cg(µ0 + n) for all relevant β, so M1 is

well-defined and, consequently, so is the parameterizing interval of Floquet exponents (2.54).

Remark 2.5.2. The zeroth-order eigenfunction coefficient γ0 is also well-defined, as λ1 +

iµ1cg(µ0 +m) is necessarily a complex number with nonzero real part.

Equating µ1 = 0 maximizes the real part of λ1 in (2.50a). Thus, the Floquet expo-

nent corresponding to the most unstable eigenvalue of the p = 1 high-frequency isola has

asymptotic expansion

µ∗ = µ0 +O(ε2). (2.55)

The corresponding real and imaginary parts of this eigenvalue have asymptotic expansions

λ∗,r = ε
√

−(µ0 +m)(µ0 + n) +O(ε2), (2.56a)

λ∗,i = −Ω(µ0 + n) +O(ε2), (2.56b)

respectively. The first of these expansions provides an estimate for the growth rates of the

p = 1 high-frequency instabilities. Figure 2.2 compares these expansions with numerical

results according to the FFH method. From this comparison, we see that the expansion for

the real part of the most unstable eigenvaule is in excellent agreement with numerical results,

while the expansion for the imaginary part requires a higher-order calculation.
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Decomposing the expansion of λ into its real λr and imaginary λi parts, dropping terms

of O (ε2) and smaller, and eliminating the µ1 dependence gives

λ2r
ε2

+
(λi + Ω(µ0 + n))2

ε2
(

cg(µ0+m)+cg(µ0+n)

cg(µ0+m)−cg(µ0+n)

)2 = −(µ0 +m)(µ0 + n) +O(ε). (2.57)

Thus, to O (ε), the p = 1 high-frequency isola is an ellipse with center at the zeroth-order

collided eigenvalue λ0 and with semi-major and -minor axes

a1 = ε
√
−(µ0 +m)(µ0 + n), (2.58a)

b1 = a1

∣∣∣∣cg(µ0 +m) + cg(µ0 + n)

cg(µ0 +m)− cg(µ0 + n)

∣∣∣∣ , (2.58b)

respectively. This ellipse agrees well with the numerically computed high-frequency isola,

particularly with respect to the maximum real part of both curves. There is noteable discrep-

ancy in the imaginary part of the isola and in the Floquet parameterization of the imaginary

part of the isola, even for ε = 10−3 (Figure 2.3). This discrepancy will be resolved by a

higher-order calculation in the next subsection.

2.5.3 The O (ε2) Problem

To complete our work at the previous order, we obtain a particular solution for the first-

order correction of the eigenfunction w1 in (2.48) using, for example, the method of unde-

termined coefficients. Uniting this particular solution with the nullspace of Lµ0,0 − λ0 (i.e.,

the eigenspace of λ0) and enforcing our normalization of w1, we find

w1(x) = Qn,n−1e
i(n−1)x + γ0Qn,m+1e

i(m+1)x + γ1e
imx, (2.59)

where

QJ,K =
(µ0 +K)

Ω(µ0 +K)− Ω(µ0 + J)
, (2.60)

and γ1 is an undetermined constant (at this order).
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Figure 2.3: (Left) The p = 1 high-frequency isola for β = 0.7 and ε = 10−3. The solid red curve is the

ellipse (2.57). The blue circles are a subset of spectral elements from the numerically computed isola using

FFH. (Right) The Floquet parameterization of the real (blue) and imaginary (red) parts of the isola. The

solid curves illustrate the asymptotic result (2.51a). The circles indicate numerical results according to FFH.

At O(ε2), we have

(Lµ0,0 − λ0)w2(x) = λ2w0(x) + λ1w1(x)− ic0(µ1w1(x) + µ2w0(x))− c2(iµ0 + ∂x)w0(x)

− 3i(iµ0 + ∂x)
2(µ1w1(x) + µ2w0(x)) + 3µ2

1(iµ0 + ∂x)w0(x)

− 5βi(iµ0 + ∂x)
4(µ1w1(x) + µ2w0(x)) + 10βµ2

1(iµ0 + ∂x)
3w0(x)

− 2(iµ0 + ∂x)(η1(x)w1(x) + η2(x)w0(x))− 2iµ1η1(x)w0(x). (2.61)

Upon substituting expressions for w0, w1, η1, and η2 into (2.61), the solvability conditions of

the second-order problem simplify to a 2× 2 linear system

 1 −i(µ0 + n)

γ0 λ1 + iµ1cg(µ0 +m)

λ2
γ1

 = i

γ0µ1 − C̃n,−1
µ2,µ1,µ0

µ1 − γ0C̃m,1
µ2,µ1,µ0

 , (2.62)
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where

C̃N,k
µ2,µ1,µ0

= µ2cg(µ0 +N)− P̃N,k
µ0

+ µ2
1DN

µ0
, (2.63a)

P̃N,k
µ0

= (µ0 +N) [(Qn,N+k + 2υ2,0) + c2] , (2.63b)

DN
µ0

= 3(µ0 +N)− 10β(µ0 +N)3. (2.63c)

For µ1 ∈ (−M1,M1) (2.53), one can show that

det

 1 −i(µ0 + n)

γ0 λ1 + iµ1cg(µ0 +m)

 = 2λ1,r, (2.64)

with λ1,r given in (2.52a). Since λ1,r ̸= 0 for |µ1| < M1, it follows that (2.62) is invertible.

Using Cramer’s rule to solve for λ2 and the solvability conditions at the previous order

(2.50a)-(2.50b) to simplify, we arrive at

λ2 = − i

2λ1,r
(Aλ1 + iµ1B) , (2.65)

where

A = C̃m,1
µ2,µ1,µ0

+ C̃n,−1
µ2,µ1,µ0

, (2.66a)

B = cg(µ0 +m)C̃n,−1
µ2,µ1,µ0

+ cg(µ0 + n)C̃m,1
µ2,µ1,µ0

− (2µ0 +m+ n). (2.66b)

A quick calculation shows that (i) λ2 inherits two branches, λ2,+ and λ2,−, from λ1,r

and (ii), for any µ2 ∈ R, λ2,+ = −λ2,−, where the overbar denotes complex conjugation.

Consequently, (2.65) (together with lower-order results) predicts a spectrum that is symmet-

ric about the imaginary axis regardless of µ2. We want this spectrum to be a continuous,

closed curve about the imaginary axis. As we show momentarily, this additional constraint

is enough to determine µ2 uniquely. We call this constraint the regular curve condition.

To motivate the regular curve condition, consider the real and imaginary parts of (2.65):

λ2,r =
1

2λ1,r
(Aλ1,i + µ1B) , (2.67a)

λ2,i = −A
2
. (2.67b)
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As |µ1| →M1, λ1,r → 0. To avoid unbounded behavior in λ2,r, we must impose

lim
|µ1|→M1

(Aλ1,i + µ1B) = 0. (2.68)

Since µ1 appears in A only as µ2
1, we can rewrite (2.68) with the help of (2.51a) as

lim
µ2
1→M2

1

(
−A

2
(cg(µ0 +m) + cg(µ0 + n)) + B

)
= 0. (2.69)

Equation (2.69) is the regular curve condition for second-order corrections to the p = 1 isola.

Unpacking the definitions of A and B above, the regular curve condition implies that

µ2 =
Pm,1
µ0

− Pn,−1
µ0

cg(µ0 +m)− cg(µ0 + n)
− 2(2µ0 +m+ n)

(cg(µ0 +m)− cg(µ0 + n))2
, (2.70)

where

PN,k
µ0

= P̃N,k
µ0

+
4(µ0 +m)(µ0 + n)

(cg(µ0 +m)− cg(µ0 + n))2
DN

µ0
. (2.71)

Therefore, the asymptotic interval of Floquet exponents parameterizing the p = 1 high-

frequency isola is

µ ∈
(
µ0 − εM1 + ε2µ2, µ0 + εM1 + ε2µ2

)
+O

(
ε3
)
. (2.72)

Remark 2.5.3. Corrections to the Floquet exponent are introduced at each order beyond

O (ε2). The solvability conditions at these orders will not be enough to determine the Floquet

corrections. Instead, the regular curve condition will determine these corrections.

The real part of our isola has expansion

λr = ελ1,r + ε2λ2,r +O
(
ε3
)
, (2.73)

where λ1,r and λ2,r are given in (2.52a) and (2.67a), respectively. Without loss of generality,

suppose the positive branch of λ1,r is chosen. To obtain the Floquet exponent of the most

unstable eigenvalue on the isola, we consider the critical points of (2.73) with respect to µ1:

∂λr
∂µ1

∣∣∣∣
µ∗,1

= 0, (2.74)
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where µ∗,1 denotes the critical points. After a series of straightforward (but tedious) calcu-

lations, (2.74) yields the following equation for µ∗,1:

−µ∗,1λ
2
∗,1,r

(
cg(µ0 +m)− cg(µ0 + n)

2

)2

+
ε

2

[
λ2∗,1,r

(
λ∗,1,i

∂A
∂µ1

∣∣∣∣
µ∗,1

+A∗
∂λ1,i
∂µ1

∣∣∣∣
µ∗,1

+ µ∗,1
∂B
∂µ1

∣∣∣∣
µ∗,1

+ B∗

)
+ µ∗,1 (A∗λ∗,1,i + µ∗,1B∗)

(
cg(µ0 +m)− cg(µ0 + n)

2

)2]
= 0, (2.75)

where starred variables are evaluated at µ1 = µ∗,1. Unpacking the definitions of A, B, λ1,r,

and λ1,i reveals that (2.75) is a quartic equation for µ∗,1 with the highest degree coefficient

multiplied by the small parameter ε. Therefore, rather than solving for µ∗,1 directly, we

obtain the roots perturbatively.

An application of the method of dominant balance to (2.75) shows that all of its roots

exhibit singular behavior as ε→ 0, except for one. Because we anticipate that limε→0 µ∗,1 = 0

to match results for the most unstable eigenvalue at the previous order, it is this non-singular

root that we expect to yield the correct expression for µ∗,1. Therefore, we need not concern

ourselves with singular perturbation methods and, instead, make the following ansatz:

µ∗,1 = µ∗,1,0 + εµ∗,1,1 +O(ε2). (2.76)

Substituting our ansatz into (2.75), we find by equating the lowest powers in ε that µ∗,1,0 = 0,

consistent with results from the previous order. At the next order, we arrive at the following

linear equation for µ∗,1,1:

−µ∗,1,1

(
cg(µ0 +m)− cg(µ0 + n)

2

)2

+
1

2
(B0 −A0) = 0, (2.77)

where A0 and B0 denote A and B evaluated at µ1 = 0, respectively. Using the definition of

A and B together with the expression for µ2 in (2.70) above, one finds

µ∗,1,1 = −4(µ0 +m)(µ0 + n)

( Dm
µ0

−Dn
µ0

(cg(µ0 +m)− cg(µ0 + n))3

)
. (2.78)

It follows that the Floquet exponent corresponding to the most unstable eigenvalue of the

p = 1 high-frequency isola has asymptotic expansion

µ∗ = µ0 + ε2(µ2 + µ∗,1,1) +O(ε3). (2.79)
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Figure 2.4: (Left) The interval of Floquet exponents that parameterizes the p = 1 high-frequency isola

for β = 0.7 as a function of ε. The solid blue curves indicate the asymptotic boundaries of this interval

according to (2.72), while the dotted cyan curves give the O(ε) result. The blue circles indicate the numerical

boundaries computed by the FFH method. The solid red curve gives the Floquet exponent corresponding

to the most unstable spectral element of the isola according to (2.79), while the dotted orange curve gives

the O(ε) result. The red circles indicate numerical results by the FFH method. (Right) The real (blue) and

imaginary (red) parts of the most unstable spectral element of the isola as a function of ε. The solid curves

illustrate asymptotic result (2.80). The dotted (cyan and orange) curves illustrate the (real and imaginary)

asymptotic results only to O(ε). The circles illustrate numerical results according to the FFH method.

The most unstable eigenvalue is then

λ∗ = λ0 + ελ1
∣∣
µ1=µ1,∗,0

+ ε2λ2
∣∣
µ1=µ1,∗,0

+O(ε3). (2.80)

Figures 2.4 and 2.5 show considerable improvements to the results at the previous order.

In addition, Figure 2.5 demonstrates that our higher-order asymptotic calculations predict

deformations of the high-frequency isola from its original elliptic shape consistent with nu-

merical results, giving confidence that these expansions are correct.
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Figure 2.5: (Left) The p = 1 high-frequency isola for β = 0.7 and ε = 10−2. (The parameter ε has been

increased to constrast the second- and first-order asymptotic predictions and exaggerate the deformations of

the isola from its original elliptic shape.) The solid red curve is parameterized by (2.65). The dotted orange

curve is the ellipse found at O(ε). The blue circles are a subset of spectral elements from the numerically

computed isola by the FFH method. (Right) The Floquet parameterization of the real (blue) and imaginary

(red) parts of the isola. The solid curves illustrate the asymptotic result (2.65). The dotted (cyan and orange)

curves illustrate the (real and imaginary) asymptotic results only to O(ε). The circles indicate numerical

results according to the FFH method.

2.6 Asymptotic Description of the p = 2 High-Frequency Instability

Letm, n, and µ0 satisfy the condition (2.29) for p = 2 and appropriately chosen β parameter.

Then, (2.41) gives a collided eigenpair of Lµ0,0. We assume (2.42a), (2.42b), and (2.43) remain

valid expansions for this eigenvalue, eigenfunction, and Floquet exponent when 0 < ε ≪ 1.

We obtain the coefficients of these expansions order by order in much the same way as the

p = 1 high-frequency instabilities.
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2.6.1 The O (ε) Problem

Substituting expansions (2.42a), (2.42b), and (2.43) into the spectral problem (2.25) and

collecting terms of O(ε) yields

(Lµ0,0 − λ0)w1(x) =− i(µ0 + n− 1)ei(n−1)x + [λ1 + iµ1cg(µ0 + n)] einx

− i(µ0 + n+ 1)(1 + γ0)e
i(n+1)x + γ0 [λ1 + iµ1cg(µ0 +m)] eimx

− i(µ0 +m+ 1)ei(m+1)x, (2.81)

where we have replaced η1 by (2.18). Equation (2.81) shares similar features with (2.48),

but since m− n ̸= 1 in this case, (2.81) cannot be simplified further.

The solvability conditions of (2.81) are

λ1 + iµ1cg(µ0 + n) = 0, (2.82a)

γ0 [λ1 + iµ1cg(µ0 +m)] = 0. (2.82b)

From our theorem in the previous subsection, cg(µ0 +m) ̸= cg(µ0 + n). Moreover, γ0 ̸= 0,

otherwise the ε = 0 eigenspace would cease to be two-dimensional. Thus, the solvability

conditions above imply

λ1 = µ1 = 0. (2.83)

Solving (2.81) for w1 and imposing our normalization (2.44), one finds

w1(x) = τ1,n−1e
i(n−1)x + τ1,n+1e

i(n+1)x + τ1,m+1e
i(m+1)x + γ1e

imx, (2.84)

where γ1 is a constant to be determined at higher order,

τ1,n−1 = Qn,n−1, (2.85a)

τ1,n+1 = (1 + γ0)Qn,n+1, (2.85b)

τ1,m+1 = γ0Qn,m+1, (2.85c)

and QJ,K is given in (2.60).
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2.6.2 The O (ε2) Problem

Substituting (2.42a), (2.42b), and (2.43) into (2.25) and collecting terms of O(ε2) yields

(Lµ0,0 − λ0)w1(x) = λ2w0(x)− L2|µ1=0w0(x)− L1|µ1=0w1(x), (2.86)

where L1|µ1=0 is as before (but evaluated at µ1 = 0) and

L2|µ1=0 = ic0µ2 + c2(iµ0 + ∂x) + 3µ2i(iµ0 + ∂x)
2 + 5µ2i(iµ0 + ∂x)

4

+ 2η2(x)(iµ0 + ∂x) + 2η2,x(x). (2.87)

As in the previous order, we evaluate the inhomogeneous terms of (2.86) using (2.18) to

replace η2, (2.45) to replace w0, and (2.84) to replace w1. If, in addition to these replacements,

one exploits the evenness of η2 so that F−2[η2(x)] = F2[η2(x)] and uses m − n = p = 2 to

simplify, one arrives at the solvability conditions:

λ2 + iCn
µ2,µ0

= iγ0S2(µ0 + n), (2.88a)

γ0
[
λ2 + iCm

µ2,µ0

]
= iS2(µ0 +m), (2.88b)

where

CN
µ2,µ0

= µ2cg(µ0 +N)− PN
µ0
, (2.89a)

PN
µ0

= (µ0 +N)
[
(Qn,N−1 +Qn,N+1 + 2û2(x)0) + c2

]
, (2.89b)

S2 = (Qn,n+1 + 2û2(x)2). (2.89c)

Similar to the p = 1 case, (2.88a) and (2.88b) form a nonlinear system for λ2 and γ0. The

solutions of this system are

λ2 = λ2,r + iλ2,i, (2.90a)

γ0 =
i(µ0 +m)(Qn,n+1 + 2υ2,−2)

λ2 + iCm
µ2,µ0

, (2.90b)
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where

λ2,i = −
(Cm

µ2,µ0
+ Cn

µ2,µ0

2

)
, (2.91a)

λ2,r = ±

√
−
[Cm

µ2,µ0
− Cn

µ2,µ0

2

]2
− S2

2 (µ0 +m)(µ0 + n). (2.91b)

Provided S2 ̸= 0, there exists an interval of µ2 ∈ (M2,−,M2,+), where

M2,± =
Pm

µ0
− Pn

µ0

cg(µ0 +m)− cg(µ0 + n)
± 2

∣∣∣∣ S2

cg(µ0 +m)− cg(µ0 + n)

∣∣∣∣√−(µ0 +m)(µ0 + n),

(2.92)

such that λ2 has a nonzero real part. This is guaranteed by the following theorem:

Theorem 2.6.1. For S2 defined in (2.89c) and β satisfying inequality (2.30) with p = 2,

S2 ̸= 0.

Proof. Since p = 2, we have from (2.30) that 1/5 < β < 3/10. Using results from the previous

theorems, k1,2 = 1 is a double root of F (k; p) = (Ω(k + p)−Ω(k))/p for all 1/5 < β < 3/10.

The remaining roots of F are

k3,4 = −1±
√

3

5β
− 2, (2.93)

which correspond to the nonzero eigenvalue collisions that give rise to the p = 2 high-

frequency instability.

The quantity S2 can be written in terms of k3,4 as

S2 =

[
k3,4 + 1

Ω(k3,4 + 1)− Ω(k3,4)
+

1

Ω(2)

]
, (2.94)

Because k3,4 are symmetric about k = 1 (from the symmetry of F ), the value of S2 is

independent of the choice of k3,4. Using the definition of the dispersion relation Ω (2.19),

(2.94) simplifies to

S2 =
1

2(1− 5β)
, (2.95)

which is nonzero for 1/5 < β < 3/10.
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Figure 2.6: (Left) The interval of Floquet exponents that parameterizes the p = 2 high-frequency isola

for β = 0.25 as a function of ε. (The parameter β must be changed to satisfy (2.30) for a p = 2 isola to

arise.) The solid blue curves indicate the asymptotic boundaries of this interval according to (2.96). The

blue circles indicate the numerical boundaries computed using the FFH method. The solid red curve gives

the Floquet exponent corresponding to the most unstable spectral element of the isola according to (2.97).

The red circles indicate the numerical results according to the FFH method. (Right) The real (blue) and

imaginary (red) parts of the most unstable spectral element of the isola as a function of ε. The solid curves

illustrate the asymptotic result (2.98). The circles illustrate numerical results according to the FFH method.

Thus, the interval of Floquet exponents parameterizing the p = 2 high-frequency isola

has asymptotic expansion

µ ∈
(
µ0 + ε2M2,−, µ0 + ε2M2,+

)
+O

(
ε3
)
. (2.96)

Unlike in (2.54) for the p = 1 instabilities, the center of (2.96) changes at the same rate as

its width. Moreover, this width is an order of magnitude smaller than that of the p = 1

instabilities. This explains in part why numerical calculations involving the p = 2 instability

are more challenging than those for the p = 1 instabilities. With the help of our asymptotic

expansion (2.96), this difficulty is overcome, see Figure 2.6.

Using our results above, we can obtain an asymptotic expansion for the Floquet exponent
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of the most unstable spectral element of the p = 2 high-frequency isola:

µ∗ = µ0 +
Pm

µ0
− Pn

µ0

cg(µ0 +m)− cg(µ0 + n)
ε2 +O(ε3). (2.97)

Asymptotic expansions for the real and imaginary part of this spectral element are

λ∗,r = ε2|S2|
√

−(µ0 +m)(µ0 + n) +O(ε3), (2.98a)

λ∗,i = −Ω(µ0 + n)−
[Pm

µ0
cg(µ0 + n)− Pn

µ0
cg(µ0 +m)

cg(µ0 +m)− cg(µ0 + n)

]
ε2 +O(ε3), (2.98b)

respectively. These expansions are in excellent agreement with numerical computations us-

ing the FFH method, as is seen in Figure 2.6. This is a consequence of resolving quadratic

corrections to the real and imaginary parts of the p = 2 high-frequency isolas simultaneously,

unlike in the p = 1 case.

Analogous to the derivation of (2.57), the ellipse given by

λ2r
ε4

+

[
λi + Ω(µ0 + n) + ε2

(
Pm
µ0

cg(µ0+n)−Pn
µ0

cg(µ0+m)

cg(µ0+m)−cg(µ0+n)

)]2
ε4
(

cg(µ0+m)+cg(µ0+n)

cg(µ0+m)−cg(µ0+n)

)2 = −S2
2 (µ0 +m)(µ0 + n) +O(ε).

(2.99)

is asymptotic to the p = 2 high-frequency isola. This ellipse has center that drifts from the

collision site at a rate comparable to its semi-major and -minor axes,

a2 = ε2|S2|
√
−(µ0 +m)(µ0 + n) (2.100a)

b2 = a2

∣∣∣∣cg(µ0 +m) + cg(µ0 + n)

cg(µ0 +m)− cg(µ0 + n)

∣∣∣∣ , (2.100b)

respectively. This behavior is distinct from that in the p = 1 case, where the center drifts

slower than the axes grow. Comparison with numerical computations using the FFH method

show that (2.99) is an excellent approximation for p = 2 high-frequency isolas, giving confi-

dence in our asymptotic calculations, see Figure 2.7.
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Figure 2.7: (Left) The p = 2 high-frequency isola for β = 0.25 and ε = 10−3. The solid red curve is the

ellipse (2.99). The blue circles are a subset of spectral elements from the numerically computed isola using

the FFH method. The blue circles are a subset of spectral elements from the numerically computed isola

using the FFH method. (Right) The Floquet parameterization of the real (blue) and imaginary (red) parts

of the isola. The solid curves illustrate the asymptotic result (2.90a). The circles indicate numerical results

according to the FFH method.

2.7 Asymptotic Description of Higher-Order Isolas

The spectral method used to obtain the leading-order behavior of the p = 1, 2 high-frequency

instabilities generalizes to higher-order isolas. The method consists of the following steps,

each of which is readily implemented in a symbolic programming language of the reader’s

choice:

(i) Given p ∈ N, determine the unique µ0, m, and n to satisfy condition (2.29), assuming

β satisfies (2.30).

(ii) Expand about the collided eigenvalues in a formal power series of ε and similarly expand

their corresponding eigenfunctions and Floquet exponents. To maintain uniqueness of

the eigenfunctions, choose the normalization (2.44).
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(iii) Substitute these expansions into the spectral problem (2.25). Equate powers of ε to

construct a hierarchy of inhomogeneous linear problems to solve.

(iv) Proceed order by order. At each order, impose solvability and normalization condi-

tions. Invert the linear operator against its range using the method of undetermined

coefficients, for instance. Use previous normalization and solvability conditions as well

as condition (2.30) to simplify problems if necessary.

We conjecture that this method yields the first nonzero real part correction to the pth high-

frequency isola at O(εp). We have shown that this conjecture holds for p = 1, 2. For p = 3,

one can show that the high-frequency isola is asymptotic to the ellipse

λ2r
ε6

+

(
λi + Ω(µ0 + n) + ε2

[
Pm
µ0

cg(µ0+n)−Pn
µ0

cg(µ0+m)

cg(µ0+m)−cg(µ0+n)

])2
ε6
(

cg(µ0+m)+cg(µ0+n)

cg(µ0+m)−cg(µ0+n)

)2 = −S2
3 (µ0 +m)(µ0 + n) +O(ε),

(2.101)

where

S3 = [Qn,n+1Qn,n+2 + 2F2[η2(x)](Qn,n+1 +Qn,n+2) + 2F3[η3(x)]] , (2.102)

and PN
µ0

are the same as for the p = 2 isola. The semi-major and -minor axes of (2.101) scale

as O(ε3), as the conjecture predicts. If true for all p, this conjecture explains why the higher-

order isolas are so challenging to detect both in numerical and perturbation calculations of

the stability spectrum.

The center of (2.101) drifts similarly to that of the p = 2 high-frequency isola (2.99).

In fact, centers of isolas beyond p = 1 all drift at a similar rate, as these isolas all satisfy

the same O(ε2) problem. As a consequence, one should expect corrections to the imaginary

part of the high-frequency isola before reaching O(εp), making it more difficult to prove the

conjecture about the first occurrence of a nonzero real part.

Remark 2.7.1. Once the leading-order behavior of the high-frequency isola is determined

at O (εp), an additional step to the method is required to determine the higher-order Floquet

corrections. This is where the regular curve condition is used.
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2.8 Conclusions

In this chapter, we have investigated the asymptotic behavior of high-frequency instabili-

ties of small-amplitude Stokes waves of the Kawahara equation. For the largest of these

instabilities (p = 1, 2), we introduced a spectral perturbation method to compute explicitly

(i) the asymptotic interval of Floquet exponents that parameterizes the high-frequency

isola,

(ii) the leading-order behavior of its most unstable spectral elements, and

(iii) the leading-order curve asymptotic to the isola.

We then compared these asymptotic expansions with numerical results of the FFH method

and found excellent agreement between the two, giving confidence in our perturbation

method. We also obtained a higher-order asymptotic result for the p = 1 high-frequency

isola by introducing the regular curve condition. A similar technique may be used to de-

scribe the higher-order asymptotic behavior of p ≥ 3 isolas.

The perturbation method used throughout this chapter holds only for nonresonant Stokes

waves (2.17). Resonant waves require a modified Stokes expansion, and as a result of this

modification, the leading-order behaviors of the high-frequency isolas change. Some numeri-

cal work has been done to investigate this effect, see [89], but no perturbation methods have

yet to be proposed.
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Chapter 3

HIGH-FREQUENCY INSTABILITIES OF A
BOUSSINESQ-WHITHAM SYSTEM

3.1 About the Hur-Pandey Boussinesq-Whitham System

In this chapter, we investigate the small-amplitude, 2π/κ-periodic traveling waves modeled

by a Boussinesq-Whitham system proposed in Hur and Pandey [51] and developed further

in Hur and Tao [52]:

ηt = −hux − (ηu)x,

ut = −gK[ηx]− uux.
(3.1)

In this model, η(x, t) represents the displacement of a wave profile from its equilibrium depth

h, u(x, t) is the horizontal velocity along z = −h, and K is a Fourier multiplier operator

defined so that the linearized dispersion relation of (3.1) matches that of Euler’s equations.

For functions f ∈ L1
per(−π/κ, π/κ), K is defined as

Fn (K[f ]) =
tanh(nκh)

nκh
Fn(f), n ∈ Z, (3.2)

where Fj denotes the Fourier transform of f . Explicitly,

Fj(f) =
κ

2π

∫ π/κ

−π/κ

f(x)e−ijκxdx. (3.3)

Alternatively, K can be defined in physical variables as the pseudo-differential operator

K[f ] =

(
tanh(hD)

hD

)
f, (3.4)

where D = −i∂x. For the remainder of this manuscript, we refer to (3.1) as the Hur-Pandey

Boussinesq-Whitham system, or HPBW for short.
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The HPBW system can be expressed as a non-canonical Hamiltonian system of the form

∂

∂t

η
u

 = J
δH

δ(η, u)
, (3.5)

where

H =
1

2

∫ π/κ

−π/κ

(
hu2 + gηK[η] + ηu2

)
dx, (3.6)

and

J = −

 0 ∂x

∂x 0

 . (3.7)

The system has an ε-parameter family of small-amplitude, 2π/κ-periodic traveling-wave

solutions for each κ > 0. We call these solutions the Stokes waves of HPBW by analogy with

solutions of Euler’s equations of the same name. In Section 3.2, we derive a power series

expansion for HPBW Stokes waves in a small parameter ε that scales with the amplitude of

the waves.

Perturbing Stokes waves with functions bounded in space and exponential in time yields a

spectral problem after linearizing the governing equations of the perturbations, as discussed

in the Introduction. The spectral elements of this problem define the stability spectrum of

Stokes waves. This spectrum exhibits quadrafold symmetry from the Hamiltonian structure

of (3.1). Because of quadrafold symmetry, all elements of the stability spectrum have non-

positive real component only if the stability spectrum is a subset of the imaginary axis.

Therefore, HPBW Stokes waves are only spectrally stable if all spectral elements reside on

the imaginary axis. Otherwise, the Stokes waves are spectrally unstable.

If the aspect ratio κh is sufficiently large, Stokes waves of HPBW and Stokes waves of

Euler’s equations both have stability spectra near the origin that leave the imaginary axis

for 0 < |ε| ≪ 1, resulting in modulational instability. The proof for HPBW is given in

[51]. Recent numerical work by [22] shows that HPBW Stokes waves also have stability

spectra away from the origin that leave the imaginary axis, regardless of κh. These spectra

correspond to the high-frequency instabilities.
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As discussed in the Introduction and in Chapter 2, high-frequency instabilities arise from

the collision of nonzero stability spectra of zero-amplitude Stokes waves. At these collided

spectral elements, a Hamiltonian-Hopf bifurcation occurs, resuting in a locus of spectral

elements bounded away from the origin that peel off the imaginary axis as ε increases. We

refer to this locus of spectral elements as a high-frequency isola.

