
Exact and Approximate Methods for the Computation of the Spectral
Stability of Traveling-Wave Solutions

Christopher W. Curtis

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

University of Washington

2009

Program Authorized to Offer Degree: Applied Mathematics





University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Christopher W. Curtis

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Bernard Deconinck

Reading Committee:

Robert E. O’Malley Jr.

J. Nathan Kutz

Anne Greenbaum

Yua Yuan

Date:





University of Washington

Abstract

Exact and Approximate Methods for the Computation of the Spectral Stability of
Traveling-Wave Solutions

Christopher W. Curtis

Chair of the Supervisory Committee:
Associate Professor Bernard Deconinck

Applied Mathematics

This thesis addresses the use of various techniques in functional analysis applied to the

problem of determining the spectral stability of a traveling wave solution to a nonlinear

partial differential equation. This work is separated into two parts. In the first part,

a numerical method for the determination of spectral stability, called Hill’s Method, is

analyzed. In the second part, I determine, both analytically and numerically, the spectral

stability of a family of solitary wave solutions to a new Boussinesq approximation to the

Euler water wave equations.
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Chapter 1

INTRODUCTION

1.1 Traveling Wave Solutions and Stability

The focus in this thesis is on the stability of traveling-wave solutions (TWS(s)) to evolution

equations, i.e. nonlinear-partial-differential equations of the form

ut = F (u) (1.1)

u(x, 0) = u0(x),

where x ∈ R. A TWS is a solution u to (1.1) of the form u(x, t) = T (ct)u0(x; c), where

c is called the wave speed, and T is a semigroup representing the action of a symmetry

of the evolution equation, and by u0(x; c) we mean some appropriate scaling of the initial

condition. As an example we look at the focusing nonlinear Schrödinger (NLS) equation:

iut = −1
2
uxx − u|u|2. (1.2)

It is well known and easy to show that any solution to NLS is invariant under phase trans-

formations i.e. if u solves NLS then ueis is also a solution for any real valued number s.

Thus if we look for solutions of the form w(x)eict, we get the following problem

cw(x) =
1
2
wxx + w|w|2 (1.3)

Assume w is real and integrate with respect to w to get the differential equation

(wx)2 = −w4 + 2cw2 + d. (1.4)

If we assume d < 0, c2 − d = 1
4 , and c = k2 − 1

2 , then using the elliptic integral [21]

cn−1(x, k) =
∫ k

kx
(k2 − s2)−1/2((1− k2)2 + s2)−1/2ds, (1.5)
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we see that w(x) = kcn(x, k). Thus we can generate the TWS

u(x, t) = kcn(x, k)e−i(
1
2
−k2)t, (1.6)

where T (ct) = e−i(
1
2
−k2)t.

Another example illustrating the use of a different symmetry is Korteweg de-Vries (KdV)

equation

ut + uux + uxxx = 0 (1.7)

In this case, it is easy to show that if u(x, t) is a solution to KdV, then u(x + s, t) is also

a solution, and thus we look for a TWS of the form u(x, t) = w(x − ct; c) = T (ct)w(x; c).

Note, in general one can look at problems with the spatial variable being in any arbitrary

dimension. In our case, the spatial variable, x, is restricted to be one-dimensional for ease

of presentation.

The interest in TWS’s stems both from physical importance and mathematical tractabil-

ity. In physics, translating profiles have been of interest in a number of fields ranging from

fluid dynamics to optics, with the famous sech squared profile of KdV being an excellent

example. Of course, a TWS is simply a particular solution to a model of some physical

system. Thus the scientist is forced to ask, even if we believe in our model, do we really

expect to see a particular solution in nature? The idea of stability addresses this key issue

in mathematical modeling.

There are several notions of stability, some stronger or weaker than others. The strongest

definition of stability referred to in this paper is known as orbital stability and is defined in

the following way. One says that a TWS u is stable if for any solution ψ(x, t) with nearby

initial conditions to u0(x), one can at each time t find some phase shift s such that ψ(x, t) is

close to u0(x−ct−s). In more technical terms, we have if for all ε > 0 there exists δ > 0 such

that if ψ(x, t) is a solution to the evolution equation with initial condition ψ(x, 0) = ψ0(x)

and

||ψ0(x)− u(x)|| < δ, (1.8)

then

inf
s∈R

||ψ(x, t)− u(x− ct− s)|| < ε (1.9)
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for t � 1. Note, ||·|| is a norm of some Hilbert space, with corresponding inner product

<,>.

To understand the intuition behind this definition, one can look at the propagation of

one-soliton solutions in KdV. Since the amplitude and wave speed are coupled, two one-

soliton profiles close in amplitude at t = 0 will necessarily diverge in norm as time increases.

Thus one might be inclined to say any soliton solution to KdV is unstable. But it is clear

that if two soliton solutions begin near each other, they will remain close in norm modulo

an appropriate phase shift at every later time t since KdV will preserve the shapes of the

initial profiles.

In general, orbital stability is quite difficult to establish since the nonlinearities of the

evolution equation prevent any simple understanding of the effects of varying initial con-

ditions. A simpler problem can be defined by way of a TWS T (ct)w(x; c). Plugging this

ansatz into (1.1), we get

TcT (ct)w(x; c) = F (T (ct)w(x; c)) (1.10)

and so at t = 0, noting that T (0) = 1, we get Tcw(x; c) = F (w(x; c)). Hence, w becomes a

stationary solution of the associated PDE

ut = F (u)− Tcu. (1.11)

Let ψ(x, t) be a solution to (1.11) such that ψ(x, 0) = w(x) + εv(x). Then formally we can

write

ψ(x, t) = w(x) + εṽ(x, t) +O(ε2) (1.12)

ṽ(x, 0) = v(x).

Substituting (1.13) into (1.11) and collecting in powers of ε generates the linear evolution

equation

ṽt = DF (w(x))ṽ − Tcṽ (1.13)

ṽ(x, 0) = v(x)

We will henceforth refer to the linear operator DF (w(x)) − Tc as Lw. If the spectrum of

Lw, σ(Lw), is contained in the closure of the left-hand side of the complex plane, then

u = T (ct)w(x; c) is said to be spectrally stable.
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While weaker, spectral stability is easier to establish than orbital stability. Unfortu-

nately, spectral stability does not necessarily imply orbital stability. However, in the im-

portant case that the evolution equation is Hamiltonian, i.e.

ut = JE′(u), (1.14)

where J is skew adjoint, and E
′
(u) is the derivative of the Hamiltonian E(u), one can directly

connect spectral stability to orbital stability. Letting J be invertible, and u = T (ct)w(x; c),

in the seminal paper [16], the authors develop necessary and sufficient conditions for estab-

lishing orbital stability based on properties of the spectrum of the operator E
′′
(w)−Q′′

(w).

Q(w) = 1
2 < J−1Tcw,w > is a second conserved quantity of the Hamiltonian system gen-

erated by the symmetry used to construct the TWS since Tc = T ′(0)c, T ′(0) being the

infinitesimal generator of T . Using our previous notation, we have F (u) = JE
′
(u), thus

DF (u) = JE
′′
(u) and E

′′
(w)−Q′′

(w) = J−1(DF (w)− Tc) = J−1Lw. A great deal of work

has been done connecting σ(J−1Lw) to σ(Lw), and it has been shown for a wide class of

Hamiltonian problems that spectrally instability implies orbital stability. Further, being

able to compute σ(J−1Lw) and σ(Lw) provides key hints as to how to establish orbital

stability beyond the cases covered in [16].

As an explicit example to make the previous terminology more concrete and to show

a prominent case of a Hamiltonian system, we again use focusing NLS. If we separate

u = ψ + iφ, then we get the PDE ψ

φ


t

=

 0 −1

1 0

 1
2ψxx + ψ(φ2 + ψ2) 0

0 1
2φxx + φ(φ2 + ψ2)

 (1.15)

For NLS,

E(φ, ψ) =
∫ (

−1
2
(φ2
x + ψ2

x) +
1
4
(φ2 + ψ2)2

)
dx, (1.16)

and

J =

 0 −1

1 0

 . (1.17)

It is straightforward to show, where T in this case is the phase shift generating (1.6), that

Q(u) = − c
2

∫
|u|2dx. (1.18)
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Choosing u to be (1.6), E
′′
(w)−Q

′′
(w) is

 1
2∂

2
x + 3w2(x) + c 0

0 1
2∂

2
x + w2(x) + c

 (1.19)

which is just J−1Lw for focussing NLS. For (1.6), one can approximate σ(Lw) by way of

Hill’s method (explained in the following sections), which for k = .8, produces the plot

Figure 1.1:

which shows that (1.6) is unstable, both spectrally and thus orbitally.

As for when the given evolution equation is not Hamiltonian, one still attempts to

make use of a knowledge of the spectrum of the associated linearization, but no general

theorems exist like those in [16]. Instead, one must make recourse to a number of tools

from dynamical systems which are usually infinite dimensional versions of the manifold

theorems used in finite-dimensional-dynamical systems. Suffice to say though, establishing

the spectral stability of solutions to nonlinear problems is the first step any researcher should

take when attempting to determine the orbital stability of said particular solution. Thus,

this thesis addresses different means at computing the spectrum of linear operators. These

are explained in the following sections.
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1.2 Hill’s Method

Hill’s method is used to approximate the spectrum of the operator

Spψ ≡ ∂pxψ +
p−1∑
k=0

fk (x) ∂kxψ, (1.20)

where ψ is in some appropriate space to be defined later. The coefficient functions fk(x)

are smooth, T -periodic functions: fk(x+ T ) = fk(x), k = 0, . . . , p− 1. This is denoted as

fk ∈ C∞ (ST ) . (1.21)

Using Floquet and Fourier theory, our approximation starts by computing a bi-infinite

matrix representing a parameter-dependent symbol of Sp. We make the problem finite

dimensional by truncating the bi-infinite matrix in both rows and columns; we then compute

the eigenvalues of the resulting finite-dimensional matrix. Such an approach is commonly

used. This is made more precise in the following section. In modern terminology, this

truncation may be called a Galerkin approximation [3], though it is also called a projection

method in [5].

