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Interface problems for partial differential equations are initial boundary value problems for

which the solution of an equation in one domain prescribes boundary conditions for the

equations in adjacent domains. These types of problems occur widely in applications includ-

ing heat transfer, quantum mechanics, and mathematical biology. These problems, though

linear, are often not solvable analytically using classical approaches. In this dissertation

I present an extension of the Fokas Method appropriate for solving these types of prob-

lems. I consider problems with both dissipative and dispersive behavior and consider general

boundary and interface conditions. An analog for the Dirichlet to Neumann map for interface

problems is also constructed.
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NOTATION AND ABBREVIATIONS

1m×n : m× n matrix with every entry equal to 1.

BVP : boundary-value problem

C : The complex plane

C+ : The upper half plane: {z ∈ C : Im(z) > 0}

C− : The lower half plane: {z ∈ C : Im(z) < 0}

D+ : {k ∈ C : k ∈ D ∩ C+}

D− : {k ∈ C : k ∈ D ∩ C−}

D±R : {k ∈ D± : |k| > R}

∂D : the boundary of the region D traversed in the clockwise direction

erf(·) : the error function, erf(z) = 2√
π

∫ z
0

exp(−y2) dy

Im×n : m× n identity matrix

IVP : initial-value problem

KdV : Korteweg-de Vries equation

LD(j) : ∂D(j) ∩ {k : |k| < C}

L(j)
C : {k ∈ D(j) : |k| = C}

L(j) : LD(j) ∪ L(j)
C

LS : linear Schrödinger equation

N : the set of natural numbers, {1, 2, . . .}

NLS : nonlinear Schrödinger equation

PDE : partial differential equation

R+ : the set of positive real numbers: {x ∈ R : x ≥ 0}

û(k, t) :
∫ xj
xj−1

e−ikxu(x, t) dx for xj−1 < x < xj and t > 0

û0(k) :
∫ xj
xj−1

e−ikxu(x, 0) dx for xj−1 < x < xj

viii



Chapter 1

Introduction

1.1 Interface problems

Interface problems for partial differential equations (PDEs) are initial boundary value prob-

lems for which the solution of an equation in one domain prescribes boundary conditions for

the equations in adjacent domains. In applications, precise interface conditions often follow

from conservations laws [38]. Interface problems occur widely in applications. Examples in-

clude heat flowing through a composite rod [10, 33], the time-dependent linear Schrödinger

equation with a piecewise constant potential [19, 41, 48], and shock waves as a method of

healing fractured bones [18]. Finding solutions to equations modeling water waves can also

be considered an interface problem where the interface is between air and water [43, 66].

To derive the “boundary conditions” that must be imposed at the interface we consider

differential equations that are valid on either side of the interface. The integral form of the

equation or important integral relations are often the best ways to infer the necessary condi-

tions on the unknowns at the interface. As an example, we derive the boundary conditions

relating to heat conduction used in Chapter 2. We follow closely what is outlined in [38].

Consider a thin rod of some heat-conducting material with density ρ(x) and unit cross-

sectional area. Assume that the surface of the rod is perfectly insulated so no heat is lost or

gained through this surface. This problem is one-dimensional in the sense that all material

properties depend only on the distance x along the rod. If we consider an infinitesimal

section of length dx we know that dQ, the heat content in the section, is proportional to
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the mass and temperature θ(x, t). That is

dQ = c(x)ρ(x)θ(x, t) dx,

where c(x) is the specific heat. Thus, the total heat content in the interval x1 ≤ x ≤ x2 is

Q(t) =

∫ x2

x1

c(x)ρ(x)θ(x, t) dx.

Fourier’s Law for heat conduction [30] states that the rate of heat flowing into a body is

proportional to the area of that element and to the outward normal derivative of the tem-

perature at that location. The constant of proportionality is k(x), the thermal conductivity.

In our example, the net inflow of heat through the boundaries x1 and x2 is

R(t) = k(x)θx(x2, t)− k(x)θx(x1, t).

Conservation of heat implies that Qt(t) = R(t). That is,

d

dt

∫ x2

x1

c(x)ρ(x)θ(x, t) dx = k(x2)θx(x2, t)− k(x1)θx(x1, t). (1.1)

This is a typical conservation law. Define κ2(x) = k(x)/(c(x)ρ(x)) as the thermal dif-

fusivity. Assume there are two rods of different materials which are put in perfect thermal

contact at x = 0 such that

ρ(x) =

 ρ1(x), x < 0,

ρ2(x), x > 0,

θ(x) =

 θ(1), (x, t) x < 0,

θ(2)(x, t), x > 0,

k(x) =

 k1, x < 0,

k2, x > 0,
,

κ2(x) =

 κ2
1, x < 0,

κ2
2, x > 0.

“Perfect thermal contact” means that the temperatures of the two surfaces are equal [10].

Thus, we have our first interface condition, θ(0−) = θ(0+). Since κ2
1, κ2

2, k1, and k2 are



1.2. THE FOKAS METHOD 3

constants, then for x < 0, we have c(x)ρ1(x) = cρ1, a constant, and for x > 0, c(x)ρ2(x) =

cρ2, a constant. Evaluating (1.1) across the boundary x = 0 we have

d

dt

(
cρ1 lim

ε→0

∫ 0

−ε
θ(1)(x, t) dx+cρ2 lim

ε→0

∫ ε

0

θ(2)(x, t) dx

)
=lim
ε→0

(k2θ
(2)
x (ε, t)− k1θ

(1)
x (−ε, t)). (1.2)

The left-hand-side of (1.2) is zero since temperature is continuous across the boundary. This

implies k1θ
(1)
x (0, t) = k2θ

(2)
x (0, t). Thus heat flux is continuous across the interface.

Maxwell’s equations are another typical example of conservation laws that are used to

define boundary conditions for problems related to electromagnetism [19]. In general, this

procedure can be used to construct interface conditions for any situation where differential

equations are satisfied on either side of a sharp boundary where some property changes.

In this thesis we study PDEs with piecewise-constant coefficients by posing them as

interface problems. Although not undertaken here, this could be a path toward the study of

PDEs with continuous coefficients by letting the number of interfaces tend toward infinity.

We consider interface problems where there are different PDEs on either side of the interface

in Appendix A. In Appendix A we consider only the most simple case of the transport and

heat equations. Although the results presented here are preliminary, interface problems with

different equations is an area of current interest and active research [13].

1.2 The Fokas Method

The Fokas Method, alternatively called the Unified Transform Method (UTM), is a relatively

new method for solving initial-boundary-value problems for linear and integrable PDEs with

constant coefficients [15, 25, 27]. This method allows for the explicit solution of some prob-

lems for which no classical approach exists. For problems where classical solutions do exist,

they are found as special cases of the Fokas Method. The chapters that follow rely heavily

on the use of the Fokas Method. Thus we begin with a simple example.
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Consider the heat equation defined on the positive half line:

ut = uxx, x ≥ 0, t > 0, (1.3a)

u(x, 0) = u0(x), x ≥ 0, (1.3b)

lim
x→∞

u(x, t) = 0. (1.3c)

We will assume Dirichlet boundary data is given. That is u(0, t) is known. Of course, this

problem is easily solved using classical methods (e.g., the method of images [38]). How-

ever, to the point of understanding the Fokas Method for a “simple” problem, we begin by

rewriting (1.3a) as a one-parameter family of PDEs in divergence form:

(e−ikx+ω(k)tu)t = (e−ikx+ω(k)t(ux + iku))x, (1.4)

where the dispersion relation is given by ω(k) = k2. This is the local relation. Applying

Green’s Theorem [1] in the strip (0,∞) × (0, t) in the right-half plane (see Figure 1.1) one

finds

x

t

0 ∞

T

Figure 1.1: Domain for the application of Green’s Theorem in the case of one semi-infinite
rod.
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∫ t

0

∫ ∞
0

(e−ikx+k2su)s − (e−ikx+k2s(ux + iku))x dx ds = 0

⇒
∫ ∞

0

e−ikxu0(x) dx−
∫ ∞

0

e−ikx+k2tu(x, t) dx−
∫ t

0

ek
2s(ux(0, s) + iku(0, s)) ds = 0. (1.5)

Im(k)

Re(k)

D+

D−

Figure 1.2: The domains D+ and D− for the heat equation.

Let C denote the complex numbers and C+ = {z ∈ C : Im(z) > 0}. Similarly, let

C− = {z ∈ C : Im(z) < 0}. Since x can become arbitrarily large, we require the imaginary

part of k to be negative, k ∈ C−, in order to guarantee that the integrals above are defined.

Let D = {k ∈ C : Re(k2) < 0} = D+ ∪D−. The region D is shown in Figure 1.2. For k ∈ C
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define the following:

û0(k) =

∫ ∞
0

e−ikxu0(x) dx,

û(k, t) =

∫ ∞
0

e−ikxu(x, t) dx,

g0(ω, t) =

∫ t

0

eωsu(0, s) ds,

g1(ω, t) =

∫ t

0

eωsux(0, s) ds.

Using these definitions, the global relation (1.5) is

û0(k)− ek2sû(k, t)− g1(ω, t)− ikg0(ω, t) = 0. (1.6)

Since the dispersion relation is invariant under the reflection k → −k, so are g0(ω, t) and

g1(ω, t). Thus one can supplement (1.6) with its evaluation at −k, namely

û0(−k)− ek2tû(−k, t)− g1(ω, t) + ikg0(ω, t) = 0. (1.7)

Equation (1.7) is valid for k ∈ C+. Inverting the Fourier transforms in (1.6) we have

u(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2tû0(k) dk − 1

2π

∫ ∞
−∞

eikx−k
2s(g1(ω, t) + ikg0(ω, t)) dk, (1.8)

for x > 0 and t > 0. Everything about the first integral in (1.8) is known. The integrand of

the second integral is entire and decays as k → ∞ for k ∈ C+\D+. Thus, the integral can

be deformed up to ∂D+, the boundary of D+, to obtain

u(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2tû0(k) dk − 1

2π

∫
∂D+

eikx−k
2t(g1(ω, t) + ikg0(ω, t)) dk. (1.9)

Equation (1.9) depends on unprescribed boundary data, namely g1(ω, t). To resolve this we

solve (1.7) for g1(ω, t). Substituting this into (1.9) we have

u(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2tû0(k) dk − 1

π

∫
∂D+

eikx−k
2tikg0(ω, t) dk

+
1

2π

∫
∂D+

eikxû(−k, t) dk − 1

2π

∫
∂D+

eikx−k
2tû0(−k) dk.

(1.10)
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Im(k)

Re(k)

LD+

LD−

L+
C

L−C

Figure 1.3: The contour L− is shown as green dashed line. An application of Cauchy’s Inte-
gral Theorem [1] using this contour allows elimination of the contribution of terms involving
the Fourier transform of the solution.

This expression contains the solution we seek in the third integral on the right-hand

side. However, eikxû(−k, t) is an analytic function that decays in the upper-half plane.

Thus, by Jordan’s Lemma [1], the integral of exp(ikx)û(−k, t) along a closed, bounded curve

in C+ must vanish. In particular we consider the closed curve L+ = LD+ ∪ L+
C where

LD+ = ∂D+ ∩ {k : |k| < C} and L+
C = {k ∈ D+ : |k| = C}, see Figure 1.3.

Since the integral along L+
C vanishes for large C, the third integral on the right-hand side

of (1.10) must vanish since the contour LD+ becomes ∂D+ as C →∞. The uniform decay of

û(−k, t) for large k is exactly the condition required for the integral to vanish, using Jordan’s

Lemma. Our solution in terms of only initial and boundary conditions is now
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u(x, t) =
1

2π

∫ ∞
−∞

eikx−k
2tû0(k) dk − 1

π

∫
∂D+

eikx−k
2tikg0(ω, t) dk

− 1

2π

∫
∂D+

eikx−k
2tû0(−k) dk,

where g0(ω, t) is the time transform of the given Dirichlet data as defined earlier. The Fokas

Method is applicable to the general constant-coefficient linear evolution PDE

ut + ω(−i∂x)q = 0, x > 0, 0 < t ≤ T, (1.11)

where ω(k) is a polynomial of degree n. Equation (1.11) admits a one-parameter family of

solutions eikx−ω(k)t. To ensure the solutions are not exponentially growing in time, we require

Re(ω(k)) ≥ 0 for real k. Let

ω(k) =
n∑
j=0

αjk
j.

In the limit as |k| → ∞, the condition Re(ω(k)) ≥ 0, k ∈ R, implies that if n is odd then

αn = ±i and if n is even Re(αn) ≥ 0 [25].

Define the regions D = {k : Re(ω(k)) < 0}, D+ = D ∩C+, and D− = D ∩C−. The local

relation is given by [15, 25]

∂t(e
−ikx+ω(k)tu(x, t))− ∂x

(
e−ikx+ω(k)t

n−1∑
j=0

cj∂
j
xu(x, t)

)
= 0,

where
n−1∑
j=0

cj(k)∂jxu(x, t) = i

(
ω(k)− ω(m)

k −m

) ∣∣∣∣
m=−i∂x

u(x, t),

and the global relation is

eω(k)T û(k, T ) = û0(k)−
n−1∑
j=0

cj(k)gj(ω(k), T ),

with Im(k) ≤ 0 and

gj(ω, T ) =

∫ T

0

eωs∂jxu(0, s) ds.
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Applying the inverse Fourier transform to the global relation we have the integral expres-

sion

u(x, t) =
1

2π

∫ ∞
−∞

e−ikx−ω(k)tû0(k) dk− 1

2π

∫
∂D+

(
e−ikx+ω(k)t

n−1∑
j=0

cj(k)gj(ω(k), t)

)
dk. (1.12)

In order to eliminate any unknown boundary conditions from (1.12) we use the mappings

between roots of the ω(k) (k → ν(k)) to find new versions of the global relation. These global

relations allow us to solve for the unknown boundary data but introduce terms that depend

on û(ν(k), t). However, the transform û(ν(k), t) is analytic and bounded in the region D+.

We use the Cauchy Integral Theorem to eliminate that contribution. In the finite interval

case, the classical series solutions (when they exist) can be found by deforming the integral

∂D+ to circles around any isolated roots of the integrand. The general method for finite-

interval problems and more examples can be found in the book on this method by Fokas [25]

and in a review paper by Deconinck, Trogdon, and Vasan [15].

1.3 Overview

As the title suggests this dissertation is an overview of methods for solving interface problems

of the type described in Section 1.1 using the Fokas Method. The Fokas Method for linear

constant-coefficient problem has many advantages over the standard methods. For instance,

in addition to producing an explicit formula for the solution, the method allows one to

determine, in a straightforward way, how many and which boundary conditions result in

a well-posed problem. The method, which produces solution formulas for many problems

which classical methods cannot, is not a collection of situation specific approaches tailored to

given equations and boundary conditions. Instead, it is a unified method and the differences

for different equations and boundary conditions appear only computationally. It is our goal

to generalize this method to the case of interface problems.

Standard results from complex analysis are used heavily throughout. For proofs, theorem

statements, and more information see [1, 67]. We also rely heavily on the use of the Fokas
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Method which was introduced by A.S. Fokas [21, 22, 23, 25, 27] and has continued to be

expanded on by himself and collaborators in recent years. A review paper on the use of

the method for linear PDEs [15] is a good place to begin to better understand this method.

The repository [59] which is regularly updated with books and papers on the subject is also

useful and contains further applications of the Fokas Method.

In Chapter 2 the problem of heat conduction in one-dimensional piecewise homogeneous

composite materials is examined by providing an explicit solution of the heat equation in each

domain. The location of the interfaces is known, but neither temperature nor heat flux are

prescribed there. Instead, the physical assumptions of their continuity at the interfaces are

the only conditions imposed. We examine finite and infinite domains and allow the possibility

of periodic boundary conditions. We also include the solution to Burgers’ equation through

the Cole-Hopf transformation.

We extend the results of the previous chapter to examine heat conduction on networks

of multiply connected rods in Chapter 3. Again, we provide an explicit solution of the one-

dimensional heat equation in each domain. The size and connectivity of the rods is given,

but neither temperature nor heat flux are prescribed at the interface.

In Chapter 4 we study an interface problem for the linear Schrödinger equation in one-

dimensional piecewise homogeneous domains. The location of the interfaces is known and

the continuity of the wave function and a jump in the derivative at the interface are the only

conditions imposed. The methods we use here are similar to those used in Chapter 2 but

the dispersive nature of the problem presents additional difficulties that we address.

Chapter 5 generalizes the work in Chapter 4 to include a piecewise-constant potential.

This problem is well studied in textbooks [19, 41, 48]. It is one of only a few solvable models in

quantum mechanics and shares many qualitative features with physically important models.

In examples such as “particle in a box” and tunneling, attention is restricted to the time-

independent Schrödinger equation. In this chapter we present fully explicit solutions for the

time-dependent problem for a general piecewise-constant potential.

The interface problem for the linear Korteweg-de Vries (KdV) equation in one-dimensional
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piecewise homogeneous domains is examined in Chapter 6 by constructing an explicit solu-

tion in each domain. The location of the interface is known and a number of compatibility

conditions at the boundary are imposed. We provide an explicit characterization of neces-

sary interface conditions for the construction of a solution. This work is the first known

exploration into interface problems with higher than second-order derivatives. One of the

great strengths of the Fokas Method is that the method for solving equations of any order

is essentially the same. In Chapter 6 we show this extends to interface problems and find a

surprising result on the number of interface conditions necessary for a well-posed problem.

Chapter 7 provides an analog to the well known Dirichlet to Neumann map for interface

problems. We develop a map from the initial conditions to the value of the function at the

interface. This map provides an alternative approach to solving the problem in each domain

simultaneously as suggested in Chapters 2-6. With the initial to interface map one could use

the initial conditions to solve for the necessary interface values. At that point, the problem

could be solved as a regular boundary-value problem (BVP) using the Fokas Method or any

other appropriate solution method.

In Chapter 8 we generalize the interface problems considered to include those that have

a phase boundary that moves with time. We study the classical Stefan problem which

describes the temperature distribution in a homogenous medium undergoing a phase change,

for example, ice passing to water. The discussion in Chapter 8 is mostly restricted to the one-

phase case, that is the heat equation is prescribed only in one domain while the temperature

in the second domain is assumed to remain constant. The results presented in this chapter

are not new but the methods used are suggestive of a more general method that could be

used for the two-phase problem (the heat equation imposed on both domains). The work in

this chapter is ongoing.



Chapter 2

Non-steady state heat conduction

In this chapter, the problem of heat conduction in one-dimensional piecewise homoge-

neous composite materials is examined by providing an explicit solution of the one-dimensional

heat equation in each domain. The location of the interfaces is known, but neither tempera-

ture nor heat flux are prescribed there. Instead, the physical assumptions of continuity at the

interfaces is the only condition imposed. The problem of two semi-infinite domains and that

of two finite-sized domains are examined in detail. We indicate how to extend the solution

method to the setting of one finite-sized domain surrounded on both sides by semi-infinite

domains, and on that of three finite-sized domains. In the final section we examine the case

of periodic boundary conditions. Parts of this chapter were first published in [14, 55].

The problem of heat conduction in a composite wall is a classical problem in design and

construction. It is usual to restrict attention to the case of walls whose constitutive parts

are in perfect thermal contact. We also assume the walls have physical properties that are

constant throughout the material and are considered to be of infinite extent in the directions

parallel to the wall. Further, we assume that temperature and heat flux do not vary in these

directions. In that case, the mathematical model for heat conduction in each wall layer is
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given by [33, Chapter 10]:

u
(j)
t = κju

(j)
xx , xj−1 < x < xj,

u(j)(x, 0) = u
(j)
0 (x), xj−1 < x < xj,

(2.1)

where u(j)(x, t) denotes the temperature in the wall layer indexed by j, κj > 0 is the heat-

conduction coefficient of the j-th layer (the inverse of its thermal diffusivity), x = xj−1 is

the left extent of the layer, and x = xj is its right extent. The subscripts x and t denote

derivatives with respect to the one-dimensional spatial variable x and the temporal variable

t. The function u
(j)
0 (x) is the prescribed initial condition of the system. The continuity of

the temperature u(j)(x, t) and of its associated heat flux κju
(j)
x (x, t) are imposed across the

interface between layers. In what follows it is convenient to use the quantity σj, defined as

the positive square root of κj: σj =
√
κj.

If the layer is either at the far left or far right of the wall, Dirichlet, Neumann, Robin, or

periodic boundary conditions can be imposed on its far left or right boundary respectively,

corresponding to prescribing the “outside” temperature, heat flux, or a combination of these.

A derivation of the interface conditions is found in [33, Chapter 1] and repeated in Section 1.1.

In what follows, we use the Fokas Method to provide explicit solution formulae for differ-

ent heat transport interface problems of the type described above. We investigate problems

in both finite and infinite domains and we compare our method with classical solution ap-

proaches that can be found in the literature. Throughout, our emphasis is on non-steady

state solutions. Even for the simplest of the problems we consider (Section 2.2, two finite

walls in thermal contact), the classical approach using separation of variables [33] can pro-

vide an answer only implicitly. Indeed, the solution obtained in [33] depends on certain

eigenvalues defined through a transcendental equation that can be solved only numerically.

In contrast, the Fokas Method produces an explicit solution formula involving only known

quantities. For other problems we consider, no solution has been derived using classical

methods to our knowledge.

The representation formulae for the solution can be evaluated numerically, hence the prob-
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lem can be solved in practice using hybrid analytical-numerical approaches [20]. Asymptotic

approximations for the solutions may be obtained using standard techniques [25]. The result

of such a numerical calculation is shown at the end of Section 2.1.

The problem of heat conduction through composite walls is discussed in many excellent

texts, see for instance [10, 33]. References to the treatment of specific problems are given in

the sections below where these problems are investigated.

2.1 Two semi-infinite domains

In this section, we consider the problem of heat flow through two walls of semi-infinite width,

or of two semi-infinite rods as shown in Figure 2.1. We seek two functions

u
(1)
t = σ2

1u
(1)
xx u

(2)
t = σ2

2u
(2)
xx

x

−∞ 0 ∞

Figure 2.1: The heat equation for two semi-infinite domains.

u(1)(x, t), x < 0, t ≥ 0,

and

u(2)(x, t), x > 0, t ≥ 0,

satisfying the equations

u
(1)
t (x, t) =σ2

1u
(1)
xx (x, t), x < 0, t > 0, (2.2a)

u
(2)
t (x, t) =σ2

2u
(2)
xx (x, t), x > 0, t > 0, (2.2b)

the initial conditions

u(1)(x, 0) =u
(1)
0 (x), x < 0, (2.3a)

u(2)(x, 0) =u
(2)
0 (x), x > 0, (2.3b)
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the asymptotic conditions

lim
x→−∞

u(1)(x, t) =γ(1), t ≥ 0, (2.4a)

lim
x→∞

u(2)(x, t) =γ(2), t ≥ 0, (2.4b)

and the continuity interface conditions

u(1)(0, t) =u(2)(0, t), t > 0, (2.5a)

σ2
1u

(1)
x (0, t) =σ2

2u
(2)
x (0, t), t > 0. (2.5b)

The sub- and super-indices 1 and 2 denote the left and right rod, respectively. A special

case of this problem is discussed in Chapter 10 of [33], but only for a specific initial con-

dition. Further, for the problem treated there both limx→∞ u
(2)(x, t) and limx→−∞ u

(1)(x, t)

are assumed to be zero. This assumption is made for mathematical convenience and no

physical reason exists to impose it. If constant (in time) limit values are assumed, a simple

translation allows one of the limit values to be equated to zero, but not both. Since no

great advantage is obtained by assuming a zero limit using our approach, we make the more

general assumption (2.4).

We define v(1)(x, t) = u(1)(x, t)− γ(1) and v(2)(x, t) = u(2)(x, t)− γ(2). Then v(1)(x, t) and

v(2)(x, t) satisfy

v
(1)
t (x, t) =σ2

1v
(1)
xx (x, t), x < 0 t ≥ 0, (2.6a)

v
(2)
t (x, t) =σ2

2v
(2)
xx (x, t), x > 0 t ≥ 0, (2.6b)

lim
x→−∞

v(1)(x, t) =0, t ≥ 0, (2.6c)

lim
x→∞

v(2)(x, t) =0, t ≥ 0, (2.6d)

v(1)(0, t) + γ(1) =v(2)(0, t) + γ(2), t ≥ 0, (2.6e)

σ2
1v

(1)
x (0, t) =σ2

2v
(2)
x (0, t), t ≥ 0. (2.6f)
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At this point, we start by following the standard steps in the application of the Fokas

Method. We begin with the so-called “local relations”:

(e−ikx+ω1tv(1)(x, t))t =(σ2
1e
−ikx+ω1(k)t(v(1)

x (x, t) + ikv(1)(x, t)))x,

(e−ikx+ω2tv(2)(x, t))t =(σ2
2e
−ikx+ω2(k)t(v(2)

x (x, t) + ikv(2)(x, t)))x,

where ωj(k) = (σjk)2. These relations form a one-parameter family obtained by rewriting

(2.6a) and (2.6b).

Integrating around the domain and applying Green’s Theorem in the strip (−∞, 0)×(0, t)

in the left-half plane (see Figure 2.2) we find

0 =

∫ 0

−∞
e−ikxv

(1)
0 (x) dx−

∫ 0

−∞
e−ikx+ω1tv(1)(x, t) dx

+

∫ t

0

σ2
1e
ω1s(v(1)

x (0, s) + ikv(1)(0, s)) ds.

(2.7)

x

s

0 ∞−∞

t

Figure 2.2: Domains for the application of Green’s Theorem in the case of two semi-infinite

rods.

Since |x| can become arbitrarily large, we require k ∈ C+ in (2.7) in order to guarantee
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that the first two integrals are well defined. Let D = {k ∈ C : Re(ωj(k)) < 0} = D+ ∪D−.

The region D is shown in Figure 1.2.

For k ∈ C we define the following transforms:

g0(ω, t) =

∫ t

0

eωsv(1)(0, s) ds =

∫ t

0

eωs(v(2)(0, s) + γ(2) − γ(1)) ds

=
(γ(2) − γ(1))(eωt − 1)

ω
+

∫ t

0

eωsv(2)(0, s) ds,

g1(ω, t) =

∫ t

0

eωsv(1)
x (0, s) ds =

σ2
2

σ2
1

∫ t

0

eωsv(2)
x (0, s) ds,

v̂(1)(k, t) =

∫ 0

−∞
e−ikxv(1)(x, t) dx,

v̂
(1)
0 (k) =

∫ 0

−∞
e−ikxv

(1)
0 (x) dx,

v̂(2)(k, t) =

∫ ∞
0

e−ikxv(2)(x, t) dx,

v̂
(2)
0 (k) =

∫ ∞
0

e−ikxv
(2)
0 (x) dx.

Using these definitions, the global relation (2.7) is rewritten as

v̂
(1)
0 (k)− eω1tv̂(1)(k, t) + ikσ2

1g0(ω1, t) + σ2
1g1(ω1, t) = 0, k ∈ C+. (2.8)

Since the dispersion relation ω1(k) = (σ1k)2 is invariant under k → −k, so are g0(ω1, t)

and g1(ω1, t). Thus we can supplement (2.8) with its evaluation at −k, namely

v̂
(1)
0 (−k)− eω1tv̂(1)(−k, t)− ikσ2

1g0(ω1, t) + σ2
1g1(ω1, t) = 0. (2.9)

This relation is valid for k ∈ C−. Using Green’s Formula on (0,∞)× (0, t) (see Figure 2.2),

the global relation for v(2)(x, t) is

0 = v̂
(2)
0 (k)− eω2tv̂(2)(k, t)− ikσ2

2g0(ω2, t) +
i

k
(γ(1) − γ(2))(eω2t − 1)− σ2

1g1(ω2, t), (2.10)
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valid for k ∈ C−. As above, using the invariance of ω2(k) = (σ2k)2, g0(ω2, t), and g1(ω2, t)

under k → −k, we supplement (2.10) with

0 = v̂
(2)
0 (−k)− eω2tv̂(2)(−k, t) + ikσ2

2g0(ω2, t)−
i

k
(γ(1) − γ(2))(eω2t − 1)− σ2

1g1(ω2, t), (2.11)

for k ∈ C+.

Inverting the Fourier transforms in (2.8) we have

v(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk +

σ2
1

2π

∫ ∞
−∞

eikx−ω1t(ikg0(ω1, t) + g1(ω1, t)) dk, (2.12)

for x < 0 and t > 0. The integrand of the second integral in (2.12) is entire and decays

as k → ∞ for k ∈ C− \ D−. Using the analyticity of the integrand and applying Jordan’s

Lemma we can replace the contour of integration of the second integral by −
∫
∂D−

:

v(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk − σ2

1

2π

∫
∂D−

eikx−ω1t(ikg0(ω1, t) + g1(ω1, t)) dk. (2.13)

Proceeding similarly on the right, starting from (2.10), we have

v(2)(x, t) =
γ(1) − γ(2)

2

(
1− erf

(
x

2
√
σ2

2t

))
+

1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

− 1

2π

∫ ∞
−∞

eikx−ω2t(ikσ2
2g0(ω2, t) + σ2

1g1(ω2, t)) dk,

=
γ(1) − γ(2)

2

(
1− erf

(
x

2
√
σ2

2t

))
+

1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

− 1

2π

∫
∂D+

eikx−ω2t(ikσ2
2g0(ω2, t) + σ2

1g1(ω2, t)) dk.

(2.14)

for x > 0 and t > 0. Here erf(·) denotes the error function: erf(z) = 2√
π

∫ z
0

exp(−y2) dy. To

obtain the second equality above we integrated the terms that are explicit.

The expressions (2.13) and (2.14) for v(1)(x, t) and v(2)(x, t) depend on the unknown

functions g0 and g1, evaluated at different arguments. These functions need to be expressed
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in terms of known quantities. To obtain a system of two equations for the two unknown

functions we use (2.9) and (2.10) for g0(ω1, t), and g1(ω1, t). This requires the transformation

k → −σ1k/σ2 in (2.10). The − sign is required to ensure that both equations are valid on

C−, allowing for their simultaneous solution. We find

ikσ2
1g0(ω1, t) =

−σ1

(
eω1t(v̂(1)(−k, t) + v̂(2)

(
k σ1
σ2
, t
)

)− v̂(1)
0 (−k)− v̂(2)

0

(
k σ1
σ2

))
σ1 + σ2

+
i(γ(1) − γ(2)) (1− eω1t)

k(σ1 + σ2)
,

(2.15a)

σ2
1g1(ω1, t) =

eω1t
(
σ2v̂

(1)(−k, t)− σ1v̂
(2)
(
k σ1
σ2
, t
))

+ σ1v̂
(1)
0

(
k σ1
σ2

)
− σ2v̂

(1)
0 (−k)

σ1 + σ2

+
i(γ(1) − γ(2))(1− eω1t)

k(σ1 + σ2)
,

(2.15b)

valid for k ∈ C−. These expressions are substituted into (2.13). This results in an expression

for v(1)(x, t) that appears to depend on v(1)(x, t) and v(2)(x, t) themselves. We examine

the contribution of the terms involving v̂(1)(·, t) and v̂(2)(·, t). We obtain for v(1)(x, t) the

following expression:

v(1)(x, t) =
σ2(γ(2) − γ(1))

σ1 + σ2

(
1 + erf

(
x

2
√
σ2

1t

))

+
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

+

∫
∂D−

σ2 − σ1

2π(σ1 + σ2)
eikx−ω1tv̂

(1)
0 (−k) dk

−
∫
∂D−

σ1

π(σ1 + σ2)
eikx−ω1tv̂

(2)
0

(
k
σ1

σ2

)
dk

+

∫
∂D−

σ1 − σ2

2π(σ1 + σ2)
eikxv̂(1)(−k, t) dk

+

∫
∂D−

σ1

π(σ1 + σ2)
eikxv̂(3)

(
k
σ1

σ2

, t

)
dk,

(2.16)

for x < 0, t > 0. The first four terms depend only on known functions. In the second-to-

last term, notice that the integrand is analytic for all k ∈ C− and that v̂(1)(−k, t) decays
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for k → ∞ for k ∈ C−. Thus, by Jordan’s Lemma, the integral of exp(ikx)v̂(1)(−k, t)

along a closed, bounded curve in C− vanishes. In particular we consider the closed curve

L− = LD− ∪ L−C where LD− = ∂D− ∩ {k : |k| < C} and L−C = {k ∈ D− : |k| = C}, see

Figure 1.3.