The HPBW system is among the simplest nonlinear models to exhibit high-frequency

instabilities and retain the full dispersion relation of the more complicated Euler equations.

In contrast with other Boussinesq-Whitham systems [19, 22], HPBW also has desirable well-

posedness results for Cauchy problems on the whole real line: most relevant to our work is

the robustness of HPBW to changes in the average value of the initial condition [38]. For

these reasons, HPBW is an ideal candidate to obtain asymptotic information about high-

frequency instabilities for 0 < ε ≪ 1. Similar to the isolas of the Kawahara equation, we

obtain the following for isolas of HPBW:

(i) an asymptotic range of Floquet exponents that parameterize the isola,

(ii) an asymptotic estimate for the most unstable spectral element of the isola,

(iii) expressions of curves that are asymptotic to the isola, and

(iv) wavenumbers that do not have an isola.

Our approach is inspired by the perturbation method outlined in the previous chapter for

the Kawahara equation, but modified appropriately for a vector equation with a nonlocal

operator. As in the previous chapter, we compare all of our asymptotic results with numerical

computations using the Floquet-Fourier Hill (FFH) method, as described in Appendix B.
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3.2 Stokes Wave Solutions

In a traveling frame moving with velocity c, x→ x− ct and (3.1) becomes

ηt = cηx − hux − (ηu)x,

ut = cux − gK(ηx)− uux.
(3.8)

Non-dimensionalizing (3.8) according to η → hη, u → u
√
gh, x → α−1hx, t → t

√
h/g, and

c→ c
√
gh yields the following system:

α−1ηt = cηx − ux − (ηu)x,

α−1ut = cux −Kα(ηx)− uux.
(3.9)

The parameter α is chosen to map 2π/κ-periodic solutions of (3.8) to 2π-periodic solutions

of (3.9). Consequently, α = κh > 0, the aspect ratio of the solutions, and

Fn[Kα[f ]] =
tanh(αn)

αn
Fn[f ], n ∈ Z, (3.10)

or, alternatively,

Kα[f ] =

(
tanh(αD)

αD

)
f, (3.11)

for f ∈ L1
per(−π, π). Here, the Fourier transform (3.3) is redefined over (−π, π) (so κ = 1).

Stokes wave solutions of (3.9) are independent of time. Equating time derivatives in (3.9)

to zero and integrating in x, we find

cη = u+ ηu+ I1

cu = Kα(η) +
1

2
u2 + I2,

(3.12)

where Ij are integration constants. For each α > 0, there exists an ε-parameter family

of infinitely differentiable, even, small-amplitude, 2π-periodic solutions of (3.12), provided

Ij are sufficiently small [51]. We call these solutions the HPBW Stokes waves, denoted

(ηS(x; ε, Ij), uS(x; ε, Ij))
T , where ε is a small-amplitude parameter defined implicitly in terms

of the first Fourier mode of ηS(x; ε, Ij):

ε = 2F1[ηS](1) =
1

π

∫ π

−π

ηS(x; ε, Ij)e
−ixdx. (3.13)

This definition ensures ηS(x; ε, Ij) ∼ ε cos(x) as ε→ 0.
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Remark 3.2.1. Redefining c → c − I1 and u → u − I1 in (3.12) implies I1 = 0 without

loss of generality. If one requires ηS to have zero average over one period, then I2 = I2(ε)

must be expanded a power series in ε. To streamline the perturbation calculation, we instead

equate I2 = 0. This leads to an expansion for ηS with nonzero average, but the calculations

of the high-frequency instabilities that follow are not significantly affected by a nonzero I2.

The Stokes waves and their velocity may be expanded as power series in ε:

ηS = ηS(x; ε) = ε cos(x) +
∞∑
j=2

ηj(x)ε
j, (3.14a)

uS = uS(x; ε) = c0ε cos(x) +
∞∑
j=2

uj(x)ε
j, (3.14b)

c = c(ε) = c0 +
∞∑
j=1

c2jε
2j, c20 =

tanh(α)

α
, (3.14c)

where ηj and uj are analytic, even
1, and 2π-periodic for each j. Substituting these expansions

into (3.12) (with Ij = 0) and following a Poincaré-Lindstedt perturbation method as in the

case of the Kawahara equation, one can determine ηj, uj, and c2j order by order in ε.

Introducing the intermediate variables

C2
k =

tanh(αk)

αk
and Dz =

1

c20 − z2
, where c20 = C2

1 . (3.15)

the surface displacement of the Stokes wave ηS(x; ε) has explicit expansion

ηS(x; ε) = εη1(x) + ε2η2(x) + ε3η3(x) + ε4η4(x) +O
(
ε5
)

= ε cos(x) +
(
N2,0 + 2N2,2 cos(2x)

)
ε2 + 2N3,3ε

3 cos(3x)

+
(
N4,0 + 2N4,2 cos(2x) + 2N4,4 cos(4x)

)
ε4 +O

(
ε5
)
, (3.16)

where

N2,0 =
3c20D1

4
, (3.17a)

1These functions are even without loss of generality since the pre-integrated version of equation (3.12)
respects the symmetries x → x+ ϕ for any ϕ ∈ R and x → −x.
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N2,2 =
3c20DC2

8
, (3.17b)

N3,3 =
c20DC2DC3

16

(
5c20 + 4C2

2

)
, (3.17c)

N4,0 = −
3c20D

3
1D

2
C2

64

(
25c80 + 4C4

2 + 2c20C
2
2(−7 + 2C2

2)− 4c60(2 + 11C2
2)

+ c40(1 + 22C2
2 + 10C4

2)
)
, (3.17d)

N4,2 =
c20D1D

3
C2
DC3

64

(
− 20c80 + 4C4

2C
2
3 + c60(2 + 31C2

2 + 50C2
3)

+ c20C
2
2(C

2
3 + 2C2

2(10 + 7C2
3))− c40(38C

4
2 + 32C2

3 + C2
2(−5 + 37C2

3))
)
, (3.17e)

N4,4 =
c20D

2
C2
DC3DC4

128

(
35c60 − 20C4

2C
2
3 + 5c40(4C

2
2 + 5C2

3)− 4c20(7C
4
2 + 8C2

2C
2
3)
)
. (3.17f)

Similarly, for the corresponding velocity uS(x; ε) along the bottom boundary of the domain,

uS(x; ε) = εu1(x) + ε2u2(x) + ε3u3(x) + ε4u4(x) +O
(
ε5
)

= c0ε cos(x) +
(
U2,0 + 2U2,2 cos(2x)

)
ε2 +

(
2U3,1 cos(x) + 2U3,3 cos(3x)

)
ε3

+
(
U4,0 + 2U4,2 cos(2x) + 2U4,4 cos(4x)

)
ε4 +O

(
ε5
)
, (3.18)

where

U2,0 =
c0D1

4

(
2 + c20

)
, (3.19a)

U2,2 =
c0DC2

8

(
2C2

2 + c20

)
, (3.19b)

U3,1 =
3c30D1DC2

32

(
1− 3c20 + 2C2

2

)
, (3.19c)

U3,3 =
c0DC2DC3

16

(
c40 + 2C2

2C
2
3 + 2c20(C

2
2 + 2C2

3)
)
, (3.19d)

U4,0 =
−3c30D

3
1D

2
C2
(2 + c20)

64

(
2c40(−2 + 5c20) + C2

2(−3 + 8c20 − 17c40) + 2C4
2(1 + 2c20)

)
,

(3.19e)

U4,2 =
c0D1D

3
C2
DC3

128

(
− 25c100 + 8C6

2C
2
3 + c80(7− C2

2 + 45C2
3) + c60

(
C2

2 + 32C4
2

+ C2
3(−27 + 37C2

2)
)
− c40(60C

6
2 + 37C2

2C
2
3 + C4

2(−22 + 56C2
3))
)
, (3.19f)

U4,4 =
c0D

2
C2
DC3DC4

128

(
5c80 − 8C4

2C
2
3C

2
4 + 2c40(−2C4

2 + 5C2
3C

2
4 + 6C2

2(−C2
3 + C2

4))
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+ c60(8C
2
2 + 15(C2

3 + 2C2
4))− 4c20(5C

2
2C

2
3C

2
4 + 3C4

2(C
2
3 + 2C2

4))
)
. (3.19g)

Finally, for the velocity of the Stokes waves c(ε),

c(ε) = c0 + c2ε
2 + c4ε

4 +O
(
ε6
)
, (3.20)

where

c2 =
3c0D1DC2

16

(
c20 + 5c40 − 2C2

2(2 + c20)
)
, (3.21a)

c4 =
3c0D

3
1D

3
C2
DC3

512

(
3c20
(
c60 − 3c80 + 15c100 − 85c120 + c40C

2
2(11 + 3c20 − 3c40 + 205c60)

− 4c20C
4
2(−2 + 15c20 + 3c40 + 38c60)− 4C6

2(−4 + 12c20 − 27c40 + c60)
)

+ C2
3

(
c60(−103 + 309c20 − 345c40 + 355c60)− 3c40C

2
2(31− 57c20 + 57c40 + 185c60)

+ 36c20C
4
2(2− 3c20 + 9c40 + 10c60)− 4C6

2(2 + c20)(−2 + 7c20 + 13c40)
))
. (3.21b)

3.3 The Spectral Stability Problem

We consider perturbations of (ηS, uS)
T of the formη(x, t; ε, ρ)

u(x, t; ε, ρ)

 =

ηS
uS

+ ρ

H(x, t)

U(x, t)

+O
(
ρ2
)
, (3.22)

where |ρ| ≪ 1 is a parameter independent of ε and H and U are sufficiently smooth, bounded

functions of x ∈ R for all t ≥ 0. When (3.22) is substituted into (3.9), terms of O (ρ0) cancel

by (3.12) (with Ij = 0). Equating terms of O(ρ), the perturbation (H,U)T solves the linear

system

∂

∂t

H
U

 = α

−uS,x + (c− uS)∂x −ηS,x − (1 + ηS)∂x

− i tanh(αD)
α

−uS,x + (c− uS)∂x

H
U

 . (3.23)

Formally separating variables,H(x, t)

U(x, t)

 = eλt

H(x)

U(x)

+ c.c., (3.24)
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where (H,U)T solves the spectral problem

λ

H

U

 = α

−uS,x + (c− uS)∂x −ηS,x − (1 + ηS)∂x

− i tanh(αD)
α

−uS,x + (c− uS)∂x

H

U

 . (3.25)

Since the entries of the matrix operator above are 2π-periodic, one can use Floquet theory2

to solve (3.25) for (H,U)T . These solutions take the formH(x)

U(x)

 = eiµx

h(x)

u(x)

 , (3.26)

where µ ∈ [−1/2, 1/2) is called the Floquet exponent and h, u ∈ H1
per(−π, π). Substituting

(3.26) into (3.25) results in a spectral problem for w = (h, u)T:

λw = Lµ,εw, (3.27)

with

Lµ,ε = α

−uS,x + (c− uS)(iµ+ ∂x) −ηS,x − (1 + ηS)(iµ+ ∂x)

− i tanh(α(µ+D))
α

−uS,x + (c− uS)∂x

 . (3.28)

For sufficiently small ε, (3.27) has a countable collection of eigenvalues λ for each Floquet

exponent µ [55]. The union of these eigenvalues over µ ∈ [−1/2, 1/2) recovers the purely

continuous stability spectrum of (3.25) for fixed ε. Because HPBW is Hamiltonian, the

stability spectrum has quadrafold symmetry, similar to Euler’s equations and the Kawahara

equation. Thus, Stokes waves are spectrally stable only if their stability spectrum is a subset

of the imaginary axis.

3.4 Necessary Conditions for High-Frequency Instabilities

When ε = 0, Lµ,0 has constant coefficients, and its spectral elements are given exactly by

λ
(σ)
0,µ,n = −iΩσ(n+ µ), n ∈ Z, σ = ±1, (3.29)

2Strictly speaking, Floquet theory applies only to linear, local operators. Work by [16] extends this theory
to nonlocal operators.
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where Ωσ are the two branches of the linear dispersion relation of (3.9) with c → c0, where

c0 is given in (3.14). Explicitly,

Ωσ(k) = −αc0k + σωα(k), (3.30)

where

ωα(k) = sgn(k)
√
αk tanh(αk). (3.31)

As expected, λ
(σ)
0,µ,n is a countable collection of eigenvalues for each µ, and the resulting

stability spectrum has quadrafold symmetry. In addition, the stability spectrum coincides

with the imaginary axis, implying that zero-amplitude Stokes waves are spectrally stable.

For a particular Floquet exponent µ, Lµ,0 may have nonzero collided eigenvalues that

give rise to high-frequency instabilities when 0 < |ε| ≪ 1. These eigenvalues exist provided

there exists Floquet exponent µ0 and integers m and n such that

λ
(σ1)
0,µ0,n

= λ
(σ2)
0,µ0,m

̸= 0. (3.32)

It can be shown that such a collision occurs only if σ1 ̸= σ2 [5, 36, 51]. Moreover, we have

the following result:

Theorem 3.4.1. If c0 > 0, then, for each p ∈ Z \ {0,±1}, there exists a unique Floquet

exponent µ0 ∈ [−1/2, 1/2] and integers m and n giving rise to a collided eigenvalue

λ
(1)
0,µ0,n

= λ
(−1)
0,µ0,m

̸= 0, (3.33)

where p = m − n. Moreover, for fixed α > 0, the imaginary part of the collided eigenvalues

is strictly monotonically decreasing with p.

Hence, there are a countably infinite number of nonzero eigenvalue collisions in the zero-

amplitude stability spectrum of the HPBW system. Each collision has potential to develop

a high-frequency instability in the small-amplitude stability spectrum. This is in contrast

with the Kawahara equation, where only a finite number of such collisions occur. Also notice
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that there are no p = 1 high-frequency instabilities for HPBW. This is because the p = 1

instability appears at the origin of the complex spectral plane.

To prove the result above, we simplify (3.32) to

Ω1(µ0 + n) = Ω−1(µ0 +m) ̸= 0. (3.34)

Defining k = µ0 + n and p = m− n, (3.34) becomes

Ω1(k) = Ω−1(k + p) ̸= 0. (3.35)

We call (3.35) the collision condition. For each p ∈ Z \ {0,±1}, we prove that there exists a

unique k = k(p;α) that satisfies the collision condition. These solutions k(p;α) are distinct

from each other for each α > 0 and result in an infinite number of distinct collision points

on the imaginary axis, according to (3.32). To show this, we must establish important

monotonicity properties of the dispersion relation Ωσ(k), as defined in (3.30).

Lemma 3.4.1. The function ωα(k) = sgn(k)
√
αk tanh(αk) is strictly increasing for k ∈ R.

If |k| > 1, then dωα/dk < α|c0|, where c20 = tanh(α)/α.

Proof. A direct calculation shows

dωα

dk
=

1

2

(√
α tanh(αk)

k
+ α

√
αk

sinh(αk)
sech3/2(αk)

)
, (3.36)

from which dωα/dk > 0. This proves the first claim. Since tanh(αk)/(αk) ≤ 1, αk/ sinh(αk) ≤

1, and sech(αk) ≤ 1, (3.36) gives

dωα

dk
≤ 1

2

(√
α tanh(αk)

k
+ α sech(αk)

)
. (3.37)

Since α > 0, sinh(α)/α > 1 > sech(α), so that sech(α) < |c0|. Because sech(z) is even and

strictly decreasing for z > 0, we have

sech(αk) < |c0|, for |k| > 1. (3.38)
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Similarly, since tanh(z)/z is even and strictly decreasing for z > 0,√
α tanh(αk)

k
< α

√
tanh(α)

α
= α|c0|, for |k| > 1. (3.39)

Together with (3.37), inequalities (3.38) and (3.39) imply dωα/dk < α|c0| for |k| > 1.

Lemma 3.4.2. If c0 > 0, Ω−1(k) is strictly decreasing for k ∈ R, and Ω1(k) is strictly

decreasing for |k| > 1. If c0 < 0, Ω1(k) is strictly increasing for k ∈ R, and Ω−1(k) is strictly

increasing for |k| > 1.

Proof. Suppose c0 > 0. By definition, dΩσ/dk = −αc0 + σdωα/dk. If σ = −1, we use

dωα/dk > 0 from Lemma 3.3.1 to conclude dΩ−1/dk < 0. If σ = 1 and |k| > 1, we use

dωα/dk < α|c0| from Lemma 3.3.1 to conclude dΩ1/dk = −αc0 + dωα/dk < 0, since c0 > 0.

An analogous proof holds when c0 < 0.

For the remainder of this work, we consider c0 > 0, which corresponds to right-traveling

Stokes waves. Similar statements hold when c0 < 0 if one rewrites the collision condition

(3.35) as Ω−1(k) = Ω1(k + p) ̸= 0, where k and p are redefined appropriately.

Lemma 3.4.3. For each p ∈ R and α > 0, there exists a unique k(p;α) ∈ R such that

Ω1(k(p;α)) = Ω−1(k(p;α) + p). If p ∈ Z and c0 > 0, we have · · · < k(1;α) < k(0;α) <

k(−1;α) < · · · . Moreover, |k(p;α)| > |p| for p ∈ Z \ {0,±1} and c0 > 0.

Proof. Fix p ∈ R and α > 0. Define F (k, p) = Ω1(k)− Ω−1(k + p). Then,

F (k, p) ∼ 2k

√
α

|k|
+O

(
1√
|k|

)
as |k| → ∞. (3.40)

Since F has opposite signs as k → ±∞, there exists at least one root, denoted k(p;α). Since

∂kF (k, p) = dω/dk + dω(k + p)/dk > 0 by Lemma 3.3.1, k(p;α) is the only root of F in R,

proving the first claim of the theorem.

To prove the second claim, differentiate F (k(p;α), p) with respect to p. Using the defini-

tion of Ωσ,

dk

dp
=

dΩ−1

dk

∣∣∣
k(p;α)+p

dω
dk

∣∣
k(p;α)

+ dω
dk

∣∣
k(p;α)+p

, (3.41)
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which is well-defined since Fk(k, p) > 0. If c0 > 0, then Lemma 3.3.2 implies dk/dp < 0. If

p is restricted to Z, we have · · · < k(1;α) < k(0;α) < k(−1;α) < · · · , as desired.

To prove the third claim, first consider p > 1. Suppose k(p;α) ≥ −p. Since ωα(k) is odd

and strictly increasing by Lemma 3.3.1,

ωα(k(p;α)) ≥− ωα(p), (3.42a)

ωα(k(p;α) + p) ≥ωα(0) = 0. (3.42b)

Using the definition of Ωσ, F (k(p;α), p) = 0 can be rewritten as

ωα(k(p;α)) + ωα(k(p;α) + p) = −αc0p. (3.43)

Together with (3.43), inequalities (3.42a) and (3.42b) imply

−ωα(p) ≤ −αc0p ⇒ ωα(p)

p
≥ αc0 =

ωα(1)

1
, (3.44)

a contradiction since ωα(z)/z is strictly decreasing for z > 0. Therefore, k(p;α) < −p for

p > 1. Since Ωσ(k) is odd, k(p;α) = −k(−p;α). Therefore, when p < −1, k(p;α) > −p.

Combining the two cases yields |k(p;α)| > |p| whenever p ∈ Z \ {0,±1} and c0 > 0, as

desired.

Lemma 3.3.3 has several consequences:

(i) When c0 > 0, k(p;α) < 0 for p > 0, and k(p;α) > 0 for p < 0.

(ii) When c0 > 0, k(p;α) → ±∞ as p → ∓∞. In fact, the sequence {k(p;α)} must grow

at least linearly as |p| → ∞. Formal arguments suggest quadratic growth in this limit.

(iii) Since Fk(k, p) > 0, we must have cg1(k) ̸= cg−1(k+p) for p ∈ R, where cgσ(k) = dΩσ/dk.

(iv) When c0 > 0, we have k(p;α)(k(p;α) + p) > 0 and ωα(k(p;α))ωα(k(p;α) + p) > 0 for

all α > 0 and p ∈ R\{0}. The latter of these products is related to the Krein signature

condition proposed in [67]. In effect, Lemma 3 provides an alternate proof that collided

eigenvalues (3.32) have opposite Krein signatures, consistent with the results of [36].
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Finally, we prove our main result:

Theorem 3.4.2. Let c0 > 0. If p ∈ {0,±1}, then the collision condition (3.35) is not

satisfied. If p ∈ Z \ {0,±1}, then k(p;α) solves the collision condition. Moreover, · · · <

λi,3 < λi,2 < 0 < λi,−2 < λi,−3 < · · · , where λi,p is the imaginary part of the collision point

corresponding to k(p;α).

Proof. When p = 0 or ±1, we have k(p;α) = 0 or ∓1, respectively, by inspection. It follows

that Ω1(k(p;α)) = 0 in all three cases, and so (3.35) is not satisfied. This proves the first

claim.

To prove the second claim, consider the sequence {Ω1(k(p;α))}, p ∈ Z \ {0,±1}. From

Lemma 3.3.3, {k(p;α)} is a strictly decreasing sequence, and each element of this sequence

satisfies |k(p;α)| > |p| > 1. Thus, Lemma 3.3.2 holds, and the sequence {Ω1(k(p;α))} is

strictly increasing. Since Ω1(±1) = 0, we have Ω1(k(p;α)) ̸= 0. This proves that k(p;α)

satisfies the collision condition (3.35) for the relevant values of p.

The proof of the third claim is immediate since {Ω1(k(p;α))} is strictly increasing.

The statement of Theorem 3.3.1 follows from the above if µ0 = k(p;α) − [k(p;α)], n =

[k(p;α)], and m = p+ n, where [·] denotes the nearest integer function.

3.5 Asymptotic Description of the p = 2 High-Frequency Instability

We use perturbation methods to investigate the high-frequency instability that develops from

the collision of λ
(1)
0,µ0,n

and λ
(−1)
0,µ0,m

, where µ0 ∈ [−1/2, 1/2] is the unique Floquet exponent for

which (3.32) is satisfied and3 m− n = 2. This instability corresponds to the high-frequency

isola closest to the origin, per the statement of Theorem 3.3.1. For sufficiently small ε, this

is also the isola with largest real component.

3Because the spectrum (3.30) has the symmetry λ
(σ)

0,−µ0,−n = λ
(σ)
0,µ0,n

, where the overbar denotes complex
conjugation, choosing p = −2 gives the isola conjugate to that for p = 2. Thus, we may choose p = 2
without loss of generality.
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3.5.1 The O (ε0) Problem

The p = 2 isola develops from the spectral data

λ0 = λ
(1)
0,µ0,n

= −iΩ1(µ0 + n) = −iΩ−1(µ0 +m) = λ
(−1)
0,µ0,m

̸= 0, (3.45a)

w0(x) =

h0(x)

u0(x)

 = γ0

 1

−ωα(m+µ0)
α(m+µ0)

 eimx + γ1

 1

ωα(n+µ0)
α(n+µ0)

 einx, (3.45b)

where γj are arbitrary, nonzero constants. As |ε| increases, we assume the spectral data vary

analytically with ε about (3.45):

λ = λ0 + ελ1 + ε2λ2 +O
(
ε3
)
, (3.46a)

w = w0 + εw1 + ε2w2 +O
(
ε3
)

(3.46b)

=

h0

u0

+ ε

h1

u1

+ ε2

h2

u2

+O
(
ε3
)
, (3.46c)

where we suppress functional dependencies for ease of notation. We normalize w so that

Fn[h] =
1

2π

∫ π

−π

he−inxdx = 1, (3.47)

or, alternatively, so that

Fn[h0] = 1,

Fn[hj] = 0, ∀j ∈ N.
(3.48)

This normalization ensures that h0 completely resolves the nth Fourier mode of h, a conve-

nient choice for the perturbation calculations that follow. With this normalization,

w0(x) =

h0(x)

u0(x)

 = γ0

 1

−ωα(m+µ0)
α(m+µ0)

 eimx +

 1

ωα(n+µ0)
α(n+µ0)

 einx. (3.49)

The arbitrary constant γ0 will be determined at higher order, leading to a unique expression

for w0.

Similar to the Kawahara equation, we formally expand the Floquet exponent as a power

series in ε:

µ = µ0 + εµ1 + ε2µ2 +O
(
ε3
)
. (3.50)
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As will be seen, µ1 = 0, and µ2 is confined to an interval that parameterizes an ellipse

asymptotic to the p = 2 isola.

Remark 3.5.1. For ease of readability, select quantities in the subsections that follow are

suppressed. If interested, consult the Mathematica file hptbw isolap2.nb for these expres-

sions.

3.5.2 The O (ε) Problem

Substituting the expansions of the Stokes wave (3.14), spectral data (3.46), and Floquet

exponent (3.50) into the spectral problem (3.27) and collecting terms of O(ε), we find

(Lµ0,0 − λ0)w1 = λ1w0 − L1w0, (3.51)

where

L1 = α

−u1,x + ic0µ1 − u1(iµ0 + ∂x) −η1,x − iµ1 − η1(iµ0 + ∂x)

−iµ1 sech
2(α(µ0 +D)) −u1,x + ic0µ1 − u1(iµ0 + ∂x)

 . (3.52)

The inhomogeneous terms on the RHS of (3.51) can be evaluated using expressions for η1,

u1, and w0. Each of these quantities are finite linear combinations of 2π-periodic sinusoids.

As a result, the inhomogeneous terms can be rewritten as a finite Fourier series, and (3.51)

becomes

(Lµ0,0 − λ0)w1 =
m+1∑

j=n−1

T1,je
ijx, (3.53)

where T1,j depend on µ0, α, and γ0, see the Mathematica file for details.

Remark 3.5.2. Since m−n = 2, the index j ∈ {n−1, n, 1+n,m,m+1}. When evaluating

the inhomogeneous terms, one finds vector multiples of exp(i(1 + n)x) and exp(i(m − 1)x).

These vectors are combined to give T1,1+n.

For (3.53) to have a solution w1, the inhomogeneous terms must be orthogonal (in the

L2
per(−π, π) × L2

per(−π, π) sense) to the nullspace of the hermitian adjoint of Lµ0,0 − λ0 by
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the Fredholm alternative. The hermitian adjoint of Lµ0,0 − λ0 is

(Lµ0,0 − λ0)
† =

−αc0(iµ0 + ∂x)− λ0 tan(α(iµ0 + ∂x))

α(iµ0 + ∂x) −αc0(iµ0 + ∂x)− λ0

 , (3.54)

where overbars denote complex conjugation. Its nullspace is

Null
[
(Lµ0,0 − λ0)

†
]
= Span

 1

α(µ0+n)
ωα(µ0+n)

 einx,

 1

− α(µ0+m)
ωα(µ0+m)

 eimx

 . (3.55)

Thus, according to the Fredholm alternative, there exists a solution w1 to (3.53) if〈 1

α(µ0+n)
ωα(µ0+n)

 einx,T1,ne
inx

〉
= 0,

〈 1

− α(µ0+m)
ωα(µ0+m)

 eimx,T1,me
imx

〉
= 0, (3.56)

where ⟨·, ·⟩ is the standard inner product on L2
per(−π, π)× L2

per(−π, π). Substituting expres-

sions for T1,n and T1,m in the above gives solvability conditions

λ1 + iµ1cg1(µ0 + n) = 0, (3.57a)

γ0
(
λ1 + iµ1cg−1(µ0 +m)

)
= 0, (3.57b)

where cgσ(k) = dΩσ/dk is the group velocity of Ωσ. A consequence of Lemma 3.3.3 shows

that cg1(µ0 + n) ̸= cg−1(µ0 +m). Since γ0 is nonzero,

λ1 = 0 = µ1. (3.58)

Consequently, T1,n = 0 = T1,m, simplifying the inhomogeneous terms in (3.53).

With the solvability conditions satisfied, we solve for the particular solution of w1 in

(3.53). Combining with the nullspace of Lµ0,0 − λ0,

w1 =
m+1∑

j=n−1
j ̸=n,m

W1,je
ijx + β1,m

 1

−ωα(m+ µ0)

α(m+ µ0)

 eimx + β1,n

 1

ωα(n+ µ0)

α(n+ µ0)

 einx, (3.59)

where β1,j are arbitrary constants and W1,j are found in the Mathematica file. Enforcing

the normalization condition (3.48), one finds β1,n = 0. For ease of notation, let β1,m → γ1 so
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that

w1 =
m+1∑

j=n−1
j ̸=n,m

W1,je
ijx + γ1

 1

−ωα(m+ µ0)

α(m+ µ0)

 eimx. (3.60)

3.5.3 The O (ε2) Problem

Using (3.58), the spectral problem (3.27) at O (ε2) is

(Lµ0,0 − λ0)w2 = λ2w0 − L2|µ1=0w0 − L1|µ1=0w1, (3.61)

where L1|µ1=0 is the same as above, but evaluated at µ1 = 0, and

L2|µ1=0 = α

−u2,x + (c2 − u2)(iµ0 + ∂x) + iµ2c0 −η2,x − iµ2 − η2(iµ0 + ∂x)

−iµ2 sech
2(α(µ0 +D)) −u2,x + (c2 − u2)(iµ0 + ∂x) + iµ2c0

 .

(3.62)

One can evaluate the inhomogeneous terms of (3.62) using ηj, uj, and wj−1 for j ∈ {1, 2}.

These inhomogeneous terms can be expressed as a finite Fourier series, giving

(Lµ0,0 − λ0)w2 =
m+2∑

j=n−2
j ̸=n−1

T2,je
ijx. (3.63)

It can be shown that T2,n−1 = 0.

Proceeding similarly to the previous order, solvability conditions for (3.63) become

2 (λ2 + iC1,n) + iγ0S2,n = 0, (3.64a)

2γ0 (λ2 + iC−1,m) + iS2,m = 0, (3.64b)

where

C1,n = µ2cg1(µ0 + n)− P2,n, (3.65a)

C−1,m = µ2cg−1(µ0 +m)− P2,m. (3.65b)
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Expressions for S2,j and P2,j have no dependence on γ0, γ1, µ2, or λ2, see the Mathematica

file for details.

