
c©Copyright

Matthew S. Patterson

Algebro-geometric algorithms for integrable systems

Matthew S. Patterson

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy

University of Washington

2007

Program Authorized to Offer Degree: Applied Mathematics

University of Washington
Graduate School

This is to certify that I have examined this copy of a doctoral dissertation by

Matthew S. Patterson

and have found that it is complete and satisfactory in all respects,
and that any and all revisions required by the final

examining committee have been made.

Chair of the Supervisory Committee:

Bernard Deconinck

Reading Committee:

Bernard Deconinck

Robert E. O’Malley

J. Nathan Kutz

Date:

In presenting this dissertation in partial fulfillment of the requirements for the doctoral
degree at the University of Washington, I agree that the Library shall make its copies
freely available for inspection. I further agree that extensive copying of this dissertation is
allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S.
Copyright Law. Requests for copying or reproduction of this dissertation may be referred
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346,
1-800-521-0600, or to the author.

Signature

Date

University of Washington

Abstract

Algebro-geometric algorithms for integrable systems

Matthew S. Patterson

Chair of the Supervisory Committee:
Professor Bernard Deconinck

Applied Mathematics

Integrable systems such as the nonlinear Schrödinger, Korteweg-deVries and Kadomtsev-

Petviashvili equations are used to model diverse physical phenomena. These and all other

integrable systems admit families of multi-phase solutions given in terms of Riemann

θ-functions parameterized by compact, finite-genus Riemann surfaces. Calculating the ini-

tial phase information such solutions involves computing the Abel map and the vector of

Riemann constants associated with a genus g Riemann surface Γ.

The Abel map is a vector with g components, each of which is an integral between places

on a Riemann surface. This map is well defined up to integrals of closed paths.

The vector of Riemann constants of a Riemann surface Γ is the vector offset between

the image, under the Abel map, of the poles and zeroes of any meromorphic differential and

the zero set of the Riemann θ-function associated with Γ.

Here algorithms are presented to compute the Abel map and the vector of Riemann

constants. For these algorithms Riemann surfaces are defined by irreducible polynomials

in two complex variables. The algorithms have been implemented as procedures in the

computed algebra system Maple, and these implementations are demonstrated.

TABLE OF CONTENTS

Page

List of Figures . iv

List of Tables . vi

Chapter 1: Introduction . 1

1.1 Introduction to the relevant physics . 1

1.2 The nonlinear Schrödinger equation and deep water 4

1.3 The Korteweg-deVries equation and one-dimensional waves on shallow water 7

1.4 The Kadomtsev-Petviashvili equation and two-dimensional waves on shallow
water . 8

1.5 Remarks on the Maple implementations . 11

Chapter 2: Preliminary examples of genus zero and genus one Riemann surfaces . 16

2.1 Genus zero: the Riemann sphere . 16

2.2 Genus one: the first non-trivial example . 21

Chapter 3: Introduction to Riemann surfaces . 24

3.1 Points and places . 24

3.2 Newton’s Theorem and convergence of Puiseux expansions 27

3.3 Branches . 33

3.4 The homology of a Riemann surface . 35

3.5 The Riemann surface cut for the purpose of integration 36

3.6 Meromorphic functions and differentials . 42

3.7 The cohomology of a Riemann surface . 43

3.8 Riemann matrices and the associated Jacobian 47

3.9 Definition and properties of divisors . 50

3.10 The Riemann-Roch Theorem . 56

3.11 Special divisors . 61

3.12 The Abel map . 61

3.13 The Riemann θ-function . 64

i

3.14 The Jacobi inversion problem . 67

3.15 The vector of Riemann constants . 73

Chapter 4: Multi-phase solution formulae . 77

4.1 The nonlinear Schrödinger equation . 77

4.2 The Korteweg-deVries equation . 79

4.3 The Kadomtsev-Petviashvili equation . 79

Chapter 5: Computing the Abel map . 81

5.1 Initial considerations . 81

5.2 Computing discriminant points . 81

5.3 Computing paths on the Riemann sphere . 84

5.4 Lifting paths to the Riemann surface . 95

5.5 Remarks on integration . 98

Chapter 6: Computing the vector of Riemann constants 99

6.1 Initial considerations . 99

6.2 The vector of Riemann constants of the left-place 101

6.3 Computing a canonical divisor . 104

6.4 Approximating the θ-function . 111

6.5 Computing the correct half-lattice vector . 115

6.6 Filtering candidate half-lattice vectors . 122

Chapter 7: The implementation of the Abel map: computation and verification . . 127

7.1 Syntax of the implementation . 127

7.2 Demonstrating convergence . 128

7.3 A hyperelliptic example . 130

7.4 Computing the Abel map of divisors of meromorphic functions 133

7.5 Computing the Abel map of divisors of meromorphic differentials 135

Chapter 8: The implementation of the vector of Riemann constants 140

8.1 Syntax of the vector of Riemann constants . 140

8.2 Example computation of the half-lattice vector 140

Chapter 9: Applications of the Abel map . 155

9.1 Integration of algebraic functions . 155

9.2 Integral-linear dependence of divisors . 165

ii

Bibliography . 168

Appendix A: Proofs and details . 171

A.1 Details of Proposition 3.14.2 . 171

A.2 Proof of Proposition 3.15.2 . 174

A.3 Dimension of Riemann-Roch spaces . 178

Appendix B: Maple Syntax . 181

B.1 Preliminary matters . 181

B.2 The algcurves package . 185

iii

LIST OF FIGURES

Figure Number Page

1.1 Diagram of free-surface water-wave problem 2

1.2 Envelope soliton experiment . 6

1.3 John Scott Russel’s “Great Wave of Translation” 8

1.4 One-dimensional waves described by the Kadomtsev-Petviashvili equation . . 9

1.5 Waves interacting to form hexagons . 10

1.6 Hexagonal Waves described by the Kadomtsev-Petviashvili equation 11

1.7 Asymetric hexagonal waves . 12

1.8 Hexagonal wave after Hurricane Grace . 13

2.1 Graph of y2 = x . 17

2.2 Cutting and pasting a genus zero surface: one 18

2.3 Cutting and pasting a genus zero surface: two 19

2.4 Cutting and pasting a genus zero surface: three 20

2.5 Cutting and pasting a genus one surface: one 21

2.6 Cutting and pasting a genus one surface: two 22

2.7 Cutting and pasting a genus one surface: three 23

2.8 Cutting and pasting a genus one surface: four 23

3.1 Idealization of Riemann surface . 29

3.2 Quintic example . 31

3.3 Homology of Riemann surface . 36

3.4 The cut surface: one . 37

3.5 The cut surface: two . 38

3.6 The cut surface: three . 39

3.7 The cut surface: four . 40

3.8 The cut surface: five . 40

3.9 The cut surface: six . 41

3.10 The cut surface: seven . 42

3.11 The cut surface: eight . 43

3.12 Example lattice . 44

iv

3.13 Graph of the θ-function . 65

5.1 Integration paths in the complex x-plane . 86

5.2 Integration path to a point away from discriminant points 89

5.3 Integration path to a point close to a discriminant point 90

7.1 Convergence of the Abel map . 129

7.2 Cauchy convergence of the Abel map . 133

v

LIST OF TABLES

Table Number Page

8.1 Using the theta divisor to verify correct choice of the half-lattice vector . . . 152

vi

ACKNOWLEDGMENTS

I wish to thank Sharon, David and Keegan Patterson and Lara Kidoguchi for all their

love, help and support. Without then this would not have been possible. Thank you all

very much.

I also wish to thank and acknowledge my academic advisor and friend Bernard Decon-

inck. I could not have had a better advisor.

I acknowledge Mark van-Hoeij for a number of fruitful conversations, and some very

good ideas.

The University of Washington Applied Mathematics Department has been like a second

family to me for the past years. I thank my fellow students, the faculty and staff for the

teaching, camaraderie, assistance, funding, and things too numerous to list.

Over the years this work has been funded by National Science Foundation VIGRE Grants

and the National Science Foundation UW GK-12 Grant.

vii

1

Chapter 1

INTRODUCTION

The algorithms presented here to compute the Abel map and the vector of Riemann

constants are the next steps in an ongoing research program to make effective the calculus

on Riemann surfaces represented by plane algebraic curves. Here “effective” means that

algorithms are devised and implemented in the form of black-box programs so that different

relevant quantities associated with Riemann surfaces may be computed symbolically or

numerically in an efficient way. The long-term goal is the computation of the so-called finite-

genus solutions of integrable differential (or difference) equations. Among the most famous

of such systems are the Korteweg-deVries (KdV) equation and the nonlinear Schrödinger

(NLS) equation. These have been widely used in the last forty years to describe various

physical phenomena, ranging from water waves, nonlinear optics and plasma physics to

biological processes and cellular automata [4, 1, 24].

1.1 Introduction to the relevant physics

The nonlinear Schrödinger and Korteweg-deVries equations arise in a number of applica-

tions, and the tools presented here are generic to the quasiperiodic solutions of these and

other integrable systems. My primary motivation, however, is the study of nonlinear wa-

ter waves. The starting point for this study is the reduction of the Navier-Stokes equations

known as the free-surface water-wave problem. An outline of this problem follows but please

see, for instance [30], for more details. Suppose

φ = φ(x, y, z, t)

is a velocity potential and

η = η(x, y, t)

2

���
���

PSfrag replacements

x

y

−h

z
η(x, y, t)

φ(x, y, z, t)

Figure 1.1: A diagram illustrating the coordinates and physical quantities in the free-surface
water-wave problem.

is the elevation of the free surface. Then the evolution of φ and η is governed by the

coupled system of partial differential equations (see Figure 1.1 for a schematic diagram of

the coordinates and physical quantities):

∇2φ = 0, −h ≤ z ≤ η, (1.1)

φz = 0, z = −h, (1.2)

ηt + φxηx + φyηy − φz = 0, z = η, (1.3)

φt + gη +
1

2
(φ2

x + φ2
y + φ2

z) − T
ηxx + ηyy

(1 + η2
x + η2

y)
3
2

= 0, z = η. (1.4)

The following notes hold for (1.1) through (1.4), collectively called the free-surface water-

wave problem.

• Equation 1.1 states that the divergence of the vector velocity inside the fluid is zero.

More physically this says that the fluid has constant density. That the velocity may

be written as a potential already assumes that the fluid is inviscid and irrotational.

3

• Equation 1.2 is a boundary condition, and simply states that there is no flow of water

through the bottom of the domain. Assuming h is a constant, as is done here, is

equivalent to assuming the bottom of the domain is flat.

• Equation 1.3 is known as the kinematic boundary condition, and implies that a fluid

parcel that starts on the surface stays on the surface.

• Equation 1.4 is known as the dynamic boundary condition, and describes the force

balance at the free surface. Here g is acceleration due to gravity and T is the coefficient

of surface tension. Waves where the restoring force is primarily gravity are referred

to as gravity waves.

• Throughout the statement of the free-surface water-wave problem, subscripts denote

partial differentiation and I have typeset the physical variables as

x, y, z, t

to distinguish them from the non-physical variables already introduced, as well as

those to follow.

Remark: I use the terminology n-dimensional water-waves to refer to waves in which

the variation of the surface elevation occurs in exactly n spatial dimensions. Thus η(x, t)

and η(x, y, t) are the general form of the surface elevation of 1- and 2-dimensional waves

respectively.

Further assumptions and restrictions lead from the free-surface water-wave problem to

three integrable nonlinear equations. I introduce these equations in order to demonstrate the

appearance of the Abel map and vector of Riemann constants in three different settings. The

NLS equation arises for 1-dimensional gravity waves on deep water, the KdV equations arises

for 1-dimensional gravity waves on shallow water. A generalization of the KdV equation to

two dimensions, the Kadomtsev-Petviashvili (KP) equation, is the third and final system of

gravity water-waves I will introduce. The following discussions are culled from [4] and [30]:

please see these references for more detail.

4

1.2 The nonlinear Schrödinger equation and deep water

Suppose the free surface

η = η(x, y, t)

is 2-dimensional. If the wave amplitude is small compared to the water depth, then the evo-

lution of slowly modulated, nearly 1-dimensional quasi-monochromatic waves is described

by the complex wave function

ψ = ψ(x, y, t),

which in turn is approximately governed, for a certain choice of physical parameters, by the

conditions imposed on the real and imaginary parts of the function ψ by the equation

iψt = ψxx − ψyy + 2|ψ|2ψ. (1.5)

The solution for the scaled elevation η of the free surface around the mean is then

η(x, y, t) = < (ψu) + higher order terms (1.6)

u = a0e
ik0x−i

√
k0t, (1.7)

where < denotes real part, k0 is the wave number of the assumed underlying carrier wave u

and the amplitude a0 is a constant. Note that the positive x-direction has been chosen as

the direction of propagation. The higher order terms in (1.6) may be found, for instance,

in the appendix of [29]. Assume the envelope varies in only one direction, although not

necessarily the positive x-direction. Then the envelope ψ is given by

ψ = ψ(ξ, t),

where ξ is a traveling-wave coordinate specified by the direction vector κψ through

ξ = κψ


x

y


 ,

5

and (1.5) reduces to the 1-dimensional NLS equation, which, as only the direction of κψ is

relevant, may be written as

iψt = ψξξ + 2|ψ|2ψ. (1.8)

If κ = cx for some c ∈ � , then the resulting free surface η varies in only one spatial direction,

that is, the carrier wave and the envelope evolution are co-linear. If they are not co-linear

then the resulting free surface is two-dimensional. That is, the carrier wave only varies in

the x-dimension, but the evolution of the envelope has a component in the y-direction.

The assumptions made while obtaining the NLS equation for the evolution of the slowly

modulated envelope of a carrier wave are given in a bit more detail in the itemized list

below.

1. Quasi-monochromatic: The wave field is quasi-monochromatic if the power spec-

trum in the direction of propagation is sharply peaked about a central wavenumber

say

k = kx + ky (1.9)

2. Small amplitude: The water depth is considered large compared to the wave am-

plitude if

ε = a‖k‖ � 1,

where a is the characteristic amplitude of the wave field [4].

3. Slowly modulated: The envelope is considered to modulate slowly if

δk

‖k‖ � 1,

where δk is the characteristic variation of the wavenumber k.

4. Nearly 1-dimensional: The wave field is nearly 1-dimensional if

∥∥∥∥
ky

k

∥∥∥∥� 1

6

��
��

��������������������

���������������	�	�		�	�		�	�	

�
�

�
�
����������

������
�

�

������������������

��

��

PSfrag replacements

su
rf

ac
e

d
is

p
la

ce
m

en
t

time

Figure 1.2: Experimental data generated using the NLS equation as a model for deep-water
gravity waves. An envelope soliton is generated, and the surface displacement is measured
at five distances down the tank. The fast oscillation is the carrier wave, and the overall
“lump” shape is the slowly modulating envelope. The envelope is (approximately) a sech
solution of the NLS equation. This plot from [2] was generated from data taken at the
William G. Pritchard Fluid Mechanics Laboratory at The Pennsylvania State University.

5. Balance of effects: Items 1 through 4 balance:

δk

‖k‖ = O(ε) =

∥∥∥∥
ky

k

∥∥∥∥

6. Deep water: Finally, the water is considered deep if

(kxh)
2 � ε.

While these assumptions may seem restrictive, much progress has been made using the

NLS equation as a model [29, 3]. In particular the long-term evolution of so-called enve-

lope solitons is well predicted by the NLS equation [4]. Figure 1.2 shows the experimental

evolution of an envelope soliton. Envelope solitons are known to be stable with respect to

perturbations in the direction of propagation[4, 15], although they are unstable to pertur-

bations in the transverse direction[15].

7

1.3 The Korteweg-deVries equation and one-dimensional waves on shallow wa-

ter

A different set of assumptions leads from the free-surface water-wave problem to the

Korteweg-deVries equation. If the water depth is small compared to the wave amplitude,

the wavelength is large compared to the wave amplitude, and the wavelength in the direction

of propagation is small compared to the transverse scale length, then the scaled evolution

of the free surface is approximately governed by the KdV equation

−4ηt + 6ηηx + ηxxx = 0, (1.10)

where η = η(x, t) is the elevation around the mean [4]. The assumptions and requirements

for this limit are that,

1. the surface η is only a function of (x, t).

2. The relevant length scale in the x-direction is small when compared to the nominal

depth h of the fluid. Specifically, if k is the wavenumber in the x-direction

(kh)2 � 1.

3. The wave amplitudes are small compared to the depth of the fluid:

ε =
|η|max

h
� 1

4. Lastly, the effects in Items 2 and 3 approximately balance. That is

(kh)2 = O(ε).

It is certainly true that the KdV equation continues to be useful in the study of waves,

and it is assumed that even more headway will be made with effective methods to compute

quasiperiodic solutions. However I will take this opportunity to cite a bit of history instead.

Figure 1.3 shows a page from John Scott Russel’s early work on what he called the “Great

8

PSfrag replacements

surface displacement

time

Figure 1.3: This page from Russel’s work shows some of his investigations of the generation,
evolution and interactions of solitary waves in shallow water.

Wave of Translation,” or what we now call a solitary wave, in this case a soliton. In 1834

Russel witnessed a solitary wave in a canal in Scotland. His curiosity was piqued, and he

began to experiment with waves in shallow water. I present this figure as Russel’s work led,

albeit circuitously, to the formulation of the Korteweg-deVries equation.

1.4 The Kadomtsev-Petviashvili equation and two-dimensional waves on shal-

low water

The Kadomtsev-Petviashvili (KP) equation generalizes the KdV equation to weakly

2-dimensional waves. Let the characteristic wavenumber in the transverse direction be

ky. Then wave fields η(x, y, t) that satisfy the conditions required by KdV, and further

9

Figure 1.4: (Left) Waves off the coast of Pannama. The photo is taken from National Geo-
graphic 63 (1933). (Right) A color-contour plot of a computed genus one KP solution which
also exhibits crests but no troughs. The computed solution is from Dubrovin, Flickinger &
Segur [19].

satisfy

k2
y = O(ε)

are approximately governed by

(−4ηt + 6ηηx + ηxxx)x + 3ηyy = 0. (1.11)

Equation 1.11 is also known as KP2 in the literature.

By “g-phase KP solutions” I mean to indicate θ-function solutions of the KP equation

where the surface exhibits g distinct interacting wave phases. A wave phase is a quasiperiodic

one-dimensional variation of the surface propagating in the direction orthogonal to the

variation. An example of a computed one-phase solution is shown on the right-hand side

of Figure 1.4 [19]. This figure also shows shallow-water waves off the coast of Panama that

exhibit the same qualitative behavior. The original caption of this picture reads:

As they near shallow water close to the coast of Panama, huge deep-sea

waves, relics of a recent storm, are transformed into waves that have crests, but

little or no troughs. A light breeze is blowing diagonally across the larger waves

to produce a cross-chop.

10

Figure 1.5: (Left) Waves off the coast of Oregon. Note that the left- and right-going waves
do not simply add, but interact. The photo courtesy of T. Toedtemeier. (Left) The solid
lines are traced from the left-hand photo. The interaction of the two waves is made more
clear by tracing staight lines (dotted) colinear with the front crests. Notice that the crests
behind the intersection of the waves is retarded, that is, the solid and dotted lines do not
overlap.

Two-phase KP solutions are generically hexagons. The principle of superposition dis-

allows such structures as the solution of linear equations. Figure 1.5 demonstrates how

hexagons arise as two wave trains interact obliquely near shore. Each of the wave trains are

essentially like those in Figure 1.4, but they are interacting, and not merely adding. Were

they adding the crest lines traced on the right side of the figure would line up in both front

and back. The left-hand side of figure 1.6 shows an aerial photograph of a Long Island (in

the state of New York) beach where the crests form a repeating pattern of nearly regular

hexagons propagating up the page. The right-hand side shows a computed two-phase KP

solution which propagates, unchanged, up the page [19]. Neither water wave nor hexagonal

KP solutions need be regular, as evidenced by Figure 1.7. Data from experiments similar

to those shown in Figure 1.7 were compared in [28] with computed two-phase KP solutions

(although not the one shown on the right from [19]). The comparisons showed very good

agreement. It should be noted that [28] reported equivalent or better agreement with data

when using two-phase solutions than when using a superposition of one-phase (known as

cnoidal) solutions.

The final figure of this section shows waves generated by “The Halloween Storm of

1991,” Hurricane Grace. This already well-known storm was made famous by Sebastian

11

Figure 1.6: (Left) Aerial Photograph of waves off the southern coast of Long Island, west
of Jones Inlet. Beyond the surf zone, the wave patterns are two-dimensional, and approxi-
mately periodic. They have flat troughs, sharp crests, and approximately hexagonal shape.
The photo appears in [27]. (Right) A computed genus two solution of the KP equation that
exhibits markedly similar features: also from [19].

Junger’s book The Perfect Storm, and by the movie of the same name. The picture was

taken from a small plane flying off the coast of Duck, North Carolina and shows a nearly

periodic hexagonal structure of crests. The hexagon-like structure is best seen inside the

dotted black ellipse. The structure contained therein is itself not a hexagon, but tiling with

this shape would result in hexagons. The water in this figure is white, which is to say, as

far as the Navier-Stokes equations and the free surface water wave problem are concerned,

it is not water at all. The existence of hexagonal structures so far out of the putative range

of the KP equation does not imply that such solutions are stable. It does however suggest

that these solutions are at least robust to certain types of perturbations.

1.5 Remarks on the Maple implementations

In this thesis I present algorithms to compute the Abel map and the vector of Riemann

constants. The main goal of this research program is to compute multi-phase (also called

12

Figure 1.7: (Left) Three overhead mosaics of experiments performed in a large wave tank
at the Coastal Engineering Research Center, US Army Engineer Waterways Experiment
Station, in Vicksburg, MS [27]. Notice the progression in the three different experiments
from quite regular to very irregular asymetric hexagonal structures. (Right) A genus two
KP solution exhibiting asymetric hexagonal structure [19].

quasiperiodic, finite-genus and finite gap) solutions of integrable systems. In my case the

application is to the study of water waves, but there are many other physical applications

for such solutions. It is my hope that the algorithms created by Bernard Deconinck, Mark

van Hoeij, Mike Nivala and myself will make it possible for researchers in many fields to

work with these solutions without needing much background in algebraic geometry.

Toward this end I have implemented the algorithms for the Abel map and the vector of

Riemann constants in the computer algebra system Maple. The implementation of the Abel

map is available as part of the algebraic curves package (called algcurves in Maple) included

in every edition of Maple 11. The implementation of the vector of Riemann constants will

be included as part of the algebraic curves package as of Maple 12. This package already

contains procedures to compute many of the requisite objects in the formulae, given in

Chapter 4, for the solutions of the NLS, KdV and KP equations. The implementations are

13

Figure 1.8: This picture due to Carl Miller was taken from a small plane flying off the coast
of Duck, NC after Hurricane Grace. Note the nearly periodic, hexagonal structure.

discussed and demonstrated in Chapter 7. For now, let me just make some remarks about

them.

• The implementations require that a Riemann surface Γ be entered as a polynomial in

two complex variables, say x and y. This is no restriction for the applications I have

proposed. The NLS, KdV and KP solutions I have written down require a compact,

finite-genus Riemann surface as a parameter. Any such surface can be realized by

polynomials in two complex variables using the methods described in Chapter 3.

• These algorithms and implementation do not presently handle non-compact or infinite-

genus Riemann surfaces. Note also that floating-point coefficients are not allowed in

the defining polynomial. This is due to the need to locate and define singularities

precisely. Imprecisely defined branch points, for instance, can lead to the genus of a

curve being incorrectly computed. This error is insurmountable, and very probable if

coefficients are known only approximately. This is true because the genus of a curve

14

drops as roots coalesce. As an example, the genus of

y2 − (x3 + x2 + εx)

is zero if

ε 6= 0,
1

4

and one otherwise. Thus if the coefficient ε may be zero, but is not known exactly,

correct computation, of for example the genus, is not possible. In the applications for

which these algorithms were intended, this is almost never a restriction as in these

applications the polynomials are represented exactly.

• The algorithms and implementations do handle a compact, algebraic curve with arbi-

trary singularities however. The polynomial giving rise to the plane algebraic curve,

and hence to the Riemann surface, is only required to be irreducible.

The general applicability of these algorithms bears repeating. Any irreducible plane

algebraic curve (that is, the zero set of any irreducible polynomial in two complex

variables) is allowed as input. There is no restriction to elliptic curves, hyperelliptic

curves, Hurwitz curves etc., as is common in some algorithms computing objects

associated with algebraic curves.

• The generality emphasized in the previous item is naturally the bane of the imple-

mentation. That is to say that the insistence on dealing with general singularities has

required much time, effort and, if I may be so bold, ingenuity. After throwing out

unsuccessful attempts (that is, thousands of lines of code), the implementation now

runs to nearly 3000 lines of Maple code.

Early on in this research, it was realized that the computation of specifically the Abel

map, “well away” from the singularities, is relatively straightforward. Constructing,

implementing and debugging algorithms to deal with the singularities correctly is

not so. However, as will be noted later, the computation of the solutions given by

the formulae (4.2), (4.3) and (4.4) requires that the Abel map be computed up to

singularities.

15

A final Introductory remark is in order. Other approaches for the effective calculation

with Riemann surfaces exist. For instance, the group at TU-Berlin is also interested in

solutions of integrable systems, and they use a Schottky uniformization approach [9, 8].

This approach is equally general and has some advantages over the approach taken here, in

which objects are computed, in most cases directly from their algebro-geometric definitions.

The main advantage is that their algorithms are all geometric in nature, allowing for fast

implementations using floating-point numbers. In contrast, although many of my algorithms

are geometric (and use floating-point numbers), there may also be dependence (in the case of

singular plane curves) on algebraic structure. Dealing with the algebraic structure requires

exact arithmetic and is often computationally costly. An advantage of the approach taken

here is that it allows (in the near future) for the use of the θ-function solutions as solutions

of suitable initial-value problems. This is discussed for the KP equation in [16], and more

generally in Section 4.6 of [6]. Such an approach is beneficial for the matching of the

finite-genus solutions with experimental data.

16

Chapter 2

PRELIMINARY EXAMPLES OF GENUS ZERO AND GENUS ONE

RIEMANN SURFACES

2.1 Genus zero: the Riemann sphere

The soliton solutions of these equations have especially found a well-deserved niche in

both theory and experiment. This popularity has not been shared with their periodic and

quasiperiodic counterparts. I believe that the main reason for this is the inherent connection

of these solutions with the theory of Riemann surfaces and Riemann θ-functions, and the

attendant mathematical and computational difficulty associated with these topics. I will

spend the remainder of this section attempting to justify this belief, giving along the way a

very brief introduction to these theories. Much more detail, including citations, concerning

these topics is offered in Chapter 3. Citations are kept to a minimum in this section, and

many terms will remain undefined. My intention is to give the reader an introductory look

at the mathematical machinery involved.

All applied mathematicians are familiar with the concept of Riemann surfaces: they

are standard fare to most complex analysis textbooks. However, this familiarity in most

cases is limited to the concepts of branch points and branch cuts used to accommodate the

multi-valuedness of n-th roots. The canonical example, at least of a function with a finite

number of values, is the complex multi-valued function

y = x
1
2 , x ∈ � ∪ {∞} (2.1)

which has branch points at x = 0 and x = ∞. Introducing a branch cut from 0 to ∞
by, for example, excluding the negative real axis from the domain, turns (2.1) into two

single-valued functions y± given by

y± = ±√
x.

Analytically continuing y+ around either of the branch points (and necessarily across the

17

Figure 2.1: In this plot around the branch point x = 0, elevation represents ‖ ± √
x‖.

Further, color represents argument. Thus by smoothly following color, one can tell how to
analytically continue the complex values of ±√

y around the branch point and “through the
intersection.” The “intersection” is an artifact of plotting in 3-dimensions a surface that
actually exists in 4-dimensions.

branch cut) carries it into the value of y−. Thus the two surfaces defined by (2.1) are

connected, where here I intend “connected” to be interpreted in the vernacular. It takes a

bit more work to establish that when these two surfaces are joined, the result is a Riemann

surface. In this case the surface is topologically the Riemann sphere

� 1 := � ∪ {∞}.

