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Abstract

Nonlinear Stability in Integrable Hamiltonian Systems

Michael Allen Nivala

Chair of the Supervisory Committee:
Professor Bernard Deconinck

Applied Mathematics

The stability of periodic solutions of partial differential equations has been an area of increasing in-

terest in the last decade. In this thesis, a new method for investigating the (nonlinear) orbital stability

of periodic solutions of integrable Hamiltonian systems is presented. The method is demonstrated

on the KdV equation, proving that all periodic finite-genus solutions are orbitally stable with re-

spect to subharmonic perturbations (perturbations that have period equal to an integer multiple of

the period of the amplitude of the solution). Also, a reduced form of the method is applied to the

NLS and mKdV equations, establishing the orbital stability of elliptic solutions of the defocusing

NLS equation and traveling wave solutions of the defocusing mKdV equation, both with respect to

subharmonic perturbations.
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Chapter 1

INTRODUCTION

Integrable Hamiltonian systems are ubiquitous in nature; their range of applicability includes

fiber optic communications, protein folding dynamics, and Bose-Einstein condensates [37, 53].

Characterized by their trademark soliton solutions (spatially localized waveforms persisting in time),

examples include the Korteweg-deVries (KdV) equation, the nonlinear Schrödinger (NLS) equation,

and the sine-Gordon equation. Here we are concerned with the stability of the periodic and quasi-

periodic analogs of the soliton solutions, the finite-genus solutions.

Simply put, a solution is considered stable if nearby initial conditions lead to solutions that

remain nearby. Stability is crucial to applications in science and engineering since one cannot

expect the physical realization of solutions if they are not stable. For example, stability determines

the feasibility of magnetohydrodynamic fusion devices and the emergence of ocean wave tsunamis

[50]. Depending on one’s definition of nearby, various levels of stability can be examined: spectral,

linear, and nonlinear. More often than not, each successive level is increasingly difficult to prove.

The most general of the above stability types is nonlinear stability. Classically, a solution

u∗(x, t) is considered nonlinearly stable if for all ε > 0 there exists a δ > 0 such that

||u(x, 0)− u∗(x, 0)|| < δ ⇒ ||u(x, t)− u∗(x, t)|| < ε (1.1)

for all t > 0.1 However, this definition is too restrictive for Hamiltonian PDEs, as traveling waves

of permanent form often exist. In such cases, two traveling waves can have initial profiles which

are arbitrarily close at t = 0, but any difference in the individual velocities manifests itself as a

non-arbitrary phase shift in some finite amount of time. Benjamin accounted for this in his study

of the stability of solitary wave solutions of the KdV equation [10], coining the phrase stability of

1Of course, before one can consider stability, a global well-posedness result must exist for the initial-value problem in
question. Since such results exist for the equations studied in this thesis (see [38, 56, 60] and the references therein),
we assume general well-posedness in what follows.
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shape. Essentially, this allows one to “re-align” the phases before measuring distance, minimizing

the second norm in the above definition over all possible phase shifts:

||u(x, 0)− u∗(x, 0)|| < δ ⇒ inf
x0∈R

||u(x, t)− u∗(x+ x0, t)|| < ε. (1.2)

This is an example of orbital stability. Orbital stability can also be defined with respect to more

general symmetries (see [42, 68] and the definitions in the main text), which is necessary for our

study of finite-genus solutions.

The objective of this thesis is to present a new method for establishing the (nonlinear) orbital

stability of periodic and quasi-periodic solutions of integrable Hamiltonian systems with respect to

subharmonic perturbations (periodic perturbations that have period equal to an integer multiple of

the period of the amplitude of the solution). We restrict ourselves to periodic finite-genus solutions.

It is often true that the finite-genus solutions of a given integrable Hamiltonian system are dense

in the class of periodic functions. In such cases they completely solve the periodic initial value

problem. Therefore, the stability of periodic finite-genus initial conditions in a suitable function

space suggests the stability of general periodic initial conditions in that function space.

The vast majority of stability results for periodic solutions of PDEs are restricted to periodic

perturbations of the same period as the solution. However, this is mostly due to convenience rather

than pertinence. For example, periodic perturbations of the same period are traditionally easier

to study numerically than subharmonic perturbations. Extension beyond periodic perturbations of

the same period to subharmonic perturbations is important in that: (i) They are a significantly larger

class of perturbations than the periodic ones of the same period, while retaining our ability to discuss

completeness and separability of a suitable function space. For example, this would not be the

case for quasi-periodic or almost periodic perturbations [12]. (ii) There are nontrivial examples of

solutions which are stable with respect to periodic perturbations of the same period, but unstable

with respect to subharmonic perturbations, such as the cn solutions of the focusing NLS equation

[45]. (iii) They have a greater physical relevance than periodic perturbations of the same period,

since in applications one usually considers domains which are larger than the period of the solution

(ocean wave dynamics, for example).

The basis of our procedure is the Lyapunov method, which was first extended to infinite-
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dimensional systems (partial differential equations) by V.I. Arnold [6, 7] in his study of incom-

pressible ideal fluid flows. Since its introduction, the Lyapunov method has formed the crux of

subsequent nonlinear stability techniques, see [47, 50, 86], for instance. A more thorough analysis

of past stability results is given in the main text.

In order to construct a Lyapunov function, we make extensive use of the nonlinear hierarchy

associated with any integrable system:

• Since a finite-genus solution is not stationary with respect to the original PDE, we cannot

define spectral stability in the conventional sense. However, each finite-genus solution is

stationary with respect to one of the higher-order equations in the nonlinear hierarchy.

• We prove spectral stability with respect to the higher-order time variables by generalizing the

squared eigenfunction method developed in [14].

• We use the ideas in [24, 68] to construct a candidate Lyapunov function. We show that it is

indeed a Lyapunov function using the squared eigenfunction connection and the generalized

spectral stability result. This establishes orbital stability from [42, 43].

Though presented for the KdV equation, the method is quite general and widely applicable to other

integrable systems (the general steps and principles still apply, but the details will be different).

The outline of the thesis is as follows. In Chapters 2 and 3 we adapt the methods of [14, 24]

to the defocusing NLS and modified KdV (mKdV) equations, establishing the spectral and orbital

stability of their genus one solutions. This introduces the basic stability concepts involved, and

eases one into the more abstract arguments and notions of stability required for the main result of

this thesis: the (nonlinear) orbital stability of all periodic finite-genus solutions of the KdV equation.

This is done in Chapter 4. In Chapter 5 we discuss how the method can be extended to any integrable

Hamiltonian system, and draw some general conclusions. Chapters 2-4 are self contained and can

be read independently of each other. However, it is recommended that at least one of Chapters 2 or

3 be read before reading Chapter 4. Chapter 4 should be read before reading Chapter 5.

Many of the explicit results in this thesis were obtained using MAPLE. The Weierstrass normal

form algorithm in [85] was used in the computation of exact solutions of the mKdV equation.
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The conservation law and integration algorithms from [27, 28, 29, 48] simplified many lengthy

calculations arising in the study of the higher-order KdV, NLS, and mKdV equations.
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Chapter 2

STABILITY OF ELLIPTIC SOLUTIONS OF THE NLS EQUATION

The defocusing one-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearity

is given by

iΨt = −1
2

Ψxx + Ψ |Ψ|2 . (2.1)

Here Ψ(x, t) is a complex-valued function, describing the slow modulation of a carrier wave in a

dispersive medium. Due to both its physical relevance and its mathematical properties, (2.1) is one

of the canonical equations of nonlinear dynamics. The equation has been used extensively to model,

among other applications, waves in deep water [2, 90], propagation in nonlinear optics with normal

dispersion [46, 61], Bose-Einstein condensates with repulsive self-interaction [44, 78] and electron

plasma waves [21]. Equation (2.1) is completely integrable [1, 89]. This will be used extensively

later on.

The equation has a large class of stationary solutions. These are solutions that are written as

Ψ = e−iωtφ(x), (2.2)

where ω is a real constant. Among this class of solutions are the dark and grey solitons, for which

φ(x) is expressed in terms of hyperbolic functions. These solutions may be regarded as limit cases

of the so-called elliptic solutions studied in this paper. These solutions are either periodic or quasi-

periodic as functions in x. The amplitude of φ(x) of the elliptic solutions is expressed in terms of

Jacobi elliptic functions. A thorough discussion of the stationary solutions is found in, for instance,

[18]. The details relevant to our investigations are presented in Section 2.1.

The stability analysis of the stationary solutions was begun in [90], where the now classical cal-

culation for the modulational stability of the plane-wave solution (φ(x) constant) is given. The lit-

erature discussing the stability of the soliton solutions is extensive, see [62], and references therein.
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Rowlands [79] may have been the first to consider the stability of the elliptic solutions directly. He

studied the spectral stability problem for these solutions using regular perturbation theory with the

Floquet parameter as a small expansion parameter. At the origin in the spectral plane, this parameter

is zero, thus Rowlands was able to obtain expressions for the different branches of the continuous

spectrum near the origin. For the focusing NLS equation these calculations demonstrate that the

spectrum lies partially in the right-half plane, which leads to the conclusion of instability. For the

defocusing NLS equation (2.1), the first approximation to these branches lies on the imaginary axis,

and Rowlands’ method is inconclusive with regard to stability or instability of the elliptic solu-

tions. More recently, the stability of the elliptic solutions has been examined by Gallay and Hărăguş

[38, 39]. In [39], they established the spectral stability of small-amplitude solutions of the form

(2.2) of (2.1), as well as their (nonlinear) orbital stability with respect to perturbations that are of

the same period as |φ(x)|. In [38], the restriction on the amplitude for the orbital stability result

is removed. Hărăguş and Kapitula [45] put some of these results in a more general framework

valid for spectral problems with periodic coefficients originating from Hamiltonian systems. They

establish that the small-amplitude elliptic solutions investigated in [39] are not only spectrally but

also linearly stable. Lastly, we should mention a recent paper by Ivey and Lafortune [55]. They

undertake a spectral stability analysis of the cnoidal wave solution of the focusing NLS equation, by

exploiting the squared-eigenfunction connection, like we do in [14] for the cnoidal wave solutions

of the Korteweg-de Vries equation and here, see below. Their calculations use Floquet theory for

the spatial Lax operator to construct an Evans function for the spectral stability problem, whose

zeros give the point spectrum corresponding to periodic perturbations. They also obtain a descrip-

tion of the continuous spectrum (which contains this point spectrum) using a Floquet discriminant.

Their description of the spectrum is explicit in the sense that no differential equations remain to be

solved. By computing level curves of this Floquet discriminant numerically, they obtain a numerical

description of the spectrum.

In this chapter, we confirm the recent findings on spectral and orbital stability of the elliptic

solutions of the defocusing equation and we extend their validity to solutions of arbitrary amplitude.

In addition, we extend the stability results to the class of so-called subharmonic perturbations, i.e.

perturbations that are periodic with period equal to an integer multiple of the period of the amplitude

|φ(x)|. Further, exploiting the integrability of (2.1), we are able to provide an explicit analytic
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description of the spectrum and the eigenfunctions associated with the linear stability problem of

all elliptic solutions. We follow the same method as in [14], using the algebraic connection between

the eigenfunctions of the Lax pair of (2.1) and those of the spectral stability problem. This explicit

characterization of the spectrum is new. It appears that the methods of Ivey and Lafortune [55] allow

for an equally explicit description when applied to the defocusing case. They rely on the general

theory of hyperelliptic Riemann surfaces and theta functions, which are restricted to the elliptic case,

through a nontrivial reduction process. We never leave the realm of elliptic functions, resulting

in a significantly more straightforward approach. The explicit characterization of the spectrum

is an obvious starting point for the stability analysis of more general solutions to non-integrable

generalizations of the NLS equations, such as the two-dimensional NLS equation [19, 20] or one-

dimensional perturbations of the NLS equation which might include such effects as dissipation or

external potentials, see e.g., [15, 55]. As in [38, 39, 45], we prove the spectral stability of the

elliptic solutions of (2.1), without imposing a restriction on the amplitude. The results of [45] allow

us to prove the completeness of the eigenfunctions of the linear stability problem, resulting in a

conclusion of linear stability. Similarly to the last section of [24], we use the conserved quantities

of the NLS equation to construct a candidate Lyapunov function. We then use the spectral stability

result to prove that it is indeed a Lyapunov function. This allows us to invoke the classical results of

Grillakis, Shatah and Strauss [42], from which (nonlinear) orbital stability follows.

It should be emphasized that our results are equally valid for elliptic solutions that have trivial

phase (φ(x) real) as for solutions with a non-trivial phase profile (φ(x) not purely real). Similar

calculations to the ones presented here apply to the focusing NLS equation, without the conclusion

of stability, of course. That case is more complicated, due to the Lax operator associated with that

integrable equation not being self adjoint.

The results of this chapter were obtained jointly with Nate Bottman and Bernard Deconinck.

2.1 Elliptic solutions of the defocusing NLS equation

The results of this section are presented in more detail in [18]. We restrict our considerations to the

bare necessities for what follows.

Stationary solutions (2.2) of (2.1) satisfy the ordinary differential equation



8

ωφ = −1
2
φxx + φ|φ|2. (2.3)

Substituting an amplitude-phase decomposition

φ(x) = R(x)eiθ(x) (2.4)

in (2.3), we find ordinary differential equations satisfied by the amplitude R(x) and the phase θ(x)

by separating real and imaginary parts, after factoring out the overall exponential factor. Here we

explicitly use that both amplitude and phase are real-valued functions. The equation for the phase

θ(x) is easily solved in terms of the amplitude. One finds

θ(x) = c

∫ x

0

1
R2(y)

dy. (2.5)

Here c is a constant of integration. Using standard methods for elliptic differential equations (see

for instance [17, 66]), one shows that the amplitude R(x) is given by

R2(x) = k2 sn2 (x, k) + b, (2.6)

where sn(x, k) is the Jacobi elliptic sine function, and k ∈ [0, 1) is the elliptic modulus [17, 66].

The amplitude R(x) is periodic with period 2T (k) = 2K(k), where K(k) is the complete elliptic

integral of the first kind [17, 66]:

K(k) =
∫ π/2

0

1√
1− k2 sin2 y

dy. (2.7)

The form of the solution (2.6) leads to

ω =
1
2

(1 + k2) +
3
2
b, (2.8)

and

c2 = b(b+ 1)(b+ k2). (2.9)
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Conditions on the reality of the amplitude and phase lead to the constraints on the offset parameter:

b ∈ R+ (including zero). The class of solutions constructed here is not the most general class of

stationary solutions of (2.1). We did not specify the full class of parameters allowed by the Lie point

symmetries of (2.1), which allow for a scaling in x, multiplying by a unitary constant, etc. The

methods introduced in the remainder of this chapter apply equally well and with similar results to

the full class of stationary elliptic solutions.

If the constant c is zero, the solution is referred to as a trivial-phase solution. Otherwise it is

called a nontrivial-phase solution. It is clear from the above that the only trivial-phase solutions are

(up to symmetry transformations)

Ψ(x, t) = k sn(x, k)e−
i
2

(1+k2)t. (2.10)

This one-parameter family of solutions is found from the two-parameter family of stationary solu-

tions by equating b = 0. The trivial-phase solutions are periodic in x. Their period is 4K(k). In

contrast, the nontrivial-phase solutions are typically not periodic in x. The period of their amplitude

is 2T (k) = 2K(k), whereas the period τ(k) of their phase is determined by θ(τ(k)) = 2π. Un-

less τ(k) and 2T (k) are rationally related, the nontrivial-phase solution is quasi-periodic instead of

periodic.

This quasi-periodicity is more immediately obvious using a different form of the elliptic solu-

tions, which will prove useful in Section 2.5. We split the integrand of (2.5) as

c

R2(x)
= κ(k, b) +K(x; k, b), (2.11)

where κ(k, b) is the average value of c/R2(x) over an interval of length 2T (k). Thus the average

value of K(x; k, b) is zero. Then the elliptic solutions may be written as

Ψ(x, t) = e−iωt+iκxR̂(x), (2.12)

where R̂(x + 2T (k)) = R̂(x) is typically not real. It is clear from this formulation of the elliptic

solutions that they are generically quasiperiodic with two incommensurate spatial periods 2T (k)

and 2π/κ(k, b).
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2.2 The linear stability problem

Before we study the orbital stability of the elliptic solutions, we examine their spectral and linear

stability. To this end, we transform (2.1) so that the elliptic solutions are time-independent solutions

of this new equation. Let

Ψ(x, t) = e−iωtψ(x, t). (2.13)

Then

iψt = −ωψ − 1
2
ψxx + ψ|ψ|2. (2.14)

As stated, the elliptic solutions are those solutions for which ψt ≡ 0. Next, we consider perturba-

tions of such an elliptic solution. Let

ψ (x, t) = eiθ(x) (R(x) + εu(x, t) + iεv(x, t)) +O
(
ε2
)
, (2.15)

where ε is a small parameter and u(x, t) and v(x, t) are real-valued functions. Since their depen-

dence on both x and t is unrestricted, there is no loss of generality from factoring out the temporal

and spatial phase factors. Substituting (2.15) into (2.1) and separating real and imaginary parts, the

terms of zero order in ε vanish, since R(x)eiθ(x) solves (2.1). Next, we equate terms of order ε to

zero and separate real and imaginary parts, resulting in

∂

∂t

 u

v

 = JL

 u

v

 = J

 L+ S

−S L−

 u

v

 , (2.16)

where

J =

 0 1

−1 0

 , (2.17)

and the linear operators L−, L+ and S are defined by
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L− = −1
2
∂2
x +R2(x)− ω +

c2

2R4(x)
, (2.18)

L+ = −1
2
∂2
x + 3R2(x)− ω +

c2

2R4(x)
, (2.19)

S =
c

R2(x)
∂x −

cR′(x)
R3(x)

=
c

R(x)
∂x

1
R(x)

. (2.20)

We wish to show that perturbations u and v that are initially bounded remain so for all times.

By ignoring terms of order ε2 and higher we are restricting ourselves to linear stability. The elliptic

solution φ(x) = R(x)eiθ(x) is by definition linearly stable if for all ε > 0 there is a δ > 0 such

that if ||u(x, 0) + iv(x, 0)|| < δ then ||u(x, t) + iv(x, t)|| < ε for all t > 0. It should be noted that

this definition depends on the choice of the norm || · || of the perturbations. In the next section this

norm will be specified. The linear stability problem (2.16) is written in its standard form to allow

for a straightforward comparison with the results of other authors, see for instance [38, 39, 45, 79],

and many references where only the soliton case is considered. Some of our calculations are more

conveniently done using a different form of the linear stability problem (2.16) or the spectral stability

problem (2.22, below). These forms will be introduced as necessary.

Since (2.16) is autonomous in t, we may separate variables and consider solutions of the form

 u(x, t)

v(x, t)

 = eλt

 U(x, λ)

V (x, λ)

 , (2.21)

so that the eigenfunction vector (U(x, λ), V (x, λ))T satisfies the spectral problem

λ

 U

V

 = JL

 U

V

 = J

 L+ S

−S L−

 U

V

 . (2.22)

In what follows, we suppress the λ-dependence of U and V . In order to show that the solution

φ(x) = R(x)eiθ(x) is spectrally stable, we need to verify that the spectrum σ(L) does not intersect

the open right-half of the complex λ plane. To avoid confusion with other spectra defined below, we

refer to σ(L) as the stability spectrum of the elliptic solution φ(x). Since the nonlinear Schrödinger

equation (2.1) is Hamiltonian [2], the spectrum of its linearization is symmetric with respect to
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both the real and the imaginary axis [87], so proving the spectral stability of an elliptic solution is

equivalent to proving the inclusion σ (L) ⊂ iR.

Spectral stability of an elliptic solution implies its linear stability if the eigenfunctions corre-

sponding to the stability spectrum σ(L) are complete in the space defined by the norm || · ||. In that

case all solutions of (2.16) may be obtained as linear combinations of solutions of (2.22).

The first goal of this chapter is to prove the spectral and linear stability of all solutions (2.2)

by analytically determining the stability spectrum σ(L), as well as its associated eigenfunctions.

It is already known from [39] and [45] that the inclusion σ (L) ⊂ iR holds for solutions of small

amplitude, or, equivalently, solutions with small elliptic modulus, leading to spectral stability. We

strengthen these results by providing a completely explicit description of σ(L) and its eigenfunc-

tions, without requiring any restriction on the elliptic modulus. To conclude the completeness of the

eigenfunctions associated with σ(L), and thus the linear stability of the elliptic solutions, we rely

on the SCS lemma, see Hărăguş and Kapitula [45].

2.3 Numerical Results

In the next few sections, we determine the spectrum of (2.22) analytically. Before we do so, we com-

pute it numerically, using Hill’s method [26]. Hill’s method is ideally suited to a periodic-coefficient

problem such as (2.22). It should be emphasized that almost none of the elliptic solutions are peri-

odic in x, as discussed in Section 2.1. Nevertheless, since we have factored out the exponential phase

factor eiθ(x) and the remaining coefficients are all expressed in terms of R(x), the spectral problem

(2.22) is a problem with periodic coefficients, even for elliptic solutions that are quasi-periodic.