Conditions (3.64a) and (3.64b) are a nonlinear system for γ0 and λ2. Solving for λ2 yields

λ2 = −i
(
C−1,m + C1,n

2

)
±

√
−
(
C−1,m − C1,n

2

)2

− S2,nS2,m

4
. (3.66)

A direct calculation shows that

S2,nS2,m = − S2
2

ωα(µ0 +m)ωα(µ0 + n)
, (3.67)

where S2 is given in the Mathematica file. Then,

λ2 = −i
(
C−1,m + C1,n

2

)
±

√
−
(
C−1,m − C1,n

2

)2

+
S2
2

4ωα(µ0 +m)ωα(µ0 + n)
. (3.68)

A consequence of Lemma 3.3.3 ensures that ωα(µ0 +m)ωα(µ0 + n) > 0, consistent with the

Krein condition of MacKay and Saffman [67]. Provided S2 ̸= 0 and, λ2 has nonzero real part

for µ2 ∈ (M2,−,M2,+), where

M2,± =
P2,m − P2,n

cg−1(µ0 +m)− cg1(µ0 + n)

± |S2|
|cg−1(µ0 +m)− cg1(µ0 + n)|

√
ωα(µ0 +m)ωα(µ0 + n)

.
(3.69)

That cg−1(µ0+m) ̸= cg1(µ0+n) follows from Lemma 3.3.3, as mentioned previously. A plot of

S2 as a function of α suggests that S2 > 0 for all values of α > 0 (Figure 3.1). We conjecture

that HPBW Stokes waves of any wavenumber are susceptible to a p = 2 high-frequency

instability at O (ε2).

For µ2 ∈ (M2,−,M2,+), a quick calculation shows that (3.68) parameterizes an ellipse

asymptotic to the numerically observed p = 2 high-frequency isola (Figure 3.2). The ellipse

has semi-major and -minor axes that scale with ε2, and the center of the ellipse drifts along

the imaginary axis like ε2 from λ0, the collision point at ε = 0. The midpoint of (M2,−,M2,+)

maximizes the real part of λ2. Thus, the most unstable spectral element of the isola has

Floquet exponent

µ∗ = µ0 +

(
P2,m − P2,n

cg−1(µ0 +m)− cg1(µ0 + n)

)
ε2 +O

(
ε3
)
, (3.70)
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Figure 3.1: A plot of S2 vs. α. No roots of S2 are found for α > 0. It is likely that HPBW Stokes waves

of all wavenumbers experience a p = 2 instability.

and its real and imaginary components are

λr,∗ =

(
|S2|

2
√
ωα(µ0 +m)ωα(µ0 + n)

)
ε2 +O

(
ε3
)
, (3.71a)

λi,∗ = −Ω1(µ0 + n)− C1,nε2 +O
(
ε3
)
, (3.71b)

respectively. These expansions agree well with results of the FFH method, see Figure 3.3 for

more details.

3.6 Asymptotic Description of the p = 3 High-Frequency Instability

According to Theorem 3.3.1, the p = 3 high-frequency instability is the second-closest to the

origin. As will be seen, this instability arises at O (ε3). Let µ0 correspond to the unique

Floquet exponent in [−1/2, 1/2] that satisfies the collision condition (3.32) with m− n = 3.

Then, the spectral data (3.45) give rise to the p = 3 high-frequency instability. We assume

these data and the Floquet exponent vary analytically with ε. For uniqueness, we normalize

the eigenfunction w according to (3.48) so that w0 is given by (3.49). We proceed as in the

p = 2 case.

Remark 3.6.1. In the calculations that follow, explicit expressions of select quantities are
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Figure 3.2: (Left) The p = 2 isola with α = 1 and ε = 5× 10−4 (zero-order imaginary correction removed

for better visibility). The solid red curve is the ellipse obtained by our perturbation calculations. Blue circles

are a subset of spectral elements from the numerically computed isola using the FFH method. (Right) The

Floquet parameterization of the real (blue) and imaginary (red) components of the isola (zero- and second-

order Floquet corrections and zero-order imaginary correction removed for better visibility). Solid curves

illustrate perturbation results. Circles indicate the FFH method results.

suppressed for ease of readability. If interested, consult the Mathematica file hptbw isolap3.nb

for these expressions.

3.6.1 The O (ε) Problem

Substituting expansions (3.14), (3.46), and (3.50) into the spectral problem (3.27), equating

terms of O(ε), and using expression for η1, u1, and w0 to simplify, we find

(Lµ0,0 − λ0)w1 =
m+1∑

j=n−1

T1,je
ijx. (3.72)

Expressions for T1,j depend on µ0, α, and γ0, see the Mathematica file. Since m − n = 3,

j ∈ {n− 1, n, 1 + n,m− 1,m,m+ 1}. The expressions for T1,n−1 and T1,m+1 are identical

to those in the p = 2 case, but they do not evaluate to the same vectors, as µ0 is different

for p = 2 and p = 3 in general.



68

Figure 3.3: (Left) The interval of Floquet exponents that parameterize the p = 2 isola as a function of

ε with α = 1 (zero- and second-order Floquet corrections removed for better visibility). Solid blue curves

indicate the boundaries of this interval according to our perturbation calculations. Blue circles indicate the

boundaries computed numerically by the FFH method. The solid red curve gives the Floquet exponent

corresponding to the most unstable spectral element of the isola according to our perturbation calculations.

Red circles indicate the same but computed numerically using the FFH method. (Right) The real (blue) and

imaginary (red) components of the most unstable spectral element of the isola as a function of ε (zero-order

imaginary correction removed for better visibility). Solid curves illustrate perturbation calculations. Circles

illustrate the FFH method results.

Solvability conditions for (3.72) simplify to µ1 = 0 = λ1. Together with the normalization

(3.48), these conditions guarantee a solution to (3.72) of the form

w1 =
m+1∑

j=n−1
j ̸=n,m

W1,je
ijx + γ1

 1

−ωα(m+ µ0)

α(m+ µ0)

 eimx, (3.73)

where γ1 is arbitrary and expressions for W1,j are found in the Mathematica file. Because

T1,n−1 and T1,m+1 are identical to their p = 2 counterparts, W1,n−1 and W1,m+1 are as well.
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3.6.2 The O (ε2) Problem

The O (ε2) problem takes the same form as (3.61). Evaluating at ηj, uj, and wj−1 for

j ∈ {1, 2}, we find

(Lµ0,0 − λ0)w2 =
m+2∑

j=n−2
j ̸=n−1

T2,je
ijx, (3.74)

For the same reasons as in the p = 2 case, T2,n−1 = 0, and expressions for T2,n−2 and

T2,m+2 are identical to their p = 2 counterparts.

Since γ0 ̸= 0, the solvability conditions for (3.74) simplify to

λ2 + iµ2cg1(µ0 + n)− iP2,n = 0, (3.75a)

λ2 + iµ2cg−1(µ0 +m)− iP2,m = 0, (3.75b)

where P2,j are independent of λ2, µ2, γ0, and γ1, see the Mathematica file. Note that these

terms are distinct from those introduced in (3.65).

Solving (3.75a) and (3.75b) for λ2 and µ2 yields

λ2 = −i
(
P2,mcg1(µ0 + n)− P2,ncg−1(µ0 +m)

cg−1(µ0 +m)− cg1(µ0 + n)

)
, (3.76a)

µ2 =
P2,m − P2,n

cg−1(µ0 +m)− cg1(µ0 + n)
. (3.76b)

Therefore, the spectral elements and Floquet parameterization of the p = 3 isola have

nontrivial corrections at O (ε2). However, since Re (λ2) = 0, we have not yet determined the

leading-order behavior of the isola. We find this at the next order.

Imposing solvability conditions (3.75a) and (3.75b) as well as the normalization condition

on w2, the solution of (3.74) is

w2 =
m+1∑

j=n−2
j ̸=n−1

W2,je
ijx + γ2

 1

−ωα(m+ µ0)

α(m+ µ0)

 eimx, (3.77)

where γ2 is an arbitrary constant. Since T2,n−1 = 0, W2,n−1 = 0.
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3.6.3 The O (ε3) Problem

At O (ε3), the spectral problem (3.27) takes the form

(Lµ0,0 − λ0)w3 =
3∑

j=2

λjw3−j −
3∑

j=1

Lj|µ1=0w3−j, (3.78)

where Lj|µ1=0 for j ∈ {1, 2} are as before and

L3|µ1=0 = α

−u3,x − iµ2u1 − u3(iµ0 + ∂x) + iµ3c0 −η3,x − iµ3 − iη1µ2 − η3(iµ0 + ∂x)

−µ3 sech
2(α(µ0 +D)) u3,x − iµ2u1 − u3(iµ0 + ∂x) + iµ3c0

 .

(3.79)

Evaluating (3.78) at ηj, uj, and wj−1 for j ∈ {1, 2, 3}, one finds

(Lµ0,0 − λ0)w3 =
m+3∑

j=n−3
j ̸=n−2

T3,je
ijx, (3.80)

where T3,n−2 = 0.

The solvability conditions for (3.80) are

2(λ3 + iµ3cg1(µ0 + n)) + iγ0S3,n = 0, (3.81a)

2γ0(λ3 + iµ3cg−1(µ0 +m)) + iS3,m + iγ1T3,m = 0, (3.81b)

where S3,j and T3,m have no dependence on γ0, γ1, µ3, or λ3; see Mathematica file. Using

(3.75a) and (3.75b) from the previous order as well as (3.32), one can show that T3,m ≡ 0.

In addition, similar to (3.67) for the p = 2 isola, we have

S3,nS3,m = − S2
3

ωα(µ0 +m)ωα(µ0 + n)
, (3.82)

where S3 is given in the Mathematica file. As a result, (3.81a) and (3.81b) form a nonlinear

system for λ3 and γ0. Solving for λ3, one finds

λ3 = − iµ3

(
cg−1(µ0 +m) + cg1(µ0 + n)

2

)
(3.83)

±

√
−µ2

3

(
cg−1(µ0 +m)− cg1(µ0 + n)

2

)2

+
S2
3

4ωα(µ0 +m)ωα(µ0 + n)
.
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Figure 3.4: (Left) A plot of S3 vs. α. The quantity S3 has a root α = 1.1862... (red star), implying

HPBT–BW Stokes waves of this aspect ratio do not have a p = 3 instability at O
(
ε3
)
. (Right) A plot of

the maximum real component of the numerical p = 3 isola (computed by the FFH method) as a function

of α for ε = 10−3 (solid blue), ε = 7.5 × 10−4 (dot-dashed purple), ε = 5 × 10−4 (dashed light blue), and

ε = 2.5× 10−4 (dotted cyan). The p = 3 isola vanishes when α = 1.1862... (red star).

As in the p = 2 case, ωα(µ0 +m)ωα(µ0 + n) > 0 and cg−1(µ0 +m) ̸= cg1(µ0 + n). Provided

S3 ̸= 0, λ3 has nonzero real part if µ3 ∈ (−M3,M3), where

M3 =
|S3|

|cg−1(µ0 +m)− cg1(µ0 + n)|
√
ωα(µ0 +m)ωα(µ0 + n)

. (3.84)

A plot of S3 vs. α reveals that S3 ̸= 0 for almost all α > 0, except α = 1.1862... (Figure 3.4).

For this aspect ratio, the p = 3 instability does not occur at O (ε3). In fact, Figure 3.4 shows

that, if α approaches 1.1862.... for fixed ε, the numerical p = 3 isola shrinks to a point on

the imaginary axis. We conjecture that HPBW Stokes waves with aspect ratio α = 1.1862...

do not have a p = 3 instability, even beyond O (ε3). Indeed, in the next subsection, we find

that λ4 is purely imaginary, so Stokes waves with aspect ratio α = 1.1862... do not exhibit

p = 3 instabilities to at least O (ε4).

Assuming α ̸= 1.1862..., µ3 ∈ (−M3,M3) parameterizes an ellipse asymptotic to the

p = 3 high-frequeny isola; see Figure 3.5. The ellipse has semi-major and -minor axes that

scale with ε3. The center of this ellipse drifts along the imaginary axis like ε2 due to the
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Figure 3.5: (Left) The p = 3 isola with α = 1 and ε = 5 × 10−4 (zero- and second-order imaginary

corrections removed for better visibility). The solid red curve is the ellipse obtained by our perturbation

calculations. The blue circles are a subset of spectral elements from the numerically computed isola using the

FFH method. (Right) Floquet parameterization of the real (blue) and imaginary (red) components of the

isola (zero- and second-order imaginary and Floquet corrections removed for better visibility). Solid curves

illustrate perturbation results. Circles indicate the FFH method results.

purely imaginary correction found at O (ε2).

The interval of Floquet exponents that parameterizes the p = 3 isola is

µ ∈
(
µ0 + µ2ε

2 −M3ε
3, µ0 + µ2ε

2 +M3ε
3
)
+O

(
ε4
)
. (3.85)

The width of this interval is an order of magnitude smaller than that of the p = 2 isola.

Consequently, the p = 3 isola is more challenging to find numerically than the p = 2 isola

for methods like FFH (Table 3.1).

For α = 1 and |ε| < 5× 10−4, equation (3.85) provides an excellent approximation to the

numerically computed interval of Floquet exponents (Figure 3.6). Fourth-order corrections

are necessary to improve agreement between (3.85) and numerical computations for larger

ε; see Subsection 5.4 below.

Choosing µ2 = 0 maximizes the real part of λ3. Thus, the most unstable spectral element



73

Table 3.1: Intervals of Floquet exponents that parameterize the p = 2 and p = 3 high-frequency isolas

with ε = 10−3 and α = 1/2, 1, and 2. The first digit for which the boundary values disagree is underlined

and colored red. If a uniform mesh of Floquet exponents in [−1/2, 1/2] is used for numerical methods like

the FFH method, the spacing of the mesh must be finer than ε2 to capture the p = 2 instability and ε3 to

capture the p = 3 instability. The intervals vary with α as well, making it difficult to adapt and refine a

uniform mesh to find high-frequency isolas.

p = 2

α = 1
2

(-0.106478813547533, -0.106478633575956)

α = 1 (-0.260909131823605, -0.260908917941151)

α = 2 (-0.330352196060556, -0.330352275321770)

p = 3

α = 1
2

(-0.375448877009085, -0.375448875412116)

α = 1 (0.257196721100572, 0.257196721343587)

α = 2 (0.044058331346416, 0.044058331384758)

of the p = 3 isola has Floquet exponent

µ∗ = µ0 +

(
P2,m − P2,n

cg−1(µ0 +m)− cg1(µ0 + n)

)
ε2 +O

(
ε4
)
, (3.86)

and its real and imaginary components are

λr,∗ =

(
|S3|

2
√
ωα(µ0 +m)ωα(µ0 + n)

)
ε3 +O

(
ε4
)
, (3.87a)

λi,∗ = −Ω1(µ0 + n)−
(
P2,mcg1(µ0 + n)− P2,ncg−1(µ0 +m)

cg−1(µ0 +m)− cg1(µ0 + n)

)
ε2 +O

(
ε4
)
, (3.87b)

respectively. The expansion for λr,∗ is in excellent agreement with numerical results using

the FFH method (Figure 3.6). As with (3.85), corrections to µ∗ and λi,∗ at O (ε4) improve

the agreement between numerical and asymptotic results for these quantities.

Before proceeding to O (ε4), we solve (3.80) for w3, assuming solvability conditions
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Figure 3.6: (Left) The interval of Floquet exponents that parameterize the p = 3 isola as a function of

ε with α = 1 (zero- and second-order Floquet corrections removed for better visibility). Solid blue curves

indicate the boundaries of this interval according to our perturbation calculations. Blue circles indicate the

boundaries computed numerically by the FFH method. The solid red curve gives the Floquet exponent

corresponding to the most unstable spectral element of the isola according to our perturbation calculations.

Red circles indicate the same but computed numerically using the FFH method. (Right) The real (blue)

and imaginary (red) components of the most unstable spectral element of the isola as a function of ε (zero-

and second-order imaginary and Floquet corrections removed for better visibility). Solid curves illustrate

perturbation calculations. Circles illustrate the FFH method results.

(3.75a) and (3.75b) and normalization condition (3.48) are satisfied. We find

w3 =
m+3∑

j=n−3
j ̸=n−2

W3,je
ijx + γ3

 1

−ωα(m+µ0)
α(m+µ0)

eimx

 , (3.88)

where γ3 is arbitrary and W3,n−2 = 0 (since T3,n−2 = 0).

3.6.4 The O (ε4) Problem

At O (ε4), the spectral problem (3.27) is

(Lµ0,0 − λ0)w4 =
4∑

j=2

λjw3−j −
4∑

j=1

Lj|µ1=0w3−j, (3.89)
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where Lj|µ1=0 are as before and

L4|µ1=0 = α

L(1,1)
4 L(1,2)

4

L(2,1)
4 L(1,1)

4

 , (3.90)

where

L(1,1)
4 = ic0µ4 − iµ3u1 + iµ2(c2 − u2) + (c4 − u4)(iµ0 + ∂x)− u4,x, (3.91a)

L(1,2)
4 = −iµ4 − iµ3η1 − iµ2η2 − η4(iµ0 + ∂x)− η4,x, (3.91b)

L(2,1)
4 = −iµ4 sech

2(α(µ0 +D)) + iαµ2
2 sech(α(µ0 +D)) tanh(α(µ0 +D)). (3.91c)

Substituting ηj, uj, and wj−1 for j ∈ {1, 2, 3} into (3.89), we find

(Lµ0,0 − λ0)w4 =
m+4∑

j=n−4
j ̸=n−3

T4,je
ijx, (3.92)

where T4,n−3 = 0 (since W3,n−2 = 0).

The solvability conditions for (3.92) can be expressed as 2 iS3,n

2γ0 2(λ3 + iµ3cg−1(µ0 +m))

λ4
γ1

+ iγ2

 0

T4,m

 = −2i

 µ4cg1(µ0 + n)− P4,n

γ0
(
µ4cg−1(µ0 +m)− P4,m

)
 .

(3.93)

Expressions for P4,j are in the Mathematica file. Using the solvability condition (3.75b)

together with the collision condition (3.32) shows that T4,m ≡ 0. What remains is a linear

system for λ4 and γ1.

If α ̸= 1.1862..., then an application of the third-order solvability condition (3.81a) shows

that, for µ3 ∈ (−M3,M3),

det

 2 iS3,n

2γ0 2(λ3 + iµ3cg−1(µ0 +m))

 = 8λ3,r, (3.94)

where λ3,r = Re(λ3). For µ3 in this interval, λ3,r ̸= 0 by construction; thus, (3.93) is an

invertible linear system.
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We solve (3.93) for λ4 by Cramer’s rule, using (3.81a) to eliminate the dependence on γ0.

Then,

λ4 = i

[
(λ3 + iµ3cg−1(µ0 +m))(cg1(µ0 + n)− P4,n)

2λ3,r

+
(λ3 + iµ3cg1(µ0 + n))(cg−1(µ0 +m)− P4,m)

2λ3,r

]
.

(3.95)

To simplify further, we separate the real and imaginary components of (3.95). Since λ2

(3.76a) is purely imaginary, P4,j are real-valued, and µ3 ∈ (−M3,M3), we have

λ3,i = Im(λ3) = −iµ3

(
cg−1(µ0 +m) + cg1(µ0 + n)

2

)
, (3.96)

according to (3.83). Equation (3.95) decomposes into λ4 = λ4,r + iλ4,i, where

λ4,r =
µ3

4

[
(cg−1(µ0 +m)− cg1(µ0 + n))

(
µ4(cg−1(µ0 +m)− cg1(µ0 + n)) + P4,n − P4,m

)]
,

(3.97a)

λ4,i = −1

2

[
µ4(cg−1(µ0 +m) + cg1(µ0 + n))− (P4,m − P4,n)

]
. (3.97b)

As |µ3| →M3, λ3,r → 0. If λ4,r is to remain bounded, the numerator of (3.97a) must vanish

in this limit. Since cg−1(µ0 +m) ̸= cg1(µ0 + n), we must have

µ4 =
P4,m − P4,n

cg−1(µ0 +m)− cg1(µ0 + n)
. (3.98)

We refer to this equality as the regular curve condition: it ensures that the curve asymptotic

to the p = 3 isola is continuous near its intersections with the imaginary axis. From the

regular curve condition, we get

λ4 = −i
(
P4,mcg1(µ0 + n)− P4,ncg−1(µ0 +m)

cg−1(µ0 +m)− cg1(µ0 + n)

)
. (3.99)

As expected, the Floquet parameterization and imaginary component of the p = 3 isola have

a nonzero correction at O (ε4). These corrections improve the agreement between numerical

and asymptotic results observed at the previous order, see Figure 3.7 and Figure 3.8. No

corrections to the real component of the isola are found at fourth order.
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Figure 3.7: (Left) The p = 3 isola with α = 1 and ε = 5 × 10−4 (zero- and second-order imaginary cor-

rections removed for better visibility). Solid and dashed red curves are given by perturbation calculations

to O
(
ε4
)
and O

(
ε3
)
, respectively. Blue circles are a subset of spectral elements from the numerically com-

puted isola using the FFH method. (Right) The Floquet parameterization of the real (blue) and imaginary

(red) components of the isola (zero- and second-order imaginary and Floquet corrections removed for better

visibility). Solid and dashed curves illustrate perturbation calculations to O
(
ε4
)
and O

(
ε3
)
, respectively.

Circles indicate the FFH method results.

Remark 3.6.2. If α = 1.1862..., one can show that λ3 = 0 = µ3 and S3,n = 0. Applying the

Fredholm alternative to (3.93) gives (3.98). Then, λ4 is given by (3.99), and γ0 = 1. The

constant γ1 remains arbitrary at this order (only for this α).

3.7 Conclusions

We have extended the formal perturbation method for the Kawahara equation to a nonlinear

vector equation with a nonlocal operator. Using this method, we have obtained asymptotic

behaviors of the largest (p = 2, 3) high-frequency instabilities of the HPBW system, including

(i) the interval of Floquet exponents that asymptotically parameterize the pth isola,

(ii) the leading-order behavior of the most unstable eigenvalues,
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Figure 3.8: (Left) The interval of Floquet exponents that parameterize the p = 3 isola as a function of

ε with α = 1 (zero- and second-order Floquet corrections removed for better visibility). Solid and dashed

blue curves indicate the boundaries of this interval according to perturbation calculations to O
(
ε4
)
and

O
(
ε3
)
, respectively. Blue circles indicate the boundaries computed numerically by the FFH method. The

solid red curve gives the Floquet exponent corresponding to the most unstable spectral element of the isola

according to our perturbation calculations. Red circles indicate the same but computed numerically using

the FFH method. (Right) The real (blue) and imaginary (red) components of the most unstable spectral

element of the isola as a function of ε (zero-order imaginary correction removed for better visibility). Solid

and dashed curves illustrate perturbation calculations to O
(
ε4
)
and O

(
ε3
)
, respectively. Circles illustrate

the FFH method results.

(iii) the leading-order curve asymptotic to the isola.

From these expansions, we are able to conclude that Stokes waves of HPBW are unstable to

high-frequency instabilities in all depths, similar to those of Euler’s equations. This conclu-

sion is also well-supported with numerical results using the FFH method, giving confidence

that our expansions are correct.

Although we restrict to the p = 2 and p = 3 high-frequency instabilities in this chapter,

our method works for p > 3 isolas as well. We conjecture that this method yields the first

real-component correction of the isola at O (εp). Proving this claim is challenging, however,

as one incurs imaginary corrections to the isolas before the first real correction is obtained.



79

Chapter 4

HIGH-FREQUENCY INSTABILITIES OF EULER’S
EQUATIONS

4.1 Introductory Remarks

Having successfully developed a perturbation method for high-frequency isolas of the Kawa-

hara equation and HPBW system, we return to Euler’s equations on a 2π/κ-periodic domain:

ϕxx + ϕzz = 0 in {(x, z) : |x| < π/κ and− h < z < η}, (4.1a)

ηt + ηxϕx = ϕz on z = η, (4.1b)

ϕt +
1
2

(
ϕ2
x + ϕ2

z

)
+ gη = 0 on z = η, (4.1c)

ϕz = 0, on z = −h, (4.1d)

with

η(−π/κ, t) = η(π/κ, t), (4.2a)

ϕx(−π/κ, z, t) = ϕx(π/κ, z, t), ϕz(−π/κ, z, t) = ϕz(π/κ, z, t). (4.2b)

In this chapter, we derive formal asymptotic expressions for the Stokes waves of (4.1a)-(4.1d)

as well as their high-frequency isolas in both finite and infinite depth. For each isola, we

obtain

(i) an interval of Floquet exponents that is asymptotic to the interval parameterizing the

isola,

(ii) an asymptotic expansion for the most unstable eigenvalue on the isola, and

(iii) a closed-form expression for the curve asymptotic to the isola,
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similar to the previous chapters. Crucial to our approach is again the expansion for the

Floquet parameterization of the isola as power series in the Stokes wave amplitude ε.

Our asymptotic expressions are compared directly with numerical results of the Floquet-

Fourier-Hill (FFH) method, to excellent agreement. For almost all aspect ratios κh (except a

few isolated values), our asymptotic expressions predict that Stokes waves of sufficiently small

(but finite) amplitude are unstable with respect to high-frequency instabilities, extending

recent work by Hur and Yang [53] that rigorously establishes the high-frequency instability

closest to the origin for κh ∈ (0.86430..., 1.00804...). Thus, the results in this chapter show

formally that Stokes waves in all depths are unstable to high-frequency instabilities.

4.2 The AFM Formulation of Euler’s Equations

Euler’s equations (4.1a)-(4.1d) together with the auxiliary conditions (4.2a)-(4.2b) constitute

a boundary value problem for Laplace’s equation in a domain evolving nonlinearly in time.

Depending on the application, other formulations of gravity waves may be preferred over

(4.1a)-(4.1d). For example, in the study of 1D waves, conformal transformations [39] are

used to map the bulk of the fluid to a time-independent domain, at the cost of losing the

original physical variables. For 1D and 3D waves, Zakharov [95] writes (4.1a)-(4.1d) as

a Hamiltonian system with canonical Poisson structure in physical variables. Going one

step further, Craig and Sulem [26] express (4.1a)-(4.1d) as a system of nonlinear evolution

equations for the surface variables η and q = ϕ(x, η, t). This formulation introduces the

nonlocal Dirichlet-to-Neumann operator (DNO):

G(η)q = ϕz

∣∣
z=η

− ηxϕx

∣∣
z=η

, (4.3)

which maps the velocity potential at the surface to its normal derivative.

We consider the Ablowitz-Fokas-Musslimani (AFM) formulation, first proposed in [1].

This formulation has dependence only on surface variables, as in the Zakharov or Craig and

Sulem formulations, but avoids direct numerical computations of the Dirichlet-to-Neumann

operator.
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As shown in [2, 76], Euler’s equations (4.1a)-(4.1d) together with the lateral periodic

boundary conditions (4.2a)-(4.2b) are equivalent to the following system for the surface

variables η and q:∫ π/κ

−π/κ

e−iκmx
[
ηt cosh (κm (η + h)) + iqx sinh (κm (η + h))

]
dx = 0, m ∈ Z \ {0}, (4.4a)

qt +
1

2
q2x + gη − 1

2

(ηt + ηxqx)
2

1 + η2x
= 0. (4.4b)

We call (4.4a) and (4.4b) the nonlocal and local equations of the AFM formulation, respec-

tively.

Anticipating a Stokes wave calculation in the next section, we transform (4.4a)-(4.4b) to

a traveling frame x→ x− ct:∫ π/κ

−π/κ

e−iκmx
[
(ηt − cηx) cosh (κm (η + h)) + iqx sinh (κm (η + h))

]
dx = 0, m ∈ Z \ {0},

(4.5a)

qt − cqx +
1

2
q2x + gη − 1

2

(ηt − cηx + ηxqx)
2

1 + η2x
= 0. (4.5b)

Unless otherwise stated, x represents the horizontal coordinate in the traveling frame for the

remainder of this work.

Non-dimensionalizing (4.5a)-(4.5b) according to x → x/κ, t → t/
√
gκ, η → η/κ, q →

q
√
g/κ3, c→ c

√
g/κ, and h→ α/κ, we arrive at∫ π

−π

e−imx
[
(ηt − cηx) cosh (m (η + α)) + iqx sinh (m (η + α))

]
dx = 0, m ∈ Z \ {0}, (4.6a)

qt − cqx +
1

2
q2x + η − 1

2

(ηt − cηx + ηxqx)
2

1 + η2x
= 0, (4.6b)

where α = κh > 0 is the aspect ratio of the surface profile η (in dimensional variables).

Without loss of generality, we study solutions of the nondimensional equations (4.6a)-(4.6b).

Remark 4.2.1. The rescaling performed on Euler’s equations is inspired by the linearized

dispersion relation of water waves in infinite depth and, hence, is well-behaved in this limit.

This is to be contrasted with the rescaling used on the HPBW system, which does not hold

as h→ ∞.
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Remark 4.2.2. Dividing (4.6a) by cosh(mα) and taking the limit α → ∞ yields (after some

manipulation) the nonlocal equation in infinite depth:∫ π

−π

e−imx+|m|η
[
ηt − cηx + isgn (m) qx

]
dx = 0, m ∈ Z \ {0}. (4.7)

The local equation remains unchanged in infinite depth.

4.3 Stokes Wave Solutions

Using the nondimensional AFM formulation (4.6a)-(4.6b), Stokes waves are defined as sur-

face displacements ηS together with velocity potentials (at the surface) qS that satisfy the

following properties:

(i) ηS and qS are time-independent, infinitely smooth solutions of (4.6a)-(4.6b).

(ii) ηS and qS,x are 2π-periodic with respect to x (but not so of qS).

(iii) ηS, qS,x, and c (the velocity of the Stokes wave) depend analytically on a small param-

eter ε such that

ηS
∣∣
ε=0

= 0 = qS,x
∣∣
ε=0

and ||ηS||L2 = ε+O
(
ε2
)

as ε→ 0.

(iv) ηS and qS,x are even in x without loss of generality1, and c(ε) is even in ε.

(v) ηS has zero average over one period.

As mentioned in the Introduction, the existence of these waves is proven in [64, 71, 87]. In

this section, we derive power series expansions of ηS, qS,x, and c in the small parameter ε

using the nondimensional AFM formulation. These expansions are required for the stability

calculations considered in later sections.