Equation (2.1) could also be written as

y2 = x, z ∈ � 1,

The Riemann surface arising from this function could also be thought of the zero set of the

18

PSfrag replacements

0 0

∞∞
y− y+

x

y

Figure 2.2: The two sheets of the multi-valued function y = x1/2 are shown. Branch cuts
are introduced on each sheet, creating two domains on which the functions y− and y+ may
be analytically continued unambiguously. Note that the particular form of the branch cut
is not stated, however assume that the branch cut has the same form on each sheet..

polynomial

F (x, y) = y2 − x, x, y ∈ � 1,

where many details are being ignored for the moment. Setting

F (x, y) = y2 − x = 0 (2.2)

imposes two conditions on the 4-real-dimensional space � 2 described by two complex vari-

ables. That is (2.2) imposes

<(F (x, y)) = <
(
y2 − x

)
= 0

=(F (x, y)) = =
(
y2 − x

)
= 0,

defining a 2-real-dimension (or 1-complex-dimensional) object in
� 4 (or � 2). Recall from

above that there are two sheets of this object. That is, for almost any α in the extended

complex plane
� 1, there are two y-roots of

F (α, y) = 0

19

PSfrag replacements

00

∞∞
y− y+

x

y

Figure 2.3: The two branch cuts from the previous figure are opened up.

represented by

y+ =
√
x

and

y− = −√
x.

This situation is shown in Figure 2.2. A branch cut joining 0 to ∞ is shown. Note

however I do not say how the branch cut is chosen. This is done purposefully, as for the

algorithms presented, no choice of branch cuts is ever made and branch cuts are by nature

arbitrary. The surface in Figure 2.2 has been “stretched” to easier display 0 and ∞ in

the same figure. Such stretching is just a change of coordinates, and does not change the

topology or affect the value of the integrals of holomorphic differentials.

The branch cuts indicate portions of the complex x-plane that are “off limits” for basic

travel. That is, if a path does not cross the branch cut, then analytically continuing either

y+ or y− results in a function well defined everywhere in the complex x-plane, except of

course the cuts. Thus the cuts on both sheets are opened up in Figure 2.3.

20

PSfrag replacements

00

∞∞

y− y+

x

y

Figure 2.4: The cuts from the previous figure are further opened. The two sheets are also
stretched again to resemble two halves of a sphere. This type of coordinate change leaves
the integrals of holomorphic differentials unchanged. If care is taken to correctly match
the orientation of the branch cuts on either sheet, the two halves may be joined to form a
Riemann surface. The resulting surface is topologically equivalent to the Riemann sphere.

The cuts are opened further in Figure 2.4, and from this figure it should be clear how

the two sheets are to be joined into one surface. The resulting surface is topologically the

same as the Riemann sphere. The Riemann sphere
� 1 is the trivial example of a Riemann

surface. It is a compact surface with no handles (or holes). More mathematically speaking,

the genus is zero. Two things in particular are trivial about the genus zero case.

• By Stokes’ Theorem, any closed path on the Riemann sphere is trivial for the purposes

of integrating holomorphic differentials [25].

• Holomorphic differentials are integrands globally defined on a Riemann surface that

do not have poles. A consequence of Stokes’ Theorem and Liouville’s Theorem is that

there are no holomorphic differentials on the Riemann sphere [25].

21

PSfrag replacements

22

11y− y+

−1−1

−2−2

Figure 2.5: Analogous to the case of F = y2 − x = 0, here branch cuts are introduced and
opened on two copies of the Riemann sphere. In this case the Riemann surface comes from
the polynomial F = y2 − (x+ 2)(x + 1)(x − 1)(x − 2). The branch points are ±1 and ±2.
Here branch cuts are chosen joining −2 to −1 and 2 to 1. Any other valid choice of branch
cuts would yield an equivalent Riemann surface.

2.2 Genus one: the first non-trivial example

The polynomial giving rise to the Riemann surface does not need to get much more compli-

cated in order for the above bullet-points to no longer hold. Take, for example the Riemann

surface obtained from the zero set of the polynomial

F = y2 − (x+ 1)(x− 1)(x + 2)(x− 2).

Once again, for almost any α ∈ � 1 there are two y-roots of the equation

F (α, y) = 0.

The points

α = ±1,±2

are the branch points of F .

22

PSfrag replacements

0

∞

y− y+

x

y

Figure 2.6: In this figure the two sheets are joined to form a compact surface with one
handle (or hole). That is, a compact genus one Riemann surface.

Figure 2.5 is analogous to Figure 2.4. Branch cuts have been introduced on both the y−

and y+ sheets. These cuts, here chosen as to join −2 to −1 and 2 to 1 have already been

opened.

In Figure 2.6 the two sheets are joined to form a surface with one handle (or hole). The

number of handles of a given surface is a topological invariant. That is, the number of holes

in a surface can not be changed by stretching or twisting the surface. The surface must be

ripped or punctured in order to change the genus.

In contrast to the Riemann sphere, a genus one Riemann surface supports non-trivial

cycles. Figure 2.7 demonstrates two cycles that can not be deformed into each other. Clearly

the red cycle can not be deformed into the blue cycle without leaving the surface in some

way. As will be shown later, a basis of cycles can be constructed on a Riemann surface such

that any closed path on the surface can be written as a sum of cycles from the basis. The

dimension of this basis is twice the genus of the surface. Figure 2.8 shows how the cycles in

Figure 2.7 appear as paths in the complex plane.

23

PSfrag replacements

0

∞

y− y+

x

y

Figure 2.7: As opposed to the Rieman sphere, in this case there are closed paths that can
not be contracted to points. These cycles are not trivial for the purpose of integrating
holomorphic differentials. Note that the blue cycle goes aroud a handle of the surface, and
here is shown to be completely on the y− sheet. The red cycle, going around the hole, is
partly on the y− sheet and partly on the y+ sheet. Note that the part of the red cycle on
the y+ sheet is indicated as a dotted line.

���� ���� ���� ����

PSfrag replacements

0

∞

y−

y+

x

y

Figure 2.8: The cycles from the previous figure are shown here as they appear as paths in
the complex x-plane. The plane on top is the sheet labeled y−, whereas the plane moslty
obscured is the y+ sheet. Notice that the upper part of the red cycle is indicated as a solid
line on the y+, just as it is in the previous figure. The portion of the red cycle diplayed as
a dotted is to indicate that that portion of the cycle is traversed on the bottom plane.

24

Chapter 3

INTRODUCTION TO THE THEORY OF RIEMANN SURFACES

A Riemann surface is a one-dimensional complex-analytic manifold [21]. The only topo-

logical invariant of a connected Riemann surface is its number of handles, or genus. A

compact, connected surface Γ can be obtained from an irreducible plane algebraic curve

C through a number of equivalent processes [36, 25]. In the algorithms I present here a

Riemann surface is a branched algebraic y-cover of the complex x-sphere. I give a very brief

introduction to the needed theory of Riemann surfaces from this perspective. More details

can be found in the standard references [21, 36, 25, 26].

3.1 Points and places

Consider an irreducible polynomial in x and y

F (x, y) = f0(x)y
n + f1(x)y

n−1 + . . . + fn(x), (3.1)

where x, y ∈ � and the fi(x) are polynomials in x with complex coefficients. The plane

algebraic curve C is the locus of pairs (x, y) that satisfy

F (x, y) = 0.

I treat x as an independent variable, and by using different terms I intentionally distinguish

between x-values and the (x, y)-pairs over the x-sphere.

• Point refers to a value of the independent variable

x ∈ � 1 = � ∪ {∞}.

• Place refers to a location on the Riemann surface Γ. Almost all places are specified by

a pair (x0, y0). However, for some places it is necessary to go beyond this by specifying

25

a pair of expansions for x and y, both in a local coordinate t. These expansions over

a point x ∈ � 1 solve (3.1), for the moment formally. Places are written as capital

Roman letters, usually P or Q.

A point α ∈ � is called a regular point if the equation

F (α, y) = f0(α)yn + f1(α)yn−1 + . . .+ fn(α) = 0 (3.2)

has n distinct finite roots

y(α) = {β ∈ � : F (α, β) = 0}.

A point α ∈ � is a discriminant point if it is not regular [25], which is to say, if there are

less than n distinct y-roots of (3.2). These are exactly the points where

F (x, y) = 0 = Fy(x, y)

where Fy is the partial derivative of F with respect to y. As Fy is also a polynomial in x

and y, there are only a finite number of discriminant points [25].

The y-roots of (3.1) at x = ∞ are defined as the roots of

G(X, y) = Xdeg(F,x)F (1/X, y) = 0,

where deg(F, x) is the degree of F in x [7]. The point at x = ∞ is a regular point if G has

n distinct y-roots at X = 0, and a discriminant point otherwise.

Near a regular point α ∈ � 1 the y-roots of (3.1) are given by n power series in x − α.

See Example 1 for the calculation of such a series. Near a discriminant point, representing

the y-roots may require a fractional power series, known as a Puiseux series. The need

for fractional powers is evident in Example 2. Newton’s Theorem will introduce a local

coordinate and remove the need for fractional power series.

Example 1. The algebraic curve

F (x, y) = y2 − (x3 − 1) = 0

26

gives rise to a genus one Riemann surface. To find the y-roots near x = 0, solve for

y = (−1 + x3)
1
2 ,

then expand formally in x to get two power series:

y = ±i
(

1 − x3

2
+
x6

8
. . .

)
.

To unambiguously specify the two places above x = 0, it suffices to take only the first term

in each y-expansion. That is, the places are correctly and completely specified by the pairs

(0, i) and (0,−i).

Example 2. The only discriminant points of

y2 − (x3 − 1) = 0

occur at the third roots of unity

αj = e2πij/3, j = 0, 1, 2,

where the single y-root is y = 0. To find

y = y(x)

near αj, let

x = αj + t.

For convenience I choose to work near

x = α0 = 1,

then the y-roots are given by

y = ±
(
(1 + t)3 − 1

) 1
2

= ±
(
3t+ 3t2 + t3

) 1
2

= ±
√

3t
1
2

(
1 + t+

t2

3

) 1
2

27

Expand in t, rearrange and back substitute to get a fractional power series in x− 1

y(x) = ±
√

3

(
(x− 1)

1
2 +

(x− 1)
3
2

2
+

(x− 1)
5
2

24
+ · · ·

)
. (3.3)

The presence of fractional powers in (3.3) defines α0 to be a branch point. A similar

conclusion is easily reached for α1 and α2.

3.2 Newton’s Theorem and convergence of Puiseux expansions

The following statement of Newton’s Theorem is an abridged version of that in [7], and

establishes the existence of the series found in these examples.

Newton’s Theorem. In a neighborhood of α, the n y-roots of (3.1) are determined by a

finite number of pairs of expansions of the form

Pj =





x = α+ trj

y = βjt
sj + β′jt

s′j + · · ·
, (3.4)

where α, rj , βj , β
′
j , sj and s′j are as described below.

• Finite places: A place is called finite if both the x- and y-components are finite for

t = 0. For each finite place the following properties hold.

– The branching number rj counts the number of y-roots that coalesce at the place

Pj. If rj > 1 for one of the Pj, then α is a branch point.

– For |t| > 0, a place Pj represents rj distinct y-values. Further,

∑

j

rj = n .

– The coefficients

βj , β
′
j , . . . ∈ �

are all non-zero.

– The exponents

rj , sj, s
′
j , . . . ∈ �

are positive (possibly zero) and share no common factor.

28

• Infinite places: Infinite places are those for which one or both components are infinite

for t = 0. This occurs only when α = ∞ or

f0(α) = 0,

where f0 is the leading polynomial coefficient of (3.1). Infinite places have the same

properties as finite places except:

– the y-components may have a finite number of negative exponents

s, s′,

and

– for places over x = ∞, the x-components have

x = 1/tr

replacing

x = α+ tr.

Two places as above are equivalent if the substitution

t→ ξ t,

with ξ being an rj-th root of unity, identifies them. Away from t = 0, two equivalent places

determine the same set of y-roots of

F (x, y) = 0.

Away from t = 0, non-equivalent places determine disjoint sets of y-roots.

In general, the x-component of a place can be written as

x = α+ α′tr (or x = α′/tr),

but α′ = 1 is chosen for convenience. Any choice α′ is valid, but the

β, β′, . . .

29

Figure 3.1: A cartoon of a genus three Riemann surface.

reflect this choice.

The y-component in Newton’s Theorem converges at least over the punctured disc R,

where

R = {x : |x− α| < |α− λ|, x 6= α}. (3.5)

and λ 6= α is the discriminant point closest to α. This restriction on the radius of R arises

as λ is the nearest point (distinct from α) where the derivative

dy/dt = −Fx/Fy

is not defined. Convergence of places over regular points is established in [7]. In this case

the roots of

F (x, y) = 0

are represented as n convergent series in

t = x− α

on the disc

R∪ {α}

that is, the unpunctured disc.

If α is a discriminant point, then convergence of the y-component is questionable at

x = α. For now consider α to be a non-branch discriminant point. The convergence of the

30

y-series over branch points is discussed in Section 3.3. Suppose P is given by

P =





x = α+ t (or 1/t over ∞)

y = βts + β′ts
′

+ · · ·
, (3.6)

with α (or ∞) a non-branch discriminant point. The expansion

y = β(x− α)s + β′(x− α)s
′

+ · · · (3.7)

is unique and convergent at least on R. Convergence of (3.6) over x = α, that is for t = 0,

depends on whether the x- and y-components of P are finite there.

• Finite places (x, y ∈ �): For finite places, no one of the

s, s′, . . .

are negative, and (3.7) is the unique power series expansion valid on

R∪ {α}.

• Infinite places (i) (x ∈ � , y = ∞): Such places occur over points x = α for which

the leading polynomial coefficient

f0(α) = 0,

where f0 is as in (3.1). In this case, a finite number of the

s, s′, . . .

will be negative and (3.7) is the unique Laurent series expansion in x−α, convergent

on R.

• Infinite places (ii) (x, y = ∞): If x = ∞ is not a branch point, then each place over

∞ is of the form

P =





x = 1/t

y = βts + β′ts
′

+ · · ·
,

31

PSfrag replacements

P1

P3

P2 P4

x

y

Figure 3.2: A plot of the real part of F = −y5 + (2x− 1)y4 − (3x− x2)y3 − (x− 3x2)y2 +
(x3 − 2x2)y + x6. The figure on the right is an enlarged view of the part of the graph on
the left enclosed by the box.

where a finite number of

s, s′, . . .

are negative. That is, y(t) is a unique Laurent series expansion in t, where

t =
1

x

is an analytic function for finite x. Thus y(t) is convergent on

R∞ = {x : |x| > λmax, x 6= ∞}

where λmax is the finite discriminant point with largest absolute value.

Given an irreducible polynomial F (x, y), the union of all places over all x ∈ � 1 is a

finite genus compact, connected Riemann surface [25]. Figure 3.3 shows an idealization of

a genus three Riemann surface. The actual surface defined by an algebraic curve C is a

two-real-dimensional manifold embedded in a four-dimensional space. The example that

follows demonstrates the use of Puiseux expansions to determine the local structure of a

plane algebraic curve.

32

Example 3. Over the point x = 0, the five y-roots of the polynomial

F = −y5 + (2x− 1)y4 + (3x− x2)y3 + (x− 3x2)y2 + (x3 − 2x2)y + x6

are represented by the four places

P1 =





x = t

y = −1 − t3 + · · ·
, P2 =





x = t

y = 2t+ t2 + · · ·
,

P3 =





x = t

y =
t4

2
+
t5

4
+ · · ·

, P4 =





x = t2

y = t− t3

2
+ · · ·

.

Note that, in contrast to Example 1, here the first terms in the y-expansions do not suffice to

unambiguously specify the places, but only distinguishes P1 from the remaining three places.

A graph of the real part of

F (x, y) = 0

near

(x, y) = (0, 0)

is seen in Fig. 3.2. I determine which part of the graph corresponds to which place in the

example by calculating dy/dx for each Pj. Place P1 is easily identified in the figure as it is

the only place where y 6= 0 for x = 0.

For P2 and P3, make the simple substitution t = x in the series for y. At place P2, y

and its derivative are

y = 2x+ x2 + · · ·
dy

dx
= 2 + 2x+ · · · .

The correct match for place P2 is clear as

dy

dx

∣∣∣∣
x=0

= 2

and there is only one component of the graph which has positive finite slope near x = 0.

33

For place P3

y =
x4

2
+
x5

4
+ · · ·

dy

dx
= 2x3 +

5x4

4
+ · · · .

As

dy

dx

∣∣∣∣
x=0

= 0,

this is also easy to match.

At place P4, parametrically differentiate

dy

dx
=
∂y/∂t

∂x/∂t
=

1 − 3t2

2
+ · · ·

2t

=
1

2t
− 3

4
t+ · · · .

Thus place P4 matches the component of the graph for which dy/dx is undefined at t = 0.

Note x = 0 is a branch point since x is not linear in t for P4 .

3.3 Branches

Over a regular point α there are n distinct places and the terms “place” and “branch” are

equivalent. Over a branch point α, there are less than n places, and thus there are some

number of places over α for which the branching number r > 1. Let

P =





x = α+ tr

y = βts + β′ts
′

+ · · ·
, (3.8)

where |r| > 1, be such a place. From the place P , form the r branches

P̃j =





x = α+
(
te2πij/r

)r
= α+ tr

yj = β
(
te2πij/r

)s
+ β′

(
te2πij/r

)s′
+ · · ·

arg(t) ∈ [0, 2π/r) , (3.9)

where “branch” signifies that the argument of t is restricted as indicated. As

r, s, s′, . . .

34

are coprime, the yj in (3.9) are all distinct. Further the y-series in (3.8) is related to the

j-th series in (3.9) by

yj(t e
−2πij/r) = y(t).

The index j may be chosen such that

exp(−2πi(j)/r) t

has argument restricted to [0, 2π/r). Thus the r distinct roots represented by place P are

also represented by the r branches

P̃1, . . . , P̃r,

with arg(t) restricted.

Suppose that λ 6= α is the nearest discriminant point to α, and let R be given as in 3.5.

The points x ∈ R are all represented exactly once by

x = α+ tr

if the argument of t is restricted as in (3.9). Restricting t this way makes t(x) the single

valued function

t(x) =
r
√
x− α,

where here and subsequently I denote by

r
√
ξ

the r-th root of ξ with argument on

[0, 2π/r).

Thus defined, t(x) is analytic on R. Each of the y-series is analytic in t, as noted in

Section 3.1, and so the n roots of (3.2) are represented as n series which are convergent up

to the nearest distinct discriminant point.

35

3.4 The homology of a Riemann surface

A path γ on Γ is a parameterized curve

γ : [0, 1] 7→ Γ

z 7→ (x(z), y(z)), F (x(z), y(z)) = 0,

where

F (x, y) = 0

is the equation that gives rise to the surface Γ. The parameter z is chosen on [0, 1] only for

convenience. A path is called closed if

γ(0) = γ(1).

A closed path that bounds a part of Γ can be contracted to a place, i.e. it is homologous

to zero, and is therefore trivial for the purpose of integrating analytic functions.

A cycle on Γ is a closed path that is not homologous to zero. Cycles may be added.

Traversing the sum, cj + ck, of the cycles cj and ck specifically means traversing the cycle cj

followed by the cycle cj . The negation, −cj , is the cycle cj traversed in the opposite sense.

Let cj ◦ ck denote the number of oriented intersections of the cycles cj and ck. If the

cycles cj and ck do not intersect, then

cj ◦ ck = 0.

If cj and ck intersect once, then

cj ◦ ck = ±1,

where the sign of the intersection index is the orientation of the basis

(tj , tk).

Here tj , tk are the unit tangent vectors of the cycles cj and ck respectively at the point of

intersection. For cycles with multiple intersections, cj ◦ ck is the sum over all intersections,

each computed as a single intersection.

36

PSfrag replacements

b1 b2 b3

a1 a2 a3

Figure 3.3: The paths indicated in this figure are the a- and b-cycles that form a basis of
cycles on Γ. The a-cycles go around the holes, and the b-cycles encircle the handles. The
a- and b-cycles shown indeed have the intersection indices required.

On a Riemann surface of genus g there exists a basis for its first homology group given

by

H = {a1, . . . , ag, b1, . . . , bg} , (3.10)

• such that no cycle in H is continuously deformable into any other,

• all possible cycles on Γ are sums of cycles in H, and

• the intersections indices of the cycles are such that

aj ◦ ak = 0, bj ◦ bk = 0, aj ◦ bk = δjk, (3.11)

where δjk denotes the Kronecker delta [17].

As in Figure 3.3, the a cycles may be thought of as encircling the holes, and the b cycles as

going around the handles, of Γ.

Note: an algorithm to explicitly compute a representation of the homology of a Riemann

surface associated with a plane algebraic curve was developed in [17]. The algorithms

presented in this work make use of that previously developed algorithm.

3.5 The Riemann surface cut for the purpose of integration

Some of the results that follow rely on residue calculus on the cut surface Γ̃. For instance,

the vector of Riemann constants arises by calculating a logarithmic integral, once as a sum

of residues, and once as a line integral “around” Γ. The integrands of concern in these

37

PSfrag replacements

a1 a2

b3

b1 b2

a3

P

Figure 3.4: The paths indicated in this figure are the a- and b-cycles that form a basis
of cycles on Γ. The a- and b-cycles are drawn in red and blue respectively. The place P
indicated by the purple dot is on all the cycles.

cases are Abelian, and therefore invariant under any change of local coordinate. Thus

the Riemann surface may be “stretched” by smooth changes of local coordinate without

changing the value of the resulting integrals. A surface Γ̃ with a boundary ∂Γ̃ is obtained

by constructing and cutting along a certain closed path on Γ. Figures 3.4 through 3.11

illustrate the construction of a cut surface Γ̃ from a Riemann surface Γ. The list below

outlines this process, and extends the information given in the captions of the figures.

• Figure 3.4, Page 37: Suppose place P is on all of the cycles in H. In the figure,

the purple dot indicates such a place. The goal is to construct a path that bounds

the surface Γ constructed completely from the a- and b-cycles indicated. That such a

path exists is not immediately apparent. The bounding path ∂ Γ̃ will be shown to be

∂Γ̃ = a1 − b1 − a1 + b1 − b2 + a2 + b2 − a2. (3.12)

In what follows this path is deformed to make obvious the fact that it bounds the

surface. Note that the blue and red arrows in the figure indicate the orientation of

the cycles dictated by the intersection indices in (3.11).

• Figure 3.5, Page 38: In the interest of easier visualization, slide the cycles back into

positions more like those in Figure 3.3. The paths in the figure indicated in purple

may be thought of as part of either the a- or b-cycles. For example, consider the path

a1 to be

38

PSfrag replacements

b1

b2

b3

a1

a2

a3

P

Figure 3.5: For ease of visualization, the cycles are deformed as shown.

1. starting at place P indicated by the purple dot,

2. traversing left along the purple path to the intersection of cycles a1 and b1

3. encircling the left hole of Γ along the red path in the sense indicated by the

arrow, and finally

4. traversing the purple path from left to right back to place P .

The paths indicated in purple are of no consequence for the purposes of integration

as they are each traversed once forwards and once backwards and
∫ Q

P
= −

∫ P

Q
.

• Figure 3.6, Page 39: As the paths indicated in purple in the previous figure do not

contribute to the integral, leave them out for the moment. Two small purple dots are

indicated at the intersections of the a- and b-cycles as a reminder of these paths.

The surface is cut along the two b-cycles. Note that half-arrows are left on each side

of the cut cycles indicating orientation. The cross-hatching in the figure denotes the

inside of the surface.

• Figure 3.7, Page 40: No magic here, the surface has simply been bent around to

make the next few steps easier to see.

Here and in the previous figure there are purple dots on only one end of each of the

a-cycles, denoted Pl and Pr for left and right respectively. In order to represent the

39

���

 � � � � � � � � � � � � � � � � � �

!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!!�!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�"

PSfrag replacements

b1

b2

b3

a1

a2

a3

P

Figure 3.6: The surface is cut open along the b-cycles. The purple paths from the previous
figure are omitted for the moment.

path exactly as in the previous figure, it would be necessary to also have purple dots

indicating paths to opposite ends of the a-cycles. These paths are left out as they

do not contribute to the integral and they are unnecessary to the construction of the

closed path bounding the surface. To see this, note that the sum of the following

sub-paths is closed.

1. the path from P to Pl

2. cycle a1 traversed from Pl to the intersection with b̃1 in the same direction as the

cycle is oriented

3. the cycle b̃1

4. cycle a1 traversed back to Pl

5. the path from Pl to Pr

6. cycle a2 traversed from Pr to the intersection with b̃2 in the opposite direction

as the cycle is oriented

7. the cycle b̃2

8. cycle a2 traversed back to Pr

9. the path from Pr to P

• Figure 3.8, Page 40: Once again there is little change. The a-cycles are deformed

from the tops to the insides of the holes in order to make the next step easier to see.

40

#
#
#
#
#
#
#
#

$ $ $
$ $ $
$ $ $
$ $ $
$ $ $
$ $ $
$ $ $
$ $ $

% % % %
% % % %
% % % %
% % % %
% % % %
% % % %
% % % %
% % % %
% % % %

& & & &
& & & &
& & & &
& & & &
& & & &
& & & &
& & & &
& & & &
& & & &

' '()*

PSfrag replacements

a1 a2

b1

b̃1

b2

b̃2

P

Pl Pr

Figure 3.7: The shape of the surface is changed.

+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +

, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,
, , ,

- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -

. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .

PSfrag replacements

P

Figure 3.8: The a-cycles are slid from the tops to the insides of the holes.

Two purple dots are shown off the surface to indicate the unseen places Pl and Pr.

• Figure 3.9, Page 41: The surface is now cut along the two a-cycles. Again half-

arrows are left on the surface to indicate orientation of these cycles. Note that the

a-cycles on the upper side of the cuts are in a darker red. This is done for ease of

visualization.

• Figure 3.10, Page 42: The surface is stretched and bent into the surface of an open-

ended rectangular prism. The purple path from Pl to Pr is explicitly represented once

41

/ / / /
/ / / /
/ / / /
/ / / /
/ / / /

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 01 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2
2 2 2 2
2 2 2 2

3 3 3
3 3 3
3 3 3
3 3 3
3 3 3

4 4 4
4 4 4
4 4 4
4 4 4
4 4 45 5 5
5 5 5
5 5 5
5 5 5

6 6 6
6 6 6
6 6 6
6 6 6

7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7

8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8
8 8 8 8

9 9 9 9
9 9 9 9
9 9 9 9
9 9 9 9

: : :
: : :
: : :
: : :

;
;
;
<
<
<

= =>
PSfrag replacements

P

Figure 3.9: The surface is cut open along the a-cycles.

again.

• Figure 3.11, Page 43: The surface is cut along the path from Pl to Pr and unfolded.

The result is a bounded surface. Finally the (now two) paths from Pl to Pr are

shrunk to points, without affecting the integrals of Abelian differentials, resulting in

an octagon. This is the bounded surface Γ̃, the boundary of which is denoted ∂Γ̃. In

the right-hand figure the segments of ∂Γ̃ are labeled based on which cycle is traversed

and in what sense. That is, suppose ∂Γ̃ is traversed clockwise starting at

Pl = P = Pr

indicated by the purple dot on the lower right corner of the octagon. Then the first

segment is cycle a1 traversed in the direction it is oriented. The second segment is

cycle b1, but traversed against the direction in which it is oriented. Each segment

traversed against its orientation is denoted as negative.

42

? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?
? ? ? ?

@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @
@ @ @

A A
A A
B B
B B C C C C

C C C C
C C C C
C C C C
C C C C

D D D
D D D
D D D
D D D
D D D

E E E E
E E E E
E E E E
E E E E
E E E E

F F F
F F F
F F F
F F F
F F F

G
G
G
G
G
G
G
G
G
G
G
G
G
G
GH H H H H H H H H H H H H H H H H HI I I I I I I I I I I I I I I I I I

PSfrag replacements

P

Pl Pr

Figure 3.10: The surface is stretched and bent into the surface of an open-ended rectangular
prism, and the purple path from Pl to Pr is explicitly represented once again.

3.6 Meromorphic functions and differentials

A function, u, meromorphic on Γ is one that may be locally represented everywhere on Γ

as

u =

∞∑

j=J

cjt
j, cj ∈ �

where t is a local coordinate assured to exist by Newton’s Theorem. The field of functions

meromorphic on Γ is denoted by Ω0
Γ, where the superscript zero is meant to denote the field

of 0-forms.

A differential, ν, meromorphic on Γ is one that may be locally represented everywhere

on Γ as

ν =
∞∑

j=J

cjt
j dt, cj ∈ �

The field of differentials meromorphic on Γ is denoted by Ω1
Γ, where the superscript one is

meant to denote the field of 1-forms. The usual definitions of addition and multiplication

apply to the fields Ω0
Γ and Ω1

Γ.