Using Hill’s method, we compute all eigenfunctions by using the Floquet-Bloch decomposition

 U(x)

V (x)

 = eiµx

 Û(x)

V̂ (x)

 , Û(x+ 2T (k)) = Û(x), V̂ (x+ 2T (k)) = V̂ (x), (2.23)

with µ ∈ [−π/4T (k), π/4T (k)). It follows from Floquet’s theorem [3] that all bounded solutions of

(2.22) are of this form. Here bounded means that supx∈R{|U(x)|, |V (x)|} is finite. Thus (U, V )T ∈

C0
b (R). On the other hand, we also have (U, V )T ∈ L2

per(−T (k), T (k)) (the square-integrable
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functions of period 2T (k)) since the exponential factor in (2.23) disappears in the computation of

the L2-norm. Thus

U, V ∈ C0
b (R) ∩ L2

per(−T (k), T (k)). (2.24)

By a similar argument as that given at the end of Section 2.1, the typical eigenfunction (2.23)

obtained this way is quasi-periodic, with periodic eigenfunctions ensuing when the two periods

2T (k) and 2π/µ are commensurate. Specifically, our investigations include perturbations of an

arbitrary period that is an integer multiple of 2T (k), i.e., subharmonic perturbations.

Figure 4.1 shows discrete approximations to the spectrum of (2.22), computed using Spec-

trUW 2.0 [25]. The solution parameters for the top two panels (a-b) are b = 0 (thus corresponding

to a trivial-phase solution (2.10)) and k = 0.8. The numerical parameters (see [26, 25]) are N = 20

(41 Fourier modes) and D = 40 (39 different Floquet exponents). The right panel (b) is a blow-up

of the left panel (a) around the origin. First, it appears that the spectrum is on the imaginary axis1,

indicating spectral stability of the snoidal solution (2.10). Second, the numerics shows that a sym-

metric band around the origin has a higher spectral density than does the rest of the imaginary axis.

This is indeed the case, as shown in more detail in Fig. 4.3a, where the imaginary parts ∈ [−1, 1]

of the computed eigenvalues are displayed as a function of the Floquet parameter µ. This shows

that λ values with Im(λ) ∈ [−0.37, 0.37] (approximately) are attained for four different µ values in

[−π/4T (k), π/4T (k)). The rest of the imaginary axis is only attained for two different µ values.

This picture persists if a larger portion of the imaginary λ axis is examined. These numerical results

are in perfect agreement with the theoretical results below.

The bottom two panels (c-d) correspond to a nontrivial-phase solution with b = 0.2 and k = 0.5.

The numerical parameters are identical to those for panels (a-b). Again, the spectrum appears to lie

on the imaginary axis, with a higher spectral density around the origin. A plot of the imaginary parts

of the computed eigenvalues as a function of µ is shown in Fig. 4.3b. As for the trivial-phase case

this shows the quadruple covering of the spectrum of a band around the origin of the imaginary axis,

and the double covering of the rest of the imaginary axis. Due to the nontrivial-phase profile, the

curves in Fig. 4.3b have lost some symmetry compared to those in Fig. 4.3a. Making the opposite

1The order of magnitude of the largest real part computed is 10−10.



14

(a) (b)

(c) (d)

Figure 2.1: Numerically computed spectra of (2.22) for different solutions (2.2), with parameter
values given below , using Hill’s method withN = 20 (41 Fourier modes) andD = 40 (39 different
Floquet exponents), see [26, 25]. (a) A trivial-phase sn-solution with k = 0.5. (b) A blow-up of (a)
around the origin, showing a band of higher spectral density. (c) A nontrivial-phase solution with
b = 0.2 and k = 0.5. (d) A blow-up of (c) around the origin, similarly showing a band of higher
spectral density.

choice for the sign on c in (2.9) results in the figure being slanted in the other direction.

The above considerations remain true for different values of the offset b ∈ R+ and the elliptic

modulus k ∈ [0, 1), although the spectrum does depend on both, as we will prove in the following

sections. Thus, for all values of (b, k) ∈ R+ × [0, 1), the spectrum of the elliptic solutions appears

to be confined to the imaginary axis, indicating the spectral stability of these solutions. Similarly,

for all these parameter values, the spectrum σ(L) covers a symmetric interval around the origin four

times, whereas the rest of the imaginary axis is double covered. The edge point on the imaginary

axis where the transition from spectral density four to two occurs depends on both b and k and is
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µ

λIm(  )

µ

λIm(  )

(a) (b)

Figure 2.2: The imaginary part of λ as a function of µ, demonstrating the higher spectral density
(four vs. two) in Fig. 4.1b (left panel) and Fig. 4.1d (right panel). The parameter values are identical
to those of Fig. 4.1.

denoted λc(b, k). The k-dependence of λc(b = 0.2, k) is shown in Fig. 4.5. Again, both numerical

and analytical results (see Section 2.5) are displayed. For these numerical results, Hill’s method

with N = 50 was used.

2.4 Lax pair representation

Since our analytical stability results originate from the squared-eigenfunction connection between

the defocusing NLS linear stability problem (2.16) and its Lax pair, in this section we examine this

Lax pair, restricted to the elliptic solutions of the defocusing NLS.

As for the stability problem, we consider the generalized defocusing NLS (2.14). This equation

is integrable, thus it has a Lax pair representation. Specifically, (2.14) is equivalent to the compati-

bility condition χxt = χtx of the two first-order linear differential equations
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Figure 2.3: Numerical and analytical results for the imaginary part of the edge point λc(b, k) of
the quadruple-covered region as a function of the elliptic modulus k for b = 0.2. The solid curve
displays the analytical result, the small circles are obtained numerically.

χx =

 −iζ ψ

ψ iζ

χ, χt =

 −iζ2 − i
2 |ψ|

2 + i
2ω ζψ + i

2ψx

ζψ − i
2ψx iζ2 + i

2 |ψ|
2 − i

2ω

χ, (2.25)

where ψ denotes the complex conjugate of ψ. Thus (2.14) is satisfied if and only if both equations

of (2.25) are satisfiable. Note that the first equation may be rewritten as

ζχ =

 i∂x −iψ

iψ −i∂x

χ. (2.26)

The operator on the right-hand side is self adjoint, thus the spectral parameter ζ is confined to the

real axis. Restricting to the elliptic solutions gives
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χx =

 −iζ φ

φ iζ

χ, χt =

 −iζ2 − i
2 |φ|

2 + i
2ω ζφ+ i

2φx

ζφ− i
2φx iζ2 + i

2 |φ|
2 − i

2ω

χ. (2.27)

We refer to the spectrum of the first equation of (2.27) as σL. It is the set of all ζ values for

which this equation has a bounded in x (as in Section (2.3)) solution. As discussed above, σL ⊂ R.

The main goal of this section is the complete analytic determination of σL. For ease of notation, we

rewrite the second equation of (2.27) as

χt =

 A B

C −A

χ. (2.28)

Since A, B and C are independent of t, we may separate variables. Consider the ansatz

χ (x, t) = eΩtϕ(x), (2.29)

where Ω is independent of t. We refer to the set of all Ω such that χ is a bounded function of x as

the t-spectrum σt. Substituting (2.29) into (2.28) and canceling the exponential, we find

 A− Ω B

C −A− Ω

ϕ = 0. (2.30)

This implies that the existence of nontrivial solutions requires

Ω2 = A2 +BC = −ζ4 + ωζ2 − cζ +
1
16
(
4ωb− 3b2 − k′4

)
. (2.31)

where k′2 = 1−k2. We have used the explicit form of φ(x), given in Section 2.1. This demonstrates

that Ω is not only independent of t, but also of x. Such a conclusion could also be arrived at by

expressing the derivatives of the operators of (2.27) as matrix commutators, and applying the fact

that the trace of a matrix commutator is identically zero [8, 31].

Having determined Ω as a function of ζ for any given elliptic solution of defocusing NLS (i.e., in

terms of the parameters b and k), we now wish to do the same for the eigenvector ϕ(x), determined

by (2.30). Immediately,
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ϕ = γ(x)

 −B(x)

A(x)− Ω

 , (2.32)

where γ(x) is a scalar function. Indeed, the vector part of (2.32) ensures that χ(x, t) satisfies the

second equation of (2.27). Next, we determine γ(x) so that χ(x, t) also satisfies the first equa-

tion. Substituting (2.32) in this first equation results in two homogeneous linear scalar differential

equations for γ(x) which are linearly dependent. Solving gives

γ(x) = γ0 exp
(
−
∫

(A− Ω)φ+Bx + iζB

B
dx

)
. (2.33)

For almost all ζ ∈ C, we have explicitly determined two linearly independent solutions of the

first equation of (2.27). Indeed, for all ζ, there should be two such solutions, and two have been

constructed for all ζ ∈ C for which Ω 6= 0: the combination of (2.32) and (2.33) gives two solutions,

corresponding to the different signs for Ω in (2.31). These solutions are clearly linearly independent.

For those values of ζ for which Ω = 0, only one solution is generated. A second one may be found

using the method of reduction of order.

To determine the spectrum σL, we need to determine the set of all ζ ⊂ R such that (2.32) is

bounded for all x. Clearly, the vector part of (2.32) is bounded as a function of x. Thus, we need

to determine for which ζ the scalar function γ(x) is bounded. For this, it is necessary and sufficient

that

〈
<
(

(A− Ω)φ+Bx + iζB

B

)〉
= 0. (2.34)

Here 〈 · 〉 = 1
2T (k)

∫ T (k)
−T (k) · dx is the average over a period and < denotes the real part. The in-

vestigation of (2.34) is significantly simpler for the trivial-phase case b = 0 than for the general

nontrivial-phase case. We treat these cases separately.

2.4.1 The trivial-phase case: b = 0

With b = 0 (2.31) becomes
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Figure 2.4: Ω2 as a function of real ζ, for k = 0.5. The union of the thick line segments on the
real axis is the Lax spectrum σL. The figure on the left shows the symmetric trivial-phase case with
b = 0. The figure on the right illustrates a nontrivial-phase case, with b = 0.2.

Ω2 = −ζ4 + ωζ2 − k′4

16
= −(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)(ζ − ζ4), (2.35)

with

ζ1 = −1
2

(1 + k), ζ2 = −1
2

(1− k), ζ3 =
1
2

(1− k), ζ4 =
1
2

(1 + k). (2.36)

The graph for Ω2 as a function of ζ is shown in Fig. 2.4a.

The explicit form of (2.34) is different depending on whether Ω is real or imaginary. It should

be noted that since ζ ∈ R, it follows from (2.35) that these are the only possibilities.

First, we consider Ω being imaginary or zero, requiring |ζ| ≥ (k + 1)/2 or |ζ| ≤ (1 − k)/2.

It follows from the definitions of A and B that the integrand in (2.34) may be written as a rational

function of the periodic function sn2(x, k), multiplied by its derivative 2sn(x, k)cn(x, k)dn(x, k).

As a consequence the average of this integrand is zero. Thus all these values of ζ belong to the Lax

spectrum. Extra care should be taken when ζ = 0, in which the denominator in (2.34) is singular,

and not integrable. This case may be dealt with separately. One finds that the vector part of (2.32)

cancels the singularity in γ(x). In fact, the two eigenfunctions of the first equation of (2.27) are
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(−dn(x, k), kcn(x, k))T and (−kcn(x, k),dn(x, k))T .

Next, we consider the case where Ω is real, requiring (1 − k)/2 < |ζ| < (1 + k)/2. Sim-

ilar to the above, the integrand contains many terms of the form R(sn2(x, k))(sn2(x, k))′, where

R is a rational, nonsingular function. The average of such terms vanishes, leaving a single term

−4Ωζsn2(x, k)/(4ζ2sn2(x, k) + cn2(x, k)dn2(x, k)). This term is of fixed sign and never results

in zero average. The corresponding values of ζ are not in σL.

In summary, we have established that

σL = (−∞, ζ1] ∪ [ζ2, ζ3] ∪ [ζ4,∞). (2.37)

This set is indicated in Fig. 2.4a as a bold line. Furthermore, we find that the corresponding values

of Ω are imaginary, covering the entire imaginary axis. Thus,

σt = iR. (2.38)

We may be more specific. The segment ζ ∈ (−∞, ζ1] gives rise to a complete cover-

ing of the imaginary axis, as does ζ ∈ [ζ4,∞). Next, the segment ζ ∈ [0, ζ3] gives rise to

Ω ∈ [−i|Ωmin|, i|Ωmin|] = [−ik′2/2, ik′2/2], as does ζ ∈ [ζ2, 0]. Thus, there is an interval on

the imaginary axis around the origin that is quadruple covered, while the rest of the imaginary axis

is double covered.

Thus

σt = (iR)2 ∪
[
− ik

′2

4
,
ik′2

4

]2

, (2.39)

where the exponents denote multiplicities.

2.4.2 The nontrivial-phase case: b > 0

The nontrivial-phase case is more complicated. First, note that the discriminant of (2.31) is k4k′4 6=

0 for k 6= 0, 1. This implies that the four roots of the right-hand side of (2.31) are always real, for

all values of b > 0. Indeed, complex roots would come about by the collision of real roots, which is

not possible since the discriminant is never zero. In fact, the explicit expressions for these roots are
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quite simple:

ζ1 = 1
2

(
−
√
b−
√
b+ k2 −

√
b+ 1

)
,

ζ2 = 1
2

(√
b+
√
b+ k2 −

√
b+ 1

)
,

ζ3 = 1
2

(√
b−
√
b+ k2 +

√
b+ 1

)
,

ζ4 = 1
2

(
−
√
b+
√
b+ k2 +

√
b+ 1

)
.

(2.40)

An indicative graph for Ω2 as a function of ζ is given in Fig. 2.4b, using k = 0.5 and b = 0.2.

As for the trivial-phase case, we split the examination of the real ζ-axis in two parts: those

ζ-values for which Ω is pure imaginary, and those for which Ω is real.

If ζ ∈ (−∞, ζ1]∪ [ζ2, ζ3]∪ [ζ4,∞), then Ω is pure imaginary. As before, the integrand of (2.34)

is of the formR(sn2(x, k))(sn2(x, k))′, whereR is a rational function of its argument, resulting in

a zero average. Thus all these values of ζ are in the Lax spectrum. Again one has to consider the

case where B might have zeros. It is easy to see that this occurs only when either ζ = c/2b or when

ζ = c/2(b+ k2). Note that both values are in the specified ζ-range, as the corresponding values for

Ω2 are negative. Although the expressions of the corresponding eigenfunctions are not as compact

as for the trivial-phase case, one easily shows that all singularities of γ(x) cancel with roots of the

vector part of (2.32). Thus these values are legitimate members of the Lax spectrum.

Next, if Ω is real, up to terms with zero average, the integrand may be written as

2Ω
P (sn2(x, k))

(kssn2(x, k) + b)(c− 2ζ(k2sn2(x, k) + b)), (2.41)

where P (sn2(x, k)) is a polynomial with no real roots. Unlike the trivial-phase case, the numerator

of this expression has roots for −K(k) < x < K(k), and it is not obvious to see that its average

is nonzero. We use a more abstract argument. The left-hand side of (2.34) depends analytically on

both b and ζ, at least for ζ ∈ (ζ3, ζ4) and b > 0. For convenience, we denote this left-hand side as

F (ζ, b). Thus, elements of σL are real values of ζ for which F (ζ, b) = 0. An identical argument

holds for ζ ∈ (ζ1, ζ2). It should be noted that ζ3 and ζ4 depend on b (see (2.36)), but since ζ3

and ζ4 are always well separated, this is no cause for concern. For a fixed value of b, and using

the analytical dependence of F (ζ, b) on ζ, it follows that F (ζ, b) is either identically zero, or has

isolated zeros. If F (ζ, b) were to have isolated zeros, these would correspond to isolated points in



22

σL. Since σL is the spectrum of a period problem, this is not possible [81]. Thus we investigate

the possibility that for a fixed value of b > 0, F (ζ, b) is identically zero for all ζ ∈ (ζ3, ζ4). We

know this is not true for b = 0. Due to the analytic dependence on b, it follows that it is not true

for 0 < b ≤ b1, for b1 sufficiently small. The last possibility to examine is whether there can exist

a value of b > b1 for which F (ζ, b) is identically zero as a function of ζ. If we think of the spectra

σL parameterized by increasing values of b, this would imply the sudden presence of a continuous

subset of σL out of a vacuum: i.e., this subset would not emerge from or be connected to other parts

of σL. Since σL depends continuously on its parameters [49], this is not possible. We conclude that

F (ζ, b) has no zeros if Ω is real.

It follows that our conclusions are identical to those for the trivial-phase case. Specifically, we

have established (2.37) and (2.38). As before, the set σL is indicated in Fig. 2.4b as a bold line.

Analogously to (2.39), we may write

σt = (iR)2 ∪
[
−i
√
|Ω2

min|, i
√
|Ω2

min|
]2

, (2.42)

where the exponents denote multiplicities, as before. Here Ω2
min is the minimal value of Ω2 as a

function of ζ. This value depends on the two parameters b and k. If desired, it can be calculated using

Cardano’s formulae, but we do not subject the reader to its explicit form. The perfect agreement

between the numerics and this analytical result is illustrated in Fig. 4.5 for b = 0.2, for varying k.

2.5 Spectral stability

The connection between the eigenfunctions of the Lax pair (2.25) and the eigenfunctions of the

linear stability problem (2.16) for the defocusing NLS equation (2.1) is well known [1, 2, 41, 72, 80].

It is convenient to phrase the result using the form (2.12) of the solutions. Letting

Ψ(x, t) = e−iωt+iκxR̃(x, t), (2.43)

where κ is the average value of c/R2(x), with R(x) the amplitude of the stationary solution under

consideration, as before. We see that the periodic part R̂(x) of the considered elliptic solution (2.12)

is a stationary solution of
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iR̃t = −ωR̃− 1
2
R̃xx − iκR̃x +

κ2

2
R̃+ R̃|R̃|2. (2.44)

To linearize around the elliptic solution with R̂(x) = R̂1(x) + iR̂2(x), we let

R̃(x, t) = R̂(x) + ε(w1(x, t) + iw2(x, t)) +O(ε2), (2.45)

which results in

∂

∂t

 w1

w2

 = JL̂

 w1

w2

 , (2.46)

with

L̂ =

 −1
2∂

2
x + 1

2κ
2 + 3R̂2

1(x) + R̂2
2(x)− ω κ∂x + 2R̂1R̂2

−κ∂x + 2R̂1R̂2 −1
2∂

2
x + 1

2κ
2 + R̂2

1(x) + 3R̂2
2(x)− ω

 .

(2.47)

It should be noted that although R̂(x) is a periodic solution of (2.44), it is not necessary for

R̃(x, t) to be periodic. Indeed, we wish to allow for infinitesimal perturbations (2.45) that are

bounded and sufficiently smooth, but otherwise arbitrary. Noting the independence of JL̂ on t, we

separate variables as before,

 w1

w2

 = eλt

 W1

W2

 , (2.48)

to obtain the spectral problem

λ

 W1

W2

 = JL̂

 W1

W2

 . (2.49)

We easily prove the following theorem.

Theorem 1. The vector (w1, w2)T = (e−iκxχ2
1 + eiκxχ2

2,−ie−iκxχ2
1 + ieiκxχ2

2)T satisfies the

linear stability problem (2.46). Here χ = (χ1, χ2)T is any solution of (2.25) with the corresponding
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elliptic solution φ(x) = R(x)eiθ(x) = R̂(x)eiκx.

Proof. The proof is by direct calculation: calculate ∂t(w1, w2)T using the product rule and the

second equation of (2.25). Alternatively, calculate (w1, w2)Tt using (2.46), substituting (w1, w2)T =

(e−iκxχ2
1+eiκxχ2

2,−ie−iκxχ2
1+ieiκxχ2

2)T . In both expressions so obtained, eliminate x-derivatives

of w1 and w2 (up to order 2) using the first equation of (2.25). The resulting expressions are equal,

finishing the proof.

Remarks.

• It is possible to repeat this proof for any solution Ψ(x, t) of (2.1). It is not necessary that the

solution is a stationary elliptic solution.

• Despite the different forms of the spectral stability problem (compare (2.49) with (2.22)), it

is clear that they determine the same spectra, with different but equivalent eigenfunctions.

Indeed, if an eigenfunction (W1,W2) corresponds to an element of the spectrum λ for (2.49),

then there is a corresponding eigenfunction (U, V ) with the same spectral element λ for

(2.22). Thus, there is no confusion when we use (2.49) to determine the stability spectrum of

an elliptic solution of (2.1).

To establish the spectral stability of the elliptic solutions of the defocusing NLS equation (2.1),

we need to establish that all bounded solutions (W1,W2) of (2.49) are obtained through the squared-

eigenfunction connection by

 W1

W2

 = e2Ωt

 e−iκxϕ2
1 + eiκxϕ2

2

−ie−iκxϕ2
1 + ieiκxϕ2

2

 (2.50)

If we manage to do so then by comparing with (2.48) we immediately conclude that

λ = 2Ω. (2.51)

Since σt = iR, we conclude that the stability spectrum is given by

σ(L) = σ(Lκ) = iR. (2.52)
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In order to obtain this conclusion, we need the following theorem.

Theorem 2. All but six solutions of (2.49) are obtained through (2.50), where ϕ = (ϕ1, ϕ2)T

solves the first equation of (2.27) and (2.30). Specifically, all solutions of (2.49) bounded on the

whole real line are obtained through the squared eigenfunction connection (2.50), with one excep-

tion corresponding to λ = 0.

