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Explicit solutions to linear,

second-order, initial and
boundary value problems

with variable coefficients

I derive explicit solution representations for linear, second-order Initial-Boundary

Value Problems (IBVPs) with coefficients that are spatially varying, with linear, <
constant-coefficient, two-point boundary conditions. I accomplish this by

considering the variable-coeflicient problem as the limit of a constant-coefficient

interface problem, previously solved using the Unified Transform Method of

Fokas. Our method produces an explicit representation of the solution, allowing

us to determine properties of the solution directly. I prove that these

representations are solutions to fully and partially dissipative problems under

general conditions. As explicit examples, I demonstrate the solution procedure

for different IBVPs of variations of the heat equation, and the linearized complex

Ginzburg-Landau (CGL) equation (with periodic boundary conditions). The

solution can be used to find the eigenvalues of second-order linear operators
(including non-self-adjoint ones) as roots of a transcendental function, and their
eigenfunctions may be written explicitly in terms of the eigenvalues.
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1. Introduction

1.1 Introduction

The Unified Transform Method (UTM), or Method of Fokas, was first developed as a generalization of the Inverse
Scattering Transform (IST) method to solve Initial-Boundary Value Problems (IBVPs) for integrable nonlinear
equations. It was later realized that it was particularly convenient and straightforward for linear, constant-coefficient
IBVPs. The UTM leads to many new insights on PDEs and IBVPs, see for instance [1, 7, 10, 11, 12, 13, 14, 29], and
references therein. Especially relevant for this work, the method has been used to explicitly solve interface problems
with piecewise-constant coefficients, see [5, 6, 17, 23, 24, 25, 26]. The purpose of this paper is to generalize the UTM
to solve variable-coefficient IBVPs.

The classical approach of separation of variables is useful if the associated ODE is a second-order, self-adjoint
problem on a finite domain, for which there is regular Sturm-Liouville theory [3], but does not generalize well to
problems that are not self adjoint, of higher order, or posed on an unbounded domain. In [29], Fokas and Treharne
use a Lax Pair approach to analyze variable-coefficient IBVPs. Their approach reduces the problem from solving a
Partial Differential Equation to solving an Ordinary Differential Equation (ODE) by writing the solution of the PDE
as an integral over the solutions to a non-autonomous ODE.

In this approach to variable-coefficient IBVPs, the domain is divided into IV parts and the equation is approxi-
mated by a constant-coefficient equation on each part. The resulting interface problem is solved using the UTM as
shown in [5, 6, 17, 23, 24, 25, 26]. Using Cramer’s rule, the solution in each part is found as a ratio of determinants.
Through the nontrivial steps of obtaining an explicit expression for the determinants and taking the limit as IV goes
to infinity, a complicated but explicit solution expression is obtained. The limit is taken non-rigorously and the
results are justified independently by proving that they are solutions to the given IBVP.

As in previous applications of the UTM (e.g., [1, 13] for constant-coefficient problems, [6, 27] for interface
problems), one of the benefits of this approach is characterizing which boundary conditions give rise to a well-posed
IBVP. In particular, for the finite-interval problem, this work is consistent with Locker’s work on Birkhoff regularity,
e.g., [16]. Since the UTM is generalizable to large classes of varying boundary conditions, IBVPs of higher order,
including non-self-adjoint problems, this work is expected to generalize in these same directions as well.

These formulae may seem complicated; however, they are similar to the solutions found in [21], which have been
used to prove a variety of properties of solutions to ODEs and eigenvalue problems. Indeed, the notation used here
is inspired by this book. While the solutions here are similar, the methods are entirely different. The reader may
also find these expressions reminiscent of path integrals [28], although those are usually used to propagate in time,
unlike the spatial “discretization” approach used here.

1.2 Assumptions and Definitions

Throughout this paper, the following linear, second-order evolution equation with spatially variable coefficients is
considered:

@ = o(x) (B()qz), +v(2)g + f(z,1), r€DCR, t>0, (1.2.1a)
q(x,0) = qo(x), z €D, (1.2.1b)

on different domains D with (possibly) some functions fy(t), f1(¢) prescribed at the boundary of D.

For any of the IBVPs corresponding to (1.2.1), the coefficient of the largest derivative of (1.2.1a), a(x)p(z),
is required to have a non-negative real part, i.e., Re(a(x)5(z)) > 0 or |arg(a(x)B(z))| < w/2. Problems with
sup,cp |arg(z)B(z)| < m/2 are referred to as fully dissipative, problems with |arg(z)B8(x)| = 7/2 as fully dispersive,
and problems with sup,cp |arg(z)5(z)| = 7/2 but inf,ep |arg(z)B(x)| < 7/2 as the mized dissipative-dispersive
case or as partially dissipative/dispersive. This manuscript covers the fully dissipative case for the three domains,
the whole line, half line, and finite interval, and the mized dissipative-dispersive case on the finite interval.



0=31/4 AIm(k) O=m/4

iVy (x)
Y ' Re@

—iVy (x)

Figure 1.1: The region  with the branch cuts for g(k,x).

In all cases, the solution is written as

1 @(k,l’,t) _ k2t
q(z,t) = o /BQ NG e dk, (1.2.2)
where the functions ®(k,x,t) and A(k) depend on D and the initial and boundary conditions provided. The region
Q={keC:|k|>rand n/4 <arg(k) < 3n/4}, for some r > /M, where M, = ||¥||oc, as shown in Figure 1.1.
In this section, some notation is established and the assumptions on the functions in (1.2.1) and on the boundary
functions f,,(t) (m =0, 1) that we use throughout the paper is introduced.

The argument of complex variables is defined as arg(-) € [—7/2,37/2). The domain of each problem is denoted
as D, so that D = R, D = (x;,00), and D = (x;,z,) for the whole-line, half-line, and the finite-interval problems,
respectively. The domain D is given by the open set, and the closure by D. The L'-norm over the domain D C R
is denoted by || - ||p. When used on a function of multiple variables, a supremum norm on the other variables is
implicitly assumed, e.g., for a function f(k,z) for k € Q C C and = € D,

1fllp = Sup/ |f(k,z)| dz. (1.2.3)
keQ2JD

In this way, the norms always represent fixed numbers, never functions. The notation AC(-) represents the space of
locally absolutely continuous functions on the closure of the domain, and AC!(-) represents the space of functions
that have locally absolutely continuous derivatives on the closure of the domain. Throughout the paper, the ‘big-oh’
notation O(-) and the ‘little-oh’ notation o( - ) is used, as described in [19].

Consider (1.2.1) on the finite interval z; < x < z,. Two linear, constant-coefficient boundary conditions are

specified:
fo(t) = anq(xr, t) + araqe (2, ) + b11g(zr, t) + bioqe(z,, 1), t >0, (1.2.4a)

f1(t) = ag1q(x1,t) + ageqe (21, t) + ba1q(zr, t) + booqa(z,, 1), t > 0. (1.2.4b)

The concatenated matrix of coefficients is denoted by

(a:b) = <a11 a2 bn b12)’ (1.2.5)

a21 @y bar bao

and the determinant of the 2 x 2 minor with columns at i and j [22] is denoted by (a : b); ; = det((a : b){1,2} 1i 1)
The rank of (a : b) is required to be 2 and one of the following Boundary Cases is required.

Definition 1. For the finite-interval problem, for x € D = (x,x,), define the functions

p(x) = S — and u(z) = ! (ﬂ/(x) - a/(x)), (1.2.6)

a(x)p(x) p(x) \ Blz)  a(z)
and the constants uy = u(x,) £ u(z;), and
- ((l : b)174 _ ((L : b)z’g m. — ((L : b)1’4 (a : b)213 an M. — (a : b)l 3
T R B e s B e e N

Define the following Boundary Cases:



1. (a:b)24 #0,

2. (a:b)24 =0 and m., #0,

3. (a:b)2a=0,me =0, mg =0, and (a:b)13 #0,

4. (a:b)2a=0,me =0, mg #0, and me,up — 8mg # 0.

Different assumptions are required for different classes of problem. As noted above, the PDE (1.2.1a) is separated
into fully dissipative, fully dispersive, and mized dissipative—dispersive problems, based on arg(a(x)B(z)), and the
finite-interval IBVP is separated into the four Boundary Cases 1-4. Boundary Case 4 requires additional assumptions.
The IBVPs are also separated into two classes regular and irreqular problems. Regular problems consist of the whole-
line problems, the half-line problems, and the finite-interval problems under Boundary Cases 1, 2, and the subcase
of Boundary Case 3, if (a : b)12 = 0 = (a : b)3 4. Irregular problems consist of the finite-interval Boundary Case 4
and the alternate subcase of Boundary Case 3, if (a : b)1,2 # 0 or (a : b)s 4 # 0. The assumptions required for each
type of problem are given below.

Assumption 2. The following are always assumed about the coefficient functions a, B,~:
- sup,ep |arg(a(x)f(z)| < /2,
2. a,B € AC(D),

~

3. map = infyep |a(z)B(z)| >0,
4. af, v € L*(D), and we define Mop = ||af]lco and My = ||7]so,
5. (B'/B—a'/a), v € LY(D).
For mixed dissipative—dispersive problems or for Boundary Case 4, the following is also required:
6. 8"/ —d'/a € AC(D).
For Boundary Case 4 of a mixed dissipative—dispersive problem, the following is required:
7.4/, B)B+ o fa, (B8 — o/ [a) € AC(D).
Assumption 3. The following are assumed about the inhomogeneous, initial, and boundary functions f,qo, fm:

1. For the inhomogeneous function f(z,t), f(z,-) € AC((0,T)) for each x € D, and

Iflp = sup /If(z,t)\dx<oo and  |fillp= sup /|ft<x7t>|dx<oo.
t€l0,7]J D t€l0,T]J D

2. For the initial condition qo(x), qo € L*(D).

3. For the boundary functions fum(t), m =0,1, f, € AC((0,T)) and f], € L*=((0,T)).
For partially dissipative problems or for Boundary Case 4, the following is required:

4. For the boundary functions fp,(t), m = 0,1, f,, € AC*((0,T)) and f € L=((0,T)).
For irregular, partially dissipative problems, the following is also required:

5. For the inhomogeneous function f(z,t), we assume f(zx,-) € AC*((0,T)) for each x € D, and

I fellp = sup /|ft:ct|d:z:<oo and | feellD = sup /|ftt:z:t\dx<oo

te[0,T tefo,T

Assumption 4. Forirregular, partially dissipative problems on the finite-interval, the boundary data f.,(t), m = 0,1,
and the initial condition qo(x) are both required to satisfy the boundary conditions, (1.2.4), at the origin (z,t) = (0,0),
ie.,

fo(0) = ar1qo(x1) + a12q4(x1) + b11go(2r) + brago (), (1.2.8a)

J1(0) = az1q0 (1) + a22q6 (1) + ba1go(xr) + baagy (), (1.2.8b)

which we call the compatibility conditions.



Remark 5.

Assumption 2.1 is a common necessary requirement [13]. In Chapter 4, the fully dissipative problems are
considered and in Chapter 5, the mixed dissipative—dispersive problems on the finite interval are considered.

Assumption 2.2 may seem odd considering that the derivation is through an interface problem, see Chapter 3.
Howewver, in that section, the mean value theorem is used as the limit of the number of interfaces N is taken to
infinity, and thus the continuity of our functions is assumed. This section can be amended to include piecewise
continuous functions, but makes the solution formulas even more complicated. For simplicity, the restriction to
continuous functions is made. Alternatively, distribution theory could be employed to extend the current results
to discontinuous functions.

Assumptions 2.3 and 2.4 are physically natural conditions to impose. Assumption 2.5 ensures that the solutions
are well defined. It may be possible to extend this to other LP spaces or other more general spaces with some
more work.

Assumption 2.7 (with Assumptions 2.2 and 2.6) implies that o/, 8" € AC(D).

Remark 6. Non-zero terms are denoted by underline in this remark. Further, row reduction and the fact that the
order of equations (1.2.4) is irrelevant is used. For Boundary Case:

1.

If (@ : )24 # 0, the most general form of the matriz (a : b) in (1.2.5) is

(a:b)=<a11 % by O).

a1 bar  ba

This case includes the classical Neumann and Robin boundary conditions at both boundaries. We refer to these
as Robin-type boundary conditions. In the case of constant coefficients, this is Birkhoff regular [16].

If (@ :b)24 =0 and m¢, # 0, the most general form of the matriz (a : b) in (1.2.5) is
(a . b) _ (@11 G12 0 0 0 0 b11 bﬁ ajl 0 0 0 0 0 m 0 .
’ asy 0 bA 0)’ a1 0 b21 0 )’ 0 ang b21 bﬂ ’ a21 Ag22 0 b22 ’

b b
o= (0 D) e 2l

or

0 azx bxn by wlx) — p(xy)

This case includes a Robin boundary condition on the left (or right) and a Dirichlet boundary condition on the
right (or left). It also includes the classical periodic ‘boundary conditions’. These are referred to as mixed-type
or periodic-type boundary conditions. In the case of constant coefficients, these are Birkhoff regular [16].

If (a:b)24 =0, me¢ =0, me, =0, and (a:b)1,3 # 0, the most general form of the matriz (a : b) in (1.2.5) is

gy (@ 0 0 by o (a1 0O 0 0
(0L.b)—<O 0 by 0) or (a.b)—(o — O)'

This case includes the case of the classical Dirichlet boundary conditions on both ends. These are referred to
as Dirichlet-type boundary conditions. In the case of constant coefficients, this is Birkhoff regular for the case
of Dirichlet boundary conditions (i.e., if azo = 0 = b1z or, equivalently, if (a : b)12 = 0 = (a : b)34) and is
Birkhoff irregular if age # 0 or bia # 0 (or, equivalently, if (a:b)12 # 0 or (a:b)s s #0) [106].

If (@:b)2a =0, me, =0, me, #0, and m,uy — 8my # 0, the most general form of the matriz (a : b) is

o _far 0 by O a11byy  azp b 1
(a.b)-(a21 a0 b22), where m+m—0 and a1 # Zu(xl)@mr.

This case does not include any classical boundary conditions. Instead, it is an interface problem on a circle.
In the case of constant coefficients, this is Birkhoff irregular [16].

We now introduce some common notations and definitions that the solution formulas given in Chapter 2 require.



Definition 7. For x € D, since a(x) and B(z) are continuous by Assumption 2.2, the arguments of a(x) and B(x)
are defined to be 0,(x) and 05(z), chosen to be continuous', so that

a(z) = |a(z)]e? and  f(x) = |B(x)]e” ). (1.2.9)

Using this, the branch cuts for u(x) (1.2.6), for x € D, are defined as in

() = 1 = 0a(@)+05(@) (1.2.10)
and, for x € D and k € C, define

y=1/1+ L]if) - ,/‘1 n L]if) ¢ are(1+v(2)/k%), (1.2.11)

Note that the branch cut of g(k,x) is shown in Figure 1.1. Also define n(k,z) = p(x)g(k,z), (Bp)(x) = B(x)u(zx),
and (pn)(k,z) = f(z)n(k, x),

Blz)

£ arg(1+( I)/162) 1.2.12
o(z) et (1.2.12)

(Bu)(z) = i (0s(@)=0a(@)) Jalkz) =

and /(Bn)(k,z) = \/(Bu)(x)\/a(k,z). For any function g(s) or g(z,s) for s € [0,T] (and x € D), define the linear
transform

2= t s)ek’s ds or 2 xt) = t z, )RS ds. 2.
Gll(i.0) = [ a(s)e™a Gll(#..0) = [ aa.5)e™a (1.2.13)
Denote
Q()z(x) = ?Ej;, fa(xat) = fC(kf;U;f)’ fa(kgvxvt) = g[fa](k27x7t)a (1'2'14)

and Yo (K%, 2,t) = qo(z) + fa(k2,x,t), Finally, define
DY) = Ly o€ (a,0)" 2 ia=yo <y1 <+ < Yn < Ynr1 = b}, (1.2.15)

and the functions Eéa"b)(k) =1, 5~éa’b)(k) =1, and forn > 1,

ESD () = o /D " (Ul W) exp (m%(l — (~1)") /y y n(k,€) d§> dyn, (1.2.163)

where dy, = dy1 - - - dy, and the prime denotes the derivative with respect to the second variable. Similarly, define
C(S“”’)(k) =1, S(ga’b)(k) =0, and forn>1,

a, _ 1 o (Bn)' (K, yp) . , [
O = 3 [ (H wm) (’f;(‘” J, o df) o (2T
(@b (py = L T B0 Rown)\ (g [
SR =5 /Dﬁf”b) (E (5n)(/~c,yp)> (’“;( 1) /y n(k,é“)d£> dyn. (1.2.17b)

INote that not necessarily 6, (x) = arg(a(z)), given how the range of arg(-) is defined above, because of the continuity requirement.
For instance, if a(z) = exp(iz) (and say B(z) = exp(—ixz)), Oa(z) = z # arg(a(z)) for z ¢ [—7/2,37/2).

6



2. Solution statements

2.1 The whole-line problem

Consider (1.2.1) for z € D = R and with decay at infinity,

q = a(z) (B(2)qe), +v(x)q + f(z,1), reR, t>0, (2.1.1a)
q(x,0) = qo(x), z € R, (2.1.1b)
lim ¢(z,t) =0, t>0. (2.1.1¢)

|z|— 00

Theorem 8. Under Assumptions 2 and 3, the IVP (2.1.1) has the solution

]. @(k71'7t) —k)zt
t)=— _— dk 2.1.2
dot) = 5- [ e a, (212)
where Q is shown in Figure 1.1. Here
U (k, o (K2 00,00)
O(k,x,t) 2y)a (k.Y ) dy and Zé'( (2.1.3)

\/6n k,x)\/(Bn)(k,y)
with, fory < z,

U(k,z,y) = exp ( / (k, &) df) ZZ [5( Ocy k)é’éx’oo)(k), (2.1.4)

n=0 ¢=0

and fory > x, ¥(k,z,y) = U(k,y,x). The functions (k% y,t), n(k,z), (Bn)(k,z), Séa’b)(k), and gfla’b)(k) are
defined in Definition 7. The function &(La’b)(k) is defined for b = oo and if n is even, for a = —oo. The function

c‘:}(La’b)(k) is defined for a = —oo and if n is even, for b = co
Proof. The formal derivation is given in Chapter 3, and its validity is proven in Chapters 4 and 5. O

2.1.1 Example: The partially lumped heat equation

Consider the heat equation with partial lumping analysis [20], describing the temperature T'(z,t) in a body with
minimal temperature variation in the y and z directions with ambient temperature Ty, heat transfer coefficient hg,

A

VR

Figure 2.1: Terminology for the derivation of the partially lumped heat equation [20].



thermal conductivity ko, cross-sectional area A(x), and perimeter p(z), see Figure 2.1. Assume the length L is much
greater than the width in the y and z directions. Ignoring temperature deviations in the y and z-directions, this
IBVP takes the form

1
0y = A (A(;v)@m)x —C(x)8, reR, t>0, (2.1.5a)
0(x,0) = Op(x), z € R, (2.1.5b)
lim 6O(x,t) =0, t>0. (2.1.5¢)

|z]|— 00

Here 0(x,t) = T(x,t) — T represents the difference of the temperature in the body T'(x,t) and the ambient
temperature T, the function C(z) = hop(z)/(koA(x)) > 0, and the thermal diffusivity is set to 1. Comparing
this to (2.1.1), a(z) = 1/A(z), B(z) = A(x), v(x) = —C(z), and f(z,t) = 0. Requiring the absolute continuity of
A(z) > 0, the boundedness of C(z), and the absolute integrability of A’(z)/A(z) and C’(x) guarantees Assumption 2
is satisfied. Then the solution is given as

_ i @(k,x,t) k2t
0(z,t) = 5 /{m TAG) e dk, (2.1.6)
where () is shown in Figure 1.1,
C(x)
and 14 (k?,z,t) = A(z)0g(x). The functions ®(k, z,t) and A(k) are given in (2.1.3).
2.1.2 A note about the integrability conditions.
A variable coefficient PDE in the form
Gt = a(T)Gza + b()g: + c()g, (2.1.8)
can always be written in the form of (2.1.1a) as
qt = a(x) exp ( /mo Zg)) dy) [eXp </mo 28)) dy) Qz:| ) + c(2)q, (2.1.9)
which gives
a(z) = a(x) exp (— /g: ZEZ) dy), B(x) = exp (/3: Z(z)) dy)7 and v(z) = e(z). (2.1.10)
From this,
(Bn)(k,z) 1 (5’(35) _d@) (@) ) _1 (2?)(55) _d@) (=) )
Bk 2\B@) o)  Fir@) 2\ae) e  Rrew) o GH

which is not integrable (over an infinite or semi-infinite domain) if a, b, ¢ are constants with ab # 0. This presents a
problem for the solution (2.1.2). However, making the change of variables,

q(z,t) = exp < / x ;’a(i”y)) dy) u(z,t), (2.1.12)

the PDE becomes

s = a(z)iuge + (a/(:v)b(xQ)az;;(sc)b/(x) _ Zia(ji) n C(x)) ", (2.1.13)
for which, ,
a(r) = a(z), Bx) =1, y(w) =2 (w)b(x;az;;(x)b (@) _ i(;(c;) + c(z), (2.1.14)
and
(Bn)'(k,z) 1 d(z) v ()
Guk,a) 2 ( a@) T v(x))' (2.1.15)

In the case of constant coefficients, the integrability condition, Assumption 2.5, is satisfied and the solution (2.1.2)
is well defined.



2.1.2.1 Example: The constant-coefficient, advected heat equation

Consider the constant-coefficient IBVP

qt = Qza + CQx, zeR, t>0, (2116&)
q(z,0) = qo(x), z €R, (2.1.16b)
lim g(x,t) =0, t>0. (2.1.16¢)

|z|—00
This problem is well posed for ¢ € R [13]. The PDE (2.1.16a) can be written in the form (2.1.1a) as
@ =e " (e“q),, (2.1.17)

with a(x) = e~ B(x) = e°®, and y(x) = 0. Since 8’/ — &' /a = 2¢ is not absolutely integrable over the real line,
and Assumption 2.5 is not satisfied. With the change of variables q(x,t) = e~*/2u(z, t), the IBVP (2.1.16) becomes
2

Up = Ugg — Czu, reR, >0, (2.1.18a)
u(zx,0) = e/ ?qo(z), r € R, (2.1.18b)
lim w(z,t) =0, t>0. (2.1.18c¢)

|| =00

Now a(z) =1, B(x) = 1, and y(z) = —c?/4, so that 5'/8 —a'/a =0 and v/ = 0, and Assumption 2 is satisfied. This
example shows that, although all evolution equations can be written in the form (2.1.1a), a transformation may be
needed before the integrability conditions are met and the solution expression (2.1.2) applies.

2.2 The half-line problem

Consider (1.2.1) on the half line 2 € D = (x;,00) with a Robin boundary condition at x = x; and decay at infinity,

¢ = a(z) (B(2)42), +v(@)g + f(z, 1), >, t>0, (2.2.1a)
q(z,0) = qo(x), x> T, (2.2.1b)
fo(t) = an(xlat) + a1q$(‘rlat)7 t> 07 (221C)
lim ¢(z,t) =0, t>0, (2.2.1d)
Tr—r 00
with (ao,al) 7£ (0,0)
Theorem 9. Under Assumptions 2 and 3, the IBVP (2.2.1) has the solution
1 @(k,x,t) _ k2
where € is shown in Figure 1.1. Here
S tiag (1,00) 2.9
=23 (o ) e o), (223)
and
Ok, x,t) = Bo(k, x)Fo(k*,t) + @y (k, 2, 1). (2.2.4)
The boundary term Bo(k,x) is defined by
43(x;) exp zk:fm n(k, &) d¢
Bo(k,z) = ( ) > (=1)rEf)(k), (2.2.5)

V(ﬂn)(kaxl)\/(ﬁn)(kvx) n=0

and

U (k, x,y)¢a (K y, t)
vk, x,t) / NN dy. (2.2.6)



For fully dissipative problems,
En(Kt) = Gfml(K%t),  m=0,1, (2.2.7a)

and, for partially dissipative problems,

Fn(W,6) = — 15 (F0) + GIF10,0), m=0,1. (2.2.7)

Note that we only need Fy(k?,t) for the half-line problem, but we will use Fy(k? t) in the finite-interval problem in
Section 2.53. For x; <y < x,

U(k,z,y) =4exp ( / (k, &) df) Z Z <lmka;l)s’(f_l€y)(k) _ alcw(f—lky)(ko Eém’w)(k), (2.2.8)

n=0 ¢=0
and V(k,z,y) = VU(k,y,x) for x; < x < y. The functions n(k,x), (8n)(k,x), Yo (k? 1), S,(La’b)(k), C,(La’b)(k:), and
S,ga’b)(k) are defined in Definition 7.
2.2.1 Example: The advected heat equation

Consider the advected heat equation on the half line with spatially variable thermal conductivity o?(z) > 0 and
velocity ¢(x), without forcing and with homogeneous Dirichlet boundary conditions, i.e.,

q = (0’2(.13)%5)1 — c()qy, x>0, t>0, (2.2.9a)
q(x,0) = go(z), x>0, (2.2.9D)
q(0,t) = 0, t>0, (2.2.9¢)
lim ¢(z,t) =0, t>0. (2.2.9d)
T—>00
Here 2; = 0, ag = 1 and a; = 0. Further,
(S ) > ( /z c(§) )
a(x) = ex d¢ ), r)=0c"(x)exp | — d¢ ), x) =0, 2.2.10
@ =eo ([ Gde). b =c@en (- [ Ha). @ (22.10)
f(z,t) =0, and fo(t) = 0. The absolute continuity of o(z) and boundedness of ¢(z) is required, and since

B'x)  alz)  ol2)  o*(z)

the absolute integrability of ¢’(z)/o(x) and ¢(z) are also required, so that Assumption 2 is satisfied. Note that if
o(z) is absolutely continuous and ¢’(z)/o(x) is absolutely integrable, then o(x) is bounded above and below. This
problem has the solution (2.2.2), where  is shown in Figure 1.1, n(k,z) = 1/0(x),

En(k, i 1)nEL2) (k). (2.2.12)
Since Bo(k x t) =0 and w( 'Y, ) - QO(y)v
_ [T 117 <€) Y(k, 2, y)q0(y)
O(k,x,t) = /0 exp <2 /y 2(¢) df) ) () dy, (2.2.13)
and for 0 < y < xz,
kn(k, 0) W (k, 2, ) = dexp (k I (j;) S SO (1) 1), (2.2.14)

and ¥(k,z,y) = V(k,y,z) for 0 < z < y.
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2.3 The finite-interval problem

Theorem 10. Consider (1.2.1) for x € D = (x;,x,) and with the general two-point boundary condition (1.2.4),

g = o(x) (B(2)qz), +v(x)q + f(x,1), x € (z,z,), t>0, (2.3.1a)
q(z,0) = go(x), x € (x, ), (2.3.1b)
fo(t) = a11q(w1,t) + a12q. (21, ) + br1g(2r, t) + b12qe (20, 1), t>0, (2.3.1c)
f1(t) = a21q(21,t) + a22qu (1, t) + b21q(2r, t) + b22¢u (T, ), t>0. (2.3.1d)
Under Assumptions 2 and 3, the IBVP (2.5.1) has the solution
1 @(k7x,t) _th
where ) is shown in Figure 1.1. Define
=(k) = exp (zk/ “n(k, €) dg), (2.3.3)
xy
where n(k,x) is defined in Definition 7. Then
A(k) = 2i 2(k) (a(k) +) " en(k)Cim) (k) + an StEvwr) (| )), (2.3.4)
n=0
with
ak) = BE@: Dzt Bl)(a: by (2.3.5)
k‘\/(ﬂl‘l)(k,%ﬂ\/(ﬁﬂ)(k‘,l‘r)
(a:b)14 (a:b)23
w(k)=(=1)" = — = 2.3.5b
(k) = (D" 20~ Ttk 20) (2:3.5b)
- n . (a : b)1’3
Sn(k) = ( 1) (a : b)2,4 + an(k,zl)n(k,zr)' (2.3.5(3)
The numerator of (2.3.2) is
Ok, x,t) = Bo(k, x)Fo(k*,t) + By (k,2) Fy (k*,t) + @y (k, 2, 1), (2.3.6a)
where
ok, 2, 1) Uk, 7, y)Ya (1) (2.3.6b)