In its full generality, Hill’s method was first developed in [11]. However, the method

has appeared in more specialized contexts as early as 1886, when George Hill published

[17]. This paper detailed his investigations into the reduced three-body problem, where an

analysis of small perturbations led him to seek solutions to the linear problem

d2ψ

dx2
+

(
θ0 + 2

∞∑
n=1

θn cos(2nx)

)
φ = 0. (1.22)

Here θk, k = 1, 2, . . ., are real parameters. In his analysis, Hill incorporated both Floquet

and Fourier theory, which led him to consider infinite-dimensional matrices and their cor-

responding determinants. Hill used these determinants in a formal way, and he attempted

to approximate the spectra of the infinite-dimensional matrices using the spectra of three-

by-three truncations. Inspired by Hill’s work, a rigorous theory on determinants of infinite

matrices was initiated by Poincaré [27] and von Koch [32]. This in turn has led to a modern

theory of determinants of operators defined over Banach spaces. The treatise by Gohberg,

Goldberg, and Krupnick [14] provides an excellent introduction to both the classical origins
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and modern developments of infinite dimensional determinants, and our work relies heavily

on the material in [14] (see also [13] and [6]). However, we do not develop this theory any

further.

Instead, we focus on proving the validity of Hill’s truncation. This problem, in turn, has

its own deep and storied history. A wonderful introduction can be found in [5]. Likewise,

in the same reference, one can find a number of examples where using finite-dimensional

approximations to compute the spectra of infinite-dimensional operators fails spectacularly.

For our problem, however, we show that for general Sp, Hill’s method never converges to

spurious eigenvalues in compact domains. In the case that Sp is self-adjoint, we go further

and show, again on any compact domain, that Hill’s method converges to the spectrum

of Sp restricted to said domain. Further, assuming the convergence of an approximate

sequence of eigenvalues to a simple eigenvalue, we show that the corresponding eigenvector

approximations converge to a true eigenvector in the L2-norm.

As shown in [11], Hill’s method is exact for constant-coefficient problems. By restricting

ourselves to a particular class of self-adjoint operators, which represent the simplest case

of non-constant coefficient equations, we show Hill’s method approximates the smallest

eigenvalue faster than any polynomial power. This restricted class of operators includes

classic problems such as Mathieu’s equation, and it represents a non-trivial and interesting

body of problems for which Hill’s method is an excellent approximation scheme.

Another, more abstract but also more general, approach for analyzing Hill’s method can

be found in the notes of G.M. Vainikko (Chapter 4 of [20]). This approach applies to a

more general class of problems than just Hill’s method, and once the approach is mastered,

its application to Hill’s method can be viewed as a corollary. The results in [20] not only

allow for establishing the convergence of Hill’s method, but the rate of convergence can also

be determined. The rate thus found is identical to the one we establish in this paper. In

the case of symmetric operators, a convergence proof and rate can also be found in [12].

However, the class of operators considered in [12] is far more restricted than in this paper

or [20]. Further, the rate of convergence obtained is far slower than what we or [20] are able

to show.

The key to the deeper results in [20] is the notion of the aperture between subspaces
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of a Banach space (see also Chapter 4 of [19]). We make no use of this idea, or any other

result found in [20]. Instead, a more direct and explicit approach is used, which may be

more natural or intuitive if one is interested in Hill’s method in its own right, as opposed to

regarding it as a special case of a more general problem. Indeed, as mentioned above, Hill’s

method led to the consideration of determinants of infinite-dimensional operators and the

work of [14]. Thus, the methods presented in this paper are new and hopefully insightful.

Remarks.

• The form of the operator (1.20) is restrictive in that we equate the coefficient of

the highest-order derivative to one. Were the coefficient a constant, this would not

change our results. The affect of a non-constant coefficient on our work is non-trivial.

However, in many problems (linear stability, scattering) the spectral problems that

arise are of the form used here (see the examples in [11]), although variations occur.

• Numerically computing the eigenvalues of a matrix is a nontrivial problem. It is not

a problem we consider in this thesis. The sole interest is in the relation between the

finite-dimensional approximations as obtained through Hill’s method and the problem

they are meant to approximate.

• The work in this paper focuses on spectral problems defined by scalar differential

operators (1.20). This restriction is made for ease of presentation. Hill’s method, in

essence a Galerkin method, works equally well for systems of equations or for problems

with multiple independent variables [11]. Our methods of analysis used apply to the

system case, but modifications are necessary for the multi-dimensional case.

• Combining the ideas of Floquet decomposition and the truncation of matrix represen-

tations of operators is frequently done when considering periodic operator equations.

Three contemporary examples of this can be found in [29], [33], and [34]. Special

mention should be made with regards to [34].
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1.3 Spectral Stability of a Boussinesq Approximation

It has long been a goal of several disciplines to fully understand the Euler surface-water-wave

equations, which in scaled form are

ε∆φ+ ∂2
zφ = 0 0 ≤ z < 1 + εη(x, y)

∂zφ = 0 z = 0

∂tφ+ η + 1
2(ε|∇φ|2 + |∂zφ|2) = 0 z = 1 + εη(x, y)

∂tη + ε∇φ · ∇η − 1
ε∂zφ = 0 z = 1 + εη(x, y)

(1.23)

Here, φ is the velocity potential of an incompressible, irrotational fluid (hence Laplace’s

equation on the interior of the fluid), and η is the height of the wave above the resting state

of the fluid, which has been scaled to z = 1 in this case. If we denote the unscaled resting

height of the fluid as h0, we have chosen ε = a
h0

, where a denotes a characteristic amplitude

of the problem. Likewise, we introduce the balance λ2

h2
0

= 1
ε , where λ is the magnitude

of the wave vector in the x and y directions. which will allow us to formally derive long

wavelength, shallow water approximations to (1.23).

In this spirit, as in the derivation of KdV (see [1]), we begin by noting that since φ must

be harmonic on the interior of the fluid, we expand φ in z such that

φ(x, y, z) =
∞∑
n=0

φn(x, y)zn. (1.24)

Using the boundary condition at the bottom of the fluid, and substituting our expansion

for φ into the scaled Laplace equation of (1.23) and matching powers of z gives

φ(x, y, z) = φ0(x, y)−
ε

2
∆φ0z

2 + O(ε2). (1.25)

Using this expansion, the equations defined at the surface in (1.23) become

ηt +∇ ·w + ε(∇ · (ηw)− 1
6∆∇ ·w) = O(ε2)

wt +∇η + ε(1
2∇|w|

2 − 1
2∆wt) = O(ε2),

(1.26)

where w = ∇φ0. We now introduce the horizontally scaled velocity v given by

v = w − εθ2

2
∆w + O(ε2) (1.27)
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where 0 ≤ θ ≤ 1. Formally inverting this equality gives to the order of our approximation

w = v +
εθ2

2
∆v + O(ε2) (1.28)

Substituting this into (1.26), we get

ηt +∇ · v + ε(∇ · (ηw)) +
ε

2
(θ2 − 1

3
)∆∇ ·w = O(ε2)

vt +
εθ2

2
∆vt +∇η + ε(

1
2
∇|v|2 − 1

2
∆vt) = O(ε2),

(1.29)

To the first order, we have

ηt +∇ · v = O(ε)

vt +∇η = O(ε),
(1.30)

and thus we can introduce the formal identities

∆∇ · v = δ∆∇ · v − (1− δ)∆ηt + O(ε)

∆vt = −µ∆∇η + (1− µ)∆vt + O(ε).
(1.31)

If we let
a = 1

2(θ2 − 1
3)δ b = 1

2(θ2 − 1
3)(1− δ)

c = 1
2(1− θ2)µ d = 1

2(1− θ2)(1− µ),
(1.32)

and introduce the scalings

t =
t√
ε
, (x, y) = (

x√
ε
,
y√
ε
), η =

η

ε
, w =

w
ε
, (1.33)

and drop all higher order in epsilon terms, we get the following approximation to (1.23)

ηt +∇ · v +∇ · ηv + a∇ ·∆v − b∆ηt = 0

vt +∇η +
1
2
∇|v|2 + c∇(∆η)− d∆vt = 0. (1.34)

The derivation presented here is a summary of that presented in [8] and [4]. There are

several interesting aspects of (1.34) that make it an exciting new approximation to (1.23).

As pointed out in [8], by varying the coefficients a, b, c, and d, it appears one can capture

a variety of phenomena usually associated with separate approximations to the Euler equa-

tion. An excellent example of this in practice can be found in [7], where both the second

Kadomstev-Petviashvili (KP-II) equation and an associated analog using Benjamin-Bona-

Mahoney (BBM) instead of KdV is derived from (1.34). Thus from [7], we also trivially get

BBM and KdV by restricting to one dimension.
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Another remarkable aspect of (1.34) is that, at least for the parameter values that

interest us in this thesis, not only is (1.34) locally well posed, but solutions of (1.34) will

uniformly approximate solutions of (1.23) to O(ε) on timescales of O

(
1
ε

)
[4]. Puzzling

though is that (1.34) is only known to be Hamiltonian in the case that b = d. It is not

known whether or not (1.34) is Hamiltonian in general. This is an intriguing question

given that it is well known that the Euler-water-wave equations are Hamiltonian. Thus if it

were the case that (1.34) were not Hamiltonian, it would provide an example where formal

multiple scale arguments destroyed the Hamiltonian structure of the parent problem, but

which had no bearing on the problem being a valid approximation to said parent problem.

It is worth noting that a conserved quantity is found in [4] for cases where b 6= d, so perhaps

mathematically it is not troublesome to approximate one conservative system with another.

However, physically, Hamiltonicity is considered so important that one would not believe

non-Hamiltonian versions of (1.34) could ever be a useful model of (1.23).

This issue is not addressed in this thesis. Instead, we attempt to prove the spectral

stability of sech2 solutions to (1.34). In particular we look at solutions of the form

η = η0sech2 (λξ) , (1.35)

v1 = η0

√
3

η0 + 3
sech2 (λξ) (1.36)

v2 = 0 (1.37)

This is a very natural place to begin assessing the phenomenological accuracy of (1.34) given

the prominence that the sech2 profile has in the subject of water waves. It is known that

these profiles are stable for both KdV and KP-II, and there is strong experimental evidence

(Hammack and Segur) that they describe the profile of surface waves in shallow water. Thus

establishing the stability of such solutions to (1.34) is another key step in determining the

Boussinesq approximations’ validity as a physical model.

However, given the complexity of (1.34), spectral stability is the best that the author can

do at present. Even in the case that (1.34) is known to be Hamiltonian, one does not have

direct recourse to the results of [16] and its descendants. Analytically, the author can only

establish spectral stability with respect to one-dimensional perturbations. Numerically,
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we can go much further, and further we also look at particular solutions that look like

depression ”solitons” and multi ”solitons”. Note, we use quotes around the word soliton

since technically a soliton is a solution to a nonlinear PDE obtained by way of the inverse

scattering transform which in turn relies upon the existence of a Lax pair representation of

said PDE. Thus no solution of (1.34) is known to be an actual soliton. Soliton is by now

though just a quick way to say sech profile.