43PSfrag replacements

a1

a2

−a1

−a2

b1

b2

−b1

−b2

PQ

Figure 3.11: The process of constructing the cut surface Γ̃ is concluded. On the left the
rectangular prism is cut and unfolded. On the right the paths indicated in purple are shrunk
to the points P and Q. The labeling of the cycles is discussed in the text.

All meromorphic differentials may be represented, although not uniquely, as sums of

three kinds of Abelian differentials. Abelian differentials are distinguished by their pole

structure.

• Abelian differentials of the first kind are holomorphic differentials, that is, differentials

with no poles.

• Abelian differentials of the second kind have a single pole of order greater than one.

• Abelian differentials of the third kind have two simple poles with residues +1 and −1.

3.7 The cohomology of a Riemann surface

A holomorphic differential is an Abelian differential of the first kind. That is, a holomorphic

differential is an integrand, or 1-form, ω that has no poles on Γ, transforms via the chain

44

I

PSfrag replacements

1 <=

Figure 3.12: The fundamental parallelogram of the approximate lattice associated with
the Riemann surface arising from the polynomial y3 − yx2 + 1. The two solid vectors are
approximately (1) and (0.500 + .289). Any one-component vector, that is any complex
number, is a unique linear combination of these two.

rule and is given by

ω̃ =
w(x, y)

Fy
dx (3.13)

w(x, y) =
∑

k+m≤d−3

ckmx
kym, (3.14)

where d is the degree in x and y of the polynomial giving rise to Γ. Imposing the regularity

of ω̃ at the discriminant points of F constrains w(x, y) such that on a genus g Riemann

surface it is possible to construct a g-dimensional basis linearly independent holomorphic

differentials

(ω̃1, . . . , ω̃g) (3.15)

in the form (3.13) [17, 25]. The algorithm presented in [17], and implemented in Maple as

algcurves[differentials] is heretofore referred to as the Deconinck-van Hoeij differen-

tials (DvHD) algorithm. The algorithm presented here uses the Maple implementation of

the DvHD algorithm unchanged.

45

Example 4. Let Γ be the Riemann surface arising from the polynomial equation

F (x, y) = y2 − 4(x+ 1 + i)(x+ 1 − i)(x − 2)

= y2 − 4x3 + 8x+ 16

= 0.

As

Fy = 2y,

and the degree of F in x and y is 3, the only candidate for a holomorphic differential is

ω̃ =
1

2y
dx.

At first glance, this differential does not appear holomorphic for y = 0. To see that it is,

examine the behavior at the branch points

x = −1 − i,−1 + i, 2;

the only points for which y = 0. The place over −1 − i is given by

P (−1−i) =





x = (−1 − i) + (−8 + 24i)t2

y = (−8 + 24i)t+ (192 − 96i)t3 + · · ·
.

With this representation, the differential dx is given by

dx = 2(−8 + 24i)tdt,

and

ω̃
∣∣∣
P (−1−i)

=
1

2

2(−8 + 24i)t

(−8 + 24i)t + (192 − 96i)t3 + · · · dt

=
1

1 + (6 + 6i)t2 + · · · dt

=
(
1 − (6 + 6i)t2 + O(t4)

)
dt.

Thus ω̃ is regular at

x = −1 − i.

46

Similar calculations at x = −1 + i and x = 2 show that ω̃ is regular at places over these

points also. To be thorough, also check the behavior at x = ∞. Over x = ∞, the surface Γ

is represented by

P∞ =





x =
1

4t2

y =
1

4t3
− 4t+ · · ·

.

Here the differential dx is given by

dx = − 1

2t3
dt,

and ω̃ has the behavior

ω̃
∣∣∣
P∞

= −
1

2t3

1

4t3
− 4t+ · · ·

dt

= − 2

1 − 16t4 + · · · dt

=
(
−2 − 32t4 + O(t8)

)
dt.

Thus the differential ω̃ is also regular over x = ∞. There are no affine x-points for which

y = ∞, so there are no other places to check. Thus

(
dx

2y

)

forms a basis for the non-normalized cohomology.

By taking linear combinations of differentials from (3.15), one may choose a

g-dimensional basis of normalized holomorphic differentials given by

{ω1, . . . , ωg} (3.16)
∮

ak

ωj = δjk, (3.17)

where the aj are from (3.11). It is common to refer to (3.16) as a basis for the cohomology

of Γ.

47

3.8 Riemann matrices and the associated Jacobian

Integration of normalized differentials in (3.16) around the b cycles defines the Riemann

matrix

B = (Bj,k)
g
j,k=1 (3.18)

Bj,k =

∮

bk

ωj. (3.19)

The Riemann bilinear relations assure that the Riemann matrix is invertible, symmetric,

and has positive definite imaginary part [17, 18].

The (g × 2g) matrix (1 B), where 1 is the (g × g) identity matrix, contains all the in-

formation about integrating holomorphic differentials around closed paths and is called the

normalized period matrix of Γ. The columns of the period matrix are linearly indepen-

dent [18] and describe a lattice Λ inside the vector space � g given by

Λ = {V : V = 1M + BN ; M ,N ∈ � g} . (3.20)

Before continuing, define the following operations on a vector

V ∈ � g, V = (V1, . . . , Vg)

that are used to make explicit the definition of the Jacobian of a Riemann surface.

• Floor: The component-wise floor of V , denoted by bV c is given by

bV c = (bV1c, . . . , bVgc),

where the floor bVjc of Vj ∈
�

is the greatest integer less than or equal to Vj.

• Fractional part: The component-wise fractional part of V ∈ � g, denoted by JV K is

given by

JV K = (JV1K, . . . , JVgK),

where

JVjK = Vj − bVjc.

48

Note that each component

JVjK ∈ [0, 1)

by construction.

Any finite dimensional vector V with real components has the unique decomposition

V = bV c + JV K.

As the matrix B is non-singular, any vector V ∈ � g has a unique decomposition

(V ′,V ′′)t, where superscript t denotes transposition, into the the columns of (1 B). That

is, there exists a (V ′,V ′′)t specified by the equation


<(V)

=(V)


 =


1 <(B)

0 =(B)




V ′

V ′′




where 0 is the (g × g) matrix of zeros. The 2g component vector (V ′,V ′′)t can clearly be

written as

V ′

V ′′


 =


bV ′c
bV ′′c


+


JV ′K

JV ′′K


 .

Thus, given a Riemann matrix B, any vector V ∈ � g is given by


<(V)

=(V)


 =


1 <(B)

0 =(B)






bV ′c
bV ′′c


+


JV ′K

JV ′′K




 .

Denote by bV cΛ the vector given by


<(bV cΛ)

=(bV cΛ)


 =


1 <(B)

0 =(B)




bV ′c
bV ′′c


 ,

that is,

bV cΛ = bV ′c + <(B)bV ′′c + i=(B)bV ′′c

= bV ′c + BbV ′′c.

49

Then bV cΛ is a vector in the lattice Λ. Further, denote by JV KΛ the vector given by


<(JV KΛ)

=(JV KΛ)


 =


1 <(B)

0 =(B)




JV ′K

JV ′′K


 ,

that is,

JV KΛ = JV ′K + <(B)JV ′′K + i=(B)JV ′′K

= JV ′K + BJV ′′K.

Summarizing, any V ∈ � g may be written as

V = bV cΛ + JV KΛ, (3.21)

with bV cΛ and JV KΛ as defined above. The vector bV cΛ ∈ Λ and is the representative of

V in the fundamental parallelogram of Λ. The fundamental parallelogram is the quotient

space

J(Γ) = � g/Λ

known as Jacobian of Γ. The Jacobian is topologically a 2g-dimensional torus [18, 25]. The

notation

V ≡ V ′

is consistently used to indicate that

V − V ′ ∈ Λ,

that is if the vectors V and V ′ have the same representative in the fundamental parallelo-

gram.

Note that choosing a different basis of cycles H′ results in a different Riemann matrix B
′,

however B and B
′ are related by a symplectic transformation, and the Jacobians induced

by both are identical [18, 25].

50

Example 5. Suppose the genus one Riemann surface Γ arises from the polynomial

F = y3 − yx2 + 1.

Any holomorphic differential on Γ can be represented as

ω̃ =
c

−3y2 + x2
dx, c ∈ � .

The Maple package algcurves can be used to compute a homology basis {a, b} for Γ. Com-

puting numerically, again with Maple,

∫

a

1

−3y2 + x2
dx ≈ −2.103 − 3.643i.

Thus a normalized differential is approximately given by

ω ≈ −0.119 + 0.206i

−3y2 + x2
dx,

and the one-component Riemann matrix is given by

B1,1 =

∫

b

−0.119 + 0.206i

−3y2 + x2
dx ≈ 0.500 + 0.289i.

Figure 3.12 shows the fundamental parallelogram of the approximate lattice that arises from

this example. Identifying the two sets of parallel sides gives rise to a torus.

Note that an algorithm to explicitly compute the normalized period matrix of a Riemann

surface associated with a plane algebraic curve was developed in [17]. The algorithms

presented in this work make use of that previously developed algorithm.

3.9 Definition and properties of divisors

A divisor on a Riemann surface Γ is a set of places with multiplicities. A divisor D is

written as

D =
∑

j

pjPj ,

where pjPj denotes that the place Pj has multiplicity pj . Divisors may be negated,

−D =
∑

j

(−pj)Pj ,

51

and added

D′ =
∑

j

p′jP
′
j ,

(D + D′) =
∑

j

pjPj +
∑

j

p′jP
′
j .

The degree of a divisor is the sum of the multiplicities, denoted

degD =
∑

j

pj.

A divisor is called effective if all the multiplicities are positive. That a divisor D is effective

is denoted by D ≥ 0.

A meromorphic function u on Γ that has zeros at the places

P1, . . . , Pm

with multiplicities

p1, . . . , pm

and poles at the places

Q1, . . . , Qn

with multiplicities

q1, . . . , qn

defines a valuation divisor

(u)val =
∑

j

pjPj −
∑

j

qjQj.

Similarly, the divisor

(ν)val

of a differential ν that has zeros at the places

P1, . . . , Pm

52

with multiplicities

p1, . . . , pm

and poles at the places

Q1, . . . , Qn

with multiplicities

q1, . . . , qn

is given by

(ν)val =
m∑

j=1

pjPj −
n∑

j=1

qjQj .

Two divisors D and D′ are linearly equivalent, denoted

D ∼ D′,

if

D −D′

is the divisor of a meromorphic function [18, 25]. Section 3.23 will show the reason for this

particular equivalence. If ν and ν ′ are Abelian differentials, then

(ν)val − (ν ′)val =
∑

j

pjPj −
∑

j

qjQj −



∑

j

p′jP
′
j −

∑

j

q′jQ
′
j




=
(ν
ν ′

)
val
,

and ν/ν ′ is a meromorphic function on Γ as the differential dt cancels locally. Thus the

divisors of any two meromorphic differentials differ by the divisor of a meromorphic function,

and are therefore linearly equivalent. The equivalence class of divisors of meromorphic

differentials is known as the canonical class [21].

The final definition of this section will be used when discussing the vector of Riemann

constants. The set of all effective divisors with d places is known as the d-th symmetric

power of Γ, is denoted by SΓd and is itself a complex manifold [25].

53

Example 6. Computing two divisors in the canonical class: Let Γ be the Riemann

surface arising from the polynomial equation

F = y2 − (x2 − 1)(x2 − 4)(x2 − 9) = 0.

A basis for the holomorphic differentials on Γ is

(ω1, ω2) =

(
dx

y
,
xdx

y

)
.

As these differentials are holomorphic, they have no poles. Thus any divisor

(c1ω1 + c2ω2)val =

(
c1 + c2x

y
dx

)

val

,

where

c1, c2 ∈ � ,

is effective. Over regular points

dx = dt,

and thus the only way for a regular place to yield zero is if

x = 0, c2 = 0,

or

x = −c1
c2
, c2 6= 0.

Over x = 0, the surface is given by

P 0
± =





x = x

y = ±6i+ · · ·
.

Substituting into the differential gives

±c1 + c2x

6i
dx±O(x2) dx,

showing that if c1 = 0, then both places over x = 0 appear in the valuation divisor.

54

Over regular points

x = α := −c1
c2
,

y is given by

y = ±
√(

α2 − 1
) (
α2 − 4

) (
α2 − 9

)
+ · · · .

Over the branch points

x = α := −c1
c2

= ±1,±2,±3,

the surface is given by

Pα =





x = α+ t2

y = t+ · · ·
,

and the differential dx is given by

dx = 2tdt.

For these places

c1ω1 + c2ω2 =
c1 + c2(α+ t2)

t+ · · · 2tdt

=
2c2t

2

1 + · · · dt,

showing that if

α := −c1/c2 = ±1,±2,±3,

then Pα appears in the valuation divisor with multiplicity two.

Lastly, the behavior of the differentials at ∞ must be examined. There are two places

over ∞, given by the Puiseux representations

P∞
± =





x =
1

t

y = ± 1

t3
+ · · ·

.

55

The differential dt is, at both places,

dx = − 1

t2
dt.

Substituting into c1ω1 + c2ω2 gives

c1ω1 + c2ω2 = ∓1

2
(c1t+ c2) dt ±O(t2) dt,

so if c2 6= 0 then neither place over ∞ is a zero. However, if c2 = 0 and c1 6= 0 then both

places over ∞ appear in the valuation divisor, each with multiplicity one.

Summarizing, the valuation divisor

(c1ω1 + c2ω2)val

depends on the constants c1 and c2.

• If

α := −c1
c2

6= ±1,±2,±3,

then

(c1ω1 + c2ω2)val = Pα+ + Pα−.

• If

α := −c1
c2

= ±1,±2,±3,

then

(c1ω1 + c2ω2)val = 2Pα.

Note that these divisors are of degree 2g−2 = 2. More will be said about this in Section 3.10.

56

3.10 The Riemann-Roch Theorem

The Riemann-Roch Theorem is one of the main results in the theory of algebraic curves.

This theorem, in essence about the nature of the space of functions with prescribed poles

on a Riemann surface, is used in Section 3.15 to prove an essential property of the vector

of Riemann constants. Some preliminary definitions are needed. In these definitions the

divisor D is given by

D =
∑

j

pjPj −
∑

j

p′jP
′
j

where the integers

pj, p
′
j ∈ �

are all positive and non-zero, and the places Pj , P
′
j are all on the Riemann surface Γ.

• Riemann-Roch space L0(D): The space L0(D) is given by

L0(D) = {u ∈ Ω0
Γ : (u)val + D ≥ 0}.

Thus functions in L0(D)

– may have poles only at places Pj with at most multiplicity pj , and

– must have zeroes at places P ′
j with at least multiplicity p′j.

more colloquially, L0(D) can be thought of as the space of functions that make func-

tions with valuation divisor D well-behaved. That is, suppose that D is the valuation

divisor of the meromorphic function v, then for all functions

u ∈ L0(D),

the function vu has no poles. The dimension of the linear space L0(D) is denoted

l0(D).

More colloquially still, if

D = p1P1 + p2P2 + · · ·

57

is an effective divisor, then the space L0(D) consists of all functions u satisfying the

following.

– At any place

P /∈ P1, P2, . . . ,

u is given by

u = tk h(t), h(t) 6= 0,

where h(t) is holomorphic, but k may be greater than one.

– At any place

Pj ∈ P1, P2, . . . ,

u is given by

u = tk h(t), h(t) 6= 0,

where h(t) is holomorphic, and k ≥ pj .

• Differential space L1(D): The space L1(D) is given by

L1(D) = {ω ∈ Ω1
Γ : (ω)val −D ≥ 0}.

Thus differentials in L1(D)

– must have zeroes at places Pj with at least multiplicity pj, and

– may have poles only at places P ′
j with at most multiplicity p′j .

Thus, L1(D) can be thought of as the space of differentials that make differentials with

valuation divisor −D well-behaved. That is, suppose that −D is the valuation divisor

of the meromorphic differential ν, then for all differentials ω ∈ L1(D), the differential

ων has no poles. The dimension of the linear space L1(D) is denoted l1(D).

58

As with the notation for meromorphic functions and differentials, the superscripts on L0

and L1 are meant to denote linear function spaces of 0-forms (functions) and 1-forms (dif-

ferentials) respectively. The integers l0(D) and l1(D) depend only on the equivalence class

of the divisor D. For proof of this, see Appendix A.3.

Proof of the Riemann-Roch Theorem requires much machinery, and may be found in

any standard text on Riemann surfaces or algebraic curves. See, for instance [36, 25, 21].

Riemann-Roch Theorem. Suppose Γ is a genus g Riemann surface, and

D =
∑

j

pjPj

is a divisor with all the places Pj ∈ Γ, and all the multiplicities pj ∈ � . Then

l0(D) = degD − g + l1(D) + 1.

As an example, I use the Riemann-Roch Theorem to calculate the degree of (ν)val for

a general meromorphic differential ν. This example follows the proof of Theorem 10-11

in [36].

Example 7. In this example the Riemann-Roch Theorem is used to show that the degree of

the divisor of a meromorphic function is 2g − 2. Let Γ be a genus g > 0 Riemann surface,

ω1, . . . , ωg

be a basis for the cohomology on Γ, and

D1 = (ω1)val.

Riemann-Roch gives

l0(D1) = degD1 − g + l1(D1) + 1.

Suppose ν is any other Abelian differential in L1(D1):

(ν)val −D1 ≥ 0,

59

Then, by definition, the function ω1ν has no singularities and so by Liouville’s Theorem

must be a constant. Thus

ω1 = cν

for some c ∈ � . Therefore, up to the choice of the constant c, ω1 is the only Abelian

differential with the correct zero structure, that is,

l1(D1) = 1.

To calculate l0(D1), first note that the g functions

ω1

ω1
, . . . ,

ωg
ω1

are linearly independent meromorphic functions. As ωj is holomorphic it has no negative

multiplicities, thus

(ωj)val ≥ 0.

Therefore

(
ωj
ω1

)

val

= (ωj)val − (ω1)val ≥ −(ω1)val j = 1, . . . , g,

= −(D1)val.

that is, each function ωj/ω1 is in the linear space L0(D1), and thus

l0(D1) ≥ g.

To see that these are the only functions in L0(D1), and thus that

l0(D1) = g,

first assume the contrary. Let ũ be a meromorphic function such that

ũ ∈ L0(D1),

ũ /∈ span

{
ω1

ω1
, . . . ,

ωg
ω1

}
. (3.22)

60

As ũ is in

L0(D1) = L0 ((ω1)val) ,

the differential ũω1 is holomorphic, and therefore

ũω1 =
∑

j

cjωj,

thus as ω1 6= 0

ũ =
∑

j

cj
ωj
ω1
,

violating the assumption (3.22). By Riemann-Roch

g = degD1 − g + 1 + 1,

and rearranging gives

degD1 = 2g − 2.

All Abelian differentials are linearly equivalent and thus in the same equivalence class. The

integers l0 and l1 are only dependent on equivalence class, thus

deg(ν)val = 2g − 2

for any ν ∈ Ω1
Γ.

Note that the result of Example 7 establishes that any holomorphic differential, the

divisor of which is effective, has exactly 2g − 2 zeros counting multiplicities.

The following proposition, which relies on the Riemann-Roch Theorem is used in Sec-

tion 3.15. Proof can be found in [21].

Proposition 3.10.1. Given an effective divisor D, if s − 1 places in D may be chosen

arbitrarily then l0(D) ≥ s.

61

3.11 Special divisors

An effective divisor D is called special if there exists an effective divisor D ′ such that

D + D′ ∈ C,

where C is the canonical class of divisors [21]. Notice that this means that if

C = P1 + · · · + P2g−2

the divisor of a holomorphic differential then any sub-sum of the places in C is a special

divisor.

For any effective divisor, the following three properties hold [21].

1. D is special if and only if

l1(D) > 0.

2. D is special if

degD ≤ g − 1.

3. if degD = g then D is special if and only if

l0(D) ≥ 2,

that is, if and only if L0(D) contains a non-constant function.

3.12 The Abel map

The Abel map of a place P on a genus g Riemann surface is defined by

A = (A1, . . . , Ag) : (3.23)

Aj(P0, P) =

P∫

P0

ωj, (3.24)

62

where P0 is a fixed place on the Riemann surface, the ωj are normalized as in (3.16) and

the path of integration from P0 to P is the same for each index j. Equation (3.23) can be

written in vector form as

A : Γ 7→ J(Γ)

P 7→ A(P0, P) =

P∫

P0

ω

where

ω = (ω1, . . . , ωg),

is a normalized basis for the cohomology of Γ.

Given any two paths γ and η with the same initial place and final place, the difference

between γ and η is a closed path, and therefore a linear combination of cycles in the

homology basis H. That is,

γ − η =

g∑

j=1

mjaj +

g∑

j=1

njbj

where mi, ni are integers and

ai, bi ∈ H.

Thus the Abel map of a place P is well defined in that its image is a unique element of

J(Γ).

The definition of the Abel map is extended to divisors D. Written in vector notation:

A(P0,D) =
∑

i

piA(P0, Pi).

Note that the Abel map of a degree zero divisor is independent of the initial point P0. This

is seen by writing D as

D =
m∑

j=1

(Pj −Qj)

63

where places may appear multiple times. The Abel map is then

A(P0,D) =

m∑

j=1




Pj∫

P0

ω −
Qj∫

P0

ω




=

m∑

j=1

Pj∫

Qj

ω.

By applying the Residue Theorem appropriate for Riemann surfaces to the differential

du

u
,

it can be shown that, for any u ∈ Ω0
Γ,

deg(u)val = 0.

This shows that the Abel map of the divisor of a meromorphic function is independent of

initial place P0.

Abel’s theorem sheds more light on what it means for divisors to be linearly equivalent.

This phrasing of Abel’s Theorem is from [25].

64

Abel’s Theorem.

• For any meromorphic function u on Γ with

(u)val = D,

we have

A(P0,D) ≡ 0.

• Given a degree zero divisor D such that

A(P0,D) ≡ 0,

there exists a meromorphic function u such that (u)val = D.

A direct consequence of Abel’s Theorem is that two divisors D and D ′ differ by the divisor

of a meromorphic function if and only if [25]

degD = degD′

and

A(D) ≡ A(D′).

Thus linearly equivalent divisors map to the same vector on J(Γ) under the Abel map.

3.13 The Riemann θ-function

I now introduce more thoroughly the Riemann θ-function mentioned in the introduction.

This function is the basic building block of quasiperiodic solutions of integrable systems [6],

and is used in the algorithm I present to compute the vector of Riemann constants (VRC).

Moreover, the θ-function is a standard tool for examining and understanding the structure

of the Jacobian J(Γ) of a Riemann surface Γ and the relationship between the two. More

detail can be found in the standard references [5, 21, 32, 33, 22].

65

–1

–0.5

0

–1.5
–1

–0.5

–1

PSfrag replacements

1
1

1

−1

0.5

0.5

−0.5

1.5

−1.5

Figure 3.13: This graph shows a “slice” of the θ-function associated with the Riemann
surface defined by F = y2 − (x2 − 1)(x2 − 2)(x2 − 3)(x2 − 4)(x2 − 5) = 0. In this figure the
x-axis goes from the lower left to the upper right. The complex function θ(V x|B), where
V is a 4 compenent vector and B is the 4× 4 Riemann matrix associated with F , is plotted
in the plane parallel to the y, z-plane for each value of x from −1 to 1.

The Riemann θ-function

θ : � g 7→ � (3.25)

z 7→ θ(z|B) =
∑

n∈ J g

e(2πi(
1
2
n·Bn+z·n)) , (3.26)

is parameterized by a g × g Riemann matrix B [14]. Here

u · v =
∑

j

ujvj

is the scalar product of the vectors u and v. The summation in (3.26) is over all vectors

with g integer components. As =(B) is positive definite, terms of (3.26) for which ‖n‖ is

66

large are very small. Thus the θ-function is analytic in � g [14, 18]. When the matrix B is

fixed and understood from context, I will write the θ-function simply as θ(z).

Recall that a function ψ : � 7→ � is quasiperiodic1 with period w if

ψ(z + w) = e(c+c
′z)ψ(z)

for a suitable choice of c, c′ ∈ � . In the special case that

c, c′ = 0,

the function ψ is periodic. From (3.26) it is clear that the θ-function is periodic with integer

periods. That is,

θ(z + ej|B) = θ(z|B), (3.27)

where

(ej)k = δj,k.

Less clear is that

θ(z + Bej|B) = e2πi(−
1
2
Bjj−zj)θ(z|B), (3.28)

and thus that the θ-function is quasiperiodic in the columns of B. Equation (3.28) can be

seen by changing summation index to m = n + ej as in [18].

Let the definition of (quasi)periodic functions be extended to functions of vector argu-

ments as follows. Given a function ψ : � g 7→ � ,

• ψ(z) is periodic with period w ∈ � g if

ψ(z + w) = ψ(z).

• ψ(z) is quasiperiodic with quasiperiod w ∈ � g if, for suitable choices of c, c′ ∈ � g,

ψ(z + w) = e(c·w+c′·z)ψ(z).

1Note this is not the only definition of a quasiperiodic function. A function ψ is also called quasiperiodic
with period w if ψ(z + w) = ψ(z) + c+ c′z.

67

The (quasi)periodicity of θ(z|B) is summarized by the transformation law

θ(z + M + BN |B) = e2πi(−
1
2
N ·BN−N ·z)θ(z|B),

for M ,N ∈ � g.

3.14 The Jacobi inversion problem

The Abel map A introduced in Section 3.12 maps a Riemann surface Γ into its Jacobian

J(Γ). The task of constructing a map

A−1 : J(Γ) 7→ SΓg

from the Jacobian back to a set of g places on the Riemann surface is known as the Jacobi

inversion problem, and may be stated as follows. Given a vector ζ ∈ J(Γ), find a divisor

D ∈ SΓg such that

A(P0,D) ≡ ζ,

where the initial place P0 is considered a fixed place not on any of the cycles in H for the

remainder of the section. The notation will be adjusted accordingly for the sake of brevity.

The following results rely on integration on the cut surface Γ̃ and the boundary ∂Γ̃ of

that surface. For the purposes of these integrations let A be a version of the Abel map

appropriate to Γ̃. That is, let A be given by

A : Γ̃ 7→ � g,

A(P) =

P∫

P0

ω

The function A, which is simply the Abel map without the equivalence classes induced by

Λ, is single valued and analytic on Γ̃.

Let

Z = (Z1, . . . , Zg)

68

be a fixed vector on the Jacobian J(Γ). For any Z, the function

φ : Γ̃ 7→ � , φ(P) = θ (A(P) − Z) , (3.29)

is analytic and single valued on the cut surface Γ̃. Further, φ is not identically zero on Γ̃ if

θ(Z) 6= 0 [18].

Proposition 3.14.1. Suppose the function φ(P) is not identically zero on the cut surface

Γ̃, then φ(P) has exactly g zeroes,

P1, . . . , Pg,

counting multiplicities.

In [18], for example, Proposition 3.14.1 is proved by calculating the logarithmic residue

1

2πi

∫

∂eΓ

d log φ.

The places

P1, . . . , Pg

turn out to solve the Jacobi inversion problem for a correctly chosen vector ζ, as established

below.

Proposition 3.14.2. Suppose the divisor D is comprised as

D = P1 + · · · + Pg

where each place Pj satisfies

φ(Pj) = θ (A(Pj) − Z) = 0, j = 1, . . . , g .

Then Z ∈ J(Γ) is defined by

Z ≡ A(P0,D) + K(P0),

69

where K(P0) is the vector of Riemann constants, with the same initial place P0 as the Abel

map, given by

K(P0) = (K1(P0), . . . ,Kg(P0)),

Kj(P0) ≡
1 +Bjj

2
−
∑

k 6=j

∫

ak

ωk(P)Aj(P) . (3.30)

Proposition 3.14.2 belongs to the standard theory of Riemann surfaces and is proved in [21]

and [18], for instance. Nonetheless I provide a proof as this result is absolutely fundamental

to the work at hand.

Proof. The proof relies on calculating the integral

ζ = (ζ1, . . . , ζg)

given by

ζ =
1

2πi

∫

∂eΓ

d log φ(P)A(P) (3.31)

in two different ways to follow.

• Sum of residues: At any place Pj ∈ D the analytic function φ has a local represen-

tation

φ = tk h(t), k ∈ K > 0, h(0) 6= 0 ,

where h is holomorphic and k is assured to be greater than zero since

φ(Pj) = 0.