¢ Bk, 2)y/ G (. p)

The functions 1 (k?, x,t) and (8n)(k,z) are deﬁned in Definition 7, F,(k%,t) is defined in (2.2.7), and the boundary
terms Bo(k,x) and By (k,x) are given by

) ) = (—1) 4E(k) 5(3%) G5 - 7«1Z a (1, x)
By =20 \/(Bn)(k’x){\/(ﬂn)(k,xr)[ Ttz 25 )+ ZZC ]

B-TL' b] o n o
wn()@,xl) lkn(k,lmzs‘ ( +b22 Cs >>H, (2.3.6¢)

n=0

with j=1,2. Further, for x; <y < x < x,

n

1,1 T, Ty a:b R = 1,0 z,2,
V(k,z,y) = 4E(k) { a:b) 2422 eCT(L leJ) C( )( k) + k;Qn(l(c xl))nl(B ) Z S'I(L léJ)( )SLS )(k)

k,x,

n=0 ¢=0 n=0 (=0
) ZZ 58(@ Y) Clg%lr)(k) a’ kb;3 ZZC(JCL \Y) S(ﬂﬂ Tr) ( )
n=0 =0 r) n=0 (=0
B B(ar)(a:b)1,2 - SW.) (L } Ta
kv/(B )(k,xl)\/(ﬂn)(k,xr); Sy (237
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and, forx; <z <y <z,

x,T T, b =& x,T Z,
U(k,z,y) = 42(k) { (a: b24ZZ niel s (ke )(k)+k2 (k“xl 1233 3 STSEP (k)sE (k)
n=0 ¢=0 7" n=0 ¢=0
(a:0)14 =1 tgea) (o wen) g (@3 0)23 (r1:0) (1) S0550) (1
4 —1)£Sm) ()l () — Clm) (k) S
ku(k, 1) nzoe:o( S ReE Fn(k, ) r;% w
Blar)(a: D)z =
- SEY) (k) 3. (2.3.7b)
k/(Bn) (k, 1)/ (Bn) (K, ) ,;)

Note that ¥(k,z,y) # ¥(k,y,x) unless B(x,)(a : b)12 = B(x)(a : b)s.a. The functions C,(za’b)(k) and Sﬁa’b)(k) are
defined in (1.2.17).
2.3.1 Example: The heat equation with homogeneous, Dirichlet boundary conditions

Consider the heat equation on the finite interval with spatially varying thermal conductivity o?(x) without forcing
and with homogeneous Dirichlet boundary conditions, i.e.,

@ = (0%(2)qz) z e (0,1), t>0, (2.3.8a)
q(z,0) = qo(z), x € (0,1), (2.3.8b)
q(0,t) =0, t>0, (2.3.8¢)
q(1,t) =0, t > 0. (2.3.8d)

We let 2; =0, z, = 1, a(x) =1, B(z) = o?(x), v(z) =0, f(z,t) =0, fm(t) =0 (m =0,1), and

(a:b)z((l) - 8) (2.3.9)

Since (@ : b)oq =0, me, =0, me, =0, and (a: b)1,3 =1 # 0, this is an example of the regular version of Boundary
Case 3. Absolute continuity of o(z), integrability of go(z), and absolutely integrability of o’(z)/c(x) are required.
This has the solution

- i (I)(k,ili) k2
q(z,t) = o /aQ AG) e *tdk, (2.3.10)
where 2 is shown in Figure 1.1. Since n(k,z) = 1/0(z), a(k) =0, ¢, (k) =0, and s,,(k) = o(0)o(1)/k?, then
K2A(K) M A = o
0 o(1) exp (zk/o U(f)) nZ:OSn (k), (2.3.11)

and since By(k,z) = By (k,z) = 0 and ¥ (k?,y,t) = qo(y), we have
LUk, 2 y)a0(y)
B(k,z)= | — DD g, (2.3.12)
o Vo(z)o(y)
where, for 0 <y <z <1,

k20 (k
# ZZS(O’” k)SY (k). (2.3.13)

40( n=0 ¢=0

and ¥(k,z,y) = ¥(k,y,z) for 0 < z <y < 1. This is the same solution given in [9]. It reduces to the solution given
in [13] for constant o(z).

2.3.2 Example: The CGL equation with periodic boundary conditions
The complex Ginzburg-Landau (CGL) equation is the nonlinear PDE

Ay = (1 +ia(x))Age + A — (14 ib(2))| AP A, (2.3.14)
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where a, b are real functions of z. In the special case a(x) = 0 = b(x), (2.3.14) is the real Ginzburg-Landau equation.
If a(x),b(z) — oo, (2.3.14) becomes the Nonlinear Schrédinger (NLS) equation [2]. Consider the linearized (about
A =0), CGL equation with periodic boundary conditions:

A = (14 ia(z))Ags + A, x€(0,1), t>0, (2.3.15a)
A(z,0) = Ap(x), x € (0,1), (2.3.15D)
A(0,8) = A(1, 1), t>0, (2.3.15¢)
A,(0,1) = A, (1,1), t>0. (2.3.15d)

Here ; =0, z, = 1, a(z) = 1 +ia(x), f(z) =1, v(z) =1, f(x,t) =0, fo(t) =0= fi1(t), and
(a:b)= ((1) ? _01 01>. (2.3.16)

Assuming a(x) € R and a € AC(D) satisfies Assumption 2. Here,
o~ & arctan(a(z)) 1

ulx) = W and g(k) =4/1+ w2 (2.3.17)

and n(k,z) = p(x)g(k), where the square root in g(k) is defined in (1.2.11). Since (a : b)24 = 0 and m,, # 0, this is
a Boundary Case 2 example, which is regular. For simplicity, assume that a(z) is periodic, i.e., a(0) = a(1). This
problem has the solution .
1 O(k
qlz,t) = —— . 2) e g (2.3.18)
271 a0 A(kj)

where we define A(k) = kn(k,0)Z(—k)A(k)/(4i) and ®(k,x) = —kn(k,0)Z(—k)®(k,2)/4, and where Q is shown
in Figure 1.1. Here, a(k) = 2/(kn( ,0)), (k) = —(1 4+ (=1)™)/(kn(k,0)), sn(k) = 0, and since By(k,z,t) = 0,
Bi(k,z,t) = 0 and Zﬁa(k z,t) = Ao(z )/(1+Za’( ))s

) _
Z cOVk)  and  B(k,x) = / Uk, 2, y)Ao(y) dy. (2.3.19)
o (1+ia

Define W (k, z,y) = —kn(k,0)2(—k)¥(k,z)/4,

Uk, zy) = DS (~DSOY (k)™ (k) + ZZC(O’” D)+ 88 (k), (2.3.20)
n=0 ¢=0 n=0 ¢=0 n=0

for 0 <y <z <1,and U(k,z,y) = U(k,y,z) for 0 <z <y < 1.

2.3.3 Sturm-Liouville Problems: Eigenvalues and Eigenfunctions

Theorem 11. The Sturm-Liouville problem

a(z) (B)y) +v(z)y = My, (2.3.21)
with boundary conditions
any(zr) + arny'(x1) + by (x,) + bray' () =0, (2.3.22a)
any(xr) + agey' (21) + bary(w,) + baoy'(2,) = 0, (2.3.22D)
has the eigenfunctions
X (z Cm (K ) S5 (), 2.3.23
corresponding to the eigenvalues \,, = —k2,, where {k, }°°_, are the zeros of A(k:) (2.8.4). Here,
arzkm(Km, 1)  biaRm(km, )
Crp = — - SEee) (k) D@ (k,,),  (2.3.24a)
\/(ﬁn)(’imwrl) \/(ﬁﬂ Kmaxr 7;) Bn "imyxr) Z
aiy blZHmn(/‘ima 137«)
Sy = + cenen) TN ()RS (K ). (2.3.24b)
" VB () mn ) (Foms 1) ZO (B) (o ) ; "
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Proof. Using (4.2.1) in (2.3.23) gives that the eigenfunctions solve the eigenvalue equation (2.3.21). Inserting (2.3.23)
into the boundary conditions (2.3.22a) gives

(luXm(l'l) =+ a12X7In($l) + blle(l‘T) + b12X7In(.T,«) =CnSm — SnCm = 0. (2325)
For (2.3.22b),

angm(:zzl) + QQQX;H(SCZ) + b21X (.Z‘T) + bQQX/ (17 )
bgglﬂi n Hm ZC,»
V22hm P\ vm s L) 2 : ns(xl fr) )]

asy
C(Il fr) ’m
IO W Z s

m my b m my T
az2kmn(K 931)+ Zsz,zr Kom) M el ( ,.;m)]. (2.3.26)

\/(ﬁn)(ﬁmaml \/ﬁn Kmvxr n=0 vV (6“ Hma-rr) n—O

Expanding this,

+ Sm

an X (21) + a2 X, (21) 4 bor X (2) + b2 X, ()

(a:b)10km  (a:b)34km |~ ( )(k ( ( )(k ( ) (K
— i) + ) YLC PR IS C 1[,90, TLS T, Ty S LTy
B B |2V Z Z Z
N K20 (Fm, TN (K, Tr) li 60 (K)CE) (1) + Zs S (1) | (2.3.27)
V(B0 (km, 20) /(B0 (Ko 27) | =5
Using the identity
1= Z( nc thr) Z C(»Lz,w) Z ns(m,m) )Z‘S;T(lwz,acr)(k)7 (2.3.28)
n=0 n=0

n (2.3.27), this becomes

K2 (K, 20K, )

vV (B1) (s, 1)/ (B1) (6, 1)

angm(xl) + GQQX;TL(:EI) + bngm(.’Er) + bQQX;n(fL'T) = A(Hm) = 0, (2329)

and the second boundary condition (2.3.22b) is satisfied.
To prove (2.3.28), define the right-hand side as ¢; and rewrite it as a Cauchy product, obtaining

¢ = Z Z(—l)e [Clgrz,zr)(k)c(:m;r (k )+Séml7mr)(k)87(f_léxr)(k)]~ (2.3.30)

n=0 (=0
Letting ¢ — n — ¢ in the inner sum, it is concluded that

SO0 e e () + S (RS ()] =0, (2.3.31)
=0

for odd n. The n =0 term is 1. The n > 2 even terms are 0 and thus gives ¢; = 1. For n = 2, we show

Zr Ty Zrp Z1 Z2 Ly
O:/ dzl/ dzy cos (/ —/ —l—/ —/ v(k,§) d§)
x] Z1 x| Xy 21 z2
Ty Ty Y1 Ty z1 Ty
_/ dyl/ dz cos (/ —/ —/ —|—/ I/(k,f)d€>
xy zy xy Y1 Ty 21
Ty Ty Y1 Y2 Ty Ty
+/ dyl/ dys cos </ —/ +/ —/ v(k,§) df). (2.3.32)
z Y1 T Y1 Y2 ]

Let I; denote the three integrals above, in order. Since the first and the last term are equal and equal to
Ty Ty Y2
L=I3= / diyy dys cos (2/ v(k,§) d§>, (2.3.33)
Z1 Y1 Y1
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and since the second term is

_ /:T dyy /: dz1 cos (2 /:1 v(k,§) df)
_/: " /: dn cos (2/y v(k, ) dg) _/; dy, /y“" dz cos <2/y v(k,€) dé)

Tr Tr Y1
= —2/ dir dz cos (2/ v(k, &) df), (2.3.34)
£/ Y1 21

and so the n = 2 term is 0. The other n terms are similar. O

Comparing to Péschel and Trubowitz [21] (a(x) = B(z) = 1, v(z) = —q(x), A = k?), it must be, by uniqueness,

that
(z,k?,q =4 / g (0 x) and x, k2, E S(O ”f) 2.3.35
Ya( q) = A % %k 2) ( )

where n(k,z) = \/1 — q(z)/k2.

2.3.3.1 Example: Eigenvalues for the CGL equation with periodic boundary conditions

We revisit the complex Ginzburg-Landau equation described in Section 2.3.2; setting a(z) = xsin(27z). The asso-
ciated eigenvalue problem is of the form

(L4ia(x)y" +y =Xy,  y(0)=y(1), ¥(0)=y'(1). (2.3.36)

The eigenvalues \,, = —x2, are related to the zeroes ki, (m =0,1,2,...) of A(k) (2.3.19). Since A(k) is even in k,
if Ky, is a root, so is —kK,y, and each gives rise to the same eigenvalue. Since g(+i) = 0, and

0= L (T o ok ([ 00) = e (20)) =0 s

then A(4i) = 0, and ko = 4 (and —i) is an exact double root of A(k), and A\g = —xZ = 1 is an exact eigenvalue of
the problem, which can be confirmed directly (with the constant eigenfunction). Define

(Bn)'(k,z)  p/(x) 27wz cos(2mx) + sin(27x)
(Bn)(k,z)  p(z) 2i — 2x sin(27x) '

m(z) = /0 ’ p(€)dé  and  n(y) = (2.3.38)

Truncate (2.3.19) at order n = N and denote as An(k). Denoting k& = kg(k), the zeroth-order approximations of
the roots of A(k) are

dm?m? — m(1)?
m(1) ’
As in the case kg = =i, these approximations are double roots. However, the actual eigenvalues are simple roots

that are near these points. The next-order approximations H%) are the roots of

Ag(k) =1 — cos (m(1)k) = 0 = kO =+

m=1,2,3,.... (2.3.39)

0=A(k) =1—cos(m(1)k) — "V (k). (2.3.40)
In order to compute Céo’l)(k:), we use an interpolation function for m(x), and rewrite
n Yp+1 n
B0 [ (k€ dg = ka(k) D0(-1) (m{gpen) — () = ( - 22 1Py, ) (2.3.41)
p=0 Yp p=0

Then we use (1.2.17a) to compute the A; (k). We use a root finding algorithm to find the roots, using that

ocevm =g [ (H n(yp)) (& <m<1) - 22(—1)%@@)) (m(l) - 22(—1>Pm<yp>> 4y

p=0 p=0
(2.3.42)

The results are shown in Table 2.1.
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Method: )\1 )\2 )\3 )\4
chebfun —41.585 + 3.33577 | —41.689 + 7.71717 | —170.71 +19.919¢ | —170.62 + 23.463:
NDEigenvalues | —41.585 + 3.33647 | —41.689 4 7.7167¢ | —170.73 4+ 19.929; | —170.65 + 23.464¢

Hill’s Method
FindRoot: Ay (k)
FindRoot: A;(k)
FindRoot: Ay (k)

—41.585 + 3.3358¢
—42.012 + 5.3928¢
—41.595 + 3.3501¢
—41.585 + 3.3356¢

—41.689 + 7.71711%
—42.012 + 5.3928:
—41.671 + 7.7097¢
—41.689 + 7.71721

—170.71 + 19.919¢
—171.05 + 21.571%
—170.73 + 19.949:
—170.70 + 19.916¢

—170.62 + 23.4631
—171.05 + 21.571%
—170.60 + 23.434¢
—170.63 + 23.466¢

Table 2.1: Eigenvalues of the system (2.3.21) calculated using MATLAB’s chebfun package, Mathematica’s NDEigen-
values, Hill’'s method [4], and a root finding algorithm on Ay (k) for N =0,1,2.
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3. Derivations

In this chapter, the solution expressions for the finite-interval, half-line, and whole-line IBVPs, in that order, are
derived. The solution for the finite-interval problem for x € (z;,x,) is first derived through an interface problem.
The solution to the half-line problem (for z € (z;,00)) is obtained from the solution to the finite-interval problem by
taking the limit as x, — oco. Similarly, the solution to the whole-line problem is obtained from the solution of the
half-line problem by taking the limit as z; — —oc.

It is possible to derive the solutions for the whole-line and half-line problems in the same way as for the finite-
interval, i.e., through an interface problem. The key difference is a non-uniform partition is required. The solutions
(2.1.2) and (2.2.2) are the same.

3.1 The finite-interval problem

To consider the finite-interval IBVP with variable coefficients,

¢ = o(x) (B(2)qz), +7v(x)q + f(x,1), x € (z,2,), t>0, (3.1.1a)

q(z,0) = qo(z), x € (x,2,), (3.1.1b)

fo(t) = a11q(zi,t) + a12q. (z1, ) + br1g(xy, t) + br2ge (zr, t), t>0, (3.1.1c)

fi(t) = a21q(x1, t) + aseqq(xr, t) + barg(xr, t) + boogs (xr, t), t>0. (3.1.1d)

form a partition {z;, j =0,..., N} of the interval [z;, z,], see Figure 3.1. For simplicity, assume that the partition
is evenly spaced, i.e., Ax; = Az = (2, —2;)/N for j =1,..., N, although this assumption may be relaxed easily.
On each subinterval, approximate the evolution equation (3.1.1a) with constant-coefficients o, 85, v;, 7 =1,..., N
for a(z), B(z), and y(x) (such that a; — a(x;), etc., in the limit as N — oo), with the initial condition restricted
to the subinterval. At each interface x;, j =1,..., N — 1, continuity of the solution and a jump discontinuity on the

derivative, corresponding to the evolution equation, are imposed. This yields the following interface problem:

0t = ;B4 + 7549 + f(x,1), T € (zj-1,25), t>0, j=1,...,N, (3.1.2a)
D (z,0) = qo(x), x€ (xj_1,25), t>0, j=1,...,N, (3.1.2b)
qD(xj,t) = ¢V (z;,1), t>0, j=1,...,N—1, (3.1.2¢)
B (x5,t) = Bjr1q¥ Y (x,1), t>0, j=1,...,N—1, (3.1.2d)
* t
T
1 2 N
ay, @y, an,
B, B, B,
Y1 Y2 YN ¥
x0=x1Ax1 X1 Axy X2 - XN AxNxN:x,
g g0 g6 wog Y g

Figure 3.1: A partition of the finite interval [z;, z,].
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with the boundary conditions

auq( )(331 t)+ auq( )( t) + bnq(N) (@, t) + bmqg(gN) (zr,t) = fo(t), t>0, (3.1.3a)
219" (21, t) + az2q8M (21, 8) + b21g™N) (@, t) + boog N (1, t) = f1 (1), t>0. (3.1.3b)

The jump discontinuity in the derivative (3.1.2d) can be derived by dividing the PDE (3.1.1a) by «(x) and integrating
over a small interval containing z;. Following [5, 6, 23, 24, 25, 26], the local relations are

(efivarwjtq(j)(m?t))t — (efmwwjt (qgj)(m,t) + inq(j)(x,t)»z et £ ), (3.1.4)

forz € (xj_1,2), 1 <j < N, and wj(k) = a;B;x*—;. This is equivalent to (3.1.2a), seen by differentiating (3.1.4).
Define the “transforms”

~(7 1 i —i .
W0 = [ e antw) v =1 N, (3.1.50)
J Jxj—1
, 1 [% , .
¢ (k1) = — / e gV (y, 1) dy, j=1,...,N, (3.1.5b)
a] Tj-1
_ 1 t T )
fik,t) = 07/ ds/ e~ kv tWs £y 5) dy, j=1,...,N, (3.1.5¢)
J
(W, 1) / eV fu(s) ds, m=0,1, (3.1.5d)
g (W, t) = / eoqld) (x5, 5) ds, j=0,...,N, m=0,1, (3.1.5¢)
with qy(n;(ml, t) = qg?p(ml, t), for consistency at j = 0. Using the interface conditions (3.1.2¢) and (3.1.2d),
g (W t) = / ViUt (a5, 5)ds, g (W 6”1 / WegUtD (a5, 5)ds,  j=0,...,N—1, (3..6)
0
where 8y = (1 is again defined for consistency. From the boundary conditions (3.1.3),
angd” (k2,) + a12g!” (K2, 8) + bi1gs (K2, 1) + bragt™ (K2, 1) = Fy(k2, 1), (3.1.7a)
02198 (K2,1) + a2203" (K, ) + bar g5 (K2, ) + baagl ™ (K, 1) = Fy(k?, 1). (3.1.7b)

Integrating the local relations (3.1.4) over D; = (xj_1,x;) % (0,T") gives

Oéjfj(l-i,T) = /OT dt /:il dx [(eii””wftq(j))t — ;65 (efim+w-”t (qg(cj) + i/ﬁq(j)))J, j=1,...,N. (3.1.8)

Using Green’s theorem,

zj _ . . T _ .
a;fi(k,T) = —e“’jT/ eﬂmq(])(m, T)dx + cje "% / ewit (ﬂqu)(xj, t) + iﬁjmq(J)(xj, t)) dt
T 1 0

Ji—

+ /wj e gy(z) dr — aje” I /OT e (5qu(cj)(xj—l’t) + iﬂj'{q(j)(xj_l’t)) at, (3-1.9)
Tj-1
for j =1,...,N. These are rewritten as global relations using (3.1.5),
e 40 (1) = 45 (8) = Fy (1) + e (B0 (g 1) + Byl (. 1))
e (Biag! ™ wy,0) + im0 (w.1)), j=L.N.o (3110)

As in [17, 24, 26], it is convenient for the first arguments of g(])(

independent variable s in the jth equation as

wj,t) to be identical. To this end, transform the

k
1+

VB k’Q’
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K =v;(k) = j=1,...,N. (3.1.11)



The resulting branch cuts in the solution are defined in Section 1.2 and proven to be correct in Chapters 4 and 5.
Since y(x) is assumed to be bounded, see Assumption 2.4, there are no branch cuts for |k| > /M, for k € 2 where
M, = ||7|loc < co. Until the limit is taken, the k dependence of v;(k) is suppressed. The global relations (3.1.10)
become

e tq(j)(’/jat) = Q(()j) (vj) — f](’/], t) + e it (6 9(])(]‘3 1)+ ZﬂJVJgO (kQ ))
— W% (ﬁ g9V 21 + B8 (kQ,t)>, j=1,...,N. (3.1.12)

These relations are valid for k& € C, since the domains are bounded. Letting k — —k, (and v; — —v;), gives 2N
equations, along with (3.1.7) for 2N + 2 unknowns. This linear system of equations may be written in matrix form
as

AN () Xy (K23 t) = Y (b, t) — " 1 Vn (K, 1), (3.1.13)
where
.
X (k2 1) = (gg°>(k2,t), a2, Bog @ (K21, ,ﬁNg§N>(k2,t)), (3.1.14a)
T
Viv(k,t) = (0,067 1), o), 687 (=), 68 (<), 0)
- ~ - T
- (—Fo(kz,t% fivi,t),ooo s In(uns t), fi(=vi,t), .o v (—vws B, Fl(k2,t)), (3.1.14b)
T
yN(k7t) = (07 q(l) (Vlat) PR 7(j(N) (VN7t) ) q(l) (71/1715) P 7(j(N) (7VN7t) 70)7 (3114C)
and Ay (k) is the (2N + 2) x (2N + 2) matrix
Lo 0 0 bu:aw/f 0 oo 0 bi2/Bn
AN Ny1(k) : By n+1(k)
An(k) = |- e ) (3.1.15)
AN N+1(=F) : By, n+1(=Fk)
e TTERRNN. R T AR LRI R
Here, Ax n+1(k) is the N x (N + 1) matrix
iﬁlyle_iylmo —iﬁlule_“’lrl 0 s 0
Annta(k) = : : : (3.1.16)
0 0 iBNVNe_iVNwN*I —iﬁNVNe_iuNxN

and By y41(k) is the N x (N + 1) matrix

—iizo i1 0 R 0

Bn,nt1(k) = : : : (3.1.17)

0 .. 0 e—iuNzN_l _e—il/NzN

e

Since the contribution involving Yy (k,t) along the contour 9, see Figure 1.1, is zero [26], it suffices to solve

An(k)Xn (k% t) = Yn(k,t) for the unknown functions g (k2,t). This is further justified in Chapters 4 and 5. Using
Cramer’s rule,

det (AF (k)
det (An(F)
where the matrix A%) (k) is An (k) with the jth column replaced by Yy (k,t). If we multiply this equation by ke
and integrate over 99, where Q = {k € C: |k| > r and 7/4 < arg(k) < 37/4} for some r > /M., see Figure 1.1,
the time “transform” g(j 1)(k2 t) (3.1.5¢) can be inverted [13] to find

XD w2 t) = g¢ V(K1) = =1,...,N+1, (3.1.18)

—k2t

. 1 [ det(AP (k) e )
Dz, 1, 8) = — — N Y pe R gk =1,...,N+1. 1.1
q (‘TJ 1 ) in AQ det(AN(kJ)) € ) J ) ) + (3 9)
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This inversion can be done formally by inserting (3.1.5e) into (3.1.18), using the continuity condition (3.1.2¢),
multiplying by ke*kr“t, integrating over 95, switching the order of integration, using the transformation k2 = iz, and
using the integral representation

1 [~ .

Sz —y)=— / et @Y f(2) dz. (3.1.20)

21 J_
Equation (3.1.19) gives the solution at the interface boundary points, which is all that is needed to consider the limit
q(x,t) = limy o ¢ (2;_1,t), where the N dependence of ¢¥)(z,_1,t) is implicit. Alternatively, the full solution of
the interface problem can be computed as in [5, 24, 25, 26] and the limit of the full solution can be taken. This gives

the same result.
Define

Dy (k) = Z»N-HM (Ai_[l 1 >, (3.1.21)

T
1%40%
1YN p=1 Ap

with
Af; = (BV)p1 + (=1)frttrn (Bv)p and A;:)t = (BV)p+1 £ (BV)p, (3.1.22)

where £ € {0,1}", so that £,, £,+1 € {0,1} and (Bv); = Bjv;. Note that Af, = A} when £, = £, and Aﬁ =A,
when ¢, # £, 1. For N <8, it can be explicitly verified using Mathematica that

N-1
D) = 2i {BN(a :b)12+ Bi(a:b)s e/ (Br)N <H 2(51/)p> +(a: b)27465\1,7’{v)(k) 4 w@%é“(k)

A+

V(BY)1V/(Br)n V(BY)1 e » 1224
PRUEL):ES e (k) — (o:Bas E“'Séjév)(k)}, (3.1.23)
%1 UN

where (a : b); ; = det((a : b){1,23,1:,51) is the determinant of the minor of maximal size with columns at i and j [22]
of the concatenated matrix (a : b) (1.2.5). Define

. s—1 AZ s
k)= D (- (HAi>008<Z(1>fpvax>v (3.1.24a)

£c{0,1}° 7L p=q p=q
£,=0

SN = > (=DM (Hf) sin (i(—D%m), (3.1.24b)

ee{0,1}s—at+t P=q p=q
£,=0

where A = 0,1. This result is not proven here for general N. Its justification follows indirectly from the proofs in
Chapters 4 and 5. Using Taylor series, it can be shown that

N—-1 N—1
11 Q(f?P — exp <Z (In(2(8v)p) — ln(A+))> SRVACOToN O(Az), (3.1.25)

p=1 ? (BV)N

as N — oo and Az — 0T. Similarly,

Ay LK)\ oae?)  ana T 20 - VO R) oy,
A2 Bk +0((Ax)?) d g T i +0(Ax), (3.1.26)

as {,m,N — oo, Az — 07, and where the prime denotes the derivative with respect to the second variable, and
n(k,z), (Bn)(k,z) are defined in Definition 7. Note that to use (3.1.26), it is assumed that (8n)(k,z) is a smooth
function of z. If this function has a countable number of discontinuities, it is possible to proceed, but the jumps
would need to be accounted for.