Proof. For any given value of λ ∈ C, (2.49) can be written as four-dimensional first-order

system of ordinary differential equations. Thus, for any value of λ ∈ C, (2.49) has four linearly

independent solutions. On the other hand, we have already shown (Theorem 1) that (2.50) provides

solutions of this ordinary differential equation. Let us count how many solutions are obtained this

way, for a fixed value of λ. For any value of λ ∈ C, exactly one value of Ω ∈ C is obtained through

Ω = λ/2. Excluding the six values of λ for which the discriminant of (2.31) as a function of ζ

is zero (these turn out to be only the values of λ for which Ω2 reaches its maximum or minimum

value in Fig. 2.4), (2.31) gives rise to four values of ζ ∈ C. It should be noted that we are not

restricting ourselves to ζ ∈ σL now, since the boundedness of the solutions is not a concern in

this counting argument. Next, for a given pair (Ω, ζ) ∈ C2, (2.30) defines a unique solution of the

system consisting of the first equation of (2.27) and (2.30). Thus, any choice of λ ∈ C not equal to

the six values mentioned above, gives rise to exactly four solutions of (2.49), through the squared

eigenfunction connection of Theorem 1. Before we consider the six excluded values, we need to

show that the four solutions (W1(x),W2(x))T just obtained are linearly independent. As in [14],

there are two parts to this.

1. If there is an exponential contribution to (W1,W2)T from γ(x) then an argument similar to

that given in [14] establishes the linear independence of the four solutions.

2. As in [14], the only possibility for the exponential factor due to γ(x) not to contribute is

for the integrand in that factor to be proportional to a logarithmic derivative. It is easily

checked that this occurs only for λ = 0 = Ω. It is a tedious calculation to verify that the

four solutions (W1(x),W2(x))T obtained through the squared eigenfunction connection are

linearly dependent. In fact, no two of them are linearly independent. Using the invariances

of the equation, one can construct two bounded and two unbounded solutions. Unlike for the
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KdV equation [14], no linear combination of the unbounded solutions is bounded. Thus, in

this case, three of the solutions of (2.49) are not obtained through the squared eigenfunction

connection, one of which is bounded.

For the six excluded values, three linearly independent solutions of (2.49) are found. The fourth

one may be constructed using reduction of order, and introduces algebraic growth. Extra care is

required for the trivial-phase case, for which both maxima are equal, but the same conclusion fol-

lows. For the two λ values for which Ω2 reaches its minimum value, the two solutions obtained

from (2.50) are bounded, thus these values of λ are part of the spectrum. The two values of λ for

which Ω2 reaches its maximum value only give rise to unbounded solutions and are not part of the

spectrum.

We conclude that all but one of the bounded solutions of (2.48) are obtained through the squared

eigenfunction connection. This finishes the proof.

Remark. It is important to remember that the algebraically growing solutions discussed above

(corresponding to λ = 0 = Ω) do not lead to solutions of (2.49) through the squared eigenfunc-

tion connection. Indeed, those solutions do not solve the second equation of (2.27), and therefore

Theorem 1 does not apply to them. If it did, eight solutions would be obtained corresponding to

λ = 0.

The above considerations are summarized in the following theorem.

Theorem 3. (Spectral Stability) The elliptic solutions of the NLS equation (2.1) are spectrally

stable. The spectrum of their associated linear stability problem (2.49) (or (2.22)) is explicitly given

by σ(L) = iR, or, accounting for multiple coverings,

σ(L) = (iR)2 ∪
[
−2i

√
|Ω2

min|, 2i
√
|Ω2

min|
]2

, (2.53)

where |Ω2
min| is as before.

If follows from Theorem 3 that the value of λc(b, k) in Fig. 4.5 is given by

λc(b, k) = 2
√
|Ω2

min|, (2.54)
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which is the expression for the solid curve in Fig. 4.5.

Similar to the calculations in [14], we could obtain parametric representations for the Floquet

parameter and the imaginary part of the spectrum as a function of ζ. This would reproduce the

curves in Fig. 4.3.

2.6 Nonlinear stability

In this section we consider the nonlinear stability of the elliptic solutions. To facilitate our study, we

rewrite the NLS equation in real coordinates (r(x, t), l(x, t)), where Ψ(x, t) = r(x, t) + il(x, t).

Then (2.1) becomes

r
l


t

=

−1
2 lxx + l(r2 + l2)

1
2 lxx − r(r

2 + l2)

 . (2.55)

In the (r, l) coordinates we denote the stationary solution as r∗(x) + il∗(x):

r∗(x) + il∗(x) = φ(x) = eiθ(x)R(x). (2.56)

This is the same simplification done in Section (2.5), but without the term eiκ factored out.

We allow for perturbations whose amplitude is periodic with period equal to an integer multiple

of the minimal period 2T of R(x), i.e., subharmonic perturbations. In order to properly define

the higher-order equations in the NLS hierarchy that are necessary for our stability argument (see

below), we need (r, l) and its derivatives of up to order three to be square-integrable. Therefore, we

consider (2.55) on the function space

V =
{
v ∈ H3([−NT,NT ])×H3([−NT,NT ]) : ||v(x+ 2NT )|| = ||v(x)||

}
, (2.57)

for a fixed positive integer N , equipped with inner-product

〈u, v〉 =
∫ NT

−NT
u · v dx. (2.58)
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2.6.1 Hamiltonian structure and the NLS hierarchy

To begin, we reformulate the NLS equation as a Hamiltonian system. Using the real formulation

above, we write (2.55) in Hamiltonian form [73]

r
l


t

= JH ′(r, l) (2.59)

on V. Here J is the skew symmetric operator

J =

 0 1

−1 0

 , (2.60)

the Hamiltonian H is the functional

H(r, l) =
∫ NT

−NT

(
1
4

(r2
x + l2x) +

1
4

(r2 + l2)2

)
dx, (2.61)

and H ′ denotes the variational derivative of H

H ′(r, l) =
∞∑
i=0

(−1)i∂ix
∂H
∂rix

(−1)i∂ix
∂H
∂lix

,

 (2.62)

where the sum in (4.11) terminates at the order of the highest derivatives involved.

Note: We can also write (4.1) in Hamiltonian form without switching to real coordinates with

H(Ψ) =
∫ NT

−NT

(
1
2
|Ψx|2 +

1
4
|Ψ|4

)
dx (2.63)

and J = −i. However, representation (4.8) is useful when examining the spectral properties of the

linearization about an equilibrium solution. In what follows, by complex coordinates we mean the

representation in terms of Ψ.

By virtue of its integrability, the NLS equation possesses an infinite number of conserved quan-

tities H0, H1, H2, . . ., and just as the functional H2 = H defines the NLS equation, each Hi defines

a Hamiltonian system with time variable τi through
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r
l


τi

= JH ′i(r, l). (2.64)

This defines an infinite hierarchy of equations, the NLS hierarchy. It has the following properties:

• All the functionals Hi, i = 0, 1, . . ., are conserved for each member of the NLS hierarchy

(4.13).

• The flows of the NLS hierarchy (4.13) mutually commute, and we can think of Ψ as solving

all of these equations simultaneously, i.e.,

r
l

 =

r(τ0, τ1, . . .)

l(τ0, τ1, . . .)

 [31].

As all the flows in the NLS hierarchy commute, we may take any linear combination of the

above Hamiltonians to define a new Hamiltonian system. For our purposes, we define the n-th NLS

equation with time variable tn as

r
l


tn

= JĤ ′n(r, l), (2.65)

where each Ĥn is defined as

Ĥn := Hn +
n−1∑
i=0

cn,iHi, Ĥ0 := H0, (2.66)

for constants cn,i, i = 0, . . . , n− 1. For now these constants are undetermined. We later fix them as

necessary.

Since every member of the nonlinear hierarchy (4.13) is integrable, each possesses a Lax pair,

the collection of which is known as the linear NLS hierarchy. The first three members of the linear

hierarchy are:
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χτ0 =

 i
2 0

0 − i
2

χ, (2.67)

χτ1 =

 ζ
2

i
2(r + il)

i
2(r + il) − ζ

2

χ, (2.68)

χτ2 =

 −i(ζ2 + 1
2(r2 + l2)) ζ(r + il) + i

2(rx + ilx)

ζ(r − il) + i
2(rx − ilx) i(ζ2 + 1

2(r2 + l2))

χ. (2.69)

We construct the Lax pair for the n-th NLS equation (4.23) by taking the same linear combina-

tion of the lower-order flows as we did for the nonlinear hierarchy, and define the n-th linear NLS

equation 2 as

χtn = T̂nψ =

Ân B̂n

Ĉn −Ân

χ, (2.70)

T̂n := Tn +
n−1∑
i=0

cn,iTi, T̂0 := T0. (2.71)

2.6.2 Stationary solutions

Stationary solutions of the NLS hierarchy are defined as solutions such that

r
l


tn

= 0 (2.72)

for some integer n and constants cn,0, . . . , cn,n−1 in (4.23-4.24). Thus, a stationary solution of the

n-th NLS equation satisfies the ordinary differential equation

JĤ ′n(r, l) = 0 (2.73)

with independent variable x. Since J is invertible, this is equivalent to

2Not to be confused with the linear Schrödinger equation.
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Ĥ ′n(r, l) = 0. (2.74)

The stationary solutions have the following properties:

• Since all the flows commute, the set of stationary solutions is invariant under any of the NLS

equations, i.e., a stationary solution of the n-th equation remains a stationary solution of the

n-th equation after evolving under any of the other flows.

• Any stationary solution of the n-th NLS equation is also stationary with respect to all of the

higher order time variables tm, m > n. In such cases, the constants cm,i, i ≥ n are free

parameters. We make use of this fact when constructing a Lyapunov function later.

Returning to solutions of the form Ψ(x, t) = e−iωtφ(x) = e−iωt(r∗(x) + il∗(x)), we see that

φ(x) satisfies the ordinary differential equation

−1
2
φxx + φ|φ|2 − ωφ = 0. (2.75)

However this is just the second stationary NLS equation (in complex coordinates)

Ψt2 = −iĤ ′2 = −i(H ′2 + c2,1H
′
1 + c2,0H

′
0) = 0, (2.76)

with

c2,1 = 0, c2,0 = ω = k2/2 + 3b/2 + 1/2. (2.77)

Furthermore, this solution is stationary with respect to all the higher-order NLS equations as well.

For example, it is a stationary solution of the fourth NLS equation

Ĥ ′4(r, l) = 0, (2.78)

with
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c4,1 = 4ic+ c4,3(k2 + 1 + 3b) (2.79)

c4,0 = (1/2(k2+1)+3/2b)c4,2+2icc4,3−k4/2−2k2−5bk2−1/2−15b2/2−5b (2.80)

for any values of c4,3 and c4,2.

2.6.3 Stability

First, let us express the linear stability results from the previous sections in the (r, l) coordinates.

We linearize about the equilibrium solution (r∗, l∗)

r(x, t) = r∗ + εw1(x, t) +O(ε2), l(x, t) = l∗ + εw2(x, t) +O(ε2), (2.81)

resulting in the linear system

wt = JLw. (2.82)

Here the symmetric differential operator L = Ĥ ′′2 (r∗, l∗) is the Hessian of Ĥ2,

Ĥ ′′2 (r, l) =

−1
2∂xx + 3r2 + l2 − 1

2ω 2rl

2rl −1
2∂xx + 3l2 + r2 − 1

2ω

 , (2.83)

evaluated at the stationary solution.

Again, we let w(x, t) = eλtW (x) and consider the eigenvalue problem

λW = JLW. (2.84)

By relating solutions of (2.82) to those of the stability problem considered in the previous sections,

one can establish the squared eigenfunction connection

λ = 2Ω, W (x) =

 χ2
1 + χ2

2

i(χ2
2 − χ2

1)

 , (2.85)
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where χ1, χ2, and Ω ∈ iR are defined as before.

Now, consider the problem of nonlinear stability. The NLS equation is invariant under rotation

in the complex plane and translation in x. These symmetries are represented by the Lie group

G = R× S1, (2.86)

which acts on Ψ(x, t) according to

T (g)Ψ(x, t) = eiγΨ(x+ x0, t), g = (x0, γ) ∈ G, (2.87)

or in real coordinates

T (g)

r(x, t)
l(x, t)

 =

cos γ − sin γ

sin γ cos γ

r(x+ x0, t)

l(x+ x0, t)

 g = (x0, γ) ∈ G. (2.88)

Stability is considered modulo these symmetries. We use the following definition.

Definition: The stationary solution (r∗, l∗) is orbitally stable in V if for a given ε > 0 there

exists a δ > 0 such that if (r(x, 0), l(x, 0)), (r∗(x), l∗(x)) ∈ V then

||(r(x, 0), l(x, 0))− (r∗(x), l∗(x))|| < δ ⇒ inf
g∈G
||(r(x, t), l(x, t))− T (g)(r∗(x), l∗(x))|| < ε,

where || · || is the norm obtained through 〈·, ·〉 on V.

To prove orbital stability, we search for a Lyapunov function. For Hamiltonian systems, this is a

constant of the motion, K(r, l), for which (r∗, l∗) is an unconstrained minimum:

∂

∂t
K(r, l) = 0, K ′(r∗, l∗) = 0, 〈v,K ′′(r∗, l∗)v〉 > 0, ∀v ∈ V, v 6= 0. (2.89)

We obtain an infinite number of candidate Lyapunov functions through the NLS hierarchy.

Linearizing (4.23) about the equilibrium solution (r∗, l∗) gives
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wtn = JLnw, (2.90)

where Ln is the Hessian of Ĥn evaluated at the stationary solution. Through the same squared

eigenfunction connection we have

2ΩnW (x) = JLnW (x), (2.91)

where Ωn is defined through

χ(x, tn) = eΩntn

χ1

χ2

 , (2.92)

and due to the commuting property of the flows, the Lax hierarchy shares the common set of eigen-

functions

χ1

χ2

 from before (still assuming the solution is stationary with respect to the second

flow). Substituting (2.92) into the second equation in (4.57) determines a relationship between Ωn

and ζ, and in general Ω2
n defines a genus n Riemann surface. When evaluated at a stationary solu-

tions of the NLS equation, Ω2
n takes a degenerate form.

Theorem. Let (r∗, l∗) be a stationary solution of the second NLS equation. Then for all n > 2,

the n-th surface reduces to

Ω2
n(ζ) = pn(ζ)2Ω2(ζ), (2.93)

where pn(ζ) is a polynomial of degree n−2 in ζ. Furthermore, pn(ζ) depends on the free parameters

cn,2, . . . , cn,n−1 such that cn,i appears in the coefficients of ζi−2 and lower. Therefore, the free

parameters cn,2, . . . , cn,n−1 give us total control over the roots of pn(ζ).

Proof. The proof is a special case of the proof for the finite-genus solutions of the KdV equation

in Chapter 4. When evaluated at a stationary solution of the NLS equation, all the higher-order

flows become linearly dependent. The theorem is a consequence of this linear dependence and the
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functional form the Lax operators take as polynomials in ζ.

With the above facts established, we return to orbital stability. Just as we considered the norm

of a solution modulo symmetries, we shall in effect do the same when considering a Lyapunov

function. We have the following theorem due to [42, 68]:

Orbital Stability Theorem. Let (r∗, l∗) be a spectrally stable equilibrium solution of equation

(4.8) such that the eigenfunctions W of the linear stability problem (2.84) form a basis for V.

Furthermore, suppose there exists an integer n ≥ 2 and constants cn,0, . . . , cn,n−1 such that the

Hamiltonian for the n-th equation in the nonlinear hierarchy satisfies the following:

1. The kernel of Ĥ ′′n(r∗, l∗) is spanned by the infinitesimal generators of the symmetry group G

acting on (r∗, l∗).

2. For all eigenfunctions W corresponding to nonzero eigenvalues

Kn(W ) := 〈W, Ĥ ′′n(r∗, l∗)W 〉 > 0.

Then (r∗, l∗) is orbitally stable in V.

Let us consider the implications of this theorem for the problem at hand:

• It was established in [45] that the eigenfunctions W form a basis for

V =
{
v ∈ H3([−NT,NT ])×H3([−NT,NT ]) : ||v(x+ 2NT )|| = ||v(x)||

}
. (2.94)

• The kernel of Ĥ ′′2 (r∗, l∗) has geometric multiplicity two when considered on V (see [38]

for instance). In complex coordinates, the infinitesimal generators corresponding to phase

invariance and translational invariance are i and ∂x respectively. Therefore, the two linearly

independent solutions iQ∗,Q∗x span the two-dimensional null space of Ĥ ′′2 (Q∗). Furthermore,

when evaluated at the equilibrium solution Ĥ ′′n(Q∗), n ≥ 2, and Ĥ ′′2 (Q∗) share the same
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kernel, which can be seen from the Riemann surface relations. Relating this back to r and l

gives that the kernel of Ĥ ′′n(r∗, l∗) is spanned by the vectors

ker(Ĥ ′′n(r∗, l∗)) = Span


−l∗
r∗

 ,

r∗x
l∗x

 , (2.95)

What is left to verify is condition (2) in the nonlinear stability theorem, i.e., to prove orbital stability

we need to find an n such that

Kn = 〈W,LnW 〉 =
∫ NT

−NT
W · LnWdx ≥ 0, (2.96)

with equality obtained only on the kernel of Ln, i.e., only for Ω = 0.

To calculate the higher order Kn, we make use of the following. Assume our solution is an

equilibrium solution of the n-th flow. Then from equation (4.40) we have

LnW = 2ΩnJ
−1W. (2.97)

This gives

Kn =
∫ NT

−NT
W · LnWdx = 2Ωn

∫ NT

−NT
W · J−1Wdx. (2.98)

Using that (r∗, l∗) is a stationary solution of the second flow and substituting for Ωn in the above

gives

Kn(ζ) = Ωn(ζ)
K2(ζ)
Ω(ζ)

= pn(ζ)K2(ζ). (2.99)

Therefore, when considering stationary solutions of the defocusing NLS equation, one simply needs

to calculate K2 in order to calculate any of the higher order Ki. Let us do so. From (2.84) we have

LW = 2ΩJ−1W = 2Ω

−W2

W1

 . (2.100)

This gives
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W · LW = 2ΩJ−1(−W 1W2 +W 2W1). (2.101)

Using the explicit form of W gives

W · LW = −i
(
|χ1|4 − |χ2|4 − (χ1χ2)2 + (χ2χ1)2

)
, (2.102)

where χ1 = −γB̂2, χ2 = γ(Â2 − Ω). First, calculate the norm of γ. Using φ = r∗ + il∗, we have

γ =
1

Â2 − Ω
exp

∫ (
− (φ)B̂2

Â2 − Ω
+ iζ

)
dx, (2.103)

up to a multiplicative constant. The above integrand simplifies to

− (φ)B̂2

Â2 − Ω
= i

Re(φB̂2)
Im(Â2 − Ω)

− Im(φB̂2)
Im(Â2 − Ω)

= i
Re(φB̂2)

Im(Â2 − Ω)
− ∂x(φφ)

4(−ζ2 − 1
2φφ+ ω

2 − Im(Ω))

= i
Re(φB̂2)

Im(Â2 − Ω)
+

1
2
∂x(ln(Im(Â2 − Ω))).

Therefore (2.103) becomes

γ =
−i√

=(Â2 − Ω)
exp

∫
i

(
<(φB̂2)
=(Â2 − Ω)

+ ζ

)
dx, (2.104)

giving

|γ|2 =
1

=(Â2 − Ω)
. (2.105)

Along with Ω2 = Â2
2 + |B̂2|2, the above implies

|χ2|2 = =(Â2 − Ω), |χ1|2 = =(Â2 + Ω), (χ1χ2)2 = −B̂2

2
. (2.106)

Therefore, K2 is given by
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K2 = −16Ω2

∫
iÂ2dx = −16Ω2

∫ (
ζ2 +

1
2

(r∗2 + l∗2)− 1
2
c2,0

)
dx, (2.107)

with c2,0 = ω.

Let us revisit the second condition of the nonlinear stability theorem. Using Ω2 = Â2
2 + |B̂2|2

we see that K2 can be zero only if Ω ≥ 0. Also, we see that K2 ≥ 0 for all values of ζ or it changes

signs at exactly two values ±ζ0 /∈ σL. If the first case is true, then we have proven orbital stability

and we are done. In what follows, we assume the second case is true. Then K2 < 0 for ζ ∈ σL

such that −ζ0 < ζ < ζ0 and K2 > 0 for all other ζ ∈ σL. Therefore, no conclusion with regard

to stability can drawn from K2. Let us go two flows higher. When evaluated at (r∗, l∗), a direct

calculation shows that Ω2
4 simplifies to

Ω2
4 = (4ζ2 + 2ic4,3ζ − c4,2 + 3b+ k2 + 1)2Ω2

2, (2.108)

with c4,0 and c4,1 as in (2.79). Choosing c4,3 = 0 and c4,2 = 4ζ2
0 + 3b+ k2 + 1 makes K4(ζ) ≥ 0

for all ζ ∈ σL with equality obtained only when Ω = 0.

We have proved the following theorem:

Theorem. There exist constants c4,2, c4,3, such that K4 is positive on the Lax spectrum. There-

fore, the equilibrium solution (r∗, l∗) is orbitally stable with respect to subharmonic perturbations,

i.e., (r∗, l∗) is orbitally stable in the function space

V =
{
v ∈ H3([−NT,NT ])×H3([−NT,NT ]) : ||v(x+ 2NT )|| = ||v(x)||

}
.
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Chapter 3

STABILITY OF TRAVELING WAVE SOLUTIONS OF THE MKDV EQUATION

The modified Korteweg-de Vries (mKdV) equation is given by

ut + 6δu2ux + uxxx = 0, (3.1)

where δ = −1 corresponds to the defocusing case and δ = 1 corresponds to the focusing case. It

arises in many of the same physical contexts as the KdV equation, such as water waves and plasma

physics, but in different parameter regimes.