Thus the logarithmic derivative is given locally as

d log φ =
k

t
dt+ h̃(t) dt (3.32)

70

where h̃(t) is analytic and non-zero at Pj . If k > 1, that is if Pj is a zero of φ multi-

plicity higher than 1, then the place Pj appears in D a total of k times. Thus (3.31)

yields

ζ = A(P1) + · · · + A(Pg),

by the definition of A,

ζ ≡ A(P0, P1) + · · · + A(P0, Pg),

which can be restated as

ζ ≡ A(P0,D) (3.33)

where a place Pj may appear more than once and the dependence on the initial place

P0 is not explicitly shown. That ζ has the form given in the right-hand side of (3.33)

is the reason to examine this particular integral.

• Line integral: By calculating the line integral explicitly around the boundary ∂ Γ̃

one finds (details are presented in Appendix A.1) that the j-th component of ζ is

given by

ζj = Zj −
Bjj
2

−Aj(Qj) +
∑

k

∫

ak

ωk(P)Aj(P) + λj (3.34)

where

λ = (λ1, . . . , λg)

is a lattice vector and thus λj may be omitted, and Qj is the initial place of cycle bj

on the cut surface Γ̃. The term Aj(Qj) is dependent upon the choice of homology H.

To remove this unnecessary dependence examine the integral

∫

aj

ωj(P)Aj(P) =

∫

aj

1

2
dA2

j(P)

=
1

2

(
A2
j(Qj) −A2

j(Q
′
j)
)

71

where Qj is the end of the j-th a-cycle (as well as the beginning of the j-th b-cycle),

and Q′
j is the beginning of the j-th a-cycle. Note that

Aj(Q
′
j) = Aj(Qj)ωj − 1

by (3.16), and thus that

1

2

(
A2
j(Qj) −A2

j(Q
′
j)
)

=
1

2

(
A2
j(Qj) − (Aj(Qj) − 1)2

)

= Aj(Qj) −
1

2
.

Therefore (3.34) gives

ζj = Zj −
Bjj + 1

2
−
∫

aj

ωj(P)Aj(P) +
∑

k

∫

ak

ωk(P)Aj(P),

leading finally to

ζj = Zj −
Bjj + 1

2
+
∑

k 6=j

∫

ak

ωk(P)Aj(P). (3.35)

Combining Equations (3.33) and (3.35) establishes Proposition 3.14.2.

The following three theorems complete the presentation of the Jacobi inversion problem.

Two of these theorems will be useful in the next section. The following statement is from [18],

where it is presented but not proved. For proof, see [26].

Theorem 1. The function

φ(P) = θ(A(P) − Z)

is identically zero on Γ if and only if the vector Z may be written

Z ≡ A(D) + K

where the divisor D is effective, of degree g and special.

72

Propositions 3.14.1 and 3.14.2 and Theorem 1 lead directly to the following, which

establishes the existence of the map

A−1 : J(Γ) 7→ SΓg.

Theorem 2. Suppose for the vector

ζ = (ζ1, . . . , ζg),

the function

φ(P) = θ(A(P0, P) − ζ − KP0)

is not identically zero on Γ. Then

• the function φ has g zeros

P1, . . . , Pg.

Further, these zeroes give a solution to the Jacobi inversion problem for the vector ζ.

That is

A(P0, P1) + · · ·A(P0, Pg) ≡ ζ. (3.36)

• The divisor

D = P1 + · · · + Pg

of zeroes is non-special.

• The divisor D is uniquely determined by (3.36) up to permutations.

The Jacobi Inversion Theorem follows, proof of which may be found throughout the

standard literature. One may consult, for example [25].

Jacobi Inversion Theorem. The Abel map restricted to effective divisors of degree g,

A : SΓg 7→ J(Γ)

is subjective, and generically2 injective.

2A property holds generically on a manifold if the property is true except at points on a sub-manifold of
strictly lower dimension.

73

3.15 The vector of Riemann constants

The vector of Riemann constants (VRC), K, appeared in the previous section as part of

the solution to the Jacobi inversion problem. In this section I will go into a bit more detail.

In part I will elaborate on the connections between K, Γ and J(Γ).

The VRC is generally seen as a constant vector K ∈ J(Γ) with fixed initial place P0 ∈ Γ.

It is equally valid to see this object as a function

K(P0) : Γ 7→ J(Γ).

The convention of seeing the VRC as a constant seems to arise from the fact that one

generally begins calculating the aforementioned objects associated with Riemann surfaces

by fixing an initial place once and for all. This point of view is perfectly sensible, however

there is occasion to treat this object as a function, and I will use either notation as needed.

The algorithm I present to compute the VRC relies on the following proposition which

holds for all P0 ∈ Γ. Thus any mention thereof is suppressed in the interest of easier reading.

Proposition 3.15.1. Let C be an arbitrary divisor such that

deg C = 2g − 2.

Then C is the divisor of a meromorphic differential on Γ if and only if

2K ≡ −A(C). (3.37)

Proof of this proposition may be found, for instance, in [21]. However, as Proposition 3.37

is fundamental to the algorithm to compute the VRC, I provide a sketch of the proof therein.

Proof. The first goal is to prove that −2K is the image, under the Abel map, of a holomor-

phic differential, and thus also of a meromorphic differential. To establish this, first believe

Proposition 3.15.2, proof of which is provided in Appendix A.2 in one direction. For a full

proof see, for example [21].

Proposition 3.15.2. Suppose B is the Riemann matrix associated with the Riemann sur-

face Γ, and P0 is any place on Γ. The vector W ∈ J(Γ) is such that

θ(W |B) = 0

74

if and only if W is given by

W ≡ A(P0,D) + K(P0)

for some choice of

D = P1 + · · · + Pg−1.

Note that Proposition 3.15.2 may be written in the shorthand

Θ = A(SΓg−1) + K, (3.38)

where the θ-divisor Θ is

Θ = {V ∈ J(Γ) : θ(V) = 0}.

Θ is a 2g − 2 real-dimensional subvariety inside the Jacobian J(Γ) [21].

Now to establish that 2K is the image under the Abel map of a holomorphic differential,

first recall that an effective divisor

E ′ =
∑

pjPj

is one for which all the multiplicities pj are positive. Let E ′ be of degree g− 1 and given by

E ′ = P1 + · · ·Pg−1.

Then the vector

W = A(E ′) + K

is a zero of the θ-function by Proposition 3.15.2. Since the θ-function is even,

θ(−W) = 0.

Again using Proposition 3.15.2, there exists an effective divisor E ′′ such that

−W = A(E ′′) + K.

75

Using the two previous equations,

A(E ′) + K ≡ −A(E ′′) − K,

so

A(E ′ + E ′′) ≡ −2K.

Thus if the divisor

E = E ′ + E ′′

is the divisor of a meromorphic differential, then −2K is indeed the image of the divisor of

a meromorphic differential. That E is the divisor of a meromorphic function is guaranteed

by Proposition 3.10.1.

Noting that g − 1 of the places in E are arbitrary,

l0(E) ≥ g.

Then, by Riemann-Roch

g ≤ l0(E) = 2g − 2 − g + l1(E) + 1

= g − 1 + i(E).

Therefore l1(E) ≥ 1, which assures the existence of a meromorphic differential ν with

(ν)val = E .

To show the converse, let D be an arbitrary divisor with degree 2g − 2 such that

A(D) ≡ −2K.

It has just been shown that there is a differential ν such that

A((ν)) ≡ −2K.

Therefore

A(D) ≡ −2K ≡ A((ν)val),

76

and further

A(D) ≡ A((ν)val).

Rearranging the previous equivalence yields

A(D) − A((ν)val) ≡ 0,

which, by use of Abel’s Theorem implies the existence of a function u such that

(u)val = D − (ν)val.

The arbitrary divisor D is then given by

D = (u)val + (ν)val

= (uν)val,

and is thus the divisor of the differential uν, proving proposition 3.37.

77

Chapter 4

MULTI-PHASE SOLUTION FORMULAE

4.1 The nonlinear Schrödinger equation

Polynomials F (x, y) that can by written

F (x, y) = y2 − f(x)

where f(x) is a polynomial in x with no repeated roots are said to be in Weierstrass form.

Any algebraic curve that can be converted to Weierstrass form by bi-rational transformations

of the coordinates x and y is said to be hyperelliptic. Hyperelliptic curves are a generalization

of elliptic curves, all of which may be written as

y2 = 4x3 + bx+ c

for some choice of b, c ∈ � . The quasiperiodic solutions of the nonlinear Schrödinger (NLS)

and Korteweg-deVries (KdV) equations are parameterized only by hyperelliptic curves. This

will turn out not to be the case for solutions of the Kadomtsev-Petviashvili (KP) equa-

tion [6]. The class of hyperelliptic curves is quite broad. Riemann surfaces of arbitrarily

high finite genus may be realized as the desingularization and compactification of hyperel-

liptic curves [25]. The only restrictions on the polynomials parameterizing KP solutions is

that they be irreducible.

Suppose Γ is a Riemann surface arising from a polynomial F (x, y) given by

F (x, y) = y2 −
2g+2∏

j=1

(x− λj), (4.1)

where all the branch points λj ∈ � are distinct. For (4.1), x = ∞ is not a branch point:

there are two distinct ways to satisfy

F (∞, y) = 0.

78

Call these two ordered pairs P+∞ and P−∞. Let B be the Riemann matrix associated with

Γ, and D be a divisor on Γ. Recall the NLS equation:

iψt = ψξξ + 2|ψ|2ψ.

A solution ψ of the NLS equation, parameterized by Γ is given by [6]

ψ = e−ic1ξ+ic2t
2θ(U0)

αθ(U0 − A∞)
×

× θ(iUξξ + iUtt − U0 + A∞)

θ(iUξξ + iUtt − U0)
. (4.2)

There is a similar formula for the complex conjugate of ψ. Recall also that the free surface

η is then given by

η(x, y, t) = < (ψu) + higher order terms

u = a0e
ik0x−i

√
k0t.

All the concepts needed to explain (4.2) have been introduced in the preceding chapters.

• Each of the four θ-functions are parameterized by B.

• c1 and c2 are constants obtained as the second-highest order behavior at P −∞ of

Abelian differentials of the third kind.

• The constant vector U0 is given by

U0 = A(P−∞,D) + K(P−∞),

where A is the Abel map and K is the vector of Riemann constants.

• The Abel map A∞ is given by

A∞ = A(P−∞, P∞).

• The constant vectors Uξ and Ut are found by integrating Abelian differentials of the

third kind around the b-cycles.

79

4.2 The Korteweg-deVries equation

To construct quasiperiodic solutions of the KdV equation, assume a Riemann surface Γ

arising from a polynomial as given by (4.1). Further assuming a divisor D on the surface,

the quasiperiodic solution of the KdV equation with these parameters is given by

u = c+ 2∂2
x ln θ(Uxx + Uyy + Utt + A(P∞,D) − K(P∞)). (4.3)

where Ux,Uy, and U t are vectors obtained by integrating Abelian differentials of the third

kind around the b-cycles. Note that the variables (x, and y) typeset Roman are physical

variables, and have nothing whatsoever to do with the coordinates x and y in the defining

polynomial.

4.3 The Kadomtsev-Petviashvili equation

The quasiperiodic solutions of (1.11) are of the form

η(x, y, t) = c+ 2∂2
x ln θ(Uxx + Uyy + Utt + A(P∞,D) − K(P∞)|B). (4.4)

Here

1. c is a constant, obtained as the second order behavior of a Abelian differential of the

third kind with a pole only at P∞.

2. Ux, Uy and Ut are constant vectors, obtained, as in the KdV case, as the integrals of

Abelian differentials of the third kind around b-cycles.

3. D is a degree g divisor;

4. A(P∞, D) is the Abel map of D for the initial place P∞, and

5. K(P∞) is the vector of Riemann constants for P∞.

Many of the objects in (4.2), (4.4) and (4.3) have already been made effective. For

instance the computation of the Riemann matrix was the main topic of [17]. Algorithms to

80

compute theta functions and their derivatives are found in [14]. Effective computation of

the Abel map and the vector of Riemann constants is discussed in this work.

Computing the constant c, and the constant wavenumber vectors Ux, Uy and Ut ap-

pearing in the KP solution (and the KdV solution) has yet to be made effective. Likewise,

computing constants and constant vectors appearing in the NLS solutions must be made

effective. The algorithms required in all three cases are quite similar: all involve compu-

tations with Abelian differentials of the third kind. Once these have been made effective,

the quasiperiodic solutions of the NLS, KdV, and KP equations will be readily available for

use.

Note that solutions as in (4.3) and (4.4) are not in general real solutions. Guaranteeing

that the solutions are real, as is desired for water-waves, requires either more algebro-

geometric work, or the approach of [13]. In [13], Deconinck describes a method for deter-

mining the surface Γ and the divisor D from initial data, thus solving the KP equation as

an initial value problem for finite-genus quasiperiodic initial data.

81

Chapter 5

COMPUTING THE ABEL MAP

5.1 Initial considerations

The input for computing A(P ′, P) is

• a Riemann surface Γ, entered as a polynomial F (x, y) in two complex variables x and

y and

• two places P ′ and P on Γ, entered as Puiseux expansions as in Newton’s theorem.

Places are entered as truncated Puiseux expansions to avoid potential ambiguity at

places over discriminant points, and at infinity. For places over regular points it

suffices to enter an x, y pair.

Note that, because A(P ′, P) may be written as

∫ P

P ′

ω =

∫ P

P `

ω −
∫ P ′

P `

ω,

it suffices to develop an algorithm to compute integrals from P ` to any other place P .

5.2 Computing discriminant points

Computing the discriminant points of a algebraic curve C is just a matter of computing the

roots of the discriminant D(F, y) with respect to y of the polynomial F that gives rise to C.

I briefly address the resultant and discriminant of polynomials. This elementary material is

included in the interest of completeness. See, for instance [25] for more detail about what

follows in this section.

The resultant R(f, g) of two polynomials

f = f(x) and g = g(x)

82

is a determinant formed from the two polynomials. This determinant is zero if and only if

the two polynomials have simultaneous solutions. The resultant with respect to one variable,

say y, denoted R(F,G, y) of the polynomials

F = F (x, y) and G = G(x, y)

is a polynomial in x, the roots of which are the only affine x-values for which F and G have

simultaneous solutions.

The discriminant D(f) of a polynomial

f = f(x)

is the resultant R(f, fx) of

f = f(x)

and

fx(x) =
df(x)

dx
.

The discriminant

D(f) = 0

if and only if the polynomial f has a finite multiple root. The discriminant D(F, y) with

respect to y of the polynomial

F = F (x, y)

is a polynomial in x given by.

D(F, y) = R

(
F,
∂F (x, y)

∂x
, y

)
.

The roots of

D(F, y) = 0

83

are exactly the affine x-values for which F has multiple y-roots. These roots are the dis-

criminant points oft mentioned in Chapter 3.

Suppose F is as in (3.1), then F and Fy are given by

F = f0y
n + · · · + fn−1y + fn

Fy = nf0y
n−1 + · · · + fn−1

The discriminant D(F, y) of F with respect to y is then the determinant

D(F, y) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 · · · · · · fn
. . . · · · · · · . . .

f0 f1 · · · fn

nf0 · · · fn−1

nf0 · · · fn−1

. . . · · · . . .

nf0 · · · fn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Explicitly calculating the roots of

D(F, y) = 0

is generally impossible because generally,

degD(F, y) > 5.

Implicitly representing these roots is no work at all. Suppose, again the general case, that

D(F, y) is given by

D(F, y) = g0x
N + · · · + gN , N > 5

where

gj ∈ � , j = 1, . . . , N.

The discriminant points may be represented implicitly as, using Maple notation for instance

Rootof(D(F, y), x) = Rootof
(
g0x

N + · · · + gN , x
)
.

84

Note however, when explicitly computing with these discriminant points, or places over

them, one must either work with this representation or approximate the roots numerically.

Both approaches introduce difficulties which must be dealt with.

5.3 Computing paths on the Riemann sphere

Before proceeding, I need to introduce some notation and definitions.

• In what follows C(α, ρ) denotes the circle in the complex x-plane with center x = α

and radius ρ.

• By L(α, α′) we indicate the straight line segment in the complex plane from α to α′.

• The “left point,” α` ∈ � , is an algorithmically chosen point depending only on the

polynomial F . If λ̂ is the set of finite discriminant points of

F (x, y) = 0,

then α` is chosen such that

<(α`) < <(λ), ∀λ ∈ λ̂,

that is, α` is to the left (in the complex plane) of all the finite discriminant points.

• Denote by

y` = (y`1, . . . , y
`
n)

the ordered roots of

F (α`, y) = 0.

It is in principle immaterial how the order is imposed. In practice the order is assigned

by increasing absolute value. If two of the roots have the same absolute value, then

the root with the smaller argument on [0, 2Π) appears first.

• The “left place” is P ` = (α`, y`1).

85

• The ordered n-tuple y` can be analytically continued anywhere on

� 1/λ̂.

The n-tuple of complex numbers y`(χ) is the result of analytically continuing each

component of y` along the path

χ = x(z) ∈ � 1/λ̂, z ∈ [0, 1].

• If χ and χ′ are two paths in
� 1/λ̂ with

χ(0) = χ′(0), and χ(1) = χ′(1),

it is not necessary that

y`(χ) = y`(χ′).

If χ and χ′ differ only by a circle around exactly one branch point then

y`(χ′) = σ(y`(χ)),

where σ(v) denotes a permutation.

• To order the places over a regular point α we impose the order of the y-values in

y`(L(α`, α)). Note that if the straight line segment L(α`, α)) happens to pass through

a discriminant point λk, then the path to α is adjusted to pass above λk. In this way,

the sheets of the Riemann surface are defined. A place

P = (α, β)

is said to lie on sheet j if

(
y`(L(α`, α))

)
j

= β.

Let F be a polynomial as in (3.1). Further let

λ̂ = {λ1, . . . , λm}

86

PSfrag replacements

λ1

λ5

λ3

λ2

λ1

α`

α`

<(x)

=(x)

ζ1

ζ5

Figure 5.1: On the left are straight lines L(α`, λj) (dashed) and circles Cj (solid). On the
right I isolate α`, C1 and C5 in order to demonstrate how the path encircling only λ5 is
deformed through a region to stay well away from λ1. The solid line on the right is the path
χ′

5: the path to ζ5 deformed once and homotopic to the line L(α`, ζ5) (not shown).

be the set of finite discriminant points of

F (x, y) = 0.

I now construct paths on the Riemann sphere that will be lifted to the Riemann surface Γ

arising from F in Section 5.4.

Paths avoiding discriminant points

Around each λj ∈ λ̂ we compute a radius ρj that is two-fifths of the distance to the next

nearest discriminant point:

ρj =
2

5
min{|λj − λk|},

where j 6= k. Let Cj denote the circle C(λj , ρj). The y-sheets are sufficiently well-separated,

and numerical analytic continuation works well on all paths that lie completely outside all

Cj’s. Let ζj denote the point λj − ρj . This is the point on Cj furthest to the left. A path

χj to each ζj is created as follows.

87

1. If the line L(α`, ζj) does not intersect any other Ck then

χj = L(α`, ζj).

2. If the line L(α`, ζj) intersects circle Ck, then χj is deformed to χ′
j, which traverses

half of Ck. Path χ′
j includes either the top or bottom half of Ck, depending on which

path is homotopic to L(α`, ζj). The right side of Figure 5.1 shows an example of this

deformation.

3. If the newly deformed path χ′
j infringes on circle Cm, it is deformed to χ′′

j , which

traverses half of Cm as in the previous step.

4. Steps 2 and 3 are iterated until a path χ′···′
j is constructed that avoids all Ci, for i 6= j.

The path Πj around discriminant point λj is then, dropping the primes, χj followed by the

circle Cj traversed counter-clockwise and ending with χj traversed backwards. The solid

line on the right of Figure 5.1 is such a path. The Πj are used to calculate the monodromy

group of F [17] and the χj serve as the basic building blocks of paths to any α ∈ � 1.

The monodromy group

If the point λj is a branch point, then the analytic continuation y`(Πj) does not match up

with y` itself. Instead

y`(Πj) = σj(y
`),

where σj(v) is the permutation of the n-tuple v induced by analytically continuing v

around branch point λj . The collection of all the permutations σj gives a representa-

tion of the monodromy group of the curve F [17]. A procedure to compute the mon-

odromy of an arbitrary irreducible plane algebraic curve is available as the Maple command

algcurves[monodromy]. The implementation of the Abel map uses this command unal-

tered to compute the branch points and the permutations around those branch points.

88

As the format of the output of this algorithm is important in Section 5.3, I give it here.

Given a polynomial F (x, y) of y-degree n with discriminant points

λ1, λ2, . . . ,

the output of the monodromy algorithm is:

1. the left place α`, and

2. the list y` of ordered roots of F (α, y) = 0, and

3. a table, indexed by the discriminant points, of permutation groups around said dis-

criminant points. Suppose for example that n = 6. If the λ2 entry of the table

is

({1, 2, 3}, {4, 6})

then around λ2, sheets 1,2 and 3 cyclically permute, as do sheets 4 and 6. Sheet 5

remains unchanged.

Example 8. The places over λ2 ∈ � in the example in Item 3 would have Puiseux expan-

sions of the form.

P1 =





x = α+ t3

y = β1t
s1 + · · ·

,

P2 =





x = α+ t2

y = β2t
s2 + · · ·

and

P3 =





x = α+ t

y = β3t
s3 + · · ·

.

The first place, P1, has branching number 3 thus three sheets coalesce around this place.

This could account for the permutation group {1, 2, 3}. Place P2 has branching number 2,

and could account for permutation group {4, 6}. Place P3 would then be on sheet five, which

does not appear in a permutation group.

89

PSfrag replacements

C1

C5

C3
C4

C2

α`

<(x)

=(x)

ξ

α

ζ4

ζ5

Figure 5.2: The solid lines and arcs indicate a path χ in the complex x-plane to the point
α. These paths are lifted to the Riemann surface via numerical analytic continuation. Note
that this path is not homotopic to L(α`, α). It need not be. The n images of this path on
Γ are computed, and the correct image is chosen.

Path to a finite point not near a discriminant point

If α does not lie in one of the Ck, then a path χ from α` to α is constructed as follows.

Suppose λj is the closest discriminant point to α. The line L(α, λj) intersects Cj at the

point ξ. The path χ is then

1. the previously discussed path χj to ζj followed by

2. the arc on Cj from ζj to ξ, traversed counter-clockwise, and finally

3. the line L(ξ, α).

This path avoids all Ck for j 6= k by virtue of the construction of the previously discussed

paths χj. Figure 5.2 demonstrates a path to a regular point α that is closer to the discrim-

inant point λ5 than any other.

90

PSfrag replacements

Cj

ξ

α

λj

C1

α`

ζj

Figure 5.3: The solid and dashed lines together form a path from α` to α. The solid line
is lifted to the Riemann surface Γ by numerical analytic continuation. The dashed line is
lifted by means of Puiseux expansions. The dotted line again indicates the circle around
the discriminant point λj with radius ρj. As in Figure 5.2, the path shown is not, and need
not be, homotopic to L(α`, α).

Path to a point near a discriminant point

If the final point α is inside Cj, then the path χ is constructed as follows. Denote by ξ the

point on Cj such that L(λj , ξ) contains α. Then the path χ is, as in Figure 5.3,

1. the path χj to ζj,

2. the arc on Cj from ζj to ξ, traversed counter-clockwise, and finally

3. the line segment from ξ inward towards λj to α.

Note that, as far as the creation of a path is concerned, it does not matter if α = λj . That

is, the path to the discriminant point λj is constructed in the same manner as one to a

point anywhere within Cj.

91

Path to x = ∞

If α = ∞, then a point ξ ∈ � is picked such that

|ξ| =
5

2
max |λ|, λ ∈ λ̂.

The path χ to α = ∞ is then L(α`, ξ) followed by L(ξ,∞), where the line “to infinity” is

traversed by the transformation

x =
1

t

as t 7→ 0.

Navigating between sheets

The previous sections have shown how a path χ ∈ � 1 is constructed from the algorithmically

determined point α` to a generic point with x-component α. Note that α is given by the

user-specified place P which is either over regular point, in which case P is given by

P =





x = α

y = β
,

or over a discriminant place, in which case P is given by

P =





x = α+ tr

y = βts + β′ts
′

+ · · ·
.

The path χ has n images on Γ. From these possible images, γ ∈ Γ is chosen such that the

y-component of γ(1) is β. Let k be the index of the place γ(0) over α`. If k = 1, then the

lift of χ is exactly a path on Γ from the left place P ` to the user-specified place P . If not,

the monodromy group of F is used to create a path that will permute sheet 1 into sheet k.

From the output of the Maple command algcurves[monodromy], a table M is built

that has as its entry Mij a list of branch points

λ1, λ2, . . .

to encircle in order to permute sheet m to sheet m′ [17]. For example, if the 3,5 entry

M3,5 = ((λ1, true), (λ7, false)

92

then the “shortest” way to navigate from sheet 3 into sheet 5 is to first encircle branch

point λ1 clockwise, and then branch point λ7 anti-clockwise. The path is shortest in a

graph-theoretic sense: it includes the fewest possible discriminant points as found by a

depth-first search, as demonstrated in Algorithm 1 on Page 93. Since branch points are

discriminant points, the list M1,k defines a path

Π1,k = Πj,Πj′ , . . .

where the paths

Πj ,Πj′ , . . . ,

were computed in Section 5.3.

Algorithm 1 on the following page is used to compute a connection table for a Riemann

surface. The algorithm is of course not new. It is an instance of a depth-first search. I

include it here for completeness, and because I wish to introduce this format, which I will

use for displaying algorithms, with a simple example. The symbols ⇒ and ⇐ are used to

denote the input and output of the algorithm respectively. Algorithms are typeset in a

sans-serif font to set them apart from the regular text. Commands that effect the control

flow of the algorithm, e.g. if, for etc., are typeset in bold. The steps in the algorithms

are labeled, and notes that directly follow the algorithms give more detail for some of the

labeled steps.

93

Algorithm 1. Connection table:

⇒ monodromy representation of Riemann surface Γ

⇐ connection table M

1. fill the table M with all direct connections

2. for all empty fields Mjk of M do

A. Initialize the temporary nested list

B. while k not in S do

i. search the deepest level of nesting in S and amend as needed

end do (ends 2.B)

C. use the information in S to complete field Mjk

end do (ends 2)

Notes for Algorithm 1:

⇒ The algorithm presented in [17] for computing a monodromy representation of a Rie-

mann surface is discussed in Section 5.3.

1 For each pair of sheets j and k, search the monodromy for a branch point, the permu-

tation of which contains both j and k. For example, if the monodromy representation

T contains the entries

Tλ3 = (. . . , {4, k, j, 1, 7}, . . .)

and

Tλ7 = (. . . , {. . . , j, 9, 4, k, . . .}, . . .)

94

then both λ3 and λ7 directly connect sheets j and k. The j, k-th entry of M would

then be

Mjk = (λ3, false)

where λ3 is chosen because it is closer to α` by construction. The second element is

“false” because going backwards through the permutation from j to k is shorter than

going forwards from j to 1 to etc. on to 4 and finally to k.

2.A The integers

j′, j′′, . . .

represent the sheets to which sheet j is directly connected where these connections

are via analytic continuation around the branch points

λ′, λ′′, . . .

respectively.

2.B.i Suppose that S is currently given by

S = . . . ,

(
(3, 2 + i),

(
(1,−7i), (5, 2 − i)

))
, . . . ,

which means that sheets 1 and 5 are directly connected to sheet 3 via branch points

−7i and 2−i respectively. Further suppose that sheet 7, not yet in S, connects directly

to sheet 5 via branch point 3 − 3i. In this case S is updated to

S := . . . ,

(
(3, 2 + i),

(
(1,−7i),

(
(5, 2 − i), (7, 3 − 3i)

)))
,

If k = 7 then control would pass to Step 2.C, otherwise this step is repeated until k is

found.

2.C This step is just a matter of reformatting the information in S.

95

5.4 Lifting paths to the Riemann surface

Computing A(P `, P) requires the computation of integrals

∫

γ
ω,

where ω is a normalized holomorphic differential, and γ is a parameterized path on Γ such

that

γ(0) = P `, and γ(1) = P.