Since the integral along L−C vanishes for large C, the fourth integral on the right-hand side

of (2.16) must vanish since the contour LD− becomes ∂D− as C → ∞. The uniform decay

of v̂(1)(−k, t) for large k is exactly the condition required for the integral to vanish, using

Jordan’s Lemma. For the final integral in Equation (2.16) we use the fact that v̂(2)(k σ1
σ2
, t)

is analytic and bounded for k ∈ C−. Using the same argument as above, the fifth integral

in (2.16) vanishes and we have an explicit representation for v(1)(x, t) in terms of initial

conditions:

v(1)(x, t) =
σ2(γ(2) − γ(1))

σ1 + σ2

(
1 + erf

(
x

2
√
σ2

1t

))

+
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

+

∫
∂D−

σ2 − σ1

2π(σ1 + σ2)
eikx−ω1tv̂

(1)
0 (−k) dk

−
∫
∂D−

σ1

π(σ1 + σ2)
eikx−ω1tv̂

(2)
0

(
k
σ1

σ2

)
dk.

(2.17)

To find an explicit expression for v(2)(x, t) we need to evaluate g0 and g1 at different

arguments, ensuring that the expressions are valid for k ∈ C+ \ D+. From (2.15a) and

(2.15b), we find
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ikσ2
2g0(ω2, t) =

σ2

(
eω2t(v̂(1)(k σ2

σ1
, t) + v̂(2)(−k, t))− v̂(1)

0 (k σ2
σ1

)− v̂(2)
0 (−k)

)
σ1 + σ2

+
iσ2(γ(1) − γ(2))(1− eω2t)

k(σ1 + σ2)
,

σ2
1g1(ω2, t) =

eω2t
(
σ2v̂

(1)(k σ2
σ1
, t)− σ1v̂

(2)(−k, t)
)

+ σ1v̂
(2)
0 (−k)− σ2v̂

(1)
0 (k σ2

σ1
)

σ1 + σ2

−i(γ
(1) − γ(2)) (1− eω2t)

k(σ1 + σ2)
.

Substituting these into equation (2.14), we obtain

v(2)(x, t) =
σ1(γ(1) − γ(2))

σ1 + σ2

(
1− erf

(
x

2
√
σ2

2t

))
+

1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+

∫
∂D+

σ2 − σ1

2π(σ1 + σ2)
eikx−ω2tv̂

(2)
0 (−k) dk

+

∫
∂D+

σ2

π(σ1 + σ2)
eikx−ω2tv̂

(1)
0

(
k
σ2

σ1

, t

)
dk

+

∫
∂D+

σ1 − σ2

2π(σ1 + σ2)
eikxv̂(2)(−k, t) dk

−
∫
∂D+

σ2

π(σ1 + σ2)
eikxv̂(1)

(
k
σ2

σ1

, t

)
dk.

(2.18)

for x > 0, t > 0. As before, everything about the first three integrals is known. To compute

the fourth and fifth integral we proceed as we did for v(1)(x, t) and eliminate integrals that

decay in the regions over which they are integrated. The final solution is

v(2)(x, t) =
σ1(γ(1) − γ(2))

σ1 + σ2

(
1− erf

(
x

2
√
σ2

2t

))
+

1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+

∫
∂D+

σ2 − σ1

2π(σ1 + σ2)
eikx−ω2tv

(2)
0 (−k) dk

+

∫
∂D+

σ2

π(σ1 + σ2)
eikx−ω2tv

(1)
0

(
k
σ2

σ1

)
dk.

(2.19)
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Returning to the original variables we have the following proposition which determines

u(2)(x, t) and u(1)(x, t) fully explicitly in terms of the given initial conditions and the pre-

scribed asymptotic conditions as |x| → ∞.

Proposition 2.1. The solution of the heat transfer problem (2.2)-(2.5) is given by

u(1)(x, t) =γ(1) +
σ2(γ(2) − γ(1))

σ1 + σ2

(
1− erf

(
x

2
√
σ2

1t

))
+

1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

+

∫
∂D−

σ2 − σ1

2π(σ1 + σ2)
eikx−ω1tv̂

(1)
0 (−k) dk

−
∫
∂D−

σ1

π(σ1 + σ2)
eikx−ω1tv̂

(2)
0

(
k
σ1

σ2

)
dk,

(2.20a)

u(2)(x, t) =γ(2) +
σ1(γ(1) − γ(2))

σ1 + σ2

(
1− erf

(
x

2
√
σ2

2t

))
+

1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+

∫
∂D+

σ2 − σ1

2π(σ1 + σ2)
eikx−ω2tv

(2)
0 (−k) dk

+

∫
∂D+

σ2

π(σ1 + σ2)
eikx−ω2tv

(1)
0 (k

σ2

σ1

) dk.

(2.20b)

Remarks:

• The use of the discrete symmetries of the dispersion relation is an important aspect

of the Fokas Method. When solving the heat equation in a single medium, the only

discrete symmetry required is k → −k, which was used here as well to obtain (2.9) and

(2.11). Due to the two media, there are two dispersion relations in the present prob-

lem: ω1(k) = (σ1k)2 and ω2(k) = (σ2k)2. The collection of both dispersion relations

{ω1(k), ω2(k)} retains the discrete symmetry k → −k, but admits two additional ones,

namely: k → (σ2
σ1

)k and k → (σ1
σ2

)k, which transform the two dispersion relations to

each other. All nontrivial discrete symmetries of {ω1(k), ω2(k)} are needed to derive

the final solution representation, and indeed they are used e.g. to obtain the relations

(2.15a) and (2.15b).
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• With σ1 = σ2 and γ(1) = γ(2) = 0, the solution formulae (2.20) in their proper x-

domains of definition reduce to the solution of the whole line problem as given in [25].

• Classical approaches to the problem presented in this section can be found in the

literature, for the case γ(1) = 0 = γ(2). For instance, for one special pair of initial

conditions, a solution is presented in [33]. No explicit solution formulae using classical

methods with general initial conditions exist to our knowledge. At best, one is left

with having to find the solution of an equation involving inverse Laplace transforms,

where the unknowns are embedded within these inverse transforms.

• The steady-state solution to (2.2) with initial conditions which decay sufficiently fast

to the boundary values (2.4) at ±∞ is easily obtained by letting t → ∞ in (2.20).

This gives limt→∞ u
(2)(x, t) = limt→∞ u

(1)(x, t) = (γ(1)σ1 + γ(2)σ2)/(σ1 + σ2). This is

the weighted average of the boundary conditions at infinity with weights given by σ1

and σ2. This is consistent with the steady state limit (γ(1) + γ(2))/2 for the whole-line

problem with initial conditions that limit to different values γ(1) and γ(2) as x→ ±∞.

This result is easily obtained from the solution of the heat equation defined on the

whole line using the Fokas Method, but it can also be observed by employing piecewise-

constant initial data in the classical Green’s function solution, as described in Theorem

4-1 on page 171 (and comments thereafter) of [32]. It should be emphasized that the

steady state problem for (2.2)-(2.5) (or even for the heat equation defined on the whole

line with different boundary conditions at +∞ and −∞) is ill posed in the sense that

the steady solution cannot satisfy the boundary conditions.

Using a slight variation on the method presented in [20] one can compute the solutions

(2.20) numerically with specified initial conditions. We plot solutions for the case of vanishing

boundary conditions (γ(1) = γ(2) = 0) with

u
(1)
0 (x) = x2ec

2
1x,

u
(2)
0 (x) = x2e−c

2
2x,
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where c1 = 25 and c2 = 30 in Figure 2.3. The Fourier transforms of these initial conditions

may be computed explicitly. We choose σ1 = .02 and σ2 = .06. The initial conditions are

chosen so as to satisfy the interface boundary conditions (2.5) at t = 0. The results clearly

illustrate the discontinuity in the first derivative of the temperature at the interface x = 0.

2.2 Two finite domains

Next, we consider the problem of heat conduction through two walls of finite width (or of

two finite rods) with Robin boundary conditions. We seek two functions:

u(1)(x, t), − x0 < x < x1, t ≥ 0,

and

u(2)(x, t), x1 < x < x2, t ≥ 0,

satisfying the equations

u
(1)
t (x, t) =σ2

1u
(1)
xx (x, t), −x0 < x < x1, t > 0, (2.21a)

u
(2)
t (x, t) =σ2

2u
(2)
xx (x, t), x1 < x < x2, t > 0, (2.21b)

the initial conditions

u(1)(x, 0) =u
(1)
0 (x), −x0 < x < x1, (2.22a)

u(2)(x, 0) =u
(2)
0 (x), x1 < x < x2, (2.22b)

the boundary conditions

f1(t) =β1u
(1)(−x0, t) + β2u

(1)
x (−x0, t), t > 0, (2.23a)

f2(t) =β3u
(2)(x2, t) + β4u

(2)
x (x2, t), t > 0, (2.23b)
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t

x

u(x,t)

0 0.01-0.01

5E-7

u(x,t)

x

0

0.01

-0.01 0.01

0.02

x
t

u(x,t)

0
0.01

-0.01

0.01

5E-7

Figure 2.3: Results for the solution (2.17) and (2.19) with u
(1)
0 (x) = x2e(25)2x, u

(2)
0 (x) =

x2e−(30)2x and σ1 = .02, σ2 = .06, γ(1) = γ(2) = 0, t ∈ [0, 0.02] using the hybrid analytical-

numerical method of [20].
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and the continuity conditions

u(1)(x1, t) =u(2)(x1, t), t > 0, (2.24a)

σ2
1u

(1)
x (x1, t) =σ2

2u
(2)
x (x1, t), t > 0, (2.24b)

as illustrated in Figure 2.4, where x0 and x2 are positive, x1 = 0, and βi, 1 ≤ i ≤ 4 are

constants. If β1 = β3 = 0 then Neumann boundary conditions are prescribed, whereas if

β2 = β4 = 0 then Dirichlet conditions are given.

u
(1)
t = σ2

1u
(1)
xx u

(2)
t = σ2

2u
(2)
xx

x

−x0 x1 = 0 x2

Figure 2.4: The heat equation for two finite domains.

As before we have the local relations

(e−ikx+ω1tu(1)(x, t))t = (σ2
1e
−ikx+ω1t(u(1)

x (x, t) + iku(1)(x, t)))x,

(e−ikx+ω2tu(2)(x, t))t = (σ2
2e
−ikx+ω2t(u(2)

x (x, t) + iku(2)(x, t)))x,

where ωj = (σjk)2. We define the time transforms of the initial and boundary data and the
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spatial transforms of u for k ∈ C as follows:

û
(1)
0 (k) =

∫ 0

−x0
e−ikxu

(1)
0 (x) dx, û(1)(k, t) =

∫ 0

−x0
e−ikxu(1)(x, t) dx,

û
(2)
0 (k) =

∫ x2

0

e−ikxu
(2)
0 (x) dx, û(2)(k, t) =

∫ x2

0

e−ikxu(2)(x, t) dx,

f̃1(ω, t) =

∫ t

0

eωsf1(s) ds, f̃2(ω, t) =

∫ t

0

eωsf2(s) ds,

h
(1)
1 (ω, t) =

∫ t

0

eωsu(1)
x (−x0, s) ds, h

(1)
0 (ω, t) =

∫ t

0

eωsu(1)(−x0, s) ds,

h
(2)
1 (ω, t) =

∫ t

0

eωsu(2)
x (x2, s) ds, h

(2)
0 (ω, t) =

∫ t

0

eωsu(2)(x2, s) ds,

g1(ω, t) =

∫ t

0

eωsu(1)
x (0, s) ds =

σ2
2

σ2
1

∫ t

0

eωsu(2)
x (0, s) ds,

g0(ω, t) =

∫ t

0

eωsu(1)(0, s) ds =

∫ t

0

eωsu(2)(0, s) ds.

Using Green’s Theorem on the domains [−x0, 0]× [0, t] and [0, x2]× [0, t] respectively (see

Figure 2.5, we have the global relations

x

s

x1 = 0 x2−x0

t

Figure 2.5: Domains for the application of Green’s Theorem in the case of two finite rods.
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eω1tû(1)(k, t) =σ2
1 (g1(ω1, t) + ikg0(ω1, t))− eikx0σ2

1

(
h

(1)
1 (ω1, t) + ikh

(1)
0 (ω1, t)

)
+ û

(1)
0 (k),

(2.26a)

eω2tû(2)(k, t) =e−ikx2σ2
2

(
h

(2)
1 (ω2, t) + ikh

(2)
0 (ω2, t)

)
− σ2

1g1(ω2, t)− ikσ2
2g0(ω2, t)

+ û
(2)
0 (k).

(2.26b)

Both equations are valid for all k ∈ C, in contrast to (2.8) and (2.10). Using the invariance

of ω1(k) = (σ1k)2 and ω2(k) = (σ2k)2 under k → −k we obtain

eω1tû(1)(−k, t) =σ2
1 (g1(ω1, t)− ikg0(ω1, t))− e−ikx0σ2

1

(
h

(1)
1 (ω1, t)− ikh(1)

0 (ω1, t)
)

+ û
(1)
0 (−k),

(2.27a)

eω2tû(2)(−k, t) =eikx2σ2
2

(
h

(2)
1 (ω2, t)− ikh(2)

0 (ω2, t)
)
− σ2

1g1(ω2, t) + ikσ2
2g0(ω2, t)

+ û
(2)
0 (−k).

(2.27b)

As in Section 2.1 we need to use all the symmetries of the set of dispersion relations.

Using the symmetries k → k σ1
σ2

and k → k σ2
σ1

we have

eω2tû(1)

(
k
σ2

σ1

, t

)
=− eikx0

σ2
σ1

(
σ2

1h
(1)
1 (ω2, t) + ikσ1σ2h

(1)
0 (ω2, t)

)
+ σ2

1g1(ω2, t) + ikσ1σ2g0(ω2, t) + û
(1)
0

(
k
σ2

σ1

)
,

(2.28a)

eω1tû(2)

(
k
σ1

σ2

, t

)
=e
−ikx2 σ1σ2

(
σ2

2h
(2)
1 (ω1, t) + ikσ1σ2h

(2)
0 (ω1, t)

)
− σ2

1g1(ω1, t)− ikσ1σ2g0(ω1, t) + û
(2)
0 (k),

(2.28b)

eω2tû(1)

(
−kσ2

σ1

, t

)
=− e−ikx0

σ2
σ1

(
σ2

1h
(1)
1 (ω2, t)− ikσ1σ2h

(1)
0 (ω2, t)

)
+ σ2

1g1(ω2, t)− ikσ1σ2g0(ω2, t) + û
(1)
0

(
−kσ2

σ1

)
,

(2.28c)
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eω1tû(2)

(
−kσ1

σ2

, t

)
=e

ikx2
σ1
σ2

(
σ2

2h
(2)
1 (ω1, t)− ikσ1σ2h

(2)
0 (ω1, t)

)
− σ2

1g1(ω1, t) + ikσ1σ2g0(ω1, t) + û
(2)
0

(
−kσ1

σ2

)
.

(2.28d)

Inverting the Fourier transform in (2.26a) we have,

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tσ2
1(g1(ω1, t) + ikg0(ω1, t)) dk

− 1

2π

∫ ∞
−∞

eik(x0+x)−ω1tσ2
1(h

(1)
1 (ω1, t) + ikh

(1)
0 (ω1, t)) dk

+
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk.

The integrand of the first integral is entire and decays as k →∞ for k ∈ C− \D−. The

second integral has an integrand that is entire and decays as k →∞ for k ∈ C+ \D+. It is

convenient to deform both contours away from k = 0 to avoid singularities in the integrands

that become apparent in what follows. Initially, these singularities are removable, since the

integrands are entire. Writing integrals of sums as sums of integrals, the singularities may

cease to be removable. With the deformations away from k = 0, the apparent singularities

are no cause for concern. In other words, we deform D+ to D+
R and D− to D−R as show in

Figure 2.6 where

D±R = {k ∈ D± : |k| > R},

and R > 0 is an arbitrary constant. An appropriate (sufficiently large) value of this constant

may be chosen for any individual problem. Thus

u(1)(x, t) =
−1

2π

∫
∂D−R

eikx−ω1tσ2
1(g1(ω1, t) + ikg0(ω1, t)) dk

− 1

2π

∫
∂D+

R

eik(x0+x)−ω1tσ2
1(h

(1)
1 (ω1, t) + ikh

(1)
0 (ω1, t)) dk

+
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk.

(2.29)

To obtain the solution on the right we apply the inverse Fourier transform to (2.26b):
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Im(k)

Re(k)

D+
R

D−R

R

Figure 2.6: Deformation of the contours in Figure 1.2 for |k| > R.
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u(2)(x, t) =
1

2π

∫ ∞
−∞

eik(x−x2)−ω2tσ2
2(h

(2)
1 (ω2, t) + ikh

(2)
0 (ω2, t)) dk

− 1

2π

∫ ∞
−∞

eikx−ω2t(ikσ2
2g0(ω2, t) + σ2

1g1(ω2, t)) dk

+
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk.

The integrand of the first integral is entire and decays as k →∞ for k ∈ C− \D−. The

second integral has an integrand that is entire and decays as k → ∞ for k ∈ C+ \D+. We

deform the contours as above to obtain

u(2)(x, t) =
−1

2π

∫
∂D−R

eik(x−x2)−ω2tσ2
2(h

(2)
1 (ω2, t) + ikh

(2)
0 (ω2, t)) dk

− 1

2π

∫
∂D+

R

eikx−ω2t(ikσ2
2g0(ω2, t) + σ2

1g1(ω2, t)) dk

+
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk.

(2.30)

Taking the time transform of the boundary conditions and evaluating at the appropriate

arguments results in

f̃1(ω1, t) = β1h
(1)
0 (ω1, t) + β2h

(1)
1 (ω1, t),

and

f̃2(ω2, t) = β3h
(2)
0 (ω2, t) + β4h

(2)
1 (ω2, t).

These two equations together with (2.26), (2.27) and (2.28) may be solved for the neces-

sary unknowns h
(1)
0 (ω1, t), h

(2)
0 (ω2, t), h

(1)
1 (ω1, t), h

(2)
1 (ω2, t), g0(ω1, t), g1(ω1, t), g0(ω2, t), and

g1(ω2, t). The resulting expressions are substituted in (2.29) and (2.30).

Although we could solve this problem in its full generality, we restrict ourselves to the

case of Dirichlet boundary conditions (β2 = β4 = 0, β1 = β3 = 1), to simplify the already

cumbersome formulae below. The system is not solvable if ∆1(k) = 0 or ∆2(k) = 0, where
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∆1(k) =2π
(
σ1(e2ikx0 + 1)

(
e

2ikx2
σ1
σ2 − 1

)
+ σ2(e2ikx0 − 1)

(
e

2ikx2
σ1
σ2 + 1

))
= 2iπ

(
e2ikx0 + 1

) (
e

2ikx2
σ1
σ2 + 1

)(
σ1 tan

(
x2k

σ1

σ2

)
+ σ2 tan(kx0)

)
,

and

∆2(k) =∆1

(
k
σ2

σ1

)
.

It is easily seen that all values of k satisfying either of these equations (including k = 0) are

on the real line. Thus, on the contours we consider, the equations are solved without problem,

resulting in the expressions below. As before, the right-hand sides of these expressions involve

û(1)(·, t) and û(2)(·, t). All terms with such dependence are written out explicitly below.

Terms that depend on known quantities only are contained in K(1) and K(2), the expressions

for which are given later.

u(1)(x, t) = K(1) +

∫
∂D−R

eikx(σ1 + σ2) + e
ik(x+2x2

σ1
σ2

)
(σ2 − σ1)

∆1(k)
û(1)(k, t) dk

−
∫
∂D−R

eik(x+2x0)(σ1 + σ2) + e
ik(x+2x0+2x2

σ1
σ2

)
(σ1 − σ2)

∆1(k)
û(1)(−k, t) dk

+

∫
∂D−R

2σ1e
ik(x+2x0+2x2

σ1
σ2

)

∆1(k)
û(2)

(
k
σ1

σ2

, t

)
dk

−
∫
∂D−R

σ1e
ik(x+2x0)

∆1(k)
û(2)

(
−kσ1

σ2

, t

)
dk

+

∫
∂D+

R

eik(x+2x0)(σ2 − σ1) + e
ik(x+2x0+2x2

σ1
σ2

)
(σ1 + σ2)

∆1(k)
û(1)(k, t) dk

+

∫
∂D+

R

eik(x+2x0) − (σ2 + σ1) + e
ik(x+2x0+2x2

σ1
σ2

)
(σ1 − σ2)

∆1(k)
û(1)(−k, t) dk

+

∫
∂D+

R

2σ1e
ik(x+2x0+2x2

σ1
σ2

)

∆1(k)
û(2)

(
k
σ1

σ2

, t

)
dk

−
∫
∂D+

R

2σ1e
ik(x+2x0)

∆1(k)
û(2)

(
−kσ1

σ2

, t

)
dk,

(2.31)
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and

u(2)(x, t) =K(2) +

∫
∂D+

R

2σ2e
ikx

∆2(k)
û(1)

(
k
σ2

σ1

, t

)
dk

−
∫
∂D+

R

2σ2e
ik(x+2x0

σ2
σ1

)

∆2(k)
û(1)

(
−kσ2

σ1

, t

)
dk

+

∫
∂D+

R

eikx+2x2)(σ1 − σ2) + e
ik(x+2x2+2x0

σ2
σ1

)
(σ1 + σ2)

∆2(k)
û(2)(k, t) dk

+

∫
∂D+

R

eikx(σ2 − σ1)− eik(x+2x0
σ2
σ1

)
(σ1 + σ2)

∆2(k)
û(2)(−k, t) dk

+

∫
∂D−R

2σ2e
ikx

∆2(k)
û(1)

(
k
σ2

σ1

, t

)
dk

−
∫
∂D−R

σ2e
ik(x+2x0

σ2
σ1

)

∆2(k)
û(1)

(
−kσ2

σ1

, t

)
dk

+

∫
∂D−R

eikx)(σ1 + σ2) + e
ik(x+2x0

σ2
σ1

)
(σ1 − σ2)

∆2(k)
û(2)(k, t) dk

+

∫
∂D−R

eikx(σ2 − σ1)− eik(x+2x0
σ2
σ1

)
(σ1 + σ2)

∆2(k)
û(2)(−k, t) dk.

(2.32)

The integrands written explicitly in (2.31) and (2.32) decay in the regions around whose

boundaries they are integrated. Thus, using Jordan’s Lemma and Cauchy’s Theorem, these

integrals are shown to vanish. Thus the final solution is given by K(1) and K(2).
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Proposition 2.2. The solution of the heat transfer problem (2.21)-(2.24) is given by

u(1)(x, t) =K(1) =

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk

+

∫
∂D−R

−4ikσ2
1σ2e

ik(x+2x0+x2
σ1
σ2

)−ω1t

∆1(k)
f̃2(ω1, t) dk

+

∫
∂D−R

2ikσ2
1e
ik(x+x0)−ω1t(σ1 + σ2)− ikσ2

1e
ik(x+x0+2x2

σ1
σ2

)−ω1t(σ1 − σ2)

∆1(k)
f̃1(ω1, t) dk

+

∫
∂D−R

−eikx−ω1t(σ1 + σ2) + e
ik(x+2x2

σ1
σ2

)−ω1t(σ1 − σ2)

∆1(k)
û

(1)
0 (k) dk

+

∫
∂D−R

eik(x+2x0)−ω1t(σ1 + σ2) + e
ik(x+2x0+2x2

σ1
σ2

)−ω1t(σ2 − σ1)

∆1(k)
û

(1)
0 (−k) dk

+

∫
∂D−R

−2σ1e
ik(x+2x0+2x2

σ1
σ2

)−ω1t

∆1(k)
û

(2)
0

(
k
σ1

σ2

)
dk

+

∫
∂D−R

σ1e
ik(x+2x0)−ω1t

∆1(k)
û

(2)
0

(
−kσ1

σ2

)
dk

+

∫
∂D+

R

2ikσ2
1e
ik(x+x0)−ω1t(σ1 + σ2)− ikσ2

1e
ik(x+x0+2x2

σ1
σ2

)−ω1t(σ1 − σ2)

∆1(k)
f̃1(ω1, t) dk

+

∫
∂D+

R

−4ikσ2
1σ2e

ik(x+2x0+x2
σ1
σ2

)−ω1t(1 + σ1σ2)

∆1(k)
f̃2(ω1, t) dk

+

∫
∂D+

R

−eik(x+2x0)−ω1t(σ2 − σ1)− eik(x+2x0+2x2
σ1
σ2

)−ω1t(σ1 + σ2)

∆1(k)
û

(1)
0 (k) dk

+

∫
∂D+

R

eik(x+2x0)−ω1t(σ1 + σ3) + e
ik(x+2x0+2x2

σ1
σ3

)−ω1t(σ3 − σ1)

∆1(k)
û

(1)
0 (−k) dk

+

∫
∂D+

R

−2σ1e
ik(x+2x0+2x2

σ1
σ2

)−ω1t

∆1(k)
û

(2)
0

(
k
σ1

σ2

)
dk

+

∫
∂D+

R

2σ1e
ik(x+2x0)−ω1t

∆1(k)
û

(2)
0

(
−kσ1

σ2

)
dk,

(2.33)
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for −x0 < x < 0, and, for 0 < x < x2

u(2)(x, t) =K(2) =

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk

+

∫
∂D−R

4ikσ1σ
2
2e
ik(x+x0

σ2
σ1

)−ω2t

∆2(k)
f̃1(ωw, t) dk

−
∫
∂D−R

2ikσ2
2e
ik(x+x2)−ω2t(σ1−σ2)− ikσ2

2e
ik(x+x2+2x0

σ2
σ1

)−ω2t

∆2(k)
f̃2(ω2, t) dk

−
∫
∂D−R

2σ2e
ikx−ω2t

∆2(k)
û

(1)
0

(
k
σ2

σ1

)
dk

+

∫
∂D−R

σ2e
ik(x+2x0

σ2
σ1

)−ω2t

∆2(k)
û

(1)
0

(
−kσ2

σ1

)
dk

+

∫
∂D−R

−eik(x+2x2)−ω2t(σ1 − σ2)− eik(x+2x2+2x0
σ2
σ1

)−ω2t(σ1 + σ2)

∆2(k)
û

(2)
0 (k) dk

+

∫
∂D−R

eikx−ω2t(σ1 − σ2) + e
ik(x+2x0

σ2
σ1

)−ω2t(σ1 + σ2)

2∆2(k)
û

(2)
0 (−k) dk

+

∫
∂D+

R

4ikσ1σ
2
2e
ik(x+x0

σ2
σ1

)−ω2t

∆2(k)
f̃1(ω2, t) dk

−
∫
∂D+

R

2ikσ2e
ik(x+x2)−ω2t(σ1−σ2)+ikσ2

2e
ik(x+x2+2x0

σ2
σ1

)−ω2t(σ1+σ2)

∆2(k)
f̃2(ω2, t)dk

+

∫
∂D+

R

−2σ2e
ikx−ω2t

∆2(k)
û

(1)
0

(
k
σ2

σ1

)
dk

+

∫
∂D+

R

2σ2e
ik(x+2x0

σ2
σ1

)−ω2t

∆2(k)
û

(1)
0

(
−kσ2

σ1

)
dk

+

∫
∂D+

R

−eikx−ω2t(σ1 + σ2) + e
ik(x+2x0

σ2
σ1

)−ω2t(σ2 − σ1)

∆2(k)
û

(2)
0 (k) dk

+

∫
∂D+

R

eikx−ω2t(σ1 − σ2) + e
ik(x+2x0

σ2
σ1

)−ω2t(σ1 + σ2)

∆2(k)
û

(2)
0 (−k) dk.

(2.34)

Remarks:
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• The solution of the problem posed in (2.21)-(2.24) may be obtained using the classical

method of separation of variables and superposition, see [33]. The solutions u(1)(x, t)

and u(2)(x, t) are given by series of eigenfunctions with eigenvalues that satisfy a tran-

scendental equation, closely related to the equation ∆1(k) = 0. This series solution

may be obtained from Proposition 2.2 by deforming the contours along ∂D−R and ∂D+
R

to the real line, including small semi-circles around each root of either ∆1(k) or ∆2(k),

depending on whether u(1)(x, t) or u(2)(x, t) is being calculated. Indeed, this is allowed

since all integrands decay in the wedges between these contours and the real line, and

the zeros of ∆1(k) and ∆2(k) occur only on the real line, as stated above. Careful

calculation of all different contributions, following the examples in [15, 25], shows that

the contributions along the real line cancel, leaving only residue contributions from the

small circles. Each residue contribution corresponds to a term in the classical series

solution. It is not necessarily beneficial to leave the form of the solution in Propo-

sition 2.2 for the series representation, as the latter depends on the roots of ∆1(k)

and ∆2(k), which are not known explicitly. In contrast, the representation of Propo-

sition 2.2 depends on known quantities only and may be readily computed, using a

parameterization of the contours ∂D−R and ∂D+
R .

• Similarly, the familiar piecewise linear steady-state solution of (2.21)-(2.24) with Dirich-

let boundary conditions [33] can be observed from (2.33) and (2.34) by choosing initial

conditions that decay appropriately and constant boundary conditions f1(t) = γ(1) and

f2(t) = γ(2). It is convenient to choose zero initial conditions, since the initial condi-

tions do not affect the steady state. As above, the contours are deformed so that they

are along the real line with semi-circular paths around the zeros of ∆1(k) and ∆2(k),

including k = 0. Since one of these deformations arises from D+
R while the other comes

from D−R , the contributions along the real line cancel each other, while the semi-circles

add to give full residue contributions from the poles associated with the zeros of ∆1(k).

All such residues vanish as t → ∞, except at k = 0. It follows that the steady state
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behavior is determined by the residue at the origin. This results in

u(1)(x, t) =
σ2

2(γ(2) − γ(1))

x2σ2
1 + x0σ2

2

x+
x2γ

(1)σ2
1 + x0γ

(2)σ2
2

x2σ2
1 + x0σ2

2

, − x0 < x < 0,

u(2)(x, t) =
σ2

1(γ(2) − γ(1))

x2σ2
1 + x0σ2

2

x+
x2γ

(1)σ2
1 + x0γ

(2)σ2
2

x2σ2
1 + x0σ2

2

, 0 < x < x2,

which is piecewise linear and continuous.

• A more direct way to recover only the steady-state solution to (2.21) with limt→∞ f1(t) =

f̄1 and limt→∞ f2(t) = f̄2 constant is to write the solution as the superposition of two

parts: u(1)(x, t) = ū(1)(x) + ǔ(1)(x, t) and u(2)(x, t) = ū(2)(x) + ǔ(2)(x, t). The first

parts ū(1) and ū(2) satisfy the boundary conditions as t → ∞ and the stationary heat

equation. In other words

0 =σ2
1ū

(1)
xx (x), − x0 < x < 0,

0 =σ2
2ū

(2)
xx (x), 0 < x < x2,

f̄1 =β1ū
(1)(−x0) + β2ū

(1)
x (−x0),

f̄2 =β3ū
(2)(x2) + β4ū

(2)
x (x2).