It is well known that the mKdV equation possesses the periodic traveling wave solutions

u = ksn(x− (−k2 − 1)t, x), (3.2)

in the defocusing case, and

u = kcn(x− (2k2 − 1)t, x), u = dn(x− (−k2 + 2)t, x), (3.3)

in the focusing case (though these do not constitute all periodic traveling wave solutions, see Section

3.1). The orbital stability of the dn solutions was first studied in [5], where they were proved to be

orbitally stable with respect to periodic perturbations of the same period. However, as noted in

[24], the proof fails for the other solutions mentioned above. More recently in [24], a modified

version of the Bloch-decomposition and counting techniques in [45, 59] to Hamiltonian equations

with a singular Poisson structure was developed. It is proven there that the sn and dn solutions are

orbitally stable with respect to periodic perturbations of the same period for all values of elliptic

modulus k. The dynamics of the cn solutions changes from from stable to unstable as the elliptic

modulus passes through a fixed value k∗. However, the accompanying numerical investigation of the

spectral stability of the cn solutions with respect to subharmonic perturbations suggests instability

for all values of the elliptic modulus.
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Stability results for other subclasses of solutions of the mKdV equation have been obtained

in recent years as well. In [45], the spectral stability of small amplitude periodic traveling wave

solutions with respect to periodic perturbations of the same period was established. This result was

recently extended beyond spectral stability in the work of [56]. Through the use of the periodic

instability index developed in [16] in combination with a periodic version of the Evans function

technique employed in [76, 77], it was proven that the small amplitude solutions are orbitally stable

with respect to periodic perturbations of the same period. The same result is also established for

solutions in neighborhoods of homoclinic orbits.

There are two limitations in all the results discussed above: (i) They are restricted to special

cases of traveling wave solutions. (ii) Only periodic perturbations of the same period are considered.

Here we examine the spectral and (nonlinear) orbital stability of all traveling wave solutions of the

mKdV equation with respect to subharmonic perturbations. Due to difficulties that arise with the

spectral parameter in the Lax pair for the focusing mKdV equation (see Section 3.7), we first restrict

ourselves to the defocusing case, setting δ = −1. After deriving all traveling wave solutions of the

defocusing mKdV equation in terms of the Weierstrass elliptic function (surprisingly, this result

appears to be new), we analytically prove that all bounded traveling wave solutions are spectrally

and orbitally stable with respect to subharmonic perturbations. We then return to the focusing case.

We derive all periodic traveling wave solutions, and employ a combination of analytic and numerical

techniques to study their stability

3.1 Traveling wave solutions

Here we derive all periodic traveling wave solutions of the defocusing mKdV equation (see Section

3.7 for their derivation in the focusing case). We employ a technique originally due to the work of

Poincaré, Painlevé, Briot, and Bouquet [84], though most recently reformulated in [22, 23].

Note: A large class of solutions of the mKdV equation in terms of the Weierstrass elliptic

function is derived using a different method in [88]. However, it is straightforward to check that

they do not constitute the full set of periodic traveling wave solutions.

To examine traveling wave solutions, we change to a moving coordinate frame



41

y = x− V t, τ = t. (3.4)

In the (y, τ) coordinates the mKdV equation becomes

uτ − V uy − 6u2uy + uyyy = 0. (3.5)

We look for stationary solutions uτ = 0, i.e, time-independent solutions of (3.5). Letting u(y, τ) =

U(y), stationary solutions satisfy the ordinary differential equation

−V Uy − 6U2Uy + Uyyy = 0. (3.6)

Integrating (3.6) gives

−V U − 2U3 + Uyy = C, (3.7)

for some constant C. Multiplying (3.7) by Uy and integrating a second time gives

−V
2
U2 − 1

2
U4 +

1
2
U2
y − CU = E, (3.8)

for some constant E. Therefore, all stationary solutions U(y) satisfy the first-order ordinary differ-

ential equation (3.8).

Defining the new variable v = Uy, (3.8) becomes

(v)2 − 1
2
U4 − V

2
U2 − CU − E = 0. (3.9)

This is a genus one algebraic curve [35], birationally equivalent to (using the normal form algorithm

found in [85])

r2 = 4s3 − g2s− g3, (3.10)

where
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U = R(s, r), v = S(s, r), (3.11)

and

g2 =
4
3
V 2 + 32E, g3 = − 8

27
V 3 +

64
3
V E − 16C2. (3.12)

As the curve (3.10) is in Weierstrass form, it can be parameterized in terms of the Weierstrass ℘-

function ℘(x), with

r = ℘′(ωx), s = ℘(ωx), (3.13)

for some constant ω. Transforming back to our original variables gives

U = R(℘(ωx), ℘′(ωx)), v = S(℘(ωx), ℘′(ωx)). (3.14)

Imposing our original assumption, Uy = v, gives ω = 1
2 . Thus our final solution is

U(y) =
±
√

2E℘′(1
2(y + y0), g2, g3) + C(2℘(1

2(y + y0), g2, g3)− 2
3V )(

℘(1
2(y + y0), g2, g3)− V

3 − 2
√

2E
)(

℘(1
2(y + y0), g2, g3)− V

3 + 2
√

2E
) . (3.15)

Here y0 is an arbitrary shift in y determined by the initial conditions. These solutions are doubly

periodic in the complex plane. When considered on the real line, they have period 2T determined

by

2T = 4
∫ ∞
e1

1√
4z3 − g2z − g3

dz, (3.16)

where e1 is the largest root of the equation obtained by setting r = 0 in (3.10). This gives all

periodic solutions due to a classic theorem by Briot and Bouquet [84].

We now determine which values of V , C, and E give rise to bounded periodic solutions. Letting

v = Uy in (3.7), we have the first-order two-dimensional system
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Uy = v, vy = V U + 2U3 + C. (3.17)

All fixed points (U0, v0) satisfy

v0 = 0, V U0 + 2U3
0 + C = 0. (3.18)

After linearizing about (U0, 0), the resulting linear system has eigenvalues

λ = ±
√
V + 6U2

0 . (3.19)

We have two saddles and a center when the discriminant of the second equation in (3.18)

d = −8V 3 − 108C2 (3.20)

is greater than zero, and one saddle when the discriminant is less than zero. Therefore, we can only

expect periodic solutions for V < 0 and d > 0 which gives

|C| <
√
−8V 3

108
. (3.21)

Using (3.8), we see that for fixed V and C the phase space is foliated by the family of curves

v2 = U4 + V U2 + 2CU + 2E. (3.22)

The parameter E is specified by the initial condition. Periodic solutions are separated from un-

bounded solutions by two heteroclinc orbits in the case C = 0, and by one homoclinc orbit in the

case C 6= 0, see Fig. 3.1. All values of E which give rise to a solution lying inside the separatrix

result in periodic solutions. Thinking of the right-hand side of (3.22) as a polynomial in U , all values

of E which make its discriminant positive give rise to periodic solutions. For C = 0 we can write

the solution in the particularly simple form

U(y) = ±k
√
−V

1 + k2
sn

(√
−V

1 + k2
y, k

)
, (3.23)
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(a)

(b)

Figure 3.1: (a) Typical (U, v) phase plane in the defocusing case for C = 0 (here V = −10). (b)
For C 6= 0 (here C = 0.5, V = −10), the heteroclinc orbits break into a single homoclinic orbit.

The homoclinic orbit persists until |C| =
√
−8V
108 .

where E is parameterized by the elliptic modulus k

E =
k2V 2

2(k4 + 2k2 + 1)
. (3.24)

3.2 The linear stability problem

Before we study the orbital stability of the stationary solutions, we examine their spectral and linear

stability. To this end, we consider perturbations of a stationary solution

u(y, τ) = U(y) + εw(y, τ) +O(ε2), (3.25)



45

where ε is a small parameter. Substituting this in (3.5) and ignoring higher-than-first-order terms in

ε, we find

wτ = 6U2wy + 12UUyw − wyyy + V wy, (3.26)

at first order in ε. The zeroth order terms vanish since U(y) solves the mKdV equation. By ignor-

ing the higher-order terms in ε, we are restricting our attention to examining linear stability. The

traveling wave solution is defined to be linearly stable if for all ε > 0, there is a δ > 0 such that if

||w(y, 0)|| < δ then ||w(y, τ)|| < ε for all τ > 0. This definition depends on our choice of the norm

|| · ||, to be determined later.

Next, since (3.26) is autonomous in time, we may separate variables. Let

w(y, τ) = eλτW (y, λ), (3.27)

then W (y, λ) satisfies

−Wyyy + (V + 6U2)Wy + 12UUyW = λW, (3.28)

or

JLW = λW, J = ∂y, L = −∂yy + V + 6U2. (3.29)

In what follows, the λ dependence of W will be suppressed. To avoid confusion with other spectra

arising below, we refer to σ(JL) as the stability spectrum.

3.3 Numerical Results

Before we determine the spectrum of (3.29) analytically, we compute it numerically, using Hill’s

method [26]. Hill’s method is ideally suited to a problem such as (3.29) with periodic coefficients.

It allows us to compute all eigenfunctions of the form

W = eiµyŴ (y), Ŵ (y + 2T ) = Ŵ (y), (3.30)
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with µ ∈ [−π/4T, π/4T ). It follows from Floquet’s theorem that all bounded solutions of (3.29)

are of this form. Here bounded means that supx∈R |W (x)| is finite. Thus W ∈ C0
b (R). On the

other hand, we also have W ∈ L2(−T, T ) (the square-integrable functions of period 2T ) since the

exponential factor in (3.30) disappears in the computation of the L2-norm. Thus

W ∈ C0
b (R) ∩ L2(−T, T ). (3.31)

It should be noted that by this choice our investigations include perturbations of an arbitrary period

that is an integer multiple of 2T , i.e., subharmonic perturbations.

Figure (3.2) shows discrete approximations to the spectrum of (3.29), computed using Spec-

trUW 2.0 [25]. The solution parameters are V = −10, C = 0, and E ≈ 11.9 (k = 0.8). The

numerical parameters (see [26, 25]) are N = 40 (81 Fourier modes) and D = 80 (79 different

Floquet exponents). The right panel (b) is a blow-up of the left panel (a) around the origin. First,

it appears that the spectrum is on the imaginary axis, indicating spectral stability of the solution.

Second, the numerics shows that a symmetric band around the origin has a higher spectral den-

sity than does the rest of the imaginary axis. This is indeed the case, as shown in more detail in

Fig. 3.4, where the imaginary parts ∈ [−1.5, 1.5] of the computed eigenvalues are displayed as a

function of the Floquet parameter µ (here 199 different Floquet exponents were used). This shows

that λ values with Im(λ) ∈ [−0.54, 0.54] (approximately) are attained for three different µ values

in [−π/4T, π/4T ). The rest of the imaginary axis is only attained for one µ value. This picture per-

sists if a larger portion of the imaginary λ axis is examined. These numerical results are in perfect

agreement with the theoretical results below.

Figure 3.3 shows discrete approximations to the spectrum for C 6= 0. The solution parameters

are V = −10, C = 10
√

(15)/9, and E ≈ −1. We see the same structure as the C = 0 case.

3.4 Lax pair representation

Equation (3.6) is equivalent to the compatibility of two linear ordinary differential systems:
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Figure 3.2: (a) The numerically computed spectrum for the traveling wave solution with V = −10,
C = 0, and E = 11.9 (k = .8) using Hill’s method with 81 Fourier modes and 79 different Floquet
exponents, see [26, 25]; (b) A blow-up of (a) around the origin, showing a band of higher spectral
density;

ψy =

−iζ u

u iζ

ψ, (3.32)

ψτ =

 (−V ζ − 4ζ3 − 2ζu2)i V u+ 4ζ2u+ 2u3 − uyy + 2ζuyi

V u+ 4ζ2u+ 2u3 − uyy − 2ζuyi −(−V ζ − 4ζ3 − 2ζu2)i

ψ.(3.33)

In other words, the compatibility condition ψyτ = ψτy requires that u satisfies the defocusing mKdV

equation. We can rewrite (3.32) as the spectral problem

i∂y −iu

iu −i∂y

ψ = ζψ. (3.34)
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Figure 3.3: (a) The numerically computed spectrum for the traveling wave solution with V = −10,
C = 10

√
(15)/9, and E ≈ −1 using Hill’s method with 81 Fourier modes and 79 different Floquet

exponents, see [26, 25]; (b) A blow-up of (a) around the origin, showing a band of higher spectral
density;

This problem is self-adjoint, therefore ζ ∈ R. Evaluating (3.32-3.33) at the stationary solution

u(y, τ) = U(y), we find

ψy =

−iζ U

U iζ

ψ, (3.35)

ψτ =

 (−V ζ−4ζ3−2ζU2)i V U+4ζ2U+2U3 − Uyy+2ζUyi

V U+4ζ2U+2U3−Uyy−2ζUyi −(−V ζ−4ζ3−2ζU2)i

ψ. (3.36)

We refer to the set of all ζ values such that (3.35-3.36) has bounded solutions as the Lax spectrum

σL. Since the spectral problem (3.34) is self-adjoint, the Lax spectrum is a subset of the real line:
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Figure 3.4: The imaginary part of λ as a function of µ, demonstrating the higer spectral density.
The parameter values are identical to those of Fig. 3.2, except 199 different Floquet exponents were
used here.

σL ⊂ R . The goal of this section is to determine this subset explicitly. In the next section, we

connect the Lax spectrum to its stability spectrum.

Equation (3.36) simplifies. Using (3.7) to eliminate Uyy gives

ψτ =

(−V ζ − 4ζ3 − 2ζU2)i 4ζ2U + C + 2ζUyi

4ζ2U + C − 2ζUyi −(−V ζ − 4ζ3 − 2ζU2)i

ψ =

A B

B −A

ψ. (3.37)

Since A and B do not explicitly depend on τ , we separate variables

ψ(y, τ) = eΩτ

α(y)

β(y)

 . (3.38)

Substituting (3.38) into (3.37) and canceling the exponential, we find
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Figure 3.5: The imaginary part of λ as a function of µ, demonstrating the higer spectral density.
The parameter values are identical to those of Fig. 3.3, except 199 different Floquet exponents were
used here.

A B

B −A

α
β

 = 0. (3.39)

This implies that the existence of nontrivial solutions requires

Ω2 = A2 + |B|2 = −16ζ6 − 8V ζ4 − (V 2 + 8E)ζ2 + C2 = 0, (3.40)

where we have used the explicit form of the stationary solution U(y) derived earlier. This deter-

mines Ω in terms of the spectral parameter ζ. Thinking of Ω2 as a polynomial in ζ2, one finds

that the discriminant of (3.40) has the same sign as the discriminant of the polynomial (3.22). As

discussed earlier, this discriminant is positive for periodic solutions. Also, Ω2 is an even function of

ζ. Therefore, for periodic stationary solutions, (3.40) can be written as

Ω2 = −16(ζ − ζ1)(ζ + ζ1)(ζ − ζ2)(ζ + ζ2)(ζ − ζ3)(ζ + ζ3) (3.41)



51

for some positive constants 0 ≤ ζ3 < ζ2 < ζ1.

The eigenvector corresponding to the eigenvalue Ω is

α
β

 = γ(y)

 −B
A− Ω

 , (3.42)

where γ is a scalar function of x. It is determined by substitution of the above into the first equation

of the Lax pair, resulting in a first-order scalar differential equation for γ. This equation may be

solved explicitly giving

γ = exp
∫ (

iζ − A′

A− Ω
− UB

A− Ω

)
dy, (3.43)

up to a multiplicative constant. This simplifies to

γ =
1

A− Ω
exp

∫ (
iζ − UB

A− Ω

)
dy. (3.44)

Each value of ζ results in two values of Ω (except for the six branch points ±ζi, i = 1, 2, 3, where

Ω = 0) and therefore (3.42) represents two eigenvectors. These solutions are clearly linearly inde-

pendent. For those values of ζ for which Ω = 0, only one solution is generated. A second one may

be found using reduction of order, resulting in algebraically growing solutions.

To determine the Lax spectrum σL, we need to determine the set of all ζ ⊂ R such that (3.42)

is bounded as a function of x. Thus, we need to determine for which ζ the scalar function γ(x) is

bounded. First, one can readily check that the only values of ζ for which the denominator in (3.42)

is singular are the branch points ±ζi, i = 1, 2, 3, where Ω = 0. One finds that the vector part of

(3.42) cancels the singularity in γ(y). Thus, ±ζi, i = 1, 2, 3, are part of the Lax spectrum. For all

other values of ζ, it is necessary and sufficient that

〈
<
(
− uB

A− Ω

)〉
= 0. (3.45)

Here 〈 · 〉 = 1
T

∫ L
−L · dy denotes the average over a period. The explicit form of the above depends

on whether Ω is real or imaginary. It should be noted that since ζ ∈ R, it follows from (3.40) that
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these are the only possibilities. Let us investigate each case separately:

• If Ω is imaginary then

− UB

A− Ω
=
−URe(B)
Im(A− Ω)

i+
∂y
(

1
2 Im(A− Ω)

)
Im(A− Ω)

, (3.46)

where we used that

∂y

(
1
2

(Im(A)− Ω)
)

= −2UUy = −U Im(B). (3.47)

The first term in (3.46) is imaginary and the second term is a total derivative, thus giving zero

average. Therefore, all ζ values that make Ω imaginary are in the Lax spectrum.

• If Ω is real, then ignoring total derivatives one finds

〈
Re
(
− UB

A− Ω

)〉
=
〈

URe(B)
Ω2 + (Im(A))2

〉
Ω =

〈
4ζ2U2 + CU

Ω2 + (Im(A))2

〉
Ω = 0. (3.48)

The average term above is obviously non-zero for C = 0. A similar argument as for the case

of non-trivial phase in the defocusing NLS equation gives that this average term is never zero.

Therefore, Ω must be identically zero, and all values of ζ for which Ω is real are not part of

the Lax spectrum.

We conclude that the Lax spectrum consists of all ζ values for which Ω2 ≤ 0:

σL = (−∞,−ζ1] ∪ [−ζ2,−ζ3] ∪ [ζ3, ζ2] ∪ [ζ1,∞), (3.49)

and Ω is purely imaginary

Ω ∈ iR (3.50)

for all ζ ∈ σL. In fact, Ω2 takes on all negative values for ζ ∈ (−∞,−ζ1], implying that Ω =

±
√
|Ω2| covers the imaginary axis. The same is true of the segment ζ ∈ [ζ1,∞). Furthermore, for
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Figure 3.6: (a) Ω2 as a function of real ζ, with the same paramter values as Fig. 3.2. The union of
the dotted line segments is the numerically computed Lax spectrum (in the complex ζ-plane) with
81 Fourier modes and 49 different Floquet exponents. (b) A blow-up of (a) around the origin;

ζ ∈ [−ζ2,−ζ3], Ω2 takes on all negative values in [Ω2(ζ∗), 0] twice, where Ω2(ζ∗) is the minimal

value of Ω2 attained for ζ ∈ [−ζ2,−ζ3]. Since Ω2 is an even function of ζ, the same is true of

the segment [ζ3, ζ2]. Upon taking square roots, this implies that the interval on the imaginary axis[
−i
√
|Ω2(ζ∗)|, i

√
|Ω2(ζ∗)|

]
is covered six times, while the rest of the imaginary axis is double

covered. Symbolically, we write [14]

Ω ∈ (iR)2 ∪
[
−i
√
|Ω2(ζ∗)|, i

√
|Ω2(ζ∗)|

]4
, (3.51)

where the exponents denote multiplicities (see Figs. 3.6 and 3.7).
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Figure 3.7: Ω2 as a function of real ζ, for C 6= 0 (same paramter values as Fig. 3.3). The union of
the dotted line segments is the numerically computed Lax spectrum (in the complex ζ-plane) with
81 Fourier modes and 49 different Floquet exponents.

3.5 Spectral stability

It is well known that there exists a connection between the eigenfunctions of the Lax pair of an

integrable equation and the eigenfunctions of the linear stability problem for this integrable equation

[1, 2, 41, 72, 80]. A direct calculation proves that the function

w(y, τ) = ψ2
1(y, τ) + ψ2

2(y, τ) =
1

2iζ
∂y
(
ψ2

2(y, τ)− ψ2
1(y, τ)

)
(3.52)

satisfies the linear stability problem (3.26). Here ψ = (ψ1, ψ2)T is any solution of (3.35-3.36) with

the corresponding stationary solution U(y).

In order to establish the spectral stability of equilibrium solutions of (3.6), we need to establish

that all bounded solutions W (y) of (3.28) are obtained through the squared-eigenfunction connec-

tion by

W (y) = α2(y) + β2(y). (3.53)

If we manage to do so then we may immediately conclude that

λ = 2Ω. (3.54)
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Since Ω ∈ iR, we conclude that the stability spectrum is given by

σ(JL) = iR. (3.55)

In order to obtain this conclusion, we need the following theorem.

Theorem. All but six solutions of (3.28) may be written as W (y) = α2(y) + β2(y), where

(α, β)T solves (3.35,3.36). Specifically, all solutions of (3.28) bounded on the whole real line are

obtained through the squared eigenfunction connection, with one exception corresponding to λ = 0.

Proof. For any given value of λ ∈ C, (3.28) is a third-order linear ordinary differential equation.

Thus, it has three linearly independent solutions. On the other hand, we have already shown (see

the previous theorem) that the formula

W (y) = α2(y) + β2(y) (3.56)

provides solutions of this ordinary differential equation. Let us count how many solutions are ob-

tained this way, for a fixed value of λ. For any value of λ ∈ C, exactly one value of Ω ∈ C is

obtained through Ω = λ/2. Excluding the six values of λ for which the discriminant of (3.40) as a

function of ζ is zero (these are the only values of λ for which Ω2 reaches its maximum or minimum

value, keeping in mind that Ω2 is an even function of ζ), (3.40) gives rise to six values of ζ ∈ C.