A parameterized path γ ∈ Γ is uniquely determined by χ ∈ � 1 and an initial y-component

y = β that solves

F (α`, β) = 0.

Assume the path χ from α` to α avoids all discriminant points unless α is itself a discriminant

point. This path has n distinct images on Γ, each of which is uniquely determined by

analytically continuing one of the elements of y` along χ. The path γ is the image of χ ∈ Γ

for which the starting place

γ(0) = (α`, β).

For the purposes of integrating holomorphic differentials this determination is unique up to

elements of H.

The algorithms used for the computation of the Abel map perform analytic continuation

along a path χ using two methods, namely numerical analytic continuation and Puiseux

expansions.

• Numerical analytic continuation: If a path χ ∈ � begins and ends respectively

at regular points x = α0 and x = α1, then the values of y(α0) follow paths on the

Riemann surface from simple roots of

F (α0, y) = 0

96

to simple roots of

F (α1, y) = 0.

If α1 is close to α0, and χ is nearly a straight line path avoiding discriminant points,

then y(α1) is well approximated by

y(α1) = y(α0) + yx(α0)(α1 − α0) + O(|α1 − α0|2),

and the last term is small in comparison with the first two. Here yx is the n-tuple of

derivatives of the algebraic function y at the point α0. By implicit differentiation

yx(α0) = −
(
Fx(α0, y1(α0))

Fy(α0, y1(α0))
, . . . ,

Fx(α0, yn(α0))

Fy(α0, yn(α0))

)
,

where the subscripts x, y denote partial differentiation. Comparing the unordered

y(α1) with the ordered approximation given by

y(α0) + yx(x1)(α1 − α0)

results in an ordered n-tuple y(α1). This method may not resolve the order properly

if |α1−α0| is too large or the path from α0 to α1 deviates significantly from a straight

line. In this case the path is broken up into sub-intervals and the analytic continuation

is performed adaptively, over the smaller segments until the order is correctly assigned.

More detail is found in [17].

• Puiseux expansion method: Analytic continuation near discriminant points is

problematic. At a discriminant point x = λ there are less than n y-values, so the

above approach is not possible. Further, in some neighborhood around λ, the y-

sheets are close together, and distinguishing them numerically is difficult. Puiseux

expansions resolve these issues.

The path χ constructed above joining

χ(0) = α` to χ(1) = α

97

avoids almost all discriminant points. The path will avoid all discriminant points if α

is not inside Cj for some j. If any part of χ is inside Cj the Puiseux expansions over

λj, the center of Cj, is used to represent the sheets of the Riemann surface within Cj.

The rest of χ is lifted to Γ via analytic continuation.

Let z̃ be the value of the path parameter such that χ(z̃) is the point where χ and

Cj intersect. By the construction of χ there is only one such point. The y-sheets are

ordered over χ(z̃) with respect to α` by numerical analytic continuation. Denote the

ordered y-values by y`(χ(z̃)). Let

P̂ = (P1, . . . , Pn)

be the n branches over the discriminant point λj . The intersection point χ(z̃) is closer

to λj than any other discriminant point, thus the branches representing the y-values

converge over χ(z̃) (see Section 3.2). Therefore the n branches can be ordered with

respect to α` by matching Pj to one of the elements of the ordered n-tuple y`(χ(z̃)).

Suppose that

Pj =





x = λj + trj

y = βjt
sj + β′jt

s′j + · · ·
, t ∈ [0, 2π/rj) .

The y-value over the point χ(z̃) represented by this branch is

βj t̃
sj + β′j t̃

s′j + · · · ,

where

t̃ =
rj

√
χ(z̃) − λj ,

and as this is a convergent series it necessarily matches one of the elements of y `(χ(z̃)).

All the branches are assigned to one of the sheets in this way, and these branches define

the local structure of all the places on Γ over Cj. If α = λj, that is if the user specifies

a place P over a discriminant point, then we match only this branch to y`(χ(z̃)).

Note that only a finite number of terms of the Puiseux expansion y(t) are computed.

Thus the above matching is generally done by adaptively refining the branches until

the assignments are made correctly over both χ(z̃) and the end of the path χ(1).

98

5.5 Remarks on integration

Once the paths have been lifted to the Riemann surface, computing the Abel map is a

matter of integrating holomorphic differentials. The integral

∫

γ
ωj =

∫

γ
gj(x, y) dx

=

∫

γ
gj(x(z), y(z))

dx

dz
dz

is computable piecewise once the path γ is fixed. In practice a bit more needs to be said.

Specifically it should be noted that the method of integration is a matter of what form of

analytic continuation is used over any particular sub-path. A sub-path lifted to the Rie-

mann surface by means of numerical analytic continuation is integrated using internal Maple

routines (adaptive numerical integration). Paths lifted by Puiseux expansion method are

integrated by computing series approximations of the holomorphic differentials. These con-

vergent series of ever higher order are integrated and evaluated term-by-term symbolically.

99

Chapter 6

COMPUTING THE VECTOR OF RIEMANN CONSTANTS

6.1 Initial considerations

I first remind the reader of the form of the vector of Riemann constants (VRC). Given a

Riemann surface Γ and a fixed initial place P0 ∈ Γ, the VRC

K(P0) ∈ J(Γ).

is given by

K(P0) = (K1(P0), . . . ,Kg(P0)),

Kj(P0) =
1 + Bjj

2
−

g∑

k 6=j

∫

ak

ωk(P)Aj(P0, P), (6.1)

where Bjj is the j, j-th component of the Riemann matrix B associated with Γ. While

the VRC is dependent upon the choice of homology basis H and the fixed initial place

P0, the properties of the VRC used here are dependent upon neither. Specifically, the

formulas (3.37) and (3.38):

2K(P0) ≡ −A(P0, C)

where C is in the canonical class:

C ∼ (ν)val, ν ∈ Ω1
Γ,

and

Θ = A(P0, SΓg) − K(P0)

hold for any choice of homology and for all P0 ∈ Γ. Computing the double line integral

in (6.1) proved difficult. Specifically, algorithms using this definition to compute K were

100

abandoned, after much time and effort, as too slow and inaccurate. The method currently

employed hinges on the fact that the VRC may be written as

K(P0) = K(P `) − (g − 1)A
(
P0, P

`
)
, (6.2)

where K(P `) ∈ Γ is a vector that only depends on the choices made for P ` and H. To

obtain (6.2), begin by recalling that A is defined as an integral computed between its

arguments, and any arbitrary place P ′ on Γ may be inserted:

A(P0, P) ≡ A(P0, P
′) + A(P ′, P), ∀P ′ ∈ Γ

and writing (6.1) as

Kj(P0) =
1 + Bjj

2
−

g∑

k 6=j

∫

ak

ωk(P)
(
Aj

(
P0, P

`
)

+Aj

(
P `, P

))
,

where P ` is the left place from Section 5.1. Rearranging the above gives

Kj(P0) =
1 + Bjj

2
−

g∑

k 6=j

∫

ak

ωk(P)Aj

(
P0, P

`
)
−

g∑

k 6=j

∫

ak

ωk(P)Aj

(
P `, P

)
.

Note that the j-th component of the Abel map Aj(P0, P
`) in the first sum has no dependence

on the variable of integration P . Thus

Kj(P0) =
1 + Bjj

2
−

g∑

k 6=j
Aj

(
P0, P

`
)∫

ak

ωk(P) −
g∑

k 6=j

∫

ak

ωk(P)Aj

(
P `, P

)
,

and using

∫

ak

ωk = 1,

yields

Kj(P0) =
1 + Bjj

2
−

g∑

k 6=j
Aj

(
P0, P

`
)
−

g∑

k 6=j

∫

ak

ωk(P)Aj

(
P `, P

)
,

Kj(P0) =
1 + Bjj

2
− (g − 1)Aj

(
P0, P

`
)
−

g∑

k 6=j

∫

ak

ωk(P)Aj

(
P `, P

)
.

101

Therefore letting

K` := (K1(P
`), . . . ,Kg(P

`))

Kj(P
`) =

1 + Bjj
2

−
g∑

k 6=j

∫

ak

ωk(P)Aj

(
P `, P

)
. (6.3)

establishes (6.2). Two notable properties of the system specified by (6.2) and (6.3) are that

• the vector K` is only dependent on the homology H and the left place P `. Changing

the order of the cohomology will induce identical permutations on the indices of K,

K`, A and B. This is a trivial dependence as it is only a reordering of the coordinates

of � g, or alternatively, of J(Γ).

• If Γ is a Riemann surface represented by

F (x, y) = 0

for a polynomial F , then once H has been computed for a surface Γ, and K ` has

been computed with this choice, the VRC associated with any place P0 ∈ Γ can be

computed using only the Abel map.

An algorithm has already been presented to compute the Abel map of an arbitrary place

P on a Riemann surface represented as a polynomial in two complex variables. Thus it is

sufficient to have an algorithm to compute the VRC of an arbitrary place to develop an

algorithm to compute K` as defined in (6.3).

6.2 The vector of Riemann constants of the left-place

Introducing a bit of notation simplifies the following discussion. Denote by Λ 1
2

the set of

22g half-lattice vectors in the Jacobian. That is, let

Λ 1
2

= {h : h = mod(M , 2) + Bmod(N , 2); M ,N ∈ � g}, (6.4)

where mod(M , 2) and mod(N , 2) are interpreted component-wise. That is, given the

integer vector

M = (M1, . . . ,Mg) ∈ � g

102

the half-integer vector mod(M , 2) is

mod(M , 2) = (mod(M1, 2), . . . , mod(Mg, 2)).

It is clear that Λ 1
2

has 22g unique elements.

Given (3.37), one would like to say that K ` is given by

K` ≡ −1

2
A(P `, C).

However, division is not unique in this equivalence class. Recall Equivalence (3.37):

2K`≡−A(P `, C), (3.37)

which, using the definition of JK from Section 3.8, may be rewritten as the identity

r
2K`

z
=

r
−A(P `, C)

z
. (6.5)

Allow the notational convenience

A`
C := A(P `, C).

By the definition of JK, (6.5) means that in the vector space � g,

2K` − (−A`
C) = 2K` + A`

C = λ

where λ ∈ Λ is an unknown vector. Dividing by 2 is legitimate in � g and gives

K` +
1

2
A`

C =
1

2
λ. (6.6)

Setting h = λ/2 yields

K` = h − 1

2
A`

C .

which is once again an identity on � g. The corresponding identity on the Jacobian is

r
K`

z
=

s
h − 1

2
A`

C ,
{

(6.7)

As K` ∈ J(Γ),

r
K`

z
= K`,

103

and Equation (6.7) can be written as

K` =

s
h − 1

2
A`

C .
{

(6.8)

where, as the lattice vector λ is unknown, there are 22g possibilities for the half-lattice

vector h ∈ Λ1/2. These possibilities, labeled

h1, . . . ,h22g ,

lead to the 22g inequivalent vectors

s
hj −

1

2
A`

C

{
.

The form of the theta-divisor Θ is employed in order to determine which of the 22g possi-

bilities for K` given in (6.8) is correct.

Recall that Proposition 3.38 assures that for any P0 ∈ Γ,

θ(V) = 0

if and only if

V ≡ A(P0,D) + K(P0),

where D is an effective degree g − 1 divisor. Choosing D to be

D = (g − 1)P0

shows that

θ(A(P0,D) + K(P0)) = θ(A(P0, (g − 1)P0) + K(P0))

= θ(0 + K(P0)), 0 = (0, . . . , 0)

= θ(K(P0)) = 0, ∀P0 ∈ Γ.

Specifically

θ(K`) = 0.

104

Therefore it must be that

θ

(s
hj −

1

2
A`

C

{)
= 0 (6.9)

for at least one of the 22g possibilities for hj ∈ Λ 1
2
. To date I have been unable to find

conditions on Γ and P ` that will insure that (6.9) holds for only one hj ∈ Λ 1
2
, although I

suspect such conditions should be attainable. In practice thus far, it has always been the

case that only one of the 22g possibilities for K` yields

θ(K`) = 0.

6.3 Computing a canonical divisor

Section 6.2 proposed a way to compute the VRC by computing the possible vectors indicated

by

K` =

s
hj −

1

2
A(P `, C)

{
(6.10)

where C is a canonical divisor and hj ∈ Λ 1
2

is unknown. In this section I describe a method

for calculating canonical divisors. Note that Example 6 demonstrates an explicit calculation

of a canonical divisor.

According to Section 3.7, the differentials in a basis for the cohomology are all of the

form

ω̃j =
wj
Fy

dx (6.11)

where the numerator wj is given by

wj = wj(x, y)

=
∑

k+m≤d−3

cjklx
kyl,

and Fy is the y-derivative of the polynomial F giving rise to Γ. The differential ω̃ is

over-tilded to denote that it is not normalized. The valuation divisor of any meromorphic

differential, and specifically any holomorphic differential, is a canonical divisor [25].

105

In theory the Abel map of any

ν ∈ Ω1
Γ

is appropriate for calculating (6.10), but to keep the computation time reasonable it is

useful to use the differentials resulting from the DvHD algorithm discussed in Section 3.7.

This is so for three reasons, two of which lead to the same consequence, namely minimizing

distinct places in the divisor. Keeping the number of distinct places in a divisor low saves

computational effort as fewer Puiseux expansions, as well as fewer Abel maps to the places

those expansions represent, must be computed.

1. The valuation divisors of holomorphic differentials in general are comprised of fewer

places than those of meromorphic differentials. The degree of the divisor of a mero-

morphic differential is 2g−2. Thus there must always be 2g−2 more zeroes (counting

multiplicities) than poles. So to minimize places, minimize poles and choose holomor-

phic differentials.

2. The DvHD algorithm first computes an integral basis of the functions that are holo-

morphic on the affine portion of Γ. This basis is “reduced” in a certain sense, and, for

non-singular curves, returns differentials where the numerators are monomial. That

is, a holomorphic differential on a non-singular curve is of the form

ω̃j =
xkyl

Fy
dx, k, l ∈ K . (6.12)

For such differentials it is easy to see that the only possible zeroes occur at places

where x = 0,∞, y = 0,∞ or at places where dx = 0. Thus the places to check are

restricted to the following.

• Places over y = 0: The x-points for which y = 0 are the x-roots of F (x, 0) = 0.

• Places over y = ∞: If the leading polynomial coefficient f0(x) of F (x, y) is

identically unity, then there are no affine x-points for which y = ∞. Otherwise,

there are places over the affine roots of f0(x) = 0 for which y = ∞.

106

• Places over affine discriminant points x = 0,∞: Computing discriminant

points was discussed in Section 5.2.

Once the set of discriminant points with respect to x is computed, finding the places

over these points, as well as the places over x = 0,∞ and y = 0,∞ is done using the

algorithm to compute Puiseux expansions over x-points.

3. The DvHD algorithm is extremely fast. Further, it has been implemented as a Maple

procedure and is already available for use.

If differential ω̃j does not have a monomial numerator, then the situation is slightly more

complicated. Say ω̃j is given by (6.11) for a polynomial wj with at least two terms. In order

to find the zeroes of ω̃j , the resultant R(F,wj) of the polynomials F and w is computed with

respect to y. As stated in Section 5.2, computing resultants is computationally expensive

and often to be avoided, hence the preference for differentials with monomial numerators.

The computation of R(F,wj) yields the set of points in the complex x-plane over which it

is possible for

F (x, y) = 0

and

wj = 0

to have simultaneous solutions. The places over each x-point in this set must be computed

along with the places over the discriminant points and x = ∞.

Whatever the form of the differential ω̃j , denote by Xj the set

Xj =

{
x = α ∈ � : ∃Qα

l ∈ Γ : ω̃
∣∣∣
Qα

l

= 0

}
(6.13)

of points x = α over which there are places Qα
l which may satisfy

ω̃j

∣∣∣
Qα

l

= 0. (6.14)

107

Condition (6.14) may be stated, as it appears in the algorithm, in terms of valuations:

val(ω̃j, Q
α
l) = val

(
wj
Fy

dx,Qα
l

)

= val(wj , Q
α
l) + val(dx,Qα

l) − val(Fy, Q
α
l) > 0.

Remarks:

• The sets Xi are perfectly adequate from the point of developing an algorithm. However,

when implementing the algorithm I noticed a significant gain in efficiency if Xi is

ordered such that the places over

x, y = ∞ and x, y = 0

appear first. The efficiency this induces will be pointed out in the notes directly

following Algorithm 2.

• Computing the sets Xj as in (6.13) gets arbitrarily complex for singular curves. Recall

from Section 3.7 that imposing regularity at discriminant points imposes conditions on

candidate differentials. These conditions get satisfied by taking linear combinations

of the candidate differentials. As these linear combinations involve more terms, the

resultants computed with them also have more terms, and thus require more time to

compute, and have more solutions.

• In principle only one divisor is needed in order to compute the VRC, however, the

implementation of the VCR offers an option to validate the computation using divisors

arising from all g basis elements of the cohomology.

108

Algorithm 2. Canonical divisor(s):

⇒: ℵ = false (true).

⇐: a canonical divisor C (g canonical divisors C1, . . . , Cg).

1. initialize Dj := 0; compute W := {ω̃1, . . . , ω̃g} and the sets Xj

2. for ω̃j ∈ W do

A. for αk in Xj do

i. Q := {Qαk

1 , Qαk

2 , . . .}.

ii. for Qαk

l in Q do

a. qjkl := val
(
ω̃j, Q

αk

l

)
.

b. if qjkl = 0 then increment k and goto Step 2.A

else if qjkl > 0 then

1. Dj := Dj + qjklQ
αk

l

2. if degDj = 2g − 2 then

α if ℵ = false then return C := Dj

else remove ω̃j from W and store Cj := Dj.

end if

end if (ends II.A.2. b. 2)

3. if degDj > 2g − 2 then error end if

end if (ends 2.A.ii.b)

end do(ends 2.A.ii)

end do (ends 2.A)

end do (ends 2)

3. if ℵ = false then error end if

109

4. if for all j it is true that degDj = 2g − 2 then

A. return {C1, . . . , Cg} = {D1, . . . ,Dg}

else error (continues 4)

end if (ends 4)

Notes on Algorithm 2:

⇒: The variable ℵ is a flag: if ℵ is false, then one canonical divisor is computed. Other-

wise Algorithm 2 attempts to compute all g canonical divisors arising from the basis

holomorphic differentials resulting from the DvHD algorithm.

1 The variables Dj are initialized to zero for

j = 1, . . . , g.

This variable will hold the divisors as they are constructed. Computing holomorphic

differentials is discussed in Section 3.7.

Computing the sets Xj as in (6.13) is valid, but a time savings is realized if a particular

order is imposed. Further savings are realized if the discriminant points and zeroes

of the numerators of the differentials are only computed as needed. That is, the first

time through step 2.A, α1 := ∞ and the places over ∞ are computed. If there is

a basis holomorphic differential that has 2g − 2 zeroes (including multiplicities) at

places over x = ∞ and only one divisor is requested, then the algorithm terminates

in Step 2.A.ii.b. 2. α. If a second time through Step 2 is needed the places over

y = ∞ are checked. Thereafter the discriminant points, and points for which it may

be that wj = 0, are checked in turn. While it is certainly possible to construct a

curve such that this amendment will make the algorithm perform worse, it has been

my experience that for curves with a “reasonable” number of singularities, a savings

is realized.

110

2 The differential ω̃j is removed from the set W at Step 2.A.ii.b. 2. α when 2g − 2

zeroes of ω̃j have been found. If ℵ =false the algorithm terminates, and if not it

continues until all the differentials have been removed. Once all the differentials have

been removed control passes to Step 3.

2.A Please see the notes for Step 1.

2.A.ii.a Computing qjkl, the valuation of the j-th differential at the l-th place over the k-th

point αk ∈ Xj , is done in pieces. Recall that qjkl is given by

qjkl : = val
(
ω̃j, Q

αk

l

)

= val

(
wj
Fy

dx,Qαk

l

)

= val
(
wj, Q

αk

l

)
+ val

(
dx,Qαk

l

)
− val

(
Fy, Q

αk

l

)
.

This also increases efficiency as the valuations of the differential dx and the y-derivative

of F must be computed only once for each place.

2.A.ii.b A goto statement is not actually used, but the control flow is the same as if one had

been used.

2.A.ii.b. 1 Update the j-th temporary valuation divisor to contain place Qαk

l qjkl times.

2.A.ii.b. 1. α If ℵ = false then only one divisor is required. The algorithm terminates after returning

C := Dj .

If ℵ = true the algorithm continues until 2g−2 zeroes are found for each of the g basis

differentials.

2.A.ii.b. 3 If more than 2g − 2 places are found then an error has certainly occurred as the

differentials in W are holomorphic. In an ideal world this check is unnecessary, but is

nonetheless preformed as it is computationally inexpensive.

111

3 If only one divisor is desired, then this step is only reached if no differential is found

with at least 2g−2 zeroes. Again, this check should not be needed, but it is performed

as it is not computationally expensive.

4 If the conditional in this step is true, then g differentials have been found, each with

2g − 2 zeroes. Each divisor has the appropriate degree, and all possible places for

zeroes have been checked.

6.4 Approximating the θ-function

As seen in the previous section, computing the VRC relies on computing values of the

Riemann θ-function. Specifically I wish to test (6.9) for the 22g possibilities for hj ∈ Λ 1
2
.

Calculating an exact value of a g-phase θ-function requires calculating a g-tuple infinite

sum. This is generally not possible. Further, if as in this application the matrix B is known

only approximately, then exact calculation of θ(z) is not possible for general z. Computing

approximate values of θ-functions is the subject of [14], and the algorithm presented here

to compute the VRC relies on the methods therein. In particular, let

K(P0) =

{
κj : κj =

s
hj −

1

2
A(P0, C)

{
, hj ∈ Λ 1

2
, j = 1, . . . , 22g

}

be the set of candidates for the VRC, K(P0). If it can be established that

θ(κj) ≈ 0

θ(κk) ≈/ 0

k = 1, . . . , ĵ, . . . , 22g ,

where ĵ denotes that this j is omitted from the list, then as

K ∈ Θ,

it must be that

K(P0) = κj .

112

In [14] it is shown that, given an error bound ε, it is possible to construct a set

Nε = {n1,n2, . . .} (6.15)

of integer vectors

n1,n2, . . .

such that

ϑ(z|B) ≈
∑

n∈Nε

e2πi(
1
2
n·Bn+z·n) , (6.16)

where ϑ(z|B) is the purely oscillatory part of θ(z|B) and the absolute error of the sum (6.16)

is bounded above by ε. As will be shown shortly, the purely oscillatory part ϑ has the same

zero set as the θ-function itself. That is

ϑ(z) = 0

implies

z ∈ Θ.

I will state without proof the relevant theorem from [14], however some preliminaries are

needed. Recall that, given a Riemann matrix B associated with the surface Γ, the definition

of the θ-function is

θ(z|B) =
∑

n∈ J g

e2πi(
1
2
n·Bn+z·n) , (6.17)

where the summation is over integer vectors n in
� g. Following [14], let

z = x + iy, and B = X + iY

be the decompositions into real and imaginary parts. Then, because =(n) = 0, Equa-

tion (6.17) is

θ(z|B) =
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)−2π(1

2
n·Yn+n·y)

=
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)e−2π(1

2
n·Yn+n·y)

=
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)e−π(n·Yn+n·y+n·y+y·Yy−y·Yy),

113

(recalling that n · y = y · n)

=
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)e

−π
“
n·Yn+Y

−1
Yy·n+n·y+y·Yy−y·Yy

”

.

As Y
t = Y

=
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)e

−π
“
n·Yn+Y

−1
y·Yn+n·y+y·Yy−y·Yy

”

=
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)e

−π
““

n+Y
−1

y
”
·Y

“
n+Y

−1
y

”
−y·Yy

”

= eπy·Yy
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)e

−π
“
n+Y

−1
y

”
·Y

“
n+Y

−1
y

”

.

As Y is strictly positive definite, Y
−1 exists and is strictly positive definite [14]. Thus

the general term in the sum is a purely oscillatory factor:

e2πi(
1
2
n·Xn+n·x)

multiplied by a factor:

e
−π

“
n+Y

−1
y

”
·Y

“
n+Y

−1
y

”

that is exponentially damped because

v · Yv > 0

for real Y and v. The overall factor

eπy·Yy (6.18)

accounts for all the exponential growth of the θ-function. Define the purely oscillatory part

ϑ as

ϑ(z|B) =
∑

n∈ J g

e2πi(
1
2
n·Xn+n·x)e

−π
“
n+Y

−1
y

”
·Y

“
n+Y

−1
y

”

(6.19)

= e−πy·Yyθ(z|B). (6.20)

Note that as the overall factor (6.18) is non-zero, the zero structure of θ and ϑ are identical.

114

Let [w] denote the vector nearest w with integer components. Further, let

Y = T
t
T

be the Cholesky decomposition of Y. It is now possible to state a slight rephrasing of the

Uniform Approximation Theorem from [14].

Uniform Approximation Theorem. The purely oscillatory part of the Riemann theta

function can be uniformly approximated in z = x + iy by

ϑ(z|B) =
∑

n∈Nε

eπiv(n)·Xv(n)e2πiv(n)·xe−‖v′(n)‖2
. (6.21)

where

v(n) = n −
[
Y

−1y
]

v′(n) =
√
πT

(
v(n) + Y

−1y
)
,

Nε = {n ∈ � g : π (n − c) · Y(n − c) < R2(ε)},

and

c = (c1, . . . , cg), cj ∈
(
−1

2
,
1

2

)
, j = 1, . . . , g.

The radius R(ε) is the greater of

√
2g + ρ

2

and the real positive solution of

ε =
g2g−1

ρg
Γ

(
g

2
,
(
R− ρ

2

)2
)
,

where Γ is the incomplete Gamma function. The value ρ is the distance of the shortest

lattice vector in the lattice given by

{v′(n) : n ∈ � g}.

The absolute error in the sum in (6.21) is bounded by ε.

115

Thus it is possible to compute the Riemann θ-function with a controlled error. The

algorithms presented in [14] are implemented in Maple and available in versions 9 and greater

under the name RiemannTheta. Since Maple allows for arbitrary precision computation, this

means that θ-functions can be computed with arbitrarily small error. It is clear that the

number of terms in the finite sum (6.21) will tend to grow exponentially in the size g of the

matrix B, that is, in the genus of the underlying surface Γ. This leads to a practical limit

for some combination of genus and accuracy. In the current implementation of the VRC,

this limit is pushed back by compiling the procedure to compute the finite sum in (6.21).

6.5 Computing the correct half-lattice vector

I present an outline of the algorithm for computing the vector of Riemann constants K(P `)

of the left place P `. Recall that once K` has been computed, K(P0) follows as

K(P0) = K` − (g − 1)A(P0, P
`)

for any P0 ∈ Γ. The function of the following algorithm is to determine, for a particular

canonical divisor C, the correct half-lattice vector hj such that

K` =

s
hj −

1

2
A(P `, C).

{

Note that this is an exact computation. That is, there is no error in hj, aside from that

the computation of the matrix B. Further, once hj is known, the algorithm to compute the

VRC may be trivially stated, and is as accurate as the algorithm to compute the Abel map.

The basic idea of Algorithm 3 is to use three “filter passes” to eliminate incorrect half-

lattice vectors. Many choices were made heuristically when developing this algorithm. For

instance, the choice of using three passes, as well as the choice of filtering mechanism in

each pass, was made after much trail-and-error. There are of course infinitely many ways

to fine tune the filtration mechanism. The over-arching approach that I use is to attempt

to keep any particular filter pass from taking an order of magnitude more effort than the

others. This seems, at least in testing, to keep the computational effort reasonable.

Steps 3 through 5 in Algorithm 3 make up the first filter pass. Likewise, Steps 6 through 8

make up the second filter pass. The third filter pass is encompassed by Step 9.

116

Algorithm 3. The half-lattice vector:

⇒: a Riemann surface Γ

⇐: a canonical divisor C and half-lattice vector h

1. compute tolerances ε1, ε2, divisor C and vector

Z =
1

2
A(P `, C)

2. J = (1, . . . , 22g)

3. compute list Nε1 and construct finite-sum ϑ, denoted by Tε1

4. for j in J do

A. κj := Jhj − Z.K

B. if ‖Tε1(κj)‖ > ε1 then remove j from J end if

end do (ends 4)

5. if J empty then error

else if J has exactly one element j∗ then return C and hj∗

end if (ends 5)

6. compute Nε2, divisor D0 and construct Tε2

7. for j in J do

A. κ̃j :=
q
hj − Z + A(P `,D0)

y

B. if ‖Tε2(κ̃j)‖ > ε2 then remove j from J end if

end do (ends 7)

117

8. if J empty then error

else if J has exactly one element j∗ then return C and hj∗

end if (ends 8)

9. while J is not empty do

A. compute Dk

B. for j in J do

i. κ̃j :=
q
hj − Z + A(P `,Dk).

y

ii. if ‖Tε2(κ̃j)‖ > ε2 then remove j from J end if

iii. if J empty then error

else if J has exactly one element j∗ then return C and hj∗

end if (ends 9.B.iii)

end do (ends 9)

10. error

Notes for Algorithm 3:

⇒: The surface Γ is the only argument for the algorithm. The surface is given as a

polynomial in two variables.