Consider (3.1.23) as N — oo (i.e., Az — 01). To this end, break up the sum in (3.1.24a) by the number of times
n the entries of the vector £ = (¢, ..., ) switch from 0 to 1 or from 1 to 0, e.g., (0,...,0,1,...,1) switches once, so
n = 1. Sum over where the possible switches y1, ..., y,, of each order n can occur i.e., g—1 < y; < ya < -+ - < Y, < 8.
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At the location of each switch, Af;/AJr A /A, whereas AZ/AJr = 1 otherwise. Defining yo = ¢ — 1 and y,+1 = s,
this gives

) n A— n Yp+1
s n Yp
e § : Y (=1)* (H A ) cos [ Y (-1)P > Az, (3.1.27)

=0y <y) < <Yn <Yni1 p=1 p=0 r=yp+1

Using (3.1.26), this yields a sum of n-dimensional Riemann sums which limit to n-dimensional integrals, giving

e (k) = D (=1rmefem) (k) + O(Aw), (3.1.28a)

n=0

where CT(La’b)(k‘) is defined in (1.2.17a). Similarly, the limit of (3.1.24b) is

Gngf\)(k) _ Z(—l)A"S,(f‘?’ZS)(k) +0(Ax), (3.1.28b)
n=0

obtained the same way, with S,(La’b)(k) defined in (1.2.17b). No more rigor is required at this point, as the results are
proven to be solutions in Chapters 4 and 5 under less restrictive assumptions needed to justify these steps.
Using (3.1.25) and (3.1.28) in (3.1.23), we have that

A(k) = lim Z(k)Dy(k), (3.1.29)

N—00

gives (2.3.4). For the numerator of (3.1.19), similar to Dy (k) in (3.1.21), define

2det(AY (k) (35 1
En(k,j,t) = iN 220N ) —, 3.1.30
ko) = =TT (3.1.30)
and use a cofactor expansion along the jth column of A%) (k), so that
N+1 ) N+1 )
Ex(k.j.t)= Y Y MG (k) + S v NN ), (3.1.31)
m=1 m=1

where MJ(Vm’j)(k) are cofactors of the matrix A(])( k), scaled by the same factor as in (3.1.30). For a fixed = with
r=ua; =jAx=j/N,let

Bo(k,x) = kZ(k) NhinooMﬁj)(k) and  By(k,z) = k2(k) lim MY (k). (3.1.32)

N—o0
Since, for m =1,...,2N,

e WmITm

Y = G5 W) = Fon (s ) = (%(xm) - /0 F(@m, s)ets ds) Az +0((A2)), (3.1.33)

A

so that, form=1,..., N,

— iV @ 4, () k2 t iV T ), () k2 t
e Q)Z}N ( ) )AJ?-FO((A.T)Q) and Y]s[m+N+1) — ¢ ’IZ)N ( ) )

Y(m+1) _
N (67 (7%

Az +0((Az)?), (3.1.34)

which define {7 (k2,¢). Then

O(k,z,t) = lim kE(k)En(k,j,t), (3.1.35)
N—00
which gives (2.3.6a). Here
(m) k‘2 ) . ) .
y(k,z,t) = lim kE(k Z Yy (K1) (e*W"MM}Vm“’”(k) +e“’mgﬂmM}Vm+N“J>(k)) Az, (3.1.36)
N—o00 ’I’TL

m=1
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where y = 2, = mAx = m/N is kept fixed. This gives (2.3.6b), after defining

Wk, y) = Jim W™ (k) = Jim E(6)y/(Br)my/ (Bv); (oo M) (k) + e N (1) )

N—o00
(3.1.37a)
which defines \Ilg\j/m) (k), and defining
(m) k.2 t t
Va(k?,y,t) = lim - (K1) _ 00(®) _/ 1W,5) g2 g (3.1.37b)
N—oc0 (0779

For the boundary term By(k,z), similar to (3.1.23), it can be explicitly verified using Mathematica for N < 8
and for 1 =m < j < N that

(1.4) 4 Bn T 208 a21 ~(1,j-1) (1,j-1)
= e {%(6%1(;7111 )[ N0 o)

and using (3.1.26), (3.1.28a), (3.1.28b), and (3.1.32), this yields (2.3.6¢) for j = 2. Similarly, for the other boundary
term B (k, x), taking the limit of MJ(\?NHJ)(kJ) gives (2.3.6¢) for j = 1.
For the remaining terms, for 1 < m < j < N, it can be verified that

W (k) = az(k) L (H 2(5”’1’) - (D 0w + M G e )

(BY)m Ay VN
+ g (e ) - (226 (e 1
_ (a:b)128n \/W V (BY)m (ﬁ (By)p> (Bv)n s (Bv)p GlmtLi- 1)(k)
VBV BN VB VB o A ) VB \ ot A )
(3.1.39)

Taking the limit using (3.1.26), (3.1.28a), and (3.1.28b), as before letting z; — « and z,, — y, gives that for
Tp < y<zx < Ty,

U (k,z,y) = 4= (k) {—(a :b)2.4 <Z c,gw) <Z(—1)”C,§W>> + k2n(l(ca;;ll;211<z - (Z sflwlvy)) (Z s,gw@r))

n=0 n=0 n=0 n=0
a’ kb;‘l (Z S(.Lh!/)) <Z( )nc(x, IT)> (ZC J:hy)) (i 87(11'79%)>
l n=0 n=0 n=0
(a:b)128(z (y,7)
_ S 3.1.40
k/(Bn)(k, z1)+/( B (k,z,) ;) } ( )

which may be rewritten as (2.3.7a). Similar computations for z; < x < y < z,. yields (2.3.7b). Finally,

q(z,t) = lim 1 det(A (k) kE(k)En(k,j,t) _

1 2
TN ke R dE = i —/ T e R gk 141
N—o00 40 o0 det(A (k)) ¢ Ngnoc 2m o0 E(k)DN(k) ‘ ’ (3 )
which gives (2.3.2).

3.2 The half-line problem
The solution of the half-line problem is obtained by taking the limit as x, — 0o of the solution of the finite-interval

problem (2.3.1) with f;(¢) = 0 and
ap a1 0 O
(a:b)= (00 01 . 0). (3.2.1)
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In this limit, (2.3.2) becomes (2.2.2) with the same , shown in Figure 1.1. This process is detailed below.
Using (3.2.1), the coefficients become a(k) = 0, ¢, (k) = —a1/(kn(k,z,)), and s,(k) = ao/(K*n(k, z)n(k, 2,)).
Defining A(k) = kn(k, z,)A(k), (2.3.4) becomes

A(k) = 2E(k) {]m(‘;:xl) ;s;ww)(k) —a Z_:OC,(;W”T)(k)}. (3.2.2)

It follows that Bi(k,x) =0, and for j = 2, (2.3.6¢) becomes

Bo(k,z) = kn(k, z,)Bo(k,z) = Bx)=(k ) isﬁm(k). (3.2.3)

\/ﬁﬂ kxl\/ n=0

For x; <y <z <z, (2.3.7a) gives

Uk, z,y) = kn(k,z,)¥(k,z,) = {knk - ZZS(“” K)SEP (k) — ay ZZSW” k)CY (K )}

n=0 (=0 n=0 £=0
) ) (3:2.4)
and, for x; < z <y < x, V(k,z,y) = U(k,y,2). From (2.3.6a),
B(k,x,t) = kn(k, z,)®(k, z,t) = Bo(k, z) + Dy (k, z, 1), (3.2.5)
where - )
o W (e} 9 )
By (b, 1) = knlh, 20y (ha,t) = [ b2 0Bl ) (3.2.6)

V (Bn)(k, z)(Bn) (k, y)

and 14 (k?,y,t) is defined in Definition 7.
To take the limit as x, — oo, using (1.2.17b), write

exp </:T ikn(k,§) df) Slewr) (k) = % ,12n /,nga,m (ﬁ m> lexp <Zn: /yjpﬂ . € d§>

Yp+
—exp < / tkn(k, &) df)] dy,. (3.2.7)
p=0 Yy

p

For the fully dissipative problems, Re(ikn(k,x)) < 0 for all k € Q and all x > x;, see Lemma 15 in Section 4.1, it
follows that

exp ( / ikn(k, €) dg) o0, (3.2.8)

as x, — oo. Thus the term in (3.2.7) which does not contain the p = n term survives. Considering even and odd n
separately yields

exp ( / " ikn(k, €) dg) Sl (k) — —%&(ﬁ’“)(k), as x, — 00, (3.2.9)

where £ (k) is defined in (1.2.16b). Similarly,

@r 1
exp ( / ikn(k, ) d§> clam) (k) — 55,(;lv°°>(k), as x, — 00. (3.2.10)
Therefore, as x, — 0o,
_ ag (1,00)
2iA(k) — 22 (kn ) a1> E@eo)(k), (3.2.11)

and

4B(x1) exp (ff ikn(k, €) df) o
l —1)"ERT (k) 3.2.12
N N RN (32.12)

—2iBy(k, ) —
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and, for z; <y < z,

wkﬁdﬁ)ZZ (Msmww>—alc£fry<>>6<“°>< ) (3213)

n=0n=0

—2i0(k, x,y) — 4exp (/

L

and similarly for 2; < x < y. These final results combine to give (2.2.2).
Note that these solutions were derived for fully dissipative problems, but Chapter 5 proves that they are also valid
for partially dispersive problems on the finite-interval.

3.3 The whole-line problem

Repeating the process from the previous section, now letting z; — —oo, gives the whole-line solution (2.1.2). Starting
from the half-line solution (2.2.2) with fo(t) =0, ap = 1, and a; = 0, the denominator in (2.2.2) is determined by

kn(k, z)A(k) = sz 1)"EELR) (k). (3.3.1)

Since By (k,z,t) = 0, from (2.2.4),

Wk, z,y)a (k2 y,t)
—oo \/(Bn) (K, x)(Bn) (k, )

where 1, (k?,y,t) is defined in Definition 7. For x; < y < x, (2.2.8) becomes

O(k,x,t) = dy, (3.3.2)

ikn(k, €) dg) ZZ 1)(S ) ()£l (1), (3.3.3)

n=0 ¢=0

kn(k, 2)V(k, ,y) = 4exp (/I

1

and ¥(k,z,y) = ¥(k,y,z) for 2; <z < y. Since Sﬁrl’oo)(k) — 0 if n is odd, and from (3.2.7),

exp ( / ’ ikn(k, €) d§> SEb) (k) — —%é’};oovb)(k), (3.3.4)
xy
as x; — —oo. Therefore,
En(k, x)A(k) — 2i i E(70020) (k). (3.3.5)
n=0
For z; <y < =, o
kn(k, 2) U (k, z,y) = 2i exp (/x ikn(k, &) dg) f: En: 1)ETW (k) El™>) (k), (3.3.6)
Y n=0 ¢=0

and ¥(k,z,y) = ¥(k,y,z) for z; < z < y. Combining these results gives (2.1.2).
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4. Proofs: fully dissipative problems

4.1 The solution expressions are well defined

Prior to proving that the solution expression (1.2.2) solves the evolution equation (1.2.1a) and satisfies the initial and
boundary conditions for the problem considered, it is shown in this appendix that this expression is well defined for
all problems considered. We refer to the whole-line, half-line, and regular finite-interval problems as regular problems,
and the irregular finite-interval problems as irregular problems. Throughout, we need Assumptions 2 and 3 from
Section 1.2.

In this section, the r dependence of Q is denoted explicitly as Q(r) = {k € C: |k| > r and 7/4 < arg(k) < 3n/4}
and the definition C*(r) = {k € C : |k| > r and 0 < arg(k) < 7} is also used. Define § = arg(k), and for regular
problems, b = 0 and for irregular problems, b = 1.

The following lemma characterizes some properties of the coefficient functions «, 8 that follow from the assump-
tions.

Lemma 12. If a(z)8(z) is not identically zero, the following are equivalent:
a. af € L*(D),
b. a € L>®(D),
c. p€L>(D),
as are the following:
i. Mmap = infyep |a(x)B(z)| > 0,
i. Mg = infep |a(z)] > 0,
iii. mg = infyep |B(x)| > 0.

Proof. Under Assumption 2.3, there exists an z¢ € D such that 0 < |a(z0)5(z0)| < co. From Assumptions 2.2 and 2.5,

T / / / !/
20| |20 o ([ 2001|962 Y _ploE] gy
B(xo)|  [alxo) w0 By)  aly) (o) B alp (o)
with E = exp(||8'/8 — &' /al|p). Tt follows that b= ¢, b = a, a = ¢, iii = ii, 194 = 4, and ¢ = 7. Similarly,
@) | E‘ bl | (4.1.1b)
(o) B(xo)
so that ¢ = b, c = a, a = b, it = iit, it = i, and i = iid. O
Next, Lemmas 13-15 present some properties of the functions n(k,z) and (fn)(k, x).
Lemma 13. For |k| > r > /M., where M, is defined in Assumption 2.4,
1 M M
My = 1— —L <|nk,2)| < 14 —L = M,, (4.1.2)
VMag r2 NI r2
which defines my, My > 0. From this, there is also my < |p(z)| < M,.
Proof. The proof is trivial from the definition of n(k, z) in Definition 7 using Assumptions 2.3 and 2.4. O

Lemma 14. For |k| > r > \/M,, (8n)'/(Bn) € L' (D), and under Assumption 2.6, u € AC(D).

25



Re(Q

Figure 4.1: The region Qex(r) = {k € C: |k| > r and 0y < arg(k) < m — 6} described in Lemma 15 ((r)U the
green regions) and the contour Cr = {k € C: |k| = R and 0y < arg(k) < m/4 or 3w/4 < 0 <7 — O}.

Proof. The function

Br)(k,2) 2\ B(2)  alx) K +7(2)

for |k| > r > /M,, by Assumption 2.5. By Assumptions 2.2 and 2.3, p € AC(D) and, from Assumption 2.6,
ue AC(D). O

Giten) (30 o), o) Y ¢ (4.0.3)

Lemma 15. There exists an r > /M., min >0, and 0 < 6y < 7/4 such that
Re(ikn(k,z)) < —mynlk|, (4.1.4)
for k € Qext (1), where Qex(r) = {k € C: |k| > r and 0y < arg(k) < ™ — 6y}, see Figure 4.1.

Proof. With ¢ = arg(kn(k,x)), © = sup,cp |arg(a(z)B(x))], ¥ = arg(l + v(z)/k?), (and 0 = arg(k)), from the
definition of n(k, z) in Definition 7,

1 1
0 50— 9)<H<b+(O+1), (415)
see Figure 4.2a. Using Assumption 2.4 and Figure 4.2b,
M 2M
Y| < arcsin( ’ylif) ) < arcsin(#) < r;' (4.1.6)
Since 0 < © < 7/2, r > /M, can be chosen large enough so that
1 /7
<-(T_ @), 41.7
<5 (5 (4.1.7)
AIm(z) A Im(z)
3x n
=% ==
k 4 oy N
k * 4 k N
Vap VaB arcsin( 3%,—‘1 ) \“\l Re(2)
1 + 2 1 + 2 1
> x)
Re(z) 1+Vk—2‘

(a) (b)

Figure 4.2: (a) The arguments of kn(k, z) and its components, (b) ¢ = arg (1 + v(z)/k?).
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which gives, from (4.1.5),
6 91_9—7(@+ )<9_7(®+|¢| <Hp<O+- (@+\¢|)<9+ (@+ ):9+91, (4.1.8)

which defines 0 < 0; < w/4. For |k| > r and 6 < arg(k) < m—#6y, it follows that 0 < ¢ < 7, so that Re(ikn(k,z)) <0
In particular, Re(ikn(k,x)) < 0 for k € Qe (r). More specifically, using that sin(¢) > ¢(7 — ¢)/m for 0 < ¢ <
then for 6; <6 <7 — 04,

Re(ikn(k, 2)) = —|kn(k, )| sin(6) < —%mn|k|¢(7r _ ) < —%mn|k|(9 0 (r — 01— 0). (4.1.9)

Finally, (4.1.4) follows from choosing 6y such that 0 < 6; < 6y < 7/4 and letting m;, = my (0o — 61)/4. O

Having established some properties of the coefficient functions «, 5 and the dispersion functions n, (fn), we

define a generalization 7, [0p,n](E) of the functions &(La’b)(k), gfla’b)(k), et (k), and Sﬁla’b)(k), and we show some
relations between these functions. Further, we show these functions are bounded and well defined, and we find their
large-k asymptotics.

Definition 16. For some r > \/M,, for (a,b) C D, k € Qex(r), and integer n > 0, define the function
1 - (ﬁn)’(k v
(a,b) _ =
Ty opnl(k) = o /ﬂ)ﬁf’b) <p||1 Bk, exp E Tpon / ikn(k, &) d¢ | dyn, (4.1.10a)

where oy, 1S a non-negative integer-valued function of n and p = 0,1,...,n. Here we require for any p that
Opn 7 Optimn, and opn < M, for all p and n. For n <0, we define Jeb) [opn](k) =0, and for n =0, we define

b
j(a b) [00.0](k) = exp (0070/ ikn(k,€) d{) (4.1.10Db)

The function J,\"" [0p.n] (k) is defined as a — —o0 if 00, =0, and as b — oo if 0y, = 0 (if D is unbounded).
Finally, we define

b b
Clab) (k) = exp ( / ikn(k, ) d{f) Clad) (k) and 8(9) (k) = exp ( / ikn(k, €) d§> S (k),  (4.1.11)

where C\* b)(kz) and Sy(f’b)(k) are defined in (1.2.17).

Lemma 17. With &(la’b)(k) and géa’b)(k) defined in (1.2.16), and Gg{l’b)(k) and S%G’b)(k) defined in (4.1.11), we have
the following relations:

ED (k) = TV = (~1)" (k). (4.112a)
ED (k) = T L= (<17 (k). (4.1.12D)
e k) = 5 [T+ (1)) + TV - (-17)(R)], (4.1120)
SO0 (k) = 5 [TV + (~1PIE) - ZEO [ - (~1P)R)]- (4.1.12d)
Proof. The proofs follow immediately from the definitions in (1.2.16) and (1.2.17). O

The next two lemmas give bounds and asymptotics for the function TP [op.n](K).

Lemma 18. For (z,y) C (a,b) C D, k € Qoxt(r), and r from Lemma 15,

(Bn)" ||
(Bn) (a,b)

n

S DM - BT G ()] <

— 27!
£=0

n

1
— 27!

T oy 0] (k) and

’ (Bn)’
(Bn)

(a,b)
(4.1.13)
where A = 0,1. These inequalities hold as a — —oo and b — oo, provided the functions are defined. Thus,

(a:b) [0p.n](E) is well defined. The same bounds hold for &ga’b)(k), g,(la’b)(k), G,(za’b)(k), and 85{1’1’)(14).
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Proof. By Lemma 15, the exponentials in (4.1.10) are bounded by 1 for k € Qex(r). Using Lemma 14,

@Die k)| < = TGO k)| g g L[| (B 41.14
Oyl < 5 [ e [T Gy = o [ (4.1.14)
so that
S xe g (ae) )| S (Bn)' " | (B0 ||f
;( YT, opm—e (k)T [op,6)( Szz:: n—¢ w‘ (B0 [l g0y 11 GB0) 1] 0
(Bn)’ (Bn)’ n< 1 ’(511)' ’ 4.1.14b
an' <‘ (a,x) * H (ﬂﬂ) (y,b)) N (ﬂn) (a,b) ( o )

For &(La’b)(k;), gr(,,a’b)(k), Gg{l’b)(k‘), and S%G’b)(k), the result follows from (4.1.12). These bounds hold as a — —oo or
b — oo, provided the functions are defined. O

Lemma 19. On the finite-interval, we have

exp (m/ n(k, &) dg) = exp (m/ w(€) dg) (1+0(™)). (4.1.15)

Proof. Using the definition of n(k,z) in Definition 7, we have

b b b
exp (zk [ w9 d&) — exp (m / (§)d§> exp< [ ) etk - 1) df), (4.1.16)

which gives (4.1.15). O
Lemma 20. There evists r > \/E, such that for any (a,b) CD and n > 1,

T e, (k) =0, as |k| = 00, k€ Qeyi(r). (4.1.17a)
This result holds as a — —oo and b — oo, provided the functions are defined. The result extends to & ab)(k;),

ELV k), €Y (k), and 8P (k).
Next, we define A\pn, = Op_1,., — Oppn. Using Assumption 2.6 and since A\, , # 0 (see Definition 16), we have

b b
j(a ,b) [op.n](k) = 4)\111ik’ [u(b) exp (0071/ iku(§) d§> —u(a) exp (aLl/ iku(€) d§>

There exists r > /M., and C > 1 such that, for any (a,b) C D and k € Qext(r),

+o(k™).  (4.1.17b)

7@ o <

W) < ———— 4.1.17

where | - | is the floor function.

Proof. From Lemma 15, for any r > /M, and for all k € Qe (), we have
" n 511 ! k7 Yp+1
T )] = [T o)) exo Zop, [ itk e ) oy ---a,
=1 ’
- (

/’DS{"*I’) <p yp

1

2TL

1
<
(1

p=1

(Bn)" (K, yp)

> exp <_min|k| Z Opn(Yp+1 — yp)) dyy - - - dyn, (4.1.18)

p=0

(Bn)(k, yp)

and since op, > 0 and 0pn # Opt1,n for any p, the argument of the exponential is strictly negative. Thus, by
Lemma 18 and the Dominated Convergence Theorem (DCT), we have (4.1.17a). For &% (k), £ (k), €' (k),
and 84 (k), the result follows from (4.1.12).
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Using Assumption 2.5, (1.2.6), (4.1.3), and (4.1.15) in (4.1.10) for n = 1, we have

-1 b Yy b
7o) = 2 [ut)ens <a [ o [ i/w(é)d£> dy + Ok, (4.1.19)

By Lemma 14, u € AC(D) and integration by parts gives

b b
Jl(a,b) [O’p,n}(k) — 4/\1112-k <u(b) exp (UO,I/ Zk,u(g) df) — u(a) exp <0’171/ lkﬂ(f) d§>>

— . u/(y) €Xp | 00,1 / +0171 / Zku(g) d£ dy+0(k_2) (4120)
4/\171214} a a y

By Lemma 14 and the DCT, we obtain (4.1.17b).
Inequality (4.1.17¢) for n = 0 and n = 1 follows from (4.1.10b) and (4.1.17b), respectively. Using (1.2.6), (4.1.3),
and (4.1.15) in (4.1.10) for n > 2, we have

]_—|—O L n—1 / ]C Yp+1
‘z&“’“[ap,n](k):% /W : (H (o) ) s ese (Z””"/ ”““W5> e

p=1

1
1+ O(k n) (k yp v (yn) Yp+1
T 2n+1 D(a b) (H n ayp k2 4 ,_Y yn exp Z Op,n / Zk:u’(é-) df dyn

p=1
(4.1.21)

Let 74 b)(k) denote the integral in the first line of (4.1.21):

T (k) /@w (H I )> w(yn () exp <Zap, / yp“zku(é)d&) dy. (4.1.22)

with

b
T8 (k) = exp (ik / (6 dg). (4.1.23)

Integration by parts with respect to y, € (yn—1,b) gives

(@:1))/((:’ . )eXP (Z 7 / ik df) dyn-1

’ P

1

. u(b =
T@D) (k) = Zk)(\n)n /@ww (H

p=1

n—1 b
_ (Bn)l(k7yp) u(ynfl) N . . Yp+1
/@;a:? <p1_1 (Bn) (&, yp>> Wnn p( / iku(e d€+Z pin / ikp(€) d£> dyn-1
n—1 n—1
(Bn)"(k, yp) Yn) Ypt1
B /‘Dﬁf"b) <p_1 (Bn)(k,y )) kX exp (Z Ip,n / ikp(§) df) dyn. (4.1.24)

In the second line of (4.1.24), we integrate over y,—1 € (a,b) last, and performing the remaining integral over
a=1yo <y <+ <Yp2 < Yp—1 first. Similarly, in the third line of (4.1.24), we integrate over y,, € (a,b) last and
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leave the remaining integral over a = yp < y1 < -+ < Yn—1 < Yn to be done first. Returning to (4.1.21) yields

1 o) k71 b n—1 / ’ Yp+1
T o) () = W) WO /Dm , (H o )exp (Z “P”/ thu(C) d5> o
n,n p=0

1 k,yp)

_1+O0k yn 1)</3 ) (ks yn—1) b
B / W i Bk o) P (U/ e d§> ’

/(a 1) (1:[ (/f ;//;) )exp (Z Op,n /yP“ ik () d§> dyn—2

L+ Ok [* Wya) V() b
_ T/a dyn <>\ ik + 2 +7(yn)> exp <0n7”/ iku(€) df) X

n

/D(“ o <H X k ) ) exp <Z Tpm /yp+1 ikp(§) d§> dyn-1,  (4.1.25)

which gives the asymptotic recurrence relation

1
T Nol) = L O Vi, 1)

-1 1 b
_Hoés(k >/ uA(iZ';c) i[;?x(:j:_f)) P <°'”” / ’k“<f>d5> 37 [0l (k) dyos

1 b / / b
L [ (g 0 e (e [ k) 82 0 0120

n,nZk k2 + V(yn Yn

Assuming (4.1.17¢) holds for n =0,1,...,m — 1, and using that |\, ,| > 1, we find

1 O(k 1) [Hulloo crt ||uHoo H(ﬂ”)/ cn—? (HuI”D H’YIHD ) cn1t
Sy + M.
v

n + n s
4 k| (kL2 2(k] || (Bn) |l k(L% kTR - e[ 5
(1.1.27)

which, using Lemma 14, gives (4.1.17c) for n > 0 by induction. O

jémb) [Up’n] (k)| <

Having defined the function 7,{*"" [0p,n](k) and established some of its properties, we prove that the function A(k)
is bounded and well defined, and that the “transforms” ®g(k,z), ®;(k,z,t) and B,,(k,z), of the initial condition
go(x), the inhomogeneous function f(x,t), and the boundary functions f,,(t), respectively, are bounded and well
defined.