It should be noted that we are not restricting ourselves to ζ ∈ σL now, since the boundedness of

the solutions is not a concern in this counting argument. Next, for a given pair (Ω, ζ) ∈ C2, (3.42)

defines a unique solution of (3.35, 3.36). Thus, any choice of λ ∈ C not equal to the six values

mentioned above, gives rise to exactly six solutions of (3.28), through the squared eigenfunction

connection. Let us examine how many of these solutions are linearly independent.

• Since Ω2 is an even function of ζ, the six values of ζ mentioned above come in pairs: ±ζi, i =

1, 2, 3. It can be checked that if ζ corresponds to the eigenfunction W , then −ζ corresponds

to its complex conjugate W . Therefore, when considering the general solution to the linear

stability problem w = a1e
ΩtW + a2e

−ΩtW , half of the ζ values provide no new solutions.

Also, if there is an exponential contribution from γ(y) then an argument similar to that in [14]
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establishes the linear independence of the remaining three solutions.

• As in [14], the only possibility for the exponential factor from γ(y) not to contribute is if

λ = 0 = Ω. Only one linearly independent solution is obtained through the squared eigen-

function connection, corresponding to translational invariance, W = Uy. The other two can

be obtained through reduction of order. Just as for the KdV equation in [14], this allows one

to construct two solutions whose amplitude grows linearly in x. A suitable linear combination

of these solutions is bounded. Thus, corresponding to λ = 0 there are two eigenfunctions.

One of these is obtained through the squared eigenfunction connection.

Lastly, consider the six excluded values of λ. For the two λ values where Ω2 reaches a local

minimum, the two solutions obtained through the squared eigenfunction connection are bounded,

thus, these values of λ are part of the spectrum. The third solution may be constructed using reduc-

tion of order, and introduces algebraic growth. For the two values of λ where Ω2 obtains a global

maximum, three solutions are obtained through the squared eigenfunction connection, all of which

are unbounded. For the other two λ values where Ω2 reaches a local maximum, two solutions are

obtained through the squared eigenfunction connection, both of which are unbounded. The third

solution may be constructed using reduction of order, and introduces algebraic growth.

We have established the following theorem.

Theorem (Spectral Stability). The periodic traveling wave solutions of the defocusing mKdV

equation are spectrally stable. The spectrum of their associated linear stability problem is explicitly

given by σ(JL) = iR, or, accounting for multiple coverings,

σ(JL) = iR ∪
[
−2i

√
|Ω2(ζ∗)|, 2i

√
|Ω2(ζ∗)|

]2
, (3.57)

where |Ω2(ζ∗)| is as before.

Remark: As previously mentioned, for a fixed value of Ω, only three of the six solutions (cor-

responding to the six different values of ζ) obtained through the squared eigenfunction connection

contribute as independent solutions to the linear stability problem. Therefore, the double and sextu-

ple coverings in the Ω representation (3.51) drop to single and triple coverings in (3.57).
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3.6 Nonlinear stability

3.6.1 Hamiltonian structure

To begin, we reformulate the defocusing mKdV equation as a Hamiltonian system. We are con-

cerned with the stability of 2T -periodic traveling wave solutions of equation (3.1) with respect to

subharmonic perturbations of period 2NT for any fixed positive integer N . Therefore, we naturally

consider solutions u in the space of square-integrable functions of period 2NT , L2
per[−NT,NT ].

In order to properly define the higher-order equations in the mKdV hierarchy that are necessary for

our stability argument (see Section 3.6.2), we further require u and its derivatives of up to order two

to be square-integrable as well. Therefore, we consider solutions of (3.5) defined on the function

space

V = H2
per[−NT,NT ], (3.58)

equipped with natural inner product

〈v, w〉 =
∫ NT

−NT
v̄w dx, (3.59)

where v̄ denotes the complex conjugate of v.

We write the mKdV equation in Hamiltonian form

uτ = JH ′(u) (3.60)

on V. Here J is the skew symmetric operator

J = ∂y, (3.61)

the Hamiltonian H is the functional

H(u) =
∫ NT

−NT

(
1
2
u2
y +

1
2
V u2 +

1
2
u4

)
dy, (3.62)

and the notation G′ denotes the variational derivative of G
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G′(u) =
∞∑
i=0

(−1)i∂iy
∂G(u)
∂uiy

, (3.63)

where the sum in (3.63) terminates at the order of the highest derivatives involved. For instance, in

the computation of H ′ the sum terminates after accounting for first derivative terms.

We allow for perturbations in a function space Vp ⊂ V. In order to apply the stability result

of [43], we follow [24] and restrict ourselves to the space of perturbations on which J has a well

defined and bounded inverse. This amounts to fixing the spatial average of u on H2
per[−NL,NL],

which poses no problem since it is a Casimir of the Poisson operator J , hence, it is conserved under

the mKdV flow. Therefore, we consider perturbations in ker(J)⊥, i.e., zero-average subharmonic

perturbations

Vp =
{
v ∈ H2

per([−NL,NL]) :
∫ NL

−NL
v dx = 0

}
. (3.64)

Remark. Physically, requiring perturbations to be zero-average makes sense. It simply says that

we do not consider perturbations which add mass to the system.

3.6.2 The mKdV hierarchy

By virtue of its integrability, the mKdV equation possesses an infinite number of conserved quanti-

tiesH0, H1, H2, . . ., and just as the functionalH1 = H defines the mKdV equation, eachHi defines

a Hamiltonian system with time variable τi through

uτi = JH ′i(u). (3.65)

This defines an infinite hierarchy of equations, the mKdV hierarchy. It has the following properties:

• All the functionals Hi, i = 0, 1, . . ., are conserved for each member of the mKdV hierarchy

(3.65).

• The flows of the mKdV hierarchy (3.65) mutually commute, and we can think of u as solving

all of these equations simultaneously, i.e., u = u(τ0, τ1, . . .) [31].
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As all the flows in the mKdV hierarchy commute, we may take any linear combination of the

above Hamiltonians to define a new Hamiltonian system. For our purposes, we define the n-th

mKdV equation with time variable tn as

utn = JĤ ′n(u), (3.66)

where each Ĥn is defined as

Ĥn := Hn +
n−1∑
i=0

cn,iHi, Ĥ0 := H0, (3.67)

for constants cn,i, i = 0 . . . n− 1.

Since every member of the nonlinear hierarchy (3.65) is integrable, each possesses a Lax pair,

the collection of which is known as the linear mKdV hierarchy. We construct the Lax pair for the

n-th mKdV equation (3.66) by taking the same linear combination of the lower-order flows as we

did for the nonlinear hierarchy, and define the n-th linear mKdV equation as

ψtn = T̂nψ =

Ân B̂n

Ĉn −Ân

ψ, (3.68)

T̂n := Tn +
n−1∑
i=0

cn,iTi, T̂0 := T0. (3.69)

3.6.3 Stationary solutions

Stationary solutions of the mKdV hierarchy are defined as solutions such that

utn = 0 (3.70)

for some integer n and constants cn,0, . . . , cn,n−1 in (3.66-3.67). Thus, a stationary solution of the

n-th mKdV equation satisfies the ordinary differential equation

JĤ ′n(u) = 0 (3.71)

with independent variable y.
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The stationary solutions have the following properties:

• Since all the flows commute, the set of stationary solutions is invariant under any of the mKdV

equations, i.e., a stationary solution of the n-th equation remains a stationary solution after

evolving under any of the other flows.

• Any stationary solution of the n-th mKdV equation is also stationary with respect to all of

the higher order time variables tm, m > n. In such cases, the constants cm,i, i ≥ n are

undetermined coefficients. We make use of this fact when constructing a Lyapunov function

later.

The traveling wave solution U is a stationary solution of the first mKdV equation with c1,0 = V .

It fact, it is stationary with respect to all the higher-order flows. For example, it is a stationary

solution of the second mKdV equation with

c2,0 = c2,1(V 2 − 4E) + V 2 − 4E (3.72)

for any value of c2,1.

3.6.4 Stability

Now, consider the problem of nonlinear stability. The invariance of the mKdV equation under

translation is represented by the Lie group

G = R, (3.73)

which acts on u(y, τ) according to

T (g)u(y, τ) = u(y + y0, τ), g = y0 ∈ G. (3.74)

Stability is considered modulo this symmetry. We use the following definition.

Definition. We say the equilibrium solution U is orbitally stable with respect to perturbations
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in Vp if for a given ε > 0 there exists a δ > 0 such that if u(y, 0)− U(y) ∈ Vp then

||u(y, 0)− U(y)|| < δ ⇒ inf
g∈G
||u(y, τ)− T (g)U(y)|| < ε.

To prove orbital stability, we search for a Lyapunov function. For Hamiltonian systems, this is a

constant of the motion, K(u), for which U is an unconstrained minimum:

∂

∂τ
K(u) = 0, K ′(U) = 0, 〈v,K ′′(U)v〉 > 0, ∀v ∈ Vp, v 6= 0. (3.75)

We obtain an infinite number of candidate Lyapunov functions through the mKdV hierarchy.

Linearizing (3.66) about the equilibrium solution U gives

wtn = JLnw, (3.76)

where Ln is the Hessian of Ĥn evaluated at the stationary solution. Through the same squared

eigenfunction connection we have

2ΩnW (x) = JLnW (x), (3.77)

where Ωn is defined through

ψ(x, tn) = eΩntn

α
β

 , (3.78)

and due to the commuting property of the flows, the Lax hierarchy shares the common set of eigen-

functions

α
β

 from before (still assuming the solution is stationary with respect to the first flow).

Substituting (3.78) into the second equation in (3.68) determines a relationship between Ωn and ζ,

and in general, Ω2
n is a polynomial of degree 2n+ 1 in ζ2. When evaluated at a stationary solution

of the mKdV equation, Ω2
n takes a degenerate form.

Theorem. Let U be a stationary solution of the first mKdV equation. Then for all n > 1, the

n-th surface reduces to
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Ω2
n(ζ) = pn(ζ)2Ω2(ζ), (3.79)

where pn(ζ) is a polynomial of degree n− 1 in ζ2. Furthermore, pn(ζ) depends on the free param-

eters cn,1, . . . , cn,n−1 such that we have total control over the roots when considered as a function

of ζ2.

Proof. The proof is a special case of the proof for the finite-genus solutions of the KdV equation

in Chapter 4. When evaluated at a stationary solution of the mKdV equation, all the higher-order

flows become linearly dependent. The theorem is a consequence of this linear dependence and the

functional form the Lax operators take as polynomials in ζ.

With the above facts established, we return to nonlinear stability. Just as we considered the

norm of a solution modulo symmetries, we shall in effect do the same when considering a Lyapunov

function. We have the following theorem due to [42, 68]:

Orbital Stability Theorem. Let U be a spectrally stable equilibrium solution of equation (3.60)

such that the eigenfunctions W of the linear stability problem (3.28) form a basis for the space

of allowed perturbations Vp, on which the operator J has bounded inverse. Furthermore, suppose

there exists an integer n ≥ 1 and constants cn,0, . . . , cn,n−1 such that the Hamiltonian for the n-th

equation in the nonlinear hierarchy satisfies the following:

1. The kernel of Ĥ ′′n(U) on Vp is spanned by the infinitesimal generators of the symmetry group

G acting on U .

2. For all eigenfunctions not in the kernel of Ĥ ′′n(U)

Kn(W ) := 〈W, Ĥ ′′n(U)W 〉 > 0.

Then U is orbitally stable with respect to perturbations in Vp.

Let us consider the implications of this theorem for the problem at hand:

• An application of the SCS basis lemma in [45] establishes that the eigenfunctions W form a
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basis for L2
per([−NT,NT ]), for any integer N , when the potential U is periodic in y with

period 2T .

• Due to translation invariance, we know thatUy is in the kernel of Ĥ ′′1 (U). It is well established

[24, 43] that the kernel of Ĥ ′′1 (U) is spanned by Uy when considered on Vp. This is the

infinitesimal generator of G, ∂y, acting on U . Furthermore, it is a direct consequence of the

Riemann surface relations that the kernel of Ĥ ′′1 (U) is equal to the kernel of Ĥ ′′n(U), for all

n ≥ 1.

What is left to verify is condition (2) in the nonlinear stability theorem, i.e., to prove orbital

stability we need to find an n such that

Kn = 〈W,LnW 〉 =
∫ NT

−NT
WLnWdy ≥ 0, (3.80)

with equality obtained only on the kernel of Ln, i.e., only for Ω = 0.

To calculate the higher order Kn, we make use of the following. Assume our solution is an

equilibrium solution of the n-th flow. Then from equation (3.77) we have

LnW = 2ΩnJ
−1W. (3.81)

This gives

Kn =
∫ NT

−NT
WLnWdx = 2Ωn

∫ NT

−NT
WJ−1Wdy. (3.82)

Using that U is a stationary solution of the second flow and substituting for Ωn in the above gives

Kn(ζ) = Ωn(ζ)
K1(ζ)
Ω(ζ)

= pn(ζ)K1(ζ). (3.83)

Therefore, when considering stationary solutions of the defocusing mKdV equation, one simply

needs to calculate K1 in order to calculate any of the higher order Ki. Let us do so. From (3.28)

and the squared eigenfunction connection we have
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LW = 2ΩJ−1W =
Ω
iζ

(
β2 − α2

)
. (3.84)

This gives

WLW =
Ω
iζ

(
|β|4 − |α|4 + (α)2β2 − (β)2α2

)
. (3.85)

Now

α = −γB, β = γ(A− Ω). (3.86)

Using 3.46, we have (up to a multiplicative constant)

γ =
1√

(Im(A− Ω))
exp

(
i

∫
uRe(B)

Im(A− Ω)
dy

)
exp

(∫
iζdy

)
. (3.87)

Therefore,

|γ|2 =
1

Im(A− Ω)
. (3.88)

Along with Ω2 −A2 − |B|2 = 0, the above implies

|β|2 = Im(A− Ω), |α|2 = Im(A+ Ω), α2β2 = −B2
, β

2
α2 = −B2. (3.89)

Therefore,

∫ NT

−NT
WL1Wdy =

∫ NT

−NT

Ω
iζ

(4AΩ + 4Re(B)Im(B)i) dy. (3.90)

Using that Re(B)Im(B) is a total derivative gives

K1 = 4Ω2

∫ NT

−NT

A

iζ
dy = 4Ω2

∫ NT

−NT

(
−V − 4ζ2 − 2u2

)
dy. (3.91)

Let us revisit the second condition of the nonlinear stability theorem. Using Ω2 = A2 + |B|2

we see that K1 can be zero only if Ω ≥ 0. We also see that K1 is linear in ζ2, thus, it changes signs
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at some point ζ2
0 . Therefore, no stability conclusion can be drawn from K1. However, let us go one

flow higher and calculate K2. A direct calculation gives

Ω2
2 = (−4ζ2 + V + c2,1)2Ω2, (3.92)

with c2,0 as in (3.72). Therefore, choosing c2,1 = 4ζ2
0 − V makes K2 of definite sign.

We have proved the following theorem:

Theorem. There exists a constant c2,1 such that K2 is positive on the Lax spectrum. Therefore,

all traveling wave solutions U of the defocusing mKdV equation are orbitally stable with respect to

zero-average subharmonic perturbations, i.e., perturbations in the function space

Vp =
{
v ∈ H2

per([−NT,NT ]) :
∫ NT

−NT
v dx = 0

}
, (3.93)

where 2T is the period of the initial condition and N is any integer.

Remark. There is no restriction on the spatial average of the traveling wave solution, only on

the spatial average of the perturbation.

3.7 Focusing case

We now examine the focusing mKdV equation

ut + 6u2ux + uxxx = 0. (3.94)

3.7.1 Traveling wave solutions

We change to a moving coordinate frame

y = x− V t, τ = t. (3.95)

In the (y, τ) coordinates the focusing mKdV equation becomes

uτ − V uy + 6u2uy + uyyy = 0. (3.96)
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We look for stationary solutions uτ = 0. Letting u(y, τ) = U(y), stationary solutions satisfy the

ordinary differential equation

−V Uy + 6U2Uy + Uyyy = 0. (3.97)

Integrating (3.97) gives

−V U + 2U3 + Uyy = C, (3.98)

for some constant C. Multiplying (3.98) by Uy and integrating a second time gives

−V
2
U2 +

1
2
U4 +

1
2

(Uy)
2 − CU = E, (3.99)

for some constant E. Therefore, all stationary solutions U(y) satisfy the first-order ordinary dif-

ferential equation (3.99). Following the same procedure as for the defocusing case, we find that all

periodic solutions are given by

U(y) =
±
√

2E℘′(1
2(y + y0), g2, g3) + C(2℘(1

2(y + y0), g2, g3)− 2
3V )(

℘(1
2(y + y0), g2, g3)− V

3 − 2
√
−2E

) (
℘(1

2(y + y0), g2, g3)− V
3 + 2

√
−2E

) . (3.100)

Here y0 is an arbitrary shift in y determined by the initial conditions.

We now determine which values of V , C, and E give rise to bounded periodic solutions. Letting

v = Uy in (3.7), we have the first-order two-dimensional system

Uy = v, vy = V U − 2U3 + C. (3.101)

All fixed points (U0, v0) satisfy

v0 = 0, V U0 − 2U3
0 + C = 0. (3.102)

After linearizing about (U0, 0), the resulting linear system has eigenvalues

λ = ±
√
V − 6U2

0 . (3.103)
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We have two centers and a saddle when the discriminant

d = 8V 3 − 108C2 (3.104)

is greater than zero, and one center when the discriminant is less than zero. Consider the following

cases

• V < 0. This implies d < 0, giving one center and periodic solutions for all values of C. For

C = 0 the solution reduces to U(y) = ±k
√

V
2k2−1

cn
(
±
√

V
2k2−1

y, k
)

. This solution blows

up as k → 1√
2

from below and is imaginary for k > 1√
2
.

• V > 0, |C| <
√

8V 3

108 . There are two centers and one saddle. Periodic solutions ex-

ist for all values of E, except for one value giving rise to two homoclinic orbits, cor-

responding to the saddle, see Fig. 3.8 For C = 0 the solution reduces to U(y) =

±k
√

V
2k2−1

cn
(
±
√

V
2k2−1

y, k
)

. This solution is inside the homoclinic orbits for |k| > 1,

and goes to zero as k →∞, using cn(y) = dn(ky,
√

1
k2 ). It is outside the homoclinic orbits

for 1√
2
< k < 1. For k = 1 it gives the soliton solution, which corresponds to the homoclinic

orbit.

• V > 0, |C| >
√

8V 3

108 . There is one center and the solutions are periodic solutions for all

values of E.

3.7.2 Stability

The linear stability problem for the focusing mKdV equation takes the form

wτ = JLw, JLW = λW, J = ∂y, L = −∂yy + V − 6U2. (3.105)

The squared eigenfunction connection is given by

w(y, τ) = ψ1(y, τ)2 − ψ2(y, τ)2 = − 1
2iζ

∂y
(
ψ2(y, τ)2 + ψ1(y, τ)2

)
(3.106)
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Figure 3.8: Typical (U, v) phase plane in the focusing case for C = 0. For C 6= 0, the homoclinic

orbits change size relative to each other. Both homoclinic orbits persist until |C| =
√

8V 3

108 , at which
point only one center remains, surrounded by periodic orbits.

where ψ1 and ψ2 are obtained from the Lax pair representation

ψ̂y =

−iζ u

−u iζ

 ψ̂, ψτ =

(−V ζ − 4ζ3 + 2ζu2)i 4ζ2u+ C + 2ζuyi

−4ζ2u− C + 2ζuyi −(−V ζ − 4ζ3 + 2ζu2)i

ψ. (3.107)

However, unlike the defocusing case, the associated spectral problem for ζ

 i∂y −iu

−iu −i∂y

ψ = ζψ. (3.108)

is not self-adjoint. Therefore, ζ is not restricted to the real axis. Several difficulties arise as a result:

• As in the defocusing case, we separate variables and find a relationship between Ω and ζ:

Ω2 = −16ζ6 − 8V ζ4 + (−V 2 + 8E)ζ2 − C2. (3.109)

However, since ζ is not confined to the real axis, Ω is no longer restricted to R ∪ iR.

• Looking for bounded eigenfunctions, one arrives at the necessary and sufficient condition
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〈
Re
(
iζ − A′

A− Ω
+

uB

A− Ω

)〉
= 0, (3.110)

which is nearly identical to the condition obtained in the defocusing case. However, since ζ

is no longer confined to the real axis, explicit analysis of (3.110) is much more difficult. This

is the main stumbling block to examining stability in the focusing case. It should be noted

that (3.110) still lends itself to numerical computation, which should be simpler than numer-

ically tackling the original spectral problem since it does not involve solving any differential

equations.

We make several observations. If ζ is real, the spectral problem for Ω is skew-adjoint in the

focusing case. Therefore, for all ζ in the Lax spectrum and on the real axis Ω(ζ) is imaginary. For

such ζ values the squared eigenfunction connection immediately implies the corresponding solution

to the linear stability problem is bounded. However, numerical results suggest that ζ is not confined

to the real axis (see Figs. 3.9 and 3.13).