⇐: If the method is successful and exactly one half-lattice h is found then it and the

divisor C are returned. Otherwise an error is returned.

1 Computing the tolerances ε1 and ε2 is discussed in Section 6.6. For now let it suffice

to say that these values are computed so as to balance the amount of computational

effort done by the first and second filter passes. The goal is to compute ε1 in order

to first evaluate ϑ somewhat inaccurately, but cheaply. The inexpensive evaluations

filter out candidates that are definitely not zero.

118

Algorithm 2 is used to compute a canonical divisor.

Computing the Abel map is the subject of Chapter 5. The Abel map is computed

with error tolerance ε2.

2 The list

J = (1, . . . , 22g)

is used to keep track of which hj are still candidates. The half-lattice vector hj is

constructed based on the 2g digit binary representation of the number j. For example,

if g = 4, there are

28 = 256

possible half-lattice vectors. Suppose j = 123, the binary representation of which is

1111011.

As this has only 7 digits, pad it with a zero at the front to form the 8 element vector

jbin as

jbin =
(
0 1 1 1 1 0 1 1

)t
.

Then h123 is given by

h123 =
1

2

(
1 B

)
jbin.

Elements of J are removed in Steps 4.B, 7.B and 9.B.ii if

T (κj) ≈ 0

for the induced candidate κj.

3 The list Nε as in (6.15) is computed using the algorithm discussed in [14]. The length

of Nε grows exponentially in the genus of the underlying curve due purely to the

increase in the dimension of � g. As ε is decreased, the radius R(ε) increases. The

119

volume enclosed by the bounding ellipsoid increases like R(2g), so of course increasingly

more vectors are added to Nε when asking for higher accuracy.

Denote by Tε the finite-sum version of the purely oscillatory part of the θ-function,

given explicitly as

Tε(z|B) =
∑

n∈Nε

eπiv(n)·Xv(n)e2πiv(n)·xe−‖v′(n)‖2
.

The computational time for this algorithm is essentially all spent in the evaluation

of Tε. For a fixed genus, the evaluation time increases significantly with decreasing ε

due to the additional vectors in Nε. For this reason the algorithm recursively “filters”

the candidates κj . By judiciously choosing ε1 on the first pass, many candidates are

eliminated with relatively little effort.

In the Maple implementation of this algorithm I use the command RiemannTheta to

compute Nε. I developed, following [14], Maple code to construct and compile Tε.

There is a (highly) reduced set of functions that Maple can compile on-the-fly. One

may write Maple functions using this reduced set, and then have Maple compile the

function. Note that Tε1 and Tε2 are not the same function, in either the compiled or

non-compiled form. The compiling time is not trivial, but the compiled code evaluates

significantly faster. The down side to using compiled code, aside from the overhead

incurred by compiling, is that accuracy is limited to double precision floating point

numbers. Further, writing Maple code to compile functions is extremely unpleasant.

5 If J is empty, then no vector κj was found such that

ϑ(κj) ≈ 0.

The error message returned reflects this shortcoming. If J has exactly one element,

say ĵ, then hĵ , as well as the canonical divisor C that was used to find it, are returned.

Note that the half-lattice vector hĵ is an exact result.

6 The list Nε2 is computed in direct analogy with Step 3.

120

The effective, degree g − 1 divisor D0 is chosen as

D0 = P1 + · · · + Pg−1, Pk 6= Pl, k 6= l,

where all the places Pk are regular places. More detail is given in Section 6.6, and an

example computation is given in Section 8.2.

7.A Recall that Proposition 3.15.2 says that

θ(W) = 0

if and only if

K(P `) + A(P `,Dk),

where K(P `) is the VRC and Dk ∈ Sg−1Γ. Thus, if the candidate κj actually is the

VRC, then the perturbed candidate κ̃j given by

κ̃j :=
r
hj − Z + A(P `,D0)

z
(6.22)

must also be in Θ. Thus it must be so that

θ(κ̃j∗) < ε2

for the correct half-lattice vector hj∗ . On the other hand, it is only possible this is so

for other hj. Thus perturbing the candidates makes it very unlikely that a candidate

vector that is not the VRC will evaluate (under Tε) close to zero on both the first and

second passes. This is demonstrated explicitly in Section 8.2.

9.A When computing A(P `,D0) in Step 7.A, the Abel map A(P0, Pj) of each place Pj

was computed. Thus the Abel map of any divisor consisting of only the places

P1, . . . , Pg−1 ∈ D0

may be computed as a simple vector sum. Specifically, any divisor Dk given by

Dk = m1P1 + · · · +mg−1Pg−1

m1, . . . ,mg−1 ∈ K (6.23)

m1+ · · · +mg−1 = g − 1

121

may be easily computed.

9.B.ii It would seem sensible to compute a separate tolerance ε3 for this filter pass, but ex-

perience has shown this not to be needed. Approximate absolute values are computed

to accuracy ε2 again in this step.

10 If this step is reached, then more then one candidate half-lattice vectors remain.

Return an error to this effect.

The algorithm to compute the VRC is quite simple to outline, and for the sake of

completeness I do so below.

122

Algorithm 4. The vector of Riemann constants:

⇒: a Riemann surface Γ, place P0 ∈ Γ and requested accuracy ε

⇐: vector of Riemann constants K(P0)

1. compute Riemann matrix B

2. compute canonical divisor C and half-lattice vector h.

3. compute A(P0, P
`) to accuracy ε

4. return K(P0) given by the system

Kj(P0) =
1 +Bjj

2
− (g − 1)A(P0, P

`) −
(r

h − A(P `, C)
z)

j
.

Note that any error messages that may occur do not appear in the outline of Algorithm 4.

Should errors occur, the user is informed by either Algorithm 2 or 3.

6.6 Filtering candidate half-lattice vectors

Algorithm 3 makes use of three filter passes to eliminate incorrect candidate half-lattice

vectors. The three passes each use two filtering mechanisms.

• The first filter mechanism is the approximated ϑ function.

• The second filter mechanism is the zero set, Θ, of the ϑ-function.

As stated earlier, the decision to use three filter passes is heuristic, and perhaps there

are better choices. So too with the way in which the two different mechanisms are balanced

within each of the three passes. In the remainder of this section I will outline how the first

of the filter mechanisms is currently implemented, and present some justification for the

choices made.

123

Recall that ϑ denotes the purely oscillatory part of the Riemann θ-function as explained

in Section 6.4. Further recall the notation Tε from Algorithm 3 to denote the finite sum

approximation of the ϑ-function which is accurate to within ε.

The goal of computing ε1 and ε2 effectively is to minimize the time needed to compute

the half-lattice vector. On the first pass of Algorithm 6.4 all 22g vectors must be tested,

but by choosing a relatively high value for ε1, the evaluations of Tε1 are kept relatively

inexpensive. The relatively high value of ε1 can still be used to eliminate vectors for which

Tε1 definitely does not evaluate to zero. The value of ε2 is chosen to make it almost certain

that no vector for which ‖Tε2‖ 6= 0 is passed through the filter.

Inspection of (6.21) shows that the number of operations for each ϑΣ evaluation is

governed by the evaluation of the quadratic form

v(n) · Xv(n)

in the exponential, and the number of vectors in the Nε. The computational cost for the

evaluation of the quadratic form is only a function of the genus g, and scales as g4. The

number of vectors in Nε increases essentially linearly with the volume of the bounding

ellipsoid with “radius” R(ε). Thus the number of operations per evaluation of Tε scales as

g4Rg(ε).

Denote by

Op1 and Op2

the approximate number of floating-point operations performed on the first and second filter

passes in Algorithm 3 respectively. The number Op1 and Op2 scale with the genus g and

with the absolute errors ε1 and ε2. As the genus is fixed for any particular computation,

the scaling with εj , j = 1, 2 is the primary concern. Ignoring the operations to compute

the quadratic form and the exponential, which are the same for each pass, the number of

floating-point operations for the first pass scales like

Op1 ∼
#J︷︸︸︷
22g Rg(ε1)︸ ︷︷ ︸

#Nε1

, (6.24)

124

where J is the set of indices of the candidate vectors and Rg() = (R())g. On the second

pass the number of operations scales like

Op2 ∼ 22g

σ(ε1)
Rg(ε2), (6.25)

where σ(ε1) is the factor by which the number of vectors in Nε is reduced by the first pass.

As the absolute error in the evaluation of Tε1 is ε1, if

∥∥∥∥Tε1
(s

hj −
1

2
AC

{)∥∥∥∥ > ε1,

then

ϑ

(s
hj −

1

2
AC

{)
6= 0.

The factor σ(ε1) depends on the probability

prob

(∥∥∥∥Tε
(s

hj −
1

2
AC

{)∥∥∥∥ ≤ ε

∣∣∣∣hj ∈ Λ 1
2

)
. (6.26)

That is, the probability that the absolute value of Tε(κj) is less than ε for the candidate

VRC induced by the half-lattice vector hj . I make the assumption that (6.26) can be

approximated by ε for all hj except the correct one hj∗ , for which

s
hj∗ −

1

2
AC

{
= K(P `).

Thus I assume

prob

(∥∥∥∥Tε
(s

hj −
1

2
AC

{)∥∥∥∥ ≤ ε

∣∣∣∣hj ∈ Λ 1
2

)
= ε. (6.27)

To make this approximation I assume the following.

• Γ and P ` ∈ Γ are not such that

ϑ(K(P `) + hj) = 0, 0 6= hj ∈ Λ 1
2
. (6.28)

Said another way: although the VRC

K(P `) ∈ Θ

125

by Proposition 3.15.2, I assume that K(P `) is not exactly a non-zero half-lattice

vector away from any other vector in Θ. If it does happen that (6.28) is satisfied for

some half-lattice vector, then Algorithm 3 will return an error message, and not an

incorrect result.

• The absolute value

∥∥∥∥Tε1
(s

hj −
1

2
AC

{)∥∥∥∥

is a random variable approximately uniformly distributed on [0, 1] as a function of the

index j. The absolute value of ϑ is an order 1 quantity [14], although it is not restricted

to the unit interval. While this assumption is heuristic, it leads to an underestimate

of the factor σε1 in most cases.

The argument used to minimize the computational effort expended by the first and

second filter passes is this. Both passes 1 and 2 are expensive: Pass 1 because of the 22g

candidate vectors in Λ 1
2
, and Pass 2 due to the large unknown number of vectors in Nε2

needed for accurate computation. Choosing ε1 and ε2 such that

Op1 ∼ Op2

means that the effort is essentially balanced, and thus that neither pass is acting as a

bottleneck to the computation. I am aware that this is not actually an optimal condition

in most cases, but experience has shown this choice to work. Thus, ε2 is chosen such that

it is very unlikely that

‖Tε2(κj)‖ < ε2

for any incorrect candidate κj . Assuming the statistics of Tε2(κj) given by (6.27) leads to

the choice

ε2 =
1

22g

126

Then ε1 is chosen such that

Op1 ∼ Op2

22gg4Rg(ε1) ∼
22g

σ(ε1)
g4Rg(ε2)

Rg(ε1) ∼
Rg(ε2)

σ(ε1)

Again using the statistics assumed in (6.27), the factor σ(ε1) can be approximated by ε1.

Thus ε1 is chosen so

ε1R
g(ε1) ∼ Rg(ε2) (6.29)

Recall that R(ε) is given by the maximum of

√
2g + ρ

2

and the real positive solution of

ε =
g2g−1

ρg
Γ

(
g

2
,
(
R− ρ

2

)2
)
,

with Γ the incomplete Gamma-function, and ρ a known quantity based on the Riemann

matrix. Thus Rg(ε2), the right-hand side of (6.29), can be computed and the equations

ε1

√
2g + ρ

2
= Rg(ε2) (6.30)

and

ε1
g2g−1

ρg
Γ

(
g

2
,
(
R− ρ

2

)2
)

= Rg(ε2) (6.31)

solved for ε1 numerically (using Maple, for instance). The tolerance ε1 is then chosen to be

the root of (6.30) if, for the resulting value of ε1,

√
2g + ρ

2
>
g2g−1

ρg
Γ

(
g

2
,
(
R− ρ

2

)2
)

= Rg(ε2),

and the root of (6.31) otherwise. As a final remark, if the result is that ε1 > 0.1 a value of

ε1 = 0.1 is instead chosen. This is an ad hoc cut-off, which may be removed in later versions

of the implementation.

127

Chapter 7

THE IMPLEMENTATION OF THE ABEL MAP: COMPUTATION

AND VERIFICATION

7.1 Syntax of the implementation

In this chapter I provide examples of the algorithm to compute the Abel map by means of

a Maple implementation. This implementation of the Abel map is included in the regular

distribution of Maple 11 (release: Summer 2007). Updated versions may be obtained at

http://www.amath.washington.edu/~bernard/papers.html. The examples also serve to

verify that these algorithms and implementations are performing as desired. The Maple

implementation is called in Maple with the syntax

>AbelMap(F, x, y, P1, P2, digits);

• F is a polynomial in only the variables x and y. The coefficients of F may not be

floating point numbers, but may be irrational if entered as radicals or using the Maple

RootOf notation.

• P1 and P2 are places on the Riemann surface obtained from F. Places are entered in

three ways.

– Regular places: Places over regular points are entered as

(x = α, y = β)

pairs. For example, on the curve arising from

F = y4 + x4 − 1,

the point x = 2 is regular, so the place(s) over 2 may be entered in Maple notation

(see Appendix) as

>P1 := [x = 2, y = RootOf(_Z^4 + 15)];.

128

– Discriminant places and ∞: Places over discriminant points and infinity

must be entered as truncated Puiseux expansions in the variable t. Further, the

y-series must contain enough terms to distinguish the intended place from all

other places over the same point. The curve in Example 3 illustrates this point.

There are four places on this curve over x = 0, and for three of these y = 0 also.

Further, for two of these places, the behavior of the x-component is identical,

thus the behavior of the y-component must be entered explicitly to distinguish

the places. For instance, P2 would be entered as

>P2 := [x = t, y = 2*t];

It is possible that an arbitrary finite number of terms of the y-components must

be specified to distinguish between places. It is highly recommended that users

of the Maple implementation use the command algcurves[puiseux] to compute

places over discriminant points and ∞.

– The algorithmically chosen left place: The flag ‘ZERO‘ signifies that the al-

gorithmically chosen place P ` is to be used. This option is useful when computing

the Abel map of a divisor independent of the place P ′.

• digits is an integer declaring the desired number of correct digits. The implemen-

tation returns a vector of g complex numbers. Each component of the numerically

computed vector should share digits significant figures, in both real and imaginary

parts, with the symbolically calculated component.

For those unfamiliar with Maple, Appendix B explains the syntax and commands needed

to understand the examples below.

7.2 Demonstrating convergence

The genus four Hurwitz curve given by

F = y4 + x4 − 1

129

P
S
frag

rep
lacem

en
ts

−
4

−6−6

−8−8

−10−10

−12−12

−14−14

−16−16

−18−18
−

20
55 1010 1515

20

Requested accuracyRequested accuracy

lo
g(

er
ro

r)
lo

g(
er

ro
r)

Figure 7.1: A plot of the convergence of the Maple implementation. The j-th data point
shows the logarithm of the difference between an approximation with j digits and j + 1
digits of requested accuracy. The “hiccup” in the graph is due to the algorithm obtaining
better than expected accuracy for digits = 9 and only expected accuracy for digits ≥ 10.

is not hyperelliptic, and has branch points

1, i,−1,−i.

In Figure 7.1, I demonstrate that the Maple implementation of the Abel map produces

a Cauchy sequence as the required accuracy is increased. This figure is created by first

computing a sequence

A(2)(P `, i), . . . , A(20)(P `, P)

where P = (i, 0) and

A(j)(P `, P)

is the Abel map computed with digits = j, and then plotting the base-ten logarithmic

difference of the infinity norm

‖A(j) − A(j+1)‖∞.

130

7.3 A hyperelliptic example

All curves that may be written in Weierstrass form

F = y2 − (x− λ1) · · · (x− λ2g+m), m = 1 or 2,

where all the λj are distinct, are hyperelliptic curves of genus g. If m = 1 the branch points

are the 2g + 1 points λj and the point at ∞. If m = 2 the 2g + 2 points λj are the only

branch points.

The Abel map between any two branch points on a hyperelliptic curve is two-torsion [32].

That is, if P ′, P are branch points then

2A(P ′, P) = 2

∫ P

P ′

ω ≡ 0.

In what follows the command ModPeriodlattice(V ,B) returns JV K: the vector V

reduced modulo the period lattice. Thus the unreduced vector is

V = bV c + JV K, bV c ∈ Λ.

With the option ‘fraction‘ the procedure will return the length 2g vector 〈V 〉 such that

each component

〈V 〉j ∈ [0, 1)

and

JV K = [1 B]〈V 〉.

This option simplifies the detection of vectors that are torsion. Start by reading in the

necessary packages and entering a genus 3 plane algebraic curve and computing its associated

Riemann period matrix B.

># read in the packages

>with(algcurves): read("AbelMap.mpl"):

># define a hyperelliptic curve

>F:=y^2 - (x^2 - 1)*(x^2 - 4)*(x^2 - 9)*(x - 4);

131

># calculate the Riemann period matrix

>B := periodmatrix(F, x, y, ‘Riemann‘):

F := y2 − (x2 − 1)(x2 − 4)(x2 − 9)(x− 4)

Next compute the places over a sample set of the branch points of our curve.

># the branch points of F

>X := [-3, -2, -1, 1, 2, 3, 4, infinity];

># compute the Puiseux expansions over the branch points of F

>puis := ‘algcurves/puiseux‘:

>P := seq(op(puis(F, x = X[i], y, 0, t)), i = 1..8):

>P[6]; P[8]; # display two of the places

α := [−3,−2,−1, 1, 2, 3, 4,∞]

P6 := [x = 3 − 240t2, y = −240t]

P8 :=

[
x =

1

t2
, y =

1

t7

]

Next define a function IndexedAbel such that IndexedAbel(j, k, digits) is the

Abel map computed from Pj to Pk with digits significant digits. Compute V =

IndexedAbel(6, 8, 10), the Abel map from the place over x = 3 to the place over x = ∞
with 10 significant digits.

>IndexedAbel := (j, k, digits) -> AbelMap(F, x, y, P[j], P[k],

t, digits):

>V := A(6, 8, 10);

[.5362947073 − .2163229247 ∗ I,−.5700652852 + .3104163172 ∗ I,

.4395355374 − .4252823968 ∗ I]

132

Verify that the vector V is two-torsion by verifying that 2〈V 〉 is “nearly integral,” i. e.

‖2〈V 〉 − M‖∞

is small, with

M ∈ � 2g

the vector closest to 〈V 〉.

># <V> is denoted by ‘BraVKet‘

>BraVKet := AbelMap:-ModPeriodLattice(V, B, ‘fraction‘);

BraV Ket := [.3732 10−13 , .999999999999965, .500000000000197620,

.999999999999978, .126604458540559303 10−12 , .500000000000074]

># InfNorm(z) computes the infinity norm of the vector z

># minus the closest integer vector

>InfNorm := z -> max(op(map(w -> abs(round(w) - w), z))):

>DeltaInteger := InfNorm(2*BraVKet); # compute infinity norm

DeltaInteger := .397 10−12

Figure 7.2 demonstrates that the Maple implementation of the Abel map is converging.

It is constructed as follows. Compute 8 × 8 matrices V(digits) such that Vj,k(digits) is

the Abel map computed from Pj to Pk with digits significant digits. Each component

of V(digits) is a vector in � 3. Reduce each of these vectors modulo the period lattice,

and each of these reduced vectors 〈V 〉 is approximately a half-lattice vector in J(Γ). Then

compute the 8 × 8 matrices DeltaInteger(digits) such that

DeltaIntegerj,k(digits) = ‖2〈Vj,k(digits)〉 − M‖∞

133

P
S
frag

rep
lacem

en
ts

−4

−6

−8

−10

−12

−
14

−
16

−
18

−
20

5 10

1520

Requested accuracy

lo
g(

er
ro

r)

Figure 7.2: A plot of the convergence of the Maple implementation. The y-axis is the
logarithm of the maximum difference from a lattice vector over all the entries of the matrix
A. The x-axis is the accuracy requested.

where

M ∈ � 6

is the integer vector closest to

2〈Vj,k(digits)〉.

In Figure 7.2 the base-ten logarithm of the largest component of DeltaInteger(digits) is

graphed for values of digits from one to ten.

7.4 Computing the Abel map of divisors of meromorphic functions

Many algorithms that compute objects associated with Riemann surfaces are restricted

in their use. For example it is common for an algorithm to only work in the case of an

elliptic, or hyperelliptic curve (please see [25] for definitions of elliptic and hyperelliptic).

To emphasize the general nature of the Abel map algorithm, in the next two examples I

work with non-hyperelliptic curves. In this example I use that, by Abel’s Theorem, the

134

Abel map of the divisor arising from a meromorphic function is zero modulo the lattice Λ.

Specifically I compute the Abel map of the divisor arising from the function y on the genus

8 surface Γ defined by

F = y8 + xy5 + x4 − x6 = 0.

># define curve, compute genus, establish as non-hyperelliptic

>F := y^8 + x*y^5 + x^4 - x^6: genus(F, x, y);

8

is_hyperelliptic(F, x, y);

false

># enter the divisor of the meromorphic function y

>P[1] := [x = -1/t^4, y = -1/t^3 + t^2/8]:

>P[2] := [x = 1/t^4, y = 1/t^3 + t^2/8]:

>P[3] := [x = -1 + t^5/2, y = t]:

>P[4] := [x = 1 + t^5/2, y = t]:

>P[5] := [x = -t^3, y = t]: P[6] := [x = t^5, y = -t^3]:

>Dvsr := [[1, P[3]], [1, P[4]], [1, P[5]], [3, P[6]], [-3, P[1

]], [-3, P[2]]];

Dvsr :=

[[
1,

[
−1 +

t5

2
, y = t

]]
,

[
1,

[
1 +

t5

2
, y = t

]]
,
[
1,
[
x = −t3, y = t

]]
,

[
3,
[
x = t5, y = −t3

]] [
−3,

[
x =

−1

t4
, y =

−1

t3
+
t2

8

]]
,

[
−3,

[
x =

1

t4
, y =

1

t3
+
t2

8

]]]

135

># compute Abel map of Dvsr asking for 10 digits of accuracy

>A := AbelMap:-DivisorAbelMap(F, x, y, t, ’ZERO’, Dvsr, 10);

A := [−1.701888413 − 1.660865446 I,−.4032208712 + .2717377626 I,

1.645822432 − 1.590163370 I, .9110383714 + .8278818528 I,

−.249748051 + 1.152988939 I, .2595511419 − 1.437472396 I,

−1.222656877 + .8174634287 I, .3898925624 + .4483560160 I]

># compute the Riemann matrix, used to reduce A modulo lattice

>B := periodmatrix(F, x, y, ’Riemann’):

># reduce the vector A

>V := AbelMap:-ModPeriodLattice(A, B, ’fraction’);

V := [.2 10−9, .9999999948, .104151222 10−8 , .999999999, .9999999952,

.9999999991, 0., .9999999981, .9999999982, .9999999977, .9999999950,

.9999999950, .9999999932, .9999999924, .9999999925, .9999999944]

The vector V above is approximately the vector

(0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1),

and thus the vector A is approximately a lattice vector, that is, approximately zero modulo

the lattice Λ.

7.5 Computing the Abel map of divisors of meromorphic differentials

On a genus g Riemann surface, all divisors

Dj = (ωj), k = 1, . . . , g (7.1)

arising from holomorphic differentials

ω, . . . ωg

136

are linearly equivalent and of degree 2g + 2. For these linearly equivalent divisors

A(P,D1) ≡ · · · ≡ A(P,Dg) .

I use this fact to further demonstrate and validate the Maple implementation. Here I slightly

change the curve from the previous example to demonstrate the use of algebraic numbers

as coefficients.

># define an algebraic number

>beta := RootOf(_Z^3 + 7, index = 1):

># define a curve and establish that it is not hyperelliptic

>F := y^8 + x*y^5 + x^4 - x^6*beta; is_hyperelliptic(F, x, y);

F := y8 + xy5 + x4 − x6β

false

Input the places on the Riemann surface Γ defined by

F (x, y) = 0

that constitute the eight divisors

(ω̂1), . . . , (ω̂8)

where ω̂j is the j-th differential from differentials. Choose P ` as the fixed place of the

Abel map by using the flag ‘ZERO‘ as an argument of the Abel map. The places computed

next are used to construct the eight canonical divisors.

The places P1 and P2 are both over the point x = 0, and both are branched.

>P[1] := [x = t^5, y = -t^3]; P[2] := [x = -t^3, y = t];

P1 := [x = t5, y = −t3]

P2 := [x = −t3, y = t]

137

The places P3 and P4 are regular places over the two roots of

x =
√

−β2/7.

>P[3] := [x = 1/2*beta*t^5 + RootOf(beta^2 + 7*_Z^2, index = 1)

, y = t]:

>P[4] := [x = 1/2*beta*t^5 + RootOf(beta^2 + 7*_Z^2, index = 2)

, y = t]:

>P[3];P[4];

P3 :=

[
x =

1

2
βt5 + RootOf

(
β2 + 7 Z2, index = 1

)
, y = t

]

P4 :=

[
x =

1

2
βt5 + RootOf

(
β2 + 7 Z2, index = 2

)
, y = t

]

There are two branch places over x = ∞, these are P5 and P6.

>P[5] := [x = -7/(t^4*RootOf(beta^2 + 7*_Z^2, index = 1)^2*Roo

tOf(-RootOf(beta^2 + 7*_Z^2, index = 1) + _Z^2, index = 1)),

y = -7/(t^3*RootOf(beta^2 + 7*_Z^2, index = 1)^2*RootOf(-Root

Of(beta^2 + 7*_Z^2, index = 1) + _Z^2, index = 1))]:

>P[6] := [x = -7/(t^4*RootOf(beta^2 + 7*_Z^2, index = 1)^2*Roo

tOf(-RootOf(beta^2 + 7*_Z^2, index = 1) + _Z^2, index = 2)),

y = -7/(t^3*RootOf(beta^2 + 7*_Z^2, index = 1)^2*RootOf(-Root

Of(beta^2 + 7*_Z^2, index = 1) + _Z^2, index = 2))]:

>P[5];P[6];

P5 :=

[
x =

−7

t4β2 RootOf(−β + Z2, index = 1)
,

y =
−7

t3β2 RootOf(−β + Z2, index = 1)

]

P6 :=

[
x =

−7

t4β2 RootOf(−β + Z2, index = 2)
,

y =
−7

t3β2 RootOf(−β + Z2, index = 2)

]

138

Form divisors (CD) using integer combinations of these points, compute the Abel maps (A)

of these divisors and reduce the resulting vectors modulo the lattice to obtain vectors (V)

on J(Γ).

>CD[1] := [[2, P[1]], [5, P[3]], [5, P[4]], [1, P[6]], [1, P[7]

]]:

>CD[2] := [[4, P[1]], [2, P[2]], [4, P[3]], [4, P[4]]]:

>CD[3] := [[1, P[1]], [1, P[2]], [3, P[3]], [3, P[4]], [3, P[6]

], [3, P[7]]]:

>CD[4] := [[3, P[1]], [3, P[2]], [2, P[3]], [2, P[4]], [2, P[6]

], [2 ,P[7]]]:

>CD[5] := [[5, P[1]], [5, P[2]], [1, P[3]], [1, P[4]], [1, P[6]

], [1, P[7]]]:

>CD[6] := [[7, P[1]], [7, P[2]]:

>CD[7] := [[2, P[2]], [1, P[3]], [1, P[4]], [5, P[6]], [5, P[7]

]]:

>CD[8] := [[2, P[1]], [4, P[2]], [4, P[6]], [4, P[7]]]:

>A := i -> AbelMap:-DivisorAbelMap(F, x, y, ‘ZERO‘, CD[i], 8):

>BraVKet := i -> AbelMap:-ModPeriodLattice(A(i), B,‘fraction‘):

Again use the function InfNorm. Construct the g×g matrix DeltaInteger where the j, k-th

component is the infinity norm of the difference

BraVKet(j) − BraVKet(k),

where here BraVKet(index) is a function of the index index. As these two vectors are sup-

posed to be identical on J(Γ), this difference should be nearly integral, and the components

of DeltaInteger are small if the Maple implementation is computing correctly.