Definition 21. We define

Yk, 7,y)qa(y)
o(k,x) / NN dy, (4.1.28a)

U(k,z,y) fa(kQ,% t)
D /(Bn)(k, )/ (Bn) (k,y)
so that ®y(k,x,t) = Oo(k,x) + @s(k,z,t). We define the corresponding parts of the solution as

¢(k,x,t) dy, (4.1.28Db)

1 @O(k,x) _ k2
qo(z,t) = —/ e dk, 4.1.29a
1 @f(k,x,t) k2t
(x,t) = — —_ dk 4.1.29b
1 Bm(kvm) 2 — k%t
t) = — —— L Fn (k4 dk, =0,1, 4.1.2
o e.0) = 50 [ B e m=0 (41.290)

where we define By, (k,x) =0 (m = 0,1) for the whole-line problem and Byi(k,x) = 0 for the half-line problem. Thus
q(z,t) = qolx,t) + qr(z,t) + g8, (z, ) + gB, (x,t) for the finite-interval, half-line and whole-line problems.
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Lemma 22. For all three problems, there exists v > /M. and Ma > 0, so that for all k € Qext (1),

1
A(k) = bo(k)(1 +e(k)) and 5 bo(k)| < |A(K)| < Ma, (4.1.30)
where |e(k)| < 1/2. For the whole-line problem,
bo (k) = 1; (4.1.31)
for the half-line problem, if ay # 0,
bo(k) = —2ay, (4.1.32a)
Zf a; = O,
2&0
k)= 4.1.32b
and, for the finite-interval problem,
1. if (a:b)2,4a # 0, then
bo(k) = —(a: b)2,4; (4.1.33a)
2. if (a:b)24 =0 and me, # 0, then
bo (k) = % (4.1.33b)

3. if (a:b)ea=0,me, =0, m, =0, and (a:b)13#0, then

m
bo(k) = —k—;; (4.1.33c)
4. with Assumption 2.6, if (a : b)2.4 =0, m¢, =0, m¢, # 0, and m,up —8mg # 0, then
1
bo(k) = %) (me,uy — 8ms). (4.1.33d)
Proof. For the whole-line problem,
_1+Ze( 2020 (k) = 1+ e(k). (4.1.34)
By Lemmas 18 and 20 and the DCT,
(o)
k)= &5, (k) — 0, (4.1.35)
n=1
as |k| — oo. Thus, we can choose r sufficiently large so that for k € Qexi (), |e(k)| < 1/2, and
1 3
3 Sl-le®)l <]AR) < 1+[e(k)] < 3 (4.1.36)
For the half-line problem, if a; # 0, we write
2/ (=1)iag iag > (—1)"iag
A(k) =2 2y | EE (k) = —2a1 |1 - ———— —— 0 1) gl (k)|
(k) nzzo (kn(k,xl) @) en (k) “ arkn(k, z;) +n; arkn(k, z;) * " (k)
(4.1.37)
Then
iao > (71)”(10 ( ) |CLO| |CLO‘ > )
B =|——29 —— 1) &N (k)| < 1 k‘ 0,
le(k) | arkn(k, ;) + nz::l ( arkn(k, x;) ) " (k)] = mylark| * Malark] + Z:: (k)] =
(4.1.38)

by the DCT. We choose r > /M, large enough such that |e(k)| < 1/2 for k € Qext(r). On the other hand, if a; =0,
then ag # 0, and

9 =23 e = o l” TETREDY Wﬁ“’”(“}' e
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Then since u(z;)/n(k, 2;) = 1+ O(k~2),

le(k)| = n’:é”j;)l) 1+ Weﬁ%w(/ﬁ) — 0, (4.1.40)

by the DCT. We choose r > /M., large enough such that |e(k)| < 1/2 for k € Qex (7).
For the finite-interval problem, since

i, (E(k)* —1), (4.1.41)

ey (k) = E(k)CE™ " () = 5

(E(k)?+1)  and 8§ (k) = 2(k)SS (k) =

N |

where Z(k) is defined in (2.3.3) and @gf’b)(k) and Sg{l’b)(k) are defined in (4.1.11), we factor out the n = 0 term in
(2.3.4) and write

A(k) = 2ia(k)2(k) + ico (k) (E(k)2 + 1) + so(k) (E(k)* — 1) + 2i f: (cn(k)(?ﬁf““)(k) + 5n(k)s;ww~>(k)). (4.1.42)
Since Z(k) — 0 exponentially fast, we have
AK) = ixa(k) — 50(8) + 20 3 (B () + 5, (RS (1)) + o0 2). (4.1.43)

1. If (a: b)24 # 0, then we can write (4.1.30) with bg(k) defined in (4.1.33a), where

g(k)m;blm z‘co(k)so(k)+(a;b)2,4+2¢§1(cn(k)e;wﬂ(k)+sn(k)s§fhwr>(k)) +o(k™2). (4.1.44)

Since ¢, (k) = O(k™1), so(k) = (a : b)as + O(k~2), s,(k) = O(k?), and because both €"")(k) — 0 and
glrnr) (k) = 0 by Lemma 20 and both are bounded (see Lemma 18), we can choose r > /M, sufficiently large
so that |e(k)| < 1/2 for k € Qext(r), by the DCT. We have

2@ D)2l < AR < 2l(a: D)o

2

. (4.1.45)

2. If (a : b)2,4 = 0 and m, # 0, then we can write (4.1.30) with bo(k) defined in (4.1.33b), where

(k) = - n]j ico(k) — % — so(k) + 2i i (cn(k)e;@w(k) +5n(k)85f““)(k)) Yok, (4.1.46)

Since co(k) = me, /k + O(k™3), s, (k) = O(k~2), cn(k) = O(k™1), and since ") (k) — 0 and 8" (k) — 0
and both are bounded (see Lemma 18), we can choose r > /M, large enough such that |e(k)| < 1/2 for
k € Qoxt(r), by the DCT. We have

|mco| < |A(k‘)‘ < 3|mco|.

4.1.47
2|k] — 2r ( )

3. If (a:b)24 =0, meg =0, me, =0, and (a: b)1,3 # 0, then ¢o(k) = ¢1(k) = 0 and we can write (4.1.30) with
bo(k) defined in (4.1.33c), where

(k) = —— | —so(k) + % +2i isn(k)s;wﬂ(k) + o(K?). (4.1.48)

n=1

Since s, (k) = ms/k? + O(k=4), and since 8" (k) — 0 and is bounded (see Lemma 18), we can choose
r > /M, sufficiently large so that |e(k)| < 1/2 for k € Qext(r), by the DCT. We have

(4.1.49)



4. If (a:b)aa =0, me, =0, me, # 0, and m,, uy —8mg # 0, we can write (4.1.30) with bg(k) defined in (4.1.33d),

where
8k? . _ . . o Me, Uy — 8Mm,
(k) = T [zco(kj) + 2ico (k)CL™ ) (k) — so(k) + 2icy (k) C") (k) — ;T
+2chn L) (k) + 202 (k) Y 5, (k)SL") () | + o(KP). (4.1.50)
n=1

By Lemmas 17 and 20, we have
e ()= 5 [ 7+ (1PIR) + T (1R

= _161ik (w(zy) +u(zy)) (1 — exp (/Tr 2ikpu(€) df)) +o(k™h) = —m%mr +o(k™).  (4.1.51)

Zy

For n > 2, from Lemma 20, we have

=0(k™1). (4.1.52)

0 Llom 4 3
S| < 3 T 0
— — |k|L*] k—C?
Since ¢o(k) = O(k™3), c1(k) = —me, /k + O(k=3), sn(k) = ms/k? + O(k~), and since 85" (k) — 0 and
ng“x")(k) is bounded (see Lemma 18), we can choose r > /M, sufficiently large so that |e(k)| < 1/2 for

k € Qoxt(r), by the DCT. We have

16|1k;|2 |, ug — 8ms| < |A(K)] < 1632 |, uy — 8msg|. (4.1.53)
O

Remark 23. Note that for constant-coefficient IBVPs (a, 3, v constant), the denominator A(k) reduces to
A(k) = 2ia(k)Z(k) +ico(k) (E2(k)® + 1) + s0(k) (E(k)* — 1). (4.1.54)

If (a:b)24 =0 and m¢, =0 (ie., co(k) =0 and so(k) = (a: b)1,3), then we require (a : b)1,3 # 0, so that A(k) /0
exponentially fast (or is not identically zero). Thus, Boundary Cases 1—4 are the only allowable cases giving rise to
a well-defined solution for constant-coefficient problems. If the coefficients are not constant, it may be possible to go
out to higher order in the asymptotics of Lemma 22, e.g., (a : b)oa =0, m¢, =0, m¢, # 0, and me,uy —8ms =0,
and additional allowable boundary conditions may be identified. This requires further investigation.

Lemma 24. Consider the finite-interval, half-line, and whole-line problems. For all three, there exists an r > /M,
and My > 0 such that, for k € Qex(r), x € D, and y € D,

| (k,x,y)| < Myg. (4.1.55a)
For the regular problems,
U (k, z,y)
———= 1 <M 4.1.55b
‘ A(k) '— " 1)
and for the irregular problems,
U(k,z,y) —mi|kl(z—21) | y—min|k|(zr—2)
< Min r—x Min Tpr—X < . 1.
‘ A ‘_M@ (1+|k\ (e te )) < 3My k| (4.1.55¢)

Thus U(k,z,y) and VU (k,x,y)/A(k) are well-defined functions.

Proof. For the whole-line problem, from (2.1.4) and Lemma 15,

(Bn)’
CL)

[k, z.y)| < el y'Z

=0 (5

D), (4.1.56)

2"n'
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and (4.1.55a) follows. From Lemma 22, (4.1.55b) follows. For the half-line problem, with z; < y < «, from (2.2.8)

o0 n

|U(k,z,y)| <4

X kn(k, ) d§)

e p(/y ikn( »
it (18 (3]0 ).
N An) llp

and similarly for z; < x < y. Therefore (4.1.55a) follows. From Lemma 22, we have

4 \a ‘—l— —_laol _ ’ /
)4 1 z 1 1
)] ) 21)
(k) "‘“l_‘WH (Bn) llp (Bn) llp
where -
—1)"4a _ |a |
kn(kxl)[] a1 < lar] + ;72 Ao
L _ B M
T (k,a0) ’Ia |
This gives (4.1.55b).
For the finite-interval problem:
1. if (a:b)24 # 0, from (2.3.7a), we find for z; <y <z < r,,
[(a:b)is]  [(a:b)ia|+][(a:b) 1| (Bn)
U (k <4 ) ! : : —
Y (A L] o (3|52
N 4Mg|(a : b), 2| exp <1 H (Bn)’ ) ¢minlkl(e, —oi=lo=yl)
mgma| k| (Bn)

and similarly for z; < z <y < z,. Thus (4.1.55a) follows. From Lemma 22, (4.1.55b) follows.

2. If (a:b)24 =0 and m, # 0, from (2.3.7a), we find for z; < y < z < 1y,
4 ((a:b)1a|+|(a:b)as| [(a:b) 3|> (1 H(ﬁﬂ)'
U(k,x < : =+ : exp | =
(W (k, z,y)| T ( 5 p (Bn)

My mir
) ¢~ minlkl(z,—1—|e—)

el 1

and similarly for z; < x < y < x,. This gives (4.1.55a). From Lemma 22, (4.1.55b) follows.

)

3. If (a:b)24 =0, me, =0, me, =0, and (a: b)1,3 # 0, then for z; <y < = < ,

4 |(a:b)1 3| 4M5|(a:b)1 2||/{J| —min | k| (2 —z;—|z— 1 (6")/
v < — d d Min k| (@r—21 =]z —yl) -
[k, z,y)] < |k|2 ( m2 * mgMy ‘ P2 (Bn)

z1 ) _ (z1,y) (z,00)
| (e s 09— a0 00

)

(4.1.57)

(4.1.58)

(4.1.59)

(4.1.60)

(4.1.61)

D), (4.1.62)

and similarly for ; < # < y < x,. This gives (4.1.55a). This Boundary Case is regular if both (a : b)1,2 =
and (a : b)3 4 = 0 and irregular if either (a : b)12 # 0 or (a : b)3 4 # 0, see Remark 6. Lemma 22 gives (4.1.55b)

or (4.1.55¢).
4. If (a:b)24 =0, m¢, =0, me, # 0, and me,up — 8mg # 0, then,

((L . b)174 - (a . b)gyg - mcl

plz) — ple) 27

(4.1.63)

From this (a : b)14/n(k,2;) = me, /2 + O(k™2) and (a : b)23/n(k,x,) = me, /2 + O(k™2). Using Lemma 20,

there exists an r > C? such that
oo n

x© n n—~ 14 2
Z K (= (@, Z Z c ¢t (k+0)
J ly [ Op,n *l](k)‘jz — 0 Ln £+1J |/€‘LH1 (k—02)2




for k € Qexi(r). For 2; < y < x < x,, the n = 0 terms involving (a : )14 and (a : b)2 3 combine to give

(@2 D14 lavw) pyolewn) gy _ (31023 play) 4 slon)
Fafn a0 (PR = ey o (RS R)
m 1 Ty, T, Ty xy, T,y -
= e (SERICS ) (k) — €5 (RSSO () + O)

y T,
= M g < /x - / kn(k, €) dg) + O, (4.1.65)

so that, for z; <y < z < z,,

me,| 1 . Bl (— o _ _ 4M5|(a:b)1 . _
Uk, z,y)| <4 el (6 minlk| (=) | o=min |kl (@r z)) Lok Ly 2B 0)12] ki) (41 66
o) < 4{ e () e (4.1.66)

This gives (4.1.55a). Using Lemma 22, we arrive at (4.1.55¢). The same can be shown for z; < & < y < 2.
O

Lemma 25. Consider the finite-interval and half-line problems. There exists an r > /My and Mg > 0 such that
for k € Qext(r) and x € D, for both the half-line (m = 0) and the finite-interval problem (m =0, 1),

|Bun(k, )| < Mp. (4.1.67a)
Further, for the half-line problem (m = 0),
By (k, ) o Bl (e
2| < Mp|k|emmimlkl(@=a0) 4.1.67b
B < e , (1.1.670)
and for the finite-interval problem (m = 0,1),
B (k, z) bHL (g minlKl(@e—2) | g=minlkl(z—a1)
< Min Tr—T Min z—a1)Y 1.
‘ A < Mglk["t* (e +e ) (4.1.67c)

Here, b = 0 for regular boundary conditions, and b = 1 for irregular boundary conditions. It follows that the functions
B (k,z) and By, (k,z)/A(k) are well defined for the half-line and finite-interval problems.

Proof. For the half-line problem, using Lemmas 15 and 18 in (2.2.5), we have
4Mg 1 (ﬂn)’

Bo(k,x)| < =
o) < o (5| G
which gives (4.1.67a). Lemma 22 gives (4.1.67b). Similarly, for the finite-interval problem, using Lemmas 15 and 18

in (2.3.6¢), we have
4Mp 1| (Bn) ){<a»1| > s _ b [kl (=
By . k,:v < e J + la; e min k| (2 ac)_~_ J +|b; e min|k|(z—ax;)
|B2 J( )| < Xp( H . k| | 12‘ M ] |J2|
(4.1.69)

mgmy 2 || (Bn)
for j = 1,2, which gives (4.1.67a). For the finite-interval problem with Boundary Case 1 or 2 and for the irregular
boundary conditions, (4.1.67¢) follows from the above and Lemma 22. For the regular version of Boundary Case 3,
we have a;; = 0 for all 4, j = 1,2, except for a;; and b2, see Remark 6. Thus,

) e=manlFl(a=a1). (4.1.68)
D

4M, 1 (ﬂn), —m; Tr—x —m; T—x
1Ba_j(k,x)| < Wf'k'exp (2 H @ | (|aj1|e inlkl(@r=2) 4 |p.q|e=minlkI( 1>), (4.1.70)
n
from which (4.1.67¢) follows, using Lemma 22. O

Lemma 26. Consider the finite-interval, half-line, and whole-line problems. For all three, there exists anr > /M,
and Mg > 0 such that for k € Qex(r) and z € D,

|@o(k, z)| < Ma|lqollp- (4.1.71a)

35



For the regular problems,

éo(kvx)
<M 4.1.71b
22| < Mol (1.1.710)
and for the irregular problems,
@ kax —m; T—x —my Tr—x
‘OA((k)) = Mallgollp (1+ [k] (e-menlMiz=a0) 4 emmanlilize=2) ) < 30y k] o |- (41.71c)

It follows that ®o(k,z) and Po(k,z)/A(k) are well-defined functions.
Proof. The inequalities (4.1.71) follow directly from Lemma 24. O

Lemma 27. Consider the finite-interval, half-line, and whole-line problems. For all three, there exists an r > /M,
and My > 0 such that for k € Qext(r)\Q(r) (the green region of Figure 4.1), for x € D, and for t € [0,T),

| 1 (k, 2, t)e ™) < M| flp- (4.1.72a)
Further, for the regular problems,

sk, z, t)e k't

=M 4.1.72
AT /Il fllo. (4.1.72b)
and for the irregular problems,
O (k,x, t)e " k(@) | =ik (@ —2)
— in in il < . .
NG My fllo (1 -+ k] (e +e )) < 3MylKlI I (4.1.72¢)

Thus, ®¢(k,x,t) and ©¢(k,z,t)/A(k) are well-defined functions.

Proof. For k € Qe (r)\Q(r), |e’k2(t*s)| < 1. Tt follows from (1.2.14) and Assumption 3.1 that

/|fa Jt)e ’”|dx<// \faxs|dsdy<T”fHD (4.1.73)

Oé

Using this and (4.1.55) in (4.1.28b), we obtain (4.1.72) for any = € D and for ¢ € [0, T]. O

Lemma 28. There exists an v > /M., so that for x € D and t € [0,T], Al b)( k), Ak), Y(k,z,y), and ®o(k,x)
are analytic in k, for k € Qext(r). The functions ®5(k,x,t)e 't and By, (k,x)e” Mt gre analytic in k for k €

ext( )\Q( )

Proof. Consider a closed contour T' € Qe (r). Then
5’5 TE@B o (k) dk = / dyngﬁ dk H (ﬁ“)'( exp Zap / " ek €)de | =0, (4.1.74)
r 7 2" Jplen r o1 (Bn)(k, "

by Cauchy’s theorem. We can switch the order of integration by Fubini’s theorem and Lemma 18. Therefore, by

Morera’s theorem, J,\"" [op,n](k) is analytic for k € Qex¢(r). For all three types of IBVPs considered, the same
argument applies for the A(k), U(k,x,y), and the ®y(k, x) functions by Lemmas 22, 24, and 26, and for the B,, (k, x)
and @ (k, z,t) functions by Lemma 25 and 27. O

The following lemmas prove that the different parts of the solution are well defined.

Lemma 29. For the half-line problem (m = 0) and the finite-interval problem (m = 0, 1), there exists an r > /M,
such that, for any x € D and t € (0,T), the function qg, (z,t) (4.1.29¢) can be written as

1 B (k, x) 9 I
= — —_— n 3 3 4.1.
qB,, (.73, t) o /aﬂ () A (k) S’r (k t)e dk ( 753‘)
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where

_fm(0) Gl 1)

o (k2,1) = =5 SR (4.1.75b)
with the bound , [ con(26)
—|k|* cos(20)t ”f/ H (1 — eIk 2 cos(2 t)
2 et < Wil s e
[8rn (K7, )™ ] < k2 " K[ cos(26) (4.1.76)
The function qg,, (z,t) is well defined.
Proof. From (2.2.7) and Assumption 3.3, for k € Qe (r)\Q(7),
¢
| F (K2, 1)e ™| < ’/ eH=I £ (5) ds| < Tl fon e (4.1.77)
0

Therefore, for x € D, we have exponential decay of the integrand of ¢z, (x,t) from Lemma 25. Using Lemma 28, we
can deform the contour of (4.1.29¢) from Q(r) to Qext(r). Assumption 3.3 allows us to integrate (2.2.7) by parts so
that
e _ fm®)  Sm(@eTFGL I, e
F (k% t)e Ft = i 3 - 3 , (4.1.78)
which gives (4.1.75), after using Cauchy’s theorem on the f,,(¢) term. Equation (4.1.76) follows from (4.1.75b) and
Assumption 3.3. From Lemma 25, for the half-line problem,

M —m; r—x -
Iqu(xat)ISQ—:/aQ ()|k|e b0 |3 (K2, 4)e="t| dk, (4.1.79a)

and for the finite-interval problem,

|qu(x7t)| < 78/ |k“b+1 (e—’rnin‘kl(lr—dﬁ) + e—"Lin‘M(l—M)) |gm(k27t)e—k2t’ dk. (4179b)
27T aQext(T)
From (4.1.79), we see that gg,, (x,t) is well defined for z € D and for ¢ € (0,T). O

Lemma 30. Consider the finite-interval, half-line, and whole-line problems. There exists an r > /M, so that for
x €D andt € (0,T), qo(x,t) (4.1.29a) can be written as

1 @O(k,x) _ k2t
t) = — —_— dk 4.1.
WO = 51 i B .

which is well defined.

Proof. By Lemmas 26 and 28, ®o(k,z)/A(k) is bounded, well defined, and analytic for k € Qex(r). Let
Cr={keC:|lk|=Rand 0y <0 <m/dor3n/4d<6<m—0y},seeFigure 4.1. For the regular problems, using sym-
metry,

7R2t)
— 0, (4.1.81)

Do(k,x) g2 /er —R? mMa|lgo|lp(1 - €
L dk| < 2M. cosOt R dp <
/CR A(k) € - ‘I’HQOH'D € = 2Rt

0o
as R — oco. Thus we can deform the contour by Cauchy’s theorem to conclude (4.1.80). For the irregular problems,
the above holds for the integral over the first term of (4.1.71c) and for € D, the second term is exponentially
decaying, and we again conclude (4.1.80). It follows that for all three problems

Ms||qo|lp 2
‘QO(JJ,t” _ || || ‘ke k<t
OQext

|dk| < oo. (4.1.82)
2T

O
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Lemma 31. Consider the finite-interval, half-line, and whole-line problems. There exists an v > /M, so that for
r €D andte€ (0,T), qp(x,t) (4.1.29b) can be written as

1 O;(k, x, t)e !
qr(z,t) = —/ —————dk, 4.1.83a
10057 ot A (41.850)
where (k. 2
i(k, 2, ) / LY f"( 9:1) dy, (4.1.83D)
V (B)(k, )/ (Bn) (K, y)
" (1.0) _ Glhad (2.1)
) ) ’t
fu(k?,y,t) = —f“kyQ _ s = LM (4.1.83¢)
Further, we have the bound
—|k|? cos(20)t ||f HD(l _ 6_‘k‘2 cos(29)t)
(2, y, ey < 1112 ! 4.1.84
J Vath. 0y < malk? ol k[ cos(20) (4.1.84)
For all three problems, there exists an My > 0 such that
|5 (k, z, t)e | < Mf/p I (B2, y, ) " dy. (4.1.85a)
For the regular problems
@f(k,x,t)e_k t / 2 _k2t
<M (k% y,t)e dy, 4.1.85b
and for the irregular problems,
(I)f(k‘ x t)e_kzt —minlk (=) —min || (zr— e
il ANk et A BV min |k|(z—21 min|k|(zr—x) 2 k3t ) 1.
NG < My <1+|k| (e +e ))/D’fa(k ,y,t)e ’dy (4.1.85¢)

It follows that qs(x,t) is well defined for all three problems.

Proof. By Lemmas 27 and 28, ®(k, z, t)e=¥*t /A (k) is bounded, well defined, and analytic for k € Qey (r)/Q(r). Let
Cr be defined as in the proof of Lemma 30, see Figure 4.1. Then, for the regular problems, using symmetry,

O (k,z,t)e 1
/ f( 7‘%.’ )e dk
Cr

< 2Myl|f D/Z Re R eos0)t gg 4.1.86
Alk) LI ; ( )

as R — co. Thus, we can deform the integral in (4.1.29b) from Q(7) to Qext(r). For the irregular problems, the above
holds for the integral over the first term of (4.1.72¢) and for & € D the second term is exponentially decaying. Thus,
we can still deform from Q(r) to Qext(r). Using Assumption 3.1, we can integrate (1.2.14) by parts, to obtain

fa(kZ,l‘,t) _ fa(zl;?ek ¢ o fa(kxza 0) . g[fa,t(:;axat)]’ (4.1.87)

which gives (4.1.83), after using Cauchy’s theorem on the f,(x,t) term. Equation (4.1.84) follows directly from
(4.1.83c) and Assumption 3.1, and equation (4.1.85) follows from Lemma 24. From (4.1.85), we see that the integrand
in g¢(x,t) is absolutely integrable and is therefore well defined for all z € D and any t € (0,7T) (or for any x € D
and for all t € [0,T7). O

Finally, we combine all the results obtained.

Theorem 32. There exists an r > /M, such that the functions (2.1.2), (2.2.2), and (2.3.2) are well defined for all
x €D and for any t € (0,T).

Proof. Combining Lemmas 29, 30, and 31, we obtain our result. O]
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4.2 The solution expressions solve the evolution equation

In this appendix, we prove that the solution expressions (2.1.2), (2.2.2), and (2.3.2) for the whole-line, half-line, and
finite-interval problems, respectively, solve the evolution equation (1.2.1) in their respective domains. Naturally, we
are in need of lemmas on the derivatives of various quantities defining the solution expressions. The following lemma
deals with derivatives with respect to the spatial variable.

Lemma 33. Forn > 0, the derivatives of &(lx’oo)(k‘) and gf,foo’m)(k) are given by

1(ﬁn)/(k7.%'> (z,00) . 00
5 Bt Err () = (L= (=1)Wikn(k, @) (k), (42.1a)

1 (B)'(F, 7) 5(-o0,0) k(. o F )
2 Bu)ka) ot )+ (L= (= 1))ikn(k, 2)E,75 k), (4.2.1D)

and those of CSLa’b)(k) and Sﬁa’b)(k‘) are

0 EL (k) = —

0,87 (k) =

0,C70) (k) = ;mcfﬁ(h) — (=1)"kn(k, 2)SE) (k), (4.2.1¢)
0.0 () = WCS T (k) + kn(k, 2)SE ) (k), (4.2.14)
0,857 (k) = ;WSﬂf)(k) (—1)"kn(k, z)C{™0") (k), (4.2.1¢)
9,560) (k) ;(é‘;))'((::;) S (1) — ken(k, 2)C0) (k). (4.2.1f)

Proof. Since (Bn)'/(Bn) € L'(D) by Lemma 14, the proof is by direct calculation of the derivatives of (1.2.16) and
(1.2.17) [18]. We show one such calculation. From (1.2.16b),

9, ELa2) (; 2n/ dyl/ dys -- /y Qdyn 1/M dyn <£[ i%?;) exp (i(l - (—1)1’)/yjp+1 ikn(k, €) d£>,

1 p=0
(4.2.2)
so that
a0 gy = (B0) (B, 2) 1 T O )\ (S o [
31@5” (k) a (ﬂn)(k,x) n /DELQ’G;) (;,1:[1 (511)(]41,%))) P <p_0(1 ( 1) )/yp kn(k7£) 4 ) A
R (T_[ 2@?3;{:;5:;) exp (pz_;)u ~ o) [ e d&) dyn,
(4.2.3)
which gives (4.2.1b). O

In Lemma 34, we prove a general summation identity for the generalized accumulation functions T [op.n](K).
This identity is used to prove the problem-specific identities in Lemma 35. In turn, these are used to prove the
relation between x(k,x) (4.2.18b) and A(k) in Lemma 39.

Lemma 34. Let Gpn—¢ and G, ¢ be two non-negative integer-valued functions as described in Definition 16. Denote

Epn—@v 1f0§p§n—€7
=q.7 ; 4.2.4
opn {Up—(n—f),fv an —-L< p<n. ( a)
If Gy —¢.n—t = 00 and op,, is independent of £, then

T (g, ] Zjn“ (& ] (k) TV 6.0 (k). (4.2.4b)
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Proof. Define

n

D) = 3 T Brn- ()T G0 (B). (4.2.5)

£=0

By the definition of j(a b) [0p.n] (k) (4.1.10),

ni[ ) ( — Yp+1
j(@:0) (fg =5 Z/D(a N <H ) exp (Z /yp ikn(k, &) dg) dyr -+ dyn_gx

n—~£ p=1

n / k, v pHL
X/D;wﬂ( 11 W) exp Z Gp(n /)g/ ikn(k, €)de | dyn_o41---dyn.  (4.2.6)

p=n—~_+1 p=n—{

In the exponential of the first integral, for the p = n — ¢ term, y,,—¢+1 is defined as x. In the exponential in the
second integral, for the p = n — £ term, y,—¢ = x. Since Tp_¢,n—¢ = 00,0 = On—¢,n, Multiplying the exponentials and
adding these terms together, we have

Yn—rt+1

Tt / ’ ikn(k, &) d€ + Go.0 / e ikn(k, €) dé = op_pn / ikn(k, €) d¢, (4.2.7)

Yn—t z Yn—2e

and the two integrals are combined as

ol k) = 5> [

0=0 A< <Yn—<T<Yn—t41<"" -<b

(H Wby )exp (Z%/,, an(k»s‘)d£> dys - dy.

k, yp
(4.2.8)
Summing over ¢ is equivalent to adding up all possibilities of « lying between one of the yi,...,y,. Since o, is
independent of £ by assumption, the integrand is independent of £, and

(ab) gy _ L (B! (K,
(a:b) (k) = 2”/9>W (H Gk, >exp (Z Opm / ikn(k, €) d§> dyy - - - dyn, (4.2.9)

which is (4.2.4). O

From the identity in Lemma 34, we can prove the following more specific forms of (4.2.4b).
Lemma 35. For the whole-line problem, if n is even,
g0 (k) = 3 ECT T (k)E ) (k). (4.2.10a)
£=0

For the half-line problem, for any n,

\E

£ (k) = Y (€ (k) — (~1)" S (k) ) £ (). (4.2.100)

4

I
=3

Finally, for the finite-interval problem, for any n,

e (k) = 3 (€ ke (k) — (~1)" 18 (RS (k) ), (4.2:100)
£=0

NE

s (k) = 3 (S5 (R)ef™) (k) + (=) el (RS (k) ). (4.2.10d)

~
I

0

Proof. For the whole-line problem, we define ey, as the right-hand side of (4.2.10a). Using (4.1.12), we write ey as
twl = ZJn 21— (=1)P) (k) T = (=17 (k). (4.2.11)
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From Lemma 34, if n is even, &, ,,¢ = 1 — (=1)? and 6, = 1 — (—=1)*"? so that 7,,_¢ ¢ = G0 and

pn = {J”’"““ pospsn—ho_ {1 L HOspsn—bo g Cprer, @212)

Op—(n—t),0s ifn—€<p<n, 1—(=1)f==0)ifp — < p <,

is independent of £ so that (4.2.10a) follows.
For the half-line problem, we define ey as the right-hand side of (4.2.10b). Using (4.1.12),

n

=5 3 (1= (UL + (10 + (0 + ()M = (C10)) T = (C) ), (42.13)
2

=0
which is simplified to
e =D I = (=) (R = (<) P (k). (4.2.14)

From Lemma 34, 5,,¢ = 1 — (=1)"? and 6,0 = 1 — (—1)*"P so that &,,_¢.n_¢ = G0 and o,, =1 — (=1)"7P,
Equation (4.2.10b) follows.
For the finite-interval problem, we define ¢, and ¢ as the right-hand side of (4.2.10c) and (4.2.10d), respectively.