1These properties follow from the time-independent versions of (4.6a)-(4.6b), which respect the symmetry
x → x+ ϕ for any ϕ ∈ R as well as the symmetry x → −x and c → −c.
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Equating time derivatives to zero in (4.6a)-(4.6b) by property (i), integrating the cosh

term in (4.6a) by parts using property (ii), and solving for qx in (4.6b), we arrive at the

following equations determining the Stokes waves:∫ π

−π

e−imx
√(

1 + η2S,x
)
(c2 − 2ηS) sinh(m(ηS + α))dx = 0, m ∈ Z \ {0}, (4.8a)

qS,x = c±
√(

1 + η2S,x
)
(c2 − 2ηS). (4.8b)

By property (iii), the positive branch of (4.8b) is defined for left-traveling waves (c < 0),

while the negative branch is defined for right-traveling waves (c > 0) [23]. In what follows,

we consider right-traveling waves. Similar results hold for the other case.

Remark 4.3.1. In infinite depth, (4.8a) becomes∫ π

−π

e−imx+|m|ηS
√(

1 + η2S,x
)
(c2 − 2ηS)dx = 0, m ∈ Z \ {0}. (4.9)

By properties (ii) and (iv), ηS has a Fourier cosine series. We define the small-amplitude

parameter ε as the first Fourier cosine mode of ηS:

ε =
1

π

∫ π

−π

ηS cos(x)dx. (4.10)

Then, by property (iii),

ηS(x; ε) = ε cos(x) +O
(
ε2
)
, (4.11)

for |ε| ≪ 1. The leading-order term of ηS completely resolves the first Fourier cosine mode:

higher-order corrections do not include terms proportional to cos(x) as a result.

Using properties (iii) and (iv), we write ηS and c as power series in ε:

ηS(x; ε) =
∞∑
j=1

ηj(x)ε
j, (4.12)

c(ε) =
∞∑
j=0

c2jε
2j. (4.13)

Both of these series are substituted into (4.8a) and, after equating powers of ε, a triangular

sequence of linear integral equations for ηj and c2j is found. Each of these integral equations

depends on m, which can be any nonzero integer.
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Remark 4.3.2. Since ηS is even in x, the integrand of (4.8a) modulo the complex exponential

is even in x. Therefore, m ∈ Z+ without loss of generality.

The first nontrivial integral equation in this sequence is∫ π

−π

e−imx
[
mc20 cosh(mα)− sinh(mα)

]
η1(x)dx = 0. (4.14)

From above, η1(x) = cos(x). If (4.14) holds for all m ∈ Z+,

c20 = tanh(α), (4.15)

otherwise (4.14) is not satisfied when m = 1. Since we study right-traveling waves, we choose

c0 > 0.

For the jth integral equation in the sequence (j ≥ 2), one finds

ηj(x) =

j∑
ℓ=2

ℓ even

N̂j,ℓ cos(ℓx) for j even, (4.16a)

ηj(x) =

j∑
ℓ=3
ℓ odd

N̂j,ℓ cos(ℓx) for j odd, (4.16b)

where the coefficients N̂j,ℓ are determined by the jth equation with m = ℓ. No corrections

to the velocity c are found when j is even. When j is odd, cj−1 is determined by the jth

equation with m = 1, similar to the j = 1 case considered above. This correction is chosen

so that ηj(x) has no terms proportional to cos(x).

Expansions of ηS and c are substituted into (4.8b). After equating powers of ε, an

expansion for qS,x follows immediately. In general,

qS,x(x; ε) =
∞∑
j=1

qj,x(x)ε
j. (4.17)

The corrections qj,x(x) have the same structure as (4.16a)-(4.16b), but also include constant

modes (when j is even) and modes proportional to cos(x) (when j is odd). Thus, qS,x has

nonzero average, and the first Fourier cosine mode of qS,x has corrections beyond O (ε), unlike

ηS.
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Remark 4.3.3. Integrating (4.17) term-by-term gives qS. The constant of integration can

be eliminated by a Galilean transformation of (4.8b). Because qS,x has nonzero average, qS

exhibits linear growth in x. This behavior captures the mean flow induced by the traveling

frame.

Explicit representations for the expansions of ηS, qS,x, and c up to O (ε4) are as follows.

For ηS and qS,

ηS(x; ε) = ε cos(x) + ε2N̂2,2 cos(2x) + ε3N̂3,3 cos(3x) + ε4
(
N̂4,2 cos(2x) + N̂4,4 cos(4x)

)
+O

(
ε5
)
, (4.18a)

qS,x(x; ε) =
ε

c0
cos(x) + ε2

(
Q̂2,0 + Q̂2,2 cos(2x)

)
+ ε3

(
Q̂3,1 cos(x) + Q̂3,3 cos(3x)

)
+ ε4

(
Q̂4,0 + Q̂4,2 cos(2x) + Q̂4,4 cos(4x)

)
+O

(
ε5
)
, (4.18b)

where

N̂2,2 =
5 cosh(α) + cosh(3α)

8 sinh3(α)
, (4.19a)

N̂3,3 =
3(14 + 15 cosh(2α) + 6 cosh(4α) + cosh(6α))

256 sinh6(α)
, (4.19b)

N̂4,2 =
215− 418 cosh(2α)− 472 cosh(4α) + 10 cosh(6α) + 17 cosh(8α)

3072c20 sinh
8(α)

, (4.19c)

N̂4,4 =
203 + 347 cosh(2α) + 158 cosh(4α) + 76 cosh(6α) + 23 cosh(8α) + 3 cosh(10α)

768c20(2 + 3 cosh(2α)) sinh8(α)
,

(4.19d)

Q̂2,0 =
1

4c30 cosh
2(α)

, (4.19e)

Q̂2,2 =
3 + 2 cosh(2α) + cosh(4α)

8c0 sinh
3(α) cosh(α)

, (4.19f)

Q̂3,1 = −
(
cosh(2α) (2 + cosh(2α))

16c0 sinh
4(α)

)
, (4.19g)

Q̂3,3 =
3 (26− 3 cosh(2α) + 10 cosh(4α) + 3 cosh(6α))

256c0 sinh
6(α)

, (4.19h)

Q̂4,0 =
48 + 47 cosh(2α)− 20 cosh(4α)− 3 cosh(6α)

512c0 sinh
7(α) cosh(α)

, (4.19i)
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Q̂4,2 = −
(
240 + 82 cosh(2α) + 688 cosh(4α) + 309 cosh(6α)− 16 cosh(8α)− 7 cosh(10α)

6144c0 sinh
9(α) cosh(α)

)
,

(4.19j)

Q̂4,4 =
1

1536c0(2 + 3 cosh(2α)) sinh9(α) cosh(α)

(
408 + 638 cosh(2α) + 230 cosh(4α)

+ 171 cosh(6α) + 124 cosh(8α) + 43 cosh(10α) + 6 cosh(12α)

)
. (4.19k)

For the velocity of the Stokes wave c,

c(ε) = c0 + c2ε
2 + c4ε

4 +O
(
ε6
)
, (4.20)

where

c20 = tanh(α), (4.21a)

c2 =
6 + 2 cosh(2α) + cosh(4α)

16c0 sinh
3(α) cosh(α)

, (4.21b)

c4 =
212 + 55 cosh(2α)− 98 cosh(4α)− 23 cosh(6α) + 14 cosh(8α) + 2 cosh(10α)

2048c0 sinh
9(α) cosh(α)

. (4.21c)

The Stokes expansions in infinite depth are obtained from the above with α → ∞.

4.4 The Spectral Stability Problem

We consider perturbations to the Stokes waves of the formη(x, t; ε, ρ)
q(x, t; ε, ρ)

 =

ηS(x; ε)
qS(x; ε)

+ ρ

ηρ(x, t)
qρ(x, t)

+O
(
ρ2
)
, (4.22)

where |ρ| ≪ 1 is a parameter independent of ε. The perturbations ηρ and qρ are sufficiently

smooth functions of x and t that are bounded over the real line for each t ≥ 0.

The nonlocal equation (4.6a) assumes η, ηt, and qx are 2π-periodic in x, which is not

required of our perturbations. We modify (4.6a) to allow η, ηt, and qx ∈ C0(R) ∩ L∞(R) for

each t ≥ 0. The appropriate modification [35] is〈
e−ikx

[
(ηt − cηx) cosh (k (η + α)) + iqx sinh (k (η + α))

]〉
= 0, k ∈ R \ {0}, (4.23)
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where

⟨f(x)⟩ = lim
L→∞

1

L

∫ L/2

−L/2

f(x)dx, (4.24)

for any f(x) ∈ C0(R) ∩ L∞(R) [12, 35]. If η, ηt, and qx are 2π-periodic in x for each t ≥ 0,

then (4.23) reduces to (4.6a).

Substituting (4.22) into (4.6b) and (4.23) and equating powers of ρ, terms of O (ρ0)

necessarily cancel, since ηS and qS solve (4.6b) and (4.23). At O (ρ), one finds the governing

equations for ηρ and qρ:〈
e−ikx

[
cCkηρ,x + k (cSkηS,x − iCkqS,x) ηρ − iSkqρ,x

]〉
=
〈
e−ikxCkηρ,t

〉
, (4.25a)

ηS,xζ
2ηρ,x − ηρ − ζqρ,x = qρ,t − ηS,xζηρ,t, (4.25b)

where

Ck = cosh(k(ηS + α)), Sk = sinh(k(ηS + α)), ζ =
qS,x − c

1 + η2S,x
. (4.26)

Equations (4.25a)-(4.25b) are autonomous in t. We separate variables to findηρ(x, t)
qρ(x, t)

 = eλt

N(x)

Q(x)

 , (4.27)

where λ ∈ C controls the growth rates of the perturbations. The functions N(x) and Q(x)

satisfy

〈
e−ikx

[
cCkNx + k (cSkηS,x − iCkqS,x)N − iSkQx

]〉
= λ

〈
e−ikxCkN

〉
, (4.28a)

ηS,xζ
2Nx −N − ζQx = λ (Q− ηS,xζN) . (4.28b)

Equations (4.28a)-(4.28b) are invariant under the shift x → x+ 2π by the periodicity of ηS

and qS,x. Therefore, we expect the solutions N and Q to have Bloch form [35]N(x)

Q(x)

 = eiµx

N (x)

Q(x)

 , (4.29)
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where µ ∈ R is the Floquet exponent and N and Q are sufficiently smooth and 2π-periodic.

Note that by redefining N and Q, µ ∈ [−1/2, 1/2), without loss of generality.

Substituting (4.29) into (4.28a)-(4.28b), we arrive at

〈
e−i(k−µ)x

[
cCkDxN + k (cSkηS,x − iCkqS,x)N − iSkDxQ

]〉
= λ

〈
e−i(k−µ)xCkN

〉
, (4.30a)

ηS,xζ
2DxN −N − ζDxQ = λ (Q− ηS,xζN ) , (4.30b)

where Dx = iµ+ ∂x.

The integrands of the averaging operators in (4.30a) are 2π-periodic except for the com-

plex exponentials. These operators evaluate to zero unless k − µ = n ∈ Z [35]. For such k,

(4.30a) becomes

〈
e−inx

[
cCn+µDxN + (n+ µ) (cSn+µηS,x − iCn+µqS,x)N − iSn+µDxQ

]〉
= λ

〈
e−inxCn+µN

〉
, n ∈ Z. (4.31)

The averaging operators of (4.31) reduce to Fourier transforms:

〈
e−inxf(x)

〉
=

1

2π

∫ π

−π

e−inxf(x)dx = Fn[f(x)], (4.32)

for any f(x) ∈ L2
per (−π, π). The inverse transform is

F−1[{fn}] =
∞∑

n=−∞

fne
inx, (4.33)

provided {fn} ∈ ℓ2(Z). Using the inverse transform on (4.31), we find

∞∑
n=−∞

einxFn

[
cCn+µDxN + (n+ µ) (cSn+µηS,x − iCn+µqS,x)N

]
+

∞∑
n=−∞

einxFn

[
− iSn+µDxQ

]
= λ

∞∑
n=−∞

einxFn [Cn+µN ] . (4.34)

Equations (4.30b) and (4.34) are written compactly as

Lµ,εwµ,ε = λµ,εRµ,εwµ,ε, (4.35)
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where λ = λµ,ε, wµ,ε = (N ,Q)T , and

Lµ,ε =

L(1,1)
µ,ε L(1,2)

µ,ε

L(2,1)
µ,ε L(2,2)

µ,ε

 , Rµ,ε =

R(1,1)
µ,ε 0

R(2,1)
µ,ε 1

 , (4.36)

L(1,1)
µ,ε [N ] =

∞∑
n=−∞

einxFn

[
cCn+µDxN + (n+ µ) (cSn+µηS,x − iCn+µqS,x)N

]
, (4.37a)

L(1,2)
µ,ε [Q] =

∞∑
n=−∞

einxFn

[
− iSn+µDxQ

]
, (4.37b)

L(2,1)
µ,ε [N ] = ηS,xζ

2DxN −N , (4.37c)

L(2,2)
µ,ε [Q] = −ζDxQ, (4.37d)

R(1,1)
µ,ε [N ] =

∞∑
n=−∞

einxFn [Cn+µN ] , (4.37e)

R(2,1)
µ,ε [N ] = −ηS,xζN . (4.37f)

For fixed ε, (4.35) represents a one-parameter family of generalized eigenvalue problems for

the linear operators Lµ,ε and Rµ,ε.

To be well-defined, these operators require wµ,ε to be at least once weakly differentiable

with respect to x in both components. Moreover, because Lµ,ε and Rµ,ε depend on Cn+µ and

Sn+µ, which satisfy the bounds

|Cn+µ| ≤ e|n+µ|(α+||ηS ||∞), |Sn+µ| ≤ e|n+µ|(α+||ηS ||∞), (4.38)

Both Fn[wµ,ε] and Fn[wµ,ε,x] must decay exponentially fast in both components as |n| → ∞.

For real-valued Stokes waves, ||ηS||∞ ≤ c2/2, see (4.8a). Therefore, we require wµ,ε ∈

EH1
per(−π, π)× EH1

per(−π, π), where

EH1
per(−π, π) =

{
f :

∞∑
n=−∞

(
1 + |n|2

)
e|n+µ|(2α+c2)|Fn[f ]|2 <∞

}
. (4.39)

Remark 4.4.1. Alternatively, the exponential growth of Cn+µ and Sn+µ can be removed from

the operators Lµ,ε and Rµ,ε by left multiplication with the following Fourier multiplier:

Mµ,ε =

e−|D+µ|(α+c2/2) 0

0 1

 , (4.40)
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where D = −i∂x. If Lµ,ε andRµ,ε are redefined in this way, wµ,ε can be relaxed to H1
per(−π, π)×

H1
per(−π, π), and (4.35) becomes a generalized eigenvalue problem densely defined over L2

per(−π, π)×

L2
per(−π, π) for each µ ∈ [−1/2, 1/2) and ε sufficiently small.

Remark 4.4.2. In infinite depth,

L(1,1)
µ,ε [N ] =

∞∑
n=−∞

einxFn

[
e|n+µ|ηS

(
cDxN +

(
cηS,x|n+ µ| − i(n+ µ)qS,x

)
N
)]
, (4.41a)

L(1,2)
µ,ε [Q] =

∞∑
n=−∞

einxFn

[
e|n+µ|ηS

(
− isgn(n+ µ)DxQ

)]
, (4.41b)

R(1,1)
µ,ε [N ] =

∞∑
n=−∞

einxFn

[
e|n+µ|ηSN

]
. (4.41c)

All other entries are the same as above.

The spectrum of (4.35) has a countable collection of finite-multiplicity eigenvalues λµ,ε

for each µ. The union of these eigenvalues over µ ∈ [−1/2, 1/2) is defined as the stability

spectrum of Stokes waves with amplitude ε. By quadrafold symmetry, the Stokes waves are

stable only if their stability spectrum is a subset of the imaginary axis, as mentioned in the

Introduction.

4.5 Necessary Conditions for High-Frequency Instabilities

When ε = 0, (4.35) reduces to a generalized eigenvalue problem with constant coefficients:ic0(µ+D) cosh(α(µ+D)) (µ+D) sinh(α(µ+D))

−1 ic0(µ+D)

wµ,0

= λµ,0

cosh(α(µ+D)) 0

0 1

wµ,0, (4.42)

where D = −i∂x. The eigenvalues of (4.42) are

λ
(σ)
µ,0,n = −iΩσ(n+ µ), σ = ±1, n ∈ Z, (4.43)
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with

Ωσ(z) = −c0z + σω(z), (4.44a)

ω(z) = sgn(z)
√
z tanh(αz). (4.44b)

Equation (4.44a) is the linear dispersion relation of the nondimensional Euler equations in a

frame traveling with velocity c0. The parameter σ specifies the branch of the dispersion rela-

tion. As expected, (4.43) gives a countable collection of eigenvalues for each µ ∈ [−1/2, 1/2).

These eigenvalues are purely imaginary, and therefore, the zero-amplitude Stokes waves are

spectrally stable.

High-frequency instabilities develop from nonzero eigenvalues of (4.42) that have collided

for a Floquet exponent µ0 that satisfies:

λ
(σ1)
µ0,0,n

= λ
(σ2)
µ0,0,n+p ̸= 0, (4.45)

for p ∈ Z \ {0}.These eigenvalues occur only if σ1 ̸= σ2 and |p| > 1 [36]. More specifically,

we have the following theorem:

Theorem 4.5.1. Let c0 > 0, σ1 = 1, and σ2 = −1. For each p ∈ Z \ {0,±1}, there exists a

unique Floquet exponent µ0,p ∈ [−1/2, 1/2) and unique integer np such that

λ0,p = λ
(1)
µ0,p,0,np

= λ
(−1)
µ0,p,0,np+p ̸= 0. (4.46)

The eigenvalues have the symmetry λ0,−p = −λ0,p, and the magnitudes of the eigenvalues are

strictly monotonically increasing as |p| → ∞. The corresponding eigenfunctions are

w0,p = β0

 1

−i
ω(np+µ0,p)

 einpx + γ0

 1

i
ω(np+p+µ0,p)

 ei(np+p)x, (4.47)

where ω is given by (4.44b) and β0, γ0 ∈ C \ {0}.

An important corollary is the following:
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Corollary 4.5.1. Let c0 > 0. Let λ0,p be given by (4.46) for some p ∈ Z \ {0,±1}. Then,

ω(np + µ0,p)ω(np + p+ µ0,p) > 0, (4.48)

and

cg,1(np + µ0,p) ̸= cg,−1(np + p+ µ0,p), (4.49)

where cg,σ(z) is the group velocity of Ωσ(z), i.e., cg,σ(z) = Ωσ,z(z).

Similar results hold if c0 < 0 provided σ1 = −1 and σ2 = 1. To prove Theorem 4.4.1 and

Corollary 4.4.1, note that Ωσ in (4.44b) is the same as that for the HPBW system up to a

factor of
√
α. Then, Theorem 3.3.1 and Lemma 3.3.3 imply Theorem 4.4.1 and Corollary

4.4.1, respectively.

As with the HPBW system, the product (4.48) is equivalent to the Krein condition devel-

oped by MacKay and Saffman [67] and, in more generality, Deconinck and Trichtchenko [36].

Corollary 4.4.1 guarantees this condition is satisfied for all nonzero collided eigenvalues of

(4.42). As we will see, both (4.48) and (4.49) are crucial to the formal asymptotic expansions

of the high-frequency instabilities.

Remark 4.5.1. In infinite depth, µ0,p and λ0,p are known explicitly. For c0 > 0,

µ0,p = −sgn(p)

8

(
(−1)p + 1

)
, (4.50a)

λ0,p = i
sgn(p)

4

(
1− p2

)
. (4.50b)

These eigenvalues have the conjugate symmetry λ0,−p = −λ0,p, and {|λ0,p|} is strictly mono-

tonically increasing as |p| → ∞, similar to the finite-depth case.

4.6 Asymptotic Description of the p = 2 High-Frequency Instability

We develop a perturbation method to obtain the leading-order behavior of the high-frequency

isola that arises from λ0,p with p = 2. According to Theorem 4.4.1, this isola is the closest to
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the origin. We assume the spectral data of (4.35) corresponding to the isola vary analytically

with ε, including the Floquet exponent:

λµ(ε),ε = λ0,p + λ1ε+ λ2ε
2 +O

(
ε3
)
, (4.51a)

wµ(ε),ε = w0,p +w1ε+w2ε
2 +O

(
ε3
)
, (4.51b)

µ(ε) = µ0,p + µ1ε+ µ2ε
2 +O

(
ε3
)
. (4.51c)

If the Floquet exponent is fixed, at most two eigenvalues are found on the isola by standard

eigenvalue perturbation theory [57]. If instead the Floquet exponent is formally expanded

in ε, all of the eigenvalues on the isola can be approximated at once. We see below that

the leading-order behavior of these eigenvalues is obtained at O (ε2), similar to the HPBW

system.

Remark 4.6.1. Choosing p = −2 gives the isola conjugate to the p = 2 isola. Thus, we

choose p = 2 without loss of generality.

Similar to previous chapters, we impose the following normalization on wµ(ε),ε:

Fnp [wµ(ε),ε · e1] = 1, (4.52)

where np ∈ Z is given by Theorem 4.4.1 and e1 = (1, 0)T . Then, β0 = 1 in (4.47), and

all subsequent corrections of wµ(ε),ε do not include the Fourier mode exp(inpx) in the first

component. The eigenvalue and Floquet expansions, (4.51a) and (4.51c) above, are unaf-

fected by this normalization. For ease of notation, let λ0,p → λ0, w0,p → w0, µ0,p → µ0, and

np → n.

Remark 4.6.2. Several of the asymptotic expressions that follow are suppressed for ease of

readability. See the Mathematica file wwp isola p2.nb for access to these expressions.

4.6.1 The O (ε) Problem

Substituting expansions (4.51a)-(4.51c) into the generalized eigenvalue problem (4.35) and

equating powers of ε, terms of O (ε0) cancel by the choice of λ0, w0, and µ0. Terms of O (ε)
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yield

(L0 − λ0R0)w1 = (λ1R0 − (L1 − λ0R1))w0, (4.53)

where

Lj =
1

j!

∂jLµ(ε),ε

∂εj

∣∣∣
ε=0

, Rj =
1

j!

∂jRµ(ε),ε

∂εj

∣∣∣
ε=0

, j ∈ W. (4.54)

If (4.53) can be solved for w1, the inhomogeneous terms of (4.53) must be orthogonal to

the nullspace of the adjoint of L0 − λ0R0 by the Fredholm alternative. A direct calculation

shows

Null
(
(L0 − λ0R0)

†
)
= Span


 1

−iω (n+ µ0)

 einx,

 1

iω (n+ p+ µ0)

 ei(n+p)x

 . (4.55)

Hence, we impose the following solvability conditions on (4.53):〈 1

−iω (n+ µ0)

 einx, (λ1R0 − (L1 − λ0R1))w0

〉
= 0, (4.56a)

〈 1

iω (n+ p+ µ0)

 ei(n+p)x, (λ1R0 − (L1 − λ0R1))w0

〉
= 0, (4.56b)

where ⟨·, ·⟩ is the standard complex inner-product on L2
per(−π, π)×L2

per(−π, π). Simplifying

both conditions, we arrive at

λ1 + iµ1cg,1 (n+ µ0) = 0, (4.57a)

γ0 (λ1 + iµ1cg,−1 (n+ p+ µ0)) = 0. (4.57b)

Since γ0 ̸= 0 and cg,1 (n+ µ0) ̸= cg,−1 (n+ p+ µ0), we must have

λ1 = 0 = µ1. (4.58)

Thus no instabilities are found at O (ε).
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Before proceeding to O (ε2), we invert L0 − λ0R0 against its range to find the particular

solution of w1. Uniting the particular solution with the nullspace of L0 − λ0R0,

w1 =

n+p+1∑
j=n−1
j ̸=n,n+p

Ŵ1,je
ijx + β1

 1

−i
ω(n+µ0)

 einx + γ1

 1

i
ω(n+p+µ0)

 ei(n+p)x, (4.59)

where the coefficients Ŵ1,j depend on α (possibly through intermediate dependencies on

known zeroth-order results) and at most linearly on γ0. The parameter γ1 ∈ C is free at this

order. By our choice of normalization (4.52), β1 = 0. Thus,

w1 =

n+p+1∑
j=n−1
j ̸=n,n+p

Ŵ1,je
ijx + γ1

 1

i
ω(n+p+µ0)

 ei(n+p)x. (4.60)

4.6.2 The O (ε2) Problem

At O (ε2), the spectral problem (4.35) is

(L0 − λ0R0)w2 = λ2R0w0 − (L1 − λ0R1)w1 − (L2 − λ0R2)w0, (4.61)

using (4.58). Proceeding as above, we obtain the solvability conditions for (4.61):

2 (λ2 + ic2,1,n) + iγ0s2,n = 0, (4.62a)

2γ0 (λ2 + ic2,−1,n+p) + is2,n+p = 0, (4.62b)

where

c2,σ,j = µ2cg,σ (j + µ0)− p2,j. (4.63)

The quantities s2,j and p2,j depend only on α (possibly through known zeroth- and first-order

quantities). Using the collision condition (4.45), it can be shown that the product of s2,n

and s2,n+p is related to a perfect square:

s2,ns2,n+p = − S2
2

ω(n+ µ0)ω(n+ p+ µ0)
, (4.64)
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where

S2 = T2,1 + T2,2N̂2,2 + T2,3Q̂2,2. (4.65)

The expressions T2,j are functions only of α, as are the Stokes wave corrections N̂2,2 and Q̂2,2.

When fully expanded, S2 consists of roughly 100 terms (depending on how it is written),

but each term depends only on α. The full expression of S2 is found in the companion

Mathematica file.

Solving for λ2 in (4.62a)-(4.62b),

λ2 = −i
(
c2,−1,n+p + c2,1,n

2

)
±

√
−
(
c2,−1,n+p − c2,1,n

2

)2

+
S2
2

4ω(n+ µ0)ω(n+ p+ µ0)
. (4.66)

From Corollary 4.4.1, ω(n + µ0)ω(n + p + µ0) > 0. Thus, λ2 has nonzero real part for

µ2 ∈ (M2,−,M2,+), where

M2,± = µ2,∗ ±
|S2|

|cg,−1 (n+ p+ µ0)− cg,1 (n+ µ0)|
√
ω(n+ µ0)ω(n+ p+ µ0)

, (4.67)

and

µ2,∗ =
p2,n+p − p2,n

cg,−1 (n+ p+ µ0)− cg,1 (n+ µ0)
, (4.68)

provided S2 ̸≡ 0. Note that Corollary 4.4.1 guarantees (4.67) and (4.68) are well-defined,

since cg,−1 (n+ p+ µ0) and cg,1 (n+ µ0) are never equal.

A plot of S2 vs. α reveals that S2 ̸= 0 except at α1 = 1.8494040837... (Figure 4.1). For this

isolated value of α, λ2 has no real part at O (ε2). We conjecture that small-amplitude Stokes

waves of all wavenumbers and in all depths are unstable to the high-frequency instability

closest to the origin, with the possible exception of Stokes waves with α = α1.

To O (ε2), the p = 2 isola is an ellipse in the complex spectral plane. The ellipse is

constructed explicitly from the real and imaginary parts of

λ(µ2; ε) = λ0 + λ2(µ2)ε
2, (4.69)
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Figure 4.1: (Left) A plot of S2 vs. α (solid red). The zero of S2 for α > 0 is α1 = 1.8494040837... (gold

star). (Right) The real part λr,∗ of the most unstable eigenvalue on the p = 2 isola as a function of α

according to our asymptotic calculations (solid red). The real part of the eigenvalue is normalized by ε2 for

better visibility. We zoom-in around α = α1 (gold star) in the inlay. The real part of the most unstable

eigenvalue on the isola vanishes as α → α1 according to our asymptotic calculations, which agrees with our

numerical results using the FFH method with ε = 0.01 (blue dots).

for µ2 ∈ (M2,−,M2,+). This ellipse has semi-major and -minor axes that are O (ε2), and its

center drifts from λ0 along the imaginary axis like O (ε2). Similarly, the interval of Floquet

exponents parameterizing this ellipse has width O (ε2) and drifts from µ0 like O (ε2). In

Figure 4.2, we compare the ellipse with a subset of numerically computed eigenvalues on the

p = 2 isola for ε = 0.01 and find excellent agreement. We find similar agreement between

the Floquet parameterization of the ellipse and of the numerically computed isola. The

eigenvalue of largest real part on the ellipse occurs when µ2 = µ2,∗. Thus, the leading-order

behavior of the most unstable eigenvalue on the p = 2 isola has real and imaginary parts

λr,∗ =
|S2|

2
√
ω(n+ µ0)ω(n+ p+ µ0)

ε2 +O
(
ε3
)
, (4.70a)

λi,∗ = −Ω1 (n+ µ0)−
(
p2,n+pcg,1 (n+ µ0)− p2,ncg,−1 (n+ p+ µ0)

cg,−1 (n+ p+ µ0)− cg,1 (n+ µ0)

)
ε2 +O

(
ε3
)
, (4.70b)
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Figure 4.2: (Top, Left) The p = 2 isola with α = 1.5 and ε = 0.01. The most unstable eigenvalue λ∗

is removed from the imaginary axis for better visibility. The solid red curve is the ellipse obtained by our

asymptotic calculations. The blue dots are a subset of eigenvalues from the numerically computed isola

using the FFH method. (Top, Right) The Floquet parameterization of the real (blue) and imaginary (red)

parts of the isola on the left. The most unstable eigenvalue λ∗ and its corresponding Floquet exponent µ∗

are removed from the imaginary and Floquet axes, respectively, for better visibility. The solid curves are

asymptotic results. The colored dots are FFH results. (Bottom, Left & Right) Same with α = 1.

respectively. The corresponding Floquet exponent is

µ∗ = µ0 + µ2,∗ε
2 +O

(
ε3
)
. (4.71)

These expansions agree well with numerical results (Figure 4.3).
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Figure 4.3: (Top, Left) The interval of Floquet exponents parameterizing the p = 2 isola as a function of ε

for α = 1.5. The zeroth-order correction of the Floquet exponent is removed from the Floquet axis for better

visibility. The solid blue curves are the boundaries of this interval according to our asymptotic calculations.