13

Chapter 2

HILL’S METHOD

In essence Hill’s method combines a Floquet (or Bloch) decomposition with a Fourier

expansion so as to reduce the numerical computation of the spectrum of a periodic differ-

ential operator to the computation of spectra of a family of (finite-dimensional) matrices.

Before continuing, some relevant spaces that will be used throughout the rest of this thesis

are defined. Let L2 (ST ) be defined as the completion of C (ST ), the space of T -periodic,

continuous functions, with respect to the L2 norm on the interval [−T/2, T/2]. Let

en (x) =
e−i2πnx/T√

T
, n ∈ Z, (2.1)

so that for φ ∈ L2 (ST ), we have the associated Fourier series

φ (x) =
∞∑

n=−∞
φ̂nen (x) , (2.2)

with

φ̂n = 〈φ, en〉 =
1√
T

∫ T/2

−T/2
φ(x)e∗n(x)dx. (2.3)

This allows us to associate with every function φ ∈ L2 (ST ) its Fourier transform

φ̂ ≡
{
φ̂n

}∞
n=−∞

. (2.4)

We define the Sobolev spaces Hp (ST ) in a similar fashion, and in our paper, we define

the norm on Hp (ST ) as ([3], pg. 308)

||φ||22,p ≡
∣∣∣φ̂0

∣∣∣2 +
∑
|k|>0

(
2πk
T

)2p ∣∣∣φ̂k∣∣∣2 . (2.5)



14

2.1 The Floquet-Bloch Decomposition

First, we define Sp over the Sobolev space Hp (R), with

Hp (R) =

{
f ∈ L2 (R) |

p∑
k=0

∫
R
|fk(x)|2dx <∞

}
, (2.6)

where fk denotes the kth weak derivative of f . This makes Sp closed and densely defined.

We can likewise turn the operator Sp − λ into a first-order differential operator defined

on H1 (R; Cp), where the notation means that the space H1 (R; Cp) consists of Cp valued

functions with one weak derivative, and for which the function and its derivate have Cp

norms that are both in L2 (R) (see [28] for more details). Denote the first-order differential

operator as S(x;λ) = d
dx −B(x;λ), where B(x;λ) is a p× p matrix. By definition,

σ(Sp) = {λ ∈ C : S(x;λ) does not have a bounded inverse} . (2.7)

Following [30], we use the following decomposition of σ(Sp) (see also [9], [24]).

• σpt(Sp) = {λ ∈ C : S(x;λ) is Fredholm with zero index.}

• σess(Sp) = σ(Sp)\σpt(Sp).

Since Sp has only periodic coefficients, we need only compute σess(Sp) [30]. This reduces to

the following problem.

Theorem 1. λ ∈ σ(Sp) if and only if the differential equation

du

dx
= B(x;λ)u, 0 < x < T

u(T ) = eiµTu(0)

(2.8)

has a solution for some µ ∈ [0, 2π/T ).

Proof. See [30], page 1001.

We transform the differential equation in Theorem 1 into

dψ

dx
= B̃(x;λ, µ)ψ, 0 < x < T

ψ(T ) = ψ(0)

(2.9)
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via the transformation ψ(x) = e−iµxu(x). Note, B̃(x;λ, µ) = B(x;λ) − iµ. We can then

restate Theorem 1 as

Theorem 2. λ ∈ σ(Sp) if and only if the differential equation

dψ

dx
= B̃(x;λ, µ)ψ, ψ ∈ H1 (ST ; Cp) (2.10)

has a solution for some µ ∈ [0, 2π/T ).

It is easy to show that the pth-order system in Theorem 2 is equivalent to the scalar

problem

Sµp φ = λφ, φ ∈ Hp (ST ) , (2.11)

where

Sµp φ = e−iµxSp
(
eiµxφ

)
. (2.12)

An explicit form for Sµp is found in [11]. Theorem 2 implies that we can write σ(Sp) as

σ(Sp) =
⋃
µ

σ(Sµp ). (2.13)

As implied by (2.11), for each value of µ, σ(Sµp ) consists only of point spectra. We approx-

imate these point sets numerically for a fixed value of µ.

2.2 The Fourier Decomposition

To reduce the problem to linear algebra, we resort to a Galerkin method [3] using the

orthonormal basis en given at the beginning of this section. Of course, given any orthonormal

basis {ϕj}, we can generate a matrix representation for any linear operator M with entries

〈Mϕj , ϕk〉, (j, k) ∈ Z2. Our particular choice of basis reflects the boundary conditions of our

eigenvalue problem (2.11). We interchangeably refer to the bi-infinite matrix, with entries

〈Sµp ej , ek〉, as the Fourier transform or symbol of the linear operator Sµp . We denote the

symbol (or Fourier transform, or bi-infinite matrix representation) of Sµp as Ŝµp , where the

(n,m)th entry of Ŝµp is denoted by Ŝµp,nm = 〈Sµp em, en〉. We write the Fourier transform of

our eigenvalue problem (2.11) as
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Ŝµp φ̂ = λφ̂. (2.14)

2.3 Finite-Dimensional Projection

The last step of Hill’s method requires the introduction of the orthogonal projection operator

PN onto the subspace spanned by the Fourier modes from−N toN . The effect of PN applied

to a periodic function is truncation of the Fourier series i.e.

PNφ(x) =
N∑

n=−N
φ̂nen (x) . (2.15)

Likewise, the action of the symbol of PN , P̂N , will give

(
P̂N φ̂

)
n

=


0 |n| > N

φ̂n |n| ≤ N

. (2.16)

Define the (2N + 1)× (2N + 1) matrix Ŝµ,τN via

P̂N Ŝ
µ
p P̂N =



. . .
... . ..

0 0 0

· · · 0 Ŝµ,τN 0 · · ·

0 0 0

. ..
...

. . .


, (2.17)

where the τ emphasizes that Ŝµ,τN is a truncation of a bi-infinite matrix. As a matter of
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convention, for any operator A with symbol Â, we define ÂτN in the same fashion, namely

P̂N ÂP̂N =



. . .
... . ..

0 0 0

· · · 0 ÂτN 0 · · ·

0 0 0

. ..
...

. . .


. (2.18)

Likewise we introduce the shorthand ÂN = P̂N ÂP̂N .

Finally, we define the approximate eigenvalue problem

Ŝµ,τN φ̂τN = λN φ̂
τ
N , (2.19)

where the subscript N on λN reinforces the order of the approximation. A more detailed

derivation is presented in [11].
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Chapter 3

PROOF OF CONVERGENCE

By the convergence of Hill’s method, we mean that the following two properties are

satisfied.

1. For a given sequence {λN}∞N=1, λN ∈ σ(Ŝµ,τN ), and for any ε > 0, there exists an

integer M such that any λN , N ≥M , is in an ε-neighborhood of some λ ∈ σ(Sµp ).

2. For all λ ∈ σ(Sµp ), there exists some sequence {λN}∞N=1, λN ∈ σ(ŜµpN ), such that

λN → λ.

The first condition ensures that Hill’s method is accurate, but it leaves open the possibility

that the method may not produce all of σ(Sµp ). Likewise, the second statement ensures that

the method will faithfully reproduce all of σ(Sµp ), but it does not rule out that the method

will produce spurious information. It is this distinction that leads us to refer to the first

condition as the “no-spurious modes” condition.

We are able to prove a slightly restricted version of the no-spurious modes condition

for any operator Sµp . We modify the condition only by requiring the arbitrary sequence

{λN}∞N=1 to be confined to a compact subset of the complex plane. The second condition

is essentially proved in [28], for self-adjoint operators. We have not been able to improve

upon this restriction. However, we present the outline of the proof provided in [28] for the

sake of completeness.

3.1 Proof of the No-Spurious-Modes Condition

Our proof of the first condition relies upon one major theorem. Before proving this theorem,

we need to develop and explain the basic machinery necessary for our proof. First, for

notational ease, we define the operator S1
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• D
(
S1
)

= Hp (ST ), S1φ = Sµp φ.

We now provide a brief introduction to the theory of determinants of operators on a

separable Hilbert Space, say H. This material was developed in [14], and we reproduce it

here only for completeness or to clarify some points made in [14]. Let B (H) denote the

space of all bounded operators from H into itself. Let F denote the space of finite-rank

operators. For our purposes, it is not sufficient to use the operator norm induced by the

norm on H, say ||·||. Instead, we need to introduce a new norm ||·||Z, where Z denotes a

sub-algebra of B (H) such that F ∩ Z is dense in Z and

||·|| ≤ C ||·||Z , (3.1)

where C is a constant. Thus Z is an embedded sub-algebra in B (H). Likewise, if the space

of finite-rank operators is dense in Z, this implies every element in Z is compact. Next,

define the trace of K ∈ F ∩ Z by

tr (K) =
n∑
k=1

λk, (3.2)

and define the determinant of I +K as

det (I +K) =
n∏
k=1

(1 + λk) , (3.3)

where n is the rank of K and λk are the eigenvalues of K.

The issue at hand is whether we can find some continuous function that will serve as

an extension of the determinant, which has only been defined on F ∩ Z. A necessary and

sufficient condition for this (see [14]) is if the trace is a bounded linear functional in the Z

norm, i.e.

|tr (K)| ≤ M ||K||Z (3.4)

holds for all K ∈ F ∩ Z, where M is a constant independent of K. If this condition holds,

then for K ∈ Z, we know there exists a sequence of finite-rank operators KN such that

lim
N→∞

||KN −K||Z = 0, (3.5)

and we can define the Z-determinant of I +K as

detZ (I +K) = lim
N→∞

det (I +KN ) . (3.6)
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Using the above definitions, one can prove [14]:

Theorem 3. (I+K)−1 exists if and only if detZ (I+K) 6= 0.

A space well suited for our purposes was developed by Gohberg et al [14]. Define the

sub-algebra Ω via:

Ω ≡

A ∈ B (L2 (ST )) : max

 lim
M→∞

∣∣∣∣∣
M∑

n=−M
Ânn

∣∣∣∣∣ ,
( ∞∑
n,m=−∞

∣∣∣Ânm∣∣∣2)1/2
 <∞

 . (3.7)

For A ∈ Ω, we have the corresponding norm ||A||Ω defined by

||A||Ω ≡ max

∣∣∣∣∣ lim
M→∞

M∑
n=−M

Ânn

∣∣∣∣∣ ,
( ∞∑
n,m=−∞

∣∣∣Ânm∣∣∣2)1/2
 , (3.8)

where Ânm = 〈Aem, en〉, and en is defined as in (2.1). If A ∈ Ω, we see that

||Aφ||22 =
∞∑

n=−∞

∣∣∣∣∣
∞∑

m=−∞
Ânmφ̂m

∣∣∣∣∣
2

≤ ||φ||22
∞∑

n=−∞

∞∑
m=−∞

∣∣∣Ânm∣∣∣2 , (3.9)

and therefore ||A||2 ≤ ||A||Ω. The next lemma easily follows.