Using (4.1.12), we write these in terms of TP [0p.n](E), obtaining

n

o= 1 (1 (=" (TP (COPRT T+ (-1)(R)

~
Il
o

R = (PRI = (1))

£330 (1) (TP ORI (1)

h T = ORI (L)), (4.2.150)
= Lé“ + (=17 (T8 1+ (7)) T [+ (<17 (R)
~ T = (DR T = (<17
%i L= (1)) (0571 (CPI R T (1P (R)
h “T = DRI L (L)), (4:2.15D)
which simplify to

“= ; (2704 COIW TS ()7 710) + 5[ = (1)) L= (1)) ),
(4.2.16a)

= 212 (a2 1+ CIPARTE 1 (1) 210) = T = (SR = (1R,
(4.2.16b)

For the first terms of ¢, and ¢, Tpp—y = 1 + (-1)P, and 6,0 = 1 + (—=1)"=P 50 that Tp—tn—t = 0o, and
0pmn = 1+ (=1)P. For the second terms of ¢, and ¢s, Gpn¢ = 1 — (=1)P, and &,, = 1 — (=1)""*P so that
Tn—tn—t = 0o, and o, , =1 — (—1)P. Equations (4.2.10c) and (4.2.10d) follow. O

Now, we begin taking derivatives of the solution expressions. In Definition 36, we introduce some functions that
appear in the derivatives of the solution expressions. In Lemmas 37-39, we prove some properties of these functions.
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Definition 36. We define

@(k‘,x,y) = (ﬁl‘l)( )aa <((kxy)> = \I/w(kvx’y) - %M\P(k,x,y), and

) (k, ) (Bn)(k, z)
\ij(k’x7y) = (ﬂﬂ)(/ﬂ,l‘)% (W)Z (B@)w(kvx’y) - ;m (B@> (l@az,y),

where we use the notation (BV)(k,z,y) = B(x)¥(k,z,y). We also define

U(k,x,xF) = lim, U(k,x,y), U(k,z,2%) = lim, U (k,z,y),

y%m y%m

and

x(k,z) = (ﬁ@)(/ﬂ,x,x ) — (B\IJ)(]C €T, T )

Lemma 37. For the whole-line problem, for y < z,
U(k,x,y) = ikn(k, z) exp ( / ’ ikn(k, €) dg) i znj So0w) (1) el (k),
Yy
and for x <y,
U(k,z,y) = —ikn(k, ) exp ( / yz’kn(k,g) df) i (—1)"E M) (k) e ().

For the half-line problem, for x; <y < z,

U(k,z,y) = dikn(k, z) exp </w ikn(k, €) dg) D ( k - fjﬁ;)(k) - alcfji’;)(k)) %) (),
x l

n=0 ¢=0

and for x; < x <y,

W(k,z,y) = 4kn(k, ) exp (/y ikn(k, ) dg) Z (kn(ao C,S"”j’ez)( k) +a1S, (1, "ﬂ)( )) 5‘15 :

For the finite-interval problem, for x; <y < z < x,,

T x _ )= _ B(x”‘)(a’:b)LQ = _1\np(y,x)
V(k,z,y) = 4kn(k, )u(k){ N NS nz::o( n*C* (k)

- _\ee@e) (0 g (1) (a:b)13 (@1,9) (1o (@r)
(@:0)24 33 (~DC WS ) = =SS D D St e k)

a:b > = w3, a:b)a: = (2 .2,
PlOIN P Sy (ks (k) + (D2 SRS el gy ><k>}7

and for x; <z <y <z,

Bxi)(a:b)sa (wy
k/(B0) (k, w0)/(Bn) (k, ) 2=

W (k,z,y) = 4kn(k, 2)=(k) {

n=0 (=0 n=0 ¢=0

n

’)nOZO
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14 iz 1)nC) () (1) + (aib)z,§ iZ(—l)"_esﬁf)(k)séy’“)

(4.2.17a)

(4.2.17b)

(4.2.18a)

(4.2.18b)

(4.2.19a)

(4.2.19b)

S n (x,:}c (y,xr ( ) 1,3 e n—~L (1) (y,xr)
D)2 ) ) (1S (k)C” (k) + k2n(k, z,)n(k, z,) DD (=0 (k) S (k)



Proof. Using (4.2.1) in (2.1.4), (2.2.8), and (2.3.7), we find (4.2.19), (4.2.20), and (4.2.21) for the whole-line, half-line,
and finite-interval problems, respectively. O

Lemma 38. Consider the finite-interval, half-line, and whole-line problems. There exists anr > /M, and Mg > 0
s0 that for k € Qe (r), for x € D, and for y € D

| (k, z,y)| < Mglk|. (4.2.22a)
For the regular problems -
V(k, x,y)
—— | <M 4.2.22
| <, (1:2.22b)
and for the irregular problems
Y(k,z,y) il —a) | gmanl Kl —a)
< Min T—x) Min Ty —T . 2.
‘ AT ‘_M@m (1+|k:| (e te )) (4.2.22¢)

Therefore, W(k,z,y) and ¥ (k,z,y)/A(k) are well-defined functions.

Proof. The proof is identical to that of Lemma 24 in Appendix 4.1. Note that My here and from Lemma 13 are
identical up to a factor of M,. Without loss of generality, we take them to be the same. O

Lemma 39. For the finite-interval, half-line, and whole-line problems,
x(k,z) = 2ik(Bn)(k, 2)A(k), (4.2.23)
where x(k,x) is defined in (4.2.18b).

Proof. For the whole-line problem, using Lemma 37 in (4.2.18b),

Xk, @) = ik(Bn)(k,2) S (1+ (=1)") Y &5 (k) Ef™) (k), (4.2.24)
n=0 =0

which gives (4.2.23), using Lemma 35. Similarly, for the half-line problem,

x(k,x) = —4k(Bn)(k, x) exp (/T ikn(k, &) df) i <m + ia1> i (Cn”ﬂ’;)(k) — (—1)”1’85@1)(]6)) Séz,oo)(k;).

Z n=0 =0

Using Lemma 35,

X(k, ) = —4k(Bn)(k, z) > (W + ial) E@oo) (k) = 2ik(Bn) (k, ) A(k). (4.2.26)
n=0 ’

Finally, for the finite-interval problem, since C,(f’x)(k) = dg,, and S,,(Lx’z)(k) =0,

x(k, ) = —4k(Bn) (k, 2)Z (k) {a(k) 3 ealt) 3 (D R)CE T () = (1) S (RS (k) )
n=0 =0
+§°jsn<k> ) (Sm”(k)(réz’“)(k)+<—1>"—fc75“"_’;f>(k)s,ff*”””(k))}, (4.2.27)
n=0 =0

which gives (4.2.23), using Lemma 35. O

Lemma 40. For the half-line problem,

45 (x)ikn(k, z) exp (f; ikn(k, €) d§> o
l NP (R), 4228
N EoIGEnN D R I (1225

8073;(/{3, Q?) =
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and there exists an r > /M, and Mg > 0 so that for k € Qe (1) and z € D,

‘ Bo.(k, )

<
1Bo,o(k, z)| < Mplk| and NG

< Mp|k|?eminlkl(@=a1) (4.2.28b)

For the finite-interval problem, we have for j = 1,2,

. ) = —(— J4kﬂ(k‘,(b)5(k) ﬂ(x”‘) a1 = n a,l,;v) a n (1L,w)
827%1’(/{7 ) ( 1) \/(6‘[1)(]6,1’) {\/(ﬁn)(k SCT) [kn(k,xl) Z( ) C + ZZ S )]

B(l‘l) (acxr) _ ” (xxr)
L) lknm >l bzz 5@ ()

and there exists an r > \/M, and Mg > 0 so that for k € Qext(r) and z € D,

}, (4.2.29a)

B (k, x)

< M,
Bpo (k)| < Mglk| — and ‘ It

< M3|k‘\b+2 (e—mmlk'l(ﬂcr—:c) + e—minlkl(i’—xz)). (4.2.29b)

For regular boundary conditions b = 0, and for irregular boundary conditions b = 1. Therefore, the functions
B (2,t) and By, o(z,t)/A(k) are well defined for the half-line and finite-interval problems.

Proof. Lemma 33 and a direct calculation gives (4.2.28a) and (4.2.29a). The proofs for (4.2.28b) and (4.2.29b)
are identical to the proof of Lemma 25. Note that, as in Lemma 38, the Mp’s differ only by a factor of M, (see
Lemma 13). Without loss of generality, we may take them to be identical. O

Lemma 41. Consider the finite-interval, half-line, and whole-line problems. We have

U(k,2,y)q.(y)

Dq (K, ) / dy, (4.2.30)
V(B)(k, z)/(Bn) (k, y)
where o (k,x) is defined in (4.1.28a). There exists an Mg > 0 so that
Dy . (k,x
0. (ba)l < Molbllaoko  and [P < ol (1.2.31)

Thus ®g 5 (k,x) and Pg 5 (k,x)/A(k) are well defined for all three problems.

Proof. Breaking up the integral over D in (4.1.28a) into two integrals over the regions y < = and y > x and using
the Leibniz integral rule, we obtain

Uk ) =Yk W (k, o
®g . (k,x) = (U(k,z,27) — U(k,z,z / r y)q ) dy. (4.2.32)
(Bn) (K, ) v/ (Bn V (Bn)(k,y)
Since ¥ (k,x,z7) = ¥(k,x,2"), we find (4.2.30). We obtain (4.2.31) from Lemma 38. Since the integrand in (4.2.30)
is absolutely integrable, differentiation under the integral is allowed. O

Lemma 42. Consider the finite-interval, half-line, and whole-line problems. For k € Qey, © € D, and t € (0,T),

k €z y fa(k27y, )

Q5 (k,x,t) o BT 1)/ (B 9) (4.2.33)
Further, there exists an My > 0 so that
|<I>f7m(k,z,t)67k2t| < Mf|k:|/D |fa(k2,y,t)e’k2t|dy. (4.2.34a)
For the regular problems, .
@f,x(k,Aw(}Ct))e’“ < gk /D £ (2, 5, £)e "] dy, (4.2.34D)
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and for the irregular problems,

&k, t)e 't
A(k)

SMf|k|(1+‘k|(efmm\k|(w7wz)+e*mm|k|($r*w))>\/ |fa(k2’y,t)eik2t|dy. (4234C)
D

where ®i(k,z,t) and fo(k?,y,t) are defined in (4.1.83b) and (4.1.83c), respectively.

Proof. Breaking up the integral over D in (4.1.28a) into two integrals over the regions y < x and y > z and using
the Leibniz integral rule, we obtain

U(k )= Uk, 2, 2)) fo (K2, 2,1) W (k, o(k?
@ﬁm(k,x,t) — ( ( 71.7‘% ) ( "If T ))f "E z y f ( 7y7 ) (4'2.35)
V(B (k. 2)\/(Bn) (k, z) D /(Bn)(k, 2)\/(Bn)(k,y)
Since U(k,z,27) = ¥(k,x,2") for all three problems, we obtain (4.2.33). Equation (4.2.34) follows from (4.2.22a).
Since the integrand (4.2.33) is absolutely integrable, differentiation under the integral is allowed. O
Lemma 43. Consider the finite-interval, half-line, and whole-line problems. For x € D and t € (0,T),
]. (I)Qm(k,l') _ k2t
«(2,t) = — — dk, 4.2.36
el t) =5 [ e (42.:364)
1 B o (kya, t)e k'
(2,t) = — — Ay, 4.2.36b
e B (4.2.360)
1 By, w(kv x) 2 —k%t
oz, t) = — At T % (K2t dk, 4.2.36
.t = 5o [ P e (4236¢)

are well defined, i.e., we can differentiate under the integral sign. Furthermore, qo (x,t) and g . (x,t) are well defined
for x € D. For the regular problems, gs, .(x,t) is well defined for x € D.

Proof. The integrand in qo . (x,t) is exponentially decaying for ¢ € (0,7, and therefore is well defined for x € D.
From (4.2.34) and (4.1.84), we see that, for any t € (0,7), qs.(z,t) is also well defined for z € D. For t € (0,T),
from (4.2.28b), (4.2.29b), and (4.1.76), we see that for = € D, ¢p,, »(z,t) has exponential decay and is well defined.
For the regular problems, qp,, .(x,t) is absolutely integrable for z € D and is well defined. O

Remark. For the irregular problems, qs,, »(z,t) may be ill defined at the boundaries, but the boundary conditions
(2.3.1c) and (2.3.1d) are well defined and satisfied, see Section 4.3.

Lemma 44. Consider the finite-interval, half-line, and whole-line problems. For x,y € D and k € Qext,

k* +y(x)

U(k,z,y) = — () U(k,z,y). (4.2.37a)

For the half-line (m = 0) and the finite-interval problems (m =0, 1),

k® +7(x)

B z)a(k, ) = ———=Bn(k,x), 4.2.37b
(3 )o ) = =2 1208, k) (4237h)

forxzeD,te€(0,T), and k € Q.
Proof. For the whole-line problem, a direct calculation using Lemma 33 gives (4.2.37a) from (4.2.19a) for y < x and
from (4.2.19b) for y > x. Similarly, for the half-line problem, we obtain (4.2.37a) from (4.2.20a) for z; < y < x and
from (4.2.20b) for z; < = < y. Equation (4.2.37b) follows from (4.2.28a). For the finite-interval problem, we obtain
(4.2.37a) from (4.2.21a) for z; < y < z < x, and from (4.2.21b) for z; < z < y < z,-. Finally, (4.2.37b) follows from
(4.2.29%). 0

Lemma 45. Consider the finite-interval, half-line, and whole-line problems. With §(k?, z,t) = a(x)fa(k?, x,t),

a(@)(BPo,c)x (k, ) = 2ikA(K)go(z) — (k* +~(x))®o(k, 2), (4.2.38a)
a(2)(BOs0)x (b, 7, ) = 2ikAR)f(K2, 2,t) — (k2 + y(x)) D5k, 2, 1), (4.2.38b)
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Proof. Using Lemmas 41 and 42, we split D into the two parts y <  and y > z, and the Leibniz integral rule gives

2 = X(k‘,w)fJo(x) ‘i’(k z y)Qo(y) N
_ X(knw)f(k2 x t) ‘i/(k z, y)f(k27y, )
(BP42)a(k,z,t) = (@) (B0) (k. 2) / NN DI dy, (4.2.39b)
where x(k,z) and ¥(k,z,y) are defined in Definition 36. Using Lemmas 39 and 44 gives (4.2.38). O

Lemma 46. Consider the finite-interval, half-line, and whole-line problem. For x € D and t € (0,T), the t-
derivatives of qo(x,t), qr(x,t) and ¢g,, (x,t) are

1 k2¢0(k,$) k2t
=—— ——e" 4.2.4
qo,i(z,t) 27 Joo. AR e dk, ( 0a)
1 k20 (K, a, t)e 't
g5tz t) = —— i dk, 4.2.40b
f t( ) o e (r) A(k}) ( )
1 kQBm(k‘,fL') 2 — k2
qu,t(CC,t) = —% /BQEXt(7 ng(k 7t)€ dk, m = 07 1. (4240C)

These functions are well defined.

Proof. Differentiating (4.1.80) with respect to ¢ gives (4.2.40a), since the integrand is absolutely integrable. From
(4.1.83¢), fa,t(kQ,:r,t)e’kzt = —fot(z,t)/k%, and differentiating (4.1.83b) with respect to ¢ yields

N U(k, 2, y) fat(y:t)
Salha e == | R 24

so that, using Lemma 24,

;1 (k, x, t)e‘kzt
A(k)

My

|k|2 (1 + ‘]{1|( —min k| (z—21) 4 e—mmlk\ Tp— )) ”fa t”D (4242)

Differentiating (4.1.83a) with respect to ¢, we obtain

1 O 4 (k, x,t)e k"t 1 k20 (k, o, t)e k"t
aralt) = o / %dkf 27/ f(A p ) dk. (4.2.43)
T J 8Qext (1) (k) T J 8Qext (1) (k)

From (4.2.42), it follows that the first contour integral can be closed in the upper half plane, implying it is zero by
Cauchy’s theorem, resulting in (4.2.40b). From (4.1.85), qf.+(,t) is well defined, for z € D. Since Fy,+ (K2, t)e_th =
—f1.(t)/k?, differentiating (4.1.75a) with respect to ¢,

S (t) / By (k, ) 1 / k*Bu (k, 7) 2 .\ kPt
—om ok — — I g (K2 e Rt dk. 4.2.44
27T 3cht(7’) sz(k) 27T aﬂcxt( ) A(k’) ( ) ( )

qanat(x’ t) =

As above, (4.1.67) allows us to close the contour of the first integral in the upper half plane, showing the first term is
zero by Cauchy’s theorem, obtaining (4.2.40c). From (4.1.67) and (4.1.76), ¢g,, +(z,t) is well defined for z € D. O

Lemma 47. For x € D and t € (0,T), the derivatives

(@) (Bq0,0)z(@,t) + v(2)q0 (2, 1) = qo,e(, 1), (4.2.45a)
() (Bafz)z(@,t) +y(x)gp (2, t) + fz,t) = qf (2, 1), (4.2.45D)
(2)(BaB,, )z (x,t) +v(2)g8,, (z,t) = g5, ¢(,t),  m=0,1. (4.2.45¢)

are well defined, i.e., differentiation under the integral sign is allowed.
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Proof. Direct differentiation of the results in Lemma 43 yields

_ 1 (ﬁ(bo,a:)a:(kyaj> _k2
(Bg0,2)e(x,t) = %/(;g Al ¢ tdk, (4.2.46a)
1 (85 1)k, 2, t)e
(Basa)e(@,t) = 5 /a o AG) dk, (4.2.46b)
- (BBi.s)a(k, ) 2 )oK _
(B95,0.0)a(,8) = o /m A Sk e tdk,  m=0,1. (4.2.46¢)
Using Lemmas 44, 45, and 46,
o(x)(Bg0,2)z(x, ) +v(x)qo(x, ) = qo¢(x,t) — qo‘(““") / ke Ft dk, (4.2.47a)
17T O oxt
a(@)(Bgt)s(@,t) +y(@)gs(z, ) = qp (2, t) — i/ kf(k2, 2, t)e " tdk, (4.2.47b)
17T O ext
a(2)(84B,..2)a(@, 1) + 7(2)g5,,(2,1) = ¢5,,4(2,1),  m=0,L (4.2.47¢)

Since the integrands in (4.2.47) are absolutely integrable, the differentiation inside the integral is justified. The path
for the remaining integral in (4.2.47a) can be deformed down to the real line showing it is zero. Using (4.1.83c), the
remaining integral in (4.2.47b) is evaluated as

f/ kf(k2, 2, t)e Lk :/ (f(x’o) + g[fd(kZ’x’t)) ek, (4.2.48)
OQext Oext

k k

which may also be deformed to an indented contour on the real line. The principal-value part integral is zero, while
the indentation integral evaluates to

2
1 kf(k?, 2, t)e ¥ 'dk = Res <(f(x’0) | Gl mt)) et k= 0> = f(x,1). (4.2.49)
1T Oext k k
Equation (4.2.47) yields (4.2.45). O

Theorem 48. The solution expressions (2.1.2), (2.2.2), and (2.3.2) each solve the evolution equation (1.2.1a).

Proof. Since q(z,t) = qo(x,t) + qr(z,t) + g5, (2, t) + g5, (x, 1), (4.2.45) gives the result. O

4.3 The solution expressions satisfy the boundary values

Definition 49. In this appendiz, { = 0 corresponds to the half-line problem, while £ = 1,2 correspond to the
finite-interval problem. We define, for k € Qe and y € D,

aoV (k, 1, y) + a1V (k, z1,y)

PO (k,y) = 7 (4.3.1a)
(Bn)(k, z1)
] v ] v
POk, y) = 20 (k, 2, y) + anV(k,z,y) | baV(k 2, y) + beV(k, CET,?J), =19 (4.3.10)
(Bn)(k, 1) (Bn)(k, z)
For k € Qoxy,
B8 (k) = aoBo(k, z1) + a1Bo o (k, 1), (4.3.2a)
B (k) = an B (k, 21) + ar2Bu,o (b, 20) + ber Bun (k, 2,) + bea By o (K, 1), (=12, m=0,1, (43.2b)
and
P (k) = ao®o(k, 21) + a1Po o (k, 21), (4.3.3)
Péz)(k) = anPo(k, x;) + araPo o (k, 1) + by Po(k, 1) + b2 Po o (K, xr), 0=1,2. (4.3.3b)
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For k € Qext and t € (0,T),
P)(“O) (k7 t) = aﬂéf(ka Xy, t) + aléf,m(ka Xy, t)a (434&)
P}Z)(kv t) = an®i(k, 1, t) + ap® . (k, 2, t) + b Pk, . t) + bpa Py o (ky 20, t),  £=1,2. (4.3.4b)

Finally, fort e (0,7T),

Qg)l (t) = aoqB,, (xlv t) + aqum,r(xlv t), (4353,)

Q) (t) = angs,, (@1,t) + ar2gs,, o (21,1) + biras,, (Tr,1) + beags, 2 (w1 1), (=1,2, (4.3.5b)
and

Q(()O) (t) = apqo (xlv t) + alqO,z(‘rla t)v (436&)

0y (1) = ango(x1,t) + arado,e(z1,t) + beado(r,t) + beado,o (1), (=1,2, (4.3.6b)
and

ngo) (t) = aoqy (w1, t) + a1qy.. (21, t), (4.3.7a)

Qﬁf) (t) = anqyp(x,t) + arqyr (21, t) + borqr(zp,t) + beaqy o (2r, t), 0=1,2. (4.3.7b)

Lemma 50. For both the half-line problem and the finite-interval problem, for k € Qext and y € D,

PO (k,y) =0, £=0,1,2. (4.3.8)
Proof. For the half-line, using (2.2.8) (with ; = © < y < x,) and (4.2.20b) in (4.3.1a), gives (4.3.8).
Yy o0
wlkan) = ey ( [ in(e.9)de) (1w ),
ZL n=0
Yy (o]
Wk a1,9) = desp ([ ibni€)de ) 301 anr (1),
Ty n=0
U(k W(k
= ;B(O)(k7y): aop ( 7$l;y)+al ( 7$l;y) =0 (439)
(Bn) (K, 1)
Using (2.3.7) and (4.2.21) in (4.3.1b), the calculations for the finite-interval case are equally straightforward albeit
more tedious. O

Lemma 51. For the half-line problem (m = 0), and for the finite-interval problem (m = 0,1), for k € Qext,
B (k) = —2ikA(k)d—1,m, €=0,1,2. (4.3.10a)

Here
~ 1, =0, m=0,
d—1m=141, L#0,m=(—1, (4.3.10b)
0, 0#£0,m#£L—1.

Proof. For the half-line problem, using (2.2.5) and (4.2.28a) in (4.3.2a), we find (4.3.10):

Bo(k, 1) = n(;xl) Z(—l)"gr(fz,oo)(k),

4ikn(k, ;)
BO,x(kaxl) k xl l Z xz,oo)

n=0

= B (k) = apBo(k, 2)) + a1 Bo o (k, x1) 42 ( 0 4 alzk:) E) (k) = —2ikA (). (4.3.11)

The finite-interval case (using (2.3.6¢) and (4.2.29a) in (4.3.2b)) is similar but more tedious. Its details are omitted.
O
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Lemma 52. For both the half-line problem and the finite-interval problem, for k € Qox and t € [0, T,

P (k) =0, (4.3.12a)
P (k,t) = 0. (4.3.12b)
Proof. Using (4.1.28a) and (4.2.30) in (4.3.3a) and (4.3.3b), we find
O (k
P (k) = / B 9)4. () dy, (4.3.13a)
p /(Bn)(k,y)
which gives (4.3.12a), using Lemma 50. Similarly, using (4.1.83b) and (4.2.33) in (4.3.4a) and (4.3.4b), we find
2
(f) k t / ;’B k Y fa k 'Y, )dy, (431313)
V (Bn)(k, y)
which gives (4.3.12b), using Lemma 50. O

Lemma 53. For the half-line (m = 0) and the finite-interval problem (m = 0,1), for k € Qexy, and t € [0,T7,

o’ (1) =0, (4.3.14a)
o (t) =0, (4.3.14b)
Q) (8) = frn(H)e—1,m, (4.3.14c)

where Sg,lym is defined in (4.3.10b).

Proof. From Lemmas 30, 31, and 43, Q((f)(t) (4.3.6) and ng) (t) (4.3.7) are well-defined functions. Similarly, for

the regular problems, (Be; (t) (4.3.5) is a well-defined function from Lemmas 29 and 43. For the irregular problems,
for Boundary Case 3, ¢g,, »(2,t) may be undefined at the boundary, but the linear combination of boundary terms
Qggﬂ (t) (4.3.5b) is well defined. For Boundary Case 4, using Assumption 2.6, ¢g,, (z,t) is well defined at the

boundary and therefore Qg}n (t) is well defined.
For the irregular Boundary Case 3, see Remark 6.3, from (4.2.29a) for = =~ xy,

) ) = (— J4kn(k’x)5(k) ﬁ(‘rl)bj? = _1\nc(z,zy)
Bamseb ) = 0 e 0 {V(ﬂnxk,xz);( s (k)}w(ko)' 319

We can prove that either (i) bja = 0 = bag, in which case By, .(k,2;) = O(k°), Bm.x(k,21)/A(k) = O(k~2), and
q8,, 5 (x1,t) is well defined, see Lemma 43; or (ii) if (b12,b22) # (0,0), then a;o = 0 = age, in which case ¢g,, (z,t)

does not appear in Qg) (t). The same holds for z =~ z,.. It follows that Q(e) (t) is well defined.
For Boundary Case 4, with Assumption 2.6, we integrate §,,(k?,t) (4.1.75b) by parts to obtain

m(0) et (0 Ykt
Sm(kQ,t):—fkg)—e g4()+fki)+g[ /LEL ), (4.3.16)
so that we may write ¢g,, .(z,t) (4.2.36¢c) as
_ 1 Bna(kt)z 1o\ k2
UB,,,0(2,1) = o /6 N Sm (K2, t)e " dk, (4.3.17)
where / .
@m(k2,t) _ _fm(O) + fm(O) + g[fm](k ut) (4318)

k2 k4 k4 ’
and where the integral of the f; (¢) term is zero by Cauchy’s theorem (before the z-differentiation). The first two
terms of Sm(k2,t)e*k2t are exponentially decaying for ¢+ € (0,7') and the last term is O(k~%), by Assumption 3.4.
Therefore qp,, .(z,t) is well defined for z € D and t € (0,T). Consequentially, Qg}n (t) is well defined.
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Using (4.1.80) and (4.2.36a) in (4.3.6), we find

()
Oy _ L Po (k) k2 131
o (1) = 5 /8 TRy (4.3.192)
which gives (4.3.14a), using Lemma 52. Similarly, using (4.1.83) and (4.2.36b) in (4.3.7), we find
) —k*t
) 1 Pf (kvt)e
)= — ————dk. 4.3.19b
O (4.3.19b)
Using Lemma 52, this gives (4.3.14b). Using (4.1.75) and (4.2.36¢) in (4.3.5),
(©)
Oy _ L B’ (k) 2 5\ —k%t 431
o (1) = 5- /6 e G (4.3.19¢)
Finally, using Lemma 51 and (4.1.75b), we obtain
0 L) (k2 >
Qg) (t) _ _5€ ’1,m / <f’m(0) + g[fm]( ’ )) efk tdk (4319d)
m 17T 0ot k k

Since the integrand is O(k~2), we can deform the path of integration to the real axis. Using the oddness of the
integrand, the principal value integral vanishes and only the residue contribution at the origin needs to be calculated:

00 0= stes (10 FBIODY 0} i s

O
Lemma 54. Consider any t € (0,T), fized. Then
lim ¢(z,t) =0 and lim ¢(z,t) =0, (4.3.20)

|z|— 00 T—00
for the whole-line and half-line problems, respectively.