The blue dots are the boundaries computed numerically by the FFH method. The solid red curve gives the

Floquet exponent of the most unstable eigenvalue on the isola according to our asymptotic calculations. The

red dots are the Floquet exponent of the most unstable eigenvalue as computed by the FFH method. (Top,

Right) The real (blue) and imaginary (red) parts of the most unstable eigenvalue of the p = 2 isola with

α = 1.5 as a function of ε. The zeroth-order correction of the eigenvalue is removed from the imaginary axis

for better visibility. The solid curves are our asymptotic calculations. The colored dots are our numerical

results using the FFH method. (Bottom, Left & Right) Same with α = 1.
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Figure 4.4: A plot of M2,+M2,− vs. α (solid red). We find M2,+M2,− < 0 only when α ∈

(0.8643029367..., 1.0080416077...) (solid black). If M2,+M2,− < 0, the boundaries of the Floquet exponents

parameterizing the p = 2 isola have opposite concavities at ε = 0. Only then does µ0 remain in the interval

of Floquet exponents parameterizing the isola for positive ε. can one find an eigenvalue with corresponding

Floquet exponent µ0 on this isola.

Remark 4.6.3. According to Figure 4.3, µ0 is contained within the interval parameterizing

the p = 2 isola if the boundaries of this interval have opposite concavity at ε = 0. This occurs

if and only if M2,+M2,− < 0. In Figure 4.4, we plot M2,+M2,− as a function of α. We find

M2,+M2,− < 0 only if α ∈ (0.8643029367..., 1.0080416077...). As we have demonstrated, to

account for p = 2 high-frequency instabilities that occur outside this interval, it is necessary

to expand the Floquet exponent as a power series in ε about µ0.

4.6.3 The Case of Infinite Depth

In infinite depth, the p = 2 isola originates from the eigenvalue

λ0 = −3

4
i, (4.72)
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with corresponding Floquet exponent µ0 = −1/4 and n = −2, see Remark 6. The corre-

sponding eigenfunction, after normalizing, is

w0 =

 1

2
3
i

 einx + γ0

 1

−2i

 ei(n+p)x, (4.73)

where γ0 ∈ C \ {0}. We modify the generalized eigenvalue problem (4.35) according to

Remark 5 and expand the spectral data as a power series in ε about the values above.

Terms of O (ε0) cancel by construction. At O (ε), the solvability conditions simplify to

λ1 = 0 = µ1, (4.74)

as in finite depth, and the normalized solution of the O(ε) problem is

w1 =

n+p+1∑
j=n−1
j ̸=n,n+p

Ŵ1,j,∞e
ijx + γ1

 1

−2i

 ei(n+p)x, (4.75)

where the coefficients Ŵ1,j,∞ depend at most linearly on γ0.

At O (ε2), the solvability conditions are

λ2 + ic2,1,n,∞ = 0, (4.76a)

γ0 (λ2 + ic2,−1,n+p,∞) = 0, (4.76b)

where

c2,σ,j,∞ = µ2cg,σ,∞ (j + µ0)− p2,j,∞, (4.77)

with cg,σ,∞(z) = lim
α→∞

Ωσ,z(z), p2,n,∞ = 9/8, and p2,n+p,∞ = −1/16.

Because γ0 ̸= 0, equations (4.76a)-(4.76b) reduce to a linear system for λ2 and µ2. The

solution of this system is

λ2 =
55

32
i, µ2 =

57

64
. (4.78)

Since λ2 is purely imaginary, the leading-order behavior of the p = 2 isola does not occur

at O (ε2), as expected from (4.70a), since limα→∞ S2 = 0. Thus, while the asymptotic
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expressions involved in infinite depth are simpler than those in finite depth, the leading-

order behavior of the p = 2 isola requires a higher-order calculation in infinite depth. We

obtain the normalized solution of the O (ε2) problem:

w2 =

n+p+2∑
j=n−2

Ŵ2,j,∞e
ijx + γ2

 1

−2i

 ei(n+p)x, (4.79)

where the coefficients Ŵ2,j,∞ depend at most linearly on γ0 and γ1 while γ2 ∈ C is a free

parameter at this order.

At O (ε3), the solvability conditions reduce to

λ3 + iµ3cg,1,∞ (n+ µ0) = 0, (4.80a)

γ0 (λ3 + iµ3cg,−1,∞ (n+ p+ µ0)) = 0. (4.80b)

As in finite depth, cg,1,∞ (n+ µ0) ̸= cg,−1,∞ (n+ p+ µ0), and since γ0 ̸= 0, we must have

λ3 = 0 = µ3. (4.81)

No instability is observed at this order. The normalized solution of the O (ε3) problem is

w3 =

n+p+3∑
j=n−3

Ŵ3,j,∞e
ijx + γ3

 1

−2i

 ei(n+p)x, (4.82)

where the coefficients Ŵ3,j,∞ depend at most linearly on γ0, γ1, and γ2 while the parameter

γ3 ∈ C is free at this order.

At O (ε4), the solvability conditions are

2 (λ4 + ic4,1,n,∞) + iγ0s4,n,∞ = 0, (4.83a)

2γ0 (λ4 + ic4,−1,n+p,∞) + is4,n+p,∞ = 0, (4.83b)

where

c4,σ,j,∞ = µ4cg,σ,∞ (j + µ0)− p4,j,∞, (4.84)
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with s4,n,∞ = −111/256, s4,n+p,∞ = 37/256, p4,n,∞ = 24119/12288, and p4,n+p,∞ =

24985/36864. Solving (4.83a)-(4.83b) for λ4, we find the explicit formula

λ4 =
(48671 + 49152µ4)

36864
i±

√
−134933977 + 291053568µ4 − 150994944µ2

4

18432
. (4.85)

Equation (4.85) has nonzero real part provided

µ4 ∈

(
11843

12288
− 111

√
3

1024
,
11843

12288
+

111
√
3

1024

)
. (4.86)

Thus, the p = 2 isola is an ellipse to O (ε4) given by the real and imaginary parts of

λ(µ4; ε) = −3

4
i+

55

32
iε2 + λ4(µ4)ε

4, (4.87)

for µ4 in (4.86). Unlike in finite depth, this ellipse has semi-major and -minor axes that are

O (ε4), while the center drifts from λ0 like O (ε2). Similarly, the Floquet parameterization

of the isola has width O (ε4) and drifts from µ0 like O (ε2).

In Figure 4.5, we compare the asymptotically computed ellipse with a subset of numeri-

cally computed eigenvalues on the p = 2 isola for ε = 0.01. Notice this ellipse is considerably

smaller than that in finite depth for comparable wave amplitude (Figure 4.2). Excellent

agreement is found between the asymptotic and numerical predictions. Similar agreement is

found between the Floquet parameterization of the ellipse and of the numerically computed

isola.
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Figure 4.5: (Left) The p = 2 isola with α = ∞ and ε = 0.01. The most unstable eigenvalue λ∗ is removed

from the imaginary axis for better visibility. The solid red curve is the ellipse obtained by our asymptotic

calculations. The blue dots are a subset of eigenvalues from the numerically computed isola using the FFH

method. (Right) The Floquet parameterization of the real (blue) and imaginary (red) parts of the isola. The

most unstable eigenvalue λ∗ and its corresponding Floquet exponent µ∗ are removed from the imaginary

and Floquet axes, respectively, for better visibility. The solid curves are our asymptotic results. The colored

dots are our numerical results using the FFH method.

The eigenvalue of largest real part on the ellipse occurs when µ4 = 11843/36864. Thus,

the real and imaginary parts of the most unstable eigenvalue on the isola have asymptotic

expansions

λr,∗ =
37
√
3

512
ε4 +O

(
ε5
)
, (4.88)

λi,∗ = −3

4
+

55

32
ε2 +

96043

36864
ε4 +O

(
ε5
)
, (4.89)

respectively. The corresponding Floquet exponent has expansion

µ∗ = −1

4
+

57

64
ε2 +

11843

36864
ε4 +O

(
ε5
)
. (4.90)

These expansions are compared with numerical results in Figure 4.6.
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Figure 4.6: (Left) The interval of Floquet exponents parameterizing the p = 2 isola as a function of ε

for α = ∞. The most unstable Floquet exponent µ∗ is removed from the Floquet axis for better visibility.

The solid blue curves are the boundaries of this interval according to our asymptotic calculations. The blue

dots are the boundaries computed numerically by the FFH method. The solid red curve gives the Floquet

exponent of the most unstable eigenvalue on the isola according to our asymptotic calculations. The red

dots are the Floquet exponent of the most unstable eigenvalue as computed by the FFH method. (Right)

The real (blue) and imaginary (red) parts of the most unstable eigenvalue of the p = 2 isola with α = ∞ as

a function of ε. The zeroth-order correction of the eigenvalue is removed from the imaginary axis for better

visibility. The solid curves are our asymptotic calculations. The colored dots are our numerical results using

the FFH method.

4.7 Asymptotic Description of the p = 3 High-Frequency Instability

We extend the perturbation method developed in the previous section to obtain the leading-

order behavior of the high-frequency isola that arises from λ0,p with p = 3. This isola is

the second closest to the origin by Theorem 4.4.1, and its leading-order behavior is obtained

at O (ε3). As in the previous section, we expand the spectral data of (4.35) according to

(4.51a)-(4.51c) and normalize the eigenfunctions according to (4.52) for convenience. The

perturbation method proceeds as before, with two major changes:

(i) At O (ε2), the solvability conditions are independent of γ0 and linear in λ2 and µ2. As
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a consequence, λ2 is purely imaginary, and the leading-order behavior of the isola is

undetermined at this order.

(ii) At O (ε3), the solvability conditions depend on γ0, λ3, and γ1. Using solvability con-

ditions from the previous order together with the collision condition (4.45), one shows

that the dependence on γ1 vanishes from these conditions.

Remark 4.7.1. For explicit representations of the asymptotic expressions derived in this

section, see the Mathematica file wwp isola p3.nb.

4.7.1 The O (ε) Problem

At O (ε), the spectral problem takes the form (4.53). The solvability conditions simplify to

λ1 = 0 = µ1, (4.91)

and the normalized solution of the O (ε) problem is

w1 =

n+p+1∑
j=n−1
j ̸=n,n+p

Ŵ1,je
ijx + γ1

 1

i
ω(n+p+µ0)

 ei(n+p)x, (4.92)

where the coefficients Ŵ1,j depend on α (possibly through intermediate dependencies on

known zeroth-order results) and at most linearly on γ0. At this order, γ1 ∈ C is a free

parameter.

4.7.2 The O (ε2) Problem

At O (ε2), the spectral problem takes the form (4.61). The solvability conditions are

λ2 + ic2,1,n = 0, (4.93a)

γ0 (λ2 + ic2,−1,n+p) = 0, (4.93b)
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where c2,σ,j = µ2cg,σ (j + µ0) − p2,j, as in Section 5 (although the quantities p2,j evaluate

differently than those for the p = 2 isolas). Since γ0 ̸= 0, the solution of (4.93a)-(4.93b) is

λ2 = −i
(
p2,n+pcg,1(n+ µ0)− p2,ncg,−1(n+ p+ µ0)

cg,−1(n+ p+ µ0)− cg,1(n+ µ0)

)
, (4.94a)

µ2 =
p2,n+p − p2,n

cg,−1(n+ p+ µ0)− cg,1(n+ µ0)
. (4.94b)

Since λ2 is purely imaginary, no instabilities are found at this order. The normalized solution

of the O (ε2) problem is

w2 =

n+p+2∑
j=n−2

Ŵ2,je
ijx + γ2

 1

i
ω(n+p+µ0)

 ei(n+p)x, (4.95)

where the coefficients Ŵ2,j depend on α (possibly through intermediate dependencies on

known zeroth- and first-order results) and at most linearly on γ0 and γ1. At this order,

γ2 ∈ C is a free parameter.

4.7.3 The O (ε3) Problem

At O (ε3), the spectral problem becomes

(L0 − λ0R0)w3 = (λ2R1 + λ3R0)w0 −
2∑

j=0

(L3−j − λ0R3−j)wj, (4.96)

with the aid of (4.91). The solvability conditions are

2 (λ3 + iµ3cg,1(n+ µ0)) + iγ0s3,n = 0, (4.97a)

2γ0 (λ3 + iµ3cg,−1(n+ p+ µ0)) + is3,n+p + iγ1t3,n+p = 0. (4.97b)

Using the solvability conditions (4.93a)-(4.93b) and the collision condition (4.45), it can be

shown

t3,n+p ≡ 0. (4.98)

As in the p = 2 case, the product of s3,n and s3,n+p is related to a perfect square:

s3,ns3,n+p = − S2
3

ω(n+ µ0)ω(n+ p+ µ)
, (4.99)
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where

S3 = T3,1 + T3,2N̂2,2 + T3,3Q̂2,2 + T3,4N̂3,3 + T3,5Q̂3,3. (4.100)

The expressions T3,j are functions only of α, as are the Stokes wave corrections N̂2,2, Q̂2,2,

N̂3,3, and Q̂3,3. When fully expanded, S3 involves several hundred terms, but each term

depends only on α. The full expression of S3 can be found in the appropriate Mathematica

notebook.

Solving for λ3 in the solvability conditions, we find

λ3 = −iµ3

(
cg,−1(n+ p+ µ0) + cg,1(n+ µ0)

2

)
±

√
−µ2

3

(
cg,−1(n+ p+ µ0)− cg,1(n+ µ0)

2

)2

+
S2
3

4ω(n+ µ0)ω(n+ p+ µ0)
.

(4.101)

A plot of S3 vs. α reveals S3 ̸= 0, except at α2 = 0.8206431673... (Figure 4.7). Thus, we

conjecture that Stokes waves of all wavenumbers and in all depths are unstable to the second

closest high-frequency instability from the origin, with possible exceptions if α = α2. Since

α2 ̸= α1, Stokes waves of all wavenumbers and in all depths appear to be unstable with

respect to high-frequency instabilities.

Remark 4.7.2. As α → ∞, S3 → 0. Therefore, the leading-order behavior of the p = 3

isola in infinite depth is resolved at higher order. For ε on the order of 0.01 and smaller, this

isola is already within the numerical error of the FFH method. For larger ε, the expansions

deviate too quickly from the numerics to make comparisons.

Provided α ̸= α2, (4.101) has nonzero real part for µ3 ∈ (−M3,M3), where

M3 =
|S3|

|cg,−1(n+ p+ µ0)− cg,1(n+ µ0)|
√
ω(n+ µ0)ω(n+ p+ µ0)

. (4.102)

Unlike the p = 2 isola, this interval is symmetric about the origin. For µ3 in this interval,

the real and imaginary parts of (4.101), together with the lower-order corrections of λ, trace
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Figure 4.7: (Left) A plot of S3 vs. α (solid red). The zero of S3 for α > 0 is α2 = 0.8206431673... (gold

star). (Right) The real part λr,∗ of the most unstable eigenvalue on the p = 3 isola as a function of α

according to our asymptotic calculations (solid red). The real part of the eigenvalue is normalized by ε3 for

better visibility. We zoom-in around α = α2 (gold star) in the inlay. The real part of the most unstable

eigenvalue on the isola vanishes as α → α2 according to our asymptotic calculations, which agrees with our

numerical results using the FFH method with ε = 0.01 (blue dots).

an ellipse asymptotic to the p = 3 isola. This ellipse has semi-major and -minor axes that

scale as O (ε3) and a center that drifts form λ0 like O (ε2). The Floquet parameterization

of this ellipse has width O (ε3) and drifts from µ0 like O (ε2). As a result, this isola is more

challenging to capture than the p = 2 isola in finite depth.

Comparing our asymptotic and numerical p = 3 isolas with ε = 0.01 (Figure 4.8), we

observe that, while the real part of the numerical isola matches our O (ε3) calculations, the

imaginary part and Floquet parameterization of the isola require fourth-order corrections.

This is in contrast with the p = 2 isola (Figure 4.2), for which we obtain the drifts in the

imaginary part and Floquet parameterization at the same order as the real part. We obtain

these drifts for the p = 3 isola in the following subsection.



110

Equating µ3 = 0 maximizes the real part of (4.101). Hence, the real and imaginary part

of the most unstable eigenvalue on the p = 3 isola have asymptotic expansions

λr,∗ =

(
|S3|

2
√
ω(n+ µ0)ω(n+ p+ µ0)

)
ε3 +O

(
ε4
)
, (4.103a)

λi,∗ = −iΩ1(n+ µ0)−
(
p2,n+pcg,1(n+ µ0)− p2,ncg,−1(n+ p+ µ0)

cg,−1(n+ p+ µ0)− cg,1(n+ µ0)

)
ε2 +O

(
ε4
)
, (4.103b)

respectively, and the corresponding Floquet exponent has asymptotic expansion

µ∗ = µ0 +

(
p2,n+p − p2,n

cg,−1(n+ p+ µ0)− cg,1(n+ µ0)

)
ε2 +O

(
ε4
)
. (4.104)

Figure 4.9 compares the asymptotic expansions (4.103a)-(4.103b) and (4.104) with their

numerical counterparts. Excellent agreement is found for the real and imaginary parts of the

most unstable eigenvalue. The interval of Floquet exponents that parameterizes the isola

requires a fourth-order correction to match the numerical predictions.

Before proceeding to the next order, we solve the O (ε3) problem for w3:

w3 =

n+p+3∑
j=n−3

Ŵ3,je
ijx + γ3

 1

i
ω(n+p+µ0)

 ei(n+p)x, (4.105)

where the coefficients Ŵ3,j depend on α (possibly through intermediate dependencies on

known zeroth-, first-, and second-order results) and at most linearly on γ0, γ1, and γ2. At

this order, γ3 ∈ C is a free parameter.

4.7.4 The O (ε4) Problem

At O (ε4), the spectral problem (4.35) becomes

(L0 − λ0R0)w4 =

(
2∑

j=0

λ4−jRj

)
w0 +

(
1∑

j=0

λ3−jRj

)
w1 + λ2R0w2 −

3∑
j=0

(L4−j − λ0R4−j)wj.

(4.106)
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Figure 4.8: (Top, Left) The p = 3 isola with α = 1.5 and ε = 0.01. The most unstable eigenvalue λ∗ is

removed from the imaginary axis for better visibility. The solid and dashed red curves are the ellipses obtained

by our O
(
ε4
)
and O

(
ε3
)
asymptotic calculations, respectively. The blue dots are a subset of eigenvalues

from the numerically computed isola using the FFH method. (Top, Right) The Floquet parameterization

of the real (blue) and imaginary (red) parts of the isola on the left. The most unstable eigenvalue λ∗ and

its corresponding Floquet exponent µ∗ are removed from the imaginary and Floquet axes, respectively, for

better visibility. The solid teal and orange curves are our asymptotic results for the real and imaginary parts

of the Floquet parameterization, respectively, to O
(
ε4
)
. The dashed blue and red curves are the same results

to O
(
ε3
)
. The blue and red dots are the numerically computed real and imaginary parts of the Floquet

parameterization, respectively, using the FFH method. (Bottom, Left & Right) Same with α = 1.
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Figure 4.9: (Top, Left) The interval of Floquet exponents parameterizing the p = 3 isola as a function of ε

for α = 1.5. The most unstable Floquet exponent µ∗ is removed from the Floquet axis for better visibility.

The solid and dashed blue curves are the boundaries of this interval according to our O
(
ε4
)
and O

(
ε3
)

asymptotic calculations, respectively. The blue dots are the boundaries computed numerically by the FFH

method. The solid and dashed red curves give the Floquet exponent of the most unstable eigenvalue on the

isola according to our O
(
ε4
)
and O

(
ε3
)
asymptotic calculations, respectively. The red dots are the Floquet

exponent of the most unstable eigenvalue as computed by the FFH method. (Top, Right) The real (blue)

and imaginary (red) parts of the most unstable eigenvalue of the p = 3 isola with α = 1.5 as a function

of ε. The zeroth-order correction of the eigenvalue is removed from the imaginary axis for better visibility.

The solid teal and orange curves are our asymptotic calculations for the real and imaginary parts of the

most unstable eigenvalue to O
(
ε4
)
, respectively. The dashed blue and red curves are the same results to

O
(
ε3
)
. The blue and red dots are the numerically computed real and imaginary parts of the most unstable

eigenvalue using the FFH method. (Bottom, Left & Right) Same with α = 1.
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After some manipulation, the solvability conditions of (4.106) can be written as 2 is3,n

2γ0 2 (λ3 + iµ3cg,−1(n+ p+ µ0))

λ4
γ1

+ iγ2

 0

t4,n+p

 =

− 2i

 µ4cg,1(n+ µ0)− p4,n

γ0 (µ4cg,−1(n+ p+ µ0)− p4,n+p)

 . (4.107)

Using the solvability conditions at the previous order and the collision condition (4.45), one

can show t4,n+p ≡ 0. Then, (4.107) reduces to a linear system for λ4 and γ1.

For µ3 ∈ (−M3,M3) with M3 given by (4.102), the determinant of (4.107) simplifies to

det

 2 is3,n

2γ0 2 (λ3 + iµ3cg,−1(n+ p+ µ0))

 = 8λ3,r, (4.108)

where λ3,r = Re (λ3) . Provided α ̸= α2, (4.107) is invertible for all µ3 ∈ (−M3,M3).

Solving (4.107) for λ4,

λ4 =i

[
(λ3 + iµ3cg,−1(n+ p+ µ0)) (cg,1(n+ µ0)− p4,n)

2λ3,r

+
(λ3 + iµ3cg,1(n+ µ0)) (cg,−1(n+ p+ µ0)− p4,n+p)

2λ3,r

]
. (4.109)

Since p4,j, µ4 ∈ R, the real and imaginary parts of λ4 = λ4,r + iλ4,i are

λ4,r =
µ3 (cg,−1(n+ p+ µ0)− cg,1(n+ µ0))

4λ3,r

[
− µ4 (cg,−1(n+ p+ µ0)− cg,1(n+ µ0))

+ p2,n+p − p2,n

]
, (4.110a)

λ4,i = −1

2

[
µ4 (cg,−1(n+ µ0) + cg,1(n+ µ0))− (p4,n+p + p4,n)

]
. (4.110b)

Given (4.110a)-(4.110b), we invoke the regular curve condition as in the previous chapters.

According to this condition, all eigenvalue corrections must be bounded over the closure of

µ3 ∈ (−M3,M3). Notice λ3,r → 0 as |µ3| →M3. Thus, λ4,r is bounded only if

µ4 =
p4,n+p − p4,n

cg,−1(n+ p+ µ0)− cg,1(n+ µ0)
. (4.111)

Hence,

λ4 = −i
(
p4,n+pcg,1(n+ µ0)− p4,ncg,−1(n+ p+ µ0)

cg,−1(n+ p+ µ0)− cg,1(n+ µ0)

)
. (4.112)
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Remark 4.7.3. If α = α2, then s3,n = 0 and λ3 = 0 = µ3. Applying the Fredholm alternative

to (4.107), one arrives at (4.111) and (4.112), but γ0 and γ1 remain arbitrary at this order.

Equations (4.111) and (4.112) give the fourth-order drifts in the Floquet parameterization

and imaginary part of the p = 3 isola, respectively. The corresponding isola is given by the

real and imaginary parts of

λ(µ3; ε) = λ0 + λ2ε
2 + λ3(µ3)ε

3 + λ4ε
4, (4.113)

which is in better agreement with numerics than the previous order, see Figures 4.8 and 4.9.

4.8 Conclusions

Building on work in the previous chapters, we have developed a formal perturbation method

to compute high-frequency instabilities of small-amplitude Stokes waves for Euler’s equations

in arbitrary depth. This method allows us to approximate an entire high-frequency isola with

uniform accuracy and estimate

(i) the Floquet exponents that parameterize the isola,

(ii) the real and imaginary parts of the most unstable eigenvalue on the isola, and

(iii) the curve asymptotic to the isola.

These expressions are compared directly with numerical computations of the isolas using

the FFH method. Excellent agreement is found for the p = 2 isola. The p = 3 isola

achieves similar agreement if higher-order corrections of the imaginary part and Floquet

parameterization are computed using the regular curve condition.

According to our asymptotic results, Stokes waves of all aspect ratios, except κh = α1 and

κh = α2, are unstable to the p = 2 and p = 3 high-frequency instabilities, respectively. Stokes

waves are also unstable to high-frequency instabilities in infinite depth (h = ∞), although

this requires a higher-order calculation than in finite depth. Based on these findings, we
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conjecture that Stokes waves of all depths and all wavenumbers are spectrally unstable to

high-frequency instabilities, extending recent work by Hur and Yang [53], where the existence

of the p = 2 high-frequency instability is proven only if κh ∈ (0.86430..., 1.00804...). The

effect of the high-frequency instabilities on the Stokes waves has been illustrated in [35].

The perturbation method developed in this work is readily extended to higher-order isolas

(p ≥ 4). Just as in the previous chapters, it appears this method yields the first real-part

correction of the isola at O (εp). In contrast, corrections to the imaginary part and Floquet

parameterization of the isola appear at O (ε2). Thus, we expect isolas further from the origin

to decrease in size, while their centers drift along the imaginary axis like O (ε2).

If correct, this conjecture highlights one of the primary challenges for analytical and nu-

merical investigations of high-frequency instabilities: each isola is smaller than the previous,

and each isola drifts from its known zeroth-order behavior quickly relative to its size. Our

hope is that the perturbation method developed in this work can be used as a starting point

for future proofs of high-frequency instabilities as well as improvements to the numerical

resolution of high-frequency isolas far away from the origin in the complex spectral plane.
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Chapter 5

AN ASYMPTOTIC DESCRIPTION OF THE BENJAMIN-FEIR
INSTABILITY

5.1 Introductory Remarks

In this final chapter, we return our focus to the origin of the complex spectral plane, where

eigenvalues collide in sufficiently deep water to create the Benjamin-Feir (or modulational)

instability. There has been renewed interest in the spectrum of this instability over the past

two years. In 2020, Nguyen and Strauss [73] proved the existence of unstable eigenvalues

near the origin of the complex spectral plane for sufficiently small-amplitude Stokes waves

in infinite depth using conformal mapping and Lyapunov-Schmidt reduction. This problem

had been open since the seminal work of Bridges and Mielke [15] in 1995, which proved the

existence of these eigenvalues in finite depth provided κh > αBW = 1.3627827567..., where

κ > 0 is the wavenumber of the Stokes wave and h is the mean depth of the water1. More

recently, Hur and Yang [53] proved similar results for the instability spectrum in infinite

depth using periodic Evans functions.

In recent months, extensive work by Berti, Maspero, and Ventura [10, 11] has confirmed

the existence of the Benjamin-Feir figure-eight curve for sufficiently small-amplitude Stokes

waves in finite and infinite depth, provided κh > αBW . The proof of both cases relies

on the Hamiltonian and reversibility properties of Euler’s equations together with Kato’s

theory of similarity transformations [57] and KAM theory. Reported in the works of Berti,

Maspero, and Ventura are explicit expressions for the figure-eight curves, up to real analytic

functions of the Floquet exponent µ and the amplitude of the Stokes waves ε. A low-order

1The original arguments of Bridges and Mielke fail in the limit as the depth approaches infinity. We see
why this occurs later in this chapter.
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approximation of the curves is also given. We demonstrate later in this chapter that this

approximation is not truly asymptotic to the figure-eight in the case of infinite depth.

In this chapter, we obtain high-order asymptotic expansions of the Benjamin-Feir figure-

eight curve in finite and infinite depth. In particular, we seek high-order asymptotic estimates

for the interval of Floquet exponents parameterizing the figure-eight and for the most un-

stable eigenvalue. Using the results in Chapter 4, we can compare the Benjamin-Feir and

high-frequency growth rates analytically for the first time. This comparison suggests three

regimes for Stokes waves:

(i) shallow water (κh < αBW ), in which only high-frequency instabilities exist,

(ii) intermediate water (αBW < κh < αDO(ε) = 1.4308061674...+O (ε2))

(iii) deep water (κh > αDO(ε)), in which both instabilities are present, but the Benjamin-

Feir instability dominates.

Our method to obtain these high-order asymptotic approximations is a modification

of that developed for high-frequency instabilities in the previous chapters. Although the

method is formal, it offers a more direct approach to the Benjamin-Feir figure-eight curve

and produces results consistent with numerical computations (for sufficiently small ε) as well

as with rigorous results appearing in [10, 11]. The method loses validity for sufficiently large

ε, when the Benjamin-Feir instability spectrum separates from the origin and changes its

topology, see Figure 5.1. Some of the lower-order details of our method are also presented

by Akers [3] for the Benjamin-Feir instability in infinite depth, although this work uses

different conventions for Euler’s equations and the underlying Stokes waves. In contrast, our

expressions in this chapter are in one-to-one correspondence with those appearing in [10, 11],

giving confidence in the rigorous results as well as in our asymptotic calculations.
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Figure 5.1: Numerically computed Benjamin-Feir instability spectra in infinitely deep water for Stokes

waves of amplitude ε = 0.31 (left), ε = 0.32 (middle), and ε = 0.33 (right) using the Floquet-Fourier-Hill

(FFH) method. The asymptotic methods presented in this work apply only for sufficiently small ε and, thus,

do not capture the separation of the figure-eight from the origin.

5.2 A Spectral Perturbation Method for the Benjamin-Feir Instability

For ease of later comparisons, we adopt the same formulation of Euler’s equations as in

Chapter 4, i.e., the AFM formulation. As a result, expressions for the Stokes waves and the

stability spectrum are unchanged. In this chapter, we focus on the Benjamin-Feir instability,

which arises from the eigenvalue λ0 = 0 in the ε = 0 spectrum. A quick computation using

(4.44b) shows that the corresponding Floquet exponent is µ0 = 0. In this section, we retain

the variables λ0 and µ0 to reveal the structure of our perturbation method. However, since

both variables are zero, one can omit them in what follows.

The eigenvalue λ0 is has algebraic multiplicity 4 and geometric multiplicity 3 [10, 11, 15,

53, 73]. The corresponding eigenspace is spanned by

w0,−1(x) =

 1

i/c0

 e−ix, w0,0(x) =

0

1

 , w0,1(x) =

 1

−i/c0

 eix, (5.1)
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so that the most general eigenfunction corresponding to λ0 is

w0(x) = β0,−1w0,−1(x) + β0,0w0,0(x) + β0,1w0,1(x), (5.2)

where β0,ν for ν ∈ {0,±1} are (for now) arbitrary constants.