For solutions lying within the homoclinc orbits in Fig. 3.8 (the dn solutions when C = 0),

it appears that the Lax spectrum is confined to the real and imaginary axis (see Fig. 3.9). We

hypothesize that this is due to an underlying symmetry of the spectral problem

 i∂y −iu

−iu −i∂y

2

ψ = ζ2ψ. (3.111)

Though the above problem is not self-adjoint, it may have a PT-symmetry that would confine ζ2 to be

real (see [9], for instance), hence ζ ∈ R∪iR. We also see numerically that the dn solution appears to

be stable to subharmonic perturbations. Furthermore, under such assumptions the analytic formula

for Ω(ζ) predicts the band of higher spectral density on the imaginary axis seen in the numerically

computed spectrum (see Figs. 3.10-3.12). Also, if one assumes that ζ ∈ R ∪ iR then the essential

parts of the nonlinear stability calculations in the defocusing case carry over to the focusing case. In

fact, one finds c1,0 = V 2 + 4E, c2,0 = (V 2 + 4E)c2,1 + V 2 + 4E, and
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K2 = (−4ζ2 + V + c2,1)K1 = (−4ζ2 + V + c2,1)
∫ NT

−NT
−V − 4ζ2 + 2u2dy (3.112)

Therefore, we should expect spectrally stable solutions to also be nonlinearly (orbitally) stable.

For the solutions outside the homoclinic orbits in Fig. 3.8, (the cn solutions for C = 0), the Lax

spectrum appears to be much more complicated (see Fig. 3.13), and numerical studies of the stability

spectrum point to spectral instability (see Fig. 3.14 and Figure 1 in [24]). It is interesting to note

that in numerical investigations the cn solutions appear stable with respect to periodic perturbations,

but unstable with respect to subharmonic perturbations [24].
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Figure 3.9: Numerically computed Lax spectrum for the traveling wave solution with V = 10,
C = 0, and k = 1.8 using Hill’s method with 81 Fourier modes and 49 different Floquet exponents.
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Figure 3.10: (a) The numerically computed spectrum for the traveling wave solution. The parameter
values are identical to those of Fig. 3.9.; (b) A blow-up of (a) around the origin, showing a band of
higher spectral density;
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Figure 3.11: The imaginary part of λ as a function of µ, demonstrating the higher spectral density.
The parameter values are identical to those of Fig. 3.9.
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Figure 3.12: (a) Ω2 as a function of Im(ζ), with the same parameter values as Fig. 3.9. (b) A
blow-up of (a) around the origin;
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Figure 3.13: The imaginary part of λ as a function of µ, demonstrating the higher spectral density.
for the traveling wave solution with V = 10, C = 0, and k = .8 using Hill’s method with 81 Fourier
modes and 49 different Floquet exponents.
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Figure 3.14: The numerically computed spectrum for the traveling wave solution. The parameter
values are identical to those of Fig. 3.13.
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Chapter 4

STABILITY OF FINITE-GENUS SOLUTIONS OF THE KDV EQUATION

The Korteweg-deVries (KdV) equation

ut + uux + uxxx = 0, (4.1)

describes long, one-dimensional waves in weakly dispersive media and arises in a variety of physical

settings ranging from water waves to plasma physics. It is characterized by its trademark soliton

solutions and their quasi-periodic analogues. The most explicit of these are the one-soliton solution

u = u0 + 12κ2sech2
(
κ(x− x0 − (4κ2 + u0)t)

)
, (4.2)

and its periodic counterpart the cnoidal wave solution

u = u0 + 12k2κ2cn2
(
κ(x− x0 − (8κ2k2 − 4κ2 + u0)t), k

)
, (4.3)

both of which were written down by Korteweg and deVries [63]. Here u0, κ, and x0 are constants,

and cn(·, k) denotes the Jacobi elliptic cosine function [17, 66] with elliptic modulus k ∈ [0, 1).

The stability problem for the above solutions has a rich history (a more detailed discussion

is found in [14]), beginning with the works of Benjamin and Bona [10, 13], where the nonlinear

orbital stability of the one-soliton solution (4.2) with respect to L2 perturbations was established.

Later, Maddocks and Sachs established the same result for general multi-soliton solutions [68].

More recently, the methods used by Benjamin and Bona were extended to the periodic problem,

and the nonlinear orbital stability of cnoidal waves (4.3) with respect to periodic perturbations of

the same period was verified [4]. Beyond periodic perturbations of the same period, Bottman and

Deconinck proved the spectral stability of cnoidal waves with respect to bounded perturbations [14],

and in a follow-up manuscript with Kapitula, the orbital stability of cnoidal waves with respect to

subharmonic perturbations (periodic perturbations with period equal to any integer multiple of the
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period of the cnoidal wave) was established [24].

In this chapter we are concerned with the stability of the (quasi-)periodic analogs of the multi-

soliton solutions, the finite-genus solutions. These are a large family of (quasi-)periodic solutions

with n phases of the form [8, 32, 54, 64]

u(x, t) = u0 + 2∂2
x ln Θ(φ1, . . . , φn), (4.4)

where each phase φj is linear in x and t,

φj = kjx+ ωjt+ φ0j , (4.5)

for constants u0 and kj , wj , φ0j , j = 1, . . . , n.1 2 Here Θ is the Riemann theta function [35], which

is determined by a genus n compact connected Riemann surface generated by the initial condition

u(x, 0). Note that in the case n = 1 the solution (4.4) reduces to the cnoidal wave solution (4.3).

The finite-genus solutions possess the following properties:

• They completely solve the initial-value problem for the KdV equation with periodic boundary

conditions in the following sense: (i) They solve the initial-value problem for initial data that

are periodic in x, and are of the form (4.4) [11, 33, 67, 74]. (ii) They are dense in the set of

smooth periodic functions [71].

• Their stability was studied first by McKean [70]. He established that the tori on which the

periodic finite-genus solutions lie are stable with respect to periodic perturbations. As noted

in [68], McKean only briefly discusses the implications of his results concerning stability in

a normed function space, such as L2.

The object of this chapter is to establish the (nonlinear) orbital stability of periodic finite-genus

solutions with respect to subharmonic perturbations. Extension beyond periodic perturbations of the

same period to subharmonic perturbations is important in that they are a significantly larger class

1A genus n solution is periodic in x with period 2L if there exists n integers N1, . . . , Nn such that 2Lki = 2πNi for
i = 1, . . . , n, otherwise, they are quasi-periodic.

2We restrict ourselves to real-valued finite-genus solutions.
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of perturbations than the periodic ones of the same period, while retaining our ability to discuss

completeness and separability of a suitable function space. Note that this would not be the case for

quasi-periodic or almost periodic perturbations.

The basis of our procedure is the Lyapunov method, which was first extended to infinite-

dimensional systems (partial differential equations) by V.I. Arnold [6, 7] in his study of incom-

pressible ideal fluid flows. Since its introduction, the Lyapunov method has formed the crux of

subsequent nonlinear stability techniques (see [47, 50, 86] for instance). We build on the results

recently obtained for the cnoidal wave (genus one) solutions in [24], and present a systematic gener-

alization. As in [24], the method relies heavily on the integrability of the KdV equation. The outline

is as follows:

• Each genus n solution (4.4) is a stationary solution of the n-th KdV equation (to be defined

later) [64]. In turn, every bounded periodic stationary solution of the n-th KdV equation is a

genus n solution of the form (4.4) [11, 33, 67, 74]. Our method does not require nor make use

of the explicit form of the solution (4.4). We only require that it is stationary (with respect to

the higher-order time variable tn) and periodic (with respect to x).

• Since a genus n solution is not stationary with respect to the KdV flow, we cannot define

spectral stability in the conventional sense. Instead we prove spectral stability with respect

to bounded perturbations (not necessarily periodic) for the higher-order time variable tn. We

do this by generalizing the squared eigenfunction method used in [14] for the cnoidal wave

solutions.

• We use the ideas in [24, 68] to construct a candidate Lyapunov function. We show that it

is indeed a Lyapunov function using the squared eigenfunction connection and the spectral

stability result. This establishes orbital stability from [42, 43].

We conclude by exploring the fact that the multi-soliton solutions can be obtained from (4.4) by

taking certain limits [33]. In that case our method (informally) recovers the stability results in [68].

We also look at some explicit examples, including comparison with numerical results using Hill’s
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method [25, 26].

Remark. Though we present the method for finite-genus solutions of the KdV equation, the

ideas carry over to other integrable systems. This is discussed in Chapter 5.

4.1 Problem formulation

4.1.1 Hamiltonian structure

We are concerned with the stability of 2L-periodic genus n solutions of equation (4.1) with respect to

subharmonic perturbations of period 2NL for any fixed positive integer N . Therefore, we naturally

consider solutions u in the space of square-integrable functions of period 2NL, L2
per[−NL,NL].

In order to properly define the Hamiltonian structure of the KdV equation and the corresponding

KdV hierarchy (see Section 4.1.2), we further require u and its derivatives of order up to 2n to be

square-integrable as well. Therefore, we consider solutions of (4.1) defined on the function space

V = H2n
per[−NL,NL], (4.6)

equipped with natural inner product

〈v, w〉 =
∫ NL

−NL
v̄w dx, (4.7)

where v̄ denotes the complex conjugate of v.

We write equation (4.1) in Hamiltonian form [40, 90]

ut = JH ′(u) (4.8)

on V. Here J is the skew symmetric operator

J = ∂x, (4.9)

the Hamiltonian H is the functional

H(u) =
∫ NT

−NT

(
1
2
u2
x −

1
6
u3

)
dx, (4.10)
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and the notation G′ denotes the variational derivative of G

G′(u) =
∞∑
i=0

(−1)i∂ix
∂G(u)
∂uix

, (4.11)

where the sum in (4.11) terminates at the order of the highest derivatives involved. For instance, in

the computation of H ′ the sum terminates after accounting for first derivative terms.

We allow for perturbations in a function space Vp ⊂ V. In order to apply the stability result

of [43], we follow [24] and restrict ourselves to the space of perturbations on which J has a well

defined and bounded inverse. This amounts to fixing the spatial average of u on H2n
per[−NL,NL],

which poses no problem since it is a Casimir of the Poisson operator J , hence, it is conserved under

the KdV flow. Therefore, we consider perturbations in ker(J)⊥, i.e., zero-average subharmonic

perturbations

Vp =
{
v ∈ H2n

per([−NL,NL]) :
∫ NL

−NL
v dx = 0

}
. (4.12)

Remark. Physically, requiring perturbations to be zero-average makes sense. It simply says that

we do not consider perturbations which add mass to the system.

4.1.2 The nonlinear KdV hierarchy

By virtue of its integrability, the KdV equation possesses an infinite number of conserved quantities

[65] H0, H1, H2, . . ., and just as the functional H1 = H defines the KdV equation, each Hi defines

a Hamiltonian system with time variable τi through

uτi = JH ′i(u). (4.13)

The first few conserved quantities are
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H0 =
∫ NL

−NL

1
2
u2dx, (4.14)

H1 = H =
∫ NL

−NL

(
1
2
u2
x −

1
6
u3

)
dx, (4.15)

H2 =
∫ NL

−NL

1
2

(
u2
xx −

5
6
uu2

x +
5
72
u2

)
dx, (4.16)

with corresponding flows

uτ0 = ux (identifies τ0 with x), (4.17)

uτ1 = −uux − uxxx (identifies τ1 with t), (4.18)

uτ2 =
5
6
u2ux +

10
3
uxuxx +

5
3
uuxxx + uxxxxx. (4.19)

Each of the higher-order flows can be explicitly calculated from the recursion formula (see [75],

for instance)

uτi+1 = Ruτi , uτ0 = ux, (4.20)

whereR is the operator

R = −∂2
x −

2
3
u− 1

3
ux∂

−1
x (4.21)

(since each uτi is a total derivative, the non-local term ∂−1
x in (4.21) is well defined [67, 75]). This

defines an infinite hierarchy of equations, the KdV hierarchy. It has the following properties:

• All the functionals Hi, i = 0, 1, . . ., are conserved for each member of the KdV hierarchy

(4.13) [67].

• The flows of the KdV hierarchy (4.13) mutually commute, and we can think of u as solving

all of these equations simultaneously, i.e., u = u(τ0, τ1, . . .) [31, 67].
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• A finite-genus solution (4.4) of the KdV equation is a simultaneous solution of all the flows

of the KdV hierarchy [82], where now the phases depend on all the time variables

φj =
∞∑
i=0

kj,iτi. (4.22)

As all the flows in the KdV hierarchy commute, we may take any linear combination of the

above Hamiltonians to define a new Hamiltonian system. For our purposes, we define the n-th KdV

equation with time variable tn as

utn = JĤ ′n(u), (4.23)

where each Ĥn is defined as

Ĥn := Hn +
n−1∑
i=0

cn,iHi, Ĥ0 := H0, (4.24)

for constants cn,i, i = 0, . . . , n− 1.

Remarks.

• No constraints have been imposed on the parameters cn,i. We use this freedom to our advan-

tage below.

• There are two hierarchies of equations considered here. The hierarchy associated with the ti

time variables contains the one associated with the τi time variables as a special case.

• The time variable t0 remains identified with x.

• We did not include the conserved quantity H−1 =
∫ NL

−NL
u dx in any of the above. Its varia-

tional derivative is constant and is therefore in the kernel of J . This results in trivial dynamics

(known as a Casimir). As discussed in [24] and seen in (4.12), the existence of such a func-

tional restricts the space of allowed perturbations.
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4.1.3 Stationary solutions of the KdV hierarchy

It was first shown in [33, 67, 74] that the KdV equation possesses a large class of dense periodic and

quasi-periodic solutions by examining stationary solutions of the n-th KdV equation (4.23). These

are solutions such that

utn = 0, (4.25)

for some integer n and constants cn,0, . . . , cn,n−1 in (4.23-4.24). Thus, a stationary solution of the

n-th KdV equation satisfies the ordinary differential equation

JĤ ′n(u) = 0 (4.26)

with independent variable x.

We are interested in the stability of the finite-genus solutions (4.4). This is equivalent to the

study of the stationary solutions of the KdV hierarchy by the following theorem [67, 74, 82]:

Theorem. Each genus n solution (4.4) is a stationary solution of the n-th KdV equation (4.23)

for some choice of the constants cn,0, . . . , cn,n−1. In turn, every bounded stationary solution of the

n-th KdV equation is a genus n solution of the form (4.4) (or the limit of one in the n-soliton case).

Here bounded means that supx∈R|u(x)| is finite, i.e., u(x) ∈ C0
b (R).

Throughout the rest of the chapter we use the terms stationary solution of the n-th KdV equation

and genus n solution interchangeably. Also, when referring to a genus n solution u we assume it is

non-degenerate, i.e., u is a stationary solution of the n-th KdV equation and is not stationary with

respect to any of the lower-order flows.

The stationary solutions of the KdV hierarchy have the following properties:

• Since all the flows commute, the set of stationary solutions is invariant under any of the KdV

equations, i.e., a stationary solution of the n-th equation remains a stationary solution after

evolving under any of the other flows [67].

• Any stationary solution of the n-th KdV equation is also stationary with respect to all of the
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higher order time variables tm, m > n. In such cases, the constants cm,i, i ≥ n are free

parameters. We make use of this fact when constructing a Lyapunov function later.

Example. The first flow with time variable t1 (4.23) is given by

ut1 = −uux − uxxx + c1,0ux. (4.27)

Looking for stationary solutions, i.e., setting ut1 = 0 results in the ordinary differential equation

−uux − uxxx + c1,0ux = 0. (4.28)

All periodic solutions of this equation can be written as [63]

u = c1,0 − 8κ2k2 + 4κ2 + 12k2κ2cn2 (κ(x− x0), k) , (4.29)

where x0 and κ are arbitrary constants due to translation and scaling symmetries. The period 2L is

given by

2L =
2K(k)
κ

=
2
κ

∫ π/2

0

1√
1− k2 sin2 s

ds, (4.30)

where K(k) is the complete elliptic integral of the first kind [17, 66]. Using the Galilean invariance

of the KdV equation, we recover the well-known cnoidal wave solution (4.3).

To see the other side of the previous theorem, suppose we are given the genus one initial condi-

tion

u∗(x) = 12k2cn2 (x, k) . (4.31)

Imposing that u∗ be stationary with respect to t1 fixes c1,0 as

c1,0 = 8k2 − 4. (4.32)

Furthermore, we can fix all constants cm,0, m ≥ 1, such that u∗ is stationary with respect to all

the higher-order time variables tm. For example, imposing u∗ is a stationary solution of the second

KdV equation,
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0 = ut2 =
5
6
u2ux +

10
3
uxuxx +

5
3
uuxxx + uxxxxx + c2,1(−uux − uxxx) + c2,0ux, (4.33)

fixes c2,0 as

c2,0 = c2,1(8k2 − 4)− 56k4 + 56k2 − 16. (4.34)

Thus, c2,1 is a free parameter, and u∗ is a stationary solution of the second KdV equation for any

value of c2,1 with c2,0 defined as above.

Remarks.

• In general, finite-genus solutions will be quasi-periodic in time as opposed to periodic, even

if they are periodic in x [67].

• The soliton solutions are obtained as a special case of the finite-genus solutions [33]. For

example, the one-soliton (4.2) is obtained form the cnoidal wave (4.3) by letting k → 1.

4.1.4 Stability

We assume our solution is a stationary solution of the n-th flow

u(x, t1, . . . , tn−1, tn) = u∗(x, t1, . . . , tn−1) (4.35)

and consider various aspects of stability. Linearizing the n-th KdV equation (4.23) about u∗

u(x, t1, . . . , tn) = u∗ + εw(x, t1, . . . , tn) +O(ε2), (4.36)

results in the linear system

wtn = JLnw. (4.37)

Here the symmetric differential operator Ln := Ĥ ′′n(u∗) is the Hessian of Ĥn,
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Ĥ ′′n(u) =
∞∑
i=0

∂Ĥ ′n(u)
∂uix

∂ix, (4.38)

evaluated at the stationary solution (the above sum terminates at the order of the highest derivatives

involved). As Ln does not depend on tn, we separate variables

w(x, tn) = eλntnW (x) (4.39)

(since the operator Ln is expressed solely in terms of x, we have suppressed dependence on the

lower-order time variables t1, . . . , tn−1). This results in the spectral problem

JLnW (x) = λnW (x). (4.40)

Definition. We say the solution u∗ is tn-spectrally stable with respect to perturbations in a

function space U if Re(λn) ≤ 0 for all W ∈ U. For Hamiltonian systems this is equivalent to

λn ∈ iR. We define the stability spectrum σ(JLn) as the spectrum of the operator JLn.

Example. Linearizing (4.27) about u = u∗ from the previous example results in the spectral

problem

JL1W (x) = λ1W (x), (4.41)

where L1 is given by

Ĥ ′′1 (u∗) = −∂2
x + (c1,0 − u∗)∂x − u∗x, (4.42)

with c1,0 defined as in (4.32).

Now, consider the problem of nonlinear stability. The n-th KdV equation is invariant under

translation with respect to any of the lower-order time variables. This is represented by the Lie

group

G = Rn, (4.43)
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which acts on u(x, . . . , tn) according to

T (g)u(x, . . . , ti, . . . , tn−1, tn) = u(x+ t00, . . . , ti + t0i, . . . , tn−1 + t0(n−1), tn) (4.44)

with g = (t00, . . . , t0(n−1)) ∈ G. Stability is considered modulo this symmetry. We use the

following definition:

Definition. A stationary solution u∗ of the n-th KdV equation is orbitally stable with respect

to perturbations in Vp, under the ti dynamics, if for a given ε > 0 there exists a δ > 0 such that if

u(x, . . . , ti−1, 0, ti+1, . . .)− u∗(x, . . . , tn−1) ∈ Vp, then

||u(x, . . . , ti−1, 0, ti+1, . . .)− u∗(x, . . . , tn−1)|| < δ

⇒ inf
g∈G
||u(x, . . . , ti, . . .)− T (g)u∗(x, . . . , tn−1)|| < ε.

One can think of the above definition as allowing for the optimal variation of the n phase constants

in (4.4) before measuring the distance between functions. Thus, our definition of orbital stability of

finite-genus solutions with periodic boundary conditions is equivalent to the analogous version in

[68] for n-solitons with vanishing boundary conditions.

To prove orbital stability, we search for a Lyapunov function. For Hamiltonian systems, this is a

constant of the motion, K(u), for which u∗ is an unconstrained minimum:

∂tK(u) = 0, K ′(u∗) = 0, 〈v,K ′′(u∗)v〉 > 0, ∀v ∈ Vp, v 6= 0. (4.45)

The existence of such a functional implies formal stability [50]. Due to the work of Grillakis, Shatah,

and Strauss [42], under extra conditions (see the orbital stability theorem below) this allows one to

conclude orbital stability. Since all the KdV flows mutually commute, orbital stability with respect

to any the time variables ti implies stability with respect to all of the flows of the KdV hierarchy

(most importantly the KdV flow) [24, 57, 68], as the Lyapunov function serves the same role for

each equation in the hierarchy.

Just as the norm of a solution is considered modulo its symmetries, in effect the same is done
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when considering a Lyapunov function. Using the Lyapunov function construction techniques from

[24, 68], we have the following stability theorem due to [42]:

Orbital Stability Theorem. Let u∗ be a tn-spectrally stable stationary solution of equation

(4.23) such that the eigenfunctions W of the linear stability problem (4.40) form a basis for the

space of allowed perturbations Vp, on which J has bounded inverse. Furthermore, suppose there

exists an integer m > n and constants cm,0, . . . , cm,m−1 such that the Hamiltonian for the m-th

KdV equation satisfies the following:

1. The kernel of Ĥ ′′m(u∗) on Vp is spanned by the infinitesimal generators of the symmetry group

G acting on u∗.

2. For all eigenfunctions not in the kernel of Ĥ ′′m(u∗)

Km(W ) := 〈W, Ĥ ′′m(u∗)W 〉 > 0.

Then u∗ is orbitally stable under the ti dynamics, i = 1, 2, . . . , with respect to perturbations in Vp.

Remarks.

• The last condition 〈W, Ĥ ′′m(u∗)W 〉 > 0 can be replaced with 〈W, Ĥ ′′m(u∗)W 〉 < 0. In this

case −Ĥm(u) serves as a Lyapunov function. Therefore, we only need that 〈W, Ĥ ′′m(u∗)W 〉

is of definite sign.