Lemma 4. For all finite rank operators A, we have

|tr (A)| ≤ ||A||Ω . (3.10)

Proof. Given A has finite rank, let ψ1, · · · , ψn be an orthonormal basis for the range of A.

Then we may write A as

A =
n∑
k=1

ψk 〈A ·, ψk〉 . (3.11)

It is clear that

tr (ψk 〈A·, ψk〉) = 〈Aψk, ψk〉 , (3.12)

and therefore

tr (A) =
n∑
k=1

〈Aψk, ψk〉 . (3.13)

Since ψk ∈ L2 (ST ), we can expand ψk as

ψk =
∞∑

j=−∞
ψ̂kjej . (3.14)
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Note that

〈Aej , ej〉 =
n∑
k=1

ψ̂kj 〈Aej , ψk〉 . (3.15)

Therefore we can rewrite the trace of a finite-rank operator as

tr (A) =
n∑
k=1

〈Aψk, ψk〉

=
n∑
k=1

∞∑
j=−∞

ψ̂kj 〈Aej , ψk〉

=
∞∑

j=−∞

n∑
k=1

ψ̂kj 〈Aej , ψk〉

=
∞∑

j=−∞
〈Aej , ej〉 . (3.16)

Thus from the definition of ||·||Ω we have the result.

Similarly, we have

Lemma 5. Every finite-rank operator is in Ω.

Proof. We know that the trace of a finite-rank operator, say A, is bounded, and thus from

the previous lemma we know that

∣∣∣∣∣∣
∞∑

j=−∞
Âjj

∣∣∣∣∣∣ <∞. Likewise we have

∑
j,k

|〈Aej , ek〉|2 =
∑
j,k

∣∣∣∣∣
n∑
l=1

ψ̂lk 〈Aej , ψl〉

∣∣∣∣∣
2

≤

(∑
k

n∑
l=1

∣∣∣ψ̂lk∣∣∣2
)∑

j

n∑
l=1

∣∣∣〈ej , A†ψl〉∣∣∣2


≤ n

n∑
l=1

∣∣∣∣∣∣A†ψl∣∣∣∣∣∣2
2
<∞, (3.17)

where A† denotes the adjoint of A. Therefore every finite-rank operator is in Ω.

Lastly, we need to show is that F is dense in Ω. We do this, and also establish a useful

result for our main theorem, in the following lemma.

Lemma 6. If A ∈ Ω, then lim
N→∞

||A− PNAPN ||Ω = 0.
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Proof. It is clear that

||A− PNAPN ||Ω ≤ ||(I − PN )A||Ω + ||PNA(I − PN )||Ω . (3.18)

With

||(I − PN )A||Ω = max


∣∣∣∣∣∣
∑
|n|>N

Ânn

∣∣∣∣∣∣ ,
 ∑
|n|>N

∞∑
m=−∞

∣∣∣Ânm∣∣∣2
1/2

 , (3.19)

and

||PNA(I − PN )||2Ω =
∑
|n|≤N

∑
|m|>N

∣∣∣Ânm∣∣∣2 , (3.20)

the result follows, since ||A||Ω <∞.

This shows that for A ∈ Ω, we have

detΩ (I +A) = lim
N→∞

det (I + PNAPN ) , (3.21)

where

det (I + PNAPN ) ≡ det
(
ÎτN + ÂτN

)
. (3.22)

For omitted proofs and more detail on this material the interested reader is advised to

consult [14].

Finally, we need two key facts about operators of the form I+K, where I is the identity

and K is compact.

• I +K is a Fredholm operator.

• i (I +K) = 0.

Note, for any Fredholm operator F ,

i(F ) ≡ dim(ker(F ))− dim(ker(F †)), (3.23)

where F † again denotes the adjoint of F . For proof, see [31].

With these tools in hand, we prove the following theorem. This theorem will be the

engine to drive the proof of the no-spurious-mode condition.
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Theorem 7. Let γ ∈ ρ(S1). Then there exists some constant Mγ such that for N ≥ Mγ,

γ ∈ ρ(Ŝ1,τ
N ).

Proof. Define the operator B : L2 (ST ) → L2 (ST ) via

(B̂ψ̂)n =


(

2πni
T

)−p
ψ̂n n 6= 0

i−pψ̂0 n = 0

, (3.24)

where ψ̂n are the components of the vector ψ̂ ∈ l2, and B̂ is the symbol of B. B, when

applied to S1 − γ, is introduced to nullify the growth along the diagonal of Ŝ1 − γ. Clearly

Hp (ST ) ⊂ R (B). With γ ∈ ρ(S1), we have that S1−γ is a bijection from Hp (ST ) to L2 (ST )

by definition. Therefore, we define the operator A whose symbol is B̂(Ŝ1 − γ), noting that

Hp (ST ) ⊂ R(A).

Now consider computing the matrix product of B̂ and (Ŝ1 − γ). Clearly this operator

is the extension of Â, and we will show that it is a bounded operator on l2. Therefore, it

must be the unique bounded extension of Â [28]. We refer to the extension of Â as Â to

economize on notation. Given that δnm is the Kroenecker delta function, the terms of Â

are then

Ânm =



(
2πni
T

)−p((
ip
(
µ+ 2πn

T

)p − γ
)
δnm +

p−1∑
k=0

f̂k,n−mi
k

(
µ+

2πn
T

)k)
n 6= 0

(µp − γ) δ0m +
p−1∑
k=0

f̂k,−mµ
kik−p n = 0

.

(3.25)

See [11], equation 17, for an explicit derivation. Therefore, for n 6= 0

Ânn = 1 +
T

2π

(
pµ− if̂p−1,0

) 1
n

+ O
(

1
n2

)
, (3.26)

which shows

lim
M→∞

M∑
n=−M

(
Ânn − 1

)
<∞. (3.27)

Likewise, we have also shown
∞∑

n=−∞

∣∣∣Ânn − 1
∣∣∣2 <∞. (3.28)
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For n 6= m and n 6= 0, we have∣∣∣Ânm∣∣∣2 ≤ ( T

2πn

)2p
(
p−1∑
k=0

∣∣∣f̂k,n−m∣∣∣ ∣∣∣∣µ+
2πn
T

∣∣∣∣k
)2

≤

(
p−1∑
k=0

∣∣∣f̂k,n−m∣∣∣2
)(

p−1∑
k=0

(
T

2πn

)2p ∣∣∣∣µ+
2πn
T

∣∣∣∣2k
)
, (3.29)

while for n = 0 we have ∣∣∣Â0m

∣∣∣2 ≤ µ2p − 1
µ2 − 1

p−1∑
k=0

∣∣∣f̂k,−m∣∣∣2 . (3.30)

Therefore∑
m6=n,|n|>0

∣∣∣Ânm∣∣∣2 ≤
∑
|n|>0

p−1∑
k=0

(
T

2πn

)2p ∣∣∣∣µ+
2πn
T

∣∣∣∣2k
( ∞∑

m=−∞

p−1∑
k=0

∣∣∣f̂k,m∣∣∣2
)
. (3.31)

The above shows that ∑
n,m

∣∣∣Ânm − δnm

∣∣∣2 <∞, (3.32)

and therefore A − I ∈ Ω. Let K = A − I, and so K is compact. It is then clear that

A ∈ B (L2 (ST )), and that A is Fredholm. Therefore the range of A is closed. We know

Hp (ST ) ⊂ R (A), Hp (ST ) is dense in L2 (ST ), and so together these facts imply R (A) =

L2 (ST ). Hence dim
(
ker
(
A†
))

= 0, and i (A) = 0, so dim (ker (A)) = 0. Therefore A is a

bounded bijection from L2 (ST ) to L2 (ST ), which means A has a bounded inverse by the

Open Mapping Theorem.

Knowing that A has a bounded inverse and that A ∈ Ω, it follows from Theorem 3 that

detΩ (A) 6= 0. We have

detΩ (A) = lim
N→∞

det (I + PNKPN )

= lim
N→∞

det
(
ÎτN + K̂τ

N

)
, (3.33)

and thus there exists constant Mγ such that for N ≥ Mγ , det
(
ÎτN + K̂τ

N

)
6= 0. Since

P̂N B̂ = B̂P̂N ,

ÂτN = B̂τ
N (Ŝ1,τ

N − γÎN ), (3.34)

which means that B̂T
N (Ŝ1,τ

N − γÎN ) has trivial kernel. Since B̂N has trivial kernel, we know

that

ker
(
Ŝ1,τ
N − γÎN

)
= {0}, (3.35)
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and therefore γ ∈ ρ(Ŝ1,τ
N − γÎN ) for N ≥Mγ .

Given this theorem, we prove the following corollary.

Corollary 8. If λNj ∈ σ(Ŝ1,τ
Nj

) and λNj → γ, then γ ∈ σ(S1).

Proof. Suppose in contradiction that γ ∈ ρ(S1). Then, by Theorem 7, we know for some

value M that γ ∈ ρ(Ŝ1,τ
N ) for N ≥M . Then∣∣∣∣∣∣(Ŝ1,τ

N − γ)−1
∣∣∣∣∣∣

2
=
∣∣∣∣∣∣(B̂τ

N (Ŝ1,τ
N − γ))−1B̂τ

N

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣(B̂τ

N (Ŝ1,τ
N − γ))−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣B̂τ
N

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣(B̂τ

N (Ŝ1,τ
N − γ))−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣B̂∣∣∣∣∣∣
2
. (3.36)

Following the notation in Theorem 7, B̂T
N (Ŝ1,τ

N −γ) = ÎN+K̂τ
N . Likewise, per our convention,

let K̂N denote the l2 operator such that K̂τ
N is the (2N+1)×(2N+1) truncation of K̂N , and

K̂N = P̂NK̂N P̂N = P̂NK̂P̂N . From Theorem 7, we know that K is compact, and therefore

K̂N converges to K in the uniform operator topology. Clearly∣∣∣∣∣∣(ÎτN + K̂τ
N )−1

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣(Î + K̂N )−1

∣∣∣∣∣∣
2
, (3.37)

and we know that I +K has a bounded inverse. This implies∣∣∣∣∣∣(Î + K̂N )−1
∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣(Î + K̂)−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣(Î + (Î + K̂)−1(K̂N − K̂))−1
∣∣∣∣∣∣

2
(3.38)

Since K̂N converges uniformly to K̂, there exists L such that
∣∣∣∣∣∣(Î + K̂)−1(K̂N − K̂)

∣∣∣∣∣∣
2
< 1/2

for N ≥ L, and therefore ∣∣∣∣∣∣(Î + (Î + K̂)−1(K̂N − K̂))−1
∣∣∣∣∣∣

2
≤ 2. (3.39)

Finally, we know that ∣∣∣∣∣∣(Ŝ1,τ
N − γ)−1

∣∣∣∣∣∣
2
≥ 1

d
(
γ, σ(Ŝ1,τ

N )
) , (3.40)

where

d(γ, σ(Ŝ1,τ
N )) = inf

s∈σ(Ŝ1,τ
N )

|γ − s| . (3.41)
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This implies that

d(γ, σ(Ŝ1,τ
N )) ≥ 2∣∣∣∣∣∣B̂∣∣∣∣∣∣

2

∣∣∣∣∣∣(Î + K̂)−1
∣∣∣∣∣∣

2

(3.42)

for N ≥ S. Hence, if γ ∈ ρ(S1), there can be no subsequence λNj ∈ σ(Ŝ1,τ
Nj

) converging to

γ.