Remark 5.2.1. The generalized eigenspace is spanned by (5.2) together with the generalized

eigenvector v0,0 = (1, 0)T . We mention this for completeness, but in practice, we only need

(5.1) to approximate the unstable eigenvalues corresponding to the Benjamin-Feir instability.

Remark 5.2.2. Without loss of generality, one of the constants β0,ν can be set to 1 since

w0 is unique only up to a nonzero scalar. We retain all three constants in our calculations

for reasons that become more clear when we consider infinite depth.

We now turn on the small-amplitude parameter ε and track the unstable eigenvalues

near the origin for 0 < ε ≪ 1. These eigenvalues trace out a figure-eight curve centered at

the origin, as mentioned in the introduction of this thesis and again in the introduction of

this chapter. To track these eigenvalues and their corresponding eigenfunctions, we formally

expand our spectral data in powers of ε:

λ(ε) = λ0 +
∞∑
j=1

λjε
j, (5.3a)

w(x; ε) = w0(x) +
∞∑
j=1

wj(x)ε
j. (5.3b)

As this curve deforms with ε, so too does its parameterization in terms of the Floquet

exponent. Thus, as in previous chapters, we expand this parameter according to

µ(ε) = µ0 + εµ1

(
1 + r(ε)

)
, with r(ε) =

∞∑
j=1

rjε
j, (5.4)

where µ1 assumes an interval of values symmetric about zero and r(ε) captures the higher-

order deformations of this interval, see Figure 5.2.
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Figure 5.2: A schematic of the parameterizing interval of Floquet exponents for the Benjamin-Feir figure-

eight curve as a function of ε. The gray-shaded region indicates the leading-order approximation of this

interval εµ1, where µ1 is an interval of values symmetric about zero. The blue-shaded region indicates the

true interval as a function of ε and is a uniform rescaling of the leading-order behavior by a factor of 1+r(ε),

where r is an analytic function of ε such that r(ε) = o(1) as ε → 0+. The boundaries of the true interval

may be subtended by curves that are concave up or down, depending on α.

Remark 5.2.3. Expansion (5.4) appears in a slightly different form than in previous chap-

ters. This is because the parameterizing interval of Floquet exponents for the Benjamin-Feir

instability remains symmetric about the origin for sufficiently small ε [10, 11]. For suffi-

ciently large ε, the figure-eight curve separates from the origin (Figure 5.1), and thus, the

parameterizing interval of Floquet exponents separates into two disjoint intervals. Ansatz

(5.4) cannot account for this effect, which limits our analysis of the Benjamin-Feir instabil-

ity spectrum to sufficiently small ε.

We proceed as follows. Expansions (5.3a), (5.3b), and (5.4) are substituted into the full

spectral problem (4.35). Powers of ε are equated, generating a hierarchy of linear inhomo-

geneous equations for the eigenfunction corrections wj. Each of these equations is solvable

only if the Fredholm alternative removes secular inhomogeneous terms. This leads to a set

of solvability conditions that impose constraints on the eigenvalue corrections λj as well as

corrections to the constants appearing in w0. Corrections to the Floquet exponent require
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the regular curve condition, as in the previous chapters, which ensures the eigenvalue correc-

tions remain bounded as one approaches the intersection of the figure-eight curve with the

imaginary axis.

We present this method in more detail in the sections that follow, first in finite depth

and then in infinite depth, where more care is needed. Results of the method are compared

directly with numerical computations of the Benjamin-Feir instability using the FFH method.

This is the first time that analytical and numerical descriptions of the Benjamin-Feir figure-

eight curve have been quantitatively compared.

5.3 The Benjamin-Feir Spectrum in Finite Depth

5.3.1 The O(ε) Problem

Substituting (5.3a), (5.3b), and (5.4) into the full spectral problem (4.35), terms of O(ε0)

necessarily cancel by our choice of λ0, w0, and µ0 above. At O(ε), we find

(
L0 − λ0R0

)
w1 = −L1w0 +R0

(
λ1w0

)
+R1

(
λ0w0

)
, (5.5)

with

Lj =
1

j!

∂j

∂εj
Lµ(ε),ε, Rj =

1

j!

∂j

∂εj
Rµ(ε),ε. (5.6)

The operator L0 − λ0R0 is not invertible for (λ0, µ0) = (0, 0). A solution w1 of (5.5) exists

only if the inhomogeneous terms are orthogonal to the nullspace of the adjoint of L0 −λ0R0

by the Fredholm alternative. A direct calculation shows

Null
(
(L0 − λ0R0)

†
)
= Span


 1

ic0

 e−ix,

1

0

 ,

 1

−ic0

 eix

 , (5.7)

where (L0 − λ0R0)
† denotes the adjoint operator with respect to the standard complex inner-

product ⟨·, ·⟩ on L2
per(−π, π)× L2

per(−π, π). From (5.7), we arrive at three solvability condi-
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tions for (5.5): 〈
−L1w0 +R0

(
λ1w0

)
+R1

(
λ0w0

)
,

 1

ic0

 e−ix

〉
= 0, (5.8a)

〈
−L1w0 +R0

(
λ1w0

)
+R1

(
λ0w0

)
,

1

0

〉 = 0, (5.8b)

〈
−L1w0 +R0

(
λ1w0

)
+R1

(
λ0w0

)
,

 1

−ic0

 eix

〉
= 0. (5.8c)

Simplifying (5.8a) and (5.8c) leads to

2β0,−1 (λ1 + iµ1cg) = 0, (5.9a)

2β0,1 (λ1 + iµ1cg) = 0, (5.9b)

respectively, where cg denotes the group velocity of Ω1 (4.44b) evaluated at k = 1. Explicitly,

cg =
α(1− c40)− c20

2c0
. (5.10)

In contrast to (5.8a) and (5.8c), (5.8b) reduces to a trivial equality and does not contribute

an additional solvability condition.

Remark 5.3.1. If c0 > 0, a direct calculation shows that cg < 0 for α > 0.

If we require β0,ν ̸= 0 so that the eigenspace of λ0 remains three-dimensional, equations

(5.9a) and (5.9b) imply

λ1 = −iµ1cg. (5.11)

Since µ1 ∈ R, the unstable eigenvalues of the Benjamin-Feir instability are imaginary to

O(ε).

Remark 5.3.2. If β0,ν = 0 for some ν, one recovers the imaginary spectrum near the origin,

as opposed to the figure-eight curve.
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Before proceeding to O (ε2), we solve (5.5) subject to (5.11). The solution w1 decomposes

into a direct sum of a particular solution w1,p and a homogeneous solution w1,h:

w1(x) = w1,p(x) +w1,h(x). (5.12)

The particular solution can be written as

w1,p(x) =
2∑

j=−2

w1,je
ijx, (5.13)

where w1,j = w1,j(α, β0,ν , µ1) ∈ C2. The homogeneous solution is

w1,h(x) = β1,−1w0,−1(x) + β1,0w0,0(x) + β1,1w0,1(x), (5.14)

coinciding with the eigenspace of λ0. The coefficients β1,ν represent first-order corrections to

the zeroth-order eigenfunction correction w0 and are undetermined constants at this order.

Remark 5.3.3. The expressions for w1,j as well as for all other algebraic expressions that

are too cumbersome to include explicitly in this chapter are found in the companion Mathe-

matica files wwp bf fd.nb (for finite depth expressions) and wwp bf id.nb (for infinite depth

expressions).

5.3.2 The O (ε2) Problem

At O (ε2), the spectral problem (4.35) takes the form

(
L0 − λ0R0

)
w2 = −

2∑
j=1

Ljw2−j +R0

( 2∑
k=1

λkw2−k

)
+

2∑
j=1

Rj

( 2−j∑
k=0

λkw2−j−k

)
. (5.15)

Proceeding as above, we obtain three nontrivial solvability conditions for (5.15):

2β0,−1

(
λ2 + icgr1µ1

)
+ β0,0S2,−1µ1 + i

(
U2,−1β0,1 +

(
T2,−1µ

2
1 + V2,−1

)
β0,−1

)
= 0, (5.16a)

β0,0T2,0µ
2
1 + iS2,0µ1

(
β0,−1 + β0,1

)
= 0, (5.16b)

2β0,1
(
λ2 + icgr1µ1

)
+ β0,0S2,1µ1 + i

(
U2,1β0,−1 +

(
T2,1µ

2
1 + V2,1

)
β0,1

)
= 0, (5.16c)
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where the subscripted coefficients S, T , U , and V are all real-valued functions of the aspect

ratio α. More explicitly, we have:

S2,−1 =
α + 5c20 − 2αc40 − c60 + αc80

4c20
, (5.17a)

T2,−1 =
α2 − c20 (−1 + αc20) (−2α + c20 + 3αc40)

4c30
, (5.17b)

U2,−1 =
1− 2N̂2,2c

2
0 (1− 3c40)− 8Q̂2,2c

3
0 − 4c40 + c80

4c30
, (5.17c)

T2,0 =
α2 − 2αc20 + (1− 2α2) c40 − 2αc60 + α2c80

4c20
, (5.17d)

where N̂2,2 and Q̂2,2 are the second-order corrections of the Stokes waves, see Section 4.3 in

Chapter 4 for more details. The remaining coefficients follow from the identities

S2,−1 = −S2,1, T2,−1 = −T2,1, U2,−1 = −U2,1, V2,−1 = U2,−1, S2,−1 = c0S2,0, (5.18)

which hold for α > 0. The proofs of these identities are shown in the companion Mathematica

files. In addition to thesis identities, we have the following result:

Theorem 5.3.1. For all α > 0, we have S2,−1 > 0, T2,−1 > 0, and T2,0 < 0.

Proof. Substituting c0 =
√

tanh(α) in (5.17a), we arrive at

T2,−1 =
1

8
csch(α) sech3(α) (2α + 3 sinh(2α) + sinh(4α)) , (5.19)

from which S2,−1 > 0 follows immediately for α > 0.

Doing the same for (5.17b), we arrive at

T2,−1 =
−1− 4α2 + 8α2 cosh(2α) + cosh2(2α)− 4α sinh(2α)

16 tanh3/2(α) cosh4(α)
, (5.20)

after some work. Rearranging terms in the numerator,

T2,−1 =

(
−1− 4α2 + cosh2(2α)

)
+ 4α cosh(2α) (2α− tanh(2α))

16 tanh3/2(α) cosh4(α)
. (5.21)

Using the Taylor series of cosh, we have −1 − 4α2 + cosh2(2α) > 0 immediately. Using the

well-known bound tanh(|k|) < |k| for k ∈ R, we have 2α − tanh(2α) > 0. It follows that

T2,−1 > 0 for α > 0.
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Lastly, for (5.17d),

T2,0 = − 1

64
csch(α) sech3(α)

(
e4α − (1 + 4α)

) (
e−4α − (1− 4α)

)
, (5.22)

after some work. Using exp(k) > 1 + k for k > 0, we immediately conclude T2,0 < 0 for

α > 0, as desired.

Equations (5.16a)-(5.16c) constitute a nonlinear system for the unknown variables λ2

and β0,±1. The first-order Floquet correction µ1 and first-order rescaling of the Floquet

interval r1 appear as parameters in this system. Because of the symmetry of the Floquet

interval corresponding to the Benjamin-Feir figure-eight curve, we consider µ1 > 0 without

loss of generality, as mentioned before. Also appearing as a parameter in our system is

β0,0, the coefficient of the zeroth mode of w0. Without loss of generality, we normalize the

eigenfunction w so that β0,0 > 0. Under these assumptions, we solve (5.16a)-(5.16c) for λ2.

Using the identities listed in (5.18) as well as the inequalities in the claim above, we find

λ2 = λ2,R + iλ2,I , (5.23)

where

λ2,R = ±µ1

2

√
T2,−1

(
2 (S2,−1S2,0 − U2,−1T2,0)

T2,0
− T2,−1µ2

1

)
, (5.24a)

λ2,I = −r1µ1cg. (5.24b)

Defining

e2 = 4T2,−1, eBW =
S2,−1S2,0 − U2,−1T2,0

T2,0
, and (5.25a)

∆BW =
√
e2 (8eBW − e2µ2

1), (5.25b)

(5.24a) simplifies to

λ2,R = ±µ1

8
∆BW . (5.26)
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Figure 5.3: A plot of eBW vs. α. The only root of eBW for α > 0 is αBW = 1.3627827567....

For (5.26) to be nonzero, we must have eBW > 0. It is well-known (see, for instance, [11])

that eBW > 0 only if α > αBW = 1.3627827567..., the critical threshold for modulational

instability originally found by [8, 92]. A plot of eBW as a function of α confirms this fact,

see Figure 5.3.

Remark 5.3.4. The variables e2 and eBW correspond directly to the variables e22 and eWB

in [11], respectively. Using the expressions for S2,−1, U2,−1, S2,0, and T2,0 above, we obtain

an explicit representation of eBW :

eBW =
1

(−1 + 8α2 + cosh(4α)− 4α sinh(4α)) tanh3/2(α)

(
− 4 + 8α2 + 8 cosh(2α)

+ 5 cosh(4α) + 2α
(
− 9 coth(α) + 18α csch2(2α)− 2 sinh(4α) + 3 tanh(α)

))
.

(5.27)

The root of this expression for α > 0 is the critical threshold αBW .

Provided α > αBW , (5.26) has nonzero real part for

0 < µ1 < M, M =

√
8eBW

e2
. (5.28)

Inequality (5.28) together with the first-order eigenvalue correction (5.11) and second-order

eigenvalue corrections (5.24b) and (5.26) yield the leading-order parameterization for one
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loop of the figure-eight curve. Because cg < 0 for all α > 0, this loop is in the upper-half

complex plane. The remaining loop is obtained if one repeats the analysis above for µ1 < 0.

Then one finds −M < µ1 < 0 necessarily, so that the parameterizing interval of Floquet

exponents for the entire figure-eight curve has the asymptotic expansion

µ ∈ ε (−M,M)
(
1 + r1ε

)
+O

(
ε3
)
. (5.29)

Remark 5.3.5. For the remainder of this work, we restrict to the positive branch of (5.26)

and, therefore, obtain a parameterization only for the half-loop of the figure-eight curve in

the first quadrant of the complex plane. By quadrafold symmetry of the stability spectrum

(4.35), we can recover a parameterization for the entire figure-eight curve from this half-loop.

Both (5.24b) and (5.29) depend on the first-order rescaling parameter r1. This results in

ambiguity at O (ε2) in both the Floquet parameterization and imaginary part of the figure-

eight. We show at the next order that r1 = 0 using the regular curve condition. Using this,

we can assemble our expansions for the real and imaginary parts of the figure-eight curve

λR =
µ1

8
∆BW ε

2 +O
(
ε3
)
, (5.30a)

λI = −µ1cgε+O
(
ε3
)
, (5.30b)

respectively. Dropping terms of O (ε3) and smaller and eliminating the µ1 dependence, we

obtain the algebraic curve

64c4gλ
2
R = e2λ

2
I

(
8eBW c

2
gε

2 − e2λ
2
I

)
, (5.31)

which is a lemniscate of Huygens (or Gerono) [54]. This lemniscate represents a uniformly

accurate asymptotic approximation of the Benjamin-Feir figure-eight curve to O (ε2) and

is consistent with the low-order heuristic approximation presented in [11]. For sufficiently

small ε, this lemniscate agrees well with numerical results, see Figure 5.4.

Given the asymptotic expansion of λR in (5.30a) above, a direct calculation shows that

λR attains the maximum value

λR,∗ =
eBW

2
ε2 +O

(
ε3
)
, (5.32)
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Figure 5.4: (Left) A plot of the Benjamin-Feir figure-eight curve for a Stokes wave with amplitude ε = 10−3

and aspect ratio α = 1.5. Numerical results are given by the blue dots, and the asymptotic results to O
(
ε2
)

are given by the solid orange curve. (Right) The Floquet parameterization of the real (blue axis) and

imaginary (orange axis) part of the figure-eight curve on the left. The respective numerical results are

given by the correspondingly colored dots, and the respective asymptotic results to O
(
ε2
)
are given by the

correspondingly colored curves.

when µ1 is equal to

µ1,∗ = 2

√
eBW

e2
. (5.33)

This gives an asymptotic expansion for the real part of the most unstable eigenvalue on the

half-loop. Its corresponding imaginary part and Floquet exponent are

λI,∗ = −cg
(
2

√
eBW

e2

)
ε+O

(
ε2
)
, (5.34a)

µ∗ =

(
2

√
eBW

e2

)
ε+O

(
ε2
)
, (5.34b)

respectively. These expansions agree with numerical computations up to ε = 10−2, see

Figure 5.5.
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Figure 5.5: (Left) The interval of Floquet exponents parameterizing the half-loop of the Benjamin-Feir

figure-eight curve for a Stokes wave with aspect ratio α = 1.5 and variable amplitude ε. The numerically

computed boundary of this interval is given by the blue dots, while the solid blue curve gives the asymptotic

results to O
(
ε2
)
. The orange dots give the numerically computed Floquet exponents of the most unstable

eigenvalue, while the solid orange curves give the corresponding asymptotic results to O (ε). (Right) The

real (blue axis) and imaginary (orange axis) part of the most unstable eigenvalue with α = 1.5 and variable

ε. Numerical results are given by the correspondingly colored dots, and the asymptotic results for the real

and imaginary part to O
(
ε2
)
and O (ε), respectively, are given by the correspondingly colored solid curves.

Remark 5.3.6. As we will see in Subsection 5.3.2, the first-order Floquet correction µ1,∗

corresponding to the most unstable eigenvalue is given by a power series in ε. Equation

(5.33) gives the leading-order term in this series. At this point, we do not know the higher-

order corrections of this series and, as a result, are unable to predict the second-order terms

of (5.34a) and (5.34b). This is a common feature in our analysis of the most unstable

eigenvalue: λR,∗ is determined to one order higher in ε than λI,∗ and µ1,∗.

To conclude our discussion of the O (ε2) problem, we solve for the remaining unknowns



130

in (5.16a)-(5.16c) and obtain

β0,−1 =
(ie2µ1 ∓∆BW )T2,0β0,0

2e2S2,0

, (5.35a)

β0,1 =
(ie2µ1 ±∆BW )T2,0β0,0

2e2S2,0

. (5.35b)

Since we have chosen the positive branch of (5.24b), the negative branch is chosen for (5.35a),

and the positive branch is chosen for (5.35b). Both (5.35a) and (5.35b) are determined

up to the free parameter β0,0, which is determined upon choosing a normalization for the

eigenfunction w.

Finally, given the solutions λ2 and β0,±1 of (5.16a)-(5.16c), we solve the second-order

problem (5.15) and obtain

w2(x) =
3∑

j=−3

w2,je
ijx + β2,−1w0,−1(x) + β2,0w0,0(x) + β2,1w0,1(x), (5.36)

for w2,j = w2,j(α, β0,0, β1,ν , µ1, r1) ∈ C2, see the companion Mathematica files for details.

The constants β2,ν ∈ C are undetermined at this order.

5.3.3 The O (ε3) Problem

At O (ε3), the spectral problem (4.35) is

(
L0 − λ0R0

)
w3 = −

3∑
j=1

Ljw3−j +R0

( 3∑
k=1

λkw3−k

)
+

3∑
j=1

Rj

( 3−j∑
k=0

λkw3−j−k

)
. (5.37)

Using the solvability conditions from previous orders, the solvability conditions of (5.37)

simplify to a 3× 3 linear system

M


β1,−1

λ3

β1,1

 =


f3,1

f3,2

f3,3

 , (5.38)
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with

M =


2(λ2 + icgr1µ1) + iT2,−1µ

2
1 + iV2,−1 2β0,−1 iU2,−1

iS2,0µ1 0 iS2,0µ1

iU2,1 2β0,1 2(λ2 + icgr1µ1) + iT2,1µ
2
1 + iV2,1

 ,

(5.39)

and

f3,1 = −
(
β1,0S2,−1µ1 + β0,−1

(
2ir2µ1cg + µ1(A3,−1λ2 + iB3,−1r1µ1 + iC3,−1 + iD3,−1µ

2
1)
)

+ β0,0
(
iE3,−1λ2 + F3,−1r1µ1 +G3,−1µ

2
1

))
, (5.40a)

f3,2 = −
(
β1,0T2,0µ

2
1 + β0,−1

(
A3,0λ2 + ir1µ1B3,0 + iC3,0µ

2
1

)
+ µ1β0,0

(
iD3,0λ2 + E3,0r1µ1

)
+ β0,1

(
A3,0λ2 + ir1µ1B3,0 − iC3,0µ

2
1

))
, (5.40b)

f3,3 = −
(
β1,0S2,1µ1 + β0,1

(
2ir2µ1cg + µ1(A3,1λ2 + iB3,1r1µ1 + iC3,1 + iD3,1µ

2
1)
)

+ β0,0
(
iE3,1λ2 + F3,1r1µ1 +G3,1µ

2
1

))
. (5.40c)

The capitalized coefficients in the expressions above are all real-valued functions of the aspect

ratio α. Explicitly,

A3,−1 = 1 +
α

c20
− αc20, (5.41a)

B3,−1 =
α(α− c20 + c60 − αc80

c30
, (5.41b)

C3,−1 =
1

2c50 (−4c20 + ω2
2)

2

(
8αc160 + αω4

2 + c20ω
2
2

(
α− ω2

2

)
− c140

(
8 + 13αω2

2

)
+ c60

(
56 + 17αω2

2 + 10ω4
2

)
+ c120

(
28α + 22ω2

2 − 4αω4
2

)
− 10c40

(
2α

+ ω2
2 + αω4

2

)
+ c80

(
−16α− 44ω2

2 + 13αω4
2

)
+ c100

(
16

− 5ω2
2

(
α + ω2

2

) )
− 2c30

(
−α + c20 + αc40

) (
4c20 − ω2

2

)2
(c2 −Q2,0)

)
, (5.41c)

D3,−1 =
1

12c50

(
3α2

(
α− c20

)
+ αc40(3 + α2)

(
c40 − 1

)
+ c60

(
3 + 6α2

)
− 3α2c100

(
−1 + αc20

) )
,

(5.41d)

E3,−1 =
1− c40
2c0

, (5.41e)
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F3,−1 =
1

2

(
3− c40

)
, (5.41f)

G3,−1 =
α2 + 2αc20 − c40(3 + α2)− c80(α

2 − 1)− 2αc100 + α2c120
8c40

, (5.41g)

E3,0 = −α + c20 − αc40, (5.41h)

where Q2,0 is a second-order correction of the Stokes wave due to the traveling frame (see Sub-

section 2.2) and ω2 = ω(2) for ω in (4.44b). Analogous to (5.18), the remaining coefficients

are determined by the following identities for α > 0:

A3,−1 = −A3,1, B3,−1 = −B3,1, C3,−1 = C3,1, D3,−1 = D3,1, E3,−1 = −E3,1, F3,−1 = −F3,1,

G3,−1 = G3,1, A3,0 = −E3,−1/c0, B3,0 = F3,−1/c0, C3,0 = G3,−1/c0, D3,0 = c0A3,−1. (5.42)

In addition, we have a new identity

T2,0

(
S2,0

(
cgE3,−1 + F3,−1

)
+ S2,−1

(
− cgA3,0 +B3,0

))
− S2,−1S2,0

(
cgD3,0 + E3,0

)
= 0,

(5.43)

to be used momentarily. The proofs of (5.42) and (5.43) are found in the companion Math-

ematica files.

Taking the positive branch of λ2 and corresponding branches of β0,±1, a direct calculation

shows

det(M) = β0,0T2,0∆BWµ
3
1, (5.44)

which is nonzero for µ1 satisfying (5.28). A similar result holds if the negative branch of λ2

is chosen. Thus, (5.38) is an invertible linear system for all eigenvalues along the figure-eight

curve. Solving this system for λ3 on the half-loop, we find

λ3 = λ3,R + iλ3,I , (5.45)

where

λ3,R =
1

4
r1µ1

(
e2Λ3,R

∆BW

− ∆BW (cgA3,−1 −B3,−1)

e2

)
, (5.46a)

λ3,I = µ1

(
− r2cg +

Λ3,I

32e2T 2
2,0

)
, (5.46b)
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and, after using (5.43) to simplify,

Λ3,R = µ2
1 (cgA3,−1 −B3,−1) , (5.47a)

Λ3,I = −A3,−1∆
2
BWT

2
2,0 − 16e2T2,0 (−C3,0S2,−1 −G3,−1S2,0 + T2,0 (C3,−1 +D3,−1))

+ e22
(
−2D3,0S2,−1S2,0 + T2,0

(
−2A3,0S2,−1 + 2E3,−1S2,0 + A3,−1T2,0µ

2
1

))
.

(5.47b)

Solutions of (5.37) for β1,±1 are found in the companion Mathematica files.

It appears (5.46a) is singular as µ1 → M since ∆BW → 0. If r1 ̸= 0, this singularity is

not removable, as the following result shows.

Theorem 5.3.2. Let Λ
(M)
3,R = limµ1→M Λ3,R. For α > αBW , Λ

(M)
3,R ̸= 0.

Proof. Taking the appropriate limit of Λ3,R yields

Λ
(M)
3,R =

8eBW

e2

(
cgA3,−1 −B3,−1

)
. (5.48)

Using explicit expressions for A3,−1, B3,−1, and cg, a direct calculation shows

cgA3,−1 −B3,−1 = −2T2,−1. (5.49)

Given e2 = 4T2,−1 by definition, we conclude

Λ
(M)
3,R = −4eBW < 0, (5.50)

for α > αBW . This proves the claim.

Because Λ
(M)
3,R is nonzero for all α > αBW , (5.46a) is singular as µ1 → M , unless r1 = 0.

Since the Benjamin-Feir figure-eight curve consists of bounded eigenvalues that have non-

singular dependence on the Floquet exponent [11], the regular curve condition [28, 29, 30]

enforces the choice r1 = 0 to remove the singularity, justifying our claim at the previous

order.

With r1 = 0, λ3 is purely imaginary and depends on the second-order rescaling parameter

r2. To determine r2 and the next real correction to the figure-eight curve, we must proceed
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to O (ε4). This requires the solution of (5.37) subject to the solvability conditions above.

We obtain

w3(x) =
4∑

j=−4

w3,je
ijx + β3,−1w0,−1(x) + β3,0w0,0(x) + β3,1w0,1(x), (5.51)

where w3,j = w3,j(α, β0,0, β1,0, β2,ν , µ1, r2) ∈ C2 while β3,ν ∈ C are undetermined constants

at this order, see the companion Mathematica files for details.

5.3.4 The O (ε4) Problem

At O (ε4), the spectral problem (4.35) is

(
L0 − λ0R0

)
w4 = −

4∑
j=1

Ljw4−j +R0

( 4∑
k=1

λkw4−k

)
+

4∑
j=1

Rj

( 4−j∑
k=0

λkw4−j−k

)
. (5.52)

The solvability conditions of (5.52) simplify to a 3× 3 linear system

M


β2,−1

λ4

β2,1

 =


f4,1

f4,2

f4,3

 , (5.53)

where M is as before and

f4,1 = −
(
β2,0S2,−1µ1 + β1,−1

(
2 (λ3 + ir2µ1cg) + µ1(A3,−1λ2 + iC3,−1 + iD3,−1µ

2
1)
)

+ β1,0
(
iE3,−1λ2 +G3,−1µ

2
1

)
+ β0,−1

(
2ir3µ1cg + µ1(A3,−1λ3 + iB3,−1r2µ1

+ iµ3
1I4,−1 + µ1(H4,−1λ2 + iG0,−1

4,−1))
)
+ λ2E4,−1 + iJ0,−1

4,−1 − iλ22/c0
)

+ β0,0
(
iE3,−1λ3 + F3,−1r2µ1 +D4,−1µ

3
1 + µ1 (iA4,−1λ2 + C4,−1)

)
+ iβ0,1

(
µ2
1G

0,1
4,−1 + J0,1

4,−1

))
, (5.54a)

f4,2 = −
(
β2,0T2,0µ

2
1 + β1,−1

(
A3,0λ2 + iC3,0µ

2
1

)
+ iβ1,0D3,0µ1λ2

+ β1,1
(
A3,0λ2 − iC3,0µ

2
1

)
+ β0,−1

(
A3,0λ3 + iB3,0r2µ1 + µ1(D4,0λ2 + iF4,0

+ iG4,0µ
2
1)
)
+ β0,0

(
µ1(iD3,0λ3 + E3,0r2µ1 +H4,0µ

3
1 + C4,0µ1)− λ22

)
+ β0,1

(
A3,0λ3 + iB3,0r2µ1 + µ1(−D4,0λ2 + iF4,0 + iG4,0µ

2
1)
))
, (5.54b)
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f4,3 = −
(
β2,0S2,1µ1 + β1,1

(
2 (λ3 + ir2µ1cg) + µ1(A3,1λ2 + iC3,1 + iD3,1µ

2
1)
)

+ β1,0
(
iE3,1λ2 +G3,1µ

2
1

)
+ β0,1

(
2ir3µ1cg + µ1(A3,1λ3 + iB3,1r2µ1

+ iµ3
1I4,1 + µ1(H4,1λ2 + iG0,1

4,1))
)
+ λ2E4,1 + iJ0,1

4,1 + iλ22/c0
)

+ β0,0
(
iE3,1λ3 + F3,1r2µ1 +D4,1µ

3
1 + µ1 (iA4,1λ2 + C4,1)

)
+ iβ0,−1

(
µ2
1G

0,−1
4,1 + J0,−1

4,1

))
. (5.54c)

As before, the capitalized coefficients above are all real-valued functions of α. The interested

reader can consult the companion Mathematica files for the explicit representations of these

functions. One can show that

A4,−1 = A4,1, C4,−1 = −C4,1, D4,−1 = −D4,1, E4,−1 = E4,1, G
0,1
4,−1 = −G0,−1

4,1 ,

G0,−1
4,−1 = −G0,1

4,1, H4,−1 = H4,1, I4,−1 = −I4,1, J0,1
4,−1 = −J0,−1

4,1 , J0,−1
4,−1 = −J0,1

4,1 ,

J0,−1
4,−1 = J0,1

4,−1, D4,0 = −A4,−1/c0, F4,0 = C4,−1/c0,

(5.55)

for α > 0, analogous to (5.18) and (5.42) from the previous orders.