A piecewise linear ansatz with the imposition of the interface conditions results in

linear algebra for the unknown coefficients, see [33]. With the steady state solution

in hand, the second (time-dependent) parts ǔ(1) and ǔ(2) satisfy the initial conditions

modified by the steady state solution and the boundary conditions minus their value

as t→∞:
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ǔ
(1)
t (x, t) =σ2

1ǔ
(1)
xx (x, t), x0 < x < 0, t > 0,

ǔ
(2)
t (x, t) =σ2

2ǔ
(2)
xx (x, t), 0 < x < x2, t > 0,

ǔ(1)(x, 0) =u(1)(x, 0)− ū(1)(x), − x0 < x < 0,

ǔ(2)(x, 0) =u(2)(x, 0)− ū(2)(x), 0 < x < x2,

f1(t)− f̄1 =β1ǔ
(1)(−x0, t) + β2ǔ

(1)
x (−x0, t), t > 0,

f2(t)− f̄2 =β3ǔ
(2)(x2, t) + β4ǔ

(2)
x (x2, t), t > 0,

where, as usual, we impose continuity of temperature and heat flux at the interface

x = 0. The dynamics of the solution is described by ǔ(1) and ǔ(2), both of which decay

to zero as t → ∞. Their explicit form is easily found using the method described in

this section.

2.3 An infinite domain with three layers

In this section we consider the heat equation defined on two semi-infinite rods enclosing a

single rod of length 2x0. That is, we seek three functions

u(1)(x, t), x < −x0, t ≥ 0,

u(2)(x, t), −x0 <x < x0, t ≥ 0,

u(3)(x, t), x > x0, t ≥ 0,

satisfying the equations

u
(1)
t (x, t) =σ2

1u
(1)
xx (x, t), x < −x0, t > 0, (2.35a)

u
(2)
t (x, t) =σ2

2u
(2)
xx (x, t), −x0 <x < x0, t > 0, (2.35b)

u
(3)
t (x, t) =σ2

3u
(3)
xx (x, t), x > x0, t > 0, (2.35c)
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the initial conditions

u
(1)
t (x, 0) =u

(1)
0 (x), x < −x0, (2.36a)

u
(2)
t (x, 0) =u

(2)
0 (x), −x0 <x < x0, (2.36b)

u
(3)
t (x, 0) =u

(3)
0 (x), x > x0, (2.36c)

the asymptotic conditions

lim
x→−∞

u
(1)
t (x, t) =0, t ≥ 0, (2.37a)

lim
x→∞

u
(3)
t (x, t) =0, t ≥ 0, (2.37b)

and the continuity conditions

u(1)(−x0, t) = u(2)(−x0, t), t ≥ 0, (2.38a)

u(2)(x0, t) = u(3)(x0, t), t ≥ 0, (2.38b)

σ2
1u

(1)
x (−x0, t) = σ2

2u
(2)
x (−x0, t), t ≥ 0, (2.38c)

σ2
2u

(2)
x (x0, t) = σ2

3u
(3)
x (x0, t), t ≥ 0, (2.38d)

as in Figure 2.7.

u
(1)
t = σ2

1u
(1)
xx u

(2)
t = σ2

2u
(2)
xx

x
−∞ −x0

∞x0

u
(3)
t = σ2

3u
(3)
xx

Figure 2.7: The heat equation for an infinite domain with three layers.
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After defining the transforms

û
(1)
0 (k) =

∫ −x0
−∞

e−ikxu
(1)
0 (x) dx, û(1)(k, t) =

∫ −x0
−∞

e−ikxu(1)(x, t) dx,

û
(2)
0 (k) =

∫ x0

−x0
e−ikxu

(2)
0 (x) dx, û(2)(k) =

∫ x0

−x0
e−ikxu(2)(x, t) dx,

û
(3)
0 (k) =

∫ ∞
x0

e−ikxu
(3)
0 (x) dx, û(3)(k, t) =

∫ ∞
x0

e−ikxu(3)(x, t) dx,

h1(ω, t) =

∫ t

0

eωsu(1)
x (−x0, s) ds =

σ2
2

σ2
1

∫ t

0

eωsu(2)
x (−x0, s) ds,

h0(ω, t) =

∫ t

0

eωsu(1)(−x0, s) ds =

∫ t

0

eωsu(2)(−x0, s) ds,

g1(ω, t) =

∫ t

0

eωsu(2)
x (x0, s) ds =

σ2
3

σ2
2

∫ t

0

eωsu(3)
x (x0, s) ds,

g0(ω, t) =

∫ t

0

eωsu(2)(x0, s) ds =

∫ t

0

eωsu(3)(x0, s) ds,

we proceed as outlined in the preceding sections. The solution formulae are given in the

following proposition:

Proposition 2.3. The solution of the heat transfer problem (2.35)-(2.38) is

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk

− σ1(σ2 + σ3)

∫
∂D−R

e
ik(x+x0+3x0

σ1
σ2

)−ω1t

∆1(k)
û

(2)
0

(
kσ1

σ2

)
dk

−
∫
∂D−R

eik(x+2x0)−ω1t

2∆1(k)

(
(σ1 + σ2)(σ2 − σ3) + e

4ikx0
σ1
σ2 (σ1 − σ2)(σ2 + σ3)

)
û

(1)
0 (−k) dk

+ σ1(σ3 − σ2)

∫
∂D−R

e
ik(x+x0+x0

σ1
σ2

)−ω1t

∆1(k)
û

(2)
0

(
−kσ1

σ2

)
dk

− 2σ1σ2

∫
∂D−R

e
ik(x+x0+x0

σ1
σ3

+2x0
σ1
σ2

)−ω1t

∆1(k)
û

(3)
0

(
kσ1

σ3

)
dk,

for −∞ < x < −x0 with ∆1(k) = π
(

(σ1 − σ2)(σ2 − σ3) + e
4ix0k

σ1
σ2 (σ1 + σ2)(σ2 + σ3)

)
,
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u(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k)

− σ2(σ2 − σ3)

∫
∂D−R

e
ik(x+x0+x0

σ2
σ1

)−ω2t

∆1(k σ2
σ1

)
û

(1)
0

(
−kσ2

σ1

)
dk

+
(σ1 − σ2)(σ2 − σ3)

2

∫
∂D−R

eikx−ω2tû
(2)
0 (k)

∆1(k σ2
σ1

)
dk

+ σ2(σ2 + σ3)

∫
∂D+

R

e
ik(x+x0−x0 σ2σ1 )−ω2t

∆3(k σ2
σ3

)
û

(1)
0

(
kσ2

σ1

)
dk

− σ2(σ1 + σ2)

∫
∂D−R

e
ik(x+3x0+x0

σ2
σ3

)−ω2t

∆1(k σ2
σ1

)
û

(3)
0

(
kσ2

σ3

)
dk

− (σ1 + σ2)(σ2 − σ3)

2

∫
∂D−R

eik(x+2x0)−ω2tû
(2)
0 (−k)

∆1(k σ2
σ1

)
dk

+
(σ2 − σ1)(σ2 + σ3)

2

∫
∂D+

R

eik(x+2x0)−ω2tû
(2)
0 (k)

∆3(k σ2
σ3

)
dk

+
(σ2 − σ1)(σ2 − σ3)

2

∫
∂D+

R

eik(x+4x0)−ω2tû
(2)
0 (−k)

∆3(k σ2
σ3

)
dk

+ σ2(σ2 − σ1)

∫
∂D+

R

e
ik(x+3x0−x0 σ2σ3 )−ω2t

∆3(k σ2
σ3

)
û

(3)
0

(
−kσ2

σ3

)
dk,

for −x0 < x < x0 with ∆3(k) = π
(

(σ1 + σ2)(σ2 + σ3) + e
4ix0k

σ3
σ2 (σ1 − σ2)(σ2 − σ3)

)
. Lastly,

the expression for u(3)(x, t), valid for x > x0, is identical to that for u(1)(x, t) with the

replacements x0 ↔ −x0, (1)↔ (2), and ∂D−R ↔ −∂D
+
R.

2.4 A finite domain with three layers

In this section we consider the heat conduction problem in three rods of finite length. That

is, we seek three functions

u(1)(x, t), − x0 < x < 0, t ≥ 0,

u(2)(x, t), 0 < x < x2, t ≥ 0,
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u(3)(x, t), x2 < x < x3, t ≥ 0,

satisfying the equations

u
(1)
t (x, t) =σ2

1u
(1)
xx (x, t), −x0 < x < 0, t > 0, (2.39a)

u
(2)
t (x, t) =σ2

2u
(2)
xx (x, t), 0 < x < x2, t > 0, (2.39b)

u
(3)
t (x, t) =σ2

3u
(3)
xx (x, t), x2 < x < x3, t > 0, (2.39c)

the initial conditions

u
(1)
t (x, 0) =u

(1)
0 (x), −x0 < x < 0, (2.40a)

u
(2)
t (x, 0) =u

(2)
0 (x), 0 < x < x2, (2.40b)

u
(3)
t (x, 0) =u

(3)
0 (x), x2 < x < x3, (2.40c)

the boundary conditions

f1(t) =β1u
(1)(−x0, t) + β2u

(1)
x (−x0, t), t > 0, (2.41a)

f3(t) =β3u
(3)(x3, t) + β4u

(3)
x (x3, t), t > 0, (2.41b)

(2.41c)

and the continuity conditions

u(1)(0, t) =u(2)(0, t), t ≥ 0, (2.42a)

u(2)(x2, t) =u(3)(x2, t), t ≥ 0, (2.42b)

σ2
1u

(1)
x (0, t) =σ2

2u
(2)
x (0, t), t ≥ 0, (2.42c)

σ2
2u

(2)
x (x2, t) =σ2

3u
(3)
x (x2, t), t ≥ 0, (2.42d)

as in Figure 2.8.

The solution process is as before, following the steps outlined in Section 2.3. For sim-

plicity we assume Neumann boundary data (β1 = β3 = 0) and zero boundary conditions

(f1(t) = f3(t) = 0). We define
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u
(1)
t = σ2

1u
(1)
xx u

(2)
t = σ2

2u
(2)
xx

x
−x0 0 x3x2

u
(3)
t = σ2

3u
(3)
xx

Figure 2.8: The heat equation for three finite domains.

û
(1)
0 (k) =

∫ 0

−x0
e−ikxu

(1)
0 (x) dx, û(1)(k, t) =

∫ 0

−x0
e−ikxu(1)(x, t) dx,

û
(2)
0 (k) =

∫ x2

0

e−ikxu
(2)
0 (x) dx, û(2)(k) =

∫ x2

0

e−ikxu(2)(x, t) dx,

û
(3)
0 (k) =

∫ x3

x2

e−ikxu
(3)
0 (x) dx, û(3)(k, t) =

∫ x3

x2

e−ikxu(3)(x, t) dx,

g
(1)
1 (ω, t) =

∫ t

0

eωsu(1)
x (−x0, s) ds, g

(1)
0 (ω, t) =

∫ t

0

eωsu(1)(−x0, s) ds,

h
(1)
1 (ω, t) =

∫ t

0

eωsu(1)
x (0, s) ds =

σ2
2

σ2
1

∫ t

0

eωsu(2)
x (0, s) ds,

h
(1)
0 (ω, t) =

∫ t

0

eωsu(1)(0, s) ds =

∫ t

0

eωsu(2)(0, s) ds,

g
(3)
1 (ω, t) =

∫ t

0

eωsu(2)
x (x2, s) ds =

σ2
3

σ2
2

∫ t

0

eωsu(3)
x (x2, s) ds,

g
(3)
0 (ω, t) =

∫ t

0

eωsu(2)(x2, s) ds =

∫ t

0

eωsu(3)(x2, s) ds,

h
(3)
1 (ω, t) =

∫ t

0

eωsu(3)
x (x3, s) ds, h

(3)
0 (ω, t) =

∫ t

0

eωsu(3)(x3, s) ds.

The solution is given by the following proposition.

Proposition 2.4. The solution to the heat transfer problem (2.39)-(2.42) with β1 = β3 = 0

and f1(t) = f3(t) = 0 is
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u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk

+

∫
∂D−R

eikx−ω1t

2∆1(k)

(
e

2ix2k
σ1
σ3 (σ1 − σ2)(σ2 − σ3) + e

2ikσ1(
x3
σ3

+
x2
σ2

)
(σ1 + σ2)(σ2 − σ3)

+ e
2ix3k

σ1
σ3 (σ1 − σ2)(σ2 + σ3) + e

2ix2kσ1( 1
σ3

+ 1
σ2

)
(σ1 + σ2)(σ2 + σ3)

)
û

(1)
0 (k) dk

+

∫
∂D−R

eik(x+2x0)−ω1t

2∆1(k)

(
e

2ix2k
σ1
σ3 (σ1 − σ2)(σ2 − σ3) + e

2ikσ1
(
x3
σ3

+
x2
σ2

)
(σ1 + σ2)(σ2 − σ3)

+ e
2ix3k

σ1
σ3 (σ1 − σ2)(σ2 + σ3) + e

2ix2kσ1
(

1
σ3

+ 1
σ2

)
(σ1 + σ2)(σ2 + σ3)

)
û

(1)
0 (−k) dk

−
∫
∂D−R

e
ik
(
x+2x0+x2

σ1
σ2

)
−ω1tσ1

∆1(k)

(
e

2ix2k
σ1
σ3 (σ2 − σ3) + e

2ix3k
σ1
σ3 (σ2 + σ3)

)
û

(2)
0

(
k
σ1

σ2

)
dk

−
∫
∂D−R

e
ik
(
x+2x0+x2

σ1
σ2

)
−ω1tσ1

∆1(k)

(
e

2ix3k
σ1
σ3 (σ2 − σ3) + e

2ix2k
σ1
σ3 (σ2 + σ3)

)
û

(2)
0

(
−kσ1

σ2

)
dk

+

∫
∂D−R

2σ1σ2

∆1(k)
e
ik
(
x+2x0+2x3

σ1
σ3

+x2
σ1
σ3

+x2
σ1
σ2

)
−ω1tû

(3)
0

(
k
σ1

σ2

)
dk

+

∫
∂D−R

2σ1σ2

∆1(k)
e
ik
(
x+2x0+x2

σ1
σ3

+x2
σ1
σ2

)
−ω1tû

(3)
0

(
−kσ1

σ2

)
dk

+

∫
∂D+

R

eik(x+2x0)−ω1t

2∆1(k)

(
e

2ikσ1
(
x3
σ3

+
x2
σ2

)
(σ1 − σ2)(σ2 − σ3) + e

2ix2k
σ1
σ3 (σ1 + σ2)(σ2 − σ3)

+ e
2ix2kσ1( 1

σ3
+ 1
σ2

)
(σ1 − σ2)(σ2 + σ3) + e

2ix3k
σ1
σ3 (σ1 + σ2)(σ2 + σ3)

)
û

(1)
0 (k) dk

+

∫
∂D+

R

eik(x+2x0)−ω1t

2∆1(k)

(
e

2ix2k
σ1
σ3 (σ1 − σ2)(σ2 − σ3) + e

2ikσ1
(
x3
σ3

+
x2
σ2

)
(σ1 + σ2)(σ2 − σ3)

+ e
2ix3k

σ1
σ3 (σ1 − σ2)(σ2 + σ3) + e

2ix2kσ1( 1
σ3

+ 1
σ2

)
(σ1 + σ2)(σ2 + σ3)

)
û

(1)
0 (−k) dk

−
∫
∂D+

R

e
ik
(
x+2x0+x2

σ1
σ2

)
−ω1tσ1

∆1(k)

(
e

2ix2k
σ1
σ3 (σ2 − σ3) + e

2ix3k
σ1
σ3 (σ2 + σ3)

)
û

(2)
0

(
k
σ1

σ2

)
dk

−
∫
∂D+

R

e
ik
(
x+2x0+x2

σ1
σ2

)
−ω1tσ1

∆1(k)

(
e

2ix3k
σ1
σ3 (σ2 − σ3) + e

2ix2k
σ1
σ3 (σ2 + σ3)

)
û

(2)
0

(
−kσ1

σ2

)
dk

+

∫
∂D+

R

2σ1σ2

∆1(k)
e
ik
(
x+2x0+2x3

σ1
σ3

+x2σ1
(

1
σ3

+ 1
σ2

))
−ω1tû

(3)
0

(
k
σ1

σ2

)
dk

+

∫
∂D+

R

2σ1σ2

∆1(k)
e
ik
(
x+2x0+x2σ1

(
1
σ3

+ 1
σ2

))
−ω1tû

(3)
0

(
−kσ1

σ2

)
dk,
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for −x0 < x < 0 with

∆1(k) = π

(
e

2ix2k
σ1
σ3 (σ1 − σ2)(σ2 − σ3) + e

2ik
(
x3

σ1
σ3

+x2
σ1
σ2

+x0
)
(σ2 − σ1)(σ2 − σ3)

+e
2ikσ1

(
x3
σ3

+
x2
σ2

)
(σ1 + σ2)(σ2 − σ3) + e

2ik
(
x2

σ1
σ3

+x0
)
(σ1 + σ2)(σ3 − σ2)

+e
2ix3k

σ1
σ3 (σ1 − σ2)(σ2 + σ3) + e

2ik
(
x0+x2

σ1
σ3

+x2
σ1
σ2

)
(σ2 − σ1)(σ2 + σ3)

+e
2ix2k

(
σ1
σ3

+
σ1
σ2

)
(σ1 + σ2)(σ2 + σ3)− e2ik

(
x3

σ1
σ3

+x0
)
(σ1 + σ2)(σ2 + σ3)

)
.

Next,
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u(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk

+

∫
∂D−R

−eik(x+x2)−ω2tσ2

∆2(k)

(
e

2ix3k
σ2
σ3 (σ2 − σ3) + e

2ix2k
σ2
σ3 (σ2 + σ3)

)
û

(1)
0

(
k
σ2

σ1

)
dk

+

∫
∂D−R

−eik
(
x+x2+2x0

σ2
σ1

)
−ω2tσ2

∆2(k)

(
e

2ix3k
σ2
σ3 (σ2 − σ3) + e

2ix2k
σ2
σ3 (σ2 + σ3)

)
û

(1)
0

(
−kσ2

σ1

)
dk

−
∫
∂D−R

eikx−ω2t

2∆2(k)

(
σ2 − σ1 + e

2ix0k
σ2
σ1 (σ1 + σ2)

)
∗
(
e

2ix2k
σ2
σ3 (σ2 − σ3) + e

2ix3k
σ2
σ3 (σ2 + σ3)

)
û

(2)
0 (k) dk

−
∫
∂D−R

eikx−ω2t

2∆2(k)

(
σ2 − σ1 + e

2ix0k
σ2
σ1 (σ1 + σ2)

)
∗
(
e

2ix3k
σ2
σ3 (σ2 − σ3) + e

2ix2k
σ2
σ3 (σ2 + σ3)

)
û

(2)
0 (−k) dk

+

∫
∂D−R

−eik
(
x+

σ2
σ3

(x2+2x3)
)
−ω2tσ2

∆2(k)

(
σ2 − σ1 + e

2iak
σ2
σ1 (σ1 + σ2)

)
û

(3)
0 (k

σ2

σ3

) dk

+

∫
∂D−R

−eik
(
x+x2

σ2
σ3

)
−ω2tσ2

∆2(k)

(
σ2 − σ1 + e

2iak
σ2
σ1 (σ1 + σ2)

)
û

(3)
0

(
−kσ2

σ3

)
dk

+

∫
∂D+

R

−eik(x+x2)−ω2tσ2

∆2(k)

(
e

2ix3k
σ2
σ3 (σ2 − σ3) + e

2ix2k
σ2
σ3 (σ2 + σ3)

)
û

(1)
0

(
k
σ2

σ1

)
dk

−
∫
∂D+

R

e
ik
(
x+x2+2x0

σ2
σ1

)
−ω2tσ2

∆2(k)

(
e

2ix3k
σ2
σ3 (σ2 − σ3) + e

2ix2k
σ2
σ3 (σ2 + σ3)

)
û

(1)
0

(
−kσ2

σ1

)
dk

−
∫
∂D+

R

eik(x+2x2)−ω2t

2∆2(k)

(
σ2 + σ1 + e

2ix0k
σ2
σ1 (σ2 − σ1)

)
∗
(
e

2ix3k
σ2
σ3 (σ2 − σ3) + e

2ix2k
σ2
σ3 (σ2 + σ3)

)
û

(2)
0 (k) dk

−
∫
∂D+

R

eikx−ω2t

2∆2(k)

(
σ2 − σ1 + e

2ix0k
σ2
σ1 (σ2 + σ1)

)
∗
(
e

2ix3k
σ2
σ3 (σ2 − σ3) + e

2ix2k
σ2
σ3 (σ2 + σ3)

)
û

(2)
0 (−k) dk

+

∫
∂D+

R

−eik
(
x+x2

σ2
σ3

+2x3
σ2
σ3

)
−ω2tσ2

∆2(k)

(
σ2 − σ1 + e

2ix0k
σ2
σ1 (σ1 + σ2)

)
û

(3)
0

(
k
σ2

σ3

)
dk+

+

∫
∂D+

R

−eik(x+x2
σ2
σ3

)−ω2tσ2

∆2(k)

(
σ2 − σ1 + e

2ix0k
σ2
σ1 (σ1 + σ2)

)
û

(3)
0

(
−kσ2

σ3

)
dk,
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for 0 < x < x2, with

∆2(k) = π

(
e
ik
(
x0

σ2
σ1

+x2+x3
σ2
σ3

)
(σ1 − σ2)(σ2 − σ3) + e

2x2ik
σ2
σ3 (σ2 − σ1)(σ2 − σ3)

+e
2ikσ2

(
x2
σ3

+
x0
σ1

)
(σ1 + σ2)(σ2 − σ3) + e

2ik
(
x3

σ2
σ3

+x2
)
(σ1 + σ2(σ3 − σ2)

+e
2ik
(
x0

σ2
σ1

+x2
σ2
σ3

+x2
)
(σ1 − σ2)(σ2 + σ3) + e

2ix3k
σ2
σ3 (σ2 − σ1)(σ2 + σ3)

−e2ix2k
(
σ2
σ3

+1
)
(σ1 + σ2)(σ2 + σ3) + e

2ikσ2
(
x3
σ3

+
x0
σ1

)
(σ1 + σ2)(σ2 + σ3)

)
,

and
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u(3)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω3tû
(3)
0 (k) dk

+

∫
∂D−R

−2e
ik
(
x+x2+x2

σ3
σ2

)
−ω3t

∆3(k)
σ2σ3û

(1)
0

(
k
σ2

σ1

)
dk

+

∫
∂D−R

−2e
ik
(
x+x2+x2

σ3
σ2

+2x0
σ3
σ1

)
−ω3t

∆3(k)
σ2σ3û

(1)
0

(
−kσ2

σ1

)
dk

+

∫
∂D−R

e
ik
(
x+x2+x2

σ3
σ2

)
−ω3t

∆3(k)

(
σ1 + σ2 + e

2ix0k
σ3
σ1 (σ2 − σ1)

)
û

(2)
0

(
k
σ3

σ2

)
dk

+

∫
∂D−R

eik(x+x2)−ω3t

∆3(k)

(
σ2 − σ1 + e

2ix0k
σ3
σ1 (σ2 + σ1)

)
û

(2)
0

(
−kσ3

σ2

)
dk

+

∫
∂D−R

eik(x+2x2)−ω3t

2∆3(k)

(
(σ3 − σ2)

(
σ1 − σ2 − e2ix0k

σ3
σ1 (σ1 + σ2)

)
−e2ix2k

σ3
σ2 (σ2 + σ3)

(
σ1 + σ2 + e

2ix0k
σ3
σ1 (σ2 − σ1)

))
û

(3)
0 (k) dk

+

∫
∂D−R

eikx−ω3t

2∆3(k)

(
(σ3 + σ2)

(
σ1 − σ2 − e2ix0k

σ3
σ1 (σ1 + σ2)

)
−e2ix2k

σ3
σ2 (σ3 − σ2)

(
σ1 + σ2 + e

2iak
σ3
σ1 (σ2 − σ1)

))
û

(3)
0 (−k) dk

+

∫
∂D+

R

2e
ik(x+x2+x2

σ3
σ2

)−ω3t

∆3(k)
σ2σ3û

(1)
0

(
k
σ2

σ1

)
dk

+

∫
∂D+

R

2e
ik(x+x2+x2

σ3
σ2

+2x0
σ3
σ1

)−ω3t

∆3(k)
σ2σ3û

(1)
0

(
−kσ2

σ1

)
dk

+

∫
∂D+

R

−eik
(
x+x2+2x2

σ3
σ2

)
−ω3tσ3

∆3(k)

(
σ1 + σ2 + e

2ix0k
σ3
σ1 (σ2 − σ1)

)
û

(2)
0

(
k
σ3

σ2

)
dk

+

∫
∂D+

R

eik(x+x2)−ω3tσ3

∆3(k)

(
σ2 − σ1 + e

2ix0k
σ3
σ1 (σ2 + σ1)

)
û

(2)
0

(
−kσ3

σ2

)
dk

+

∫
∂D+

R

eik(x+2x3)−ω3t

2∆3(k)

(
e

2ix2k
σ3
σ2 (σ3 − σ2)

(
σ1 + σ2 + e

2ix0k
σ3
σ1

)
+(σ2 + σ3)

(
σ2 − σ1 + e

2ix0k
σ3
σ1 (σ1 + σ2)

))
û

(3)
0 (k) dk

+

∫
∂D+

R

eikx−ω3t

2∆3(k)

(
e

2ix2k
σ3
σ2 (σ3 − σ2)

(
σ1 + σ2 + e

2ix0k
σ3
σ1

)
(σ2 + σ3)

(
σ2 − σ1 + e

2ix0k
σ3
σ1 (σ1 + σ2)

))
û

(3)
0 (−k) dk,
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for x2 < x < x3 with

∆3(k) =π

(
e2ix2k(σ1 − σ2)(σ2 − σ3) + e

2ik
(
x0

σ3
σ1

+x2
σ3
σ2

+x3
)
(σ2 − σ1)(σ2 − σ3)

+ e
2ik
(
x2

σ3
σ2

+x3
)
(σ1 + σ2)(σ2 − σ3) + e

2ik
(
x0

σ3
σ1

+x2
)
(σ1 + σ2)(σ3 − σ2)

+ e2ix3k(σ1 − σ2)(σ2 + σ3) + e
2ik
(
x0
σ1

+x2+x2
σ3
σ2

)
(σ2 − σ1)(σ2 + σ3)

+e
2ix2k

(
1+

σ3
σ2

)
(σ1 + σ2)(σ2 + σ3)− e2ik

(
x0

σ3
σ1

+x3
)
(σ1 + σ2)(σ2 + σ3)

)
.

2.5 Periodic boundary conditions

We consider the problem of heat conduction in a ring consisting of two different materials

as in Figure 2.9. We seek two functions:

u(1)(x, t), x0 < x < x1, t ≥ 0,

u(2)(x, t), x1 < x < x2, t ≥ 0,

satisfying the equations, initial, boundary, interface continuity conditions:

u
(1)
t = σ2

1u
(1)
xx , u(1)(x, 0) = u

(1)
0 (x), x0 <x < x1, t > 0, (2.43a)

u
(2)
t = σ2

2u
(2)
xx , u(2)(x, 0) = u

(2)
0 (x), x1 <x < x2, t > 0, (2.43b)

u(1)(x0, t) = u(2)(x2, t), u(1)(x1, t) = u(2)(x1, t), t > 0, (2.43c)

σ2
1u

(1)
x (x0, t) = σ2

2u
(2)
x (x2, t), σ2

1u
(1)
x (x1, t) = σ2

2u
(2)
x (x1, t), t > 0. (2.43d)

As in previous sections we have the local relations

(e−ikx+ω1tu(1))t = (σ2
1e
−ikx+ω1t(u(1)

x + iku(1)))x, x0 < x < x1,

(e−ikx+ω2tu(2))t = (σ2
2e
−ikx+ω2t(u(2)

x + iku(2)))x, x1 < x < x2,
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x0 = x2

x1
u

(1)
t = σ2

1u
(1)
xx

u
(2)
t = σ2

2u
(2)
xx

x
u

(1)
t = σ2

1u
(1)
xx u

(2)
t = σ2

2u
(2)
xx

x2 = x0x0 = x2 x1

Figure 2.9: The heat equation with an interface posed on a ring.

where ωj = (σjk)2. We define the time transforms of the initial and boundary data and the

spatial transforms of u for k ∈ C as follows:

û
(1)
0 (k) =

∫ x1

x0

e−ikxu
(1)
0 (x) dx,

û(1)(k, t) =

∫ x1

x0

e−ikxu(1)(x, t) dx,

û
(2)
0 (k) =

∫ x2

x1

e−ikxu
(2)
0 (x) dx,

û(2)(k, t) =

∫ x2

x1

e−ikxu(2)(x, t) dx,

g0(ω, t) =

∫ t

0

eωsu(1)(x1, s) ds =

∫ t

0

eωsu(2)(x1, s) ds,

g1(ω, t) =

∫ t

0

eωsu(1)
x (x1, s) ds =

σ2
2

σ2
1

∫ t

0

eωsu(2)
x (x1, s) ds,

h0(ω, t) =

∫ t

0

eωsu(1)(x0, s) ds =

∫ t

0

eωsu(2)(x2, s) ds,

h1(ω, t) =

∫ t

0

eωsu(1)
x (x0, s) ds =

σ2
2

σ2
1

∫ t

0

eωsu(2)
x (x2, s) ds.

Using Green’s Theorem on the domains [x0, x1] × [0, t], and [x1, x2] × [0, t] respectively,
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we have the global relations

eω1tû(1)(k, t) =σ2
1e
−ikx1 (g1(ω1, t) + ikg0(ω1, t))

− σ2
1e
−ikx0 (h1(ω1, t) + ikh0(ω1, t)) + û

(1)
0 (k),

(2.45a)

eω2tû(2)(k, t) =e−ikx2
(
σ2

1h1(ω2, t) + ikσ2
2h0(ω2, t)

)
− e−ikx1

(
σ2

1g1(ω2, t) + ikσ2
2g0(ω2, t)

)
+ û

(2)
0 (k).

(2.45b)

Both equations are valid for k ∈ C as is to be expected for the Fokas Method in bounded

domains. Using the invariance of ω1(k) = (σ1k)2 and ω2(k) = (σ2k)2 under k → −k as well

as the transformation k → σ1
σ2
k and k → σ2

σ1
k which transform ω1(k)↔ ω2(k) we obtain

eω1tû(1)(−k, t) =σ2
1e
ikx1 (g1(ω1, t)− ikg0(ω1, t))

− σ2
1e
ikx0 (h1(ω1, t)− ikh0(ω1, t)) + û

(1)
0 (−k),

(2.46a)

eω2tû(2)(k, t) =eikx2
(
σ2

1h1(ω2, t)− ikσ2
2h0(ω2, t)

)
− eikx1

(
σ2

1g1(ω2, t)− ikσ2
2g0(ω2, t)

)
+ û

(2)
0 (−k),

(2.46b)

eω2tû(1)

(
σ2

σ1

k, t

)
=e
−ikx1 σ2σ1

(
σ2

1g1(ω2, t) + ikσ1σ2g0(ω2, t)
)

− e−ikx0
σ2
σ1

(
σ2

1h1(ω2, t) + ikσ1σ2h0(ω2, t)
)

+ û
(1)
0

(
k
σ2

σ1

)
,

(2.46c)

eω1tû(2)

(
σ1

σ2

k, t

)
=e
−ikx2 σ1σ2

(
σ2

1h1(ω1, t) + ikσ1σ2h0(ω1, t)
)

− e−ikx1
σ1
σ2

(
σ2

1g1(ω1, t) + ikσ1σ2g0(ω1, t)
)

+ û
(2)
0

(
k
σ1

σ2

)
.