>DeltaInteger := Matrix(8, (j, k)-> InfNorm(BraVKet(j) - BraVK

et(k))):

139

DeltaInteger :=

10−7 ∗




0.0 2.143 1.273 1.877 3.969 6.095 2.499 2.929

2.143 0.0 2.401 1.254 1.826 3.952 3.235 2.474

1.273 2.401 0.0 2.135 4.227 6.353 1.226 1.854

1.877 1.254 2.135 0.0 2.092 4.218 2.416 1.220

3.969 1.826 4.227 2.092 0.0 2.126 4.508 2.373

6.095 3.952 6.353 4.218 2.126 0.0 6.634 4.499

2.499 3.235 1.226 2.416 4.508 6.634 0.0 2.135

2.929 2.474 1.854 1.220 2.373 4.499 2.135 0.0




,

which confirms the quality of the algorithm and its implementation.

140

Chapter 8

THE IMPLEMENTATION OF THE VECTOR OF RIEMANN

CONSTANTS

8.1 Syntax of the vector of Riemann constants

In this section I provide examples of the algorithm to compute the vector of Riemann con-

stants (VRC) by means of a Maple implementation. This implementation is to be included

in the regular distribution of Maple 12 (release date as yet to be announced). Updated ver-

sions may be obtained at http://www.amath.washington.edu/~bernard/papers.html.

The examples also serve to verify that these algorithms and implementations are perform-

ing as desired. The Maple implementation is called in Maple with the syntax

>RiemannConstants(F, x, y, digits);

• F is a polynomial in only the variables x and y. The coefficients of F may not be

floating point numbers, but may be irrational if entered as radicals or using the Maple

RootOf notation.

• digits is an integer declaring the desired number of correct digits. The implemen-

tation returns a vector of g complex numbers. Each component of the numerically

computed vector should share digits significant figures, in both real and imaginary

parts, with the symbolically calculated component.

The Maple syntax needed to understand the examples below is explained in Appendix B.

8.2 Example computation of the half-lattice vector

In this section I present an example of computing the correct half-lattice vector

h ∈ Λ 1
2

141

such that the VRC of the left-place P ` is given by

K` =

s
hj −

1

2
A(P `, C)

{
, (8.1)

where C is the valuation divisor of a holomorphic differential.

Consider the hyperelliptic curve given in Weierstrass form by the polynomial

F = y2 − (x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25)(x2 − 36).

A basis for the cohomology of the Riemann surface Γ defined by

F (x, y) = 0

is

(
1

y
dx,

x

y
dx,

x2

y
dx,

x3

y
dx,

x4

y
dx

)
.

Note that there are five differentials, agreeing with the fact that F has

2g + 2 = 2(5) + 2 = 12

branch points. The algorithm described in Section 6.3 can be used to compute a canonical

divisor. The following Maple input and output demonstrates this. Alternatively, one may

use the Maple command AbelMap:-CanonicalDivisor, described in Appendix B.

># Read in the needed packages and files

>with(algcurves):

>read("AbelMap.mpl"): read("RiemannConstants.mpl"):

># Define a hyperelliptic curve

>F:=y^2 - (x^2 - 1)*(x^2 - 4)*(x^2 - 9)*(x^2 - 16)*(x^2 - 25)*

(x^2 - 36):

F := y2 − (x2 − 1)(x2 − 4)(x2 − 9)(x2 − 16)(x2 − 25)(x2 − 36)

># Compute the differentials

>omega := differentials(F, x, y);

142

ω :=

[
dx

y
,
xdx

y
,
x2 dx

y
,
x3 dx

y
,
x4 dx

y

]

Again, as per Section 6.3, a divisor composed of only the places over x = ∞ is first sought,

and in this case this is successful. For this particular choice of F , infinity is not a branch

point, and thus there are two places over x = ∞. The places over infinity are computed using

the Maple command AbelMap:-AllBranches. This output of this command is essentially

the same as the output of the command puiseux. The output from puiseux is reformatted,

and the valuations of the curve and the y-derivative of the curve are also output for use by

subsequent routines.

># Compute the places over x=infinity

>Pinf := AbelMap:-Allbranches(F, x, infinity, y, 0, t);

Pinf :=

[[
x =

1

t
, y = − 1

t6
+

91

2t4
− 3731

8t2
+

16263

16
, valuation = −6,

dfdy degree = −6, parameter = t] ,
[
x =

1

t
, y =

1

t6
− 91

2t4
+

3731

8t2
− 16263

16
, valuation = −6,

dfdy degree = −6, parameter = t]]

The parameter dfdy degree in the Maple output above is the valuation of Fy at the places

specified. Notice that, for both places over x = ∞, dfdy degree is given by

dfdy degree = −6.

As x = 1/t for both of the places over x = ∞, the differential dx is given by

dx = − 1

t2
dt.

The valuation of any power of x is given by

val(xj, P inf [l]) = −j, l = 1, 2.

143

Since the five holomorphic differentials are all of the form

ωk =
xk−1

y
dx,

the valuations of the five differentials at places over x = ∞ are given by

val(ωk, P inf [l]) =

xk−1

︷ ︸︸ ︷
−(k − 1) +

dx︷︸︸︷
(−2) −︸︷︷︸

÷

y︷︸︸︷
(−6), l = 1, 2

= 5 − k,

where the over- and under-braces indicate the part of ωk giving rise to each summand in

the valuation. Collecting all this information about the valuations of basis holomorphic

differentials at the two infinite places Pinf [1] and Pinf [2]:

val (ω1, P inf [1]) = 4 = val (ω1, P inf [2]) ,

val (ω2, P inf [1]) = 3 = val (ω2, P inf [2]) ,

val (ω3, P inf [1]) = 2 = val (ω3, P inf [2]) ,

val (ω4, P inf [1]) = 1 = val (ω4, P inf [2]) ,

val (ω5, P inf [1]) = 0 = val (ω5, P inf [2]) .

Recall that any holomorphic differential has, as shown in Example 7, 2g − 2 zeros. As Γ is

a genus five Riemann surface, the differentials

ω1, . . . , ω5

each have eight zeros and no poles. Consider the valuation divisor (ω1)val of the holomorphic

differential ω1. The results above show that (ω1)val consists of at least the places Pinf [1]

and Pinf [2], each with multiplicity positive four. As ω1 has no poles, there are no places

with negative multiplicities, which also guarantees that Pinf [1] and Pinf [2] are the only

places where ω1 = 0. Thus the divisor (ω1)val is

(ω1)val = 4Pinf [1] + 4Pinf [2].

The divisor (ω1)val is canonical as ω1 is an Abelian differential. The work above to compute

a canonical divisor can be circumvented using the implementation of Algorithm 2, available

as the Maple command AbelMap:-CanonicalDivisor.

144

The Maple implementation is used to compute the Abel map of the divisor (ω1)val. Only

four significant figures are displayed although the calculation is performed with 10 digits of

requested accuracy.

># Input the divisor of omega[1]

>CD := [[4, Pinf[1]],[4, Pinf[2]]]:

># Compute the Abel map

>A := AbelMap:-DivisorAbelMap(F, x, y, ’ZERO’, CD, 10);

A := [0.05273 + 1.3532i,−0.07934 − .19752i,−0.02425 + 0.15744i,

0.34410 − 0.06792i,−0.026611 + 0.02784i]

The vector V computed next is the same as vector

AC
2

from Section 6.2. That is V is the Abel map A computed above reduced modulo the period

lattice and divided by negative two. Note that the Riemann matrix (B) in the Maple input

below was computed and stored while computing the Abel map.

># Reduce mod the lattice, negate and halve

>V := -AbelMap:-ModPeriodLattice(A, B)/2;

V := [0.53493 + 0.92887i,−0.55256 − 0.62048i, 0.37357 + 0.59393i,

− 0.36684 − 0.31246i, 0.48237 + 0.28591i]

Using the methods of Section 6.6 the error tolerances ε1 and ε2 for the first and second

passes respectively through Algorithm 3 are calculated. For convenience I will just define

them instead of showing the details of computing them with Maple.

># Define error tolerances

>epsilon[1] := 0.1; epsilon[2] := 0.0004883;

ε1 := 0.1

ε2 := 0.0004883

145

The first filter pass

A compiled procedure1 of the finite sum in (6.21) with error tolerance ε1 is constructed.

># Construct a compiled approximation of the purely ocsilitory

># part of the theta function with max error epsilon[1]

>FiniteSum, SumArgs := CompTheta(V, epsilon[1], B):

The output of the procedure CompTheta, which is not displayed, is a compiled procedure

and a list of arguments required by the procedure. Compiling the procedure requires com-

putational time, but experience has shown this overhead is made up for by the faster eval-

uation times when compared to the interpreted procedure RiemannTheta. The procedure

FiniteSum called as

>FiniteSum(j, SumArgs):

computes the absolute value of the candidate VRC, K `
j, formed with the j-th half-lattice

vector hj as in (8.1). Recall that Γ is a genus five surface, and thus there are

22×5 = 1024

candidates for the half-lattice vector in (8.1). For each choice of the 1024 choices of hj ,

the absolute value of the approximated ϑ-function is computed. The variable ti and the

procedure time() in what follows are used to get a measure of the central processing unit

(CPU) time used. See Appendix B for details on the Maple procedures seq, time(), nops

and ‘if‘.

># Initialize CPU timing variable

>ti:= time():

># Compute the absolute value of the purely oscilitory part

>ABS_K := seq(FiniteSum(j, SumArgs), j = 1..2^(2*g)):

Display the CPU ’time’ used

>time() - ti;

1The arguments shown in the Maple input are simplified for ease of display.

146

16.34

># Construct a list of the candidate indices that pass through

># the first filter

>J1 := seq(‘if‘(ABS_K[j] < epsilon[1], j, NULL), j = 1..2^(2*g

)):

># Count how many candidates are left

>nops(J1);

172

All elements of ABS_K larger than ε1 indicate half-lattice vectors that are no longer candi-

dates after the first pass of Algorithm 3. In the example at hand, there are 172 candidates

for which

ABS Kj < ε1.

The sequence J1 consists of the indices of these remaining candidates. Note that

172

1024
≈ 0.168,

and thus the assumption, from Section 6.6, that the fraction of ϑ evaluations with absolute

value less than εj is approximately εj seems not to be drastically violated, at least at this

point.

The second filter pass

At this stage in Algorithm 3 a generic, effective divisor and its Abel map would be computed.

To show the savings gained by doing so, I will perform the second pass in two different

ways. First, without perturbing the candidates by the Abel map of a generic, effective

divisor. Second, with such a perturbation added to each candidate vector. Note that these

perturbations are not meant to be small in any sense.

1. Construct the compiled procedure to compute the approximate ϑ-function, and use

this procedure to compute the absolute value of the remaining candidate vectors.

147

># Construct a compiled approximate vartheta

>FiniteSum, SumArgs := CompTheta(V, epsilon[2], B):

>ti := time():

Use compiled procedure to approximate absolute values

>ABS_K := seq([j, FiniteSum(j, SumArgs)], j = 1..nops(J)):

Display CPU ’time’

>time() - ti;

7.267

I do not display the next steps explicitly as, while simple, they are difficult to read

when written as a Maple input/output stream. The list J2 consists of the indices and

absolute values of the 20 remaining candidates for the VRC.

>J2;

[16, .261 10−4], [32, .210 10−3], [512, .431 10−4], [536, .682 10−5],

[568, .128 10−3], [635, .445 10−3], [788, .321 10−5], [792, .420 10−4],

[820 , .564 10−4], [855, .439 10−3], [887, .170 10−3], [914, .102 10−5],

[916, .350 10−4], [946, .158 10−4], [977, .185 10−6], [978, .241 10−4],

[1008, .376 10−4], [1009, .328 10−7], [1010, .484 10−3], [1024, .109 10−4]

Note that the absolute value of the 1009-th candidate has an absolute value more

than an order of magnitude smaller than any other. In practice, the error in the

approximation of ϑ is (as is the error in Maple implementation of the approximation)

far smaller than the error bound imposed by choosing ε. Thus at this point it seems

likely that candidate 1009 is the VRC. Of course as this greater accuracy is not

guaranteed further work must be done. Also note that

20

1024
≈ 0.0195

148

which quite a bit greater than

ε2 = 0.0004883,

and thus that the assumption regarding the statistics of the absolute value of ϑ is

definitely violated. However, the desire to balance the computational effort of the

first and second passes (see Section 6.6) is approximately satisfied. This is seen by

noting that the first pass used about 16 units of CPU time, and the second about 7

units, these values are on the same order of magnitude, as desired.

2. To perform the second pass in the manner outlined in Algorithm 3, a generic, effective

degree g − 1 divisor is needed. This divisor,

D0 = P1 + · · · + Pg−1,

is chosen to meet the following three criteria.

A. The Abel map of D0 must be a significant perturbation. That is, D0 should be

chosen such that

‖A(P `,D0)‖ � 0.

Otherwise, for a given candidate half-lattice vector hj , it may be that

‖ϑ(V + hj + A(P `,D0))‖ ≈ ‖ϑ(V + hj)‖ ≈ 0

simply due to the fact that the Abel map of D0 is small in absolute value, irre-

spective of V + hj being on Θ.

B. Divisor D0 is chosen to consist of g − 1 distinct places. Thus, once

A(P `,D0) = A(P `, P1) + · · · + A(P `, Pg−1)

has been computed, a great many other perturbations may be computed simply

as linear combinations of the

A(P `, P1), . . . ,A(P `, Pg−1).

These perturbations may be needed in the third pass of Algorithm 3.

149

C. The computation of A(P `,D0) should be inexpensive.

To fit these criteria, let

D0 = P1 + · · · + Pg−1

where Pj is a regular place given by

Pj =





x = α` − j

y = y`1
(
α` − j

) ,

where

• α` is the left-point (see Section 5.3),

• (α` − j) ∈ � is a point in the complex plane j real units to the left of α` and

• using the notation of Section 5.3, the y-value

y`1(α
` − j)

is the y-root of

F ((α` − j, y) = 0

on sheet one, where the sheets are ordered with respect to the left-place.

The perturbation (dV) displayed below is the Abel map of D0. In analogy with Item 1,

a compiled version of ϑ is constructed, however this time with V+dV replacing V. In

this example computation dV is given by

>dV;

[− .485 10−1 − .661 ∗ I, .730 10−1 + .184 ∗ I, .104 10−1 − .147 ∗ I,

− .198 10−1 + .731 10−1 ∗ I, .245 10−1 − .363 10−1 ∗ I]

150

># Construct a compiled approximate vartheta

>FiniteSum, SumArgs := CompTheta(V + dV, epsilon[2], B):

># Compute the absolute values

>ABS_K := seq([j, FiniteSum(j, SumArgs)], j = 1..nops(J)):

Leaving aside the details, as in Item 1, the list J2 of indices and absolutes values is

displayed below.

>J2;

[977, .476 10−3], [1009, .645 10−6],

Performing the second pass without a perturbation left 20 candidates remaining and

with a perturbation left 2. Thus, in this example, perturbing the candidate vectors

has significantly increased efficiency as 18 fewer candidates must be checked using

the more accurate, and hence more expensive, approximate ϑ-function FiniteSum.

Note that it may be the case that one could construct a curve such that perturbing

candidate vectors induces no increase, or perhaps even a decrease, in efficiency. At

this point I do not know if such a construction is possible, but I can not rule out the

possibility. Every test thus far has shown that a large increase in efficiency is realized.

Algorithm 3 is designed, as much as possible to perform efficiently in the generic case.

The third filter pass

The third pass in Algorithm 3 uses the fact that

ϑ(K(P0) + A(P0,D)) = 0, ∀D ∈ Sg−1Γ

to eliminate the remaining candidates for the VRC. A sequence of divisors

D̃ = D1,D2, . . .

151

is constructed where each D ∈ D̃ is a degree g − 1 divisor which consists only of places in

D0 = P1, . . . , Pg−1.

Thus, as

A(P0,D0) = A(P0, P1, . . . , Pg−1)

= A(P0, P1) + · · · + A(P0, Pg−1)

was previously computed, computing a perturbation A(P0,D) for any

D =∈ D̃

is a matter of taking positive, integer, linear combinations of known Abel maps.

The number of divisors that may be constructed this way is

D̃ =

(
(g − 1)2 + (g − 1) − 1

)
!

((g − 1)2 − 1)!(g − 1)!
,

which grows exponentially in g for g > 2. Practice has shown that nowhere near so many

perturbations are required. In fact, in no test case has it been necessary to compute with

more than two perturbations. Moreover, for curves with higher genus approximating the

ϑ-function becomes very expensive2. With this in mind, only g − 1 of the divisors in D̃ are

considered when implementing Algorithm 3. Specifically, the divisors constructed are

D1, . . . ,Dg−1,

where Dk is given by

Dk = (g − 1)Pk.

If these g−1 divisors are insufficient, the implementation returns an error. Admittedly, this

choice is ad hoc.

Beginning with D = D1, the absolute value

‖ϑ(V + hj + A(P0,D))‖ (8.2)

2I present the following as a benchmark. Approximating, to within 0.001, the ϑ-function on a of a non-
hyperelliptic, sparse, genus eight curve using Maple 10 on a Dell laptop with a 2.00GHz Intel Pentium
processor took about a minute for each candidate half-lattice vector

152

Table 8.1: This table shows the results of testing that the candidate VRC resulting from
the half-lattice vector with index 1009 is in fact on Θ. The right-hand column displays the
approximated absolute value of ϑ(AC/2+h1009 +A(`P), Pj), where Pj is shown in the left-
hand column. The middle column shows the magnimtude of the perturbation A(`P), Pj).

Pj ‖A(P `, (g − 1)Pj)‖ ‖ϑ‖
(
−52

5
,−133056

15625

√
8441017311

)
0.919 0.189 10−5

(
−47

5
,−133056

15625

√
1936133706

)
0.814 0.115 10−5

(
−42

5
,− 3456

15625

√
5004490563001

)
0.669 0.218 10−5

(
−37

5
,−12096

15625

√
4508923991

)
0.448 0.105 10−5

is approximated to within ε2 subsequently for each candidate remaining: that is, for each

j ∈ J2. If the approximate value of (8.2) is greater than ε2, then j is removed from J2.

This is done for each

D = D1, . . . ,Dg−1

until only one candidate remains. As stated above, if this does not exclude all but one

candidate, then an error is returned.

In the example computation under consideration, the Abel map

dV = A(P `, (g − 1)Pg−1)

is used as the first perturbation of the third pass. The computation of the perturbation dV

is omitted, but the result is given by

>V + dV;

153

[.486 + .268 ∗ I,−.480 − .437 ∗ I, .384 + .447 ∗ I,

− .387 − .239 ∗ I, .507 + .250 ∗ I]

># Construct an approximate vartheta

>FiniteSum, SumArgs := CompTheta(V + dV, epsilon[2], B):

># Compute the absolute value for half-lattice vector 977

>FiniteSum(977, SumArgs);

.22910−2

>FiniteSum(1009, SumArgs);

.18910−5

> Recall the value of epsilon[2]

>epsilon[2];

0.0004883

As 0.00229 is larger than ε2 and thus

0 /∈ [0.00229 − ε2, 0.00229 + ε2]

it is necessarily true that

‖ϑ (V + dV + h977) ‖ =

∥∥∥∥ϑ
(

AC
2

+ (g − 1)A(P `, Pg−1) + h977

)∥∥∥∥ 6= 0,

However, at least within ε2

‖ϑ (V + dV+ h1009) ‖ =

∥∥∥∥ϑ
(

AC
2

+ (g − 1)A(P `, Pg−1) + h1009

)∥∥∥∥ ≈ 0.

Figure 8.1 displays the results of further testing that the half-lattice vector h1009 gives

the correct VRC. Specifically the table shows that

s
AC
2

+ h1009 + A(P `,Dk)

{
∈ Θ

154

for the divisors

D1, . . . ,Dg ∈ Sg−1Γ.

The left-hand column displays the regular place Pj as indicated by an ordered pair (x, y)

satisfying

F (x, y) = 0.

The absolute values in the center column are displayed to demonstrate that the perturba-

tions

dVk = A(P `, (g − 1)Pk)

are not small. For comparison note that the first g lattice vectors in Λ have a magnitude

of one. Finally, the right-hand column demonstrates that the perturbed candidate is such

that

∥∥∥∥ϑ
(

AC
2

+ h1009 + dVk

)∥∥∥∥ ≈ 0

to within ε2 = 0.0004883.

155

Chapter 9

APPLICATIONS OF THE ABEL MAP

9.1 Integration of algebraic functions

My primary motivation for constructing an algorithm to compute the Abel map is for use in

the construction of multi-phase solutions of integrable equations. A second motivation for

the numerical computation of the Abel map is that it can be used to compute the torsion of

a divisor. This, in conjunction with a theorem of Risch, can be used to answer the question

of whether certain algebraic functions can be integrated in finite terms. The full details of

this concept are beyond the scope of this dissertation and for details the reader is referred to

the literature [11, 34, 35, 23]. However, the mathematics used in this section can be gleaned

from [25]. I will give an example in which the existence of an elementary anti-derivative is

established by using the Abel map, and then construct that anti-derivative.

For my purposes a torsion divisor with torsion index τ ∈ K is a divisor D with the

property

A(P ′, τD) = τA(P ′,D) ≡ 0, (9.1)

where τ is the smallest positive integer for which (9.1) holds [11]. The first equality is an

identity by the definition of the Abel map applied to a divisor. In order to discuss torsion

divisors in relation to the integration of algebraic functions I first define valuations, valuation

divisors (introduced previously), residues and residue divisors on Riemann surfaces. In these

definitions

• Γ is a Riemann surface,

• Q is a place on that surface,

• t is a local coordinate at Q,

156

• u is a meromorphic function on Γ and

• ν is a meromorphic differential on Γ.

Definitions:

• Valuation: Near Q the function u is given by

u = tkh(t),

where h(0) 6= 0 and k ∈ � may be negative or zero and h(t) is a holomorphic

function. The integer k is the valuation of u at Q, denoted val(u,Q).

• Residue: If the differential ν is given near Q as

ν =
∑

j

νj t
j dt,

then

ν−1 = res(ν,Q)

is called the residue of ν at place Q.

• Valuation divisor: The valuation divisor (ν)val of a function u is

(u)val =
∑

val(ν,Q)Q

where the sum is over places on Γ for which

val(u,Q) 6= 0.

• Residue divisor: The residue divisor (ν)res of a differential ν is

(ν)res =
∑

resQ(ν)Q

where the sum is over places on Γ for which

res(ν,Q) 6= 0.

Note that, unlike the divisors of meromorphic functions, the coefficients of Q in this

divisor definition are not to be interpreted as multiplicities.

157

Given a meromorphic function u, I construct the meromorphic differential

d log u =
du

u
.

Near Q

d log u = k
dt

t
+

dh

h
. (9.2)

As h(0) 6= 0, (9.2) shows that

res(d log u,Q) = k = val(u,Q),

and as Q is a general place on the surface,

(d log u)res = (u)val.

Note that (9.2) shows that poles of d log u only occur at places Q where

val(u,Q) 6= 0,

and therefore d log u has no poles that do not appear in

(d log u)res = (u)val.

The following proposition is essentially one direction of Risch’s Theorem [34, 35].

Proposition 9.1.1. Suppose ν is an Abelian differential of the third kind. Further suppose

that

(ν)res = D =
∑

j

(pjPj − qjQj) ,

where pj, qj are positive integers. If D is a torsion divisor, then there exists a function u

such that

(u)val = D,

and further,

ν − d log u

is holomorphic.

158

Proof. Since D is a torsion divisor there exists a positive integer τ such that

τA(D) = A(τD) ≡ 0.

As the sum of the residues of a meromorphic differential is zero [25],

degD = 0.

The degree of τD is also zero, so by Abel’s Theorem there exists a function u such that

(u)val = D.

Above it was shown that

(u) = (d log u)res

and that the poles in the residue divisor are the only poles of d log u. As ν was supposed to

be an Abelian differential of the third kind the pole structure of ν and d log u are identical.

Thus the difference

ν − d log u (9.3)

is a holomorphic differential.

If the holomorphic difference 9.3 is zero, then the meromorphic differential ν can be

integrated in closed form. That is, if

ν − d log u = 0

then

∫
ν = log u+ c.

I use this proposition to integrate an algebraic function. In this example I use the

Maple implementation of the Abel map to verify that the residue divisor of (9.4) is a

torsion divisor. Other algorithms and implementations exist for establishing that a divisor

is torsion [11, 12]. For instance, using such algorithms the computer algebra system Axiom

is able to compute (9.4). The curve in this example comes from [20], and the methods used

are used in [23]. The values of the coefficients of the numerator of (9.4) are essential for the

existence of the anti-derivative.

159

Example 9. Evaluate the integral

∫
39x2 + 9x− 1√

x6 + 4x4 + 10x3 + 4x2 − 4x+ 1
dx . (9.4)

Equation (9.4) can be seen as the integral of the meromorphic differential

ν =
39x2 + 9x− 1

y
dx

on the Riemann surface Γ arising from the polynomial

F = y2 − (x6 + 4x4 + 10x3 + 4x2 − 4x+ 1) = 0. (9.5)

I calculate the residue divisor of ν and verify that it is an Abelian differential of the third

kind. If the residue divisor is torsion a function u can be found such that

d log u = ν.

A basis of the holomorphic differentials on Γ is given by
(

dx

y
,
xdx

y

)
,

thus, as the term

9x

y

and the term

−1

y

are holomorphic, to calculate the poles of ν it suffices to calculate the poles of

ν̃ =
39x2

y
.

These may occur where y = 0 or x = ∞.

• The points for which y = 0 are the six roots

λ = {x ∈ � : F (x, 0) = 0},

that is, the branch points. Using Puiseux expansions, it is straightforward to show that

none of these places are poles of ν.

160

• The places over x = ∞ are, labeled by the sign of the y-series,

P∞
± =





x =
1

t

y = ± 1

t3
+ · · ·

.

Substituting this and

dx = − 1

t2
dt

into ν̃ yields

ν̃ = ∓
(

39

t
+ · · ·

)
dt,

and thus the residue divisor

(ν)res = (ν̃)res = 39P∞
− − 39P∞

+ .

Below I show that

P∞
− − P∞

+ (9.6)

is a torsion divisor with torsion index 39, thus

A ((ν)res) ≡ 0, (9.7)

proving there exists a function u such that

ν = d log u

up to addition of holomorphic differentials. Assume the function

u = κ1(x)y + κ2(x)

where

κ1(x) = κ1,0 + κ1,1x+ κ1,2x
2 + · · ·

and

κ2(x) = κ2,0 + κ2,1x+ κ2,2x
2 + · · · ,

161

where κj,k ∈ � for all valid j and k. Note that this assumption is justified because (1, y) is

an integral basis for the functions with no poles in the affine part of Γ [37]. That is, any

meromorphic function on Γ may be written as a product of a polynomial in x multiplied by

either the function 1 or the function y.

In order for u to have a pole of order 39 at

P∞
− =





x =
1

t

y = − 1

t3
+ · · ·

and a zero of order 39 at

P∞
+ =





x =
1

t

y =
1

t3
+ · · ·

,

assume

deg(κ1(x), x) = 36 and deg(κ2(x), x) = 39.

Then at P∞
+ , the function u is

u =
(
κ1,0 +

κ1,1

t
+ · · · + κ1,36

x36

)(1

t3

)
+
(
κ2,0 +

κ2,1

t
+ · · · + κ2,39

x39

)
.

At P∞
− , the function u is

u =
(
κ1,0 +

κ1,1

t
+ · · · + κ1,36

x36

)(−1

t3

)
+
(
κ2,0 +

κ2,1

t
+ · · · + κ2,39

x39

)
.

If the leading coefficients of κ1(x) and κ2(x) are set to one, solving for all the others such

that at P∞
+ all terms with t degree less than 39 vanish gives the required κ1(x) and κ2(x).