Proof. For any fixed t € (0,T), we have absolute integrability in (4.1.75), (4.1.80), and (4.1.83a). Therefore, we may
switch the limit and integrals. Since, from (4.1.56) and (4.1.57),

| Wk, y) el | Yk, y) iy ko —
1 y Ly < M miy|kllz—y| _ 1 i < M, miv[kl|lz—y| — 4.3.21
w|linoo‘ OB o oo | AR [T " (321)
for the whole-line problem and the half-line problem, respectively, (4.3.20) follows. O

Remark 55. Since we have absolute integrability in (4.2.36a), (4.2.36b), and in (4.2.36¢), we conclude that also

lim g,(z,t) =0 and lim ¢, (z,t) =0, (4.3.22)
|z|—o00 T—00

for the whole-line and half-line problems, respectively.

Theorem 56. Consider the finite-interval, the half-line, and the whole-line problems. For all three problems, the
solution expression (1.2.2) satisfies the appropriate boundary conditions.

Proof. Lemma 54 shows the boundary conditions for the whole-line problem and the right boundary condition for
the half-line problem are satisfied. From Lemma 53,

aoq(ai, t) + arg(zi, t) = Q57 (1) + QP (1) + Q) (1) = fo(t). (4.3.23)
Similarly, for the finite-interval problem,
agrq(z,t) + apqe(z1, 1) + berq(xr, t) + beage (Tr,t) = Qéé) (t) + ng)(t) I ng) (t) + le ()
= fo(t)dr—1,0+ f1(£)de—1.1- (4.3.23b)

O
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4.4 The solution expressions satisfy the initial condition

Theorem 57. Consider the finite-interval, half-line, and whole-line problms. For x € D, fized,

li t)=20 4.4.1
Jim gp(z,) =0, (4.4.1a)
lim ¢g,, (z,t) = 0. (4.4.1b)
t—0t+ )

Proof. Since the integral in (4.1.83) is absolutely convergent, we can pass the limit ¢ — 07 inside the integral to obtain
(4.4.1a) by using Cauchy’s theorem. Similarly, we move the limit in the integral in (4.1.75) to obtain (4.4.1b). O

Lemma 58. For fived x € D, for y € D, for the finite-interval, half-line, and whole-line problems,

P = e (sente =ik [ atk ) (14 04) 407, (1.42)

as k| — oo for k € Qext.

Proof. For the whole-line problem, from (2.1.4), for y < x,

U(k,z,y) = exp (sgn(x — )zk/ n(k,§) df) ( ZZ ZE( Oo’y)(k:)é’ém’oo)(k)>. (4.4.3)

n=1 ¢=0

By Lemma 20 and the DCT,

n

i —DEV () (k) = o(k0). (4.4.4)

Dividing (4.4.3) by A(k) and using Lemma 22, we obtain (4.4.2). The proof for x < y is identical.
For the half-line problem, for z; < y < z, we write (2.2.8) as

U(k,z,y) = 4eXp< /y n(k, ) dg) [(Ms”w)(k) - ale((;”“y)(k)) + (WL‘LT,L + |a1|) o(ko)]. (4.4.5)

Using
b
el (k) % <exp < / n(k, &) g) ) (4.4.62)
850 (k) = % <exp (m / b n(k, &) df) - 1), (4.4.6b)

in (4.4.5), we find

U(k,z,y) = 2exp < /y n(k, &) d§> [kn(k) —ay + (miTlL| + a1> o(ko)} + O(e~minlM@=am)) (4.4.7)

which, from (4.1.30) with (4.1.32), gives (4.4.2). The proof is identical for z; < z < y.
For the finite-interval problem we consider the 4 different cases.
1. If (a: b)24 # 0, then for z; < y < z < x,, using (4.1.30) with (4.1.33a), we write (2.3.7a) as
V(k,z,y)
bo(k)

= 13274 exp <zk /y "k, €) dg) {~(a:vpaaef ™ (ke (k) + o(k") }

46(%)(@ : b)1’2 >
! (a2 b)2.ak\/(Bn)(k, 20)/(Bn) (K, @\ ,ga

Using (4.4.6a) and dividing by 1 + e(k), we arrive at (4.4.2). The proof for z; < z < y < z, is identical.

2(k)SW) (k). (4.4.8)
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2. If (a : b)2.4 = 0 and m,, # 0, then for z; < y < = < x,, using (4.4.6) and (4.1.30) with (4.1.33b), we write
(2.3.7a) as

Rl o) (- (582 ) s

Using 1/n(k,z) = 1/p(x) + O(k~2) and dividing by 1+ (k), we obtain (4.4.2). The proof for 7; < z < y < z,
is identical.

3. If (a:0)24a =0, me, =0, me, =0, and (a : b)1,3 # 0, then for z; < y < x < x,, using (4.1.30) with (4.1.33c),
we write (2.3.7a) as

U(k,x,y)  4k? A 1 (a:b)13 L .
Tho(k) e D (Zk/y (k) d§> {_4 Balk zon(kz,) O )} +o(k™). (4.4.10)

Using the asymptotics for 1/n(k, z) and dividing by 1 + (k) gives (4.4.2). The proof is identical for z; < z <
Yy < Ty.

4. If (a: b)g4 =0, m¢, =0, me, #0, and m¢,up —8ms # 0, then for z; < y < x < z,, using that
(o)
3 ‘k;(?%“’b)(k)’ — O(k™Y), (4.4.11)
n=3

using the asymptotics of 1/n(k, z), the fact that (a : b)1,4/p(x,) = (a : b)23/u(z;) = me, /2, and (4.1.30) with
(4.1.33d), we write (2.3.7a) as

\Ij(kv x, y) 32k‘2 ) /ac me 2 n reloi) (o)
= xp | ik k&) d : —1)°8, ) (k)e, " (k
bo (k) mc1u+—8mse P Y n(k, &) dg 2% ZZ( )°8, 1 (k)€ (k)

n=1 ¢=0
2 n
me, (@1.9) (1yg(@2r) 2y s -1
— o ;ezoen_y(k)s (k) + o(k™2) 4k2}+o(k ). (4.4.12)
Using integration by parts as in Lemma 20, we derive
eled) (g ! b sik [ n(k.c)d 1 et 4.4.13
00) = s (a.b) (exp (2 [ (k) de ) =1) ok (14130)
8000 () = 1 b 2ik ’ k,€)d 1 k! 4.4.13b
00 = —gpu- (@) (exp (28 [ n(k©)de ) +1) +olk), (4.413D)
el gy = 1 b 2ik b k,€)d 1 k! 4.4.13
{00 = g a.8) (exp 20k [ n€ds | 1) + o) (14130
- b sik [ n(k.c)d 1 ! 4.4.13d
{0 0) = () | exp (2 [ nik€ds ) +1) ol (14134)
where uy (a,b) = u(b) £ u(a), and
"1 (ﬁu)’(y))Q
me(a,0) = [ — dy, 4.4.14
ma) = [ o (G ) (a1
with u(x) defined in (1.2.6). We find
U(k,z,y) 32k2 Y i
bo(k) ey —Sms (Zk/y ) d5> {~2 + G (o) — ()
+£Zk2 (uy (2, 2,) +u_(z,2,)) + o(k:_2)} Yok™l).  (4.4.15)
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Combining terms,

V(k,z,y) 32k / me - -1
= k,&)d - ! k k 4.4.16
bo(F) e Gy P , n(k, &) d§ { 4k2 + 3opz s ol )} +o(k™Y), ( )
which, after dividing by 1 4 ¢(k), gives (4.4.2). The proof is identical for z; < x < y < 2.

O

Theorem 59. Consider the finite-interval, half-line, and whole-line problems. If qo € L*(D), then for almost every
zeD,

lim qo(z,t) = qo(x). (4.4.17)
t—0+
Proof. Using the change of variables k = Az with A\ = 1/4/t in (4.1.80),
A U(A o
qo(x,t) = i/ M6722 dz = / %2, 9)4a(y) dydz. (4.4.18)
27 Jog.., A2) 27 Joo.. )\Z D /(Bn)(Az,2)/(Bn) (A2, y)

By Lemma 24, we can use the Fubini-Tonelli theorem to write this as
A U(Az,z,y) e
qo(x,t) = —/ qa(y)/ dz dy. (4.4.19)
’ 2m Jp ooe A V/(Bn)(Az,2)v/(Br)(Az,y)

Using (4.4.2),

T :)\(1—’_0()\0)) G (y) exp | sgn(xz — y)iAz ’ Az, €)de ) e % dzd o(\°
0(5) = S5 | T o 2 (=000 [0 ) e~y ((4)4'20)

Since

‘Aexp (sgn@c —vixe [ ute) ds) Oflz — yA e | < O(fz — y A% e, (1.4.21)
Y

is absolutely integrable, we may use the DCT on the remainder term from (4.1.15). Substituting this result in
(4.4.20), we obtain

T :i Go(y) exp | sgn(z — y)iAz ’ de) e~ dzd o(\° 4.
(e ) 2ﬂ/z>¢<ﬁm<x>¢</m><y>/mext p (seate —)irs [ @) e dzayro(r), (aa2)

as A\ — oo. Define M, (y) = [ n Y 1(€) d¢. Deforming 9y, down to the real axis and integrating the z-integral gives

INMZ (y)

2\f/\/ \/ B ()

For a fixed = € D, if qo(x) is finite, using that ¢, (y)/(u(y)\/(Br)(y)) € L1(D), it follows that for any € > 0 and for
each A, there exists ¢ € AC(D) N Cy(D) [15], so that

qo(, 1) dy + o(\°). (4.4.23)

90 (y) _ d A2 nd ) — 9o (®) E 4.4.24
Lt -l ma o e < )
Using this,

w(et) = 5= W [ / (%—wm) ply)e MW dy + /D py)uly)e MM dy] +0(\").
(4.4.25)

For the first integral and any € > 0, we can find A sufficiently large, so that

_ o~ M2 () M. _e

Q\f\/i/ ( ﬂu)( ) w(y)> 1(y) dy| < ENG Y <3 (4.4.26)
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Since ¢ € AC(D), we may integrate the second integral of (4.4.25) by parts to obtain

A VYT U N AM, ()
ﬁ/p<p(y)u(y)e M) gy = 2/p<p(y)erf< 5 )dy. (4.4.27)

At this point, we may take the limit as A — oo using the DCT. Since arg(u) € (—7/4,7/4), if y > x, then
arg(M;(y)) € (—n/4,7/4) and the error function limits to 1 as A — oo [8]. If y < x, then arg(M,(y)) € (37/4,57/4)
and the error function limits to —1. It follows that

: A —1X20M2(y) _
Jim O /D e(y)u(y)e dy = o(x), (4.4.28)
and we have (2)
x
qol,1) = —2 — go(x), (4.4.29)
Bu(x)
ast — 07 and € — 07, Since ¢y € L*(D), qo(z) is finite for almost every x € D, concluding the proof. O

54



5. Proofs: partially dissipative problems
on the finite interval

5.1 The solution expressions are well defined

We now repeat the proofs for partially dissipative problems. Many of the results of Chapter 4 remain the same or
are similar with some slightly different bounds. In this section, we again denote the r dependence of €2 explicitly as
Qr)={keC:|k| >rand n/4 < arg(k) < 3n/4} and C*(r) = {k € C: |k| > r and 0 < arg(k) < 7}. We define
arg(-) € [-7/2,3w/2) with 6 = arg(k). For regular problems, we define b = 0 and for irregular problems, we define
b=1.

Remark 60. For partially dissipative problems, we always assume Assumption 2.6, so Lemmas 12-1/ from Chapter 4
still hold.

Lemma 61. For |k| > r > /M, under Assumption 2.7, W, v € AC(D), where we define
1 (Bn)(k,x) 1 B'(x) o(z) 7' (2) 1 2
b 2) — _ _ . k2). 1.1
ko) = ) Bylke) (k) \ B@)  ala) | R4q@)) " 2t @ TR (5.1.1)
Proof. From (5.1.1) and Assumption 2.7, we have v € AC(D). Since

v =28 (2 _ @) L (5 o/(x))’ wa ) __L(20) P

p(@)? \ B(z) o) (@) \ B(z)  alx)

by Assumption 2.7 and Lemma 13, 1//p € AC(D) and therefore v’ € AC(D). O

Remark 62. We still have Definition 16 and the relations in Lemma 17.

Lemma 63. Similar to Lemma 18, there exists an r > /M., such that, for (z,y) C (a,b) C D, k € C*(r),

1

‘j’rgmb) [Up7n](k)’ S npl ‘ (ﬁn)/ Q(avb) (k)v (5133,)
2nn! (ﬂn) (a,b)
and
- (@) (2,5) [~ LB " e

n—e](k k)| < e\ (k), 5.1.3b
z:: ) T (o pn—d) (k) T, 16 p.0]( )‘ < 5ot || ) o (k) ( )

where we define

eMJ(b—a)\’f\(*go—e)7 if 0 <0 < by,

el (k) =24 1, if 0o <0 <m— b, (5.1.3¢)

M (b=a)[kI(0=7+00) it _ Q) < <.

Thus, the A [0p.n](k) function is well defined. We have the same bounds for el b)(k), and SE{Z’b)(k:). Note that
we will use €@V (k) < @@ (k).

Proof. Using (4.1.15) from Lemma 19, we have

exp (Z O / " ik, ) d€> | -

exp (Z Opn /yp+1 ikpu(€) dg) (1+0(k™)) ’ (5.1.4)
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Since arg(p) € [—mw/4,7/4], Re(iku) = —|kp|sin(0 + arg(w)). If 6 € [0, 7/4], sin(6 + arg(p)) > 6 — /4 and therefore
Re(ikp) < Mylk|(7w/4 — 0). Similarly, if 0 € [37/4, 7], Re(ikp) < My|k|(0 — 37/4). There then exists an r > /M,
such that for & > r

exp (Mn|k| (5-9) > om0 Tp.n (Ypt1 — yp)), 0<f<7z
b <f<in
exp (Malk] (0 = 2) Xy opnlppi 1)), F <0<,

exp (Z oo | " ikn(k. ) d§>

(5.1.5)
where M7 = MM, (and M, is from Definition 16), and so
1 “r(Bn)! (k,
AR [op,n](@\ < o€V (k) / H O 00)| 4. . (5.1.6)
2 a<y1<--<ya<b |pZq k? yp)
Since the integrand is symmetric with respect to permutations of yq,...,y,, we have (5.1.3a), which is finite by
Lemma 14. Using this bound and the binomial theorem, we also get (5.1.3b). For el (k) and S%Q’b)(k), the result
follows from (4.1.11). O

Lemma 64. There exists an v > \/M,, mz > 0, and 0y € (0,7/4) such that Z(k) < e"™=l¥l for k € Quxy(r), where
Qext(r) ={k € C: |k| > r and 0y < arg(k) < m — by}, see Figure 4.1, and where Z(k) is defined in (2.3.3).
There exists an r > /M, and a C > 1, such that, for alln >0, for (a,b) C D, and for k € Qext(r),

CTL
|k| L5

e Nk) and Y|l = O(KEE )P k), (5.1.7)

n=j

| TP opal (B)] <

where | - | represents the floor function.
Defining Ap n = 0p—1,n — Opn (Where Ay, # 0 by Definition 16), under Assumption 2.7, we have

" 1 b b
ol = 5 (u(b) exp <a / iku(€) dg) — u(a) exp <a / iku(€) dg)) +O(k™2)E ) (k).
(5.1.8)

Proof. From (2.3.3) and Lemma 19, we have

k)| =

esxp ( [ df) 1+ ooﬂ»\ < 2exp (— [ ) sino -+ arg((6)) d§>- (5.1.9)

Z z

Let @ = w/4+ A where —0 < A < 0 for some 0 € (0,7/4) and arg(u(€)) = —7/4+ Ap(§) where 0 < Ap(€) < /2.
Then

2091 < 205 (= [ (@)1 sin(a6 + An(e) ). (5.1.10
and expanding the sine, l
IZ(k)| < 2exp (/w Ikpa(€)]| sin(A6) cos(Apu(€))| dé — / Ik(€)] cos(A8) sm(Au(g))dg>. (5.1.11)
@ @
Using Lemma 13 and that sin(Agp) > 0 and cos(A§) > 0
|Z(k)| < 2exp (Mn|k| sin() (z, — x;1) — %mn|k\ cos () /:T Ap(g) df). (5.1.12)
Denote ) .
R /wl Ap(€) d€. (5.1.13)
Since the equation is partially dissipative X > 0, and we can choose 0 small enough so that
tan(d) < TA}T (5.1.14)
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Equation (5.1.12) then yields

|=(k)| < exp <— R cos(d)(x, — x7)| k| + ln(2)>. (5.1.15)

Choosing mz < muRcos () (z,, — x7) /7, then for r large enough, |Z(k)| < e~"=I*l for |k| > r. The same logic applies
to  =37/4+ A and for 7/44+0/2 < 0 < 37/4 —0/2. Let 6y = /4 — 0 and we have the result for E(k).
Using (4.1.15) in (4.1.10a) for n = 1, we have

_2 b / Y b
T (k) = %(k)/ <u(y)u(y)+k2’y+(z)(y)) exp (am/ +al,1/ iku(f)d§> dy. (5.1.16)

By Lemma 14, u € AC(D) and integration by parts gives

T opn] (k) = m (u(b) exp (0'071/ ikp(€) d€> — u(a) exp (01,1/ ikp(€) d£>>

1 b ’ / Y b
_ 106 / (;fl?k_kjjg)(y))exp <a | o / iku(é)di) dy.  (5.1.17)

Under Assumption 2.7, u' € AC(D) and another integration by parts gives (5.1.8).
The first inequality in (5.1.7) for n = 0 and n = 1 follows from (4.1.15) and (5.1.8), respectively. Integration by
parts of (4.1.10a), as in Lemma 20, yields the asymptotic recurrence relation

1+ 0(k™Y) u(b)
1 ik

1 O k—l b e 12 k, e b . -
S [ S G e <<f [ e df) T4 opl(h)

1 b / / b
RO [y, (e ey ( | itte ) T4 (o). (5.1.18)

n

TV o)) = T lopl(h)

Assuming the first inequality in (5.1.7) holds for n = 0,1,...,m — 1, and using that |\, | > 1, we use (5.1.18) to
prove that it holds for all n > 0 by induction. Using the first inequality in (5.1.7), we find

= CI k CJ C i+l
@D o, 2] (k)| < €@ (k : : =O(k~= 1) el (k). 5.1.19
2 |7V lenal(h)] < € ()<|k|L]§1Jk—CQ+|k|LéJk—Cz> ( )& (5.1.19)
O
Corollary 65. Under Assumption 2.7,
(a,b) qu(aab) ’ 2
(k) = === exp | 20k [ w(€)de | —1 ) + Ok 2)e@ezr)(k), 5.1.20a
! 16ik
(a,b) u_(a,b) : ’ ¢@zr)
R m/ () de | +1) + O(k2)ee) (k). (5.1.20D)
where uy (a,b) = u(b) £ u(a) (so that uy = uy(x;,,)).
Proof. Using (5.1.8) in (4.1.11), we find (5.1.20). O

Having established some stronger bounds and asymptotics of the function J,Ea’b) [0p.n](k) under the stronger
Assumption 2.7, we keep Definition 21 and prove stronger bounds on A(k), U(k,x,y), ete.

Lemma 66. We have the same asymptotics for A(k) as in Lemma 22 with e(k) = O(k=)&@0zr) (k).
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Proof. Starting with (4.1.42) from Lemma 22, since Z(k) — 0 exponentially fast, we find
A(k) = ico(k) — so(k) + 2i Z (cn Clenen) (k) + s, (k)8(Erar) (k)) + O(k=%)e@en) (k). (5.1.21)

1. If (a : b)2.4 # 0, then, using that ¢, (k) = (=1)"me, /k+O(k™3) and s, (k) = (—1)"(a : )24 +ms/k* +O(k™%),
we can write (4.1.30) with bg(k) defined in (4.1.33a), where

+ Ok~ e (),

B 1 1M, (= ,w,) (z1,2,)
€(k)—wl —74‘222(" e t +2ZZ§TL S l )

(5.1.22)
which, by Lemma 64, gives £(k) = O(k~1)&@ar) (k).

2. If (a : b)2,4 = 0 and m., # 0, then we can write (4.1.30) with by(k) defined in (4.1.33b), where

e(k) = i [ico(k')

1M,

iMme,

el (k) + 2225,1 8lr) (k )) +O(k—3) el (k).
(5.1.23)
Since ¢o(k) = me,/k + O(k™3), s,(k) = O(k™2), ¢n(k) = O(k™1), and since the sums over eﬁf“”””(k) and
8" (k) are both O(k~1) €™ (k). we have (k) = O(k~") @@ (k) &@nen) (k).
3. If (a:b)24=0,meg =0, me, =0, and (a: )13 # 0, then ¢o(k) = ¢1(k) = 0 and we can write (4.1.30) with
bo(k) defined in (4.1.33c), where

k2 -
ek) = = |=so(k) + 75 + 2i7g > S (R)

k2 + O(k~3) @@z (), (5.1.24)

N
N n=1

Since s,,(k) = ms/k? + O(k~*), and since S%x“xr)(k) = O(k~1)e@er) (k) we have e(k) = O(k~!)e@zr) (k).
4. If (a:b)24 =0, me, =0, me, #0, and me,uy —8ms # 0, we can write (4.1.30) with bo(k) defined in (4.1.33d),

where
8]€2 meu —8m . . Ty,Tp T,T
e(k) = e ams [— : §k2 S tico(k) — so(k) + 2ico (k)CS™ ™) (k) + 2icy (k Z el
nodd
4
+ 2 ﬁ S@uer) (k)| + O(k~3)e@uar) (k). (5.1.25)
n=1

Since co(k) = O(k™3), c1(k) = —me, [k + O(k~3), sn(k) = ms/k2 + O(k—%), ") (k) = —u, /(16k) +
O(k=2)¢@ier) (&), and 8 (k) = O(k~ )@@ (k), we have £(k) = O(k~1)&@ar) ().

O
Lemma 67. There exists an v > /M, and My > 0 such that, for k € Ct(r), z € D, andy € D,
(21,2r) (k, 2, y) bg(@rar)
| (k,z,y)| < Mg€ (k) and bo (k) < Mylk|*€ (k). (5.1.26)
0

Therefore, U(k,z,y) and ¥(k,z,y)/bo(k) are well-defined functions.
Proof. For Boundary Case:

1. If (@ : b)ay # 0, from (2.3.7), we find ¥(k,z,y) = O(kK°)&@-2r) (k). With b = 0, we have (5.1.26), using
Lemma 66.

2. If (a : b)2.4 = 0 and m, # 0, from (2.3.7), we find ¥ (k, z,y) = O(k~1)&@2r) (k). With b = 0, we have (5.1.26).
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3. If (a:b)24 =0, me =0, me, =0, and (a: b)1,3 # 0, from (2.3.7a), we have for z; <y < z < z,,

. 45(3)7”)(0/ : b)1,2 — (y,x) 92 (x1,x,)
Uk, z,y) =— =2(k)S k)+ O(k™)e k), 5.1.27a
) oo e ) ORI .
and similarly for z; < z < y < .,
U(k,z,y) = — AB(x)(a : b)3a 2(k)SY (k) + O(k~2)eEen) (k) (5.1.27b)

VB () v/ (Bu)(zr)

This boundary case is regular if both (a : b)12 = 0 and (a : b)34 = 0 and irregular if either (a : b)12 # 0 or
(a:b)34 # 0, see Remark 6. Lemma 66 then gives, for x; < y < z < z,,

U(k,z,y)

AR M EEER)SS™ (k) + O(k°) &) (k), (5.1.28a)

where Méf) = 48(x,)(a : b)1,2/(ms/(Bp) (@1)/(Bu)(zr)), and similarly for 7, < z <y < x,,

U(k,x,y)
bo(k)

with M§" = 48(z1)(a : b)3.a/(me/(Br) (@) /(B (@,))-

4. If (a : b)aq =0, m¢, =0, me, # 0, and m, up — 8mg # 0, from (2.3.7), for z; <y <z < z,

= MV RE(R)SS) (k) + O(k) €0 (k), (5.1.28b)

2me,

Wk, y) = T2 (S5 (RCE (k) = ¢ (RS (k)

AB(ar)(a:bio o o) —2 )
— : Z(k)SY T (k) + O(k~2)e@re) (k). (5.1.29)
ke/(B) () / (Bu) ()
Similarly for z; < z < y < x,, we also reach U(k,z,y) = O(k~1)&@) (k). With Lemma 66, this gives
(5.1.26).
O

Lemma 68. There exists an r > /M, and Mg > 0 such that for k € C*(r) and z € D,

m k’
Bk, )] < Mg€@ o) () and \M
bo (k)

Therefore, the functions By, (k,z) and B, (k,x)/bo(k) are well defined for both regular and irregular problems.

< Mpl|k|PTre@nme) (k). (5.1.30)

Proof. Using Lemma 63 in (2.3.6¢), we have

By_j(k,x) = (—1)7 =0 { 277 C(II’I)(’f)JFbﬂﬁ(xl)C(I’mr)(k)}+O(k‘1)€(”“’“)(k), j=1,2.

VOB @) | VOB " B (xr)
(5.1.31)
Using
2(k)ey™ ) (k) = %Jé“”[l](k) (T 21k +1) = %Ié“””(k) + Ok~ e =) (1), (5.1.32)

and similarly for E(k)@gc’“)(k), where Iéa’b)(k) is defined in (4.1.23), then

_ 1 2 a ’2ﬁ(xr) (z,2,) ijB(l‘l) (z,x) —1\ ¢ (z1,2) .
Ba_i(k,z) =(-1) J 7 k) + ————=7T, k), +O(k™ )€ k), =1,2.
BV e {mu)(m AN I ()} el

(5.1.33)
For Boundary Case 1 or 2 and for the irregular boundary conditions, (5.1.30) follows from the above and Lemma 66.
For the regular version of Boundary Case 3, we have a;; = 0 and b;; = 0 for all ,j = 1,2, except for a;; and ba;, see
Remark 6. Thus, using Lemma 66, we have (5.1.30) for the regular Boundary Case 3. O
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Lemma 69. There exists an r > /M, and Mg > 0 such that for k € C*(r) and z € D,

(bo(k, 1’) _
bo(k)

|o(k, )| < Ma|lgollp€ (k) and ’ o(k) oo €+ (k). (5.1.34)

Therefore, ®o(k,x) and Po(k,x)/bo(k) are well-defined functions.