(2.46d)

Inverting the Fourier transforms in (2.45a)

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk

+
σ2

1

2π

∫ ∞
−∞

eik(x−x1)−ω1t(g1(ω1, t) + ikg0(ω1, t)) dk

− σ2
1

2π

∫ ∞
−∞

eik(x−x0)−ω1t(h1(ω1, t) + ikh0(ω1, t)) dk.
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The integrand of the second integral is entire and decays as k → ∞ for k ∈ C− \D−. The

third integral has an integrand that is entire and decays as k → ∞ for k ∈ C+ \ D+. It is

convenient to deform both contours away from k = 0 to avoid singularities in the integrands

below as shown in Figure 2.6. Thus

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk

− σ2
1

2π

∫
∂D−R

eik(x−x1)−ω1t(g1(ω1, t) + ikg0(ω1, t)) dk

− σ2
1

2π

∫
∂D+

R

eik(x−x0)−ω1t(h1(ω1, t) + ikh0(ω1, t)) dk.

(2.47)

To obtain the solution u2(x, t) for x1 < x < x2 we apply the inverse Fourier transform

to (2.45b) and again deform where appropriate to find

u(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk

− 1

2π

∫
∂D+

R

eik(x−x1)−ω2t(σ2
1g1(ω2, t) + ikσ2

2g0(ω2, t)) dk

− 1

2π

∫
∂D−R

eik(x−x2)−ω2t(σ2
1h1(ω1, t) + ikσ2

2h0(ω2, t)) dk.

All the global relations, using the symmetries of the set of dispersion relations, that is

Equations (2.45) and (2.46), are used to solve for the unknown functions at the interface.

Substituting these expressions into (2.47) we have equations for u(1)(x, t) and u(2)(x, t) which

involve û(1)(k, t) and û(2)(k, t) evaluated at a variety of arguments but without the factor

eωjt. Such integrands decay in the regions around whose boundaries they are integrated.

Making extensive use of Jordan’s Lemma and Cauchy’s Theorem, these integrals are shown

to vanish. Thus the final solution is given by
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u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk

+

∫
∂D−R

eikx−ω1t

2∆1(k)

(
(σ1 + σ2)2e

ik(x0−x1)+
ikσ1
σ2

(x1−x2) − 4σ1σ2

−(σ1 − σ2)2e
ik(x0−x1)+

ikσ1
σ2

(x2−x1)
)
û

(1)
0 (k) dk

+

∫
∂D−R

(σ2
1 − σ2

2)eik(x−x0−x1)−ω1t

2∆1(k)

(
e
ikσ1
σ2

(x1−x2) − e
ikσ1
σ2

(x2−x1)
)
û

(1)
0 (−k) dk

+

∫
∂D−R

σ1(σ1 + σ2)eikx−ω1t

∆1(k)

(
e
−ikx1+

ikσ1
σ2

x1 − e−ikx0+
ikσ1
σ2

x2
)
û

(2)
0

(
kσ1

σ2

)
dk

+

∫
∂D−R

σ1(σ1 − σ2)eikx−ω1t

∆1(k)

(
e
−ikx0− ikσ1σ2

x2 − e−ikx1−
ikσ1
σ2

x1
)
û

(2)
0

(
−kσ1

σ2

)
dk

+

∫
∂D+

R

eikx−ω1t

2∆1(k)

(
(σ1 − σ2)2e

ik(x1−x0)+
ikσ1
σ2

(x2−x1)
+ 4σ1σ2

−(σ1 + σ2)2e
ik(x0−x1)+

ikσ1
σ2

(x2−x1)
)
û

(1)
0 (k) dk

+

∫
∂D+

R

(σ2
1 − σ2

2)eik(x−x0−x1)−ω1t

2∆1(k)

(
e
ikσ1
σ2

(x1−x2) − e
ikσ1
σ2

(x2−x1)
)
û

(1)
0 (−k) dk

+

∫
∂D+

R

σ1(σ1 + σ2)eikx−ω1t

∆1(k)

(
e
−ikx1+

ikσ1
σ2

x1 − e−ikx0+
ikσ1
σ2

x2
)
û

(2)
0

(
kσ1

σ2

)
dk

+

∫
∂D+

R

σ1(σ2 − σ1)eikx−ω1t

∆1(k)

(
e
−ikx0− ikσ1σ2

x2 − e−ikx1−
ikσ1
σ2

x1
)
û

(2)
0

(
−kσ1

σ2

)
dk,

for x0 < x < x1 where

∆1(k) =π
(
σ1

(
e
−ik σ1

σ2
x1 − e−ik

σ1
σ2
x2
) (
e−ikx0 + e−ikx1

)
+ σ2

(
e
−ik σ1

σ2
x1 + e

−ik σ1
σ2
x2
) (
e−ikx0 − e−ikx1

))
∗(

σ1

(
e
−ik σ1

σ2
x1 + e

−ik σ1
σ2
x2
) (
e−ikx0 − e−ikx1

)
+ σ2

(
e
−ik σ1

σ2
x1 − e−ik

σ1
σ2
x2
) (
e−ikx0 + e−ikx1

))
.

For x1 < x < x2, the solution u(2)(x, t) is found by switching the indices (1) and (2) on σ1,

σ2, u(1)(·) and u(2)(·), replacing ∆1(k) with ∆2(k) = −∆1 (kσ2/σ1), and interchanging the

integration paths
∫
D+
R

and −
∫
D−R

.

Note that ∆1(k) = 0 whenever k = 0, cot
(
k(x0−x1)

2

)
tan
(
kσ1(x1−x2)

2σ2

)
= −σ2

σ1
, or

cot
(
kσ1(x1−x2)

2σ2

)
tan
(
k(x0−x1)

2

)
= −σ2

σ1
are satisfied. Observe that ∆j(k) = 0 only for real
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values of k for j = 1, 2. Thus, through the deformation to D+
R and D−R we have avoided any

singularities and, on the contours, the quantities needed are evaluated without problem.

Remarks:

• To solve (2.43) using separation of variables results in a solution defined implicitly in

terms of the eigenvalues which solve ∆1(σ1k) = 0. Thus, the Fokas Method provides an

alternative to this important classical problem. It is interesting to note that although

the solution is periodic, it is not useful to assume a solution of the form
∑∞

j=−∞ aj(t)e
ijx

because the equation defined on the whole domain ut = σ2(x)uxx with σ(x) piecewise

constant is no longer diagonal in Fourier space since σ(x) has an infinite-term Fourier

series.

• It is straightforward to generalize this work to the problem of n domains with pe-

riodic boundary conditions by combining what was done in [14] and [4, 47] for the

heat equation with multiple domains with what we present here for periodic boundary

conditions.

2.6 Burgers’ Equation

Burgers’ equation is a nonlinear PDE which models gas dynamics and traffic flow [38]. For

a velocity q(x, t) and viscosity coefficient σ2 a general form of the viscous Burgers’ equation

in one spatial dimension is [5, 8, 9]

qt = σ2qxx + qqx. (2.48)

This equation can be linearized via the Cole-Hopf transformation

q(x, t) = −2σ2 u(x, t)

ux(x, t)
.
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The Burgers’ equation is then reduced to the linear heat equation ut = σ2uxx [38, Section

1.7] which can be easily solved.

If σ is piecewise constant then we can pose (2.48) as an interface problem as in Section 2.1.

Using the Cole-Hopf transformation

q(j)(x, t) = −2σ2
j

u
(j)
x (x, t)

u(j)(x, t)

for j = 1, 2 we find that q(x, t) satisfies

q(x, t) =

 q(1)(x, t), x < 0, t ≥ 0,

q(2)(x, t), x > 0, t ≥ 0,

which solve the Burgers’ equations,

q
(1)
t = σ2

1q
(1)
xx − q(1)q(1)

x , x < 0, t ≥ 0, (2.49a)

q
(2)
t = σ2

2q
(2)
xx − q(2)q(2)

x , x > 0, t ≥ 0, (2.49b)

the initial conditions

q(1)(x, 0) =q
(1)
0 (x) = −2σ2

1

u
(1)
x (x, 0)

u
(1)
0 (x)

, x < 0, (2.50a)

q(2)(x, 0) =q
(2)
0 (x) = −2σ2

2

u
(2)
x (x, 0)

u
(2)
0 (x)

, x > 0, (2.50b)

the asymptotic conditions

lim
x→−∞

q(1)(x, t) =0, t ≥ 0, (2.51a)

lim
x→∞

q(2)(x, t) =0, t ≥ 0, (2.51b)

and the continuity interface conditions

q(1)(0, t) = q(2)(0, t), t > 0, (2.52a)

q(1)
x (0, t) + 2σ2

1u
(1)
xx (0, t) = q(2)

x (0, t) + 2σ2
2u

(2)
xx (0, t), t > 0. (2.52b)

We are not aware of any physically relevant problems which can be modeled by the

Burgers’ equation as presented in (2.49)-(2.52). However, the Cole-Hopf transformation

and the methods presented in Section 2.1 give an analytical, closed-form solution for this

nonlinear PDE with an interface.



Chapter 3

The heat equation on a graph

In Chapter 2 we applied the Fokas Method to a subclass of the problems described in

this chapter in which each vertex has at most two edges: a configuration of metal rods with

different diffusivities joined end-to-end along a line. The principal contribution of the work

in this chapter is to show that the Fokas Method may also be applied to the more general

configurations of connected rods described below. Examples of such configurations are shown

in Figure 3.1. This work was done in collaboration with D.A. Smith [58].

The examples presented in this chapter and the paper [58] were selected because they

can be formulated as linear systems which are relatively easy to solve by hand. It should be

noted that this is not always the case. In general, for a graph with mf finite edges and mi

infinite edges, it is always possible to express the generalized spectral map as a linear system

of dimension 4mf + 2mi but it may not be practical to solve this system by hand.

Suppose V is a set of vertices and E is a set of directed edges between those vertices so

that (V,E) is a finite connected directed graph. Associated with each edge r ∈ E is the length

Lr ∈ (0,∞]. Suppose additionally if Lr =∞, then the vertex at which r terminates has no

other edges. For each edge r ∈ E, we define the open interval Ωr = (0, Lr). We consider the

graph to represent a configuration of narrow rods joined at the vertices in perfect thermal

contact.
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(a) Eagle Catching Fish, sculpted by

Amy Goodman

(b) virtual woman, sculpted by Toby

Short

Figure 3.1: Examples of connected rods in art.

3.1 Interface conditions for graphs

In order to derive the proper interface conditions we generalize what is outlined in [38] and

repeated in Section 1.1 for problems with multiple rods. Assume each edge r ∈ E is a rod

made of some heat-conducting material with density ρr(x) and unit cross-sectional area. We

assume the surface of the rod is perfectly insulated so no heat is lost or gained through this

surface. If we consider an infinitesimal section of length dx for x ∈ Ωr, then dC(r), the heat

content in the section, is proportional to the mass and the temperature, q(r)(x, t). That is

dC(r)(t) = cr(x)ρr(x)q(r)(x, t) dx,
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where cr(x) is the specific heat on r and x ∈ Ωr. Thus, the total heat content in the interval

x1 ≤ x ≤ x2 where x1, x2 ∈ Ωr is

C(r)(t) =

∫ x2

x1

cr(x)ρr(x)q(r)(x, t) dx.

Fourier’s Law for heat conduction [30] states that the rate of heat flowing into a body

is proportional to the area of that element and to the outward normal derivative of the

temperature at that location. The constant of proportionality is the thermal conductivity,

kr(x). In our example, the net inflow of heat through the boundaries x1 and x2 is

R(t) = kr(x2)q(r)
x (x2, t)− kr(x1)q(r)

x (x1, t), (3.1)

where x1, x2 ∈ Ωr. Conservation of heat implies d
dt
C(r)(t) = R(t) along each rod. That is,

d

dt

∫ x2

x1

cr(x)ρr(x)q(r)(x, t) dx = kr(x2)q(r)
x (x2, t)− kr(x1)q(r)

x (x1, t), (3.2)

for every r. This is a typical conservation law. On each rod we assume constant material

properties. That is cr(x) = cr, ρr(x) = ρr, and kr(x) = kr for x ∈ Ωr and t > 0. Expressing

R(t) as the integral of a derivative and rewriting (3.2), we have∫ x2

x1

(
crρrq

(r)
t (x, t) dx− ∂

∂x

(
krq

(r)
x (x, t)

))
dx = 0,

for x1, x2 ∈ Ωr. Since this is true for any x1 and x2 in this range, it follows that the integrand

must vanish. That is,

q
(r)
t (x, t)− kr

crρr
q(r)
xx (x, t) = 0.

Next, we scale x such that x̂ = x
crρr

for x ∈ Ωr. Note that such a scaling also affects Lr

and Ωr and in what follows we assume all quantities are properly scaled. Dropping the ·̂ and

defining σ2
r = krcrρr as the (scaled) thermal diffusivity in rod r we have

q
(r)
t = σ2

rq
(r)
xx , x ∈ Ωr, t > 0, r ∈ E, (3.3a)

q(r)(x, 0) = q
(r)
0 (x), x ∈ Ωr, r ∈ E, (3.3b)
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where q
(r)
0 ∈ S

(
Ωr

)
is given initial data for each r ∈ E with S

(
Ω
)

a Schwartz space of

smooth, rapidly decaying functions restricted to the closure of the interval Ω.

We also assume that the rods at each vertex v are in perfect thermal contact [10]. The

temperature at x = 0 of the rods emanating from v, q(s)(0, t), is the same as the temperature

at x = Lr of the rods terminating at v, q(r)(Lr, t). That is,

q(s)(0, t) = q(r)(Lr, t), t ≥ 0, (3.4)

where q(s)(x, t) emanates from the same vertex where q(r)(x, t) terminates. The relation (3.4)

is true for all r, s ∈ E that meet at a given vertex. If vertex v has p edges then (3.4) gives

p− 1 conditions.

In order to find a condition on the set of spatial derivatives of q(r)(x, t) we require an

appropriately scaled Condition (3.2) valid for on a region centered at the vertex v. Consider

a ball centered at a vertex v, with radius ε > 0 sufficiently small so that all rods are straight

lines within the ball and no other rods intersect the ball. Then, similar to Equation (3.1) we

have

R(t) =
∑
s∈E:

s emanates
from v

σ2
s(ε)q

(s)
x (ε, t)−

∑
r∈E:

r terminates
at v

σ2
r(Lr − ε)q(r)

x (Lr − ε, t).

By conservation of energy,

d

dt

 ∑
s∈E:

s emanates
from v

c2
sρ

2
s lim
ε→0

∫ ε

0

q(s)(x, t) dx+
∑
r∈E:

r terminates
at v

c2
rρ

2
r lim
ε→0

∫ Lr

Lr−ε
q(r)(x, t) dx


= lim

ε→0

∑
s∈E:

s emanates
from v

σ2
sq

(s)
x (ε, t)− lim

ε→0

∑
r∈E:

r terminates
at v

σ2
rq

(r)
x (Lr − ε, t).

(3.5)

The left-hand-side of (3.5) is zero by (3.4). This implies∑
s∈E:

s emanates
from v

σ2
sq

(s)
x (0, t)−

∑
r∈E:

r terminates
at v

σ2
rq

(r)
x (Lr, t) = 0. (3.6)

Thus the appropriate sum of the heat flux is continuous across the interface.
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For each finite endpoint vertex v ∈ V which has only one finite-length edge rv ∈ E (and

no infinite-length edges) we prescribe a general Robin boundary condition

βv0q
(rv)(X, t) + βv1∂xq

(rv)(X, t) = fv(t), t ≥ 0, (3.7)

where fv is known boundary datum and βv0 , β
v
1 ∈ R where X = 0 if rv emanates from v,

and X = Lrv if rv terminates at v. If the graph has mf finite edges and mi infinite edges,

then (3.4), (3.6), and (3.7) together prescribe a total of 2mf + mi boundary and interface

conditions.

We insist that the initial data and interface conditions are compatible. That is, we require

for each interface vertex v,

∑
s∈E:

s emanates
from v

σ2
s∂xq

s
0(0)−

∑
r∈E:

r terminates
at v

σ2
r∂xq

(r)
0 (Lr) = 0,

q
(s)
0 (0) = q

(r)
0 (Lr),

for q(s)(x, t) emanating from v and q(r)(x, t) terminating at v. We also require the initial and

boundary conditions are compatible in the sense that for each finite endpoint vertex v with

edge rv,

βv0q
rv
0 (X) + βv1∂xq

rv
0 (X) = fv(0).

3.2 Implicit integral representation of the solution

There is one global relation for each domain Ωr. Each global relation links the boundary and

interface values with the initial value for a particular r ∈ E. In contrast with Chapter 2, but

following the innovation of [4, 47], we scale k in a way that will simplify later calculations.

For x ∈ Ωr, t ≥ 0, and k ∈ C, we have the local relations

(
e−ixk/σr+k

2tq(r)(x, t)
)
t

=
(
e−ixk/σr+k

2t
(
σrikq

(r)(x, t) + σ2
rq

(r)
x (x, t)

))
x
, (3.8)
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which are a one parameter family rewrite of (3.3a). We define

q̂
(r)
0 (k) =

∫ Lr

0

e−ixkq0(x) dx, k ∈ C,

q̂(r)(k, t) =

∫ Lr

0

e−ixkq(r)(x, t) dx, t ≥ 0, k ∈ C,

g
(r)
0 (ω, t) =

∫ t

0

eωsq(r)(0, s) ds, t ≥ 0,

g
(r)
1 (ω, t) =

∫ t

0

eωsq(r)
x (0, s) ds, t ≥ 0,

h
(r)
0 (ω, t) =

∫ t

0

eωsq(r)(Lr, s) ds, t ≥ 0,

h
(r)
1 (ω, t) =

∫ t

0

eωsq(r)
x (Lr, s) ds, t ≥ 0.

Applying Green’s Theorem to [0, Lr]× [0, t] (where Lr <∞) yields the global relation

q̂
(r)
0

(
k

σr

)
− ek2tq̂(r)

(
k

σr
, t

)
= σrikg

(r)
0 (k2, t) + σ2

rg
(r)
1 (k2, t)

− e−ikLr/σr
(
σrikh

(r)
0 (k2, t) + σ2

rh
(r)
1 (k2, t)

)
,

(3.9a)

for k ∈ C, t ≥ 0, and each r ∈ E. If Lr =∞ the global relation is

q̂
(r)
0

(
k

σr

)
− ek2tq̂(r)

(
k

σr
, t

)
= σrikg

(r)
0 (k2, t) + σ2

rg
(r)
1 (k2, t), (3.9b)

for k ∈ C−, t ≥ 0, and each r ∈ E.

Inverting the Fourier transform in (3.9a) and (3.9b) respectively we have

q(r)(x, t) =
1

2π

∫ ∞
−∞

eikx−σ
2
rk

2tq̂
(r)
0 (k) dk

− 1

2π

∫ ∞
−∞

eixk/σr−k
2t
(
ikg

(r)
0 (k2, t) + σrg

(r)
1 (k2, t)

)
dk

+
1

2π

∫ ∞
−∞

eik/σr(x−Lr)−k
2t
(
ikh

(r)
0 (k2, t) + σrh

(r)
1 (k2, t)

)
dk,

(3.10a)

and

q(r)(x, t) =
1

2π

∫ ∞
−∞

eikx−σ
2
rk

2tq̂
(r)
0 (k) dk

− 1

2π

∫ ∞
−∞

eixk/σr−k
2t
(
ikg

(r)
0 (k2, t) + σrg

(r)
1 (k2, t)

)
dk.

(3.10b)
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Define

D = {k ∈ C : Re(k2) < 0}, D± = {k ∈ C : D ∩ C±},

as shown in Figure 1.2. The integrand of the second integral in both (3.10a) and (3.10b) is

entire and decays as k → ∞ for k ∈ C+ \ D+. Hence, by Jordan’s Lemma we can replace

the contour of integration of the second integral by
∫
∂D+ . It is convenient to deform both

contours away from k = 0 to avoid singularities in the integrands that become apparent

in what follows. Initially, these singularities are removable, since the integrands are entire.

Writing integrals of sums as sums of integrals, the singularities may cease to be removable.

In other words we deform ∂D± to ∂D±R , where

D±R = {k ∈ D± : |k| > R},

and R > 0 is an arbitrary constant. An appropriate (sufficiently large) value of this constant

may be chosen for any individual problem as in Figure 2.6. A similar deformation can be

done for the third integral in (3.10a) from
∫∞
−∞ · dk to −

∫
∂D−R
· dk.

Then, for each r ∈ E such that Lr <∞,

q(r)(x, t) =
1

2π

∫ ∞
−∞

eikx−σ
2
rk

2tq̂
(r)
0 (k) dk

− 1

2π

∫
∂D+

R

eixk/σr−k
2t
(
ikg

(r)
0 (k2, t) + σrg

(r)
1 (k2, t)

)
dk

− 1

2π

∫
∂D−R

ei(x−Lr)k/σr−k
2t
(
ikh

(r)
0 (k2, t) + σrh

(r)
1 (k2, t)

)
dk.

(3.11a)

Similarly, for each r ∈ E such that Lr =∞,

q(r)(x, t) =
1

2π

∫ ∞
−∞

eikx−σ
2
rk

2tq̂
(r)
0 (k) dk

− 1

2π

∫
∂D+

R

eixk/σr−k
2t
(
ikg

(r)
0 (k2, t) + σrg

(r)
1 (k2, t)

)
dk.

(3.11b)

3.3 m semi-infinite rods

In this section, we consider the case ofm ∈ N semi-infinite rods of differing thermal diffusivity,

joined at a single vertex. The graph is as shown in Figure 3.2. Of the m+ 1 vertices, m are
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each the terminus of a single edge, and all m edges emanate from the other vertex. Identify

the set of edges E with the set {1, 2, . . . ,m}. The single interface vertex is denoted as v.

q
(1)
t = σ2

1q
(1)
xx

q
(2)
t = σ2

2q
(2)
xx

q
(3)
t = σ2

3q
(3)
xx

q
(4)
t = σ2

4q
(4)
xx

...

q
(m)
t = σ2

mq
(m)
xx

0

Figure 3.2: m semi-infinite rods.

Since g
(r)
j (k2, t) is invariant under the transformation k → −k we supplement the global

relation (3.9b) with its evaluation at −k. Namely,

−σrikg(r)
0 (k2, t) + σ2

rg
(r)
1 (k2, t) = q̂

(r)
0

(
−k
σr

)
− ek2tq̂(r)

(
−k
σr
, t

)
, (3.12)

for all k ∈ C+. Notice that this transformation is essential because our “solution” (3.11b)

requires equations for g
(r)
j (k2, t) valid for k ∈ D+, whereas the original global relation (3.9b)

is valid only for k ∈ C−. Equations (3.12) represent a system of m linear equations in the

2m unknowns.

Appropriately transforming the interface conditions (3.4) and (3.6) for this problem we
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find

g0(k2, t) := g
(s)
0 (k2, t) =

∫ t

0

ek
2τq(s)(0, τ) dτ, 1 ≤ s ≤ m, (3.13a)

m∑
s=1

σ2
sg

(s)
1 (k2, t) = 0, (3.13b)

for all k ∈ C. Equation (3.13a) reduces the number of unknown functions from 2m to m+ 1.

Equations (3.12), (3.13b) provide m + 1 linear equations in these unknown functions. We

represent this system as a matrix:

AX = Y,

with

X =
(
g0(k2, t), σ2

1g
(1)
1 (k2, t), . . . , σ2

mg
(m)
1 (k2, t)

)>
,

Y =

(
0, q̂

(1)
0

(
−k
σ1

)
− ek2tq̂(1)

(
−k
σ1

, t

)
, . . . , q̂

(m)
0

(
−k
σ1

)
− ek2tq̂(m)

(
−k
σm

, t

))>
,

A =



0 1 1 · · · 1

−ikσ1 1 0 · · · 0

−ikσ2 0 1 · · · 0
...

...
...

. . .
...

−ikσm 0 0 · · · 1


.

For notational convenience, the entries of Y are denoted Yr, where r is enumerated 0, . . . ,m.

Similarly, the rows of the other matrices are counted from 0 to m.

Clearly, Y depends not only upon the initial data, but also upon the Fourier transforms

of the solutions at time t which are not given data of the problem. Nevertheless, we proceed

to solve the system as if Y is composed purely of known data and show afterwards that

terms involving q̂(r)(·, t) make no contribution to the solution representation.

Subtracting the sum of rows 1, . . . ,m from row 0 in matrix A it is immediate that

det(A) = ik
m∑
r=1

σr.
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Let Aj be the matrix formed by replacing column j of A with the column vector Y . By

Cramer’s rule [12],

g0(k2, t) =
det(A0)

det(A)
, g

(r)
1 (k2, t) =

det(Ar)
σ2
r det(A)

, 1 ≤ r ≤ m.

Trivially,

det(A0) = −
m∑
p=1

Yp.

To find det(Ar) we subtract the jth row for j = 1, . . . , r − 1, r + 1, . . . ,m from the first row.

Then, for each j = r, j = r − 1, . . . , j = 2, we switch the jth and (j − 1)st rows and switch

the jth and (j − 1)st columns. The resulting matrix is

Br =



ik
m∑
p=1
p 6=r

σp −
m∑
p=1
p 6=r

Yp 0 · · · 0

−ikσr Yr 0 · · · 0

−ikσr′ Yr′ 1 · · · 0
...

...
...

. . .
...

−ikσr′′ Yr′′ 0 · · · 1


,

where the sequence (r′, . . . , r′′) of length m− 1 is the sequence (1, 2, . . . ,m) with the term r

excluded. Clearly, det(Br) = det(Ar). Hence

det(Ar) = ik

Yr m∑
p=1
p6=r

σp − σr
m∑
p=1
p6=r

Yp

 ,

and it follows that

g0(k2, t) =
−
∑m

p=1 Yp

ik
∑m

p=1 σp
, (3.14)

g
(r)
1 (k2, t) =

Yr
∑m

p=1 σp − σr
∑m

p=1 Yp

σ2
r

∑m
p=1 σp

, 1 ≤ r ≤ m. (3.15)

Substituting Equations (3.14) and (3.15) into Equation (3.11b), we obtain expressions for

each q(r) in terms of the Fourier transforms of every initial datum q̂
(r)
0 (k2, t) and of every
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solution q̂(r)(·, t):

q(r)(x, t)=
1

2π

∫ ∞
−∞
eixk−σ

2
rk

2tq̂
(r)
0 (k) dk

+

∫
∂D+

e
ixk
σr
−k2t

2π

∑m
p=1 q̂

(p)
0

(
−k
σp

)
∑m

p=1 σp
−
q̂

(r)
0

(
−k
σr

)∑m
p=1 σp−σr

∑m
p=1 q̂

(p)
0

(
−k
σp

)
σr
∑m

p=1 σp

dk

−
∫
∂D+

e
ixk
σr

2π

∑m
p=1 q̂

(p)
(
−k
σp
, t
)

∑m
p=1 σp

−
q̂(r)
(
−k
σr
, t
)∑m

p=1 σp−σr
∑m

p=1 q̂
(p)
0

(
−k
σp

)
σr
∑m

p=1 σp

dk.

(3.16)

Note that the integrand of the third integral in (3.16) is analytic for all k ∈ C+ and decays

for k →∞ for k ∈ C+. Thus, by Jordan’s Lemma, the final integral of Equation (3.16) is 0.

Hence, we obtain an explicit integral representation of the solution,

q(r)(x, t) =
1

2π

∫ ∞
−∞

eixk−σ
2
rk

2tq̂
(r)
0 (k) dk

+

∫
∂D+

eixk/σr−k
2t

2π

2
∑m

p=1 q̂
(p)
0

(
−k
σp

)
∑m

p=1 σp
−
q̂

(r)
0

(
−k
σr

)
σr

 dk,

(3.17)

in terms of only the initial data.

Notice that in this example we were able to set R = 0. This will not generally occur even

for the semi-infinite rods when the network also contains finite rods (see, for example, [14,

Proposition 3]). Indeed, R = 0 is possible here because det(A) is monomial which occurs for

no configurations of rods except the one considered in this section.

3.4 m parallel finite rods

In this section we consider the case of m ∈ N parallel finite rods of differing thermal diffusivity

extending between a pair of vertices. Note that we have chosen the rods to all be oriented in

one direction. This is purely for notational convenience, the parameterization of the rod from

0 to Lr or from Lr to 0 is not important. The graph is as shown in Figure 3.3. One of the
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two vertices is the terminus of every edge, and every edge emanates from the other vertex.

Again, it is notationally convenient to identify the set of edges E with the set {1, 2, . . . ,m}.

q
(1)
t = σ2

1q
(1)
xx

q
(2)
t = σ2

2q
(2)
xx

q
(3)
t = σ2

3q
(3)
xx

...

q
(m)
t = σ2

mq
(m)
xx

0 Lr

Figure 3.3: m parallel finite rods.

The continuity interface conditions allow us to define

g0(k2, t) := g
(r)
0 (k2, t), 1 ≤ r ≤ m, (3.18a)

h0(k2, t) := h
(r)
0 (k2, t), 1 ≤ r ≤ m. (3.18b)

Similarly, the continuity of flux interface conditions imply

m∑
r=1

σ2
rg

(r)
1 (k2, t) = 0, (3.19a)

m∑
r=1

σ2
rh

(r)
1 (k2, t) = 0. (3.19b)

Using the notation (3.18) the global relation (3.9a) reduces to

q̂
(r)
0

(
k

σr

)
− ek2tq̂(r)

(
k

σr
, t

)
=σrikg0(k2, t) + σ2

rg
(r)
1 (k2, t)

− e−ikLr/σr
(
σrikh0(k2, t) + σ2

rh
(r)
1 (k2, t)

)
.



68 CHAPTER 3

Applying the transformation k → −k which leaves the functions g
(r)
j (k2, t) and h

(r)
j (k2, t)

invariant we obtain

q̂
(r)
0

(
−k
σr

)
− ek2tq̂(r)

(
−k
σr
, t

)
=− σrikg0(k2, t) + σ2

rg
(r)
1 (k2, t)

− eikLr/σr
(
−σrikh0(k2, t) + σ2

rh
(r)
1 (k2, t)

)
.

This provides a system of 2m equations valid for k ∈ C in 2m+2 unknowns. System (3.19)

provides two further equations in a subset of the same unknowns. We express this linear

system as

AX = Y,

where

X =
(
g0(k2, t), h0(k2, t), σ2

1g
(1)
1 (k2, t), . . . , σ2

mg
(m)
1 (k2, t), σ2

1h
(1)
1 (k2, t), . . . , σ2

mh
(m)
1 (k2, t)

)>
,

(3.20a)

Y = (0, Y1(k), . . . , Ym(k), Y1(−k), . . . , Ym(−k))> , (3.20b)

Yr(k) = q̂
(r)
0

(
k

σr

)
− ek2tq̂(r)

(
k

σr
, t

)
, (3.20c)

and

A =



0 0 1 1 · · · 1 0 0 · · · 0

0 0 0 0 · · · 0 1 1 · · · 1

ikσ1 −ikσ1e
−ikL1
σ1 1 0 · · · 0 −e

−ikL1
σ1 0 · · · 0

ikσ2 −ikσ2e
−ikL2
σ2 0 1 · · · 0 0 −e

−ikL2
σ2 · · · 0

...
...