• The sign of Kn is often called the Krein signature, see [58].

• For spectral stability we only require perturbations to be spatially bounded, thus U = C0
b (R).

4.2 Spectral Stability

We prove that a periodic stationary solution of the n-th KdV equation is tn-spectrally stable with

respect to bounded perturbations. In order to accomplish this, we use the relationship between the

solutions of the Lax pair equations and the solutions of the linear stability problem, the squared

eigenfunction connection [2, 14, 67].
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4.2.1 The Lax pair and the linear hierarchy

The KdV equation is equivalent to the compatibility of two linear ordinary differential systems:

ψx = T0ψ =

 0 1

ζ − u/6 0

ψ, (4.46)

ψt = T1ψ =

 ux/6 −4ζ − u/3

−4ζ2 + (u2 + 6ζu+ 3uxx)/18 −ux/6

ψ. (4.47)

In other words, the compatibility condition ψxt = ψtx implies that u satisfies the KdV equation. We

can write (4.46) in the form

∂xxψ1 +
1
6
uψ1 = ζψ1. (4.48)

Therefore, ζ is the spectral parameter for the stationary Schrödinger equation which implies ζ ∈ R

for any bounded solution of (4.48).

Since every member of the nonlinear hierarchy (4.13) is integrable, each possesses a Lax pair

(with first member (4.46)), the collection of which is known as the linear KdV hierarchy. For

example, the Lax equation associated with the time variable τ2 is

ψτ2 =


−1

6(uux + uxxx)− 2
3ζux 16ζ2 + 4

3ζu+ 1
6u

2 + 1
3uxx

16ζ3 − 4
3ζ

2u− ζ( 1
18u

2 + 1
3uxx)

− 1
36u

3 − 1
6u

2
x − 2

9uuxx −
1
6uxxxx

1
6(uux + uxxx) + 2

3ζux

ψ. (4.49)

All the higher order Lax operators are calculated in standard fashion (see [1, 2] for instance). We

include some of the details here because our later calculations rely on them. Assume the time

component of the Lax pair for the n-th flow with time variable τn (we are considering the first

hierarchy (4.13)) takes the form
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ψτn = Tnψ =

An Bn

Cn −An

ψ. (4.50)

Compatibility ψτnx = ψxτn gives

An = −1
2
∂xBn, (4.51)

Cn = ∂xAn +
(
ζ − 1

6
u

)
Bn (4.52)

uτn = (12ζ − 2u)An − 6∂xCn. (4.53)

Solving the first two equations for An and Cn, we can express the last equation solely in terms of

Bn

uτn = −12ζ∂xBn + 2u∂xBn + uxBn + 3∂3
xBn. (4.54)

The n-th member of the hierarchy is found by assuming an expansion of the form

Bn =
n∑
i=0

bi(x)ζi. (4.55)

Plugging this assumption into (4.54) gives bn(x) = bn, a constant, and the recursive relationship

bi−1(x) =
∫ (

1
4
∂3
xbi(x) +

1
6
u∂xbi(x) +

1
12
uxbi(x)

)
dx, (4.56)

which will be of use later (it can be shown that the integrand in (4.56) is always a total derivative,

thus each Tn depends on u and its derivatives in a purely local fashion [67, 75]).

We construct the Lax pair for the n-th KdV equation (4.23) by taking the same linear com-

bination of the lower-order flows as we did for the Hamiltonians, and define the n-th linear KdV

equation as

ψtn = T̂nψ =

Ân B̂n

Ĉn −Ân

ψ, (4.57)
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T̂n := Tn +
n−1∑
i=0

cn,iTi, T̂0 := T0. (4.58)

Note: The extra constant bn from the leading order term in the expansion forBn (4.55) is chosen

so that the compatibility condition gives (4.13). This amounts to rescaling τn.

4.2.2 The Lax spectrum

We assume u = u∗ is a 2L-spatially periodic stationary solution of the n-th KdV equation. The ob-

ject of this section is to explicitly determine all values of ζ that result in spatially bounded solutions

of (4.46) and (4.57) (but not necessarily periodic).

Definition. We define the set of all ζ values such that (4.46) and (4.57) are spatially bounded as

the Lax spectrum σLn for the n-th flow.

As before, since ζ acts as the spectral parameter for the stationary Schrödinger equation, the Lax

spectrum (for any of the time flows) is a subset of the real line: σLn ⊂ R.

Since u = u∗ is a stationary solution of the n-th KdV equation, T̂n in (4.57) does not depend on

tn and we separate variables

ψ = eΩntn

αn(x)

βn(x)

 . (4.59)

Substitution into (4.57) gives

Ân − Ωn B̂n

Ĉn −Ân − Ωn

αn
βn

 = 0. (4.60)

Requiring a non-trivial solution of the above equation yields

Ω2
n = Â2

n + B̂nĈn. (4.61)

It is easy to show that (4.61) is independent of x (and of any tk) [64]. This determines a relationship

between Ωn and ζ. In general (4.61) is an algebraic curve representation of a genus n Riemann
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surface [8, 83]. Based on the expansion in ζ for Bn (4.55), we see that the right-hand side of (4.61)

is a polynomial in ζ of degree 2n+1. Furthermore, since u∗ is a (non-degenerate) genus n potential

it follows that all 2n+1 roots of the aforementioned polynomial are real and distinct [67]. Therefore,

Ω2
n = rn(ζ − ζ1) · · · (ζ − ζ2n+1), (4.62)

for some constants ζ1 < · · · < ζ2n+1 and positive constant rn.

The eigenvector is given by

αn
βn

 = γn

 −B̂n

Ân − Ωn

 , (4.63)

where γn is a scalar function of x. It is determined by substitution of the above into the first equation

of the Lax pair, resulting in two linear first-order scalar differential equations for γn which are

linearly dependent. Solving gives

γn = exp
∫ (

−∂xB̂n − Ân + Ωn

B̂n

)
dx, (4.64)

up to a multiplicative constant. We simplify the above. Using Ân = −1
2∂xB̂n, we find

γn =
1√
B̂n

exp
(∫

Ωn

B̂n
dx

)
. (4.65)

Each value of ζ results in two values of Ωn (except for the 2n+1 branch points ζ1, . . . , ζ2n+1 which

give Ωn = 0) and therefore (4.63) represents two eigenvectors. This explicitly verifies the results

in [67, 69, 71], namely that in the spectral problem for the stationary Schrödinger equation with a

genus n potential ζ is a double eigenvalue for all but 2n+ 1 values.

Let us determine which values of ζ result in bounded eigenfunctions (4.63):

• Consider all values of ζ for which it is possible that B̂n (when considered as a function of

x) attains zero. From (4.61), we see that this can only happen for values of ζ such that

Ω2
n(ζ) = Â2

n ≥ 0, since Ân ∈ R for ζ ∈ R. For the branch points ζi where Ωn(ζi) = 0,

i = 1, . . . , 2n+ 1, it is easily checked that the eigenfunction (4.63) is bounded, thus the zeros
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of Ωn are part of the Lax spectrum. In fact, since Ân = −1
2∂xB̂n, if Ωn(ζ) = 0 then the

derivative of B̂n must also be zero at any value of x where B̂n is zero. For any other values

of ζ where B̂n attains zero for some x, (4.63) is unbounded, thus these ζ values are not part

of the Lax spectrum.

• Consider all values of ζ, Ωn(ζ) 6= 0, such that B̂n (when considered as a function of x) never

attains zero (from our previous considerations, we know this is true for (at least) values of ζ

where Ω2
n(ζ) < 0). There is an exponential contribution from γn

exp
(∫

Ωn

B̂n
dx

)
, (4.66)

which we need to be bounded. To this end, it is necessary and sufficient that

〈
Re
(

Ωn

B̂n

)〉
= 0, (4.67)

where 〈·〉 = 1
2L

∫ L
−L · dx denotes the average over one period of u∗. This average is well

defined since the denominator B̂n is never zero by assumption. Now, it follows from (4.61)

that Ωn is either purely real or purely imaginary. We also have B̂n ∈ R for ζ ∈ R. The above

condition becomes

〈
1
B̂n

〉
Re(Ωn) = 0. (4.68)

Therefore, we see that all values of ζ for which Ωn is imaginary are part of the Lax spectrum.

Now, suppose ζ ∈ R is such that Ωn is real and non-zero. Then the average term in (4.68)

must be identically zero. However, since 1
B̂n

is never zero it follows that it cannot have zero

average. Therefore Re(Ωn) must be zero.

We conclude that the Lax spectrum consists of all ζ values for which Ω2
n ≤ 0:

σLn = (−∞, ζ1] ∪ [ζ2, ζ3] ∪ · · · ∪ [ζ2n, ζ2n+1]. (4.69)
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This is a well known result, but it has been deduced here in more explicit terms. Furthermore, Ωn is

purely imaginary

Ωn ∈ iR (4.70)

for all values of ζ ∈ σLn . In fact, Ω2
n takes on all negative values for ζ ∈ (−∞, ζ1], imply-

ing that Ωn = ±
√
|Ω2
n| covers the imaginary axis. Furthermore, for ζ ∈ [ζ2, ζ3], Ω2

n takes

on all negative values in [Ω2
n(ζ∗2 ), 0] twice, where Ω2

n(ζ∗2 ) is the minimal value of Ω2
n attained

for ζ ∈ [ζ2, ζ3]. Upon taking square roots, this implies that the interval on the imaginary axis[
−i
√
|Ω2
n(ζ∗2 )|, i

√
|Ω2
n(ζ∗2 )|

]
is double covered in addition to the single covering already men-

tioned. Similarly, for ζ ∈ [ζ2i, ζ2i+1], i = 1, . . . , n, Ω2
n takes on all negative values in [Ω2

n(ζ∗2i), 0]

twice, where Ω2
n(ζ∗2i) is the minimal value of Ω2

n attained for ζ ∈ [ζ2i, ζ2i+1]. Symbolically, we

write [14]

Ωn ∈ iR ∪
[
−i
√
|Ω2
n(ζ∗2 )|, i

√
|Ω2
n(ζ∗2 )|

]2

∪ · · · ∪
[
−i
√
|Ω2
n(ζ∗2n)|, i

√
|Ω2
n(ζ∗2n)|

]2

, (4.71)

where the square is used to denote multiplicity, see Fig. (4.1).

4.2.3 The squared eigenfunction connection and spectral stability

It is well known [67, 2, 14] that the product

w(x, tn) = ψ1(x, tn)ψ2(x, tn) =
1
2
∂xψ

2
1(x, tn) (4.72)

satisfies the linear stability problem (4.37), coined as the squared eigenfunction connection. Using

the results of the previous section, we see that the above takes the form

w(x, tn) = e2Ωntnαn(x)βn(x) =
1
2
e2Ωntn∂xα

2
n(x), (4.73)

where αn, βn are defined as in (4.63). Comparing the above with (4.39), we immediately conclude

that
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Figure 4.1: (a) Ω2
n as a function of real ζ. The union of the bold line segments is the Lax spectrum.

(b) Corresponding plot of Ωn (restricted to the Lax spectrum) in the complex plane. The vertical
lines represent the multiple coverings in (4.71), which actually lie on the imaginary axis.

λn = 2Ωn, W (x) = αn(x)βn(x) =
1
2
∂xα

2
n(x), (4.74)

for all solutions obtained through the squared eigenfunction connection.

If we show that all solutions with Re(λn) > 0 are unbounded in x, then spectral stability follows.

To this end, let us examine which solutions of the linear stability problem are obtained through the

squared eigenfunction connection. For any given λn ∈ C, (4.40) is a (2n + 1)-order differential

equation. Thus, it has 2n+ 1 linearly independent solutions.

Theorem. All spatially bounded solutions of the spectral problem (4.40) with λn 6= 0 are

obtained through the squared eigenfunction connection (4.74). If λn = 0, then exactly n linearly

independent spatially bounded solutions are obtained through (4.74).

Proof. First, let us count how many solutions are obtained from the squared eigenfunction

connection for a fixed value of λn 6= 0. Exactly one value of Ωn is obtained through Ωn = λn/2.

Excluding the values of λn for which the discriminant of (4.61) as a function of ζ is zero, (4.61)

gives rise to 2n+1 values of ζ. Before we consider the excluded values separately, we need to show

that the 2n+ 1 functions W (x) obtained as described are linearly independent.
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From our previous calculations we see that

W = αnβn = (Ân − Ωn) exp
(∫

Ωn

B̂n
dx

)
. (4.75)

Therefore, as long as there is an exponential contribution, the 2n + 1 solutions W corresponding

to the 2n + 1 values of ζ are linearly independent: indeed for different ζ different terms with

singularities of different order in the complex x-plane are present with different coefficients. From

the above we see that there is an exponential contribution if and only if Ωn 6= 0, which is true since

Ωn = λn/2 6= 0 by assumption. Furthermore, if Re(λn) > 0 it follows that Re(Ωn) > 0. This

implies ζ is not in the Lax spectrum. Therefore, all 2n + 1 solutions obtained from the squared

eigenfunction connection corresponding to Re(λn) > 0 are unbounded in x.

For the values of λn at which the discriminant of (4.61) as a function of ζ is zero, only 2n

solutions are obtained (see note below). The other solution can be obtained through reduction of

order. This introduces algebraic growth, therefore it is unbounded in x. We have thus shown that

all bounded solutions corresponding to λn 6= 0 are obtained through the squared eigenfunction

connection.

Note: Extra care must be taken if the degeneracy is stronger, such as two local minima of Ω2
n

being equal when the discriminant of (4.61) as a function of ζ is zero. In such cases less than 2n

solutions are obtained. However, a simple perturbation argument resolves these higher degeneracies

and unbounded eigenfunctions result.

Now, assume λn = 0. It follows that Ωn = λn/2 = 0. Substituting Ωn = 0 into (4.75) gives

W = Ân. (4.76)

Note that Ân is linearly related to the Ai from the τi-hierarchy. Using that An = −1
2∂xBn, (4.56),

and the expansion An =
∑n

i=0 ai(x)ζi we find

ai−1 =
1
8

(
−∂2

xai −
2
3
uai −

1
3
ux∂

−1
x ai

)
. (4.77)

The above is precisely the recursion operator (4.21) which generates the KdV hierarchy, i.e.,
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ai−1 =
1
8
Rai (4.78)

Using an = 0, an−1 = 1
24bnux = 1

24bnuτ0 gives

ai−1 =
1
8
Rai = diuτn−i , i = n− 1, . . . , 1, (4.79)

for some constants di. In other words, each ai(x) is a linear multiple of uτn−i , i = 1, . . . , n.

Since Ân is a linear combination of all the lower-order flows, the above result gives that Ân can

be expressed as a linear combination of the utn−i . Therefore, for λn = 0 we obtain n linearly

independent solutions u∗tn−i
, i = 1, . . . , n, from the squared eigenfunction connection. Of course,

each u∗tn−i
, i = 1, . . . , n, is expressed in terms of u∗ and its x-derivatives through the KdV hierarchy

(4.23).

As seen in this proof, there is no stability spectrum with Re(λn) > 0. Therefore, we immediately

conclude tn-spectral stability. We summarize the above results:

Theorem (Spectral stability). All periodic genus n solutions of the KdV equation are tn-

spectrally stable with respect to spatially bounded perturbations. The spectrum of their associated

linear stability problem (4.40) is explicitly given by σ(JLn) = iR, or, accounting for multiplicities,

σ(JLn) = iR ∪
[
−2i

√
|Ω2
n(ζ∗2 )|, 2i

√
|Ω2
n(ζ∗2 )|

]2

∪ · · · ∪
[
−2i

√
|Ω2
n(ζ∗2n)|, 2i

√
|Ω2
n(ζ∗2n)|

]2

.

(4.80)

4.3 Nonlinear stability

With spectral stability established, let us revisit the nonlinear stability theorem as applied to our

problem. We have the following:

• It is an application of the SCS basis lemma in [45] that the eigenfunctions W form a basis for

L2
per([−NL,NL]), for any integer N , when the potential u is periodic in x with period 2L.
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• As seen in the proof of spectral stability, the infinitesimal generators of G:

∂t0 , ∂t1 , . . . , ∂tn−1 , (4.81)

acting on the solution u∗ are in the kernel of Ĥ ′′n(u∗). In fact, when restricted to the space

Vp, the infinitesimal generators of G span the kernel of Ĥ ′′n(u∗) [24, 43]. As we see below,

the kernel of Ĥ ′′m(u∗) is equal to that of Ĥ ′′n(u∗) for any m ≥ n. It is interesting to note that

the infinitesimal generators of G also span the tangent space of the abelian torus on which the

Riemann theta function in (4.4) is defined [71], as they are linearly related to ∂φ01 , . . . , ∂φ0n .

What is left to verify is the last condition in the nonlinear stability theorem, i.e., we need to find an

m such that

Km(W ) = 〈W, Ĥ ′′m(u∗)W 〉 =
∫ NL

−NL
W (x)LmW (x) dx ≥ 0 (4.82)

for all W ∈ Vp with equality obtained only for W in the kernel of Lm = Ĥ ′′m(u∗).

Assume m > n (what follows is trivial for m = n) and that u∗ is a stationary solution of the

n-th flow. It is a stationary solution of the m-th flow as well, for some choice of the constants

cm,0, . . . , cm,n−1. Now, consider the time component of the Lax hierarchy for the m-th flow

ψtm = T̂mψ. (4.83)

Proceeding as we did for the n-th flow, we look for solutions of the form

ψ(x, tm) = eΩmtmW (x), (4.84)

where due to the commuting properties of the flows, the Lax equations for i ≥ n share the same

complete set of eigenfunctions

W (x) =

αn
βn

 (4.85)
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(for i < n we can no longer separate variables). As before, this determines a relationship between

Ωm and ζ, and in general Ω2
m defines an algebraic curve corresponding to a genus m Riemann

surface. However, when evaluated at a stationary solution of the n-th flow this curve is singular, and

corresponds to a genus n surface.

Theorem. Let u∗ be a stationary solution of the n-th KdV equation. Then for all m > n, the

m-th surface reduces to

Ω2
m(ζ) = p2

m(ζ)Ω2
n(ζ), (4.86)

where pm(ζ) is a polynomial of degree m − n in ζ. Furthermore, pm(ζ) depends on the free

parameters cm,n, . . . , cm,m−1 such that cm,i appears in the coefficients of ζi−n and lower. Therefore,

the free parameters cm,n, . . . , cm,m−1 give us total control over the roots of pm(ζ).

Proof. For m > n, we impose Ĥ ′m(u∗) = 0. Without loss of generality, we assume that the free

constants are chosen in such a way so that for all m > n the m-th Hamiltonian takes the form

Ĥm(u) = H̃m(u) + c̃m,m−1Ĥm−1(u) + · · ·+ c̃m,nĤn(u), (4.87)

where H̃ ′m(u∗) = 0 and each constant c̃m,i is expressed in terms of the constants cm,j , j ≥ i (in

practice this is not necessary, it only makes the proof more transparent). In this case, when evaluated

at u∗, each T̂i, i > n, becomes a linear multiple of T̂n. Therefore,

T̂m = p̃m(ζ)T̂n + c̃m,m−1p̃m−1(ζ)T̂n + · · ·+ c̃m,np̃n(ζ)T̂n (4.88)

= pm(ζ)T̂n (4.89)

where pm(ζ) = p̃m(ζ)+ c̃m,m−1p̃m−1(ζ)+ · · ·+ c̃m,np̃n(ζ), and each polynomial p̃i(ζ) is of degree

i− n in ζ. The existence of nontrivial solutions of the eigenvalue problem imposes

0 = det(T̂m − ΩmI) = det(pm(ζ)T̂n − ΩmI). (4.90)
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Therefore, Ω2
m = p2

m(ζ)Ω2
n. Expressing c̃m,i in terms of cm,i completes the proof.

From the squared eigenfunction connection we have

2ΩmW (x) = JLmW (x), (4.91)

so that

LmW (x) = 2ΩmJ
−1W (x). (4.92)

Therefore,

Km(W ) =
∫ NL

−NL
WLmW dx = 2Ωm

∫ NL

−NL
WJ−1W (x) dx = Ωm

Kn

Ωn
. (4.93)

From the previous theorem, all values of ζ for which Ωn = 0 also give Ωm = 0, thus, these values

of ζ pose no problem in (4.93). Substituting for Ωm gives

Km(ζ) = pm(ζ)Kn(ζ). (4.94)

Therefore, when considering stationary solutions of the n-th flow, one simply needs to calculate

Kn in order to calculate any of the higher-order Ki. Let us do so. We have

W (x) = αn(x)βn(x) =
1
2
∂xα

2
n(x). (4.95)

Therefore, the integrand in Kn is given by

WLnW = αnβnΩnα
2
n = Ωn|αn|2βnαn. (4.96)

Now, on the Lax spectrum |γn|2 = 1/B̂n, since the exponent in (4.65) is imaginary. This gives

|αn|2 = |γn|2B̂2
n = B̂n (4.97)

and
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βnαn = |γn|2(Ân − Ωn)(−B̂n) = −(Ân − Ωn) = −(Ân + Ωn), (4.98)

where, again, we used that Ân is real and Ωn is imaginary on the Lax spectrum. This gives

WLnW = −ΩnB̂n(Ân + Ωn). (4.99)

Therefore

Kn(ζ) = −Ωn

∫ NL

−NL
B̂nÂn dx− Ω2

n

∫ NL

−NL
B̂n dx. (4.100)

Using that B̂nÂn is a total derivative gives the final result

Kn(ζ) = −Ω2
n

∫ NL

−NL
B̂n dx. (4.101)

Note that (4.101) is only valid on the Lax spectrum. However, we find it convenient to formally

consider (4.101) as defining Kn as a function of all real ζ in our considerations below. This poses

no problems in the application of the orbital stability theorem, as it is only concerned with the sign

of Kn when evaluated at bounded eigenfunctions.