Proof. For the regular problems, using Lemma 67 in (4.1.28a), we find (5.1.34) with M¢ = My /(mamgmy,). For the
irregqular version of Boundary Case 3, using (5.1.28) in (4.1.28a),

2= W) (1. (@.9) (.
@0(ka ) M( ) ( )'S ( )q&(y (+)/ ’5 ( )q&(y) dy+O(kO)HQQHDG(m’zT)(k)-
bo (k) o ¢ 2)\/(Bn) (k. y) % )/ (Br) (k. y)
(5.1.35)
The Riemann-Lebesgue lemma [15] then gives that ®q(k,z)/bo(k) = o(k)|qollp€@*) (k). The same argument
applies to Boundary Case 4. O

Lemma 70. There exists anr > /M., and My > 0 such that for k € C*(r)\Q(r), i.e., the green region of Figure 4.1,
for x € D, and for t € [0,T],

Ds(k,z, t)e Kt
bo(k)

Therefore, ®¢(k,x,t) and ®¢(k,x,t)/bo(k) are well-defined functions.

| s (k, 2, t)e ) = O(k~2) €™ (k) and = Ok~ eluer) (k). (5.1.36)

Proof. For k € C+(r)\Q(r), i.e., the green region of Figure 4.1, |e=#"(:=%)| < 1, and so, integrating (1.2.14) by parts,
we find )
z fa(z, t)e" " fo(x,0)  Glfas](K? z,1)

fo(E? z,t) = = = 3 (5.1.37)
and by Assumption 3.1, we have
; - 2|[fllo + |l fellp
Lk 2 e F | do < ST WD 5.1.38
[ oti e e < 2R (51.39)
Using this and (5.1.26) in (4.1.28b), we reach (5.1.36) with My = My /(mamgmy). O

Lemma 71. There exists an r > /M., so that forz € D andt € [0,T], Al b)(k), A(k), U(k,x,y), and o(k,x) are
analytic functions for k € Qext(r), and <I>f(k, z,t)e 't and B (k, x)e —R*t are analytic functions for k € Qexet (r)\Q(7).

Proof. The proof is identical to that of Lemma 28. O
Lemma 72. For k € Qex(r) and integer N > 0,
1 1

A(K) ~ bolk)

(AR (k) + on (K)), (5.1.39)

where dn (k) = O(k™N) for k € Q(r) and Ay (k) = O(K®)[€@2r) (k)N and is analytic for k € Qexi(r).
Proof. From Lemma 66, we have that A(k) = bg(k)(1 + £(k)), where e(k) = O(k~')&@u#) (k). We then write

ﬁzﬁ(k) i(—l)jk(k)}jﬂ—w )Y | _ 1 (AT (k) + 6 (K)], (5.1.40)

=0

for any integer N > 0, where we define

P = N (RN
AN R) = (1) (k)P and  dn(k) = (=1) e (5.1.41)
j=0

Since e(k) = O(k~1)&@2r) (k) and (k) is analytic (by Lemma 71) for k € Qe (1), Ay (k) = O(K0)[&@zr) (k)Y
and Ay (k) is analytic for k € Qey(r). Since e(k) = O(k™1) for k € Q(r), dn(k) = O(k~N) for k € Q(r). O
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Lemma 73. There exists an r > /M, such that for x € D and t € (0,T), gz, (z,t) (4.1.29¢) can be written

1 B (k, ) 0) 2 1 B (k, ) 1) 2
@, (7:1) = 5 /aszext(r) bo (k) B (ke + 2m /89(7") bo (k) B (k™ (5:1.42)
where
FO k) = AR (k) (— f"];go) Iy ’/7;510) ) (5.1.43a)
I " 2
30 (k1) = ax (k) (—f“;g@ ; fn,;gm) (AR () + by (1)) TR0, (5.1.43b)

With Assumption 3.3, the function Ss,ol)(k) is O(k=2)[€@o) (K)N for k € Qoyi (1) and Sg)(k,t) is Ok~ ™in{N+2,6})
for k € Q(r). With N > 4, the function qg,, (x,t) is well defined.

Proof. With Assumption 3.3, integrating (2.2.7b) by parts yields

_ IO fa®t | £.0) | G (5.1.44)

2
Fn (k" 1) k2 k4 k4 k4

By Lemmas 68, 71, and 72, B,,(k,z)/(k*A(k)) is O(k*~3) and analytic for k& € (r). Therefore,

Bin(k,2) fin(t)
/a%) ORI (5.1.45)

by Cauchy’s theorem. Using (5.1.44) then in (4.1.29¢) gives

1 Bin(k,x) [ fm(0)  f,(0)  GIfRI(R* D) _y2,
= — — n n ’ 1.4
Using Lemma 72 in (5.1.46), we find
1 Bm(k7.’17) 0 _ k2t 1 Bm(k,x) 1) _ K2
qs,, (x,t) = 7/ O EO (ke F  dk + — — D E D (ke dk, 5.1.47
5., (1) 27 Jaawy  bo(k) () 27 Jaawy  bolk) (k1) ( )

where 352)(@ and gﬁ,?(k, t) are from (5.1.43). Using Assumption 3.3 and Lemma 72, the function 352)(/{) is analytic
and O(k=2)[€@0) (k)N for k € Qexi(r) and &gp(k;,t) is O(k~mn{N+2.6}) for & € Q(r). Let 6 be defined as in
Lemma 64 and define the contour Cr ={k € C:|k|=Rand 0y < 0 <7/4 or 3w/4 < 0 <7 — 0y}, see Figure 4.1.
We can deform the first integral in (5.1.47) from 9Q(r) to Qext(7), since (using symmetry)

/ By (k, x) gsqg)(k)e—kzt dk" < 2MBO(Rb) ‘/Z [@(xl,a:T) (k)]N+16_R2 cos(20)t 49
cn  bo(k) 0
< 2MpO(R®) /Z (N+D)Mg R=2R*0)(£-0) g _, (5.1.48)
0

as R — oco. We then obtain (5.1.42). The first integrand in (5.1.42) is exponentially decaying (by e’k%), and we
choose N > 4 so that the second integrand is O(k~*) and is absolutely integrable (as is its ¢-derivative and two
a-derivatives). O

Lemma 74. There exists an r > /M, so that for x € D and t € (0,T), qo(z,t) (4.1.29a) can be written as

1

1 Po(k, ) \ 1 —k2t /
r,t) = — Ay (ke dk + —
(1) 27 /aszext(r) bo(k) — N ) 21 Jaa(r

‘bo(k‘,x)
bo(k)

Sy (ke ¥t dk, (5.1.49)

and is well defined.
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Proof. Using Lemma 72 in (4.1.29a),

1 @O(k,x) _ _ k2t 1 (I)()(k,l') — k2%t
qgo(x,t) = —/ A (k dk + / on(k)e dk. 5.1.50
(1) 21 Joaey bo(k) v (R)e 21 Joawy bo(k) w(k) ( )

By Lemmas 69, 71, and 72, ®y(k,z)/bo(k) and A" (k) are bounded, well defined, and analytic for k € Qe (r). Let
Cr be defined as in Lemma 73, see Figure 4.1. We can deform the first integral in (5.1.50) from 9Q(r) to 0Qext(r),
since (using symmetry)

o i x
/ O T) A L2 (k)" k| < o(RQ)quIID/4 Mg (Ve =) ROG ~0) =1 cos(20)t
cn bo(k) 0

s

< o(R?) a0l / T M (VA1) e R R(50) gg _, ) (5.151)
0

as R — oo. Thus, we have (5.1.49). The first integral in (5.1.49) is exponential decaying (by e~*°!), and we choose
N > 4 so that the second integral is O(k~*) and thus is absolutely integrable (along with its ¢-derivative and two

x-derivatives). O

Lemma 75. There exists an r > /M, so that for x € D and t € (0,T), qf(x,t) (4.1.29b) can be written as

(0) (1)
1 q)f (k71‘7t) _ k2t 1 / (ﬁf (l@l’,t) k2
) = — — dk + L Ce Mk, 5.1.52a
Qf(l' ) 2 /;cht( ) b()(k‘) 27T Q(r) bo(k) c ( )
where
o™ (k,z,t Wik, )i (2, . dy, m=0,1, (5.1.52b)
D /(Bn)(k, 2)\/(Bn)(k, )
and, for regular problems,
O, 2, 1) = — AR () ‘”‘(,:;’ 0, (5.1.53)
@ aO — g (o7 k27 7t
W (k2, 3,1) = 5 (k)L (k”f; )—(ANl(k)—s—&N(kz))w. (5.1.53b)
and for irregular problems,
@ 70 a 70
FOK2, 2, t) = AN (k) (—f (]:; )+f t}if )>, (5.1.54a)
&% ;0 « 70 — e} :ZCQ, ,t
D (K2, 2,t) = o (k) (—f (152 ) ’tlgf ))+(ANl(k)+5N(/€))W. (5.1.54b)

Therefore, qr(x,t) is well defined for all three problems.

Proof. For regular problems, with Assumption 3.1, the first term of (5.1.37) in (4.1.29b) gives

U(k,z,y)fa(y,t) B (k,z,y) B
/amr) a0 Jo NN [ st /emm BAR) )y o)

(5.1.55)
by Cauchy’s theorem. Thus, when we insert (5.1.37) into (4.1.29b), we find
e H U(k,z,y) fo(®,0) _ Glfail (¥ y,t)
gr(z,t) = / / [— dy. (5.1.56)
27 Joarr) V(B) (&, 2)\/(Bn) (k, y) k2 k
Using (5.1.39) in the expression above, we obtain
(0) 1)
1 (I)f (k,x,t) _k2¢ 1 q)f (k,l‘,t) k2¢
qr(z,t) = / < dk + / ————e " 'dk, (5.1.57)
d 27 Joaw)  bo(k) 27 Joouy  bo(k)
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where @gm)(k‘,x,t) is defined in (5.1.52b). We deform the contour of the first integral from 9Q(r) to OQext(r) to
reach (5.1.52). The deformation is justified by Lemmas 67, 71, and 72, similar to Lemma 73.
With Assumption 3.5, we integrate (5.1.37) by parts a second time to obtain

k2t k2t
ot ey = @O fa@0)  farleh | farln0) | Glhacd(,8)

When inserting this equation into (4.1.29b), we again integrate the first and third term to zero by Cauchy’s theorem
(and Jordan’s lemma). We then obtain

(5.1.58)

1 _k ¢ k x [ 70 [} 70 g «,8S k27 7t
ar(,t) = o / / -9) i (kyQ ) S téf ) Glfe. 54 YO gy, (5.159)
™ oQ(r) \/ ﬂﬂ \/ 611)(113, y)
which gives (5.1.57), but with fgn)(k;Q, x,t) defined in (5.1.54). A contour deformation then gives (5.1.52). O

Theorem 76. There exists an v > /M., such that the solution expressions (2.3.2) are well defined for x € D and
te(0,T).

Proof. Combining Lemmas 73, 74, and 75, we obtain our result. O

5.2 The solution expressions solve the evolution equation

In this section, we will prove that the solution expression (2.3.2) solves the evolution equation (2.3.1a) in their
respective domains. We have the same derivatives of the accumulation functions as in Lemma 33, the same summation
identity of Lemma 35 (for the finite interval), the same definitions in Definition 36, and the same identities in
Lemma 37 (for the finite interval). We now prove the bounds on these derivative functions.

Lemma 77. There exists an v > /M, and My > 0 such that for k € Ct(r), for x € D, and fory € D,

[T(k, ,y)| < My|k|€@=) (k) and ‘”’y)’ < Mlk|PH e@een) (). (5.2.1)

T
bo (k)
Therefore, W(k,z,y) and ¥ (k,z,y)/bo(k) are well-defined functions.

Proof. The proof is identical to that of Lemma 67. Note that the My’s only differ by a factor of M, from Lemma 13.
Without loss of generality, we can take them to be the same. O

Lemma 78. For allk € C*(r) and x € D

x(k,x) = 2ik(pn)(k, z)A(k), (5.2.2)
where x(k,x) is defined in (4.2.18b).
Proof. The proof is identical to that of Lemma 39. O
Lemma 79. For j =1,2,

. ) = —(— j4kn(k,x)E(k) B(xr) ;1 - np(zy,z) a n (z1,x)
Bagalh,z) =—(-1) V(B (k, z) {\/(ﬁn)(k,x,.) [kn(k,xz);( e ﬂz S )]

6(xl) z,2r) n z,Ty)
(ﬁn)(k,xl lknk J)T gc 7b322 S( )‘|}>

(5.2.3a)

and there exists an r > /M, and Mg > 0 such that for k € CT(r) and x € D,

Bz (k, x)
bo(k)

Therefore, the functions By, »(z,t) and By, »(x,t)/bo(k) are well defined.

Bon o (k, )| < Mp|k|€@rer) (k) and ' < Mplk|PF2etee) k), (5.2.3b)
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Proof. Lemma 33 and direct computation gives us (5.2.3a). The proof for (5.2.3b) is identical to the proof of
Lemma 68 in Section 5.1. Note that, as in Lemma 77, the Mpg’s only differ by a factor of M, from Lemma 13.
Without loss of generality, we can take them to be the same. O

Lemma 80. We have
U (k, z,y)q0(y)

D /(Bn)(k, z)\/(Bu)(k,y)

where ok, x) is defined in (4.1.28a). For all three problems, there exists a Mg > 0 such that

x)

<I>O$k:a:

dy, (5.2.4)

Qg . (k

@0 (k, )| < Mok gollpE®=) (k) and ‘ (k’) < Mo|k[*||qo] p €0 (k). (5.2.5)

Therefore, ®q ,(k,z) and ®¢ ,(k,x)/bo(k) are well defined.

Proof. We break the integral over D in (4.1.28a) into the two regions y < x and y > x. Then we use the Leibniz
integral rule to obtain

U(k v W(k,
Do (k) = LT 2T) ~ Wik, - y)qa(w (5.2.6)
(Bn) (K, ) D/ (Bn)(k, 2)V/(Bn) (k. y)

Since U(k,z,27) = ¥(k,z,2T) for both all three problems, we have (5.2.4). We obtain (5.2.5) from Lemma 77.
Since the integrand in (5.2.4) is absolutely integrable, differentiation under the integral is allowed. O

Lemma 81. For k€ C*(r), z € D, and t € (0,T), the x-derivative of @gm)(l@x,t) (5.1.52b) is

Uk, z, y)fa™ (K2, y,t

)k, 2, 1) ) ( Y:1) dy, m=0,1, (5.2.7)

\/5"» k,z)\/(Bn) (k. y)

and we choose N > 4 so that <I>( )(k z,t)/bo(k) = O(k~ )& (k).

Proof. We break the integral over D in (5.1.52b) into the two regions y < x and y > x. Then we use the Leibniz
integral rule to obtain

U(k,,27) — U(k (K2, 2, 1) Wk, z, y)f" (K2, t
@g’;’)(k,m,t):( (k2 27) — Wik 2,27) fo” (K, 2, tylie K00 g m—01 (528)
’ V (Bn) (k, 2)\/(Bn) (k, x) p /(Bn)(k,z)\/(Bn)(k,y)
Since W(k,z,27) = W(k,z,27), we have (5.2.7). We find the bound ®{})(k,z,t)/bo(k) = O(k~*)€@:) (k) and
other relevant bounds using (5.1.53), (5.1.54), and (5.2.1). O

Lemma 82. For allz € D and t € (0,T),

1 ( ) ) — k%t 1 (kv‘r) — k%t
a5, o(x,1) = 7/ k)e ¥t dk + 7/ Pma\fT) (1) (g )=t g, 5.2.9a
B ( ) o 80 (k) ( ) o 00 (lﬂ) ( ) ( )
]. (I)o z(k,(ﬂ) _ k2t ]. / (I)Q z(k,l’) k2t
o) = — 202\ T) A1 (1) ekt e 202 L) 5 (ke dk, 2.9b
walet) = o [ B AT e+ o [ S s e (5290)
(0) (1)
1 (I)f (kax7t) k2t 1 / (I)f (kax7t) k2
(T, 1) = — _Lrr e dk + L LR gk, 5.2.9¢
4ra(:1) 27 /BQ «  bo(k) 21 Joq  bo(k) ( )

are well defined, i.e., we can differentiate under the integral sign.

Proof. Differentiating (5.1.42), (5.1.49), and (5.1.52a) gives us (5.2.9). The first integrands in (5.2.9) are exponentially
decaying for ¢t € (0,T), and therefore are well defined for € D. The second integrands in (5.2.9) are absolutely
convergent by Lemma 79 and (5.1.43b), by choosing N > 4 and by Lemmas 72, 80, and 81. O

Lemma 83. For k € Qeyx, ,y € D, t € (0,T), and m = 0,1,

fm\p(kﬂl?ay) and (BBm,z)z(kax) = 7M8m(k,$). (5210)

e o)
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Proof. The computation is the same as in Lemma 44. O
Lemma 84. For all three problems,
a(2)(BPo.2)s (k, v) = 2ikA(K)qo(z) — (K + 7(2)) o (k, ), (5.2.11a)
o) (B (k,x,t) = 2ikAR)F™ (K2, 2, 1) — (K + y(2) @™ (k,2,t), m=0,1, (5.2.11b)
where ™ (k2 x,t) = a(z) &m)(kz,x,t).
Proof. The computation is the same as in Lemma, 45. O

Lemma 85. For x € D and t € (0,T), the t-derivatives are

1 kB, (k, ) g2 1 k*B,,(k, ) 2
T,t) = —— LI SO (ke Mt dk — — I ED (ke di, 5.2.12a
qu,t( ) o 96 bo(k) ( ) o7 00 bo(k‘) ( ) ( )
1 k‘Q(I)o(k $) k2 1 kQ(I)o(k‘ Jf) 2
- L0 AL Rtgp - — | 2/ —kt 212
olat) = =g [ ERUEEAT e k- o /8 e e (5.2.12b)
»© 251
1 f (k,l‘,t) _ k2t 1 k (bf (k’,.]f,t) —k2¢
__ bk — — [ LT -k 2.12
qri(z,t) 27 Joo. bo (1) e dk 277/ bo (k) e dk, (5 c)

and are well defined.

Proof. From (5.1.43b), we have &(}l?t(kQ,t)e_kzt = (AN (k) + n (k) f(t)/Kk*, and

Bun(k, ) o g _ iy [ Bnlh) B
/m b0 () —m i I F 0 (K, t)e dk—fm(t)/m Fbo (F) (AN (k) +6n (k) dk =0, (5.2.13)

by Cauchy’s theorem since the integrand is O(k=2). Differentiating (5.1.42) with respect to t, we then obtain
(5.2.12a). The first integrand in (5.2.12a) is exponentially decaying and the second integrand is O(k~2) and so is
absolutely integrable. Thus, the differentiation under the integral is justified and ¢g,, ((x,t) is well defined.

Differentiating (5.1.49) with respect to ¢ gives (5.2.12b). Since the integrands are absolutely integrable, the
differentiation under the integral is justified and go :(z,t) is well defined.

Since, from (5.1.53) and (5.1.54), (0)(k‘2 x,t) and <I>( L (k,x t) = 0. For regular problems, fat (K2, 2, t)e 't =
f(A;,l(k) + 5N(k))fa7t(x,t)/k2, and for irreqular problems, fa,t (k2,z,t)e -kt _ (AN (k) + on(k ))faytt(x,t)/k‘l.
Then we have kz‘l’g}t)(k,ﬂ%t)e_kzt/bo(k) = O(k=?)e@ue) (k) so that the integral over S is zero by Cauchy’s
theorem. Differentiating (5.1.52b) with respect to t, we then obtain (5.2.12¢). Since the integrands of (5.2.12c) are
absolutely integrable the differentiation under the integral is justified and ¢y .(z,t) is well defined. O

Lemma 86. For x € D andt € (0,T), the derivatives

a(2)(Bg0,2)x (@, t) +¥(2)q0(2, 1) = qo,t(z, 1), (5.2.14a)
a(2)(Bas,e)a(x,t) +y(@)qr(z, 1) + fl2,t) = qre(z,P), (5.2.14b)
() (B4B,,,2)2(2, 1) +7(2)g5,,(2,1) = g8, ¢(x, 1), ~ m=0,1 (5.2.14c)

are well defined, i.e., we can differentiate under the integral sign.

Proof. Direct differentiation of Lemma 82 yields

(BB, )z (T, t) = 1 /,99 M m (k:) —K*t gk 4 i/ W@%)(k’t)ek% dk, (5.2.15a)

2 [Jo( ) 27 bo(k

(Bgo,z)a(z,t) = % /8 N W S(k)e " tdk+% WéN(k)ek2t dk, (5.2.15b)
sty (k,a, <I>(1) kya

(Bafe)e(x,t) = %/m ()ﬂ(‘]i)t Kk + ;ﬂ/ W s (5.2.15c¢)
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Using Lemmas 83 and 85, we find (5.2.14c¢). Since

FARAY (F) 2 KAK)ON(K) k2 gy BAR) (AY (k) +0n () o,
/aﬂext bo(k) et /aQ bo (k) dk = /r‘?Qext bo (k) dk =0, (5.2.16)

then using Lemmas 84 and 85, we find (5.2.14a). using Lemmas 84 and 85, we find

(@) (Bas,2)a(@,t) +v(2)ar (2, t) = qre(z,t) + If(2,1), (5.2.17)
where . 0z . D
If(x,t) — i/ 2lkA(k)f (k 7x7t) 7k:2t dk / QZkA(k)f (k ,l’,t) €7k2t dk (5218)
2 O ext bo(k) 271' bo(k)
For regular problems, we use (5.1.53) in If(x,t) to find
¢
Ip(z,t) = 1 / (f(:v,o)+ / fs(x,s)ek25d5> e Kt dk = f(a,t), (5.2.19)
1T Oext k 0

with a contour integration as in Lemma 47. Equation (5.2.17) then gives (5.2.12). Since the integrands in (5.2.14)
are absolutely integrable, the differentiation under the integral is justified. O

Theorem 87. The solution expression (2.3.2) solves the evolution equation (2.3.1a).

Proof. Since q(x,t) = qo(x,t) + q¢(z,t) + g8, (z,t) + g5, (z,t), (5.2.14) gives the result. O

5.3 The solution expressions satisfy the boundary values

We keep the same definitions from Definition 49 and Lemmas 50-52 still apply.
Lemma 88. For{=1,2, m=0,1, for k € Qext, and fort € [0,T],

O () = fu)dt—1m, QY (t) =0, and  QY(1) =0, (5.3.1)
where §¢_1 m is the Kronecker delta.

Proof. From Lemmas 73, 74, 75, and 82, g) (t) (4.3.5b), Q((f)(t) (4.3.6b), and ng)(t) (4.3.7b) are well defined
functions. Inserting (5.1.49) and (5.2.9b) in (4.3.6b), and inserting (5.1.52) and (5.2.9¢) in (4.3.7b), we obtain we
find

(0) D (1
ol (t) = 2177 /(99 P (())A (k)e —kztdm% , ZO(;))5N(k)e_k2tdk7 (=1,2, (5.3.2a)
PO (k¢ 0 1 [ PYY (k)

@ ! / —k*t gk + L R gy (=1,2 5.3.2b
Q0= 27 et ~bo(k) 21 Joo  bo(k) 7 o ( )

which, using Lemma 52, gives the second two equations in (5.3.1). Using (5.1.42) and (5.2.9a) in (4.3.5b), we find
0¥ () = i/ %5”)(]“)3@( ke *tdk + L %(Z)(k)g(l)(k e tdk, 0=1,2, m=0,1, (5.3.3)
B 27 Joge(r) bo(k) 27 Joaey bo(k) o B

which, using Lemma 51 and (5.1.43), we obtain

Q(f) (t) = 5{;;,771 /8Q (fmk( ) —JUTg——/ f” ek Sds) e*k tdk f=1,2, m=0,1. (5.3.4)

Integrating the s-integral by parts, we have

2

/ k
o) (1) = _eam /89 (fmk( ) _ il / 71( k28d5> e Ftdk, (=12, m=0,1.  (53.5)

1T

66



The integral over the middle term in the integrand is zero by Cauchy’s theorem. The remaining integrand is O(k~2),
and so we can deform down to the real axis, and since the integrand is odd, the principal value is zero. Therefore,
we only have the residue contribution at the origin. This gives

Qm()&AMR%<(m(>f‘/f~ k5¢>ktk0) fa®ferme  (5:36)

k
O
Theorem 89. The boundary conditions for all three problems are satisfied.
Proof. From Lemma 88, we have
anq(1,t) + angs (21, t) + baa(@r, t) + beago(@r, 1) = Q67 (6) + Q) (1) + Q) (1) + Q) (1)
= fO(t)ngl,O + 1 (t)géfl,L (5.3.7)
O

5.4 The solution expressions satisfy the initial condition

Definition 90. For this section we define a function Z(k,y) to be any function consisting of a linear combination of
or integral over e'*™i (with absolutely summable or integrable coefficients) for any nonzero functions m;, independent
of k, with arg(m;) € [—n/4,7/4]. In this way, we may write

Z(k,y) Z/ ik, ¢ et 0 e (5.4.1)

fork € Ct andy € D, where ¢; : Cx D x D" — C and mj : Dx D" — C. We require ¢; to be absolutely integrable
iny and ¢, and analytic at k = oo, i.e., there exists a convergent Laurent series. We require arg(m;) € [—m /4, m /4]
and mj # 0 for almost all y € D and {,, € D". We allow c; and m; to depend on x and we allow nj = 0, in which
case, we simply do not have an integral over ¢,,. € D"i.

This acts like an absorbing element similar to the o(+), O(-) notation. In this way, we have cZ(k,y) = Z(k,vy),
Z(k,y)+Z(k,y) =IZ(k,y), Z(k,y)Z(k,y) =Z(k,y), etc. We will define Z(y) to be any bounded, integrable function of
y (independent of k, but may depend on x) and Z(0) to be any constant (independent of y and k, but may depend on
x). We also define M, (b) = f;u(f) d¢ and

b
76" (k) = exp ( / ikp(€) dé“) = e/Ma () (5.4.2)

so that, from (4.1.10b) and (4.1.15), if o > 0, J(a b)[a] k) = )( k)(1+ O(k™")) = Z(k,y). Note that 2(k) =
j(x’ IT)[ 1](k) — 0 exponentially fast, so that Iézl mr)(k) -0 emponentmlly fast as well.

Lemma 91. Forn > 0, we have
Z(y) + Z(k,y)

T ) [g, (k) = . , (5.4.3a)
’ Ll
and if a and b are independent of y, we have
Z0)+Z(k
T lopal ) = L) (5.4.30)

Proof. From (4.1.10b) and (4.1.16), we have (5.4.3) for n = 0. From (5.1.17), we find (5.4.3) for n = 1. Assuming
(5.4.3) holds for m = 0,1,...,n — 1, using it in (5.1.18) shows that (5.4.3) holds for all n > 0 by induction. O
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Lemma 92. We have

T opalh) = (w®)ZE (00,10 = u(@T§™ (01.41))

AN ik

b " T Z(k,
oo | L k) Zf o ay + T IEY) (5.4.4)
and Z'f0'072 = 02,2,
a, in 7b a T T ki,
T oyl ) = T 70 1 HL T, (5.4.40)
where , , )
1 (B () a’(y)>
in )b - 2d = - d . . 4
mnlad) = [t = [ (5020 g (5.4.4¢)
Under Assumption 2.7,
a 1 a a
TPl k) = 5 (40T o01(k) — (@) T o 1]())
1 W (D) _(ab) w(a) (ah) )
e iy k)~ i =
1 b " z Z(k,
+ B / Q((g))) I (00 1K) T (01 1) dy + T T TR0 23( v, (5.4.50)

and ifJO’Q = 0'2’2,

(a,b) _ mmt(a b) (a,b) _ uQ(b) +u ( ) (a,b) u(a) (b) (a,b) I(y) +I(k7y)
Jo " lop2l(k) = 16, 2ik Jo~ " looz2] (k) 2(4\ oik)? Lo (02k) + (41 2ik)? Ty (o12k) + k3 '
(5.4.5b)
and if00’3 =023 and 01,3 = 03,3,
j;a,b) [0_%3}(1{» _ U(b)mmt(a b)I(a b) (0_ , ki) + u(a)mint(aa b) I(a,b) (0'173k') + I(y) +I(k7y) . (545C)

(81 3ik)2 ° (8 3ik)2 70 k3

Proof. Using Definition 90 in (5.1.17), we find (5.4.4a). With Assumption 2.7 and Lemma 14, integrating (4.1.10)
for n = 1 by parts gives

(b 1 b b
TN g, 1) (k) = S (n(k,b) exp (mm/ ikn(k, €) dg) — v(k,a) exp <al,1/ ikn(k, €) dg))

_ / U/(k,y) exp | 00,1 / “+01.1 / an(k,g) dg dy, (546)
2)\171216 a ’ a ’ y
which reduces down to

b b
jl(a,b) [op1](k) = ﬁ (u(b) exp <00’1/ ikn(k,€) d§> —u(a) exp (01,1/ ikn(k, &) df))

b,/ Yy b
_ (2A1,11ik)2/a z((z))xl,likn(hy)exp <ao,1/a +al,1/y z'/m(k,g)dg> dy+w.