...
...

. . .
...

...
...

. . .
...

ikσm −ikσme
−ikLm
σm 0 0 · · · 1 0 0 · · · −e

−ikLm
σm

−ikσ1 ikσ1e
ikL1
σ1 1 0 · · · 0 −e

ikL1
σ1 0 · · · 0

−ikσ2 ikσ2e
ikL2
σ2 0 1 · · · 0 0 −e

ikL2
σ2 · · · 0

...
...

...
...

. . .
...

...
...

. . .
...

−ikσm ikσme
ikLm
σm 0 0 · · · 1 0 0 · · · −e

ikLm
σm



.
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Solving the system via Cramer’s rule, we obtain

g0(k2, t) =
AC −BD
k(A2 −B2)

, h0(k2, t) =
BC − AD
k(A2 −B2)

,

g
(r)
1 (k2, t) =

− det


B A C

A B D

σr
1

Sr(k)
σr

C(r)(k)
Sr(k)

Yr(k)eikLr/σr−Yr(−k)e−ikLr/σr

eikLr/σr−e−ikLr/σr


σ2
r(A

2 −B2)
,

h
(r)
1 (k2, t) =

det


B A D

A B C

σr
1

Sr(k)
σr

C(r)(k)
Sr(k)

Yr(k)−Yr(−k)

eikLr/σr−e−ikLr/σr


σ2
r(A

2 −B2)
,

(3.21)

where

A =
m∑
p=1

σp
1

Sp(k)
, C =

m∑
p=1

Yp(k)− Yp(−k)

eikLp/σp − e−ikLp/σp
,

B =
m∑
p=1

σp
Cp(k)

Sp(k)
, D =

m∑
p=1

Yp(k)eikLp/σp − Yp(−k)e−ikLp/σp

eikLp/σp − e−ikLp/σp
,

and

Sp(k) = sin(kLp/σp), Cp(k) = cos(kLp/σp).

Equation (3.21) for the t-transformed boundary and interface values depends on the

Fourier transform of the solution q̂(r)(·, t) through Expression (3.20c) for Yp. In order for

Equation (3.11a) to represent an effective integral representation for each solution q(r)(x, t)

we must remove this dependence.

The product of a meromorphic function with a holomorphic function must include as

zeros every zero of the meromorphic function. As(
m∏
p=1

Sp(k)

)2

(A2 −B2) (3.22)

is an exponential polynomial (indeed an exponential sum), it is possible to obtain bounds on

its zeros. By [42, Theorem 3], the zeros of (3.22) are confined within a finite-width horizontal
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strip. Hence, for sufficiently large R > 0, there are no zeros of A2 − B2 within D+
R ∪ D

−
R .

Indeed, a simple calculation reveals

R =
(m− 1) log 2 + log(8 +m(m− 1))√

2 min1≤r≤m{Lrσr }

is sufficient. A standard asymptotic analysis as in Chapter 2 shows that the terms involving

q̂(p)(·, t) decay as k → ∞ from within the appropriate domains D±R , and Jordan’s Lemma

establishes that these terms make no contribution to the integral representation.

We have established the effective integral representation for the solution given by equa-

tion (3.11a) with g0(k2, t), h0(k2, t), g
(r)
1 (k2, t), and h

(r)
1 (k2, t) given by equations (3.21) where

Yr(k) in (3.20c) is replaced by

Yr(k) = q̂
(r)
0

(
k

σr

)
, 1 ≤ r ≤ m.

3.5 m finite rods connected at a single point

In this section we consider the case of m ∈ N finite rods of differing thermal diffusivity joined

at a single vertex. The graph is as shown in Figure 3.4. Of the m + 1 vertices m are the

terminus of a single edge and all m edges emanate from the other vertex. As before we

identify the set of edges E with the set {1, 2, . . . ,m}. We enumerate the vertices so that

each edge r emanates from vertex 0 and terminates at vertex r.

We use the condition of continuity across the interface to establish

g0(k2, t) := g
(s)
0 (k2, t) =

∫ t

0

ek
2τq(s)(0, τ) dτ (3.23)

for 1 ≤ s ≤ m, k ∈ C. Taking the time transform of the Robin boundary condition (3.7) we

have

f̃r(k, t) :=

∫ t

0

ek
2sfr(s) ds = β

(r)
0 h

(r)
0 (k2, t) + β

(r)
1 h

(r)
1 (k2, t). (3.24)

In order to reduce the size of the linear system that will eventually have to be solved,

it is helpful to use the Robin condition to express either the 0th order or the 1st order
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Figure 3.4: m finite rods joined at a single vertex.

boundary value at Lr in terms of the other. Suppose that precisely 1 ≤ mN ≤ m of

the boundary conditions are in fact Neumann conditions (that is the corresponding β
(r)
0 =

0). Moreover suppose, without loss of generality, that these Neumann conditions are the

boundary conditions at vertices 1, 2, . . . ,mN , that β
(r)
1 = 1 for each 1 ≤ r ≤ mN , and

that β
(r)
0 = 1 for each mN + 1 ≤ r ≤ m. We use the boundary conditions (3.24) and

Equation (3.23) to rewrite the global relation (3.9a) as

q̂
(r)
0

(
k

σr

)
− ek2tq̂(r)

(
k

σr
, t

)
= σrikg0(k2, t) + σ2

rg
(r)
1 (k2, t)− e−ikLr/σrikσrh(r)

0 (k2, t)

− e−ikLr/σrσ2
r f̃r(k, t),

(3.25a)

for 1 ≤ r ≤ mN , k ∈ C and

q̂
(r)
0

(
k

σr

)
− ek2tq̂(r)

(
k

σr
, t

)
= σrikg0(k2, t) + σ2

rg
(r)
1 (k2, t)

− e−ikLr/σrσr
((
σr − ikβ(r)

1

)
h

(r)
1 (k2, t) + ikf̃r(k, t)

)
,

(3.25b)

for mN + 1 ≤ r ≤ m and k ∈ C. As before, another set of m global relations is obtained by
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evaluating (3.25) for k = −k. Together with a t-transform of the interface condition (3.6)

the 2m global relations form a system of linear equations in the 2m+ 1 functions

g0(k2, t), t > 0,

g
(r)
1 (k2, t), 1 ≤ r ≤ m, t > 0,

h
(r)
0 (k2, t), 1 ≤ r ≤ mN , t > 0,

h
(r)
1 (k2, t), mN + 1 ≤ r ≤ m, t > 0.

The system can be expressed as

AX = Y, (3.26a)

where

X =
(
g0, σ

2
1g

(1)
1 , . . . , σ2

mg
(m)
1 , σ1h

(1)
0 , . . . , σmNh

(mN )
0 , σ2

mN+1h
(mN+1)
1 , . . . , σ2

mh
(m)
1

)>
,

(3.26b)

Y = (0, Y1(k), . . . , Ym(k), Y1(−k), . . . , Ym(−k))> , (3.26c)

Yr(k, t) =

q̂
(r)
0

(
k
σr

)
− ek2tq̂(r)

(
k
σr
, t
)

+ e
−ikLr
σr σ2

r f̃r(k, t), 1 ≤ r ≤ mN ,

q̂
(r)
0

(
k
σr

)
− ek2tq̂(r)

(
k
σr
, t
)

+ ike
−ikLr
σr σ2

r f̃r(k, t), mN + 1 ≤ r ≤ m,

(3.26d)

A =


0 11×m 01×m

A0(k) Im×m A1(−k)

A0(−k) Im×m A1(k)

 , (3.26e)

A0(k) =
(
ikσ1, . . . , ikσm

)>
, (3.26f)
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and

A1(k) =

ike
ikL1
σ1 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · ike
ikLmN
σmN 0 · · · 0

0 · · · 0 −
(
ikβ

mN+1
1

σmN+1
+ 1
)
e
ikLmN+1

σmN+1 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · −
(
ikβm1
σm

+ 1
)
e
ikLm
σm ,


, (3.26g)

where 1m×n is an m×n matrix with every entry equal to 1 and Im×n is an m×n identity ma-

trix. The arguments of each of the functions in X are (k2, t). The boundary conditions (3.24)

give the remaining spectral functions in terms of those appearing in the vector X.

Solving this system and substituting the solution into (3.11a) provides an integral repre-

sentation of the solution in terms of the initial and boundary data, and the Fourier transform

of the solution q̂(r)(·, t). It remains to show that it is possible to remove the dependence on

the Fourier transform of the solution.

When the system (3.26) is solved using Cramer’s rule, each entry Xj of X is expressed

as the ratio of two determinants, each of which is an analytic function of k. The denomi-

nator is an exponential polynomial in which every exponent is purely imaginary. Hence the

zeros of the denominator lie asymptotically within a horizontal logarithmic strip [42, Theo-

rem 6]. Moreover, Xj is holomorphic except at the zeros of the denominator, so choosing R

sufficiently large ensures that Xj is holomorphic on D+
R ∪D

−
R .

As the growing entries of A lie in the same rows as the growing entries of Y involving

q̂(r)(·, t), but each such entry in Y grows like O(k−1) multiplied by the corresponding entry

in A, each integrand involving q̂(r)(·, t) decays as k → ∞ from within the relevant sector

D±R . Hence, by Jordan’s Lemma, the terms involving q̂(r)(·, t) make no contribution to the

solution representation.



Chapter 4

Interface problems for dispersive

equations

In Chapter 2 the Fokas Method was used to solve the classical problem of the heat

equation with interfaces. The same is done here for the linear Schrödinger (LS) equation

with an interface. We restrict ourselves to the case of a continuous wave function with a jump

in the derivative across the interface. Although the problem considered here is similar to the

one presented in Chapter 2, the dispersive nature of the problem makes it more difficult to

solve both classically and using the Fokas Method.

The LS equation is arguably the simplest dispersive equation, having the dispersion

relation ω(k) = −ik2. It arises in its own right in quantum mechanics [54], and as the

linearization of various nonlinear equations, most notably the nonlinear Schrödinger (NLS)

equations iqt(x, t) = −qxx(x, t) ± |q(x, t)|2q(x, t). As such, it arises in a large variety of

application areas, whenever the modulation of nonlinear wave trains is considered. Indeed,

it has been derived in such diverse fields as waves in deep water [68], plasma physics [69],

nonlinear fiber optics [34, 35], magneto-static spin waves [71], and many other settings.

The LS equation describes the behavior of solutions of the NLS equation in the small

amplitude limit and understanding the linear dynamics is fundamental in understanding the

dynamics of the more complicated nonlinear problem.
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Recently, Cascaval and Hunter [11] have considered the time-dependent LS on simple

networks. Their solution formulas are not explicit, as they contain implicit integral equations

for the interface conditions. Their analysis is easily extended to more than two domains and

also considers the NLS equation.

The LS equation in two semi-infinite domains with an interface is considered in Sec-

tion 4.1. The method is adapted to the problem of two finite domains in Section 4.2. As

before, the solution formulae given are easily computed numerically using techniques pre-

sented in [44, 62]. Throughout, our emphasis is on non-steady state solutions. The solutions

presented here using the Fokas Method are explicit and depend only on known quantities.

Although we present solution formulas only for the case of two domains (both finite or both

infinite) it is straightforward to generalize this method to n domains.

4.1 Two semi-infinite domains

We seek two functions

q(1)(x, t), x < 0, t ≥ 0,

and

q(2)(x, t), x > 0, t ≥ 0,

satisfying the equations

iq
(1)
t (x, t) =σ1q

(1)
xx (x, t), x < 0, t > 0, (4.1a)

iq
(2)
t (x, t) =σ2q

(2)
xx (x, t), x > 0, t > 0, (4.1b)

the initial conditions

q(1)(x, 0) =q
(1)
0 (x), x < 0, (4.2a)

q(2)(x, 0) =q
(2)
0 (x), x > 0, (4.2b)
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the asymptotic conditions

lim
x→−∞

q(1)(x, t) =γ(1), t ≥ 0, (4.3a)

lim
x→∞

q(2)(x, t) =γ(2), t ≥ 0, (4.3b)

and the continuity interface conditions

q(1)(0, t) =q(2)(0, t), t > 0, (4.4a)

ρ1q
(1)
x (0, t) =ρ2q

(2)
x (0, t), t > 0, (4.4b)

as shown in Figure 4.1 where γ(1), γ(2), σ1, σ2, ρ1 and ρ2 are t-independent nonzero constants.

The sub- and super-indices 1 and 2 denote the left and right domain, respectively. In

what follows we assume that σ1 and σ2 are both positive for convenience. First, we shift

iq
(1)
t = σ1q

(1)
xx iq

(2)
t = σ2q

(2)
xx

x
−∞ 0 ∞

Figure 4.1: The LS equation for two semi-infinite domains.

the problem so that the asymptotic conditions are identically zero. We define v(1)(x, t) =

q(1)(x, t)− γ(1) and v(2)(x, t) = q(2)(x, t)− γ(2) as the functions that satisfy

iv
(1)
t (x, t) =σ1v

(1)
xx (x, t), x < 0 t ≥ 0, (4.5a)

iv
(2)
t (x, t) =σ2v

(2)
xx (x, t), x > 0 t ≥ 0, (4.5b)

lim
x→−∞

v(1)(x, t) =0, t ≥ 0, (4.5c)

lim
x→∞

v(2)(x, t) =0, t ≥ 0, (4.5d)

v(1)(x, 0) =v
(1)
0 (x), x < 0, (4.5e)

v(2)(x, 0) =v
(2)
0 (x), x > 0, (4.5f)

v(1)(0, t) + γ(1) =v(2)(0, t) + γ(2), t ≥ 0, (4.5g)

ρ1v
(1)
x (0, t) =ρ2v

(2)
x (0, t), t ≥ 0. (4.5h)
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We begin with the local relations

(
e−ikx+ω1tv(1)(x, t)

)
t

=
(
σ1e
−ikx+ω1t(kv(1)(x, t)− iv(1)

x (x, t))
)
x
, x < 0,(

e−ikx+ω2tv(2)(x, t)
)
t

=
(
σ2e
−ikx+ω2t(kv(2)(x, t)− iv(2)

x (x, t))
)
x
, x > 0.

These are one-parameter relations obtained by rewriting (4.5a) and (4.5b). This also gives

ω1(k) = −iσ1k
2 and ω2(k) = −iσ2k

2. The use of these functions instead of the dispersion

relations proper is common when using the Fokas Method and we continue this use. Applying

Green’s Theorem in the strip (−∞, 0)× (0, t) (see Figure 2.5), we find the global relations

0 =

∫ 0

−∞
e−ikxv

(1)
0 (x) dx−

∫ 0

−∞
e−ikx+ω1tv(1)(x, t) dx

+

∫ t

0

σ1e
ω1s
(
kv(1)(0, s)− iv(1)

x (0, s)
)

ds,

(4.6a)

0 =

∫ ∞
0

e−ikxv
(2)
0 (x) dx−

∫ ∞
0

e−ikx+ω2tv(2)(x, t) dx

−
∫ t

0

σ2e
ω2s
(
kv(2)(0, s)− iv(2)

x (0, s)
)

ds.

(4.6b)

The Fourier integrals in (4.6) require k ∈ C+ in (4.6a) and k ∈ C− in (4.6b). For k ∈ C,

we define the following transforms:
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g0(ω, t) =

∫ t

0

eωsv(1)(0, s) ds =

∫ t

0

eωs(v(2)(0, s) + γ(2) − γ(1)) ds

=
(γ(2) − γ(1))(eωt − 1)

ω
+

∫ t

0

eωsv(2)(0, s) ds,

g1(ω, t) =

∫ t

0

eωsv(1)
x (0, s) ds =

ρ2

ρ1

∫ t

0

eωsv(2)
x (0, s) ds,

v̂(1)(k, t) =

∫ 0

−∞
e−ikxv(1)(x, t) dx,

v̂
(1)
0 (k) =

∫ 0

−∞
e−ikxv

(1)
0 (x) dx,

v̂(2)(k, t) =

∫ ∞
0

e−ikxv(2)(x, t) dx,

v̂
(2)
0 (k) =

∫ ∞
0

e−ikxv
(2)
0 (x) dx.

Using these definitions, the global relations (4.6) are rewritten as

0 =v̂
(1)
0 (k)− eω1tv̂(1)(k, t) + kσ1g0(ω1, t)− iσ1g1(ω1, t), (4.7a)

0 =v̂
(2)
0 (k)− eω2tv̂(2)(k, t)− kσ2g0(ω2, t)

+
i(γ(2) − γ(1))

k
(eω2t − 1) +

iσ2ρ1

ρ2

g1(ω2, t),
(4.7b)

where k ∈ C+ for (4.7a) and k ∈ C− for (4.7b). Since the functions ω2(k) and ω1(k) are

invariant under k → −k we can supplement (4.7) with their evaluation at −k, namely

0 =v̂
(1)
0 (−k)− eω1tv̂(1)(−k, t)− kσ1g0(ω1, t)− iσ1g1(ω1, t), (4.8a)

0 =v̂
(2)
0 (−k)− eω2tv̂(2)(−k, t) + kσ2g0(ω2, t)−

i(γ(2) − γ(1))

k
(eω2t − 1)

+
iσ2ρ1

ρ2

g1(ω2, t),

(4.8b)

where k ∈ C− for (4.8a) and k ∈ C+ for (4.8b).

Inverting the Fourier transform in (4.7a) we have

v(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

+
1

2π

∫ ∞
−∞

eikx−ω1tσ1(kg0(ω1, t)− ig1(ω1, t)) dk,
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Im(k)

Re(k)

D(2)

D(4)

Figure 4.2: The domains D(2) and D(4) for the LS equation.

for x < 0 and t > 0. Let D = {k ∈ C : Re(−ik2) < 0} = D(2) ∪ D(4). The region D is

shown in Figure 4.2. The integrand of the second integral is entire and decays as k →∞ for

k ∈ C− \D(4). Using the analyticity of the integrand and applying Jordan’s Lemma we can

replace the contour of integration of the second integral by −
∫
∂D(4) :

v(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

− 1

2π

∫
∂D(4)

eikx−ω1tσ1(kg0(ω1, t)− ig1(ω1, t)) dk.

(4.9)

Similarly, inverting the Fourier transform in (4.7b) we have

v(2)(x, t) =
(γ(2) − γ(1))

2
φ(σ2, x, t) +

1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+
1

2π

∫ ∞
−∞

eikx−ω2tσ2

(
−kg0(ω2, t) +

iρ1

ρ2

g1(ω2, t)

)
dk,

for x > 0, t > 0, and

φ(σ, x, t) =

 0, t = 0,

− sgn(x) + 1√
πσt
eiπ/4

∫ x
0
e−iy

2/(4σt) dy, t > 0.
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The integrand of the third integral is entire and decays as k →∞ for k ∈ C+ \D(2). Using

the analyticity of the integrand and applying Jordan’s Lemma we can replace the contour of

integration
∫∞
−∞ · dk by

∫
∂D(2) · dk:

v(2)(x, t) =
γ(2) − γ(1)

2
φ(σ2, x, t) +

1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+
1

2π

∫
∂D(2)

eikx−ω2tσ2

(
−kg0(ω2, t) +

iρ1

ρ2

g1(ω2, t)

)
dk.

(4.10)

The Expressions (4.9) and (4.10) for v(1)(x, t) and v(2)(x, t) depend on the unknown

functions g0(·, t) and g1(·, t), evaluated at different arguments. These functions need to be

expressed in terms of known quantities. To obtain a system of two equations for the two

unknown functions we use the four global relations. We use (4.7b) and (4.8a) to solve for

g0(ω1, t), and g1(ω1, t). This requires use of all the symmetries of the set of {ω1(k), ω2(k)}.

Namely, the transformation k →
√
σ1/σ2k in (4.7b). Substituting these into (4.9) we have

v(1)(x, t) =
ρ2σ1(γ(2) − γ(1))

ρ2σ1 + ρ1
√
σ1σ2

φ(σ1, x, t) +
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

+
ρ2σ1 − ρ1

√
σ1σ2

2π(ρ2σ1 + ρ1
√
σ1σ2)

∫
∂D(4)

eikx−ω1tv̂
(1)
0 (−k) dk

− ρ2σ1

π(σ2ρ1 + ρ2
√
σ1σ2)

∫
∂D(4)

eikx−ω1tv̂
(2)
0

(
k

√
σ1

σ2

)
dk

−
ρ2σ1 − ρ1

√
σ1σ2

2π(ρ2σ1 + ρ1
√
σ1σ2)

∫
∂D(4)

eikxv̂(1)(−k, t) dk

+
ρ2σ1

π(σ2ρ1 + ρ2
√
σ1σ2)

∫
∂D(4)

eikxv̂(2)

(
k

√
σ1

σ2

, t

)
dk,

(4.11)

for x < 0, t > 0. The first four terms depend only on known functions. The integrand of

the second-to-last term is analytic for all k ∈ C−. Further, v̂(1)(−k, t) decays for k → ∞

when k ∈ C−. Thus, by Jordan’s Lemma, the integral of exp(ikx)v̂(1)(−k, t) along a closed,

bounded curve in C− vanishes. In particular we consider the closed curve L(4) = LD(4) ∪L(4)
C

where LD(4) = ∂D(4) ∩ {k : |k| < C} and L(4)
C = {k ∈ D(4) : |k| = C}, see Figure 4.3.

Since the integral along L−C vanishes as C →∞, the fourth integral on the right-hand side

of (4.11) must vanish since the contour LD(4) becomes ∂D(4) as R→∞. The uniform decay
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Im(k)

Re(k)
LD(2)

LD(4)

L(2)
C

L(4)
C

Figure 4.3: The contour L(4) is shown in green as a dashed line. An application of Cauchy’s

Integral Theorem using this contour allows elimination of the contribution of v̂(1)(−k, t) from

the integral (4.11). Similarly, the contour L(2) is shown in red and application of Cauchy’s

Integral Theorem using this contour allows elimination of the contribution of v̂(2)(−k, t)

from (4.12).

of v̂(1)(−k, t) for large k is exactly the condition required for the integral to vanish using

Jordan’s Lemma. For the final integral in (4.11) we use that v̂(2)(k
√
σ1/σ2, t) is analytic and

bounded for k ∈ C−. Using the same argument as above, the fifth integral in (4.11) vanishes

and we have an explicit representation for v(1)(x, t) in terms of initial conditions:

v(1)(x, t) =
ρ2σ1(γ(2) − γ(1))

ρ2σ1 + ρ1
√
σ1σ2

φ(σ1, x, t) +
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

+
ρ2σ1 − ρ1

√
σ1σ2

2π(ρ2σ1 + ρ1
√
σ1σ2)

∫
∂D(4)

eikx−ω1tv̂
(1)
0 (−k) dk

− ρ2σ1

π(σ2ρ1 + ρ2
√
σ1σ2)

∫
∂D(4)

eikx−ω1tv̂
(2)
0

(
k

√
σ1

σ2

)
dk,

To find an explicit expression for v(2)(x, t) we need to find expressions for g0(ω2, t) and
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g1(ω2, t) valid for k ∈ C+ \D(2). To this end we solve (4.7a) with k → k
√
σ2/σ1 and (4.8b)

for g0(ω2, t) and g1(ω2, t). Substituting into equation (4.10), we obtain

v(2)(x, t) =
ρ1
√
σ1σ2(γ(2) − γ(1))

ρ2σ1 + ρ1
√
σ2σ1

φ(σ2, x, t) +
1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+
ρ1σ2

π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikx−ω2tv̂
(1)
0

(
k

√
σ2

σ1

)
dk

+
ρ2σ1 − ρ1

√
σ1σ2

2π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikx−ω2tv̂
(2)
0 (−k) dk

− ρ1σ2

π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikxv̂(1)

(
k

√
σ2

σ1

, t

)
dk

−
ρ2σ1 − ρ1

√
σ1σ2

2π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikxv̂(2)(−k, t) dk,

(4.12)

for x > 0, t > 0. As before, the first four integrals are known. To compute the fifth and

sixth integrals we proceed as we did for v(1)(x, t) and eliminate integrals that decay in the

regions over which they are integrated. The final solution is

v(2)(x, t) =
ρ1
√
σ1σ2(γ(2) − γ(1))

ρ2σ1 + ρ1
√
σ2σ1

φ(σ2, x, t) +
1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+
ρ1σ2

π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikx−ω2tv̂
(1)
0

(
k

√
σ2

σ1

)
dk

+
ρ2σ1 − ρ1

√
σ1σ2

2π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikx−ω2tv̂
(2)
0 (−k) dk.

Returning to the original variables we have the following proposition which determines

q(2)(x, t) and q(1)(x, t) fully explicitly in terms of the given initial conditions and the pre-

scribed boundary conditions as |x| → ∞.

Proposition 4.1. The solution of the linear Schrödinger problem (4.1)-(4.4) is given by

q(1)(x, t) =γ(1) +
ρ2σ1(γ(2) − γ(1))

ρ2σ1 + ρ1
√
σ1σ2

φ(σ1, x, t) +
1

2π

∫ ∞
−∞

eikx−ω1tv̂
(1)
0 (k) dk

+
ρ2σ1 − ρ1

√
σ1σ2

2π(ρ2σ1 + ρ1
√
σ1σ2)

∫
∂D(4)

eikx−ω1tv̂
(1)
0 (−k) dk

− ρ2σ1

π(ρ1σ2 + ρ2
√
σ1σ2)

∫
∂D(4)

eikx−ω1tv̂
(2)
0

(
k

√
σ1

σ2

)
dk,

(4.13)
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for x < 0 and for x > 0,

q(2)(x, t) =γ(2) +
ρ1
√
σ1σ2(γ(2) − γ(1))

ρ2σ1 + ρ1
√
σ2σ1

φ(σ2, x, t) +
1

2π

∫ ∞
−∞

eikx−ω2tv̂
(2)
0 (k) dk

+
ρ1σ2

π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikx−ω2tv̂
(1)
0

(
k

√
σ2

σ1

)
dk

+
ρ2σ1 − ρ1

√
σ1σ2

2π
(
ρ2σ1 + ρ1

√
σ2σ1

) ∫
∂D(2)

eikx−ω2tv̂
(2)
0 (−k) dk.

(4.14)

Remarks:

• The use of the discrete symmetries of the functions ω1(k) and ω2(k) is an important

aspect of the Fokas Method. When solving the LS equation in a single medium, the

only discrete symmetry required is k → −k, which was used here to obtain (4.8a). Due

to the two media, there are two dispersion relations in the present problem: ω1(k) =

−iσ1k
2 and ω2(k) = −iσ2k

2. The collection of both functions {ω1(k), ω2(k)} retains

the discrete symmetry k → −k, but admits an additional one, namely: k → k
√
σ2/σ1

which transforms the two functions to each other. All nontrivial discrete symmetries

of {ω1(k), ω2(k)} are needed to derive the final solution representation.

• In Equations (4.13) and (4.14) it is possible to deform the integration paths back to

the real line. This deformation hints that a classical solution in terms of Fourier-like

integral transforms should be possible. However, a priori it is not clear how to obtain

the appropriate transforms for general initial conditions and boundary conditions. In

effect, as in [25], the Fokas Method can be seen as a method to construct the appropriate

transform to solve the problem.

• It is interesting to note that when σ1 = σ2, ρ1 = ρ2 and γ(1) = γ(2) = 0, the solution

formulae in their proper x-domain of definition reduce to the solution of the whole line

problem. Also, if γ(1) = 0 = γ(2), Cascaval and Hunter [11] find a solution to the LS

equation with an interface by imposing the solution for the LS problem on the half-line
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given in [25] and viewing the interface problem as a forced problem on the real line

where the forcing is occurring at the interface. This leads to a solution of the interface

problem which requires the numerical solution of an integral equation.

• The leading-order behavior in time for (4.1) with initial conditions which decay suffi-

ciently fast to the boundary values (4.3) at ±∞ is easily obtained by using integration

by parts and the method of stationary phase [6]. In the limit as t→∞ for x/t constant,

q(1)(x, t) ∼
ρ2γ

(2)√σ1 + ρ1γ
(1)√σ2

ρ2
√
σ1 + ρ1

√
σ2

+
e
iπ
4
− ix2

4σ1t

√
4σ1t

(
ρ2σ1(γ(2) − γ(1))x

ρ2σ1 + ρ1
√
σ1σ2

+
v̂

(1)
0

(
− x

2σ1t

)
√
π

−
(ρ2σ1 − ρ1

√
σ1σ2)v̂

(1)
0

(
x

2σ1t

)
(ρ2σ1 + ρ1

√
σ1σ2)

√
π

+
ρ2σ1v̂

(2)
0

(
− x

2t
√
σ1σ2

)
(ρ1σ2 + ρ2

√
σ1σ2)

√
π

 ,

(4.15)

for x < 0 and, for x > 0,

q(2)(x, t) ∼
ρ2γ

(2)√σ1 + ρ1γ
(1)√σ2

ρ2
√
σ1 + ρ1

√
σ2

+
e
iπ
4
− ix2

4σ2t

√
4σ2t

(
ρ1
√
σ1σ2(γ(2) − γ(1))x

ρ2σ1 + ρ1
√
σ2σ1

+
v̂

(2)
0

(
− x

2σ2t

)
√
π

+
ρ1σ2v̂

(1)
0

(
− x

2t
√
σ2σ1

)
(
ρ2σ1 + ρ1

√
σ2σ1

)√
π

+
(ρ2σ1 − ρ1

√
σ1σ2)v̂

(2)
0

(
x

2σ2t

)
(
ρ2σ1 + ρ1

√
σ2σ1

)√
π

 .

(4.16)

The constant factor in (4.15) and (4.16) is the weighted average of the boundary condi-

tions at infinity with weights given by ρ2
√
σ1 and ρ1

√
σ2. The oscillations are contained

in the terms exp(−ix2/(4σ1t)) and exp(−ix2/(4σ2t)). In Figure 4.4 the envelope of the

real (imaginary) part of the solution is plotted in gray (black) as a dot-dashed line.

The real part of the solution (plotted as a solid line in blue) is centered around the

weighted average (plotted in black as a dotted line) and the imaginary part of the
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-40 -20 20 40
x

γ(1)

γ(2)

Figure 4.4: The leading order behavior of q(x, t) as given in (4.15) and (4.16) with t =

10, γ(1) = −20, γ(2) = −10, ρ1 = 2, ρ2 = 1, σ1 = 2, and σ2 = 1 and initial conditions

q
(1)
0 (x) = ρ1γ(1)+ρ2γ(2)

ρ1+ρ2
+ ρ2

γ(2)−γ(1)
ρ1+ρ2

tanh(x) and q
(2)
0 (x) = ρ1γ(1)+ρ2γ(2)

ρ1+ρ2
+ ρ1

γ(2)−γ(1)
ρ1+ρ2

tanh(x).

solution (plotted as a dashed line in red) is centered around zero. In using the method

of stationary phase one must look in directions of constant x/t. Using integration by

parts there is no such restriction. When x is large the term from integration by parts

is dominant and so in Figure 4.4 there is no need to fix x/t.

• In quantum mechanics one considers only the finite energy case, that is, γ(1) = 0 = γ(2).