Now we can prove the restricted no-spurious-mode condition.

Theorem 9. Let D be some compact set in the complex plane, and let {λN}∞N=1 be a

sequence contained in D with λN ∈ σ(Ŝ1,τ
N ). Then for all ε > 0, there exists some integer

M such that λN is in an ε-neighborhood of some value λ ∈ D ∩ σ(S1) for N ≥M .

Proof. Suppose instead that there exists a subsequence λNj such that d(λNj , D ∩ σ(S1)) ≥

ε > 0. However, since D is compact, λNj must have a convergent subsequence, and this

subsequence must converge to some element in σ(S1) by Corollary 8. Hence our original

assumption cannot hold, and the theorem is proved.

3.2 Proof of the Second Condition

We were able to prove the first condition under quite general assumptions. Specifically, it

was not necessary to impose that S1 was a self-adjoint operator. We are unable to prove

the second condition without making this assumption. However, it should be noted that

for non-self-adjoint operators, we have been unable to find numerical examples where the

second condition appears not to hold.

Our proof relies on a number of results from [28]. To apply these, we need the following

lemma.

Lemma 10. PNS1PN converges strongly to S1.

Proof. Let ψ ∈ Hp (ST ). Then∣∣∣∣S1ψ − PNS
1PNψ

∣∣∣∣
2

=
∣∣∣∣PNS1 (I− PN )ψ + (I− PN )S1ψ

∣∣∣∣
2

≤
∣∣∣∣S1 (I− PN )ψ

∣∣∣∣
2
+
∣∣∣∣(I− PN )S1ψ

∣∣∣∣
2

(3.43)

≤ C ||(I− PN )ψ||2,p +
∣∣∣∣(I− PN )S1ψ

∣∣∣∣
2
.

This must become arbitrarily small as N →∞. Therefore the lemma is proved.
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The results we need from [28] will now be stated for the sake of completeness. Proofs of

the lemmas and theorem can be found in [28], pages 290-292.

Definition 11. For any linear operator T, if γ ∈ ρ(T ), the resolvent operator of T is defined

as

Rγ(T ) ≡ (T − γ)−1. (3.44)

Lemma 12. If T is a self-adjoint operator, then

||Rγ(T )||2 =
1

d(γ, σ(T ))
, (3.45)

where d(γ, σ(T )) = infs∈σ(T ) |γ − s|

Lemma 13. If T is self adjoint and Im(γ) 6= 0, then

||Rγ(T )||2 ≤
1

|Im(γ)|
. (3.46)

Definition 14. Given a linear operator T with domain D (T ), a core of T is a subset

D ⊂ D (T ) such that

T |D = T, (3.47)

where T |D is the smallest closed extension of T |D.

Our operator S1 is closed over Hp (ST ) [23]. Therefore Hp (ST ) is a core for S1. Likewise,

each of the finite-rank operators PNS1PN is continuous, and consequently, closed on Hp (ST ).

This makes Hp (ST ) a common core for S1 and PNS1PN . We can then use

Lemma 15. Let PNS1PN and S1 be self-adjoint operators on common core D. If PNS1PN

converges strongly to S1 on D, then Rγ(PNS1PN ) converges strongly to Rγ(S1) if Im(γ) 6= 0.

Finally, given the above lemma, we use the following theorem.

Theorem 16. Let PNS1PN and S1 be self adjoint on common core D. If Rγ(PNS1PN )

converges strongly to Rγ(S1) for Im(γ) 6= 0, and if a < b and (a, b) ⊂ ρ(PNS1PN ) for N

sufficiently large, then (a, b) ⊂ ρ(S1).
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Proof. See [28], page 290.

Theorem 16 can be modified to accommodate subsequences, since the strong convergence

of PNS1PN to S1 also holds for subsequences. This lets us prove the second condition.

Suppose the second condition were false. This implies that there exists λ ∈ σ(S1) such that

d(λ, σ(Ŝ1,τ
Nj

)) ≥ ε (3.48)

for j sufficiently large. Suppose further that λ 6= 0. This implies that the disc Bλ(ε) =

{z ∈ C : |z − λ| < ε} is a subset of ρ(Ŝ1,τ
Nj

), which implies Bλ(ε̃) ⊂ ρ(PNS1PN ), where ε̃ ≤ ε.

Therefore, by Theorem 16, Bλ(ε̃) ⊂ ρ(S1). This is a contradiction, which implies the second

condition for λ 6= 0. If λ = 0, we need only pick some c ∈ ρ(S1) and repeat our steps for

S1 − c.
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Chapter 4

CONVERGENCE OF EIGENFUNCTIONS

We assume in advance that the approximate eigenvalues, λN ∈ σ(Ŝ1,τ
N ), converge to

some λ ∈ σ(S1). Given λN ∈ σ(Ŝ1,τ
N ), there exists a (2N + 1)-dimensional vector φ̂τN such

that

Ŝ1,τ
N φ̂τN = λN φ̂

τ
N ,
∣∣∣∣∣∣φ̂τN ∣∣∣∣∣∣

2
= 1 (4.1)

We prove the following proposition.

Theorem 17. If λN ∈ σ(Ŝ1,τ
N ) converges to λ ∈ σ(S1), then there exists a vector φ̂ such

that a subsequence of φ̂N converges to φ̂ in ||·||2 and S1φ = λφ.

Proof. We extend the vectors φ̂τN to vectors φ̂N so that P̂N φ̂N = φ̂N . Given that ||φ̂N ||2 = 1,

by Alaoglu’s theorem [22] there exists a vector φ̂ such that some subsequence of φ̂N , denoted

as φ̂N , converges weakly to φ̂. Using the operator B from the proof of Theorem 7, and noting

that B commutes with the projection operator PN , we get

λN B̂φ̂N = B̂P̂N Ŝ
1P̂N φ̂N

= P̂N B̂Ŝ
1φ̂N

= P̂N (Î + K̂)φ̂N

= φ̂N + P̂NK̂φN . (4.2)

B is a compact operator since∣∣∣∣∣∣(B̂P̂N − B̂)ψ̂
∣∣∣∣∣∣2

2
≤
∑
|n|>N

(
2πn
T

)−2p ∣∣∣ψ̂n∣∣∣2
≤
(

2πN
T

)−2p ∣∣∣∣∣∣ψ̂∣∣∣∣∣∣2
2
. (4.3)

This implies that
∣∣∣∣∣∣B̂P̂N − B̂

∣∣∣∣∣∣
2
≤
(

2πN
T

)−p
, and so B is a uniform limit of finite-rank

operators and is therefore compact. B compact then implies that B̂φ̂N → B̂φ̂. Likewise,
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since K is compact, we have K̂φ̂N → K̂φ̂, P̂NK̂ → K̂ uniformly, and∣∣∣∣∣∣P̂NK̂φ̂N − K̂φ̂
∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣K̂φ̂N − K̂φ̂

∣∣∣∣∣∣
2
+
∣∣∣∣∣∣P̂NK̂ − K̂

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̂∣∣∣∣∣∣
2
, (4.4)

which implies P̂NK̂φ̂N → K̂φ̂. Therefore, we have

φ̂N → λB̂φ̂− K̂φ̂. (4.5)

Our weakly convergent sequence φ̂N has been shown to converge strongly. This implies

φ̂N → φ̂, (4.6)

and using (4.5)

(Î + K̂)φ̂ = λB̂φ̂. (4.7)

We still need to show that the function φ, corresponding to symbol φ̂, is in D
(
S1
)
, and

that it is an eigenfunction. There are two cases to consider. The first is λ 6= 0. This implies

Ŝ1 is invertible, and we showed in Theorem 7 that the operator Î+ K̂ is invertible. If Î+ K̂

is invertible, then

(Î + K̂)−1(B̂S1) = Î , (4.8)

where B̂S1 denotes the extension of B̂Ŝ1. Likewise, if S1 is invertible, then for φ ∈ L2 (ST )

there must exist some ψ ∈ Hp (ST ), with symbol ψ̂, such that Ŝ1ψ̂ = φ̂. This implies

φ̂ = λ(Î + K̂)−1B̂φ̂

= λ(Î + K̂)−1B̂Ŝ1ψ̂

= λ(Î + K̂)−1B̂S1ψ̂

= λψ̂, (4.9)

and therefore φ is an eigenfunction of S1.

The second case to consider is λ = 0. In that case let c ∈ ρ
(
S1
)

so that the operator

S1 − c is invertible. Repeat the steps for the λ 6= 0 case.

If we assume that the eigenvalue λ is simple, then we see that every subsequence of φN

converges to some unit multiple of φ since we claimed every sequence of approximate eigen-

vectors φN has a convergent subsequence. We can then say, upon appropriate rescalings,
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that the sequence is convergent. The general problem for non-simple eigenvalues appears

to be rather difficult, and we do not address it here.
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Chapter 5

RATE OF CONVERGENCE

Before proceeding, we need two technical lemmas. The first lemma is from [2], page 69.

We include the proof for clarity.

Lemma 18. If φ ∈ C∞ (ST ), then ||(I − PN )φ||2 = O (N−p) for all integer values of p > 0.