Solving (5.53) for λ4 on the half-loop yields

λ4 = λ4,R + iλ4,I , (5.56)

with

λ4,R =
µ1

256T 3
2,0

(
Λ

(1)
4,R

T2,0∆BW

−
∆BWΛ

(2)
4,R

c0e22

)
, (5.57a)

λ4,I = −r3µ1cg. (5.57b)

The coefficients Λ
(j)
4,R in (5.57a) decompose as

Λ
(j)
4,R = Λ

(j,1)
4,R r2 + Λ

(j,2)
4,R , j ∈ {1, 2}. (5.58)

An application of (5.43) shows

Λ
(1,1)
4,R = 64e2T

4
2,0µ

2
1 (cgA3,−1 −B3,−1) , (5.59)

Λ
(2,1)
4,R = 64c0e2T

2
2,0 (cgA3,−1 −B3,−1) . (5.60)
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The remaining coefficients Λ
(j,2)
4,R are explicit functions of α and µ2

1. These coefficients as well

as the solutions β2,±1 of (5.53) are found in the companion Mathematica files.

Similar to the previous order, the real part of λ4 is singular as µ1 →M . To remove this

singular behavior, we require

r2 = −
Λ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

, (5.61)

using the regular curve condition, where

Λ
(1,j,M)
4,R = lim

µ1→M
Λ

(1,j)
4,R , j ∈ {1, 2}. (5.62)

The rescaling parameter r2 is well-defined for any fixed α > αBW , since Λ
(1,1,M)
4,R ̸= 0 over

this interval by arguments similar to those in Theorem 5.3.1. However, r2 is unbounded as

α → α+
BW or α → ∞, see Figure 5.6. Both limits suggest potentially unbounded growth in

the imaginary part of the figure-eight curve at O (ε3) (5.46b) and the real part of the curve

at O (ε4) (5.57a). Because µ1 appears as a factor in both of these expressions, the apparent

singular behavior as α → α+
BW is arrested since µ1 → 0 in this limit.

The same cannot be said as α → ∞. The culprit for this growth turns out to be the

expressions for β0,±1 obtained at O (ε2), see (5.35a) and (5.35b). In particular, β0,±1 both

share a factor of T2,0 in their respective numerators that becomes unbounded as α → ∞.

This singular behavior is inherited by r2 and ultimately affects the real and imaginary parts

of the figure-eight curve at O (ε4) and O (ε3), respectively. This provides a first glimpse into

the breakdown of compactness that distinguishes the Benjamin-Feir instability spectrum in

finite and infinite depth, as discussed in more detail by [11, 73]. This difference will become

even more clear when we consider the infinite depth case in Section 5.4.

Remark 5.3.7. The singular behavior of r2 as α → α+
BW and α → ∞ also affects the

parameterizing interval of Floquet exponents (5.4) at O (ε3). For similar reasons as above,

this singular behavior is avoided as α → α+
BW , but remains as α → ∞.
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Figure 5.6: A plot of r2 vs. α. For all α > αBW , r2 is well-defined. As α → α+
BW or α → ∞, r2 becomes

singular. The singular behavior as α → α+
BW is arrested by the factor of µ1 in front of (5.46b) and (5.57a).

The singular behavior as α → ∞ remains, showcasing the breakdown of compactness in finite versus infinite

depth, see [11, 73] for further discussion.

In general, (5.56) has nonzero real part, and we have found a higher-order approximation

to the figure-eight curve. This curve is parameterized by Floquet exponents

µ ∈ ε (−M,M)
(
1−

Λ
(1,2,M)
4,R

Λ
(1,1,M)
4,R

ε2 + r3ε
3
)
+O

(
ε5
)
. (5.63)

The real part along a half-loop of this curve has asymptotic expansion

λR =
µ1

8
∆BW ε

2 +
µ1

256c0∆BWΛ
(1,1,M)
4,R e22T

4
2,0

(
c0e

2
2

(
Λ

(1,1,M)
4,R Λ

(1,2)
4,R − Λ

(1,2,M)
4,R Λ

(1,1)
4,R

)
− T2,0∆

2
BW

(
Λ

(1,1,M)
4,R Λ

(2,2)
4,R − Λ

(1,2,M)
4,R Λ

(2,1)
4,R

))
ε4 +O

(
ε5
)
, (5.64)

for 0 < µ1 < M , and its corresponding imaginary part is

λI = −µ1cgε+ µ1

(
cgΛ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

+
Λ3,I

32e2T 2
2,0

)
ε3 − r3µ1cgε

4 +O
(
ε5
)
. (5.65)

Quadrafold symmetry of the stability spectrum (4.35) extends (5.64) and (5.65) to a full

parameterization of the higher-order approximation of the figure-eight curve.

At this order, r3 is undetermined, leading to ambiguities in the Floquet parameterizing

interval (5.63) and the imaginary part (5.65). Proceeding to O (ε5), one can show via the
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Figure 5.7: (Left) A plot of the Benjamin-Feir figure-eight curve for a Stokes wave with amplitude ε = 0.1

and aspect ratio α = 1.5. Numerical results are given by the blue dots, while asymptotic results to O
(
ε2
)
and

O
(
ε4
)
are given by the solid orange and green curves, respectively. (Right) The Floquet parameterization of

the real (blue axis) and imaginary (orange axis) part of the figure-eight curve on the left. Numerical results

are given by the correspondingly colored dots. The asymptotic parameterizations of the real part to O
(
ε2
)

and O
(
ε4
)
are given by the solid blue and light blue curves, respectively, while those for the imaginary part

are given by the solid orange and yellow curves, respectively.

regular curve condition that r3 = 0. Dropping terms of at least O (ε5) in (5.64) and (5.65)

and eliminating µ1 leads, in theory, to a new algebraic curve that uniformly approximates

the Benjamin-Feir figure-eight to O (ε4). In practice, eliminating µ1 from (5.64) and (5.65)

is too cumbersome, and we leave this curve in its parameterized form on the half-loop.

Figure 5.7 compares our higher-order approximation of the figure-eight with numerical results

and the lower-order approximation of the figure-eight, obtained above. Both figure-eight

approximations match numerical computations well for ε≪ 0.1. Around ε = 0.1, the lower-

order approximation deviates from numerical results, while the higher-order approximation

maintains excellent agreement, giving confidence in our higher-order asymptotic expansions.

In addition to a higher-order description of the figure-eight curve, we can estimate its most
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unstable eigenvalue by examining the critical points of (5.64) with respect to µ1. For ease

of notation, let λ2,R and λ4,R denote the second- and fourth-order corrections of (5.64),

respectively, and let µ1,∗ denote the critical points. Then

∂

∂µ1

(
λ2,R(α, µ1)ε

2 + λ4,R(α, µ1)ε
4 +O

(
ε5
))∣∣∣∣

µ1,∗

= 0. (5.66)

Dropping terms of O (ε5) and smaller, we arrive at an algebraic equation for the critical

points:

λ′2,R(α, µ1,∗) + λ′4,R(α, µ1,∗)ε
2 = 0, (5.67)

where primes denote differentiation with respect to µ1. When ε = 0, (5.67) has positive

solution

µ1,∗0 = 2

√
eBW

e2
, (5.68)

coinciding with the first-order correction of the most unstable Floquet exponent (5.33). When

0 < ε ≪ 1, we expect µ1,∗ to bifurcate smoothly from µ1,∗0 . Since the small parameter in

(5.67) appears as ε2, we expand µ1,∗ in ε2, yielding

µ1,∗ = µ1,∗0 + ε2µ1,∗2 +O
(
ε4
)
. (5.69)

Substituting (5.69) into (5.67),

µ1,∗2 = −
λ′4,R(α, µ1,∗0)

λ′′2,R(α, µ1,∗0)
. (5.70)

at O (ε2). To simplify notation further, we drop the functional dependencies above, denoting

λ′4,R(α, µ1,∗0) and λ
′′
2,R(α, µ1,∗0) instead by λ′4,R,∗ and λ′′2,R,∗, respectively. Substituting (5.70)

into (5.4), we arrive at an asymptotic expansion for the Floquet exponent of the most unstable

eigenvalue on the higher-order half-loop:

µ∗ =

(
2

√
eBW

e2

)
ε−

(
2
Λ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

√
eBW

e2
+
λ′4,R,∗

λ′′2,R,∗

)
ε3 +O

(
ε4
)
. (5.71)
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If instead we substitute (5.69) into (5.64), we obtain an asymptotic expansion for the real

part of the most unstable eigenvalue. Using our simplified notation above,

λR,∗ = λ2,R,∗ε
2+

(
λ′2,R,∗µ1,∗2 + λ4,R,∗

)
ε4 +O

(
ε5
)
. (5.72)

Unpacking this notation, we obtain the more explicit expansion

λR,∗ =
eBW

2
ε2 +

eBW

256c0Λ
(1,1,M)
4,R e22T

4
2,0

(
c0e2

(
Λ

(1,1,M)
4,R Λ

(1,2)
4,R,∗ − Λ

(1,2,M)
4,R Λ

(1,1)
4,R,∗

)
− 4

T2,0
eBW

(
Λ

(1,1,M)
4,R Λ

(2,2)
4,R,∗ − Λ

(1,2,M)
4,R Λ

(2,1)
4,R,∗

))
ε4 +O

(
ε5
)
, (5.73)

where Λ
(j,ℓ)
4,R,∗ denotes Λ

(j,ℓ)
4,R evaluated at µ1 = µ1,∗0 . A similar calculation determines the

asymptotic expansion for the imaginary part of this eigenvalue. After some work,

λI,∗ = −2cgε

√
eBW

e2
+

(
−cg

(
λ′4,R,∗

λ′′2,R,∗

)
+ 2

√
eBW

e2

(
cgΛ

(1,2,M)
4,R

Λ
(1,1,M)
4,R

+
Λ3,I,∗

32e2T 2
2,0

))
ε3 +O

(
ε4
)
,

(5.74)

where Λ3,I,∗ denotes Λ3,I evaluated at µ1 = µ1,∗0 . Expansions (5.71),(5.73), and (5.74) for

the most unstable eigenvalue on the figure-eight match numerical computations to excellent

agreement, even for sizeable values of ε on the order of 0.2. These expansions also improve

upon results obtained at O (ε2), see Figure 5.8.

5.3.5 Comparison of the Benjamin-Feir and High-Frequency Instabilities

As seen in Chapter 4, the largest high-frequency instability for sufficiently small ε is closest

to the origin. Its most unstable eigenvalue has asymptotic expansion

λ
(HF)
R,∗ =

|S2|
2
√
ω(k0)ω(k0 + 2)

ε2 +O
(
ε4
)
, (5.75)

where S2 is a complicated, but explicit, function of the aspect ratio α, ω is given by (4.44b),

and k0 is an implicit function of α defined as the unique solution of
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Figure 5.8: (Left) The interval of Floquet exponents parameterizing the half-loop of the Benjamin-Feir

figure-eight curve for a Stokes wave with aspect ratio α = 1.5 and variable amplitude ε. The numerically

computed boundary of this interval is given by the blue dots, while the solid blue and light blue curves give the

asymptotic results to O (ε) and O
(
ε3
)
, respectively. The orange dots give the numerically computed Floquet

exponents of the most unstable eigenvalue, while the solid orange and yellow curves give the corresponding

asymptotic estimates to O (ε) and O
(
ε3
)
, respectively. (Right) The real (blue axis) and imaginary (orange

axis) part of the most unstable eigenvalue on the half-loop with α = 1.5 and variable ε. Numerical results

are given by the correspondingly colored dots. The asymptotic approximations of the real part to O
(
ε2
)

and O
(
ε4
)
are given by the solid blue and light blue curves, respectively. The asymptotic approximations

of the imaginary part to O (ε) and O
(
ε3
)
are given by the solid orange and yellow curves, respectively.

Ω1(k0) = Ω−1(k0 + 2), (5.76)

for Ωσ in (4.44b). The leading-order behavior of this instability is O (ε2), similar to the

Benjamin-Feir case:

λ
(BFI)
R,∗ =

eBW

2
ε2 +O

(
ε4
)
. (5.77)

By comparing coefficients of the leading-order terms in (5.75) and (5.77), we can directly

compare the largest growth rates of the high-frequency and Benjamin-Feir instabilities for
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all α > 0, see Figure 5.9. This is the first time the growth rates of these two instabilities

have been compared using analytical methods.

For shallow water, α < αBW , only high-frequency instabilities are present. For deep

water, α > αBW , we have two distinct behaviors. When αBW < α < αDO, the high-frequency

instabilities dominate the modulational Benjamin-Feir instabilities. When α > αDO, the

Benjamin-Feir instability dominates. The critical threshold αDO that distinguishes these

behaviors in deep water is well-approximated by the implicit solution of

|S2|√
ω(k0)ω(k0 + 2)

= eBW , (5.78)

for k0 defined in (5.76). If we solve (5.78) numerically, we find αDO = 1.4308061674...,

matching the numerical result presented in [35] to four significant digits.

Remark 5.3.8. If the O (ε4) corrections are included in expansions (5.75) and (5.77), then

αDO = αDO(ε), where αDO(0) = 1.4308061674.... By dominant balance, we argue that the

next order correction of αDO is O (ε2), but obtaining this correction explicitly is a computa-

tional challenge.

5.4 The Benjamin-Feir Spectrum in Infinite Depth

5.4.1 A Few Remarks about Infinite Depth

Our analysis so far pertains only to the Benjamin-Feir instability spectrum in finite depth.

In this section, we consider the special case of infinite depth, when α → ∞. Unfortunately,

this case is not as simple as taking the appropriate limit of the expressions obtained in

Section 5.3. In fact, we have already seen that this limit is singular in the eigenfunction

coefficients β0,±1, which ultimately affects the description of the figure-eight curve at O (ε3)

and subsequent orders. The nature of this limit explains in part why the existence proof by

Bridges & Mielke [15] fails in infinitely deep water as well as motivates the alternative proof

covering this case by Nguyen & Strauss [73]. It also accounts for the qualitative differences
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Figure 5.9: The real part of the most unstable eigenvalue (modulo ε2) on the largest high-frequency

instability (orange) and the Benjamin-Feir instability (blue) as a function of α. Numerical results using

ε = 10−3 are given by the correspondingly colored dots. The asymptotic results (5.75) and (5.77) are given

by the correspondingly colored solid curves. We observe three regimes for the periodic water wave problem:

(i) α < αBW , (ii) αBW < α < αDO, and (iii) α > αDO, where αBW is the root of (5.27) and αDO is the root

of (5.78). This agrees with the numerical results in Figure 11 of [35].

in the exact representations of the figure-eight curve in finite and infinite depth, as can be

seen in the works of Berti et al. [10, 11].

In this section, we outline the steps of our spectral perturbation method applied to the

Benjamin-Feir instability in infinite depth, starting with the unperturbed problem. Replacing

the finite depth operators in the spectral problem (4.35) with their infinite depth equivalents

(Section 4.4 in Chapter 4), we find the following spectral data at O (ε0):

λ0 = 0, µ0 = 0, and (5.79a)

w0(x) = β0,−1w0,−1(x)+β0,0w0,0(x) + β0,1w0,1(x), (5.79b)

where β0,j ∈ C are undetermined at this order and

w0,−1(x) =

1

i

 e−ix, w0,0(x) =

0

1

 , and w0,1(x) =

 1

−i

 eix. (5.80)
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A direct calculation shows that w0 above is in fact the limit of w0 in finite depth (5.2) as

α → ∞.

To proceed to the higher-order problems, we must expand the infinite depth operators as

power series in ε. Some of these operators involve expressions of the form |n+µ|, where n ∈ Z.

When we expand µ according to (5.4), it will become necessary to expand |n + µ| as well,

despite the lack of analyticity of the absolute value function. To obtain these expansions,

we exploit the following identity:

|a+ b| = |a|+ sgn(a)b, (5.81)

provided a ∈ R\{0} and b ∈ R such that |b| < |a|. Substituting the Floquet expansion (5.4)

into |n + µ|, equating µ0 = 0, and applying (5.81) for ε sufficiently small yields the desired

expansions

|n+ µ| =

|n|+ sgn(n)εµ1(1 + r(ε)) n ̸= 0

|εµ1|(1 + r(ε)) n = 0

. (5.82)

Consequently, all infinite depth operators involving |n+µ| require two expansions: one when

n ̸= 0 and one when n = 0.

5.4.2 The O (ε) Problem

The O (ε) problem in infinite depth takes the same form as (5.5) with the finite depth

operators replaced by their infinite depth equivalents and the expansions of these operators

carried out appropriately. Three solvability conditions are obtained from this problem. One

results in a trivial equality, similar to finite depth, and the remaining two are the following:

β0,−1

(
λ1 − i

µ1

2

)
= 0, (5.83a)

β0,1

(
λ1 − i

µ1

2

)
= 0. (5.83b)

Imposing β0,± ̸= 1 as in finite depth, we get

λ1 = i
µ1

2
, (5.84)
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which is consistent with (5.11), since cg → −1/2 as α → ∞.

Having satisfied the solvability conditions, we solve the O (ε) problem for the first-order

eigenfunction correction in infinite depth

w1(x) = w1,p(x) + β1,−1w0,−1(x) + β1,0w0,0(x) + β1,1w0,1(x), (5.85)

where β1,j ∈ C are undetermined at this order and

w1,p(x) = β0,−1

1

i

 e−2ix +
1

2
iµ1β0,−1

0

1

 e−ix +
1

2
iµ1β0,0

1

0

+
1

2
iµ1β0,1

0

1

 eix

+ β0,1

 1

−i

 e2ix.

(5.86)

A direct calculation shows that (5.86) coincides with the limit of the corresponding particular

solution in finite depth as α → ∞.

5.4.3 The O (ε2) Problem

Similar to (5.15) in finite depth, this problem has three nontrivial solvability conditions

2β0,−1

(
λ2 − i

1

2
r1µ1

)
+ i

(
−β0,1 +

(
1

4
µ2
1 − 1

)
β0,−1

)
= 0, (5.87a)

β0,0µ
2
1 = 0, (5.87b)

2β0,1

(
λ2 − i

1

2
r1µ1

)
+ i

(
β0,−1 +

(
−1

4
µ2
1 + 1

)
β0,1

)
= 0. (5.87c)

Equations (5.87a) and (5.87c) are the limits of their respective equations (5.16a) and (5.16c)

in the finite depth case, since

S2,−1 → 0, T2,−1 →
1

4
, U2,−1 → −1, V2,−1 → −1, (5.88)

as α → ∞. The same is true for the second equation (5.87b) if one divides the finite depth

equation (5.16b) by T2,0 first. Then, because

S2,0 → 1, T2,0 → −∞, (5.89)
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as α → ∞, the rescaled (5.16b) tends to (5.87b) in the limit. The unbounded growth of T2,0

as α → ∞ is ultimately responsible for the differences between the finite depth and infinite

depth calculations, as mentioned in Subsection 3.3.

Equation (5.87b) implies either µ1 = 0 or β0,0 = 0. Both numerical experiments [35] and

rigorous results [10, 73] suggest µ1 ̸= 0, so we are forced to choose β0,0 = 0.

Remark 5.4.1. That β0,0 = 0 in infinite depth is why we avoided normalizing w at the outset

of our analysis. Indeed, had we chosen a normalization such that β0,0 was nonzero, we would

need to renormalize our asymptotic expansions in infinite depth to avoid inconsistencies at

higher order.

The remaining solvability conditions (5.87a) and (5.87c) form a nonlinear system of two

equations in three unknowns, namely λ2 and β0,±1. Without loss of generality, we choose

β0,−1 as a free parameter and solve for λ2 and β0,1. As in finite depth, we restrict our analysis

to µ1 > 0. Solving for λ2, we find

λ2 = λ2,R + iλ2,I , (5.90)

where

λ2,R = ±µ1

8

√
8− µ2

1, (5.91a)

λ2,I =
1

2
r1µ1. (5.91b)

Equations (5.91a) and (5.91b) are the limits of (5.24a) and (5.24b), respectively, since

e2 → 1, eBW → 1, (5.92)

and cg → −1/2 as α → ∞. For λ2 to have a nonzero real part, we must have

0 < µ1 < 2
√
2, (5.93)

which is consistent with (5.28) as α → ∞. Inequality (5.93) parameterizes a single loop

of the Benjamin-Feir figure-eight curve in the upper-half complex plane. If we repeat our
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analysis with µ1 < 0, we find −2
√
2 < µ1 < 0, which parameterizes the remaining loop of

the figure-eight. All together, the full parameterizing interval of the figure-eight curve in

infinite depth is

µ ∈ ε
(
−2

√
2, 2

√
2
)
(1 + r1ε) +O

(
ε3
)
. (5.94)

To simplify the remaining analysis, we restrict to a half-loop of the figure-eight curve by

choosing the positive branch of (5.91a), as in the finite depth case.

The imaginary correction (5.91b) and Floquet parameterization (5.94) depend on the

first-order rescaling parameter r1, similar to finite depth. Using the regular curve condition

at the next order, we determine r1 = −
√
2. Thus, we may assemble our expansions for the

real and imaginary parts of the half-loop in infinite depth:

λR =
µ1

8
ε2
√
8− µ2

1 +O
(
ε3
)
, (5.95a)

λI =
1

2
µ1ε−

1√
2
µ1ε

2 +O
(
ε3
)
, (5.95b)

These expansions agree well with numerical computations for sufficiently small ε, see Figure

5.10. Dropping terms in these expansions beyond O (ε2) and eliminating the µ1 dependence

yields the algebraic curve

4
(
−1 + 4

√
2ε− 12ε2 + 8

√
2ε3 − 4ε4

)
λ2R = 2ε2

(
−1 + 4

√
2ε− 4ε2

)
λ2I + λ4I , (5.96)

which is a lemniscate of Huygens, similar to finite depth. The coefficients of this lemniscate

capture higher-order behavior in ε since r1 ̸= 0, which is distinct from the finite depth case

when r1 = 0. The low-order approximation of this curve obtained by [10] assumes r1 = 0.

This approximation works well enough for sufficiently small ε but is not asymptotic to the

true figure-eight curve at O (ε2), see Figure 5.11.

Remark 5.4.2. The Floquet parameterization of the Benjamin-Feir instability in finite depth

is

µ ∈ εµ1

(
1 + r2ε

2
)
+O

(
ε4
)
, (5.97)
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Figure 5.10: (Left) A plot of the Benjamin-Feir figure-eight curve for a Stokes wave with amplitude ε = 10−3

in infinite depth. Numerical results are given by the blue dots, and the asymptotic results to O
(
ε2
)
are

given by the solid orange curve. (Right) The Floquet parameterization of the real (blue axis) and imaginary

(orange axis) part of the figure-eight curve on the left. The respective numerical results are given by the

correspondingly colored dots, and the asymptotic results for the real and imaginary part to O
(
ε2
)
and O (ε),

respectively, are given by the correspondingly colored curves.

where r2 = r2(α). In infinite depth, it is

µ ∈ εµ1

(
1− ε

√
2
)
+O

(
ε3
)
. (5.98)

In order for the parameterization in finite depth to match that in infinite depth, the corrective

term r2ε
2 must be promoted an order of magnitude in ε. Since ε can be made arbitrarily small,

the only way this is possible is if |r2| → ∞ as α → ∞, which is precisely what we observed

in Subsection 5.3.4.

A direct calculation shows that (5.95a) attains a maximum value of

λR,∗ =
1

2
ε2 +O

(
ε3
)
, (5.99)
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Figure 5.11: A plot of the Benjamin-Feir figure-eight curve for a Stokes wave with amplitude ε = 2.5×10−2

in infinite depth. Numerical results are given by the blue dots, and the asymptotic results to O
(
ε2
)
are

given by the solid green curve. The solid orange curve gives the heuristic approximation of Berti et al. [10].

This approximation is not asymptotic to O
(
ε2
)
in the imaginary part of the figure-eight curve.

when µ1 is equated to

µ1,∗ = 2. (5.100)

Hence, (5.99) gives an asymptotic expansion for the real part of the most unstable eigenvalue

on the infinite depth half-loop. Its corresponding imaginary part and Floquet exponent are

λI,∗ = ε+O
(
ε2
)
, (5.101a)

µ∗ = 2ε+O
(
ε2
)
, (5.101b)

respectively. These expansions are consistent with those in finite depth (Subsection 5.3.2)

as well as numerical results (Figure 5.12).

Continuing our analysis of the O (ε2) problem, we solve (5.87a) and (5.87b) for β0,1

(assuming µ1 > 0). After some work, we find

β0,1 =
1

4

(
µ2
1 − 4∓ 4iµ1

√
8− µ2

1

)
β0,−1. (5.102)
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Figure 5.12: (Left) The interval of Floquet exponents parameterizing the half-loop of the Benjamin-Feir

figure-eight curve for a Stokes wave with in infinite depth and variable amplitude ε. The numerically

computed boundary of this interval is given by the blue dots, while the solid blue curve gives the asymptotic

results to O
(
ε2
)
. The orange dots give the numerically computed Floquet exponents of the most unstable

eigenvalue, while the solid orange curves give the corresponding asymptotic results to O (ε). (Right) The real

(blue axis) and imaginary (orange axis) part of the most unstable eigenvalue in infinite depth with variable

ε. Numerical results are given by the correspondingly colored dots, and the asymptotic results for the real

and imaginary part to O
(
ε2
)
and O (ε), respectively, are given by the correspondingly colored solid curves.

Since we chose the positive branch of λ2,R (5.91a) without loss of generality, we choose the

negative branch of (5.102). In finite depth, |β0,±1| → ∞ as α → ∞, which is inconsistent

with (5.102). However, a direct calculation shows that the ratio β0,1/β0,−1 in finite depth

tends to (5.102) as α → ∞, re-establishing consistency between the two results.

Before we proceed to the next order, we solve the O (ε2) problem subject to the solvability

conditions (5.87a)-(5.87b). We find

w2(x) = w2,p(x) + β2,−1w0,−1(x) + β2,0w0,0(x) + β2,1w0,1(x), (5.103)



151

where β2,j ∈ C are undetermined at this order and

w2,p(x) =
3∑

j=−3

w2,je
ijx, (5.104)

where w2,j = w2,j(β0,−1, β1,ν , r1) ∈ C2, see the companion Mathematica files for details.

5.4.4 The O (ε3) Problem

The solvability conditions of the O (ε3) problem form a 3× 3 linear system

M


β1,0

λ3

β1,1

 =


f3,1

f3,2

f3,3

 , (5.105)

where M is given by

M =


µ1 2β0,−1 −i

−µ2
1 0 0

−µ1 2β0,1 − i
4
(−4 + 8iλ2 + 4r1µ1 + µ2

1)

 , (5.106)

and

f3,1 =
i

4
β1,−1

(
4 + 8iλ2 + 4r1µ1 − µ2

1

)
, (5.107a)

f3,2 = −iµ2
1

(
β0,−1 + β0,1

)
, (5.107b)

f3,3 = −i
(
β1,−1 +

1

4
β0,1µ1

(
6− 4r2 + 4iλ2 + µ2

1

))
. (5.107c)

If we substitute expressions for λ2 and β0,1 on the half-loop into (5.106), we find

det (M) = µ3
1β0,−1

√
8− µ2

1, (5.108)

implying (5.105) has a unique set of solutions for 0 < µ1 < 2
√
2, as desired. The solution

for λ3 is

λ3 = λ3,R + iλ3,I , (5.109)
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where

λ3,R = −µ1 (2µ1 + r1 (−4 + µ2
1))

4
√

8− µ2
1

, (5.110a)

λ3,I = − 1

16
µ1

(
16− 8r2 + µ2

1

)
. (5.110b)

To avoid singular behavior in λ3,R as µ1 → 2
√
2, we choose r1 such that

lim
µ1→2

√
2

(
2µ1 + r1(−4 + µ2

1)
)
= 0, (5.111)

according to the regular curve condition. We find r1 = −
√
2, justifying our prior claim.

Given r1 = −
√
2, we see that (5.110a) and (5.110b) are nonzero for generic choices of

0 < µ1 < 2
√
2. Hence, we have obtained a higher-order correction to both the real and

imaginary parts of the figure-eight curve in infinite depth. This is in contrast with the finite

depth case, in which only a purely imaginary correction was found at O (ε3).

To characterize this higher-order correction, it is necessary to determine the value of the

second-order rescaling parameter r2, which appears in (5.110b). We show at the next order

that r2 = 13/8 by the regular curve condition. Assuming this is true for now, we assemble

our expansions for the real and imaginary parts along a half-loop of this higher-order curve

λR =
1

8
µ1ε

2
√

8− µ2
1

(
1 +

(
2(−2µ1 +

√
2(−4 + µ2

1))

8− µ2
1

)
ε

)
+O

(
ε4
)
, (5.112a)

λI =
1

2
µ1ε
(
1−

√
2ε− 1

8

(
3 + µ2

1

)
ε2
)
+O

(
ε4
)
, (5.112b)

respectively. The interval of Floquet exponents for the entire curve has asymptotic expansion

µ ∈ ε
(
−2

√
2, 2

√
2
)(

1−
√
2ε+

13

8
ε2
)
+O

(
ε4
)
. (5.113)

These expansions agree well with numerical computations for sufficiently small ε, see Figure

5.13. In theory, one could eliminate the dependence of µ1 from (5.112a) and (5.112b) to

obtain an algebraic curve that approximates the true figure-eight to O (ε3), but this process

is cumbersome and provides little insight into the behavior of the true figure-eight curve.
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Figure 5.13: (Left) A plot of the Benjamin-Feir figure-eight curve for a Stokes wave with amplitude ε = 0.1

in infinite depth. Numerical results are given by the blue dots, while asymptotic results to O
(
ε2
)
and O

(
ε3
)

are given by the solid orange and green curves, respectively. (Right) The Floquet parameterization of the

real (blue axis) and imaginary (orange axis) part of the figure-eight curve on the left. Numerical results are

given by the correspondingly colored dots. The asymptotic parameterizations of the real part to O
(
ε2
)
and

O
(
ε3
)
are given by the solid blue and light blue curves, respectively, while those for the imaginary part are

given by the solid orange and yellow curves, respectively.