Now, consider the sign of Kn(ζ) on the Lax spectrum σLn :

• Since u∗ is tn-spectrally stable, Ω2
n ≤ 0 on σLn . Therefore, we only need to consider the sign

of the integral term
∫ NL
−NL B̂n dx in (4.101).

• The Lax spectrum σLn has n + 1 components: (−∞, ζ1), [ζ2, ζ3], . . . , [ζ2n, ζ2n+1]. We pre-

viously saw that B̂n never attains zero (as a function of x) for ζ ∈ σLn , except possibly at

the endpoints where Ωn(ζ) = 0. This implies that the integral term
∫ NL
−NL B̂n dx in (4.101)

is never zero and has fixed sign on each component of the Lax spectrum. However, that sign

may change from one component to the next. Therefore, Kn(ζ) can change sign only on the

gaps where ζ /∈ σLn or on the band edges where Ωn(ζ) = 0.

We see that Kn(ζ) it is not guaranteed to have fixed sign on the entire Lax spectrum, but only on

each component separately. Thus, no stability conclusions can be drawn from Kn(ζ). However,
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Figure 4.2: The bold and dashed curves represent the integral term
∫ NL
−NL B̂n dx in Kn(ζ) and

p2n(ζ) respectively, considered as functions of real ζ. The union of the thick line segments on the
real axis is the Lax spectrum σLn . Both curves have different signs on various components of the
Lax spectrum, but their product has fixed sign on the entire Lax spectrum.

going n flows higher (calculating K2n(ζ)) provides the requisite number of constants to allow us to

make K2n(ζ) of definite sign on the entire Lax spectrum. We have

K2n(ζ) = p2n(ζ)Kn(ζ), (4.102)

where p2n(ζ) is a polynomial in ζ of degree 2n− n = n. Since we have total control over the roots

of p2n(ζ), we choose the n constants c2n,n, . . . , c2n,2n−1 so that p2n(ζ) changes sign whenever the

integral term in Kn(ζ) changes sign, see Fig. (4.5). This is always possible since the integral term

in Kn(ζ) is a polynomial in ζ of degree n. This makes K2n(ζ) of definite sign on the entire Lax

spectrum, establishing the last condition in the nonlinear stability theorem.

We have proved the following:

Theorem (Orbital stability). Spatially periodic genus n solutions of the KdV equation are or-

bitally stable (under the time dynamics of any of the KdV equations) with respect to perturbations

in
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Vp =
{
v ∈ H2n

per([−NL,NL]) :
∫ NL

−NL
v dx = 0

}
, (4.103)

where 2L is the period of the initial condition and N is any positive integer.

Remarks:

• There is no restriction on the spatial average of the finite-genus solution, only on the spatial

average of the perturbation.

• The choice of constants, c2n,n, . . . , c2n,2n−1, that makesK2n(ζ) of definite sign is not unique.

For example, one could require p2n(ζ) to have the same n zeros as the integral term inKn(ζ).

One could instead require p2n(ζ) to have ζ2i (or ζ2i−1) as a zero if Kn(ζ) has an undesired

sign on the band [ζ2i, ζ2i+1] ⊂ σLn .

• In the soliton limit, the allowed bands in (4.69) collapse to single points [33]. Thus, the

operator Ĥ ′′n(u∗) may have up to n unstable directions and the theory of [68] applies. It is

interesting to note that our formulation using Ĥ ′′2n(u∗) eliminates the extra machinery (The-

orem 2 of [42]) required to negotiate the unstable directions, and orbital stability seems to

follow from Theorem 1 of [42]. To turn this into a formal proof for the soliton case, one needs

to examine the interplay between the infinite period limit and the steps we take in our method.

4.4 Examples

4.4.1 Genus 1: cnoidal wave

We repeat the results of [14, 24] as an illustration of our general framework applied to the genus one

case. Consider the genus one example (4.31)

u∗ = 12k2cn2 (x, k) , (4.104)

with period 2L = 2K(k) (see (4.30)).

We have
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T̂1 = T1 + c1,0T0, (4.105)

where as before c1,0 = 8k2 − 4. From

det(T̂1 − Ω1I) = 0, (4.106)

a direct calculation gives

Ω2
1 = 16(ζ − ζ1)(ζ − ζ2)(ζ − ζ3), (4.107)

where

ζ1 = k2 − 1 < ζ2 = 2k2 − 1 < ζ3 = k2, (4.108)

for k ∈ (0, 1). Therefore, the Lax spectrum is

σL1 = (−∞, k2 − 1] ∪ [2k2 − 1, k2]. (4.109)

To examine orbital stability, let us calculate K1. We have

K1(ζ) = −Ω2
1

∫ NL

−NL
B̂1 dx (4.110)

= −Ω2
1

∫ NL

−NL
(−4ζ − 1

3
u∗ + c1,0) dx (4.111)

= −Ω2
1

∫ NL

−NL
(−4ζ − 4k2cn2 (x, k) + 8k2 − 4) dx. (4.112)

There are two components to the Lax spectrum. We see that K1(ζ) ≥ 0 on the first component

ζ ∈ (−∞, k2 − 1], and K1(ζ) ≤ 0 on the second component ζ ∈ [2k2 − 1, k2]. In both cases

equality is obtained only at the endpoitns, where Ω1(ζ) = 0. Therefore, no stability conclusions can

be drawn from K1(ζ).

Let us calculate K2(ζ). We have
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T̂2 = T2 + c2,1T1 + c2,0T0, (4.113)

where as before c2,0 = c2,1(8k2 − 4)− 56k4 + 56k2 − 16 and c2,1 is free. From

det(T̂2 − Ω2I) = 0, (4.114)

another direct calculation gives

Ω2
2 = 16(8k2 − 4 + 4ζ − c2,1)2(ζ − ζ1)(ζ − ζ2)(ζ − ζ3) = (4ζ + 8k2 − 4− c2,1)2Ω2

1. (4.115)

We choose c2,1 such that 4ζ + 8k2 − 4− c2,1 has the same zero as the integral part of K1(ζ). This

choice of c2,1 makes K2(ζ) of definite sign on the Lax spectrum, and verifies orbital stability.

In fact, 4ζ + 8k2 − 4− c2,1 is zero when ζ = 1− 2k2 + c2,1/4. Imposing that this sign change

takes place in the gap (or on one of its edges) gives

1− 2k2 + c2,1/4 ≥ k2 − 1, (4.116)

and

1− 2k2 + c2,1/4 ≤ 2k2 − 1. (4.117)

This results in

4(3k2 − 2) ≤ c2,1 ≤ 4(4k2 − 2), (4.118)

which has an entire interval of solutions for all values of the elliptic modulus k ∈ (0, 1). Any choice

of c2,1 satisfying the above constraint makes K2(ζ) of definite sign on the Lax spectrum.

Though not necessary for stability, let us calculate Ω3 for illustrative purposes. We have

T̂3 = T3 + c3,2T2 + c3,1T1 + c3,0T0. (4.119)
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Imposing u∗ is stationary gives

c3,0 = c3,2(−56k4 + 56k2 − 16) + c3,1(8k2 − 4) + 384k6 − 576k4 + 320k2 − 64, (4.120)

where c3,2 and c3,1 are free parameters. From

det(T̂3 − Ω3I) = 0, (4.121)

another direct calculation gives

Ω2
3 = (16ζ2 + (32k2 − 16− 4c3,2)ζ + 56k4 − 56k2 − 8k2c3,2 + 4c3,2 + 16 + c3,1)2Ω2

1. (4.122)

Now, c3,2 allows us to choose the coefficient of ζ and c3,1 allows us to choose the constant term,

hence, we have total control over the roots of the outside polynomial.

4.4.2 Genus 2: the Dubrovin-Novikov solution

Here we consider the genus two Lamé-Ince potential [30, 33, 51, 52]

u∗ = −36℘(x, g2, g3), (4.123)

where ℘(·, g2, g3) is the Weierstrass elliptic function with invariants g2 and g3 [66]. Using the phase

invariance of the KdV equation, we rewrite the above in the more convenient form [17, 66]

u∗ = 36k2cn2(x, k). (4.124)

Contrary to the genus one case, the solution u(x, t) generated by u∗ does not represent all periodic

genus two solutions. In fact, it is considered the simplest periodic genus two solution, as noted by

Dubrovin and Novikov, who integrated the KdV equation with u∗ as an initial condition [33, 73]. It

was later shown that the Dubrovin-Novikov solution is periodic in time as well [34]. We examine

it here because it is a solution with genus greater than one for which explicit analysis is relatively
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Figure 4.3: Ω2
2 as a function of real ζ for the Dubrovin-Novikov solution with k = 0.8 in (4.127).

The union of the dotted line segments on the horizontal axis is the numerically computed Lax spec-
trum using Hill’s method with 81 Fourier modes and 49 different Floquet exponents, see [26, 25].

straightforward.

Imposing that u∗ is a stationary solution of the second KdV equation gives

c2,0 = 424k4 − 424k2 + 64, c2,1 = 40k2 − 20. (4.125)

From

det(T̂2 − Ω2I) = 0, (4.126)

we find

Ω2
2 = 256(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)(ζ − ζ4)(ζ − ζ5), (4.127)

where



106

−1 0 1
−3

−2

−1

0

1

2

3 x 107

−1 0 1
−80

−60

−40

−20

0

20

40

60

80

−1 0 1
−20

−15

−10

−5

0

5

10

15

20

(a) (b) (c)

Figure 4.4: (a) The numerically computed spectrum for the Dubrovin-Novikov solution with
k = 0.8 using Hill’s method with 81 Fourier modes and 49 different Floquet exponents, see
[26, 25]; (b) A blow-up of (a) around the origin, showing a band of higher spectral density; (c)
A blow-up of (b) around the origin, showing another band of even higher spectral density. The
analytically predicted values for the band ends using (4.127) are ±2i

√
|Ω2

2(ζ∗2 )| ≈ ±42.14i and
±2i

√
|Ω2

2(ζ∗4 )| ≈ ±8.38i, in agreement with the numerical results above.

(ζ1, ζ2, ζ3, ζ4, ζ5) = (4k2−2−2
√
k4 − k2 + 1, 5k2−4, 2k2−1, 5k2−1, 4k2−2+2

√
k4 − k2 + 1).

(4.128)

It is easily checked that all of the above roots are real and distinct for k ∈ (0, 1). Therefore, the Lax

spectrum is

σL2 = (−∞, ζ1] ∪ [ζ2, ζ3] ∪ [ζ4, ζ5], (4.129)

which is a confirmation of numerical results, see Fig. (4.3). Also, Ω2 has two bands of increasingly

higher density around the origin. This confirms the numerical results for the linear stability problem,

see Figs. (4.4) and (4.5).
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Figure 4.5: The imaginary part of λn as a function of µ, demonstrating the higher spectral density.

To examine nonlinear stability, we first calculate K2(ζ):

K2(ζ) = −Ω2
2

∫ NL

−NL
B̂2 dx (4.130)

= −Ω2
2

∫ NL

−NL

(
16ζ2+

(
4
3
u∗−4c2,1

)
ζ+

1
3
u∗xx+

1
6
u∗2− 1

3
c2,1u

∗+c2,0

)
dx.(4.131)

As expected, the integral part of K2(ζ) is a polynomial of degree two in ζ.

There are three components to the Lax spectrum. One can check that K2(ζ) ≥ 0 on the first

component ζ ∈ (−∞, ζ1], K2(ζ) ≤ 0 on the second component ζ ∈ [ζ2, ζ3], and K2(ζ) ≥ 0 on

the third component ζ ∈ [ζ4, ζ5]. In all three cases equality is obtained only at the endpoints, where

Ω2(ζ) = 0. Therefore, no stability conclusions can be drawn from K2(ζ).

For orbital stability we need to go two flows higher. Imposing that u∗ is a stationary solution of

the fourth KdV equation results in
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c4,0 = (−16192k6 + 24288k4 − 10656k2 + 1280)c4,3 + (424k4 − 424k2 + 64)c4,2(4.132)

+467616k8 − 935232k6 + 677664k4 − 210048k2 + 21504,

c4,1 = (−1176k4 + 1176k2 − 336)c4,3 + (40k2 − 20)c4,2 (4.133)

+30848k6 − 46272k4 + 26304k2 − 5440,

where c4,2 and c4,3 are free parameters.

From det(T̂4 − Ω4I) = 0 we find

Ω2
4 = p4(ζ)2Ω2

2, (4.134)

where

p4(ζ) = 16ζ2+(160k2−4c4,3−80)ζ+1176k4+(−40c4,3−1176)k2+20c4,3+c4,2+336. (4.135)

Therefore, c4,3 allows us to choose the coefficient of ζ and c4,2 allows us to choose the constant

term, giving us total control over the roots of p4(ζ). Imposing that it has the same roots as the

integral part of K2(ζ) determines c4,3 and c4,2 such that K4(ζ) is of definite sign, verifying orbital

stability.
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Chapter 5

ORBITAL STABILITY IN INTEGRABLE HAMILTONIAN SYSTEMS:
GENERAL ALGORITHM

As we saw in our analysis of the finite-genus solutions of the KdV equation, the (nonlinear)

orbital stability of a stationary solution of the n-th KdV equation depends heavily on its tn-spectral

stability. For a general integrable Hamiltonian system

ut = JH ′(u), (5.1)

we consider the class of stationary solutions

JĤ ′n = 0, (5.2)

with all analogous quantities defined as for the KdV equation in Chapter 4. We outline the con-

nection between tn-spectral stability and orbital stability for finite-genus solutions of a general in-

tegrable system. We also comment on its implications for the general periodic initial-value problem

for any integrable Hamiltonian system.

Note: We must keep in mind that when considering nonlinear stability, the space of allowed

perturbations will depend upon the equation in question, for example, there are restrictions imposed

by the kernel of the operator J .

Step 1: Determine the Lax spectrum

Since we have assumed that equation (5.1) is integrable, the n-th equation in the hierarchy is equiv-

alent to the compatibility of two linear ordinary differential systems:
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ψx = Xψ, (5.3)

ψtn = T̂nψ. (5.4)

Here, the above matrices can be of any size, say M . As u∗ does not depend on tn, we can separate

variables in (5.4)

ψ(x, tn) = eΩntnΨ(x), (5.5)

where Ωn is determined by

det(T̂n − ΩnI) = 0, (5.6)

which specifies Ωn as an M -valued function of ζ. The eigenvector Ψ is determined by

(T̂n − ΩnI)Ψ = 0. (5.7)

To ensure that ψ(x, tn) is bounded as a function of x, one arrives at a condition

Re 〈S(u, γ,Ωn)〉 = 0, (5.8)

with 〈·〉 = 1
2L

∫ L
−L · dx. Here, S(u, γ,Ωn) depends upon the elements of the matrices from the Lax

pair. Equation (5.8) determines the Lax spectrum σLn explicitly. Once σLn is determined, the set of

all Ωn values follows from

det(T̂n − ΩnI) = 0. (5.9)

How readily condition (5.8) lends itself to investigation is determined by the equation in question.
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Step 2: The squared eigenfunction connection

For all integrable equations, there exists a squared eigenfunction connection relating solutions to the

linear stability problem for the n-th equation in the hierarchy, w = eλntnW (x), and ψ:

w =
∑
i,j

Ai,jψiψj , (5.10)

for some matrix A [2]. A can be found by direct substitution.

Step 3: Spectral stability

From the squared eigenfunction connection it follows that

λn = 2Ωn(ζ), W (x, ζ) =
∑
i,j

Ai,jΨi(x, ζ)Ψj(x, ζ).

This provides a parameterization of the stability problem in terms of the Lax spectral parameter ζ.

Therefore, if Ωn ∈ iR then u∗ is tn-spectrally stable. Of course, it must first be shown that all

solutions to the linear stability problem are obtained through the squared eigenfunction connection.

Again, this will depend upon the equation in question.

Step 4: Calculate Kn

If a completeness result such as the SCS basis lemma [45] exists for the equation in question, then

using the squared eigenfunction connection, one can explicitly calculate Kn in terms of the Lax

parameter ζ:

Kn(ζ) =
〈
W, Ĥ ′′n(u∗)W

〉
. (5.11)

If the entries of the Lax operators are polynomials in ζ, then Kn(ζ) will be a polynomial in ζ as

well. In general, Kn(ζ) will not be of fixed sign on the entire Lax spectrum.



112

Step 5: Riemann surface reductions

When evaluated at a stationary solution of a lower-order flow, all of the higher-flows become linearly

dependent. Therefore, the essential parts of the Riemann surface calculations from the KdV equation

carry over, and one obtains

det(pm(ζ)T̂n − ΩmI) = 0 =⇒ Ωm = pm(ζ)Ωn, (5.12)

where pm(ζ) is a polynomial of fixed degree in ζ. Furthermore, since each member of the Lax

hierarchy depends on increasing powers of ζ, we should have some control over the form pm(ζ)

takes, using the free parameters cm,n, . . . , cm,m−1.

Step 6: Higher-order Km

From the Riemann surface relations one can show that for all m > n

Km = pm(ζ)Kn. (5.13)

Therefore, in order to conclude orbital stability, one must show that it is possible to go high enough

in the hierarchy such that there exists constants cm,n, . . . , cm,m−1 which make Km(ζ) positive on

the Lax spectrum. Again, the details will depend on the equation in question. One conclusion

is immediately clear. If the spectral problem for ζ associated with the first member of the Lax

hierarchy is self-adjoint, the analysis is much simpler. In that case σLn ⊂ R. Therefore, Kn(ζ) and

pm(ζ) are polynomials of the real variable ζ. Choosing the constants cm,n, . . . , cm,m−1 such that

Km(ζ) is of fixed sign on the entire Lax spectrum now becomes a task in root finding, and orbital

stability follows if we have sufficient control over pm(ζ).

Let us consider some implications of the above method. Whether or not the set of stationary

solutions is dense in a more general class of solutions depends on the equation in question. When

such a relationship does exist, we expect the stability of the set of stationary solutions to suggest the

stability of its closure. Making this statement more exact would require a diversion into the theory

of infinite-genus solutions [36, 71]. Though an interesting path for future investigation, we do not
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pursue it here. In less rigorous terms, we make the following definition:

Definition. If the genus n solutions of a periodic initial-value problem are tn-spectrally stable

for all n, we say the periodic initial value problem with generic periodic initial data exhibits implicit

spectral stability.

As we saw above, it is possible to carry out an analysis similar to what we did for the KdV

equation on any integrable Hamiltonian system. In all such cases, there is a direct connection

between the tn-spectral stability of a genus n solution and the existence of a Lyapunov function.

In finite dimensions, it is well known that all (non-degenerate) elliptic critical points are orbitally

stable, since the Hamiltonian serves as a Lyapunov function [87]. Our analysis leads us to conjecture

on the generalization of this idea to integrable Hamiltonian systems in infinite-dimensions:

Conjecture. Suppose (5.1) is a completely integrable Hamiltonian system and that the class of

stationary solutions associated with the nonlinear hierarchy is dense in the set of periodic functions.

Then the implicit spectral stability of the periodic initial-value problem implies the (nonlinear) or-

bital stability of the periodic initial-value problem, defined in an appropriate function space.

Of course, there is some ambiguity as to what is meant by orbital stability of a general periodic

solution. One must first generalize the norm used for the finite-genus solutions to the infinite-genus

case. Since each periodic solution can be obtained through an appropriate infinite-genus solution,

orbital stability of a generic periodic solution could be defined through the orbital stability of the

corresponding infinite-genus solution.
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[24] B. Deconinck and T. Kapitula. On the orbital (in)stability of spatially periodic stationary
solutions of generalized Korteweg-de Vries equations. Submitted for publication, 2009.

[25] B. Deconinck, F. Kiyak, J. D. Carter, and J. N. Kutz. Spectruw: a laboratory for the numerical
exploration of spectra of linear operators. Mathematics and Computers in Simulation, 74:370–
379, 2007.

[26] B. Deconinck and J. N. Kutz. Computing spectra of linear operators using Hill’s method.
Journal of Computational Physics, 219:296-321,2006.

[27] B. Deconinck and M. Nivala. A maple package for symbolic integra-
tion and summation. Implemented in Maple 12.0. Also available at
http://www.amath.washington.edu/˜bernard/papers.html.



116

[28] B. Deconinck and M. Nivala. A maple package for the computation of conservation laws.
Available at http://www.amath.washington.edu/˜bernard/papers.html.

[29] B. Deconinck and M. Nivala. Symbolic integration and summation using homotopy methods.
(Accepted for publication, Mathematics and Computers in Simulation, 2008).

[30] B. Deconinck and H. Segur. Pole dynamics for elliptic solutions of the Korteweg-de Vries
equation. Math. Phys. Anal. Geom., 3:49–74, 2000.

[31] L. A. Dickey. Soliton equations and Hamiltonian systems. World Scientific Publishing Co.
Inc., River Edge, NJ, second edition, 2003.

[32] B. A. Dubrovin. Theta functions and nonlinear equations. Russian Math. Surveys, 36:11–80,
1981.

[33] B. A. Dubrovin and S. P. Novikov. Periodic and conditionally periodic analogs of the many-
soliton solutions of the Korteweg-de Vries equation. Soviet Phys. JETP, 40:1058, 1974.

[34] V. Z. Enol′skii. On solutions in elliptic functions of integrable nonlinear equations associated
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