Proof. Since C∞ (ST ) ⊂ Hp (ST ) for arbitrary p, we can write

||(I − PN )φ||22 =
∑
|n|>N

∣∣∣φ̂n∣∣∣2
=
(

T

2πN

)2p ∑
|n|>N

(
2πN
T

)2p ∣∣∣φ̂n∣∣∣2
≤
(

T

2πN

)2p ∑
|n|>N

(
2πn
T

)2p ∣∣∣φ̂n∣∣∣2
≤
(

T

2πN

)2p

||φ||22,p . (5.1)

Therefore

||(I − PN )φ||2 = O
(
N−p) , p > 0. (5.2)

The second lemma relies upon a restriction of the self-adjoint operator S1 to the form

S1 = ∂px +
p−1∑
k=1

ck∂
k
x + f(x), (5.3)

where the ci are constants. We denote the constant-coefficient differential operator as Dµ
p .

This restriction greatly simplifies our work since the operator PN commutes with Dµ
p . We

now prove our second technical lemma:
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Lemma 19. If φN and φ are the approximate and true eigenfunctions, respectively, of the

operator Dµ
p + f(x), then convergence in ||·||2 implies convergence in ||·||2,k for all positive

integers k.

Proof. We have PNS
1φN = Dµ

pφN + PNf(x)φN . As shown in the previous section, if

approximate eigenfunctions φN converge to φ in the ||·||2 norm, then

lim
N→∞

||PNf(x)φN − f(x)φ||2 = 0. (5.4)

This implies

lim
N→∞

∣∣∣∣Dµ
pφN −Dµ

pφ
∣∣∣∣

2
= 0, (5.5)

which means that φN converges to φ in the graph norm associated with S1, i.e.

lim
N→∞

(
||φN − φ||2 +

∣∣∣∣S1φN − S1φ
∣∣∣∣

2

)
= 0. (5.6)

The graph norm associated with the operator S1 is equivalent to the pth Sobolev norm [23],

which implies that

lim
N→∞

||φN − φ||2,p = 0. (5.7)

Convergence in ||·||2,p implies ∂xφN → ∂xφ in ||·||2, and thus ∂x(D
µ
pφN + f(x)φN ) con-

verges to ∂xS1φ in ||·||2. This implies that φN converges to φ in ||·||2,p+1. Proceeding this

way, we see that φN converges to φ in ||·||2,k for all integers k > 0.

Finally, we need the following min-max theorem [18]:

Theorem 20. Suppose the self-adjoint operator S1 has least eigenvalue λ0 > −∞. Then

λ0 = inf
||ψ||2=1

〈
S1ψ,ψ

〉
, (5.8)

where ψ is understood to be in the domain of S1.

Using Theorem 20 and our technical lemmas, we prove the next theorem.

Theorem 21. Let λ = minσ(S1) > −∞, λ simple. Then there exists a sequence λN → λ,

λN ∈ σ(Ŝ1,τ
N ), and

|λN − λ| = O
(
N−q) , q ≥ 1. (5.9)
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Proof. By Theorem 20, we have

λ = inf
||ψ||2=1

〈
S1ψ,ψ

〉
. (5.10)

Define the sequence {λN}∞N=1 via

λN = inf
||ψ̂τ

N ||2=1

〈
Ŝ1,τ
N ψ̂τN , ψ̂

τ
N

〉
, (5.11)

where ψ̂τN ∈ C2N+1. Let ψ̂N denote the extension of ψ̂τN , i.e. P̂N ψ̂N = ψ̂N . We can

equivalently define λN as

λN = inf
||ψN ||2=1

〈
S1ψN , ψN

〉
. (5.12)

This shows that λN ≥ λN+1 ≥ · · · ≥ λ. Since the λN ’s are a monotone sequence, they must

have a limit, say λ̃. Suppose λ̃ > λ. Since we know λ ∈ σ(S1) and S1 is self adjoint, by our

second condition for convergence, we know there exists a sequence γN ∈ σ(Ŝ1,τ
N ) such that

γN → λ. This implies for N large enough that γN < λ̃, but this would imply that γN < λN ,

which is impossible. Therefore λ̃ = λ and λN → λ.

Let c > λ1, c 6= 0. We can alter our definition of λN to

λN = inf
||ψ||2=1

(〈
S1PNψ, PNψ

〉
+ c 〈(I − PN )ψ,ψ〉

)
. (5.13)

We introduce this alteration in order to take infimums over the same domain. Let each

eigenvalue λN have corresponding eigenvector φN , and let λ have eigenvector φ. We showed

in Section 4 that φN → φ in ||·||2, so we can restrict ourselves to the set

EN = {φj}j≥N . (5.14)

Assume that λ > 0, which implies λN > 0. Consider the difference

1
λ
− 1
λN

= sup
EN

1
〈S1ψ,ψ〉

− sup
EN

1
(〈S1PNψ, PNψ〉+ c 〈(I − PN )ψ,ψ〉)

. (5.15)

We have

〈
S1ψ,ψ

〉
=
〈
S1PNψ, PNψ

〉
+RN (ψ) , (5.16)

RN (ψ) ≡
〈
(I − PN )ψ, S1PNψ

〉
+
〈
S1ψ, (I − PN )ψ

〉
, (5.17)



35

and so
1
λ
− 1
λN

≤ 1
λλN

sup
EN

|−RN (ψ) + c 〈(I − PN )ψ,ψ〉| , (5.18)

or

λN − λ ≤ sup
EN

|−RN (ψ) + c 〈(I − PN )ψ,ψ〉| . (5.19)

Using Cauchy-Schwartz,

|RN (ψ) | ≤
(∣∣∣∣S1PNψ

∣∣∣∣
2
+
∣∣∣∣S1ψ

∣∣∣∣
2

)
||(I − PN )ψ||2 , (5.20)

|c 〈(I − PN )ψ,ψ〉 | ≤ c ||ψ||2 ||(I − PN )ψ||2 . (5.21)

Given the result of Lemma 19, we bound
(∣∣∣∣S1PNψ

∣∣∣∣
2
+
∣∣∣∣S1ψ

∣∣∣∣
2

)
by some constant M .

Since EN is closed, there must be some vector φK ∈ EN such that

sup
EN

|−RN (ψ) + c 〈(I − PN )ψ,ψ〉| ≤ (M + c) ||(I − PN )φK ||2 . (5.22)

Knowing that each φK is smooth, Lemma 18 implies

λN − λ ≤ (M + c)
(

T

2πN

)q
||φK ||2,q (5.23)

for all q > 0. Lemma 19 shows that ||φK ||2,q → ||ψ||2,q. So, for a given ε, there must be

some value L such that ||φK ||2,q ≤ (1 + ε) ||ψ||2,q for all K ≥ L. Hence, for N ≥ L, we have

λN − λ ≤ (M + c)(1 + ε)
(

T

2πN

)q
||ψ||2,q . (5.24)

In the case that λ ≤ 0, pick α such that α+ λ > 0. Likewise we see that

α+ λ = inf
||ψ||2=1

〈
(S1 + α)ψ,ψ

〉
, (5.25)

α+ λN = inf
||ψN ||2=1

〈
(S1 + α)ψN , ψN

〉
. (5.26)

Then we repeat our argument from above.

Note, in the case that inf σ(S1) = −∞, but supσ(S1) < ∞, we can apply the theorem

just proved to the operator −S1.
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Chapter 6

THE BOUSSINESQ APPROXIMATION

6.1 Linearization and Spectral Problem

Again, the Boussinesq system is given by

ηt +∇ · v +∇ · ηv + a∇ ·∆v − b∆ηt = 0,

vt +∇η +
1
2
∇|v|2 + c∇(∆η)− d∆vt = 0.

(6.1)

Further, In the case that b ≥ 0 and d ≥ 0, we can rewrite (1.34) to fit our definition of

evolution equations as in (1.1). This restriction will be imposed throughout the rest of this

thesis, and further a and c will be kept negative and equal. As shown though in [8] and

[4], this restriction is not so severe and in fact represents the majority of the physically

interesting cases where (1.34) might be used. The spectral stability of traveling line solitary

wave solutions under two-dimensional small perturbations (transverse stability) are now

studied.

In specific, we linearize the system around the solution (η∗, u∗, 0) which is the line

(independent of y) traveling solution to (6.1), i,e.

η∗(x, y, t) = η(ξ), u∗(x, y, t) = u(ξ)

with ξ = x− kt. Using the fact ∂t = −k∂ξ + ∂t and let the solution be of the form

η(ξ, y, t) = η∗ + εη̄(ξ, y, t)

u(ξ, y, t) = u∗ + εū(ξ, y, t)

v(ξ, y, t) = 0 + εv̄(ξ, y, t)

(6.2)

By substituting (6.2) into (6.1) and dropping the ε2 terms, one obtains the equations for

(η̄, ū, v̄) which read (the bars on the dependent variables are dropped for simplicity of
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notation)

− ηt + b∆ηt = −kηξ + bk∆ηξ +∇ · v + a∇ ·∆v +∇(η∗v + v∗η)

− vt + d∆vt = −kvξ + dk∆vξ +∇η + c∇(∆η) +∇(v · v∗)
(6.3)

Since the equations are linear, it is natural to consider the solutions with respect to each

mode. Assume the solutions are in the form of

η(ξ, y, t) = N(ξ, ρ,Ω)eiρy+Ωt + complex conjugate

v(ξ, y, t) = V(ξ, ρ,Ω)eiρy+Ωt + complex conjugate
(6.4)

Substituting (6.4) into (6.3) and denote V = (U, V )t, one obtains the equation

Ω


L1 0 0

0 K1 0

0 0 K1



N

U

V

 =


kL1∂ξ + u∗ξ + u∗∂ξ M2∂ξ + η∗ξ iρM2

M1∂ξ kK1∂ξ + u∗ξ + u∗∂ξ 0

iρM1 iρu∗ kK1∂ξ



N

U

V


(6.5)

where

K1 = d∂ξξ − dρ2 − 1, L1 = b∂ξξ − bρ2 − 1,

M1 = c∂ξξ − cρ2 + 1, M2 = a∂ξξ − aρ2 + 1 + η∗,
(6.6)

The corresponding eigenvalue problem is finding eigenvalues Ω and corresponding eigen-

functions for each ρ. The study of the case ρ = 0 is associated to the one-dimensional

stability of the line solutions and the study of ρ 6= 0 is associated to the transverse stability.

6.2 Spectral Stability of Elevation Soliton

We wish to establish the spectral stability of the elevated soliton like solution

η∗ =η0sech2 (λξ) ,

u∗ =η0

√
3

η0 + 3
sech2 (λξ) ,

v∗ =0

(6.7)

for parameter values

a = c < 0, b > −a, d > 0, (6.8)
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with 2a+ b+ d = 1
3 , and

λ =
1
2

√
2η0

3(a− b) + 2b(η0 + 3)
, k =

3 + 2η0√
3(3 + η0)

.