Following techniques in Subsection 5.3.4, we can derive an asymptotic expansion for the

most unstable eigenvalue on this higher-order figure-eight as well as for its corresponding

Floquet exponent. In particular, if we let µ1,∗ denote a critical point of (5.112a), then

∂

∂µ1

(
1

8
µ1ε

2
√

8− µ2
1

(
1 +

(
2(−2µ1 +

√
2(−4 + µ2

1))

8− µ2
1

)
ε

)
+O

(
ε4
))∣∣∣∣

µ1=µ1,∗

= 0. (5.114)

Dropping terms of O (ε4) and smaller, we arrive at the following equation for µ1,∗:

32− 12µ2
1,∗ + µ4

1,∗ − ε
(
32
√
2 + 32µ1,∗ − 24µ2

1,∗
√
2− 2µ3

1,∗ + 2µ4
1,∗
√
2
)
= 0. (5.115)

When ε = 0, the only positive solution of (5.115) is µ1,∗0 = 2, which coincides with (5.101b)
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from the previous order. When 0 < ε≪ 1, we posit the following expansion for µ1,∗:

µ1,∗ = µ1,∗0 + εµ1,∗1 +O
(
ε2
)
, (5.116)

since ε appears as the small parameter in (5.115). Substituting (5.116) into (5.115), we find

at O (ε) that µ1,∗1 = −3+2
√
2. Thus, the Floquet exponent of the most unstable eigenvalue

on the figure-eight has asymptotic expansion

µ∗ =
(
2 + (−3 + 2

√
2)ε+O

(
ε2
))
ε

(
1− ε

√
2 +

13

8
ε2 +O

(
ε3
))

, (5.117)

which simplifies to

µ∗ = 2ε− 3ε2 +O
(
ε3
)
.

Substituting (5.116) into (5.112a) and (5.112b), we obtain asymptotic expansions

λR,∗ =
1

2
ε2 − ε3 +O

(
ε4
)
, (5.118a)

λI,∗ = ε− 3

2
ε2 +O

(
ε3
)
, (5.118b)

for the real and imaginary part of this most unstable eigenvalue on the half-loop, respectively.

These expansions agree well with numerical computations (Figure 5.14), although not to the

same degree as the corresponding expansions in finite depth. This is a result of resolving the

higher-order figure-eight curve in infinite depth at O (ε3) as opposed to O (ε4).
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Figure 5.14: (Left) The interval of Floquet exponents parameterizing the half-loop of the Benjamin-Feir

figure-eight curve for a Stokes wave in infinite depth with variable amplitude ε. The numerically computed

boundary of this interval is given by the blue dots, while the solid blue and light blue curves give the

asymptotic results to O (ε) and O
(
ε3
)
, respectively. The orange dots give the numerically computed Floquet

exponents of the most unstable eigenvalue, while the solid orange and yellow curves give the corresponding

asymptotic estimates to O (ε) and O
(
ε2
)
, respectively. (Right) The real (blue axis) and imaginary (orange

axis) part of the most unstable eigenvalue on the half-loop in infinite depth with variable ε. Numerical results

are given by the correspondingly colored dots. The asymptotic approximations of the real part to O
(
ε2
)

and O
(
ε3
)
are given by the solid blue and light blue curves, respectively. The asymptotic approximations

of the imaginary part to O (ε) and O
(
ε2
)
are given by the solid orange and yellow curves, respectively.

To complete our analysis of the solvability conditions (5.105), we report solutions for β1,0

and β1,1 on the half-loop with r1 = −
√
2. We find

β1,0 = µ1β0,−1

(√
8− µ2

1 +
i

4
µ1

)
, (5.119a)

β1,1 =
1

8

(
µ1

(
−4− 4µ1

√
2 + 3µ2

1

)
β0,−1 + 2

(
−4 + µ2

1

)
β1,−1

)
+

iµ1

8
√

8− µ2
1

((
16
√
2 + µ1

(
−16− 4µ1

√
2 + 3µ2

1

))
β0,−1 + 2

(
−8 + µ2

1

)
β1,−1

)
,

(5.119b)
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where β0,−1 and β1,−1 depend on the normalization of w.

Finally, we solve the O (ε3) problem subject to the solvability conditions (5.105), arriving

at an expression for the third-order eigenfunction correction

w3(x) =
4∑

j=−4

w3,je
ijx + β3,−1w0,−1(x) + β3,0w0,0(x) + β3,1w0,1(x) (5.120)

where w3,j = w3,j(β0,−1, β1,−1, β2,ν , r2) ∈ C2 while β3,j ∈ C are undetermined constants at

this order, see the companion Mathematica files for more details.

5.4.5 The O (ε4) Problem

The solvability conditions at O (ε4) also form a 3× 3 linear system

M


β2,0

λ4

β2,1

 =


f4,1

f4,2

f4,3

 , (5.121)

where M is the same as the previous order and

f4,1 = −
(
β2,−1

(
2λ2 +

i

4

(
−4 + µ14

√
2 + µ2

1

))
+ β1,−1

(
2λ3 +

µ1

4

(
− 4ir2 + 4λ2

+ i
(
6 + µ2

1

)))
− 1

4
µ1β1,0

(
4
√
2 + µ1

)
+ β0,−1

(
− 2i− iλ22 + λ3µ1 + λ2µ

2
1

− i

8
µ1

(
12
√
2 + 8r3 + µ1

(
3 + 2µ1

(√
2− µ1

))))
+ iβ0,1

(
−2 +

3

16
µ2
1

))
,

(5.122a)

f4,2 = −iµ2
1

(
β1,−1 −

i

4
β1,0
(
8
√
2 + µ1

)
+ β1,1 −

1

2
β0,−1

(
4
√
2 + µ1

)
− 2β0,1

√
2

)
, (5.122b)

f4,3 = −
(
iβ2,−1 + µ1β1,0

(√
2− 1

4
µ1

)
+ β1,1

(
2λ3 +

i

4
µ1

(
6− 4r2 + 4iλ2 + µ2

1

))
+ iβ0,−1

(
2− 3

16
µ2
1

)
+ β0,1

(
2i+ iλ22 + λ2µ

2
1 −

i

8
µ1

(
12
√
2 + 8r3 − 8iλ3

+ µ1

(
− 3 + 2µ1

(√
2 + µ1

)))))
. (5.122c)
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Solving for λ4 on the half-loop, we find

λ4 = λ4,R + iλ4,I , (5.123)

where

λ4,R =
µ1

128 (8− µ2
1)

3/2

(
− 2176 + 32r2

(
32− 12µ2

1 + µ4
1

)
+ µ1

(
1024

√
2 + µ1

(
432

− 64µ1

√
2− 92µ2

1 + 5µ4
1

)))
, (5.124a)

λ4,I =
1

16
µ1

(
16
√
2 + 8r3 + µ1

(
8 + 3µ1

√
2
))

. (5.124b)

For ease of notation, let Λ4,R denote the numerator of (5.124a). A direct calculation

shows that Λ4,R factors as follows:

Λ4,R = µ1

(
2
√
2− µ1

)(
− 544

√
2 + 240µ1 + 168µ2

1

√
2 + 52µ3

1 − 10µ4
1

√
2− 5µ5

1

− 32r2

(
2
√
2 + µ1

) (
−4 + µ2

1

) )
. (5.125)

In light of (5.125), it appears that (5.124a) already satisfies the regular curve condition, since

Λ4,R → 0 as µ1 → 2
√
2. However, the factor of 8 − µ2

1 in the denominator of (5.124a) is

one power larger than at the previous order (5.110a). Thus, we cannot guarantee regular

behavior of λ4,R if only the first factor of (5.125) tends to zero as µ1 → 2
√
2. We must also

impose similar behavior on the second factor:

lim
µ1→2

√
2

(
− 544

√
2 + 240µ1 + 168µ2

1

√
2 + 52µ3

1 − 10µ4
1

√
2− 5µ5

1

− 32r2

(
2
√
2 + µ1

) (
−4 + µ2

1

) )
= 0. (5.126)

Solving (5.126) for r2 yields the desired result r2 = 13/8. As a consequence, the final

expression for the fourth-order real part correction (5.124a) becomes

λ4,R = µ1

(
−512 + µ1

(
1024

√
2 + µ1

(
−192 + µ1

(
−64

√
2 + 5µ1 (−8 + µ2

1)
)))

128 (8− µ2
1)

3/2

)
. (5.127)

Since (5.124b) and (5.127) are generically nonzero for 0 < µ1 < 2
√
2, we have found another

higher-order approximation to a half-loop of the figure-eight curve in infinite depth, up to
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the unknown third-order rescaling parameter r3. Presumably, one can determine this value

at O (ε5) using the techniques presented in this section. We stop here, however, since we

have already obtained a high-order approximation to the figure-eight at the previous order.

Remark 5.4.3. For completeness, the final expressions of β2,0 and β2,1 solving (5.121) are

found in the companion Mathematica files.

5.5 Conclusions

Taking inspiration from our work with high-frequency instabilities in Chapters 2-4, we have

developed a formal perturbation method to compute high-order asymptotic approximations

of the Benjamin-Feir figure-eight curve. Unlike traditional methods in spectral perturbation

theory [57], this method allows us to approximate the entire curve at once. Critical to this

method is the use of the regular curve condition, which uniquely determines the expansion

of the Floquet parameterization at high orders. Fromt his method, we determine

(i) the Floquet exponents that parameterize the figure-eight curve,

(ii) the real and imaginary parts of the most unstable eigenvalue on the figure-eight, and

(iii) algebraic curves asymptotic to the figure-eight curve.

We compare these expressions directly with numerical computations of the figure-eight curve

using methods presented in [35]. This is the first time a numerical and analytical description

of the Benjamin-Feir instability have appeared side by side. Excellent agreement between

these descriptions is found in finite and infinite depth, even for modest values of the Stokes

wave amplitude ε. Our expressions are also consistent with the rigorous results of Berti et

al. [10, 11] and improve upon their heuristic approximations of the figure-eight curve.

In addition, our asymptotic results elucidate key differences between the behavior of the

Benjamin-Feir instability spectrum in finite and infinite depth. In particular, the first-order

rescaling parameter r1 = 0 for the Floquet parameterization of the figure-eight curve in finite
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depth, while in infinite depth r1 = −
√
2. Consequently, the second-order rescaling correction

r2 is singular in finite depth as one approaches infinitely deep water, i.e., as α → ∞. This

singularity propagates to the imaginary part of the figure-eight curve at third order and to

the real part of the figure-eight curve at fourth order. Thus, the limit as α → ∞ is singular

for the Benjamin-Feir instability, illustrating the breakdown of compactness mentioned in

[11, 15, 73].

Using asymptotic results in this work and in [30], we are able to compare the Benjamin-

Feir instability and the most unstable high-frequency instability for the first time analytically.

Our analysis suggests three natural regimes for the water wave problem:

(i) Shallow water, which occurs when κh < αBW = 1.3627827567... and only high-

frequency instabilities are present,

(ii) Intermediate water, which occurs when αBW < κh < αDO(ε) = 1.4308061674...+O (ε2)

and both instabilities are present, but high-frequency instabilities dominate,

(iii) Deep water, which occurs when κh > αDO(ε) and both instabilities are present, but

the Benjamin-Feir instability dominates.

Here, κ is the wavenumber of the Stokes wave and h is the depth of the water. These

regimes are supported by numerical computations in [35]. We conclude that Stokes waves of

all depths and all wavenumbers are unstable to the Benjamin-Feir instability, high-frequency

instabilities, or both.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

Water waves display a vast array of phenomena due to hydrodynamic instability. Among

these phenomena are tsunamis, rip tides, and rouge waves; all of which have direct impacts

on human life and property. These examples (and many others unmentioned) motivate the

need for a mathematical theory of water waves that addresses stability.

As we have seen, the governing equations of water waves, called Euler’s equations, are

traditionally expressed as a free boundary value problem in a domain evolving nonlinearly

in time. A canonical class of solutions to these equations are the Stokes waves, which

are small-amplitude, 2π/κ-periodic disturbances of permanent shape in water of constant

depth h traveling at a uniform velocity [64, 71, 86, 87]. In addition to their mathematical

importance, the Stokes waves are readily generated in lab experiments [25] and observed, at

least approximately, in nature [70].

Since the 1960s, it has been known that a Stokes wave of sufficiently small amplitude

ε in sufficiently deep water (κh > αBW == 1.3627827567...) is modulationally unstable to

perturbations longitudinal to the wave’s velocity [8, 9, 92], although a proof of this fact in

finite depth was given thirty years later by Bridges and Mielke [15] and the proof in infinite

depth was only resolved in 2020 by Nguyen & Strauss [73]. For many years, it was believed

that Stokes waves in shallow water were unstable only to perturbations transverse to the

wave’s propagation, but recent numerical work by Deconinck and Oliveras [35] suggested that

Stokes waves are also unstable in shallow water to longitudinal, quasi-periodic perturbations

parameterized by a Floquet exponent µ. These instabilities are not modulational in the sense

that their associated unstable spectral elements, obtained by linearizing Euler’s equations

about the Stokes waves, are not connected to the origin. These relatively new instabilities
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are called the high-frequency instabilities.

In this dissertation, we have constructed a spectral perturbation method to calculate the

asymptotic behavior of the Benjamin-Feir and high-frequency instabilities in the complex

spectral plane for sufficiently small-amplitude Stokes waves. From this method, we obtain

asymptotic estimates of the Floquet exponents of the perturbations that cause instability,

asymptotic estimates of the growth rates of these instabilities, and asymptotic representations

of the instabilities in the complex spectral plane. These asymptotic approximations match

numerical results using the Floquet-Fourier-Hill (FFH) method to excellent agreement. Not

only can these asymptotic approximations be used to improve the overall numerical resolution

of the Benjamin-Feir and high-frequency instabilities, but also allow us to establish the

following fundamental results:

(i) Sufficiently small-amplitude, 2π/κ-periodic Stokes waves are unstable to a high-frequency

instability that grows with the square of the wave amplitude in all finite depths h, ex-

cept when κh = α1 = 1.8494040837.... For κh > αBW , Stokes waves are also unstable

to the Benjamin-Feir instability, which grows with the square of the wave amplitude.

(ii) Stokes waves with κh = 1.8494040837... are unstable to a high-frequency instability

that grows with the cube of the wave amplitude. (They are also unstable to the

Benjamin-Feir instability per (i).)

(iii) A Stokes wave in infinite depth is unstable to the Benjamin-Feir instability. Similar to

finite depth, this instability grows with the square of the wave amplitude. We also find

that these waves are unstable to high-frequency instabilities that grow with the fourth

power of the wave amplitude.

(iv) For Stokes waves with αBW < κh < αDO(ε) = 1.4308061674... + O (ε2), the high-

frequency instabilities grow faster than the Benjamin-Feir instability.
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These results provide growing evidence that Stokes waves are spectrally unstable to lon-

gitudinal perturbations in all depths, contrary to prevailing beliefs dating to the 1960s.

The perturbation method developed in this thesis is readily implemented as a hybrid

analytical-numerical method, allowing one to study higher-order isolas and their properties.

The convergence of the resulting perturbation expansions may be improved using popular

resummation techniques, e.g., Padé approximants, as in [3]. Using these techniques, one

could also explore higher-order deformations of the largest high-frequency isolas or even the

separation of the Benjamin-Feir figure-eight curve from the origin in the complex spectral

plane (Figure 5.1). Presumably the spectra of these two instabilities interact with each other

when ε is sufficiently large. Although the perturbation method alone may not be powerful

enough to describe this interaction completely, the resulting perturbation expansions may be

used to inform numerical methods where approximately in parameter space to investigate.

We suspect that this perturbation method can accommodate additional physical effects

in Euler’s equations, such as surface tension or vorticity. The inclusion of surface tension,

in particular, allows Stokes waves to develop so-called Wilton ripples [93], similar to the

Kawahara equation. These ripples disrupt the classical construction of the Stokes waves

and ultimately affect the behavior of the Benjamin-Feir and high-frequency instabilities.

Recent work by [90] numerically computes the stability spectrum for Stokes waves exhibiting

Wilton ripples. These computations showed that both the Benjamin-Feir and high-frequency

instabilities not only persist in the presence of surface tension, but may be amplified for

particular parameter regimes. Using a variation of the perturbation method outline in this

thesis may lead to explicit asymptotic representations of these parameter regimes and the

growth rates of both instabilities for sufficiently small ε.

We also suspect the method can be extended to transverse instabilities of Stokes waves.

Akers [3] considers the leading-order effect of transverse perturbations on the modulational

instability in infinite depth. The perturbation method developed in this thesis may be

adapted to explore higher-order effects of transverse perturbations not only on the Benjamin-

Feir figure-eight curve, but also the high-frequency isolas in both finite and infinite depth.
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Appendix A

STOKES WAVES BY NUMERICAL CONTINUATION

A.1 The Scalar Case

Suppose we have a nonlinear evolution equation of the form

ut = Lu+N (u), (A.1)

where u = u(x, t) is a real-valued function and L and N represent a linear and nonlinear

differential operator1 in x, respectively. Suppose also that L and N respect the continuous

symmetry x → x + ϕ for any ϕ ∈ R (i.e., L and N are autonomous) as well as the discrete

symmetry x→ −x. Such an equation generalizes the first water wave model discussed in this

thesis, the Kawahara equation. In this appendix, we show how to construct numerically the

Stokes wave solutions of the general equation (A.1), i.e., the small-amplitude, 2π-periodic2

traveling wave solutions of (A.1), assuming they exist.

In a traveling frame x→ x− ct, (A.1) becomes

ut = Lcu+N (u, ux, uxx, ...), (A.2)

where Lc = L+c∂x. The velocity c of this frame is chosen so that the Stokes waves satisfying

(A.2) are time-independent, giving us

0 = LcuS +N (uS). (A.3)

Here, uS = uS(x; ε) represents a Stokes wave of small amplitude ε, where ε will be defined

momentarily. Since the velocity of the correct traveling frame depends on the choice of Stokes

wave, we must have c = c(ε).

1Or, more generally, integro-differential operators.

2We can assume these solutions are 2π-periodic without loss of generality by appropriately rescaling (A.1).
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Given (A.3) is autonomous and respects the symmetry x → −x, we can use translation

symmetry to arrange for uS to be even in x without loss of generality. Consequently, Stokes

waves satisfying (A.2) have a Fourier cosine series of the form

uS(x; ε) =
∞∑
j=0

aj(ε) cos(jx). (A.4)

Our goal is to determine the values of aj(ε) and c(ε) for a given ε by numerical methods.

We first truncate the Fourier cosine series (A.4) to N + 1 terms,

uS(x; ε) ≈
N∑
j=0

aj(ε) cos(jx), (A.5)

and substitute expansion (A.5) into (A.3), giving

0 = Lc(ε)

( N∑
j=0

aj(ε) cos(jx)

)
+N

(
N∑
j=0

aj(ε) cos(jx)

)
. (A.6)

We then introduce the Fourier cosine transform

FC,k[f(x)] =


1
2π

∫ π

−π
f(x)dx, k = 0,

1
π

∫ π

−π
f(x) cos(kx)dx, k ∈ N,

(A.7)

and apply this transform to both sides of (A.6) for 0 ≤ k ≤ N . This leads to a system of

N + 1 equations for N + 2 unknowns of the form:

0⃗ = L̂c(ε)


a0(ε)
...

aN(ε)

+ N̂
(
a0(ε), ..., aN(ε)

)
, (A.8)

where 0⃗ ∈ RN+1, L̂c(ε) ∈ R(N+1)×(N+1) is a matrix with entries[
L̂c(ε)

]
mn

= FC,m−1

[
Lc(ε)(cos((n− 1)x))

]
, 1 ≤ m,n ≤ N + 1, (A.9)

and N̂ : RN+1 → RN+1 is a nonlinear function of aj(ε) given by

N̂
(
a0(ε), ..., aN(ε)

)
=


FC,0

[
N
(∑N

j=0 aj(ε) cos(jx)
)]

...

FC,N

[
N
(∑N

j=0 aj(ε) cos(jx)
)]
 . (A.10)
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Our system at present is underdetermined, but we have not yet specified the small-amplitude

parameter ε. There are several candidates for the definition of ε. Some authors use the

L2-norm of uS, while others use the distance between the crest and trough of uS. For

convenience, we define ε to be a1(ε) for all sufficiently small ε so that uS ∼ ε cos(x) as

ε→ 0. Using this definition, we can augment system (A.8) with the equation

0 = ε− a1(ε), (A.11)

bringing us to N + 2 equations for N + 2 unknowns.

Upon choosing ε sufficiently small and N sufficiently large, we can solve our (N + 2) ×

(N + 2) nonlinear system by Newton’s method, giving us a numerical approximation to the

Stokes wave as well as its velocity. Since uS ∼ ε cos(x) as ε → 0 by construction, we can

initialize Newton’s method with the guess a1(ε) = ε and aj(ε) = 0 for 2 ≤ j ≤ N . A guess

for c(ε) can be obtained by substituting uS ∼ ε cos(x) into equation (A.3), dropping terms

of O (ε2) and smaller, and solving for c. Doing so, one finds that this guess for c is exactly

the dispersion relation of the operator L evaluated at unity3.

For a sequence of increasingly larger values of ε, we can instead initialize Newton’s method

using the values of aj(ε) and c(ε) for the preceding value of ε in the sequence. This gives

us a numerical continuation method whereby the Stokes wave solutions are constructed by

“marching up” the c(ε) vs. ε and aj(ε) vs. ε bifurcation diagrams. There are several other

numerical continuation methods ranging in sophistication that can be used to approximate

Stokes waves in this way, see [22], for example. What we have described in this appendix

is among the simplest such methods, and one that only works well for sufficiently small ε.

Since our focus in this thesis concerns the stability of Stokes waves in the limit ε → 0, this

method is sufficient to approximate the Stokes waves numerically, but future investigations

that wish to study Stokes waves of larger amplitude should consider alternative numerical

continuation schemes.

3Even better guesses to initialize Newton’s method are the asymptotic expansions for aj(ε) and c(ε),
which can be inferred directly from the Stokes wave expansions carried out in the main text of this thesis.
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A.2 The Vector Case

Suppose instead we have

ut = Lu+N (u), (A.12)

where u = (η(x, t), u(x, t))T is a real, vector-valued function and the operators L and N

are analogous to their scalar counterparts in the previous section4. Then, equation (A.12)

encompasses the HPBW system, as discussed in Chapter 3, and even Euler’s equations if

they are appropriately reformulated and the second component of u is interpreted as qx, the

x-derivative of the velocity potential at the surface. Following the same calculations as in the

previous section (but replacing the appropriate scalar quantities with vector quantities), one

arrives at a numerical approximation for the Stokes waves uS = (ηS(x; ε), uS(x; ε))
T in terms

of a truncated Fourier cosine series as well as a numerical approximation for the velocity c(ε)

of these waves.

4In the context of Euler’s equations, the discrete symmetry x → −x is no longer valid. However, in the
traveling frame, we get the symmetry x → −x provided c → −c, which is enough to transfer the major
ideas of the numerical method illustrated in the previous section to the Stokes waves of Euler’s equations.
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Appendix B

THE FLOQUET-FOURIER-HILL METHOD

B.1 The Scalar Case

Suppose we are given the following generalized spectral problem:

L(uS, µ, c)w = λR(uS, µ, c)w, (B.1)

where w = w(x) is a 2π-periodic, complex-valued function and uS = uS(x; ε) is a 2π-periodic,

real-valued function with auxiliary dependence on a small parameter ε. The differential

operators1 L(µS, µ, c) andR(µS, µ, c) are linear with nonautonomous coefficients that depend

on uS and its spatial derivatives, a Floquet exponent µ ∈ [−1/2, 1/2) that is free to be chosen,

and a scalar parameter c ∈ R that is dictated by uS. In the context of this thesis, (B.1)

defines the stability spectrum λ of the Stokes wave uS = uS(x; ε) for a scalar model of

water waves, such as the Kawahara equation in Chapter 2. The operators L(uS, µ, c) and

R(uS, µ, c) are obtained by linearizing the given model about its Stokes wave solutions in a

frame moving at velocity c and then applying separation of variables and Floquet theory.

In general, solving (B.1) is impossible to do exactly by analytical methods. In this thesis,

we have shown how to exploit the small amplitude ε of the Stokes wave solutions uS to

determine the asymptotic behavior of the stability spectrum in the limit as ε → 0. When

not working in this limiting case, we resort to the Floquet-Fourier-Hill method to compute

the stability spectrum numerically. This is a well-studied method, see [31] and [34], for

example, but for the sake of completeness, we sketch the main ideas of the method in this

appendix.

1Or, more generally, integro-differential operators.
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We begin by choosing a small-amplitude2 parameter ε and obtaining a numerical approx-

imation for uS using the method presented in Appendix A. From this method, we find

uS(x; ε) ≈
N∑
j=0

aj(ε) cos(jx), (B.2)

for sufficiently large N , where the Fourier cosine coefficients aj(ε) and the velocity of the

Stokes wave c(ε) are given numerically. We then substitute (B.2) as well as the value of c(ε)

into the coefficients of the linear operators L(uS, µ) and R(uS, µ) in (B.1), giving

L

(
N∑
j=0

aj(ε) cos(jx), µ, c(ε)

)
w = λR

(
N∑
j=0

aj(ε) cos(jx), µ, c(ε)

)
w. (B.3)

We then expand w as a Fourier series, since w is periodic:

w(x) =
∞∑

j=−∞

Ŵje
ijx. (B.4)

Unlike the Fourier expansion of uS, the expansion of w cannot be expressed in terms of cosines

alone, as (B.1) is nonautonomous and does not respect the discrete symmetry x→ −x.

To proceed, we truncate the Fourier expansion of w to 2M + 1 terms for M sufficiently

large and arrive at the approximation

w(x) ≈
M∑

j=−M

Ŵje
ijx. (B.5)

We then substitute this approximation into (B.3), yielding

L

(
N∑
j=0

aj(ε) cos(jx), µ, c(ε)

)(
M∑

j=−M

Ŵje
ijx

)
=

λR

(
N∑
j=0

aj(ε) cos(jx), µ, c(ε)

)(
M∑

j=−M

Ŵje
ijx

)
. (B.6)

2Note that the Floquet-Fourier-Hill method does not require ε to be small. In fact, the method can be
used to obtain the stability spectrum of large-amplitude solutions as well. In the context of this work,
however, ε is chosen to be sufficiently small so that we may compare with our asymptotic methods.
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Introducing the Fourier transform

Fk[f(x)] =
1

2π

∫ π

−π

f(x)e−ikxdx, (B.7)

and applying it to both sides of (B.6) for−M ≤ k ≤M yields a matrix generalized eigenvalue

problem of the form

L̂(aj(ε), µ, c(ε))


Ŵ−M

...

ŴM

 = λR̂(aj(ε), µ, c(ε))


Ŵ−M

...

ŴM

 , (B.8)

where L̂(aj(ε), µ, c(ε)) ∈ C(2M+1)×(2M+1) and R̂(aj(ε), µ, c(ε)) ∈ C(2M+1)×(2M+1) are matrices

with entries[
L̂(aj(ε), µ, c(ε))

]
mn

= Fm−(M+1)

[
L

(
N∑
j=0

aj(ε) cos(jx), µ, c(ε)

)
ei(n−(M+1))x

]
, (B.9a)

[
R̂(aj(ε), µ, c(ε))

]
mn

= Fm−(M+1)

[
R

(
N∑
j=0

aj(ε) cos(jx), µ, c(ε)

)
ei(n−(M+1))x

]
, (B.9b)

for 1 ≤ m,n ≤ 2M + 1. We then solve (B.8) over a chosen mesh of values for the Floquet

exponent µ ∈ [−1/2, 1/2) using a standard eigenvalue solver, e.g., the shifted QR algorithm

[88]. The union of eigenvalues obtained over the full range of Floquet exponents gives a

spectrally accurate approximation of the stability spectrum of the Stokes wave uS, see [31]

for a proof.

B.2 The Vector Case

Suppose instead we have the generalized spectral problem

L(uS, µ, c)w = λR(uS, µ, c)w, (B.10)

where w = (U(x), V (x))T is a 2π-periodic, complex-valued function of two components,

uS = (ηS(x; ε), uS(x; ε))
T represents our Stokes wave solutions from Appendix A, and the

operators L(uS, µ, c) and R(uS, µ, c) are analogous to those in the scalar case (but are now



178

represented by 2 × 2 matrix differential operators). The spectral problem for the Stokes

waves of the HPBW system and Euler’s equations are of the form (B.10), although Euler’s

equations must be reformulated and the second component of uS and w must be interpreted

as qx (the x-derivative of the velocity potential at the free surface) and the perturbation

applied to qx, respectively.

By following the same calculations as in the previous section (but replacing the appro-

priate scalar quantities with vector quantities), one arrives at a 2(2M +1)×2(2M +1) block

matrix eigenvalue problem of the form

 L̂(1,1) L̂(1,2)

L̂(2,1) L̂(2,2)





Û−M

...

ÛM

V̂−M

...

V̂M


= λ

 R̂(1,1) R̂(1,2)

R̂(2,1) R̂(2,2)





Û−M

...

ÛM

V̂−M

...

V̂M


, (B.11)

where Ûk and V̂k represent the kth Fourier coefficient of the first and second components of

w, respectively, and the matrices L̂(i,j) ∈ C(2M+1)×(2M+1) and R̂(i,j) ∈ C(2M+1)×(2M+1) are the

Fourier representations of the (i, j)th component of the 2 × 2 matrix differential operators

L(uS, µ, c) and R(uS, µ, c), respectively. For more details on the explicit representation of

these matrices in the context of Euler’s equations, see [35] and [76].

Upon choosing a value for the small-amplitude parameter ε as well as a Floquet exponent

µ ∈ [−1/2, 1/2), the eigenvalue problem (B.11) is solved numerically by a standard eigenvalue

solver. The union of the numerically computed eigenvalues of (B.11) over a mesh of Floquet

exponents yields a spectrally accurate approximation of the stability spectrum of the Stokes

wave solution.
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