In this case, asymptotics requires the use of the method of stationary phase only. Thus,

in Figure 4.5 we consider solutions for x/t = ±1. The real and imaginary parts of the

solution are centered around 0. In Figure 4.5 the real part of the solution is plotted as

a solid line in blue and the imaginary part of the solution is plotted as a dashed line in

red. The envelope of the real (imaginary) part of the solution is plotted in gray (black)

as a dot-dashed line.
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100 200 300 400 500
t

-0.2

-0.1

0.1

0.2
q(1)(-t,t)

50 100 150 200
t

-0.2

-0.1

0.1

0.2
q(2)(t,t)

Figure 4.5: The leading order behavior of q(1)(−t, t) and q(2)(t, t) as given in (4.15) and (4.16)

respectively with γ(1) = 0, γ(2) = 0, ρ1 = 4, ρ2 = 1, σ1 = 3, and σ2 = 1 with q
(1)
0 (x) =

(1 + ρ2x)e−x
2

and q
(2)
0 (x) = (1 + ρ1x)e−x

2
.
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4.2 Two finite domains

We wish to find two functions:

q(1)(x, t), − x0 < x < x1, t ≥ 0,

and

q(2)(x, t), x1 < x < x2, t ≥ 0,

satisfying the equations

iq
(1)
t (x, t) =σ1q

(1)
xx (x, t) −x0 < x < x1, t > 0, (4.17a)

iq
(2)
t (x, t) =σ2q

(2)
xx (x, t), x1 < x < x2, t > 0, (4.17b)

the initial conditions

q(1)(x, 0) =q
(1)
0 (x), −x0 < x < x1, (4.18a)

q(2)(x, 0) =q
(2)
0 (x), x1 < x < x2, (4.18b)

the Robin boundary conditions

β1q
(1)(−x0, t) + β2q

(1)
x (−x0, t) =f1(t), t > 0, (4.19a)

β3q
(2)(x2, t) + β4q

(2)
x (x2, t) =f2(t), t > 0, (4.19b)

and the continuity interface conditions

q(1)(0, t) =q(2)(0, t), t > 0, (4.20a)

ρ1q
(1)
x (0, t) =ρ2q

(2)
x (0, t), t > 0, (4.20b)

as illustrated in Figure 4.6 where x0 and x2 are positive, x1 = 0, and σ1, σ2, ρ1, ρ2 and βj,

1 ≤ j ≤ 4 are nonzero constants. As before we assume σ1 and σ2 are positive for convenience.

If β1 = β3 = 0 then Neumann boundary conditions are prescribed, whereas if β2 = β4 = 0

then Dirichlet conditions are given.
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iq
(1)
t = σ1q

(1)
xx iq

(2)
t = σ2q

(2)
xx

x
−x0 x1 = 0 x2

Figure 4.6: The LS equation for two finite domains.

As before we begin with the local relations

(
e−ikx+ω1tq(1)(x, t)

)
t

=
(
σ1e
−ikx+ω1t(kq(1)(x, t)− iq(1)

x (x, t))
)
x
,(

e−ikx+ω2tq(1)(x, t)
)
t

=
(
σ2e
−ikx+ω2t(kq(2)(x, t)− iq(2)

x (x, t))
)
x
.

For k ∈ C we define the following transforms:

f̃1(ω, t) =

∫ t

0

eωsf1(s) ds, f̃2(ω, t) =

∫ t

0

eωsf2(s) ds,

h
(1)
1 (ω, t) =

∫ t

0

eωsq(1)
x (−x0, s) ds, h

(1)
0 (ω, t) =

∫ t

0

eωsq(1)(−x0, s) ds,

h
(2)
1 (ω, t) =

∫ t

0

eωsq(2)
x (x2, s) ds, h

(2)
0 (ω, t) =

∫ t

0

eωsq(2)(x2, s) ds,

q̂(1)(k, t) =

∫ 0

−x0
e−ikxq(1)(x, t) dx, q̂

(1)
0 (k) =

∫ 0

−x0
e−ikxq

(1)
0 (x) dx,

q̂(2)(k, t) =

∫ x2

0

e−ikxq(2)(x, t) dx, q̂
(2)
0 (k) =

∫ x2

0

e−ikxq
(2)
0 (x) dx,

g0(ω, t) =

∫ t

0

eωsq(1)(0, s) ds =

∫ t

0

eωsq(2)(0, s) ds,

g1(ω, t) =

∫ t

0

eωsq(1)
x (0, s) ds =

ρ2

ρ1

∫ t

0

eωsq(2)
x (0, s) ds.

Applying Green’s Theorem in the domains [−x0, 0]× [0, t] and [0, x2]× [0, t] respectively,

we find the global relations

eω1tq̂(1)(k, t) =q̂
(1)
0 (k) + kσ1g0(ω1, t)− iσ1g1(ω1, t)

− σ1e
ikx0(kh

(1)
0 (ω1, t)− ih(1)

1 (ω1, t)),
(4.21a)
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eω2tq̂(2)(k, t) =q̂
(2)
0 (k)− kσ2g0(ω2, t) +

iσ2ρ1

ρ2

g1(ω2, t)

+ σ2e
−ikx2(kh

(2)
0 (ω2, t)− ih(2)

1 (ω2, t)),

(4.21b)

which are valid for all k ∈ C in contrast to (4.6). Using the invariance of ω1(k) and ω2(k)

under k → −k we supplement (4.21) with their evaluation at −k, namely

eω1tq̂(1)(−k, t) =q̂
(1)
0 (−k)− kσ1g0(ω1, t)− iσ1g1(ω1, t)

− σ1e
−ikx0(−kh(1)

0 (ω1, t)− ih(1)
1 (ω1, t)),

(4.22a)

eω2tq̂(2)(−k, t) =q̂
(2)
0 (−k) + kσ2g0(ω2, t) +

iσ2ρ1

ρ2

g1(ω2, t)

+ σ2e
ikx2(−kh(2)

0 (ω2, t)− ih(2)
1 (ω2, t)).

(4.22b)

Inverting the Fourier transform in (4.21a) we have

q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

+
1

2π

∫ ∞
−∞

eikx−ω1tσ1(kg0(ω1, t)− ig1(ω1, t)) dk

+
1

2π

∫ ∞
−∞

σ1e
ik(x+x0)−ω1t(kh

(1)
0 (ω1, t)− ih(1)

1 (ω1, t)) dk,

for −x0 < x < 0 and t > 0. The integrand of the second integral is entire and decays as

k → ∞ for k ∈ C− \ D(4). The last integral is entire and decays as k → ∞ for k ∈ C+ \

D(2). It is convenient to deform both contours away from the real axis to avoid singularities

in the integrands that become apparent in what follows. Initially these singularities are

removable since the integrands are entire. Writing integrals of sums as sums of integrals,

these singularities may cease to be removable. With the deformation away from the real

axis the singularities are no cause for concern. In other words, we deform D(2) to D
(2)
0

and D(4) to D
(4)
0 as show in Figure 4.7 where the deformed contours approach the real axis
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asymptotically. Thus,

q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

− 1

2π

∫
∂D

(4)
0

eikx−ω1tσ1(kg0(ω1, t)− ig1(ω1, t)) dk

+
1

2π

∫
∂D

(2)
0

σ1e
ik(x+x0)−ω1t(kh

(1)
0 (ω1, t)− ih(1)

1 (ω1, t)) dk.

Im(k)

Re(k)

D
(2)
0

D
(4)
0

Figure 4.7: Deformation of the contours in Figure 4.2 away from the real axis.

Similarly, inverting the Fourier transform in (4.21b) we have

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

+
1

2π

∫ ∞
−∞

eikx−ω2tσ2

(
−kg0(ω2, t) +

iρ1

ρ2

g1(ω2, t)

)
dk

+
1

2π

∫ ∞
−∞

eik(x−x2)−ω2tσ2(kh
(2)
0 (ω2, t)− ih(2)

1 (ω2, t)) dk,

for 0 < x < x2 and t > 0. The integrand of the second integral is entire and decays as

k →∞ for k ∈ C+ \D(2). The integrand of the third integral is entire and decays as k →∞
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for k ∈ C− \D(4). We deform as above to find

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

+
1

2π

∫
∂D

(2)
0

eikx−ω2tσ2

(
−kg0(ω2, t) +

iρ1

ρ2

g1(ω2, t)

)
dk

− 1

2π

∫
∂D

(4)
0

eik(x−x2)−ω2tσ2(kh
(2)
0 (ω2, t)− ih(2)

1 (ω2, t)) dk.

Taking the time transform of the boundary conditions results in

β1h
(1)
0 (ω, t) + β2h

(1)
1 (ω, t) = f̃1(ω, t), (4.23a)

and

β3h
(2)
0 (ω, t) + β4h

(2)
1 (ω, t) = f̃2(ω, t). (4.23b)

To obtain a system of six equations for the six unknown functions g0(ω, t), g1(ω, t),

h
(1)
0 (ω, t), h

(1)
1 (ω, t), h

(2)
0 (ω, t), and h

(2)
1 (ω, t) we use the global relations evaluated at k, (4.21),

and −k, (4.22), and the time transform of the boundary conditions (4.23).

Although we could solve this problem in its full generality, we restrict to the case of

Dirichlet boundary conditions (β2 = β4 = 0, β1 = β3 = 1) to simplify the already cumber-

some formulae below. The system is not solvable for h
(1)
1 (ω, t) and h

(2)
1 (ω, t) if ∆1(k) = 0,

where

∆1(k) =4iπσ2e
ik
(
x0+x2

√
σ1
σ2

)(
ρ1 cos(x0k) sin

(
x2k

√
σ1

σ2

)
+ρ2

√
σ1

σ2

sin(x0k) cos

(
x2k

√
σ1

σ2

))
.

(4.24)

It is easily seen that all values of k satisfying this relation (including k = 0) are on the

real line. Thus on the contours, the equations are solved without problem, resulting in the

expressions below. As in the previous section, the right-hand sides of these expressions involve

q̂(1)(·, t) and q̂(2)(·, t), evaluated at a variety of arguments. All terms with such dependence
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are written out explicitly below. Terms that depend on known quantities only are contained

in K(1)(x, t) and K(2)(x, t), the expressions for which are given in Proposition 4.2.

q(1)(x, t) =K(1)(x, t) +

∫
∂D

(4)
0

ρ2σ1

∆1(k)
e
ik(2x0+2x2

√
σ1
σ2

+x)
q̂(2)

(
k

√
σ1

σ2

, t

)
dk

−
∫
∂D

(4)
0

β3σ2e
ikx

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂(1)(k, t) dk

+

∫
∂D

(4)
0

σ2e
ik(2x0+x)

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂(1)(−k, t) dk

−
∫
∂D

(4)
0

ρ2σ1e
ik(2x0+x)

∆1(k)
q̂(2)

(
−k
√
σ1

σ2

, t

)
dk

−
∫
∂D

(2)
0

σ2e
ik(2x0+x)

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
+ ρ2

√
σ1

σ2

ρ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂(1)(k, t) dk

−
∫
∂D

(2)
0

σ2e
ik(2x0+x)

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

ρ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂(1)(−k, t) dk

−
∫
∂D

(2)
0

ρ2σ1e
ik(2x0+2x2

√
σ1
σ2

+x)

∆1(k)
q̂(2)

(
k

√
σ1

σ2

, t

)
dk

+

∫
∂D

(2)
0

ρ2σ1e
ik(2x0+x)

∆1(k)
q̂(2)

(
−k
√
σ1

σ2

, t

)
dk,

(4.25)
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for −x0 < x < 0, t > 0 and

q(2)(x, t) =K(2)(x, t) +

∫
∂D

(2)
0

ρ1σ2e
ikx

∆2(k)
q̂(1)

(
k

√
σ2

σ1

, t

)
dk

−
∫
∂D

(2)
0

ρ1σ2e
ik(2x0

√
σ2
σ1

+x)

∆2(k)
q̂(1)

(
−k
√
σ2

σ1

, t

)
dk

+

∫
∂D

(2)
0

σ1e
ik(2x2+x)

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ2

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂(2)(k, t) dk

−
∫
∂D

(2)
0

σ1e
ikx

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂(2)(−k, t) dk

−
∫
∂D

(4)
0

ρ1σ2e
ikx

∆2(k)
q̂(1)

(
k

√
σ2

σ1

, t

)
dk

+

∫
∂D

(4)
0

ρ1σ2e
ik(2x0

√
σ2
σ1

+x)

∆2(k)
q̂(1)

(
−k
√
σ2

σ1

, t

)
dk

+

∫
∂D

(4)
0

σ1e
ikx

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
− ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂(2)(k, t) dk

+

∫
∂D

(4)
0

σ1e
ikx

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂(2)(−k, t) dk,

(4.26)

for 0 < x < x2, t > 0, where

∆2(k) =

√
σ2

σ1

∆1

(
k

√
σ2

σ1

)
.

The integrands written explicitly in (4.25) and (4.26) decay in the regions around whose

boundaries they are integrated. Thus, using Jordan’s Lemma and Cauchy’s Theorem these

integrals are shown to vanish. The final solution is given by K(1)(x, t) and K(2)(x, t).
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Proposition 4.2. The solution of the linear Schrödinger interface problem (4.17)-(4.20) is

q(1)(x, t) =K(1)(x, t) =
1

2π

∫ ∞
−∞

eikx+ω1tq̂
(1)
0 (k) dk +

∫
∂D

(4)
0

ρ2σ1e
ik(2x0+x)+ω1t

∆1(k)
q̂

(1)
0

(
−k
√
σ1

σ2

)
dk

+

∫
∂D

(4)
0

σ2e
ikx+ω1t

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂

(1)
0 (k) dk

−
∫
∂D

(4)
0

σ2e
ik(2x0+x)+ω1t

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂

(1)
0 (−k) dk

−
∫
∂D

(4)
0

ρ2σ1e
ik(2x0+2x2

√
σ1
σ2

+x)+ω1t

∆1(k)
q̂

(2)
0

(
k

√
σ1

σ2

)
dk

−
∫
∂D

(4)
0

kσ1σ2e
ik(x0+x)+ω1t

∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
f̃1(ω1, t) dk

−
∫
∂D

(4)
0

2kρ2σ1
√
σ1σ2e

ik(2x0+x2
√
σ1
σ2

+x)+ω1t

∆1(k)
f̃2(ω2, t) dk

+

∫
∂D

(2)
0

σ2e
ik(2x0+x)+ω1t

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
+ ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂

(1)
0 (k) dk

+

∫
∂D

(2)
0

σ2e
ik(2x0+x)+ω1t

2∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
q̂

(1)
0 (−k) dk

+

∫
∂D

(2)
0

ρ2σ1e
ik(2x0+2x2

√
σ1
σ2

+x)+ω1t

∆1(k)
q̂

(2)
0

(
k

√
σ1

σ2

)
dk

−
∫
∂D

(2)
0

ρ2σ1e
ik(2x0+x)+ω1t

∆1(k)
q̂

(1)
0

(
−k
√
σ1

σ2

)
dk

+

∫
∂D

(2)
0

kσ1σ2e
ik(x0+x)+ω1t

∆1(k)

(
ρ1

(
e

2ix2k
√
σ1√

σ2 − 1

)
− ρ2

√
σ1

σ2

(
e

2ix2k
√
σ1√

σ2 + 1

))
f̃1(ω1, t) dk

+

∫
∂D

(2)
0

2kρ2σ1

√
σ1σ2e

ik(2x0+x2
√
σ1
σ2

+x)+ω1t

∆1(k)
f̃2(ω2, t) dk,
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q(2)(x, t) =K(2) =
1

2π

∫ ∞
−∞

eikx+ω2tq̂
(2)
0 (k) dk −

∫
∂D

(2)
0

ρ1σ2e
ikx+ω2t

∆2(k)
q̂

(1)
0

(
k

√
σ2

σ1

)
dk

+

∫
∂D

(2)
0

ρ1σ2e
ik(2x0

√
σ2
σ1

+x)+ω2t

∆2(k)
q̂

(1)
0

(
−k
√
σ2

σ1

)
dk

−
∫
∂D

(2)
0

σ1e
ik(2x2+x)+ω2t

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂

(2)
0 (k) dk

+

∫
∂D

(2)
0

σ1e
ikx+ω2t

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂

(2)
0 (−k) dk

+

∫
∂D

(2)
0

2kρ1σ2
√
σ1σ2e

ik(x0
√
σ2
σ1

+x)+ω2t

∆2(k)
f̃1(ω2, t) dk

−
∫
∂D

(2)
0

kσ1σ2e
ik(x2+x)+ω2t

∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
f̃2(ω2, t) dk

+

∫
∂D

(4)
0

ρ1σ2e
ikx+ω2t

∆2(k)
q̂

(1)
0

(
k

√
σ2

σ1

)
dk

−
∫
∂D

(4)
0

ρ1σ2e
ik(2x0

√
σ2
σ1

+x)+ω2t

∆2(k)
q̂

(1)
0

(
−k
√
σ2

σ1

)
dk

−
∫
∂D

(4)
0

σ1e
ikx+ω2t

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
− ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂

(2)
0 (k) dk

−
∫
∂D

(4)
0

σ1e
ikx+ω2t

2∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
q̂

(2)
0 (−k) dk

−
∫
∂D

(4)
0

2kρ1σ2
√
σ1σ2e

ik(x0
√
σ2
σ1

+x)+ω2t

∆2(k)
f̃1(ω2, t) dk

+

∫
∂D

(4)
0

kσ1σ2e
ik(x+x2)+ω2t

∆2(k)

(
ρ2

(
e

2ix0k
√
σ2√

σ1 − 1

)
+ ρ1

√
σ2

σ1

(
e

2ix0k
√
σ2√

σ1 + 1

))
f̃2(ω2, t) dk,

for −x0 < x < 0 and 0 < x < x2 respectively.

Remarks:

• The solution of the problem posed in (4.17)-(4.20) may be obtained using the classical

method of separation of variables and superposition as was done for the heat equation

in [33]. The solutions q(1)(x, t) and q(2)(x, t) are given by a series of eigenfunctions
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with eigenvalues that satisfy a transcendental equation. The classical series solution

may be obtained from the solution in Proposition 4.2 by deforming the contours along

∂D
(4)
0 and ∂D

(2)
0 to the real line, including small semi-circles around each root of either

∆1(k) or ∆2(k), depending on whether q(1)(x, t) or q(2)(x, t) is being calculated. Indeed,

careful calculation of all different contributions, following the examples in [15, 25, 64],

is allowed since all integrands decay in the wedges between these contours and the real

line, and the zeros of ∆1(k) and ∆2(k) occur only on the real line as stated above.

It is not necessarily beneficial to leave the form of the solution in Proposition 4.2

for the series representation, as the latter depends on the roots of ∆1(k) and ∆2(k),

which are not known explicitly. In contrast, the representation of Proposition 4.2

depends on known quantities only and may be readily computed using one’s favorite

parameterization of the contours ∂D
(4)
0 and ∂D

(2)
0 .

• In the case of the heat equation on the finite interval with an interface there are also

an infinite number of poles on the real-k axis. The major difference here is that the

boundary of D coincides with the real-k axis whereas in the heat equation the only

intersection between the real axis and D is at k = 0.

• As stated earlier, this method applies to general boundary conditions although we

chose to present the details only for the Dirichlet case. When genuine Robin boundary

conditions are used (the case in which all of the coefficients β1, β2, β3, and β4 are

nonzero) the analogous denominator to (4.24) may have zeros on the interior of D
(2)
0

and D
(4)
0 depending on the relative signs of the coefficients. Thus, special care is needed

to eliminate unknown boundary values in these cases. This can be worked out in a

straightforward way, as is done for problems without interfaces in [15].

• Similar to Section 4.1, long time asymptotics are easily computed using the method of

stationary phase [6]. The asymptotic behavior is centered around zero for x/t constant

and the shape of the envelope is determined by the integrands of the solution given in
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Proposition 4.2 as in (4.15) and (4.16).



Chapter 5

The time-dependent Schrödinger

equation with piecewise constant

potentials

The N -particle time-dependent (linear) Schrödinger equation is given by

i~
∂ψ

∂t
=

(
−

N∑
n=1

p2
n

2mn

+ V (x1, . . . , xN , t)

)
ψ. (5.1)

Here ~ is the Planck constant, xj denotes the 3-dimensional coordinate vector of the jth

particle with mass mj, pj denotes the momentum operator i~∇xj for the jth particle, and

V (x1, . . . , xN , t) is the N -particle potential. One can argue that (5.1) is the most important

PDE in all of mathematical physics. Standard textbooks such as [19, 41, 48] rightfully

emphasize the solution of (5.1) in simplified settings, so as to build up the intuition using

exact solutions and their properties. Favorite textbook scenarios consider the one-particle

case N = 1 in one (1) spatial dimension with time-independent potential V (x). The linear

Schrödinger (LS) equation reduces to

i~
∂ψ

∂t
= − ~2

2m
ψxx + V (x)ψ, (5.2)
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where m is the particle mass. Since V (x) is time independent, separation of variables

ψ(x, t) = φ(x)T (t) leads to

T (t) = T0e
−iEt/~, − ~2

2m
φ′′ + V (x)φ = Eφ, (5.3)

where the energy E is a (real) separation constant. The second equation above is the one-

dimensional one-particle time-independent Schrödinger equation. Even at this point, the

problem is solvable in closed form in few cases, such as the free particle (V = 0) and the

harmonic oscillator (V = kx2/2, k constant) [19, 41, 48].

The study of Schrödinger equations with piecewise constant potentials is important for

a number of reasons. First, to some extent (see below), analytical solutions are available,

allowing the development of more physical intuition using scenarios such as the particle in

a box, and the piecewise constant potential barrier [48]. Piecewise constant potentials also

provide the simplest example of a periodic potential, using the Kronig-Penney model [48].

Second, multiple-scale perturbation theory [6, 37, 39] shows that the approximation of a

complicated potential using a few constant levels results in accurate leading-order behavior,

provided the levels are adequately chosen. This is also evident from the Rayleigh-Ritz char-

acterization of the eigenvalues of (5.3) [41, 48], which depends only on weighted averages of

the potential. As such, the understanding of (5.2) with piecewise constant potential is of

central importance to the study of quantum mechanics. From a physical point of view, the

qualitative features of a potential can often be approximated well using a potential which is

pieced together from a number of constant parts [31, 48]. For instance, although the forces

acting between a proton and a neutron are not accurately known on theoretical grounds, it

is known that they are short-range forces, i.e., they extend a short distance, then drop to

zero quickly. These forces are well modeled using a piecewise constant potential [48].

Nonetheless, the solutions that are found in the piecewise constant setting are often

restricted to single-mode solutions of (5.3), explaining the phenomena of tunneling and

trapping [19, 41, 48]. Solutions of the initial-value problem for (5.2) are not readily available.

The presence of both discrete and continuous spectrum exacerbates the use of straightforward
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linear superposition. Extensive discussions of this are found in [45, 46], but even there the

required superposition result is not immediately found. The goal of this chapter is to solve

the initial-value problem (IVP) for (5.2) using the Fokas Method, combined with more recent

ideas generalizing the Fokas Method to allow for the explicit solution of interface problems

as in earlier chapters. In what follows we present explicit, closed-form solutions of the IVP

for (5.2) with square integrable initial data.

We apply the same techniques as in previous chapters to the IVP consisting of (5.2) with

ψ(x, 0) = ψ0(x) ∈ L2(R). We regard this problem as an interface problem with interfaces

located at the discontinuities of the potential V (x). The wave function ψ(x, t) and its

derivative ψx(x, t) are assumed to be continuous across the interfaces. The first condition

is a requirement following from the probabilistic interpretation of the wave function, while

the second condition follows from integrating the equation across an interface and allowing

the length of the integration interval to limit to zero [48]. For simplicity, the independent

variables occurring in (5.2) are rescaled so that, in effect, we may equate m = 1, ~ = 1. Thus

in what follows, we consider

i
∂ψ

∂t
= −ψxx + V (x)ψ, (5.4)

where V (x) is a piecewise constant potential.

5.1 A step potential

We wish to solve the classical IVP

iψt = −ψxx + α(x)ψ, −∞ < x <∞, (5.5a)

ψ(x, 0) = ψ0(x), −∞ < x <∞, (5.5b)
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where

α(x) =

 α1, x < 0,

α2, x > 0,
(5.6)

and limx→±∞ ψ(x, t) = 0. We treat this as an interface problem solved by

ψ(x, t) =

 ψ(1)(x, t), x < 0,

ψ(2)(x, t), x > 0,
(5.7)

where ψ(1)(x, t) and ψ(2)(x, t) solve

iψ
(1)
t =− ψ(1)

xx + α1ψ
(1), x < 0, (5.8a)

iψ
(2)
t =− ψ(2)

xx + α2ψ
(2), x > 0, (5.8b)

with initial conditions

ψ(1)(x, 0) =ψ
(1)
0 (x), x < 0, (5.9a)

ψ(2)(x, 0) =ψ
(2)
0 (x), x > 0, (5.9b)

and the interface continuity conditions

ψ(1)(0, t) =ψ(2)(0, t), t > 0, (5.10a)

ψ(1)
x (0, t) =ψ(2)

x (0, t), t > 0, (5.10b)

as in Figure 5.1.

We follow the standard steps in the application of the Fokas Method and begin with the

local relations:

(e−ikx+ω1tψ(1))t =(e−ikx+ω1t(iψ(1)
x − kψ(1)))x, x < 0, (5.11a)

(e−ikx+ω2tψ(2))t =(e−ikx+ω2t(iψ(2)
x − kψ(2)))x, x > 0, (5.11b)
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ψ(1)(x, t) ψ(2)(x, t)
x0 = −∞ x2 =∞x1 = 0

α1

α2

Figure 5.1: A cartoon of the potential α(x) in the case of one interface.

where ωj(k) = i(αj + k2) for j = 1, 2. Note that, as is common in the Fokas Method, the

ωj differ from the standard convention for dispersion relations by a factor of i. Thus for

dispersive problems ωj is purely imaginary. Integrating over the strips (−∞, 0)× (0, t) and

(0,∞) × (0, t) respectively (see Figure 2.2), and applying Green’s Theorem, we have the

global relations

∫ 0

−∞
e−ikx+ω1tψ(1)(x, t) dx =

∫ 0

−∞
e−ikxψ

(1)
0 (x) dx+

∫ t

0

eω1s(iψ(1)
x (0, s)− kψ(1)(0, s)) ds, (5.12a)∫ ∞

0

e−ikx+ω2tψ(2)(x, t) dx =

∫ ∞
0

e−ikxψ
(2)
0 (x) dx−

∫ t

0

eω2s(iψ(2)
x (0, s)− kψ(2)(0, s)) ds. (5.12b)

We define the following transforms:

ψ̂(1)(k, t) =

∫ 0

−∞
e−ikxψ(1)(x, t) dx, x < 0, t > 0, Im(k) > 0,

ψ̂
(1)
0 (k) =

∫ 0

−∞
e−ikxψ

(1)
0 (x) dx, x < 0, Im(k) > 0,

ψ̂(2)(k, t) =

∫ ∞
0

e−ikxψ(2)(x, t) dx, x > 0, t > 0, Im(k) < 0,

ψ̂
(2)
0 (k) =

∫ ∞
0

e−ikxψ
(2)
0 (x) dx, x > 0, Im(k) < 0,

g0(ω, t) =

∫ t

0

eωsψ(1)(0, s) ds =

∫ t

0

eωsψ(2)(0, s) ds, t > 0, ω ∈ C,

g1(ω, t) =

∫ t

0

eωsψ(1)
x (0, s) ds =

∫ t

0

eωsψ(2)
x (0, s) ds, t > 0, ω ∈ C,
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where in the last two definitions we used the continuity conditions (5.10). With these defi-

nitions the global relations become

eω1tψ̂(1)(k, t) =ψ̂
(1)
0 (k) + ig1(ω1, t)− kg0(ω1, t), k ∈ C+, (5.13a)

eω2tψ̂(2)(k, t) =ψ̂
(2)
0 (k)− ig1(ω2, t) + kg0(ω2, t), k ∈ C−. (5.13b)

We wish to transform the global relations so that g0(·, t) and g1(·, t) depend on a common

argument, −ik2 as in [4, 47]. To this end, let

ν(j)(k) = ik(1 + αj/k
2)1/2.

In this chapter we define z1/2 as follows. Given z ∈ C, let z = reiθ where θ = θp + 2πn

for n ∈ Z and −π < θp ≤ π. Then, z1/2 =
√
reiθp/2einπ. Thus, for a given value of z, z1/2

takes two possible values corresponding to even or odd n. These two values are denoted
√
z =
√
reiθp/2 and −

√
z = −

√
reiθp/2. Thus, we have

ν(j)(k) = ik

√
1 +

αj
k2
, ν(j)(−k) = −ν(j)(k),

which make up a two-sheeted expression with branch points at ±i√αj leading to branch

cuts in the complex k plane along [−i√α1, i
√
α1] and [−i√α2, i

√
α2]. These cuts are on

the real or imaginary axis, depending on the signs of α1 and α2. Using the transformations

k → ν(j)(±k), j = 1, 2, we have the transformed global relations

e−ik
2tψ̂(1)

(
ν(1)(k), t

)
=ψ̂

(1)
0

(
ν(1)(k)

)
+ ig1(−ik2, t)− ν(1)(k)g0(−ik2, t), (5.14a)

e−ik
2tψ̂(1)

(
ν(1)(−k), t

)
=ψ̂

(1)
0

(
ν(1)(−k)

)
+ ig1(−ik2, t)− ν(1)(−k)g0(−ik2, t), (5.14b)

e−ik
2tψ̂(2)

(
ν(2)(k), t

)
=ψ̂

(2)
0

(
ν(2)(k)

)
− ig1(−ik2, t) + ν(2)(k)g0(−ik2, t), (5.14c)

e−ik
2tψ̂(2)

(
ν(2)(−k), t

)
=ψ̂

(2)
0

(
ν(2)(−k)

)
− ig1(−ik2, t) + ν(2)(−k)g0(−ik2, t), (5.14d)

where Re(k) > 0 in (5.14a) and (5.14d) and Re(k) < 0 in (5.14b) and (5.14c). To de-

termine the regions of validity of (5.14), one should note that sgn(Re(−iν(j)(±k))) =

sgn(Im(ν(j)(±k))) = ± sgn(Re(k)).
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Inverting the Fourier transform in (5.13) we have the solution formulae

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk +

1

2π

∫ ∞
−∞

eikx−ω1t (ig1(ω1, t)− kg0(ω1, t)) dk, (5.15a)

ψ(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tψ̂
(2)
0 (k) dk − 1

2π

∫ ∞
−∞

eikx−ω2t (ig1(ω2, t)− kg0(ω2, t)) dk, (5.15b)

for x < 0 and x > 0 respectively. Examining the integrands in the formulae above we see we

can deform farther into the complex plane as follows:

ψ(1)(x, t) =
1

2π

∫ ∞
−∞
eikx−ω1tψ̂

(1)
0 (k) dk − 1

2π

∫
∂D

(3)
R

eikx−ω1t (ig1(ω1, t)− kg0(ω1, t)) dk, (5.16a)

ψ(2)(x, t) =
1

2π

∫ ∞
−∞
eikx−ω2tψ̂

(2)
0 (k) dk − 1

2π

∫
∂D

(1)
R

eikx−ω2t (ig1(ω2, t)− kg0(ω2, t)) dk, (5.16b)

where

D
(j)
R = {k ∈ D(j) : |k| > R}, (5.17)

with D(j) the jth quadrant of the complex plane. The regions D
(j)
R for j = 1, 2, 3, 4 are as

shown in Figure 5.2 where Λ = maxl{|αl|} and R >
√

2Λ is a sufficiently large constant.

The reason for integrating around D
(j)
R rather than D(j) in (5.16) is to avoid singularities in

what follows.