Note, in all subsequent calculations in this section and in the appendix, we substitute −a

for a. First, we transform (6.5) into a first-order system

d

dξ

 φ

ψ

 = (A(Ω, η0, ρ) + iρW (η0, ρ) + C(ξ, η0, ρ))

 φ

ψ

 , (6.9)

where

φ = (N,U,N ′, U ′, N ′′, U ′′)T , (6.10)

ψ = (V, V ′, V ′′)T , (6.11)

and

A(Ω, η0, ρ) =


A0(η0, ρ) + ΩA1(η0, ρ) 0

0 B0(η0, ρ) + ΩB1(η0, ρ)

 . (6.12)

The explicit entries in the above matrices are provided in the appendix.

While the first-order system is not an eigenvalue problem per se, it is equivalent to our

original eigenvalue problem in the following way. Define the operator T (Ω) such that

D (T (Ω)) = H1
(
R; C9

)
,

T (Ω) =
d

dξ
− (A(Ω, η0, ρ) + C(ξ, η0, ρ) + iρW (η0, ρ)) .

(6.13)

Given some value Ω, if T (Ω) has a bounded inverse then Ω is not in the spectrum of our

linearization. Likewise, if T (Ω) does not have a bounded inverse, then Ω is in the spectrum

of our linearization. For more details and exposition, see [30]. A means of determining

the invertibility of T (Ω) is provided by the theory of exponential dichotomies. Following

[10] and [30], we say that T (Ω) generates an exponential dichotomy on R if given the

fundamental solution matrix of T (Ω), say X(ξ), there exists a projection operator P , and

positive constants K, L, α, and β such that the inequalities∣∣∣∣X(t)PX−1(s)
∣∣∣∣ ≤ Ke−α(t−s), for t ≥ s∣∣∣∣X(t)(I − P )X−1(s)
∣∣∣∣ ≤ Le−β(s−t), for s ≥ t

(6.14)
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are satisfied for all values of t and s in R.

A result of Palmer ([25], [26]) shows that T (Ω) has a bounded inverse if and only if there

exists an exponential dichotomy on R. While such a condition is difficult to show for T (Ω),

for the constant-coefficient operator

T̃ (Ω) ≡ d

dξ
−A(Ω, η0, ρ), (6.15)

T̃ (Ω) will have an exponential dichotomy on R if and only if A(Ω, η0, ρ) is hyperbolic [30].

Thus we might hope to make use of the ”roughness” theorem from [10].

Theorem 22. If the ODE d
dξ − F (ξ) generates an exponential dichotomy on R, then if the

matrix B(ξ) satisfies the inequality

sup
ξ∈R

||B|| ≤ α

4K2
, (6.16)

where α and K are the constants in (6.14), then d
dξ −F (ξ)−B(ξ) generates an exponential

dichotomy on R as well.

It can be shown (see Appendix, section A.1), that A(Ω, η0, ρ) is hyperbolic if Re (Ω) 6= 0,

which is the region in which we are interested. Then A(Ω, η0, ρ) has three eigenvalues, say

µ1(Ω, η0, ρ), µ2(Ω, η0, ρ), and µ3(Ω, η0, ρ) in the left-hand plane, and each are simple and

analytic for Re (Ω) ≥ 0 (see Appendix, Lemma 28). Let Γ denote a smooth, closed curve

containing only these eigenvalues, and define the projection associated with the exponential

dichotomy for A(Ω) by

P (Ω, η0, ρ) = − 1
2πi

∮
Γ

(A(Ω, η0, ρ)− z)−1 dz. (6.17)

This projection can be decomposed into the projections Pi associated with the individual

eigenvalues µi. Further, the Pi are mutually orthogonal [19], and so we have (letting the

variables Ω, η0, and ρ be understood)∣∣∣∣eAtPe−As∣∣∣∣ = ∣∣∣∣∣∣P1e
µ1(t−s) + P2e

µ2(t−s) + P3e
µ3(t−s)

∣∣∣∣∣∣
≤ e−α(Ω,η0,ρ)(t−s), (6.18)

where α(Ω, η0, ρ) = mini{|Re (µi(Ω, η0, ρ))|}.

This provides the following modification of the “roughness” theorem from [10].
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Theorem 23. If

sup
ξ∈R

||C(ξ, η0, ρ) + iρW (η0, ρ)|| ≤
1
4
α(Ω, η0, ρ) (6.19)

then T (Ω) will have an exponential dichotomy on R and therefore have a bounded inverse.

Hence, if we can control α(Ω, η0, ρ) for Re (Ω) > 0, we can establish a range of η0 and

ρ values satisfying the inequality of Theorem 23 and thus prove spectral stability for the

given range of parameter values. Let µ1(Ω, η0, ρ) be the eigenvalue in the left-hand plane

with smallest real part. We know that µ1(Ω, η0, ρ) can never be strictly imaginary (see

appendix, Lemma 26), but for Theorem 23 to be useful, we need to find some lower bound

on the magnitude of Re (µ1). From basic perturbation theory, we know for |Ω| � 1 that

µ1(Ω, η0, ρ) must be within O(Ω) of µ1(0, η0, ρ).

We can now prove the following theorem.

Theorem 24. If Re (Ω) ≥ 0, a, b, d are in some neighborhood of −1/9, 1/3 and 2/9, ρ = 0,

and η0 is sufficiently small, then

α(Ω, η0, ρ) ≤ µ1(0, η0, 0). (6.20)

Proof. From the appendix, we know that µ2 = −
√
ρ2 + 1/d, and so it satisfies (6.23).

Therefore, we only need to study the remaining two eigenvalues. From the asymptotic

results presented in the appendix, we know there exists constants M and N such that

(6.23) holds for |Ω| ≤ M and |Ω| ≥ N . Therefore, we need only establish the inequality in

the intermediate region D2 from Figure 1. Given that µ1(Ω, η0, ρ) is analytic in the right-half

plane, this makes Re (µ1(Ω, η0, ρ)) a harmonic function. So, to prove the inequality on D2,

we only need to prove it along ∂(D2), and then invoke the maximum principle for harmonic

functions. Clearly, by construction, this means we only need to prove the inequality on

∂(D2)∩ iR. A final simplification can be made by noting that if we let Ω = iω, ω ∈ R, then

σ(A(iω)) = σ(A(−iω)), so then one only need prove the bound on ∂(D2) ∩ iR+.

Given the above, denote the characteristic polynomial of A0 + ΩA1 as p(µ). If we show

that the associated polynomial

b(z) ≡ p(µ1(0, η0, 0) + iz) (6.21)
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Figure 6.1:

has no real roots in z, then the asymptotic behavior of both µ1 and µ3 as Ω →∞ guarantees

(6.23) must be satisfied. The four eigenvalues of A(Ω, η0, ρ) are either imaginary or have

positive real part (see Lemma 27). This ensures that there can be at most two real roots

for b(z).

So, we must show that b(z) cannot have a real root. To do this, first let p1(x) = Re (b(x)),

and p2(x) = Im (b(x)), where x is real. Hence, for b to have real root, p1 and p2 must have

a simultaneous root. Thus, we compute the resolvent (see [15] for definition and relevant

theorems), R(p1, p2), which is zero if and only if p1 and p2 have a common root. We can

compute R(p1, p2) using MAPLE, which gives

R(p1, p2) = 64µ6
1(0, η0, 0)(k2bd− a2)ω2g(ω, k, µ1(0, η0, 0)). (6.22)

Unfortunately, g is a rather complicated polynomial expression in all of its variables. Thank-

fully though, µ1(0, η0, 0) → 0 and k → 1 as η0 → 0, thus we can expand g as

g(ω, k, µ1(0, η0, 0)) = 3ω2(aw2 + 1)2g̃(w) + O((k − 1), µ1(0, η0, 0)). (6.23)

Hence, if we show that g̃ is positive for ω > 0, we are done, since we only need to look at

values of ω on a finite interval. Of course, even g̃(ω) is difficult to analyze, but if we insert

the particular values for a, b, and d as given in the statement of the theorem, we get

g̃(ω) =
16

1594323
ω10 − 728

1594323
ω8 +

14200
1594323

ω6 +
5849

177147
ω4 +

19718
19683

ω2 + 15. (6.24)
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One can factor 16
1594323ω

10 − 728
1594323ω

8 + 14200
1594323ω

6 into 8ω6

1594323(2ω4 − 91ω2 + 1775), which

only has a real root at ω = 0. Since 2ω4 − 91ω2 + 1775 is positive at the origin, and
5849

177147ω
4 + 19718

19683ω
2 + 15 is always positive, we see that g̃(ω) > 0, and thus for η0 sufficiently

small, g(ω, k, µ1(0, η0, 0)) > 0. Thus p1 and p2 have no common roots and the theorem is

proved.

To now make use of the roughness theorem for exponential dichotomies, we must estimate

the size of C(ξ, η0, 0). For C, we use the matrix 2-norm, which for an n× n matrix A is

||A||22 =
n∑

i,j=1

|aij |2 (6.25)

It is straightforward to show

||C(ξ, η0, 0)||2 ≤ η0

√
α(1 + 4λ2)
k2bd− a2

sech(λξ) (6.26)

α = k2d2 + a2 + (kd+ a)2 + (kb+ a)2.

and hence supξ∈R ||C(ξ, η0, 0)||2 = O(η0). As shown in Lemma 24, |µ1(0, η0, 0)| = O(
√
η0).

Hence, we must necessarily have supξ∈R ||C(ξ, η0, 0)||2 ≤ |µ1(0, η0, 0)|/4 for small η0.
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Appendix A

A.1 Matrix Entries

A0(η0, ρ) =


0 I 0

0 0 I

0 kZ 0

 , (A.1)

A1(η0, ρ) =


0 0 0

0 0 0

−Z 0 E

 , (A.2)

with

Z =
1

k2bd− a2

 kd(bρ2 + 1) a(dρ2 + 1)

a(bρ2 + 1) kb(dρ2 + 1)

 , E =
1

k2bd− a2

 kbd ad

ab kbd

 . (A.3)

In V , we have

B0(η0, ρ) + ΩB1(η0, ρ) =


0 1 0

0 0 1

−Ω
k (ρ2 + 1

d) (ρ2 + 1
d)

Ω
k

 . (A.4)

For the constant coefficient coupling dominated by ρ, we have

W (η0, ρ) =


0 0 0

0 0 W1

W2 W3 0

 , (A.5)
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with

W1 =
−1

k2bd− a2


0 0 0

kd(aρ2 + 1) 0 −kad

a(aρ2 + 1) 0 −a2

 , W2 =


0 0 0

0 0 0
−(aρ2 + 1)

kd
0 0



W3 =


0 0 0

0 0 0

0
a

kd
0

 .