(5.4.7)

Integrating by parts again, we arrive at (5.4.5a). For n = 2, with Lemma 95, (5.1.18) reduces down to

b
T3 [0 2) (k) = *m/ u?(y)uly) exp <002/ +022/ ikpu(€ d§> derw (5.4.8)
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If 09,2 = 029, we find (5.4.4b). Similar to (5.1.18), under Assumption 2.7, we integrate (4.1.10a) by parts to obtain
the recurrence relation

a U(k b) a,b b a
T ol ) = 53 T ol ) - 1 / (k,y)n(k, ) exp (an RO d£> “P [ () dy
’ )
@ : 4.
2/\n nzk/ (k,y)exp (o*nn/y ikn(k, ) df) 1 lopn](k) dy (5.4.9)
For n =2, if 09,2 = 02,2, then Ay 2 = —A; 2 and this reduces down to
(a,b) u(b) (a,b) Mint (a b) (a,b)
k)=— k) + ————= k
T opallh) = = g e A loal(h) + e O T ol k)
L () (@) I(y) + Z(k,y)
’ ’ —_— 4.1
g [ 0T el dy + S UEEL sa)
and using (5.4.5a),
(a,b) . Mint (@, b) (a,b) _ (b) + u? (a )I(ab u(a)u(b) I(a b) k
‘72 [Up72](k) - 16)\1 27/]17 ‘7 [ }(k‘) (4)\1 QZk) (U k) (4)\1 QZk) ( 1,2 )
b
u(a Z(y) + Z(k
— (4)\1(22]{:)2/ (y) exp (Ul 2/ +O’22/ zkn k’ 5 d€> der w (5411)
Integrating the final integral by parts yields (5.4.5b). Under Assumption 2.7, for n = 3, using (5.4.5a) and (5.4.5b),
if 09,3 = 02,3 and 01,3 = 03,3, then Ay 3 = —A1 3 and A3 3 = A1 3, and (5.4.9) reduces to
a, b ins 5 b a in I} b a T + T k,
Do (k) = u(b)mine (a )Ié  (00.5k) + w(a)ming(a )Ié D(orsk) + (y) +Z(k,y)

(8X.3ik)? 3

b Yy b
—ﬁ / (4 () 1) + M (@, y )1 () e <a / o / ik‘u(&)d£> dy.  (5.4.12)

(8A1,31k)?

Another integration by parts gives (5.4.5¢). O
Corollary 93. We have

ega,b) (k) _ u+1(6a;§b) (I(a ,b) (2]6) _ 1) 162k I(a,y) (2]€) I(%b) (2k)> dy + W, (54133)
Sga,b) (k) = 1(gkb) (Iéa’b)@k) ) + 16% /b u/(y) (Iéa»y)(2k) —I—Iéy’b) (2k)) dy + ( )—221(]6 y)’ (5.4.13Db)
el (1) — mlgzltz b) (I(a ) (2k) ) n I(y )J;I(k y)’ (5.4.13¢)
85" (k) = m"ﬁtiz B (2409 k) 1) + 2 +I L)+ Tkvy), (5.4.13d)
and under Assumption 2.7,
i1 =48 50 (202 4
L @)Y () (1,b) I(y) + Z(k,y)
g [ () (@ em +eon) ay + HOSTED, (1)
S0 = "5 (A2 1) + g (S + ) (@000 1)
1 YWY (e (:b) Z(y) + Z(k,y)
_ W/a (M(y)> (Io (2k) — Z8° (2k)) dy+ =5, (5.4.14b)
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e (k) = M) (glaoypy 1) 4 lﬁk 2 (2 n) 4 1)  TWE T (5.4.140)

S0 =~ (o0 h) +1) + D (e oy 1) + ZOEZED a4

e Do o](k) = _u+(aa(b3);;i)r;t(avb) (I(“ ) (2k) +1) Z(y) + Z(k.y) +I(k v (5.4.14¢)

Do (k) = — = (a;gg”]:;;(a’ b) (79 20)-1) + W (5.4.14¢)

Proof. Using (5.4.4) in (4.1.12), we find (5.4.13). Similarly, using (5.4.5) in (4.1.12), we find (5.4.14). O

Remark 94. Note that if a,b are independent of y the Z(y)’s appearing in Lemma 91 and Corollary 93 are Z(0)’s

Lemma 95. For almost every y € D

7
lim I Y) vt g _ g, (5.4.15)
t—0+ et k
Proof. From Definition 90, we have
k i (k 2
/ Ty woe gy Z/ / y’ &Ko) ik, ()4 g g, (5.4.16)
0 B D J 9t

Since ¢; is analytic at k = oo, we can write it as a Laurent series with coefficients denoted Cge) (y,¢,,), so that

I(ky) w2 eikm; (y,¢,) —k>t
/aQ p dk = ZZ/ / ——r——dkd¢,. (5.4.17)

j=1¢=1 Oext

For the O(k~2) terms, we deform up to d and since the integrals are absolutely convergent, we use the DCT and
Cauchy’s theorem to conclude that

> © eikm;(y,¢,)—kt
ch (y7 C'n) /89 et dk — 0, (5.4.18)
=2 ext

as t — 0F. For the O(k~!) term, we deform down to the real axis, indenting the contour around the possible
singularity at £k = 0, denoting the contour as I'r. We obtain

ik:m,-(y,Cn)—k2t . — k2t 0o - ) _ k2t
/ ;dk — / Cos(km] (y7Cn))e dk—’—l/ Sln(km] (y’Cn>)e dk (5419)
F]R k F]R k k

— 00

The first integrand is odd and we only have a contribution from the residue theorem. The second integrand is even,
but is analytic at k = 0. Integrating these, we find

ikmy;(y,¢,)—k%t ,
/ T k= —imerfe <mﬂ(yc")) 0, (5.4.20)
Iy k 2Vt
as t — 07 [8], since m; € [—7/4,7/4] for almost all z,y € D and ¢,, € D". O

Lemma 96. For e(k) in Lemma 66, we may write

Z(0) + (k. y)

e(k) = .

+ O(k2)e@m) (k). (5.4.21a)

and more specifically, for irregular problems, we write

e(k) = % + / " 1(0) (789 1) + 25 20) ) dC +

x

Z(0) + I(k, y)

= + O(k3)e@nm) (k). (5.4.21b)
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Proof. Using Lemma 91 in (5.1.22), (5.1.23), and (5.1.24) gives (5.4.21a). Using Lemma 91 and Corollary 93 in
(5.1.24), we find

4u7 + Mint 1 Tr

1 Z(0) + Z(k,y)
32ik 8ik /,,

e(k) = — w'(¢) (Iéf”’o(%) + 5o (2k) ¢ + > + Ok 3)eE ) (k). (5.4.22)

which gives (5.4.21b). Using Lemma 91 and ¢o(k) = Z(0)/k® + O(k=°) in (5.1.25), we find

8k? Z(0)  maup  2ime < 2imes o
k) = o 1 . 1 e(a:l,:r,.) k 5 S(wl,x,.) k
e(k) mes —Sm, | B 52 2 ; k) + =5 ; (k)
dd
7 I(k
+7(0)+ (k) + Ok~ eEom) (), (5.4.23)

k2
and using Corollary 93,

E(k) _ I(O) + I(O) /b <u/(C))’ [I(ga,c)<2k) +I((]<’b)(2k):| dC+ W +O(k‘73)€(ml’w")(k), (5424)
which also gives (5.4.21b). O

Lemma 97. Ast — 0%, withm =2—j form=0,1 (and j = 1,2), we have

1)
o 0:0) = 5

where bj+ = 0 for regular problems and for irregular problems

B; e wML@) 4 Bj+e—iM3<”’T)) +o(t%), (5.4.25)

16(—1)7 " B(1)bse wnd  Bo.— 61T B(zr)age
(me, g — 8mq)/(Bp) (@0) T (mewy — 8ma)y/(Bu) (@)

setting me,uy = 0 for Boundary Case 3.

B;_ = (5.4.26)

Proof. Consider g, (x,t) given in (5.1.42). The second integrand is O(k~2) and is therefore absolutely integrable.
We may then use the DCT and Cauchy’s theorem to conclude that the second integral goes to zero in the limit as
t — 0%. Using that =(k) = O(Il’z)[1](k)._70(z’xr)[1](k), we pull out the leading order of By_;(k), using Lemma 91,
and write (2.3.6¢) as

A=y aj2B(r)  (x2) (z1,2) biaB(w1) L (a1.2) (z,2r) Z(k,y)
Ba_j(k,x) = 11(k)C k —_— 11(k)C k —,
%,2) vV (Bu) () {\/(ﬁﬂ)(l‘r)jo MRE™ k) + (5#)($l)j0 ke )}+ k
+ Ok~ Hyelnen) (k). (5.4.27)

Using Lemma 92 and absorbing the Z(k) terms into the O(k~2)&@2r) (k) terms,

) 2( 1)j aﬂﬁ(xr) (z,2) bﬂﬁ(ml) (21,7) I(k,y) -2\ g (z1,20)
Bo_i(k,x) = T k) + ——=—7, k) + + O(k ¢ k). 4.
2 J( ) \/(5 ) ){\/(5 )(zr) 0 (k) Bu) (@) 0 ( )} L ( ) (k). (5.4.28)

From (5.1.43) and Lemma 96,

(0)
m (k) — fm(O) I(O) +I(k7y) — T,%y
bo(k)  bo(k)k2 T 3 +O(k™%)ee) k), (5.4.29)
so that
Bo—j(k,2) ~(0) 1y So—i(0) ) e Z(k,y) o e
W%—j(k)*m (BJ—IO (k) + Bj+ 1, (k)) +— + O(k~ %) e@om) (), (5.4.30)
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where Bji are given in (5.4.26). We insert this into (5.1.42). The O(k~2)&(=:#) (k) terms can be deformed up to
0§ and we can use the DCT [8] and Cauchy’s theorem to conclude it goes to zero as t — 0. We use Lemma 95 for
the Z(k,y)/k term. Then

Boj(k,2) 0 1y~ f2-4(0) (w1,2) (@20) (1)) o=kt 0
75 j(k)e dk = ——= B;_Z,”""(k)+ B;+Zy " (k) ) e dk +o(t”). (5.4.31)
/aszm bo (k) V@) Joa, N i )
Deforming down the real axis, letting M, ( fy £) d¢, and integrating, we find (5.4.25). O

Lemma 98. For regular problems,

\II ijj — xT z.z z v, .
(bo(k)y)ﬁzvl(k) = Z5"Y (sgn(y — 2)k) + Z(0)Z§™ (RIS (k) + Z(0)ZE) (k)Z5"" (k)
+ Z(y)Z5" ) (k) Z§m ) (k) 4 (]Z d + O(k~2)e@ner) (k). (5.4.32a)

and for irregular problems,

v k,l‘, _ T, x,T xy, Z,T s z kv — T, T
MANl (k;) — Ié v) (sgn(y — x)k') —|—I(y)Ié )(k‘)I(() ! y)(k) —I—I(y)I(() )(k)zéy )(ki) + w + O(k‘ 2)6( L T)(k)

bo(k) k
8me, ik (@1,2) (@) (@20) ()7 ()
s S (BT WTE T ) - T T )
2o gz o0 = oy - ajie + 70)
() (min(z.y), (¢.max(z.y))
+2) [ @ (3 o) £ T 00 dg
min(z,y
1) [ 20 (28920 + 767 20) ac
T
+Z0) (28D WIS ) - 2670020 () [ 20 (69 2k + 2677 (2)) de,
]
(5.4.32Db)
where
e(s) = — 16 Blar)(a: bz, if s <0, (5.4.32¢)
(mc1u+ - Sms)\/(ﬁﬂ)(xl)\/(ﬁﬂ)(xr) B(xl)(a : b>3747 if s > 0.
Proof. For Boundary Case:
1. if (a: b)24 # 0, using Lemma 91 in (2.3.7), we find, for z; < y < = < ,,
\IJ k? b) xr Ty, xT,xr I k’
Pk L9) _ g g el (et (k) + 2, (5.3
bo(k) k
and similarly, for x; < * < y < z,.. Expanding the cosines with Lemma 92, we find
v ka ) x,T T x,T ,T T 1z k7 — 1.2
Tl =TI WTE )+ T BT ) + 7 sty - )b + T Ok e ),
0
(5.4.34)
which, using Lemma 96, gives (5.4.32).
2. if (@ : b)a4 = 0 and m, # 0, then using Lemma 91 in (2.3.7), for z; <y < = < z,,
PR Y) Mo ((pfon) (7 (k) — 280 (TS () + 28 (sgly - 2)k)
bo(k) My
2 : T
- @ bhs___gm gz gy + LY | og-2yemen ), (5.439)

Mo/ (B) (@) v/ (Br) (@) k

and similarly, for z; < ¢ < y < z,. Using Lemma 96, this gives (5.4.32).
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3. if (a:b)24 =0, me =0, me, =0, and (a:b)1,3 # 0, then using Lemma 91 in (2.3.7), for z; < y < & < z,

V(k,z,y) 74I(y x)(k)s(ﬂcz,y)(k)g(%ﬂcr)(k)+ 4B(zr)(a : b)1 2k E i ym) I(lzy)’ (5.4.36)

bo(k) 0 0 ms\/(ﬂﬂ)( )\/(51‘) xr n=0

Expanding using Lemma 92,
e I(k, _
(bo(%y) 7I(a:z,x)(k)léxz,y)(k) - Iéx,xr)(k)zéyyxr)(k) JrI(()yvx)(k) + % + O(k~2)elra) (k)
+ C(y _ :L‘)I(gmz,min(x,y)) (k)I(()max(z,y),xr) (k‘) (Zk‘ n I(y)

max(z,y) .
+Z(y) / Z(0) (79 (2k) + 2 (2 dC), (5.4.37)

min(z,y)

and similarly for ; < z < y < z,. Using Lemma 96, this gives

Wk T T Z(k, — .,z
TP AR 0 = —20 T ()~ 20 02 0 + 207 1)+ T o ey
0

+gfrmne ) zie0 = oy - ajin + 20)

max(z,y) .
FIO) [ Q) (28O k) 4 2 b)) dg

min(z,y)

+I(y) / (0) (7™ 2k) + 78" (2k) ) dg}, (5.4.38)
x;
which yields (5.4.32).
4. if (a:b)2.4 =0, m¢, =0, m¢, # 0, and m,uy — 8mg # 0, then using Definition 90 and Lemma 92 in (2.3.7),

qj k? b) x xry,Tr x xT,Tr xT
st 2 sy — o))+ TV (T () + ZT (9T ()

8me, ik ( (@1,2) 1\ @1,y) (@,20) (17 (Y:20)
_ T Ly KT LY k) — 7\%*r kl’yaT k)
g (BT () = 25 T (k)

z;,min(x max(z x 1z kv — ;.
+e(y — @) (ik + T(y))Z8rmmEv) (g gimax@v)en oy 4 % + Ok~ %)) (k) (5.4.39)

where ¢(s) is given in (5.4.32¢). Using Lemma 96,

V(k,x, _ z, T, , T2, Ty
WANW = 5" (sgn(y — 2)k) + Z()ZE™ (K)ZE™Y (k) + T(y) TS () (k)

8m, ik (@1,@) 1y (@) (@) oy

SRS A I %) k I .Y k _I sTr I Y, Tr

e (@O 0T ) - 7 ()
I(k,y

+ ey — )ik + )T (R)Zg™ T () + = W 4 o 2yetn (k)

+20) (T2 2 ) — 25 E = ) [ 2 (500w + 267 2 e

Z

Zr

+ Z(y) TSz () / Z(0) (759 2k) + 7 2k) ) dC, (5.4.40)

Zy

which gives (5.4.32).

Lemma 99. We have qs(z,t) — 0, ast — 0*.

73



Proof. Consider gf(z,t) given in (5.1.52a). From Lemmas 67 and 75, the second integrand is O(k~2) and is therefore
absolutely integrable. We may then use the DCT and Cauchy’s theorem to conclude that the second integral goes
to zero in the limit as ¢ — 0F. Similarly, if the problem is regular, the integrand of the first integral in (5.1.52a)
is O(k=2)e@r) (), so that it may be deformed back up to dQ and we can use the DCT to Cauchy’s theorem to
conclude that it also goes to zero as t — 0%. For the irregular problems, from (5.1.52a), we have

oo L e Mt (k) AR (B)fa(,0) 0
et =g [ o R B R/ my ) (41

Since this is absolutely integrable, we may switch the order of integration, so that

_i fa(yao) \II(kVT’y)A—l k e—kzt dkd 0 0
-, N DOV /a<> Kbo(k) N ) yrolt). (344

Using Lemma 98, we have

Uk, z,y) . 1 Z(k,x,y) oy (a0

A I ATy = 2N I Ok (z1er) (L

kzbo(k) N ( ) k + ( )@ ( ),

so that from Lemma 95, we have that ¢¢(z,t) — 0 as ¢t — 07. O

Lemma 100. Define X(y) = Z Maj(y)( i(y)) (where M,(b) = f; w(€)deE), x(y) = X'(y)/p(y), and

1 as ) g2
Toln)(w,t) = o~ / n(y)u(y) / (Hzé J(y)’bf(y”(k))e Kt dl dy, (5.4.43a)
TJo Oexe \
! (@5 W) () ) o~k
I = - Iy : 44
(=, t) = o /Dn(y)c(y x) / (H (k) Je "t dk dy (5.4.43b)
We assume n € L' (D), X(y) is continuous for y € D, and
xiy)={ Xr Hy>o and  ely—a)={ T v (5.4.44)
X— Hfy<uw, c, ify<u,

for two nonzero constants x+ and two constants c4 .
o Ifarg(X(y)) € [-n/4,7/4] for all y € D, then Iyn)(z,t) — 0 ast — 0T,

e For almost all x € D, if X(z) = 0, x— = x4+ = 1, arg(X(y)) € [—n/4,7/4] for y > z, and arg(X(y)) €
[37/4,57 /4] for y < x, then Iy[n)(z,t) — n(x) ast — 0T,

o Ifarg(X(y)) € [-7/4,7/4] for all y € D, then

1 c_ c+ 12 c_ c+ 12
Iin](z,t) = e z)e”m (@) _ g)emw X @) T yemar (@) 4 o(¢0))
o) = 5= (£ = £ ) nto ) e )
(5.4.45)
Proof. Integrating the k-integral of (5.4.43), we find
1 1 2
Io[nl(z,t) = —— e~ =YW gy, 5.4.46a
ofilet) = 35= [ nwnt v (5.4.462)
1 1 2

I x,t) = — c(x — X(y)e 5 W) gy, 5.4.46b
1[n)(x, 1) e D77(2/)( y)u(y) X (y) y ( )

For a fixed x € D, if 5(z) is finite, using that n € L'(D), it follow that for any t > 0, there exists a ¢ € AC*(D) [15],
so that

/ [n(y y)|dy < 12 and lp(z) —n(x)| < 2. (5.4.47)
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Using this, we have I;[n](z,t) = I;[n — ¢|(z,t) + I;[¢](z,t) for both j = 0,1. Since || X||s < ||pllp < Mu(z, — 24),

ol — ¢](2.8)] < 2\ﬁ/ n(y) — o) dy < \}\/ﬁ%o, (5.4.482)

L — (1)) < mllec]: |C4+\|f - / In( y < max(le], |CL%M“ @r =) g 0, (5.4.48D)

as t — 0F. We break (5.4.46) into two regions y < z and y > z,

nlae ) = o= (5 [ [ ) e #0 ay (5.4.49%)
nae ) =~ (5 2 [ ) e rwe #0 a (5.4.49D)
Integrating (5.4.49a) by parts once and (5.4.49b) by parts twice, we obtain
il =3 (- =) et (0] + %w et (FE2) - o ptangert (52)
- % <X1— /y<w +i ) erf( > (5.4.50a)
Bl ) = 5= (5 = 2 ) plaje B0 4 EE (o) h) - e
5 ) 0(8) e () e ()
(Lot L) Gan) = () » 5450

If arg(X(y)) € [-7/4,7/4] for all y € D, then as t — 0T,

Il t) 2}%_«0@) —ola) + i«o(m — (@) - i / iy . / _Wdy=0. (5451)

and similarly,

nl(e,t) = —— (c - C*) pla)e" 7X@

c— X2(zy) C+ —Lx%(z,) 0
+ x,.)e At +o(t”).
2X_\/7Tt 2X+\/7Ttsp( ) ( () )
5.4.51b

Therefore, we have Iy[n|(z,t) = Io[n — ¢](x,t) + Iolp](z,t) — 0, as t — 0 and (5.4.51b) becomes (5.4.45). If
X(x)=0, x- = x4+ =1, arg(X(y)) € [-n/4,n/4] for y > x and arg(X(y)) € [3r/4,5m/4] for y < z, then, as t — 0T,

pla)e 3

1 1 1 1 1 1 1
Iolel(@,t) = 5—p(r) + 5—p(@) + 5— ¢ (y)dy — 5— w’ydy=<+>sox=<p:v~
oldlet) = el g @)t [ Gy g | dwa= () e = o)

(5.4.52)
Therefore Io[n)(z,t) = Io[n — ¢|(z,t) + Io|p](z,t) = ¢(z) — n(z), as t — 0F. Since n € L*(D), it is finite for almost
all x € D and therefore the result holds for almost allz € D. O
Lemma 101. If gy € L' (D), then for almost all x € D,
do@ ) = qole) + —— (Q e M@ 4 Qe 4tM3<rr>) +o(t%), (5.4.53)
2/t (i) )
where Q@+ = 0 for regular problems and for irregular problems,
163(zr)
Q= — (a:b)23q0(zr) — (a:b)12q0(z1)), (5.4.54a)
(e, ut — 8mg)\/(Bp) (1) ( '
165(x

Q- = (=) ((a:b)1,4g0(x1) + (a: D)z aq0(zr)). (5.4.54b)

(Mg — 8ms)/ (Bu) (1)
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Proof. The second integrand in (5.1.49) is absolutely integrable and so by the DCT and Cauchy’s theorem it has the
limit zero as t — 0. For the first integral, we write

T _ i -1 e—kzt \p(k,l‘,y) Qa(y) o 0
qo(z,t) = o /8Q AN (k) /D both) V) B dy dk + o(t"). (5.4.55)

For regular problems, using the asymptotics 1/1/(8n)(k,z) = 1/y/(Bu)(x) + O(k=2) and ¥ (k,z,y)/bo(k)AN' (k) =
O(k%)e@er) (k) (see Lemma 67), and the Fubini-Tonelli theorem, we may swap the order of integration to obtain

1 9o (y) U(k,z,y)

wl 1) = / it

2m\/(Bp) (@) Jo /(B (y) Joou.  bolk)

We use Lemma 98 in (5.4.56). The O(k~2)&@) (k) terms go to zero as t — 0 as above, by the DCT and Cauchy’s
theorem. The Z(k,y)/k term goes to zero by Lemma 95. For the remaining terms, we apply Lemma 100. The
2y (KI5 (k), Z67 (R)Zg" ™) (), and Zg™ ™) (R)Zg™ ) (k) terms have arg(X(y)) = arg(u(y)) €
[—m/4,7/4] so that those terms go to zero in the limit ¢ — 0T. The final integral over Iéy’z)(sgn(x — y)k) has
X(y) = M,(y), so that X(x) = 0, x(y) = 1, arg(X(y)) € [—n/4,7/4] for y > x, and arg(X(y)) € [37/4,57/4], so
that (with n(y) = 4a(y)/(u(y)/ (Br)(y)) € LH(D))

AR (k)e ¥ dk dy + o(0). (5.4.56)

x qa(:v) = x as ot. 5.4.57
A N OO - (5:457)

Similarly, for irreqular problems, we use Lemma 98 and the asymptotics 1/4/(8n)(k,z) = 1/1/(Bp)(z) + O(k?)
in (5.4.55). The O(k=2)&@) (k) and Z(k,y)/k terms go to zero as above. Using Lemma 100 as above, we reduce

this to

2,1) = gol) — —— Sy 4 () KIS (kYIS (k)e ™t dk d
ol 1) = o) 21/ (Bp) () mc1u+8ms/1>u(y) (5#)(y)u(y) /asz o (TR Y

1 8mc1 q{l(y) ) (z,2r) (y,2r) k2
kT, k)T, k dk d
" on (Bu)(z) Me, Uy — 8my /p 1(y) (Bu)(y)u(y) /aszext g (BT (ke Y

1 QQ(y) cly — x ikz-(ﬂcz,min(x,y)) k I(max(x,y),xr) k eikztdkd o 0 '
o (ﬁuﬂx)/ixdy) EION ”“y)/“ 0 (Mo (k) y +oft”)

Ofext
Using Lemma 100 again, for the first integral, x—- = x4 = 1 and ¢c— = ¢4 = 1, for the second integral, y_ =
—1 = x4 and ¢c_ = ¢y = 1, and for the last integral, x_ = 1, x4+ = —1, and ¢4 are given in (5.4.32¢). Using that
arg(My, (x,)) € (—m/4,m/4) so that those terms decay exponentially, this becomes

" _ " 1 8my, QQ(xl) 67%M3L (z) qQ(xr) ezﬂ]v[i@ﬁ)
MJ)%”+%%WWWWw44%<WM(WWM PESNVIEDIES
N 1 (_ c-dal®) i) C+0a(r) g, (m)) +o(t9).
2Vt (Bu)(@) \ (o) v/ (B) () p(@r)/ (Bp)(@r)
Using that for irregular problems, m¢, = 2(a : b)1,a/p(x;) = 2(a : b)2,3/u(x,) and (5.4.32¢), we find (5.4.53). O

Theorem 102. If qo € L'(D), for almost all x € D, for regular problems, ¢(z,t) — qo(x), and for irregular
problems, if the compatibility conditions (1.2.8) are satisfied, then q(x,t) — qo(z).

Proof. For regular problems, this follows from Lemmas 97, 99, and 101 and since ¢(x,t) = qo(,t) + g¢(z,t) +

g8, (x,t) + qg, (z,t). For irregular problems, combining Lemmas 97 and 101,

qo(z,t) + as, (2, ) + g, (z,t) = qo( ((Q— + fo(0)Ba— + f1(0)By_)e” 3 (™)

1
KWy ey
Q1+ o(O)Bay + Fi(0)Bry)e M0 4 ot?). (5.4.58)
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Using (5.4.26) and (5.4.54)

(me,uy — 8ms)/ (Bp)(21)

Q- + fo(0)Ba + f1(0) B = ((a:b)1,4q0(x1) + (a: b)saqo(zr) — fo(0)baz + f1(0)b12),

(5.4.59)
Q+ + fo(0)Bay + f1(0)B1y = 165(zr) ((a:b)12q0(z1) — (a: b)asqo(xr) — fo(0)azs + f1(0)arz).
(me,ug — 8ms )/ (Bu)(zr)
(5.4.59b)
If the compatibility conditions (1.2.8) are satisfied, then
—f0(0)ba2 + f1(0)b12 + (@ : b)1,4q0(x1) + (a : b)3aq0(zr) = —(a : b)2.4 qo(x1), (5.4.60)
—fo(O)GQQ + fl(O)a12 — (a : b)2,3qO((Er) + (a : b)l,qu(.’El) = (a : b)2’4 q6(.’£r)7 (5461)
so that qo(x,t) + g, (7, t) + g8, (x,t) = qo(x) + o(t°). O
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