162

κ1(x) =

x36 − 9x35 + 78x34 − 393x33 + 1875x32 − 6228x31 + 20000x30 − 44364x29

+ 100878x28 − 123754x27 + 205056x26 + 93834x25 + 93210x24

+ 1154952x23 + 1154628x22 + 2305452x21 + 7667343x20 + 7398477x19

+ 18519986x18 + 31511637x17 + 38292357x16 + 68810088x15 + 94270020x14

+ 106641612x13 + 154404118x12 + 169319118x11 + 167242404x10

+ 191230470x9 + 167241762x8 + 129775188x7 + 117823332x6 + 74411808x5

+ 40244337x4 + 28237903x3 + 10352370x2 + 2380755x + 1856467,

κ2(x) =

+ x39 − 9x38 + 80x37 − 406x36 + 1986x35 − 6636x34 + 21881x33

− 48249x32 + 113386x31 − 129138x30 + 233880x29 + 201028x28

+ 158320x27 + 1761084x26 + 2213274x25 + 4131222x24 + 13853079x23

+ 16147329x22 + 37199924x21 + 69411762x20 + 92551930x19

+ 166484056x18 + 250442895x17 + 308665185x16 + 459151006x15

+ 563317218x14 + 607070900x13 + 732820904x12 + 734205504x11

+ 637517772x10 + 621760542x9 + 479086914x8 + 303058869x7

+ 231510907x6 + 123527844x5 + 39445718x4 + 27825546x3 + 7163724x2

− 1856467x + 1332179.

Note that since u is a meromorphic function the sum of the multiplicities of the zeroes

must equal that of the poles. Then, because there are no other poles except those at P∞
− by

construction, there are no other zeroes besides those at P∞
+ . Thus

(u)val = 39P∞
− − 39P∞

+ .

Calculating d log u and simplifying shows

d log u− ν = 0.

163

Thus the anti-derivative of ν is given by

∫
ν = log (κ1(x)y + κ2(x)) + c ,

where

y =
√
x6 + 4x4 + 10x3 + 4x2 − 4x+ 1.

The Maple implementation of the Abel map is used to compute the torsion of divisors

on Γ defined by (9.5). Specifically I establish that (9.6) has torsion index 39. The points

−1, 0, 1 and ∞ are not discriminant points of F = 0, thus there are n = 2 places on the

Riemann surface over each of these points. From any two places in

Q1,1, Q1,2, Q2,2, . . . , Q4,1, Q4,2, (9.8)

form a degree zero divisor by taking one place with multiplicity 1 and one with multiplicity

−1. For the particular basis of the cycles on Γ that were chosen by the Maple command

homology, the divisors thus formed have torsion indices of 3, 13 and 39. The command

AllBranches(F, x, α, y, 0, t) below computes Puiseux expansions over the point x = α with

the syntax needed by AbelMap.

># a hyperelliptic algebraic curve.

>F := y^2-(x^6+4*x^4+10*x^3+4*x^2-4*x+1):

># compute the Riemann matrix

>B := periodmatrix(F, x, y, ‘Riemann‘):

># compute the places used to form divisors

>Q[1] := AllBranches(F, x, -1, y, 0, t):

>Q[2] := AllBranches(F, x, 0, y, 0, t):

>Q[3] := AllBranches(F, x, 1, y, 0, t):

>Q[4] := AllBranches(F, x, infinity, y, 0, t):

>Q[1];Q[2];Q[3];Q[4];

164

Q1 := [[x = t− 1, y = 2 − t] , [x = t− 1, y = −2 + t]]

Q2 := [[x = t, y = 1 − 2t] , [x = t, y = −1 + 2t]]

Q3 := [[x = t+ 1, y = 4 + 7t] , [x = t+ 1, y = −4 − 7t]]

Q4 :=
[[
x = 1/t, y = 1/t3+

]
,
[
x = 1/t, y = −1/t3+

]]

The function IndexedAbelMap(j, k) computes the Abel map A(P `, CDj,k) of the divisor

CDj,k =





Qj,1 −Qk,1 if j 6= k

Qj,1 −Qk,2 if j = k ,

and construct a matrix AbelMatrix using the function IndexedAbelMap. As

A(P ′, P) = −A(P, P ′),

the matrix AbelMatrix thus constructed represents the Abel map from any place in (9.8)

to any other place in (9.8). The function ReduceModLattice below reduces vectors modulo

the period lattice, and is used component-wise on the matrix AbelMatrix. As floating point

Abel maps have been displayed previously, here only the results of computing the torsion

of divisors CDj,k are shown.

Note that the extra digits of accuracy (Digits + 3) in the call to DivisorAbelMap are

requested in order to have enough significant digits to correctly assign the torsion index.

># define the function ’IndexedAbelMap’

>IndexedAbelMap:=(i, j) -> DivisorAbelMap(F, x, y, t, ‘ZERO‘,

‘if‘(i<> j, [[1, Q[i][1]], [-1, Q[j][1]]], [[1, Q[i][1]], [-1

, Q[j][2]]]), Digits + 3):

># construct matrix ‘A‘ using ’IndexedAbelMap’

>AbelMatrix := Matrix(4, IndexedAbelMap):

># construct function to reduce vectors in matrix ’AbelMatrix’

>ReduceModLattice := V -> ModPeriodLattice(V, B):

># reduce vectors in ’AbelMatrix’ modulo the period lattice

>ReducedAbelMat := map(z -> ReduceModLattice(z), AbelMatrix):

165

The procedure1 torsion(V , ε) computes the first integer τ such that

‖τV − bV c‖ < ε

where

bV c ∈ Λ.

When torsion is mapped component-wise to the matrix (ReducedAbelMat) of vectors re-

duced modulo the period lattice, the resulting matrix summarizes the torsion indices.

>epsilon := 10^(-8): map(torsion, ReducedAbelMat, epsilon);




39 39 39 13

39 39 13 3

39 13 39 39

13 3 39 39




The (4, 4) element of this matrix is the torsion of

Q4,1 −Q4,2 = P∞
− − P∞

+ ,

which is indeed 39.

9.2 Integral-linear dependence of divisors

The Abel map may be used in conjunction with the LLL algorithm [31] to determine if,

given a list of m divisors

D, . . . ,Dm ∈ Γ,

there exists a linear combination

D̃ =
∑

j

njDj , nj ∈ � , j = 1, . . . ,m

1This procedure is written specifically for this example, and has not been released. The code is on the
compact disc included with this dissertation.

166

such that D̃ is the divisor of a meromorphic function. This problem arises, in for in-

stance [10], when determining if certain algebraic functions are algebraically dependent. In

what follows the Maple implementation of the Abel map is used to determine an integral-

linear, or � -linear, relation between two divisors.

># define an algebraic curve

>F := x^4 + (y^2 - 1)*(y^2 - 4);

F := x4 + (y2 − 1)(y2 − 4)

># compute the places over (x = 0)

>algcurves[puiseux](F, x = 0, y, 0, t);

{[x = t, y = 2], [x = t, y = −2], [x = t, y = 1], [x = t, y = −1]}

># construct two divisors of the places over (x = 0)

>Dvsr[1] := [[1, [x = t, y = 1]],[-1,[x = t, y =-1]]]:

>Dvsr[2] := [[1, [x = t, y = 2]],[-1,[x = t, y =-1]]]:

>Dvsr[1]; Dvsr[2];

Dvsr[1] := [[1, [x = t, y = 1]], [−1, [x = t, y = −1]]] :

Dvsr[2] := [[1, [x = t, y = 2]], [−1, [x = t, y = −1]]] :

># compute the Abel maps of Dvsr[1] and Dvsr[2]

>A[1] := AbelMap:-DivisorAbelMap(F, x, y, t, ’ZERO’, Dvsr[1],

10):

>A[2] := AbelMap:-DivisorAbelMap(F, x, y, t, ’ZERO’, Dvsr[2],

10):

>A[1]; A[2];

167

[−.304946701650801 + .195053298320151 ∗ I,

.304946701634244 − 1.19505329837223 ∗ I,

−.250000000003239 + .445053298352439 ∗ I]

[.195053298349199 − .1982887 10−10 ∗ I,

.304946701634245 − .500000000031671 ∗ I,

.975266491670425 10−1 + .975266491821570 10−1 ∗ I]

># compute the integer dependency of A[1], A[2]

># (and thus of Dvsr[1] and Dvsr[2])

>ZDependence([A], B, 10);

[4.,−4.]

Thus

4 Dvsr1 − 4 Dvsr2 ∈ Λ,

ans it is the divisor of a meromorphic function on Γ. The Maple code of the procedure

ZDependence is included on the compact disc accompanying this dissertation.

168

BIBLIOGRAPHY

[1] M. J. Ablowitz and P. A. Clarkson. Solitons, nonlinear evolution equations and inverse
scattering. Cambridge University Press, Cambridge, 1991.

[2] M. J. Ablowitz, J. Hammack, D. Henderson, and C. M. Schober. Long-time dynamics
of the modulational instability of deep water waves. Phys. D, 152/153:416–433, 2001.

[3] M. J. Ablowitz, B. M. Herbst, and C. M. Schober. The nonlinear Schrödinger equation:
asymmetric perturbations, traveling waves and chaotic structures. Math. Comput.
Simulation, 43(1):3–12, 1997.

[4] M. J. Ablowitz and H. Segur. Solitons and the inverse scattering transform. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 1981.

[5] H. F. Baker. Abelian functions. Cambridge Mathematical Library. Cambridge Univer-
sity Press, Cambridge, 1995.

[6] E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev. Algebro-
geometric approach to nonlinear integrable problems. Springer Series in Nonlinear Dy-
namics. Springer-Verlag, Berlin, 1994.

[7] G. A. Bliss. Algebraic functions. Dover Publications Inc., New York, NY, 1966.

[8] A. I. Bobenko. All constant mean curvature tori in R3, S3, H3 in terms of theta-
functions. Math. Ann., 290:209–245, 1991.

[9] A. I. Bobenko and L. A. Bordag. Periodic multiphase solutions of the Kadomtsev-
Petviashvili equation. J. Phys. A, 22:1259–1274, 1989.

[10] E. Compoint and M. F. Singer. Computing Galois groups of completely reducible
differential equations. J. Symbolic Comput., 28:473–494, 1999.

[11] J. H. Davenport. On the integration of algebraic functions, volume 102 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, 1981.

[12] J. H. Davenport and B. M. Trager. On the parallel Risch algorithm. II. ACM Trans.
Math. Software, 11(4):356–362, 1985.

[13] B. Deconinck. The initial-value problem for multiphase solutions of the Kadomtsev–
Petviashvili equation. University of Colorado Ph.D thesis, 1998.

169

[14] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, and M. Schmies. Computing Rie-
mann theta functions. Mathematics of Computation, 73:1417–1442, 2004.

[15] B. Deconinck, D. E. Pelinovsky, and J. D. Carter. Transverse instabilities of deep-water
solitary waves. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462(2071):2039–2061,
2006.

[16] B. Deconinck and H. Segur. The KP equation with quasiperiodic initial conditions.
Physica D, 123:123–152, 1998.

[17] B. Deconinck and M. van Hoeij. Computing Riemann matrices of algebraic curves.
Phys. D, 152/153:28–46, 2001.

[18] B. A. Dubrovin. Theta functions and nonlinear equations. Russian Math. Surveys,
36(2):11–80, 1981.

[19] B. A. Dubrovin, R. Flickinger, and H. Segur. Three-phase solutions of the Kadomtsev-
Petviashvili equation. Stud. Appl. Math., 99(2):137–203, 1997.

[20] N. D. Elkies. http://www.math.harvard.edu/~elkies/g2_tors.html

[21] H. M. Farkas and I. Kra. Riemann surfaces. Springer-Verlag, New York, NY, second
edition, 1992.

[22] John D. Fay. Theta functions on Riemann surfaces. Springer-Verlag, Berlin, 1973.

[23] E. V. Flynn. Large rational torsion on abelian varieties. J. Number Theory, 36(3):257–
265, 1990.

[24] A. P. Fordy, editor. Soliton theory: a survey of results. Nonlinear Science: Theory and
Applications. Manchester University Press, Manchester, 1990.

[25] P. Griffiths. Introduction to algebraic curves. American Mathematical Society, Provi-
dence, RI., 1989.

[26] P. Griffiths and J. Harris. Principles of algebraic geometry. John Wiley & Sons Inc.,
New York, NY, 1994.

[27] J. Hammack, D. McCallister, N. Scheffner, and H. Segur. Two-dimensional periodic
waves in shallow water. II. Asymmetric waves. J. Fluid Mech., 285:95–122, 1995.

[28] J. Hammack, N. Scheffner, and H. Segur. Two-dimensional periodic waves in shallow
water. J. Fluid Mech., 209:567–589, 1989.

170

[29] J. L. Hammack, D. M. Henderson, and H. Segur. Progressive waves with persistent
two-dimensional surface patterns in deep water. J. Fluid Mech., 532:1–52, 2005.

[30] R. S. Johnson. A modern introduction to the mathematical theory of water waves.
Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge,
1997.

[31] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261:515–534, 1982.

[32] D. Mumford. Tata lectures on theta. I. Progress in Mathematics. Birkhäuser Boston
Inc., Boston, MA, 1983.

[33] D. Mumford. Tata lectures on theta. II, volume 43 of Progress in Mathematics.
Birkhäuser Boston Inc., Boston, MA, 1984.

[34] R. H. Risch. The problem of integration in finite terms. Trans. Amer. Math. Soc.,
139:167–189, 1969.

[35] R. H. Risch. The solution of the problem of integration in finite terms. Bull. Amer.
Math. Soc., 76:605–608, 1970.

[36] G. Springer. Introduction to Riemann surfaces. Addison-Wesley Publishing Company,
Inc., Reading, MA., 1957.

[37] M. van Hoeij. An algorithm for computing an integral basis in an algebraic function
field. J. Symb. Comput., 18:353–363, 1994.

171

Appendix A

PROOFS AND DETAILS

A.1 Details of Proposition 3.14.2

Details of the proof of Proposition 3.14.2 are provided mostly for completeness. Recall the

starting point of this proposition is the integral

ζ =
1

2πi

∫

∂eΓ

d log φ(P)A(P) (A.1)

where the integration is done around the boundary ∂ Γ̃ of the cut surface Γ̃. Further recall

that given a vector Z ∈ J(Γ), the function φ(P) given by

φ(P) = θ (A(P) − Z) (A.2)

is analytic on the cut surface. Some notation and facts will be useful to calculate the

line integral (A.1) by exploiting information about the periods of normalized holomorphic

differentials.

1. A useful shorthand for integrating to places on ∂ Γ̃ is to denote by A+(P) the integral

from initial place P0 to place P on aj or bj : the positively oriented segments of ∂Γ̃.

2. In analogy with Item 1, denote by A−(P) the integral from initial place P0 to place

P on cycle a−1
j or b−1

j ; the negatively oriented segments of ∂Γ̃.

3. On any a-cycle, the j-th component of the unreduced Abel map on the j-th negatively

oriented cycle in terms of j-th component on the k-th positively oriented cycle is given

by

A−
j (P) = A+

j (P) +Bjk.

This is by (3.18) and the nature of the cut surface. In vector notation,

A
−(P) = A

+(P) + Bek .

172

4. Similarly, if the place P is on cycle bk

A−
j (P) = A+

j (P) − δjk

by (3.16) and the nature of the cut surface. In the vector notation:

A
−(P) = A

+(P) − ek .

5. In analogy with Items 1 and 2, denote by φ± the function φ evaluated on the positively

and negatively oriented segments of ∂Γ̃:

φ±(P) = θ
(
A

±(P) − Z
)
. (A.3)

6. We use the quasiperiodicity properties of the θ-function and Item 3 to obtain the

logarithm of φ− in terms of quantities on the cycles traversed in a positive sense. On

cycle ak, log φ−(P) is given by

log φ−(P) = −2πi

(
Bkk
2

−A+
k (P) + Zk

)
+ log φ+(P).

7. By Item 4, log φ−(P) on cycle bk is given by

log φ−(P) = log φ+(P).

8. Items 6 and 7, along with the fact that

dAk = ωk,

lead directly to the relations between logarithmic derivatives evaluated at places on

positively and negatively oriented cycles. For instance, on cycle ak

d log φ−(P) = d log φ+(P) − ωk(P),

and on cycle bk

d log φ−(P) = d log φ+(P).

173

Switching to only integrals calculated over positively oriented cycles, the equation for ζj

becomes

ζj =
1

2πi

g∑

k=1

(

∮

ak

+

∮

bk

)
(
d log φ+(P)A+

j (P) − d log φ−(P)A−
j (P)

)
. (A.4)

(A.5)

Using the notation from Items 3, 4, 6 and 6, and dropping the integration place variable P

for clarity I can rewrite (A.1) as

ζj =
1

2πi

g∑

k=1

∮

ak

[(
d logφ+

) (
A+
j

)
−
(
d logφ+ − 2πiωk

) (
A+
j −Bjk

)]
+

+
1

2πi

g∑

k=1

∮

bk

[(
d logφ+

) (
A+
j

)
−
(
d logφ+

) (
A+
j − δjk

)]
.

Expanding and canceling terms gives

ζj =
1

2πi

g∑

k=1

2πi

∮

ak

ωkA+
j −Bjk

∮

ak

d log φ+ + 2πiBjk

∮

ak

ωk+

+
1

2πi

g∑

k=1

δjk

∫

bj

d log φ+,

which simplifies to

ζj =
1

2πi

g∑

k=1

2πi

∮

ak

ωkA+
j −Bjk

∮

ak

d log φ+ + 2πiBjk+

+
1

2πi

∫

bj

d log φ+.

As φ takes on the same value at both the start and the end of cycle ak, the only contribution

to the integral

∮

ak

d log φ+

come from the multi-valued nature of the complex logarithm. Thus

∮

ak

d log φ+ = 2πimk

174

for some integer mk. Therefore, the expression for ζj simplifies to

ζj =
1

2πi

∫

bj

d log φ+ +

g∑

k=1

∮

ak

ωkA+
j +

g∑

k=1

Bjk(1 −mk)

︸ ︷︷ ︸
,

where, as mk is not dependent on the index j, the underbraced terms yield the j-th com-

ponent of a lattice vector. This simplification is not so clean on a b-cycle. Suppose Qj and

Q′
j are the initial and final places on cycle bk. Then

∮

bk

d log φ = log φ(Q′
j) − log φ(Qj) + 2πim′

k

with m′
k ∈ � . Using the definition of φ and the quasiperiodicity of the θ-function,

∮

bj

d log φ+ = log θ(A+(Q′
j) − Z) − log θ(A+(Qj) − Z) + 2πim′

k

= log θ(A+(Qj) + Bej − Z) − log θ(A+(Qj) − Z) + 2πim′
k

= log

(
e2πi(−A+

j (Qj)+
Bjj

2
−Zj)θ(A+(Qj) + Bej − Z)

)
−

− log θ(A+(Qj) − Z) + 2πim′
k

= 2πi

(
−A+

j (Qj) −
1

2
Bjj + Zj +m′

k

)
.

The equation for ζj can be rewritten using the preceding results as

ζj = −A+
j (Qj) −

1

2
Bjj + Zj +

1

2πi

g∑

k=1

∮

ak

ωk(P)A+
j (P)+ (A.6)

+m′
k +

g∑

k=1

Bjk(1 −mk)

︸ ︷︷ ︸
, (A.7)

where the underbraced terms give rise to some lattice vector, and can be ignored when

computing on the Jacobian. With the underbraced terms omitted, (A.6) is Equation (3.34).

A.2 Proof of Proposition 3.15.2

This proof of Proposition 3.15.2 follows directly that of [18]. First I remind the reader of

the Proposition.

175

Proposition. Suppose B is the Riemann matrix associated with the Riemann surface Γ.

The vector W ∈ J(Γ) is such that

θ(W |B) = 0

if and only if W is given by

W ≡ A(D) + K

for some choice of

D = P1 + · · · + Pg−1.

Proof. Suppose

θ(W) = 0,

and construct the function

φ(P) = θ(A(P) − W).

There are two cases to consider.

1. φ ≡/ 0: Let the vector V be given by

V ≡ W − K.

Then φ ≡/ 0 implies that

θ(A(P) − W) = θ(A(P) − V − K) ≡/ 0,

and thus that the hypothesis for Theorem 2 is satisfied for the vector V . Thus V is

given by

V ≡ A(P1) + · · · + A(Pg)

where the places

P1, . . . , Pg

176

are the zeros of the function φ and are uniquely determined up to multiplicity. As

φ(W) = 0,

and the θ-function is even,

θ(W) = θ(−W) = θ(−V − K) = 0.

Noting that

A(P0) = 0,

it must be that

θ(A(P0) − V − K) = 0,

and thus that P0 is in the set of zeros

P1, . . . , Pg.

With no loss, say P0 = Pg. Then

A(P0) = A(Pg) = 0,

and

V ≡ A(P1) + · · · + A(Pg−1),

and further

W ≡ A(P1) + · · · + A(Pg−1) + K.

Letting

D = P1, . . . , Pg−1,

W is given by

W ≡ A(D) + K.

177

2. φ ≡ 0: In this case Theorem 1 assures that

V ≡ A(Q1) + · · · + A(Qg) + K (A.8)

where the divisor

D = Q1 + · · · +Qg

is special. Thus that there is a function u ∈ ΩΓ such that the poles of u are

Q1, . . . , Qg

and, by Riemann-Roch

u(P0) = 0.

A meromorphic function has the same number of zeroes as poles [25], so the divisor

of zeros (u)0 of the function u may be written as

D′ = (u)0 = P0 + P1 + · · · + Pg−1.

The valuation divisor of u is then

(u)val =P0 + P1 + · · · + Pg−1 −Q1 − · · · −Qg,

=D′ −D.

As u ∈ ΩΓ, by Abel’s Theorem

A(D′ −D) ≡ 0,

and thus

A(D′) ≡ A(D),

A(P0) + A(P1) + · · · + A(Pg−1) ≡ A(Q1) + · · · + A(Qg) (A.9)

Substituting (A.9) into (A.8) and again noting

A(P0) = 0

completes Item 2.

178

A.3 The integers l0 and l1 depend only on divisor class

Proposition A.3.1. The integers l0(D) and l1(D) depends only on the equivalence class of

the divisor D.

The proof presented here follows closely that presented in [36].

Proof. By definition, two divisors D ′ and D′′ are linearly equivalent if and only if

∃u ∈ Ω0
Γ : D′ −D′′ = (u)val. (A.10)

That is D′ and D′′ are linearly equivalent if and only if they differ by the divisor of a

meromorphic function. Suppose

D′ ∼ D′′,

and further that the function u is such that

D′ −D′′ = (u)val, u ∈ Ω0
Γ.

Note that u = 0 if and only if

D′ = D′′,

in which case there is no work to be done. Therefore assume

D′ 6= D′′.

1. D′ ∼ D′′ =⇒ l0(D′) = l0(D′′): If u′′ ∈ L0(D′′) then by definition

D′′ ≥ −(u′′)val (A.11)

Under the hypothesis (A.10)

D′ − (u)val = D′′,

so using (A.11) yields

D′ − (u)val ≥ −(u′′)val,

179

and rearranging gives

(u′′)val − (u)val =

(
u′′

u

)

val

≥ −D′.

As u 6= 0 by assumption, the function

u′′

u
∈ L0(D′).

is defined and non-zero for all u′′ 6= 0. Thus the mapping

L0(D′′) 3 u′′ 7→ u′′

u
∈ L0(D′)

is one-to-one and onto, and therefore

L0(D′) ∼= L0(D′′)

and

l0(D′) = l0(D′′).

2. D′ ∼ D′′ =⇒ l1(D′) = l1(D′′): The argument for this implication is nearly identical

to that of the previous case. If ν ′′ ∈ L1(D′′) then

(ν ′′)val ≥ D′′ (A.12)

Under the hypothesis (A.10) we have

D′ − (u)val = D′′,

using (A.12) yields

D′ − (u)val ≥ (ν ′′)val,

and rearranging gives

(u)val + (ν ′′)val = (uν ′′)val ≥ D′.

180

Thus the mapping

L1(D′′) 3 ν ′′ 7→ uν ′′ ∈ L1(D′)

is one-to-one and onto. Therefore

L1(D′) ∼= L1(D′′)

and

l1(D′) = l1(D′′).

181

Appendix B

MAPLE SYNTAX

B.1 Preliminary matters

The following list outlines some standard Maple syntax and procedure. Everything in the

following list is available to any Maple worksheet upon opening. More information on a

procedure can always be obtained in a Maple worksheet by typing

>?command

where command is the procedure with which one wishes help.

• Maple use for arbitrary precision arithmetic. The variable Digits controls how many

significant digits Maple uses while computing. The user can change the value of

Digits, the default value is 10.

• Maple input punctuated with a semi-colon is displayed. Input ending with a colon is

not.

• A colon-equal sign (:=) indicates an assignment. An equal sign (=)can have different

uses. In this work it is used as a logical test and as an unevaluated assignment in a

list of table.

• Square brackets ([])are used as delimiters and as selection operators.

>a := [4, 5, 6];

a := [4, 5, 6]

182

>a[2];

5

• The procedure op removes the outermost set of delimiters from a Maple list or set.

The procedure nops returns the number of entries in a list of set.

>op(a);

5

>nops(a);

3

• The procedure seq can be used to create a sequence. If the sequence is delimited by

square brackets, it becomes a list; if delimited with braces ({}) it becomes a set. The

variable, in the example below this is j, is local to the call to the procedure. The

syntax (..) in the example creates a range.

>a := [seq(j, j = 1..9)];

a := [1, 2, 3, 4, 5, 6, 7, 8, 9]

183

>j; # note j remains unassigned after the call

j

• The syntax arrow (->) syntax creates function inline (as opposed to in a file exterior

to the worksheet.)

>f := z -> z^2;

f := z 7→ z2

>f(9);

81

• The procedure map can be used to apply a function component-wise to many Maple

structures. In this work map is used on lists and matrices.

>b := map(f, a);

b := 1, 4, 9, 16, 25, 36, 49, 64, 81

• The procedure ‘if‘ is an inline logical switch. Note the single quotes (‘‘) are required.

184

>f := z -> ‘if‘(z, Yes, No):

>f(true); f(false);

Y es

No

• The Maple input

>Matrix(N, (j, k) -> g(j, k)):

forms the N × N matrix where the j, k component is the function g evaluated with

arguments j, k.

• The Maple procedures with and read are used to make routines (or variables) available

in the active worksheet. with is used if the routines are stored as a Maple package,

as is the case with algcurves. with is used if the routines are stored in a file.

• The Maple input

>mypack:-myfunc(myargs):

calls the function myfunc from the package mypack with the arguments myargs.

• Maple represents general algebraic numbers by using the procedure RootOf. For ex-

ample,

>c := RootOf(_Z^r - 1):

185

defines c as the r-th roots of unity. More generally,

>c := RootOf(Poly, index = j):

defines c as the j-th root of the polynomial Poly.

• A call to the Maple procedure time() returns the current amount of central processing

unit (CPU) time used by Maple. The time is measured from the the Maple kernel

was started. Computational cost can be measured using this function, but it is a very

rough measure. CPU time may not reflect actual time for a number of reasons.

B.2 The algcurves package

The following procedures are found in the package algcurves. This package is available in

Maple, versions 8 and greater. The procedures in this package can be made available in a

Maple worksheet by the invocation

>with(algcurves):

• The Maple input

>differentials(F, x, y):

computes a g-dimensional basis of the differentials that are holomorphic on the Rie-

mann surface arising from the polynomial F.

• The Maple input

>periodmatrix(F, x, y, ’Riemann’):

186

computes the g × g Riemann matrix associated with the Riemann surface obtained

from the polynomial F.

• The Maple input

>puiseux(F, x = alpha, y, 0, t):

computes the places over x = α in local coordinate t [17]. That the fourth argument is

zero signifies that the y-series are computed with exactly enough terms to distinguish

the n branches over α away from t = 0.

• The Maple input

>is_hyperelliptic(F, x, y):

returns true if there is a bi-rational transformation that converts F to Weierstrass

form or false otherwise.

187

VITA

Matthew Patterson received his Bachelors of Science degree in Applied Computational

and Mathematical Sciences from the University of Washington in 2002. He received his Mas-

ters of Science degree in Applied Mathematics from the same institution in 2006. Matthew

was honored with the Chowla Research Post-Doctoral Fellowship at The Pennsylvania State

University for 2007-2010.