Next we let k = ν(j)(κ) when integrating around D
(1)
R and k = ν(j)(−κ) when integrating

around D
(3)
R so that g0(·, t) and g1(·, t) have a common argument and all integrals with

unknown terms are integrated around D
(4)
R . That is, (5.16) becomes

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk

− 1

2π

∫
∂D

(4)
R

eiν
(1)(−κ)x+iκ2t

(
iκ

ν(1)(κ)
g1(−iκ2, t) + κg0(−iκ2, t)

)
dκ,

(5.18a)

ψ(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tψ̂
(2)
0 (k) dk

+
1

2π

∫
∂D

(4)
R

eiν
(2)(κ)x+iκ2t

(
iκ

ν(2)(κ)
g1(−iκ2, t)− κg0(−iκ2, t)

)
dκ.

(5.18b)
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Re(k)

Im(k)

(0,−i
√

Λ)

(0, i
√

Λ)

D
(4)
R

(
√

Λ, 0)

(−
√

Λ, 0)

R

D
(2)
R

D
(1)
R

D
(3)
R

Figure 5.2: The regions D
(j)
R , j = 1, 2, 3, 4.

Using the transformed global relations (5.14a) and (5.14d) valid in D(4) one solves for

g0(−iκ2, t) and g1(−iκ2, t). Noticing that ν(j)(−κ) = −ν(j)(κ) we denote ν(j)(κ) by ν(j). In

the remainder of this section the argument of all ν(j) is κ. Substituting these into (5.18) one

finds

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk −

∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(1)(ν(1) + ν(2))
e−iν

(1)x+iκ2tψ̂
(1)
0

(
ν(1)
)

dκ

−
∫
∂D

(4)
R

κ

π(ν(1) + ν(2))
e−iν

(1)x+iκ2tψ̂
(2)
0

(
−ν(2)

)
dκ

+

∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(1)(ν(1) + ν(2))

(
ν(2) − ν(1)

)
e−iν

(1)xψ̂(1)
(
ν(1), t

)
dκ

−
∫
∂D

(4)
R

κν(1)

π(ν(1) + ν(2))
e−iν

(1)xψ̂(2)
(
−ν(2), t

)
dκ,

(5.19)
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for x < 0. Similarly,

ψ(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tψ̂
(2)
0 (k) dk −

∫
∂D

(4)
R

κ

π(ν(1) + ν(2))
ν(2)eiν

(2)x+iκ2tψ̂
(1)
0

(
ν(1)
)

dκ

+

∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(2)(ν(1) + ν(2))
eiν

(2)x+iκ2tψ̂
(2)
0

(
−ν(2)

)
dκ

+

∫
∂D

(4)
R

κ

π(ν(1) + ν(2))
eiν

(2)xψ̂(1)
(
ν(1), t

)
dκ

−
∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(2)(ν(1) + ν(2))
eiν

(2)xψ̂(2)
(
−ν(2), t

)
dκ,

(5.20)

for x > 0. The first three terms in the Expressions (5.19) and (5.20) depend only on known

functions. The last two terms in (5.19) and (5.20) are analytic for Re(κ) > 0. Note that

ψ̂(1)
(
ν(1), t

)
and ψ̂(2)

(
−ν(2), t

)
decay exponentially fast for |κ| → ∞ when Re(κ) > 0. Thus,

by Jordan’s Lemma, the integrals of exp(−iν(1)x)ψ̂(1)
(
ν(1), t

)
and exp(−iν(1)x)ψ̂(2)

(
−ν(2), t

)
along a closed, bounded curve in the right-half of the complex κ plane vanish for x < 0. In

particular we consider the closed curve L(4) = LD(4)∪L(4)
C where LD(4) = ∂D

(4)
R ∩{κ : |κ| < C}

and L(4)
C = {κ ∈ D(4)

R : |κ| = C}, see Figure 5.3.

Since the integral along LC vanishes for large C, the fourth and fifth integrals on the

right-hand side of (5.19) must vanish since the contour LD(4) becomes ∂D(4) as C → ∞.

For the final two integrals in Equation (5.20) we use the fact that for x > 0 the integrals

of exp(iν(2)x)ψ̂(1)
(
ν(1), t

)
and exp(iν(2)x)ψ̂(2)

(
−ν(2), t

)
along a closed, bounded curve in

the right-half of the complex κ plane vanish. Thus, we have an explicit representation for

ψ(1)(x, t) in terms of only initial conditions:

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk

−
∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(1)(ν(1) + ν(2))
e−iν

(1)x+iκ2tψ̂
(1)
0

(
ν(1)
)

dκ

−
∫
∂D

(4)
R

κ

π(ν(1) + ν(2))
e−iν

(1)x+iκ2tψ̂
(2)
0

(
−ν(2)

)
dκ,

(5.21)
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Re(k)

Im(k)

LD(4)

L(4)
C

C

Figure 5.3: The contour LD(4) is shown as a green solid line and the contour LC is shown as a

green dashed line. An application of Cauchy’s Integral Theorem using this contour shows that

the contribution of ψ̂(1)(ν(1), t) and ψ̂(2)(−ν(2), t) vanishes from the integral expressions (5.19)

and (5.20).

for x < 0, and

ψ(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tψ̂
(2)
0 (k) dk

−
∫
∂D

(4)
R

κν(2)

π(ν(1) + ν(2))
eiν

(2)x+iκ2tψ̂
(1)
0

(
ν(1)
)

dκ

+

∫
∂D

(4)
R

κ(ν(1) − ν(2))

2πν(2)(ν(1) + ν(2))
eiν

(2)x+iκ2tψ̂
(2)
0

(
−ν(2)

)
dκ,

(5.22)

for x > 0. Note that the denominators in (5.21) and (5.22) are zero at the branch points

κ = ±i√αj. However, these points are avoided by integrating over the boundary of D
(4)
R .

The expressions (5.21) and (5.22) provide fully explicit solutions for the IVP (5.5). They

are written in a form containing more familiar exponents by letting κ = ik
√

1 + α1/k2 in

the second and third integrals of (5.21) and κ = −ik
√

1 + α2/k2 in the second and third
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integrals of (5.22). Then

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk

−
∫
∂D

(3)
R

1−
√

1 + α1−α2

k2

2π
(

1 +
√

1 + α1−α2

k2

)eikx−ω1tψ̂
(1)
0 (−k) dk

−
∫
∂D

(3)
R

1

π
(

1 +
√

1 + α1−α2

k2

)eikx−ω1tψ̂
(2)
0

(
k

√
1 +

α1 − α2

k2

)
dk,

(5.23a)

for x < 0, and

ψ(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tψ̂
(2)
0 (k) dk

+

∫
∂D

(1)
R

1

π
(

1 +
√

1− α1−α2

k2

)eikx−ω2tψ̂
(2)
0

(
k

√
1− α1 − α2

k2

)
dk

+

∫
∂D

(1)
R

1−
√

1− α1−α2

k2

2π
(

1 +
√

1− α1−α2

k2

)eikx−ω2tψ̂
(1)
0 (−k) dk,

(5.23b)

for x > 0. It appears that our solution depends on an extra parameter R. However,

observe that
∫
∂D

(3)
R
· dk =

∫
∂D

(3)

R̃

· dk +
∮
R where ∂D

(3)
R , ∂D

(3)

R̃
and R are as in Figure 5.4.

Since the integrands in (5.23a) are analytic in D
(3)
R (and therefore R),

∮
R · dk = 0. Hence,∫

∂DR
· dk =

∫
∂DR̃
· dk for any R > Λ, and our solution is independent of the value of R chosen.

The same argument is true for (5.23b).

It is useful to deform the contours in (5.23) back to the real line in order to do asymptotic

analysis. We examine the branch cut introduced in (5.23) of the form
√

1 + a
k2

. In (5.23)

a = α2−α1 but it may be different in later sections. If a > 0 the branch points are at ±i
√
a.

We fix the branch cut to be on the finite imaginary axis running from −i
√
a to −i

√
a by

defining the local polar coordinates

k − i
√
a = r1e

iθ1 ,

k + i
√
a = r2e

iθ2 ,
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Re(k)

Im(k)

R

∂D
(3)
R

∂D
(3)

R̃

R̃

R

Figure 5.4: The contours ∂D
(3)
R and ∂D

(3)

R̃
and the region R.
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k = i
√
a

k = −i
√
a

θ1

θ2

(a)

k = i
√
a

k = −i
√
a

θ3

θ4

(b)

k = −
√
−a k =

√
−a

θ6θ5

(c)

Figure 5.5: Branch cuts for
√

1 + a
k2

and the local parameterizations around the branch

points. In (a), a > 0 and the local parameterization around the branch points ±i
√
a with

−π/2 < θ1, θ2 ≤ 3π/2. In (b), a > 0 and the local parameterization around the branch

points ±i
√
a with −3π/2 < θ3, θ4 ≤ π/2 . In (c) a < 0 and the local parameterization

around the branch points ±
√
−a with −π < θ5, θ6 ≤ π.

where −π/2 < θ1, θ2 ≤ 3π/2 as in Figure 5.5a or −3π/2 < θ3, θ4 ≤ π/2 as in Figure 5.5b.

Similarly, if a < 0, ±
√
−a are the branch points. We fix the branch cut to be on the finite

real axis running from −
√
−a to −

√
−a by defining the local polar coordinates

k +
√
−a = r3e

iθ5 ,

k −
√
−a = r4e

iθ6 ,

where −π < θ5, θ4 = 6 ≤ π as in Figure 5.5c.

If the branch cut is on the imaginary axis then deforming ∂D
(1)
R to the real axis and using
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the local parameterization −π/2 < θ1, θ2 ≤ 3π/2 as in Figure 5.5a, one finds∫
∂D

(1)
R

f(k) dk =−
∫ ∞
−∞

f(k) dk + i

∫ √a
0

f(re3πi/2 + i
√
a) dr

− lim
ε→0

iε

∫ 3π/2

−π/2
f(εeiθ + i

√
a)eiθ dθ − i

∫ √a
0

f(re−πi/2 + i
√
a) dr,

(5.24)

as in the dashed red line in Figure 5.6 where −
∫∞
−∞ · dk is a Cauchy Principal Value integral.

Deforming ∂D
(3)
R to the real axis when the branch cut is on the imaginary axis requires the

local parameterization with −3π/2 < θ3, θ4 ≤ π/2 as in 5.5b. Then∫
∂D

(3)
R

f(k) dk =−−
∫ ∞
−∞

f(k) dk + i

∫ 0

−
√
a

f(reπi/2 − i
√
a) dr

− lim
ε→0

iε

∫ π/2

−3π/2

f(εeiθ − i
√
a)eiθ dθ − i

∫ 0

−
√
a

f(re−3πi/2 − i
√
a) dr,

(5.25)

as in the solid green line in Figure 5.6. If the branch cut is on the real axis then deforming

∂D
(1)
R and ∂D

(3)
R to the real axis one finds∫

∂D
(1)
R

f(k) dk = −
∫ ∞
−∞

f(k) dk, (5.26)

and ∫
∂D

(3)
R

f(k) dk = −−
∫ ∞
−∞

f(k) dk, (5.27)

as in Figure 5.7.

In what follows we consider α2 > α1. Then, ∂D
(3)
R in (5.23a) can be deformed as in (5.27)

and ∂D
(1)
R in (5.23b) can be deformed as in (5.24).

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk +

1

2π
−
∫ ∞
−∞

a(1)(k)eikx−ω1t dk, (5.28)

for x < 0, where

a(1)(k) =
1

1 +
√

1 + α1−α2

k2

(
(1−

√
1 +

α1 − α2

k2
)ψ̂

(1)
0 (−k) + 2ψ̂

(2)
0

(
k

√
1 +

α1 − α2

k2

))
,
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Re(k)

Im(k)

i
√
a

−i
√
a

Figure 5.6: The deformations of ∂D
(1)
R (as a red dashed line) and ∂D

(3)
R (as a green solid

line) to the real line when the branch cut is on the imaginary axis.

Re(k)

Im(k)

−
√
−a √

−a

Figure 5.7: The deformations of ∂D
(1)
R (as a red dashed line) and ∂D

(3)
R (as a solid green

line) to the real line for the case when the branch cut is on the real axis.
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and

ψ(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tψ̂
(2)
0 (k) dk +

1

2π
−
∫ ∞
−∞

a(2)(k)eikx−ω2t dk

+ i

∫ √α2−α1

0

(
a(2)(re3πi/2 + i

√
α2 − α1)− a(2)(re−πi/2 + i

√
α2 − α1)

)
∗ e(r−

√
α2−α1)x+it(r2−α1−2r

√
α2−α1) dr,

(5.29)

for x > 0, where

a(2)(k) =
1

1 +
√

1− α1−α2

k2

(
(1−

√
1− α1 − α2

k2
)ψ̂

(1)
0 (−k) + 2ψ̂

(2)
0

(
k

√
1− α1 − α2

k2

))
.

At this point the large-time leading-order behavior of (5.5) with initial conditions which

decay sufficiently fast at ±∞ is easily obtained using the Method of Stationary Phase [6].

Notice that the third integral of (5.29) is decaying for x large and positive. Thus, it does

not contribute using the Method of Stationary Phase. We choose x/t = γ1 < 0 for x < 0

and x/t = γ2 > 0 for x > 0. We obtain

ψ(1) ∼ e
i

(
γ21
4
−α1

)
t− iπ

4

2
√
πt

ψ̂(1)
0

(γ1

2

)
+

(
1−
√

1+ 4(α1−α2)

γ21

)
ψ̂

(1)
0

(−γ1
2

)
+2ψ̂

(2)
0

(
γ1
2

√
1+ 4(α1−α2)

γ21

)
1 +

√
1+ 4(α1−α2)

γ21

 ,

and

ψ(2) ∼e
i

(
γ22
4
−α2

)
t− iπ

4

2
√
πt

ψ̂(2)
0

(γ2

2

)
+

(
1−
√

1− 4(α1−α2)

γ22

)
ψ̂

(1)
0

(−γ2
2

)
+ 2ψ̂

(2)
0

(
γ2
2

√
1− 4(α1−α2)

γ22

)
1 +

√
1− 4(α1−α2)

γ22

 .

The oscillations that are expected as a consequence of dispersion are contained in

exp(it(γ2
j /4 − αj)). In Figures 5.8 and 5.9 the envelopes of the solutions are plotted in

black as a dot-dashed line. The real part of the solution (plotted as a solid line in blue) and

the imaginary part of the solution (plotted as a dashed line in red) are centered around the

t-axis. Using the Method of Stationary Phase one must look in directions of constant x/t.
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ψ(1)

t

50

-.4

.4

Figure 5.8: The real (red dashed) and imaginary (blue solid) parts of the leading order

behavior as t→∞ of ψ(1) along rays of x/t = −4 with ψ0(x) = e−x
2
, α1 = 1, and α2 = 2.

In Figure 5.8 we consider solutions for x/t = −4 and in Figure 5.9 we have solutions with

x/t = 2. In both figures α1 = 1, α2 = 2 and ψ0(x) = e−x
2
.

The Method of Stationary Phase is not useful for considering the nature of solutions near

the barrier at x = 0, since requiring t to be large implies that x is large if x/t is to be

constant. In order to evaluate the solution formulae numerically near the interface one could

use techniques presented in [44, 62, 63]. It may also be possible to use asymptotic techniques

similar to those in [7].

Notice that when α1 = α2 = 0 the problem reduces to the IVP for the linear Schrödinger

equation on the whole line. It is easily seen that the solutions (5.21) and (5.22) reduce to the

solution of the problem found using Fourier transforms split into the appropriate domains

for the free particle problem.
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ψ(2)

t

50

-.4

.4

Figure 5.9: The real (red dashed) and imaginary (blue solid) parts of the leading order

behavior as t→∞ of ψ(2) along rays of x/t = 2 with ψ0(x) = e−x
2
, α1 = 1, and α2 = 2.

5.2 n potential jumps

We wish to solve the classical problem

iψt = −ψxx + α(x)ψ, −∞ < x <∞, (5.30a)

ψ(x, 0) = ψ0(x), −∞ < x <∞, (5.30b)

with

α(x) =



α1, x < x1,

α2, x1 < x < x2

...

αn, xn−1 < x < xn,

αn+1, x > xn,
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and lim|x|→∞ ψ(x, t) = 0. We repeat the same steps as in the previous section, but now for an

arbitrary number n of constant levels of the potential α(x). As a consequence, the formulae

obtained are significantly more involved, but no less explicit. The experience gained from the

previous section provides the insight necessary to proceed with the general case presented

here.

We treat the problem (5.30) as an interface problem solved by

ψ(x, t) =



ψ(1)(x, t), x < x1,

ψ(2)(x, t), x1 < x < x2,
...

ψ(n)(x, t), xn−1 < x < xn,

ψ(n+1)(x, t), x > xn,

(5.31)

which solve the n+ 1 IVPs

iψ
(j)
t = −ψ(j)

xx + αjψ
(j), (5.32a)

ψ(j)(x, 0) = ψ
(j)
0 (x), (5.32b)

for xj−1 < x < xj, with x0 = −∞ and xn+1 = ∞, j = 1, . . . , n + 1. The solutions of the

IVPs (5.32) are coupled by the interface conditions

ψ(j)(xj, t) =ψ(j+1)(xj, t), t > 0,

ψ(j)
x (xj, t) =ψ(j+1)

x (xj, t), t > 0,

for 1 ≤ j ≤ n as in Figure 5.10.

We begin with the n local relations

(e−ikx+ωjtψ(j))t = (e−ikx+ωjt(iψ(j)
x − kψ(j)))x, xj−1 < x < xj, (5.33)
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ψ(1)(x, t) ψ(2)(x, t) · · · ψ(n+1)(x, t)ψ(n)(x, t)

x0 = −∞ x1 x2 xn+1 =∞xnxn−1

α1

α2

αn

αn+1

Figure 5.10: A cartoon of the potential α(x) in the case of n interfaces.

where ωj(k) = i(αj + k2) for 1 ≤ j ≤ n + 1 and x0 = −∞ and xn+1 = ∞. Applying

Green’s Theorem and integrating over the (possibly unbounded) strips (xj−1, xj)× (0, t) for

1 ≤ j ≤ n+ 1, we have the n global relations

∫ xj

xj−1

e−ikx+ωjtψ(j)(x, t) dx =

∫ xj

xj−1

e−ikxψ
(j)
0 (x) dx+

∫ t

0

e−ikxj+ωjs(iψ(j)
x (xj, s)− kψ(j)(xj, s)) ds

−
∫ t

0

e−ikxj−1+ωjs(iψ(j)
x (xj−1, s)− kψ(j)(xj−1, s)) ds.

As before, we define the following transforms, for j = 1, . . . , n+ 1:

ψ̂(j)(k, t) =

∫ xj

xj−1

e−ikxψ(j)(x, t) dx, xj−1 < x < xj, t > 0,

ψ̂
(j)
0 (k) =

∫ xj

xj−1

e−ikxψ
(j)
0 (x) dx, xj−1 < x < xj,

g
(j)
0 (ω, t) =

∫ t

0

eωsψ(j)(xj, s) ds =

∫ t

0

eωsψ(j+1)(xj, s) ds, t > 0

g
(j)
1 (ω, t) =

∫ t

0

eωsψ(j)
x (xj, s) ds =

∫ t

0

eωsψ(j+1)
x (xj, s) ds, t > 0.

For convenience we assume the xj are shifted such that x1 = 0 and xj > 0 for all j ≥ 2. All

but four of these integrals are proper integrals, and they are defined for k ∈ C. The only
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ones that are not valid in all of C are ψ̂(1)(k, t), ψ̂
(1)
0 (k) (valid for Im(k) ≥ 0) and ψ̂(n+1)(k, t),

ψ̂
(n+1)
0 (k) (valid for Im(k) ≤ 0).

With these definitions the global relations become

eω1tψ̂(1)(k, t) =ψ̂
(1)
0 (k) + ig

(1)
1 (ω1, t)− kg(1)

0 (ω1, t), Im(k) ≥ 0, (5.34a)

eωjtψ̂(j)(k, t) =ψ̂
(j)
0 (k) + e−ikxj(ig

(j)
1 (ωj, t)− kg(j)

0 (ωj, t))

− e−ikxj−1(ig
(j−1)
1 (ωj, t)− kg(j−1)

0 (ωj, t)), k ∈ C, (5.34b)

eωn+1tψ̂(n+1)(k, t) =ψ̂
(n+1)
0 (k)− e−ikxn(ig

(n)
1 (ωn+1, t)− kg(n)

0 (ωn+1, t)), Im(k) ≤ 0, (5.34c)

where 2 ≤ j ≤ n. As in the previous section we transform the global relations so that

g
(j)
0 (·, t) and g

(j)
1 (·, t) depend on a common argument. Let

ν(j)(k) = ik

√
1 +

αj
k2
, j = 1, . . . , n+ 1.

Using the transformations k = ±ν(j)(κ), we have the transformed global relations

e−iκ
2tψ̂(1)(ν(1)(κ), t) =ψ̂

(1)
0 (ν(1)(κ)) + ig

(1)
1 − ν(1)(κ)g

(1)
0 , (5.35a)

e−iκ
2tψ̂(1)(−ν(1)(κ), t) =ψ̂

(1)
0 (−ν(1)(κ)) + ig

(1)
1 + ν(1)(κ)g

(1)
0 , (5.35b)

e−iκ
2tψ̂(j)(ν(j)(κ), t) =ψ̂

(j)
0 (ν(j)(κ)) + e−iν

(j)(κ)xj(ig
(j)
1 − ν(j)(κ)g

(j)
0 )

− e−iν(j)(κ)xj−1(ig
(j−1)
1 − ν(j)(κ)g

(j−1)
0 ),

(5.35c)

e−iκ
2tψ̂(j)(−ν(j)(κ), t) =ψ̂

(j)
0 (−ν(j)(κ)) + e−iν

(j)(κ)xj(ig
(j)
1 + ν(j)(κ)g

(j)
0 )

− eiν(j)(κ)xj−1(ig
(j−1)
1 + ν(j)(κ)g

(j−1)
0 ),

(5.35d)

e−iκ
2tψ̂(n+1)(ν(n+1)(κ), t) =ψ̂

(n+1)
0 (ν(n+1)(κ))− e−iν(n+1)(κ)xn(ig

(n)
1 − ν(n+1)(κ)g

(n)
0 ), (5.35e)

e−iκ
2tψ̂(n+1)(−ν(n+1)(κ), t) =ψ̂

(n+1)
0 (−ν(n+1)(κ))− eiν(n+1)(κ)xn(ig

(n)
1 + ν(n+1)(κ)g

(n)
0 ), (5.35f)

where 2 ≤ j ≤ n and g
(j)
0 = g

(j)
0 (−iκ2, t), g

(j)
1 = g

(j)
1 (−iκ2, t), for 1 ≤ j ≤ n. In order

for (5.35) to be well defined Re(κ) ≥ 0 for (5.35a) and (5.35f). Similarly, Re(κ) ≤ 0 in (5.35b)

and (5.35e). Equations (5.35c) and (5.35d) are valid for all κ ∈ C.
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Inverting the Fourier transform in (5.34) we have the solution formulae

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk +

1

2π

∫ ∞
−∞

eikx−ω1t
(
ig

(1)
1 (ω1, t)− kg(1)

0 (ω1, t)
)

dk,

ψ(j)(x, t) =
1

2π

∫ ∞
−∞
eikx−ωjtψ̂

(j)
0 (k) dk +

1

2π

∫ ∞
−∞
eik(x−xj)−ωjt

(
ig

(j)
1 (ωj, t)− kg(j)

0 (ωj, t)
)

dk

− 1

2π

∫ ∞
−∞

eik(x−xj−1)−ωjt
(
ig

(j−1)
1 (ωj, t)− kg(j−1)

0 (ωj, t)
)

dk,

ψ(n+1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ωn+1tψ̂
(n+1)
0 (k) dk

− 1

2π

∫ ∞
−∞

eik(x−xn)−ωn+1t
(
ig

(n)
1 (ωn+1, t)− kg(n)

0 (ωn+1, t)
)

dk,

for 2 ≤ j ≤ n, and xj−1 < x < xj. As usual in the Fokas Method we deform these integrals

into the complex plane. Using Cauchy’s Theorem and Jordan’s Lemma we have

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk − 1

2π

∫
∂D

(3)
R

eikx−ω1t
(
ig

(1)
1 (ω1, t)− kg(1)

0 (ω1, t)
)

dk,

ψ(j)(x, t) =
1

2π

∫ ∞
−∞
eikx−ωjtψ̂

(j)
0 (k) dk − 1

2π

∫
∂D

(3)
R

eik(x−xj)−ωjt
(
ig

(j)
1 (ωj, t)− kg(j)

0 (ωj, t)
)

dk

− 1

2π

∫
∂D

(1)
R

eik(x−xj−1)−ωjt
(
ig

(j−1)
1 (ωj, t)− kg(j−1)

0 (ωj, t)
)

dk,

ψ(n+1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ωn+1tψ̂
(n+1)
0 (k) dk

− 1

2π

∫
∂D

(1)
R

eik(x−xn)−ωn+1t
(
ig

(n)
1 (ωn+1, t)− kg(n)

0 (ωn+1, t)
)

dk,

where D
(j)
R is as in (5.17) and Figure 5.2. Again, we wish to transform the integrals involving

g
(j)
0 (·, t) and g

(j)
1 (·, t) in each of the solution formulae above so these terms depend on −ik2.

As before, we deform to D
(j)
R (with Λ = maxj |αj|, R >

√
2Λ). Choosing k = ν(j)(κ) on

∂D
(1)
R and k = −ν(j)(κ) on ∂D

(3)
R we have

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk

− 1

2π

∫
∂D

(4)
R

e−iν
(1)(κ)x+iκ2t

(
iκ

ν(1)(κ)
g

(1)
1 + κg

(1)
0

)
dκ,

(5.36a)
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ψ(j)(x, t) =
1

2π

∫ ∞
−∞

eikx−ωjtψ̂
(j)
0 (k) dk

− 1

2π

∫
∂D

(4)
R

e−iν
(j)(κ)(x−xj)+iκ2t

(
iκ

ν(j)(κ)
g

(j)
1 + κg

(j)
0

)
dκ

+
1

2π

∫
∂D

(4)
R

eiν
(j)(κ)(x−xj−1)+iκ2t

(
iκ

ν(j)(κ)
g

(j−1)
1 − κg(j−1)

0

)
dκ,

(5.36b)

ψ(n+1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ωn+1tψ̂
(n+1)
0 (k) dk

+
1

2π

∫
∂D

(4)
R

eiν
(n+1)(κ)(x−xn)+iκ2t

(
iκ

ν(n+1)(κ)
g

(n)
1 − κg

(n)
0

)
dκ,

(5.36c)

where g
(j)
0 ≡ g

(j)
0 (−iκ2, t) and g

(j)
1 ≡ g

(j)
1 (−iκ2, t).

Using the 2n transformed global relations valid in D
(4)
R (5.35a), (5.35c), (5.35d), and

(5.35f) one solves for g
(j)
0 and g

(j)
1 . This amounts to solving the 2n× 2n matrix problem

A(κ)X(−iκ2, t) = Y (κ) + Y(κ, t)

where

X(−iκ2, t) =
(
g

(1)
0 , g

(2)
0 , . . . , g

(n)
0 , ig

(1)
1 , ig

(2)
1 , . . . , ig

(n)
1

)>
, (5.37a)

Y (κ) =
(
ψ̂

(1)
0 (ν(1)), . . . , ψ̂

(n)
0 (ν(n)), ψ̂

(2)
0 (−ν(2)), . . . , ψ̂

(n+1)
0 (−ν(n+1))

)>
, (5.37b)

Y(κ, t) =
(
ψ̂(1)(ν(1), t), . . . , ψ̂(n)(ν(n), t), ψ̂(2)(−ν(2), t), . . . , ψ̂(n+1)(−ν(n+1), t)

)>
, (5.37c)
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and

A(κ) =

−ν(1)e−iν
(1)x1 e−iν

(1)x1

ν(2)e−iν
(2)x1 −ν(2)e−iν

(2)x2 −e−iν(2)x1 e−iν
(2)x2

. . . . . . . . . . . .

ν(n)e−iν
(n)xn−1 −ν(n)e−iν

(n)xn −e−iν(n)xn−1 e−iν
(n)xn

−ν(2)eiν
(2)x1 ν(2)eiν

(2)x2 −eiν(2)x1 eiν
(2)x2

. . . . . . . . . . . .

−ν(n)eiν
(n)xn−1 ν(n)eiν

(n)xn −eiν(n)xn−1 eiν
(n)xn

−ν(n+1)eiν
(n+1)xn −eiν(n+1)xn



,

(5.37d)

where all ν(j) are evaluated at κ. The matrix A(κ) is made up of four n × n blocks as

indicated by the dashed lines. The two blocks in the upper half of A(κ) are empty except

for entries on the main and −1 diagonals. The lower two blocks of A(κ) are zero except on

the main and +1 diagonals.

Every term in the linear equation A(κ)X(−iκ2, t) = Y (κ) is known. By substituting

the solutions of this equation into (5.36), we have solved the LS equation with a piecewise

constant potential in terms of only known functions. It remains to show that the contribution

to the solution from the linear equation A(κ)X(−iκ2, t) = Y(κ, t) is 0 when substituted

into (5.36).

To this end consider A(κ)X(−iκ2, t) = Y(κ, t). We solve this system using Cramer’s
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Rule [12]. We factor A(κ) = AL(κ)AM(κ) where

AL(κ) =



e−iν
(1)x1

. . .

e−iν
(n)xn

eiν
(1)x1

. . .

eiν
(n)xn


,

Let Aj(κ, t) be the matrix A(κ) with the jth column replaced by Y(κ, t). Similar to A(κ),

this matrix can be factored as Aj(κ, t) = AL(κ)AMj (κ, t)ARj (κ, t) where ARj (κ, t) is the

2n × 2n identity matrix with the (j, j) entry replaced by e−iκ
2t. Hence, det(Aj(κ, t)) =

e−iκ
2t det(AMj (κ, t)).

The terms we are trying to eliminate contribute to the solution (5.36) in the form∫
∂D

(4)
R

e−iν
(j)(x−xj)+iκ2t

(
iκ

ν(j)
g

(j)
1 + κg

(j)
0

)
dκ, (5.38a)

and ∫
∂D

(4)
R

eiν
(j)(x−xj−1)+iκ2t

(
iκ

ν(j)
g

(j−1)
1 − κg(j−1)

0

)
dκ, (5.38b)

for 1 ≤ j ≤ n, 2 ≤ j ≤ n + 1, respectively with xj−1 < x < xj. Using Cramer’s Rule these

become ∫
∂D

(4)
R

e−iν
(j)(x−xj)

(
κ

ν(j)

det(AMj+n(κ, t))

det(AM(κ))
+ κ

det(AMj (κ))

det(AM(κ))

)
dκ, (5.39a)

and ∫
∂D

(4)
R

eiν
(j)(x−xj−1)

(
κ

ν(j)

det(AMj−1+n(κ, t))

det(AM(κ))
− κ

det(AMj−1(κ, t))

det(AM(κ))

)
dκ, (5.39b)

respectively. Here we have used the factorizations of det(A(κ)) and det(Aj(κ, t)). As is usual

in the Fokas Method we use the large κ asymptotics to show the terms (5.39) are 0.
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Observe the elements of AM(κ) are either 0, O(κ) or decaying exponentially fast for

κ ∈ D(4)
R . Hence,

det(AM(κ)) = c(κ) = O(κn),

for large κ in D
(4)
R . Expanding the determinant of AMj (κ, t) along the jth column we see that

e−iν
(j)(x−xj)

det(AMj (κ, t))

det(AM(κ))
= e−iν

(j)(x−xj)κ
det(AMj (κ, t))

c(κ)

= e−iν
(j)(x−xj)

n∑
`=1

c`(κ)
(
eix`ν

(`)

ψ̂(`)
(
ν(`), t

)
+ e−ix`ν

(`)

ψ̂(`+1)
(
−ν(`+1), t

))
,

where c`(κ) = O(κ−1) and xj−1 < x < xj. The terms eix`ν
(`)
ψ̂(`)

(
ν(`), t

)
and

e−ix`ν
(`)
ψ̂(`+1)

(
−ν(`+1), t

)
decay exponentially for k ∈ D

(4)
R . The integrands in (5.39) are

analytic for Re(κ) > 0. Similar to the argument on page 106, since the integral along L(4)
C

vanishes for large C, the integrals (5.39) must vanish since the contour LD(4) becomes ∂D(4)

as C → ∞. The uniform decay of the ratios of the determinants for large κ is exactly the

condition required for the integral to vanish using Jordan’s Lemma. Hence, the solution

to (5.30) is (5.36) where g
(j)
0 (−iκ2, t) and g

(j)
1 (−iκ2, t) for 1 ≤ j ≤ n+ 1 are found by solving

A(κ)X(−iκ2, t) = Y (κ), (5.40)

whereA(κ), X(−iκ2, t), and Y (κ) are given in Equations (5.37d), (5.37a), and (5.37b) respec-

tively. As in the previous section, deforming to the real line is possible using (5.24)-(5.27).