(A.6)

Finally we have

C(ξ, η0, ρ) =


0 0 0

C1 C2 C3

C4 0 0

 , (A.7)

with, dropping the ∗ superscript,

C1 =
1

k2bd− a2


0 0 0

kduξ kdηξ + auξ kdu

auξ aηξ + kbuξ au

 , C2 =
1

k2bd− a2


0 0 0

kdη + au 0 0

aη + kbu 0 0

 ,

C3 =
iρ

k2bd− a2


0 0 0

kdη 0 0

aη 0 0

 , C4 =


0 0 0

0 0 0

0
iρ

kd
u 0


(A.8)

A.2 The Hyperbolicity of A(Ω, η0, ρ)

We are interested in finding where the matrix A(Ω, η0, ρ) is hyperbolic, which amounts to

computing the spectrum of the constant-coefficient operator


L1 0 0

0 K1 0

0 0 K1


−1

kL1∂ξ M1∂ξ 0

M1∂ξ kK1∂ξ 0

0 0 kK1∂ξ

 . (A.9)
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We know that L1 and K1 have bounded inverse on L2(R), so we can instead study

F ≡


k∂ξ L−1

1 M1∂ξ 0

K−1
1 M1∂ξ k∂ξ 0

0 0 k∂ξ

 . (A.10)

We can compute the spectrum of F by taking its Fourier transform, F̂ (w), and then finding

the zeros of det(F̂ − Ω). We have

det(F̂ − Ω) = (−ikw − Ω)
(

(−ikw − Ω)2 + w2 (aw2 + aρ2 + 1)2

(bw2 + bρ2 + 1)(dw2 + dρ2 + 1)

)
(A.11)

So, we clearly see that iR is in the spectrum of F , but we still need to find the roots of

(−ikw − Ω)2 + w2 (aw2 + aρ2 + 1)2

(bw2 + bρ2 + 1)(dw2 + dρ2 + 1)
. (A.12)

If we separate real and imaginary parts we must have

Re (Ω)2 − (kw + Im (Ω))2 + w2 (aw2 + aρ2 + 1)2

(bw2 + bρ2 + 1)(dw2 + dρ2 + 1)
= 0

Re (Ω) (kw + Im (Ω)) = 0. (A.13)

If we let Re (Ω) 6= 0, then we must have Im (Ω) = −kw, but then we must also have

Re (Ω)2 + w2 (aw2 + aρ2 + 1)2

(bw2 + bρ2 + 1)(dw2 + dρ2 + 1)
= 0, (A.14)

which is impossible. Therefore σ(F ) = iR, and A(Ω, η0, ρ) is hyperbolic if and only if

Re (( Ω, η0, ρ)) 6= 0.

A.3 Results about the Characteristic Polynomial of A(Ω, η0, ρ)

We will now list a number of lemmas concerning the characteristic polynomial, say pA(µ),

of the matrix (6.12). Obviously we can factor this polynomial into the characteristic poly-

nomials for A0 + ΩA1 and B0 + ΩB1. The eigenvalues for B0 + ΩB1 are{
±
√
ρ2 +

1
d
,

Ω
k

}
. (A.15)
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Denote the characteristic polynomial for A0 +ΩA1 by p(µ; Ω). There is of course no general

formula to compute the roots of this polynomial since it is sixth order. However, it is not

difficult to show though that

p(µ; Ω) = µ2(k2p4(µ) + p̃4(µ))− 2kΩµp4(µ) + Ω2p4(µ), (A.16)

where

p4(µ) = (bµ2 − (bρ2 + 1))(dµ2 − (dρ2 + 1))

p̃4(µ) = −a2(µ2 − (ρ2 +
1
a
))2. (A.17)

This allows us to prove:

Lemma 25. If Re (Ω) ≥ 0 and Im (Ω) 6= 0, then p(µ; Ω) does not have any real, negative,

roots.

Proof. Assuming µ ∈ R, then separating p(µ; Ω) = 0 into real and imaginary parts gives

µ2(k2p4(µ) + p̃4(µ))− 2kRe (Ω)µp4(µ) + (Re (Ω)2 − Im (Ω)2)p4(µ) = 0

(Re (Ω)− kµ)Im (Ω) p4(µ) = 0. (A.18)

We only have one possibility and that is p4(µ) = 0. This would then imply that µ2p̃4(µ) = 0,

but this is obviously impossible.

We also need:

Lemma 26. If Ω is purely imaginary, then the eigenvalues are symmetric about the imag-

inary axis.

Proof. Let p(µ; iω) = 0. Then

p(−µ̄; iω) = p(µ; iω) = 0. (A.19)
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A.4 Asymptotics for σ(A(Ω, η0, ρ))

A.4.1 Small Ω Results

To establish results for |Ω| � 1, we start by computing the roots of p(µ; 0), which are0,±

√
ρ2 +

k2

3 + 2a(k2 − 1)± k
√
k2(b− d)2 + 4(a− d)(a− b)

2(k2bd− a2)

 . (A.20)

We can then immediately provide the estimates on µ1(0, η0, 0) used in the main text.

Lemma 27.

|µ1(0, η0, 0)| =
√

η0

2(k2bd− a2)
(β + O(η0))1/2 (A.21)

β = 1
3(1

2 + 6a− 1
18(b− d)2)

Proof. By performing a Taylor expansion, one has that

k = 1 +
η0

2
+ O(η2

0) (A.22)

which also gives k2 = 1 + η0 + O(η2
0). As can readily be shown

µ2
1(0, η0, 0) =

k2

3 + 2a(k2 − 1)− k
√
k2(b− d)2 + 4(a− d)(a− b)

2(k2bd− a2)
, (A.23)

and so by inserting the expansion in k, k2, and using the identity −2a + b + d = 1
3 , the

estimate is obtained.

The root at zero is a double root, and we will denote each root as µ5(0, η0, ρ) and

µ6(0, η0, ρ). Let the two negative roots be denoted by µ3(0, η0, ρ) and µ1(0, η0, ρ), with

µ3(0, η0, ρ) < µ1(0, η0, ρ). There is some question as to what will happen to µ5(Ω, η0, ρ) and

µ6(Ω, η0, ρ) for Re (Ω) > 0. Thankfully, zero is a semi-simple eigenvalue of A0, and we can

use the reduction method of Kato [19]. This gives the expansions

µ5(Ω, η0, ρ) = Ω
k(bρ2 + 1)(dρ2 + 1) + (1 + aρ2)

√
(bρ2 + 1)(dρ2 + 1)

k2(bρ2 + 1)(dρ2 + 1)− (1 + aρ2)2
+O(Ω2),

µ6(Ω, η0, ρ) = Ω
k(bρ2 + 1)(dρ2 + 1)− (1 + aρ2)

√
(bρ2 + 1)(dρ2 + 1)

k2(bρ2 + 1)(dρ2 + 1)− (1 + aρ2)2
+O(Ω2). (A.24)
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This shows that for Re (Ω) > 0, the two eigenvalues that begin at the origin move into the

right-half plane. Using the same asymptotic methods as above, we also prove the following

key lemma.

Lemma 28. There exists some M > 0 such that µ1(Ω, η0, ρ) and µ3(Ω, η0, ρ) satisfy (6.23)

for |Ω| ≤ N . Further, µ1(Ω, η0, ρ) and µ3(Ω, η0, ρ) are analytic for Re (Ω) ≥ 0.

Proof. We know that A(Ω, η0, ρ) has no strictly imaginary eigenvalues for Re (Ω) 6= 0. Thus

µ3(Ω, η0, ρ) and µ1(Ω, η0, ρ) are the only eigenvalues of A0 + ΩA1 in the left-hand plane.

Further, since µ3(Ω, η0, ρ) and µ1(Ω, η0, ρ) are simple at Ω = 0, we know both functions are

analytic in Ω about the origin [19]. Let

µ1(Ω, η0, ρ) = µ1(0, η0, ρ) + α1Ω +O(Ω2)

µ3(Ω, η0, ρ) = µ3(0, η0, ρ) + α3Ω +O(Ω2). (A.25)

We then have

α1 = −(d(µ2
1(0)− ρ2) + 1)(b(µ2

1(0)− ρ2) + 1))
µ2

1(0)
√
k2(b− d)2 + 4(a− d)(a− b)

α3 =
(d(µ2

3(0)− ρ2) + 1)(b(µ2
3(0)− ρ2) + 1))

µ2
3(0)

√
k2(b− d)2 + 4(a− d)(a− b)

, (A.26)

and α1 < 0 while α3 > 0. Thus for Ω sufficiently small, (6.23) holds. As for the remainder

of the lemma, if Im (Ω) > 0, then for small enough Ω we know Im (µ1(Ω, η0, ρ)) < 0 and

Im (µ3(Ω, η0, ρ)) > 0. By Lemma 26, we see then that neither µ1(Ω, η0, ρ) nor µ3(Ω, η0, ρ)

can ever cross the real axis, and therefore they can never intersect. We can repeat a similar

argument for Im (Ω) < 0. Since we need analyticity for Re (Ω) ≥ 0, we still have to examine

the case where Ω > 0, which is to say that we need to show that µ1 and µ3 never intersect

for Ω > 0. To do this, first note that for real Ω, the roots of p(µ; Ω) must be symmetric

with respect to the real axis. Since µ1 and µ3 are simple for small Ω, this means they

must be real. Further, because of symmetry, they can only leave the negative real axis if

they intersect. We can then look for the positive roots of p(−µ; Ω) using Descartes rule of

signs. It is straightforward to show that there can only be an even number of roots, and so

therefore the µ1 and µ3 can never intersect for Ω > 0. We are then finished.
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A.4.2 Large Ω Results

In order to study the behavior of the eigenvalues in the left-hand plane for |Ω| � 1, we first

introduce the substitution t = 1
Ω . This transforms the eigenvalue problem

(A0 + ΩA1)φ = µ(Ω)φ (A.27)

into

(tA0 +A1)φ = t µ

(
1
t

)
φ. (A.28)

Repeating the methods used in the previous section, again see [19], for the eigenvalues with

negative real part, we obtain the following expansions.

µ1 = −
√
ρ2 +

1
b

+ O
(

1
Ω

)
µ3 = −

√
ρ2 +

1
d

+ O
(

1
Ω

)
(A.29)

Thus we see there must exist some value N > 0, such that for |Ω| ≥ N , both µ1 and µ3 will

satisfy the inequality (6.23).
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