However, one must be careful to also avoid any poles present in (5.36).

5.3 Potential well and barrier

As an example of the general method given in Section 5.2, in this section we solve the classical

problem of the finite potential well or barrier:

iψt = −ψxx + α(x)ψ, (5.41)
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for −∞ < x <∞ and

α(x) =


0, x < x1,

α, x1 < x < x2,

0, x > x2,

with the initial condition ψ(x, 0) = ψ0(x) and lim|x|→∞ ψ(x, t) = 0.

The problem of a finite potential well or barrier is a standard textbook problem in quan-

tum mechanics. In such texts this problem is usually solved using separation of variables,

i.e., assuming ψ(x, t) = X(x)T (t). The x problem, X ′′ + (ξ2 − α(x))X = 0 is solved in the

three different regions. Separation of variables is only allowed if the initial wave function

ψ(x, 0) can be expanded in terms of solutions of the time-independent Schrödinger equa-

tion [48]. Solving the time-independent Schrödinger equation is equivalent to studying the

forward scattering problem with the specified potential. The “scattering matrix” (see [2,

Equation 1.3.3] or [17, p. 104]) is  a(ξ) b(ξ)

b(ξ) −a(ξ)

 .

The zeros of a(ξ) are the discrete eigenvalues for the problem. With some work we find

a(ξ) = e−iξx2

(
cosh(x2

√
α− ξ2) +

i(2ξ2 − α)

2ξ
√
α− ξ2

sinh(x2

√
α− ξ2)

)
.

This problem is examined in many excellent texts including [2, 3, 16, 17].

The potential well or barrier problem is the standard example to introduce students to

the concept of quantum tunneling which is a phenomenon where a particle “tunnels” over

a barrier that it cannot overcome in the classical mechanics setting [53]. The closed form

solutions we present at the end of this section all depend on the initial conditions from each of

the three regions and quantum tunneling is clearly present. Finding the closed form solutions

is as easy as letting n = 2, α1 = α3 = 0 and α2 = α in (5.36) as in Figure 5.11. Again we

denote g
(j)
0 = g

(j)
0 (−iκ2, t), g

(j)
1 = g

(j)
1 (−iκ2, t), for j = 1, 2 and ν(j) = ν(j)(κ). Solving (5.40)
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x
x1 = 0−∞ x2 ∞

α

0

iψ
(1)
t = −ψ(1)

xx iψ
(2)
t = −ψ(2)

xx + αψ(2) iψ
(3)
t = −ψ(3)

xx

0

Figure 5.11: A cartoon of the potential α(x) for a potential well or barrier.

in the case of n = 2 we have solutions for g
(1)
0 , g

(1)
1 , g

(2)
0 , g

(2)
1 valid in D

(4)
R . Let

∆(κ) =2π
(
iκ(1 + eix2ν

(2)

) + ν(2)(1− eix2ν(2))
)(

iκ(1− eix2ν(2)) + ν(2)(1 + eix2ν
(2)

)
)

=4iπeix2ν
(2) (

(α + 2κ2) sin(x2ν
(2)) + 2κν(2) cos(x2ν

(2))
)

The solutions (5.36) with the appropriate values of g
(j)
0 and g

(j)
1 are

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk +

∫
∂D

(4)
R

iα(1− e2ix2ν(2))

∆(κ)
eκx+iκ2tψ̂

(1)
0 (iκ) dκ

+

∫
∂D

(4)
R

2iκ(κ− iν(2))

∆(κ)
eκx+iκ2tψ̂

(2)
0 (−ν(2)) dκ

+

∫
∂D

(4)
R

2iκ(κ+ iν(2))

∆(κ)
eκ(x+2ix2ν(2))+iκ2tψ̂

(2)
0 (ν(2)) dκ

−
∫
∂D

(4)
R

4κν(2)

∆(κ)
eκ(x+x2)+ix2ν(2)+iκ2tψ̂

(3)
0 (−iκ) dκ,

(5.42)

for x < 0,
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ψ(2)(x, t) =
1

2π

∫ ∞
−∞
eikx−ω2tψ̂

(2)
0 (k) dk +

∫
∂D

(4)
R

2iκ(κ+ iν(2))

∆(κ)
eiν

(2)(2x2−x)+iκ2tψ̂
(1)
0 (iκ) dκ

−
∫
∂D

(4)
R

κ(κ+ iν(2))2

ν(2)∆(κ)
eiν

(2)(2x2−x)+iκ2tψ̂
(2)
0 (−ν(2)) dκ

+

∫
∂D

(4)
R

ακ

ν(2)∆(κ)
eiν

(2)(2x2−x)+iκ2tψ̂
(2)
0 (ν(2)) dκ

−
∫
∂D

(4)
R

2iκ(κ− iν(2))

∆(κ)
eiν

(2)(x2−x)+κx2+iκ2tψ̂
(3)
0 (−iκ) dκ

−
∫
∂D

(4)
R

2iκ(κ− iν(2))

∆(κ)
eiν

(2)x+iκ2tψ̂
(1)
0 (iκ) dκ

+

∫
∂D

(4)
R

ακ

ν(2)∆(κ)
eiν

(2)x+iκ2tψ̂
(2)
0 (−ν(2)) dκ

+

∫
∂D

(4)
R

κ(κ+ iν(2))2

ν(2)∆(κ)
eiν

(2)(2x2+x)+iκ2tψ̂
(2)
0 (ν(2)(κ)) dκ

+

∫
∂D

(4)
R

2iκ(κ+ iν(2))

∆(κ)
eiν

(2)(x2+x)+κx2+iκ2tψ̂
(3)
0 (−iκ) dκ,

(5.43)

for 0 < x < x2, and

ψ(3)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω3tψ̂
(3)
0 (k) dk −

∫
∂D

(4)
R

4κν(2)

∆(κ)
eκ(x2−x)+ix2ν(2)+iκ2tψ̂

(1)
0 (iκ) dκ

+

∫
∂D

(4)
R

2κ(κ+ iν(2))

∆(κ)
eκ(x2−x)+ix2ν(2)+iκ2tψ̂

(2)
0 (−ν(2)) dκ

−
∫
∂D

(4)
R

2iκ(κ− iν(2))

∆(κ)
eκ(x2−x)+ix2ν(2)+iκ2tψ̂

(2)
0 (ν(2)(κ)) dκ

+

∫
∂D

(4)
R

iα
(

1− e2iν(2)x2

)
∆(κ)

eκ(2x2−x)+iκ2tψ̂
(3)
0 (−iκ) dκ

(5.44)

when x > x2.

Using the change of variables κ = ik in (5.42), κ = −ik in (5.44), κ = ik
√

1 + α
k2

in

the second, third, fourth, and fifth integrals of (5.43), and κ = −ik
√

1 + α
k2

in the last four
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integrals of (5.43) we find

ψ(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tψ̂
(1)
0 (k) dk

+

∫
∂D

(3)
R

α
(
e−2ikx2

√
1− α

k2 − 1
)

∆(ik)
eikx−ω1tψ̂

(1)
0 (−k) dk

−
∫
∂D

(3)
R

2k2
(
1 +

√
1− α

k2

)
∆(ik)

eikx−ω1tψ̂
(2)
0

(
k

√
1− α

k2

)
dk

+

∫
∂D

(3)
R

2k2
(
1−

√
1− α

k2

)
∆(ik)

e
ik
(
x−2x2

√
1− α

k2

)
−ω1tψ̂

(2)
0

(
−k
√

1− α

k2

)
dk

−
∫
∂D

(3)
R

4k2
√

1− α
k2

∆(ik)
e
ik
(
x+x2−x2

√
1− α

k2

)
−ω1tψ̂

(3)
0 (k) dk,

(5.45)

for x < 0,

ψ(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tψ̂
(2)
0 (k) dk

−
∫
∂D

(3)
R

2k2(1−
√

1 + α
k2

)

∆
(
ik
√

1 + α
k2

) eik(x−2x2)−ω2tψ̂
(1)
0

(
−k
√

1− α

k2

)
dk

+

∫
∂D

(3)
R

(α + 2k2 − 2k2
√

1 + α
k2

)

∆
(
ik
√

1 + α
k2

) eik(x−2x2)−ω2tψ̂
(2)
0 (k) dk

+

∫
∂D

(3)
R

α

∆
(
ik
√

1 + α
k2

)eik(x−2x2)−ω2tψ̂
(2)
0 (−k) dk

−
∫
∂D

(3)
R

2k2(1 +
√

1 + α
k2

)

∆
(
ik
√

1 + α
k2

) eik(x−x2+x2
√

1+ α
k2

)−ω2tψ̂
(3)
0

(
k

√
1− α

k2

)
dk

+

∫
∂D

(1)
R

2k2(1 +
√

1 + α
k2

)

∆
(
−ik

√
1 + α

k2

) eikx−ω2tψ̂
(1)
0

(
k

√
1− α

k2

)
dk

+

∫
∂D

(1)
R

(α + 2k2 − 2k2
√

1 + α
k2

)

∆
(
−ik

√
1 + α

k2

) eik(x+2x2)−ω2tψ̂
(2)
0 (k) dk

−
∫
∂D

(1)
R

α

∆
(
−ik

√
1 + α

k2

)eikx−ω2tψ̂
(2)
0 (−k) dk

+

∫
∂D

(1)
R

2k2(1−
√

1 + α
k2

)

∆
(
−ik

√
1 + α

k2

) eik(x+x2−x2
√

1+ α
k2

)−ω2tψ̂
(3)
0

(
−k
√

1− α

k2

)
dk,

(5.46)



128 CHAPTER 5

for 0 < x < x2, and

ψ(3)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω3tψ̂
(3)
0 (k) dk

+

∫
∂D

(1)
R

4k2
√

1− α
k2

∆(−ik)
eik(x−x2+x2

√
1− α

k2
)−ω3tψ̂

(1)
0 (k) dk

+

∫
∂D

(1)
R

2k2(1 +
√

1− α
k2

)

∆(−ik)
eik(x−x2)+ix2

√
1− α

k2
−ω3tψ̂

(2)
0

(
k

√
1− α

k2

)
dk

−
∫
∂D

(1)
R

2k2(1−
√

1− α
k2

)

∆(−ik)
eik(x−x2)+ix2

√
1− α

k2
−ω3tψ̂

(2)
0

(
−k
√

1− α

k2

)
dk

+

∫
∂D

(1)
R

α(1− e2ikx2
√

1− α
k2 )

∆(−ik)
eik(x−2x2)−ω3tψ̂

(3)
0 (−k) dk,

(5.47)

when x > x2.

Remarks:

• If one lets α = 0 in (5.45)-(5.47) then the Fourier transform solution to the free

Schrödinger equation on the whole line is recovered.

• In order to numerically or asymptotically evaluate these expressions one could use tech-

niques presented in [7, 44, 62, 63]. The detailed asymptotic and numerical evaluation

is currently under investigation.

• As stated at the beginning of this section, (5.41) is solved in standard quantum mechan-

ics texts using separation of variables and the study of the forward scattering problem

with the specified potential. The zeros of a(ξ), the (1, 1) component of the scattering

matrix, are the discrete eigenvalues for the problem. The zeros of a(ξ) cannot be found

explicitly but it is clear that the zeros of a(ξ) for ξ purely imaginary correspond to the

zeros of the denominators of (5.45)-(5.47) with iξ2 = ωj(k).



Chapter 6

Linear Korteweg-de Vries equation

with an interface

All previous chapters in this dissertation have dealt exclusively with problems that are

second order in the spatial variable. This chapter is the first investigation into higher-order

problems. The process presented in this chapter makes clear how to resolve new issues that

arise when moving to a higher-order problem.

The nondimensionalized Korteweg-de Vries (KdV) equation

qt + 6qqx + qxxx = 0,

is one of the most studied nonlinear PDEs [36, 49, 50, 70]. It arises in the study of long

waves in shallow water, ion-acoustic waves in plasmas, and in general, describes the slow

evolution of long waves in dispersive media [2]. In what follows we study the linearized KdV

equation (LKdV) in a composite medium,

qt = σ(x)qxxx, −∞ < x <∞, (6.1)

where σ(x), a real-valued function, is piecewise constant. This equation describes the be-

havior of solutions of the KdV equation in the small-amplitude limit and understanding its

dynamics is fundamental in understanding the dynamics of the more complicated nonlinear

problem.
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In what follows an explicit solution method is given resulting in closed-form expressions.

We provide a sufficient criterion on the interface conditions for such solutions to be obtainable

via the Fokas Method. Although we do not prove uniqueness of the solution, we note some

examples of interface conditions that do yield uniqueness. The numerical evaluation of the

solution is not considered but should be possible via the methods presented in [7, 44, 62, 63].

As we do not have a physical application on hand, this paper addresses the mathematical

question of the number and type of interface conditions required to ensure that (6.1) is well

posed.

6.1 Background

Determining the number of boundary conditions necessary for a well-posed problem is a

nontrivial issue, especially for BVPs with higher than second-order derivatives. Consider

LKdV posed on the half line

qt = σ3qxx, x > 0, t > 0, (6.2)

where the form of the coefficient σ3 is chosen for convenience. If σ < 0 then one boundary

condition is needed, whereas if σ > 0, two boundary conditions must be prescribed in order

for the problem to be well posed [15, 25]. This difference in seemingly very similar BVPs

is understood at an intuitive level by considering the phase velocity c(k) = −iω(k)/k where

ω(k) = −iσ3k3 [38]. Thus, the phase velocity is c(k) = −σ3k2. If σ < 0 the phase velocity

is negative and information travels toward the boundary as in Figure 6.1a. If σ > 0, the

phase velocity is positive and information travels away from the boundary as in Figure 6.1b.

Therefore, it seems reasonable that one must prescribe more boundary information. Note

that if we were solving (6.2) for x < 0 these results would be switched. This will become

relevant in what follows for the interface problem on the whole line.
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x

t

q(x, 0)

c(k) < 0

(a)

x

t

q(x, 0)

c(k) > 0

(b)

Figure 6.1: (a) When σ < 0 information from the initial condition propagates toward the

boundary x = 0 and one boundary condition needs to be prescribed. (b) When σ > 0

information from the initial condition propagates away from the boundary and two boundary

conditions need to be prescribed.
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Remark: Note that the argument above is heuristic and one which we understand with

hindsight. The problem we are concerned does not have propagation but rather, dispersion.

Thus, although Figure 6.1 may hint at the Method of Characteristics, our argument should

not be given the same credence.

One of the strengths of the Fokas Method for solving linear PDEs is the straightforward

way it determines how many and what type of boundary conditions result in a well-posed

problem [15, 25, 27]. Previous papers by us and others [4, 14, 47, 55, 56, 57, 58], as well as

the previous chapters in this thesis, have shown that the Fokas Method is useful for finding

explicit general solutions to interface problems. In the cases currently in the literature, only

second-order problems are considered and the number of conditions required at each interface

is clearly two. The example of LKdV on the half-line suggests that the number of interface

conditions needed in the case of LKdV with an interface depends on the sign of σ. This is the

case indeed. In Propositions 6.1–6.3 we describe exactly the number and type of conditions

necessary.

6.2 Notation and set-up

We investigate (6.1) where σ(x) is the piecewise constant real-valued function

σ(x) =

σ
3
1, x < 0,

σ3
2, x > 0,

(6.3)

with the initial condition q(x, 0) = q0(x), and appropriate conditions at the interface x = 0.

The choice of the power 3 in the definition of σ(x) is purely for convenience. We assume

throughout this work that the solution decays rapidly to zero as |x| → ∞. If nonzero

conditions at |x| = ∞ are desired this can be treated easily in a manner similar to that for

the heat equation in [14] and for the linear Schrödinger equation in [56]. We pose (6.1) as

the following interface problem:
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q
(1)
t = σ3

1q
(1)
xxx, x < 0, 0 < t ≤ T, (6.4a)

q
(2)
t = σ3

2q
(2)
xxx, x > 0, 0 < t ≤ T, (6.4b)

subject to the initial conditions

q(1)(x, 0) = q
(1)
0 (x), x < 0, (6.5a)

q(2)(x, 0) = q
(2)
0 (x), x > 0, (6.5b)

with q(1)(·, t) ∈ S(−∞, 0) and q(2)(·, t) ∈ S(0,∞) where S(X) is the Schwartz space of

restrictions to X of rapidly decaying functions. Likewise, we assume rapid decay of the

initial conditions, q
(1)
0 (·) ∈ S(−∞, 0) and q

(2)
0 (·) ∈ S(0,∞).

Some number of interface conditions at x = 0 needs to be prescribed. The number

and type of such conditions are given in Propositions 6.1–6.3. We make a distinction in this

manuscript between “boundary problems” and “interface problems.” Boundary problems are

those in which the conditions given at the interface (x = 0) allow one to solve either (6.4a)

or (6.4b) as a half-line BVP without knowing the solution on the other domain. For example,

if one can solve a BVP for q(1)(x, t) then one can use that solution to provide any necessary

conditions at x = 0 to solve the second BVP for q(2)(x, t). Conditions for a well-posed BVP

are given in [25, 65]. Since these cases have been examined, we restrict to those interface

conditions which do not decouple such that either (6.4a) or (6.4b) can be solved as a BVP.

It is of note that by making use of the PDE, interface conditions can always be written

in terms of a (possibly) non-homogenous linear function of

∂n

∂xn
q(1)(x, t)

∣∣∣∣
x=0

,

and
∂n

∂xn
q(2)(x, t)

∣∣∣∣
x=0

,
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for n = 0, 1, 2 and all t. For example, one might require q
(1)
xxx(0, t) = q

(2)
xxx(0, t) as an interface

condition. This can be imposed by applying the equation and integrating in t to give

1

σ3
1

q(1)(0, t)− 1

σ3
2

q(2)(0, t) =
1

σ3
1

q
(1)
0 (0)− 1

σ3
2

q
(2)
0 (0), (6.6)

for all t, which is clearly of the form we require with f(t) = 1
σ3
1
q

(1)
0 (0) − 1

σ3
2
q

(2)
0 (0). Using

a similar process for any conditions on derivatives greater than second order as well as

elementary linear algebra one can always express the interface conditions in the reduced

forms given in Propositions 6.1–6.3 after possibly letting x→ −x.

Remark: If an interface condition specifies a linear combination of ∂nxq
(1)(0, t) (n=0,1,2)

only or ∂nxq
(2)(0, t) (n=0,1,2) only, then we say it is a boundary condition. Note that the

interface conditions

q(1)(0, t) = 0, and q(1)(0, t)− q(2)(0, t) = 0,

are equivalent to the interface conditions

q(1)(0, t) = 0, and q(2)(0, t) = 0,

so it is only meaningful to discuss the maximum number of boundary conditions for any

equivalent expression of a given system of interface conditions. Henceforth any mention

of a number of boundary conditions should be interpreted as such a maximum number of

boundary conditions.

A problem with one boundary condition may or may not decouple into a pair of BVP.

Even if such a decoupling is possible, it may or may not be possible to solve the BVPs

sequentially. For example, the problem with σ1, σ2 > 0, boundary condition q(1)(0, t) = 0,

and interface conditions q
(1)
x (0, t) = q

(2)
x (0, t) and q

(1)
xx (0, t) = q

(2)
xx (0, t) decouples into a solvable

BVP for q(1) and a subsequent solvable BVP for q(2). However, the problem with σ1, σ2 < 0,

and the same boundary and interface conditions does not decouple.
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6.3 Application of the Fokas Method

We follow the standard steps in the application of the Fokas Method. Assuming existence

of a solution, we begin with the local relations:

(e−ikx+ωjtq(j))t = (e−ikx+ωjtσ3
j (q

(j)
xx + ikq(j)

x − k2q(j)))x,

with ωj = ωj(k) = iσ3
jk

3 for j = 1, 2. Applying Green’s Theorem and integrating over the

strips (−∞, 0) × (0, t) and (0,∞) × (0, t) respectively (see Figure 2.2) we have the global

relations∫ 0

−∞
e−ikx+ω1tq(1)(x, t) dx =

∫ 0

−∞
e−ikxq

(1)
0 (x) dx

+

∫ t

0

eω1sσ3
1

(
q(1)
xx (0, s) + ikq(1)

x (0, s)− k2q(1)(0, s)
)

ds,

∫ ∞
0

e−ikx+ω2tq(2)(x, t) dx =

∫ ∞
0

e−ikxq
(2)
0 (x) dx

−
∫ t

0

eω2sσ3
2

(
q(2)
xx (0, s) + ikq(2)

x (0, s)− k2q(2)(0, s)
)

ds.

We define the following:

q̂(1)(k, t) =

∫ 0

−∞
e−ikxq(1)(x, t) dx, Im(k) ≥ 0, 0 < t < T,

q̂
(1)
0 (k) =

∫ 0

−∞
e−ikxq

(1)
0 (x) dx, Im(k) ≥ 0,

q̂(2)(k, t) =

∫ ∞
0

e−ikxq(2)(x, t) dx, Im(k) ≤ 0, 0 < t < T,

q̂
(2)
0 (k) =

∫ ∞
0

e−ikxq
(2)
0 (x) dx, Im(k) ≤ 0,

gn(ω, t) =

∫ t

0

eωs
∂n

∂xn
q(1)(0, s) ds, n = 0, 1, 2, 0 < t < T,

hn(ω, t) =

∫ t

0

eωs
∂n

∂xn
q(2)(0, s) ds, n = 0, 1, 2, 0 < t < T,
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The global relations become

eω1tq̂(1)(k, t) =q̂
(1)
0 (k) + σ3

1

(
g2(ω1, t) + ikg1(ω1, t)− k2g0(ω1, t)

)
, Im(k) ≥ 0, (6.7a)

eω2tq̂(2)(k, t) =q̂
(2)
0 (k)− σ3

2

(
h2(ω2, t) + ikh1(ω2, t)− k2h0(ω2, t)

)
, Im(k) ≤ 0. (6.7b)

We wish to transform the global relations so that gn(·, t) and hn(·, t) for n = 0, 1, 2 depend

on a common argument, ik3 as in [4, 47]. Noting ik3 is invariant under the transformations

k → αk and k → α2k where α = e2iπ/3 and evaluating at t = T we have the following six

global relations:

eik
3T q̂(1)

(
αjk

σ1

, T

)
=q̂

(1)
0

(
αjk

σ1

)
+
(
σ3

1g2(ik3, T ) + iαjkσ2
1g1(ik3, T )− α2jk2σ1g0(ik3, T )

)
,

σ1 Im(αjk) ≥ 0,

(6.8a)

eik
3T q̂(2)

(
αjk

σ2

, T

)
=q̂

(2)
0

(
αjk

σ2

)
−
(
σ3

2h2(ik3, T ) + iαjkσ2
2h1(ik3, T )− α2jk2σ2h0(ik3, T )

)
,

σ2 Im(αjk) ≤ 0,

(6.8b)

for j = 0, 1, 2.

Inverting the Fourier transform in (6.7) we have the solution formulas

q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

+
σ3

1

2π

∫ ∞
−∞

eikx−ω1t
(
g2(ω1, t) + ikg1(ω1, t)− k2g0(ω1, t)

)
dk,

(6.9a)

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

− σ3
2

2π

∫ ∞
−∞

eikx−ω2t
(
h2(ω2, t) + ikh1(ω2, t)− k2h0(ω2, t)

)
dk,

(6.9b)

for 0 < t < T and x < 0 and x > 0 respectively. Next, we transform the second integral in
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each of the previous equations so that gn(·, t) and hn(·, t) depend on ik3 for n = 0, 1, 2.

q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

+
1

2π

∫ ∞
−∞

e
i k
σ1
x−ik3t (

σ2
1g2(ik3, t) + ikσ1g1(ik3, t)− k2g0(ik3, t)

)
dk,

(6.10a)

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

− 1

2π

∫ ∞
−∞

e
i k
σ2
x−ik3t (

σ2
2h2(ik3, t) + ikσ2h1(ik3, t)− k2h0(ik3, t)

)
dk,

(6.10b)

Let D = {k ∈ C : Re(ik3) < 0} = D(1) ∪D(3) ∪D(5) as in Figure 6.2. The parenthetical

numbers in the superscript of D represent an enumeration of the sectors of the complex

plane, in contrast to the parenthetical numbers in the superscript of q (and Γ, below), which

represent the two half-line domains (−∞, 0) and (0,∞). Let DR = {k ∈ C : k ∈ D ∩ |k| >

R} = D
(1)
R +D

(3)
R +D

(5)
R where R > 0 is a positive constant as shown in Figure 6.3. Let Γ(j)

be the contour that is the boundary of the region {k ∈ DR : (−1)jσj Im(k) > 0}, oriented

so that D
(1)
R and D

(3)
R lie to the left, and D

(5)
R lies to the right of any Γ(j) to which they are

adjacent. Note that whether Γ(j) is the boundary of D
(1)
R ∪D

(3)
R or D

(5)
R depends not only on

j but also upon the sign of σj. The integrand of the second integral in (6.10a) is analytic

and decays as k →∞ from within the set bounded between R and Γ(1), and the integrand of

the second integral in (6.10b) is analytic and decays as k →∞ from within the set bounded

between R and Γ(2). Hence, by Jordan’s Lemma and Cauchy’s Theorem, the contours of

integration can be deformed from R to Γ(j).

q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

+
1

2π

∫
Γ(1)

e
i k
σ1
x−ik3t (

σ2
1g2(ik3, t) + ikσ1g1(ik3, t)− k2g0(ik3, t)

)
dk,

(6.11a)

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

− 1

2π

∫
Γ(2)

e
i k
σ2
x−ik3t (

σ2
2h2(ik3, t) + ikσ2h1(ik3, t)− k2h0(ik3, t)

)
dk.

(6.11b)
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D(1)D(3)

D(5)

Re(k)

Im(k)

π
3

Figure 6.2: The evenly distributed regions D(1), D(3), D(5) where Re(ik3) < 0.

D
(1)
RD

(3)
R

D
(5)
R

Re(k)

Im(k)

R

Figure 6.3: The regions D
(1)
R , D

(3)
R , D

(5)
R where Re(ik3) < 0 and |k| > R.
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We replace t by T in the arguments of gj and hj by noting that this is equivalent to replacing

the integral
∫ t

0
eik

3 ∂n

∂xn
q(j)(0, s) ds with

∫ T
0
eik

3 ∂n

∂xn
q(j)(0, s) ds −

∫ T
t
eik

3 ∂n

∂xn
q(j)(0, s) ds. Using

analyticity properties of the integrand and Jordan’s Lemma, the contribution from the second

integral is zero and thus we replace gj(ik
3, t) and hj(ik

3, t) with gj(ik
3, T ) and hj(ik

3, T ):

q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

+
1

2π

∫
Γ(1)

e
i k
σ1
x−ik3t (

σ2
1g2(ik3, T ) + ikσ1g1(ik3, T )− k2g0(ik3, T )

)
dk,

(6.12a)

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

− 1

2π

∫
Γ(2)

e
i k
σ2
x−ik3t (

σ2
2h2(ik3, T ) + ikσ2h1(ik3, T )− k2h0(ik3, T )

)
dk.

(6.12b)

Since (6.11) and (6.12) are equivalent we will switch between them whenever convenient in

what follows.

In Section 6.4, we show how it is possible to obtain expressions for all six spectral functions

gj, hj in the relevant domains by solving a linear system. Indeed, for any r ∈ {1, 2, 3}, if k ∈

D
(r)
R (the closure of D

(r)
R ), then a certain number, say m, of the global relation equations (6.7)

are valid for k. We must supplement these equations with 6−m interface conditions to obtain

a solvable system. Given the coefficients of gj, hj in (6.7), it is clear that the determinant of

the linear system must be a polynomial in k. The criteria of Propositions 6.1–6.3 identify the

cases in which this determinant is not identically 0, that is the system is full rank. For such

a full rank system, it is always possible to choose R > 0 sufficiently large that DR contains

no zeros of the determinant, which is essential in the proof of Proposition 6.4. We denote

this linear system by

AX = Y + Y , (6.13)

where

X =
(
g0(ik3, T ), g1(ik3, T ), g2(ik3, T ), h0(ik3, T ), h1(ik3, T ), h2(ik3, T )

)>
. (6.14)
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The right-hand side of (6.13) is split into the sum of Y , which includes expressions that

are known explicitly (i.e., q
(j)
0 (·), j = 1, 2 and non-homogenous terms from the interface

conditions) and Y which includes unknown expressions (i.e., q̂(j)(·, t), j = 1, 2).

6.4 Results

We show below in Proposition 6.4 that (6.11) is a solution of problem (6.1). It remains to

show that this solution is unique in order to establish well posedness. In an attempt to show

uniqueness, we assume there exist two solutions to (6.1). Let u(x, t) be their difference. Then

u(x, t) satisfies (6.1) with homogenous initial and interface conditions. A standard energy

argument shows

d

dt

∫ ∞
−∞

(
∂n

∂xn
u(x, t)

)2

dx = lim
ε→0−

σ1

(
2
∂n

∂xn
u(ε, t)

∂n+2

∂xn+2
u(ε, t)−

(
∂n+1

∂xn+1
u(ε, t)

)2
)

− lim
ε→0+

σ2

(
2
∂n

∂xn
u(ε, t)

∂n+2

∂xn+2
u(ε, t)−

(
∂n+1

∂xn+1
u(ε, t)

)2
) (6.15)

for any nonnegative integer n. If the interface conditions given are such that the right-hand

side of (6.15) is always negative then, because u(x, 0) = 0 and the left-hand side of (6.15) is

always non-negative, we have u(x, t) ≡ 0. Thus, one suitable choice of interface conditions

is those that satisfy this relationship. For various signs of σ1, σ2, which we consider here, it

is not clear how to establish that the solution (6.11) is unique in general.

In each of the following propositions, we assume that the interface conditions are not such

that the problem reduces to a pair of BVP. It is a matter of trivial linear algebra to determine

whether any particular problem has this property, and its well-posedness and solution are

then known [25, 65].

In the case σ1 > 0 and σ2 < 0, the phase velocity for x < 0 is positive and the phase

velocity for x > 0 is negative. Thus, information from the initial conditions propagates

toward the interface as in Figure 6.4. In this case we expect the minimal number of interface

conditions to be necessary for a well-posed problem.
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x

t

q(2)(x, 0)

σ2 < 0σ1 > 0

q(1)(x, 0)

Figure 6.4: Information from the initial conditions q(1)(x, 0) and q(2)(x, 0) propagates toward

the interface.

Proposition 6.1. Assume σ1 > 0 and σ2 < 0. Equation (6.13) is solvable for X if and only

if two interface conditions are given. These conditions must be of the form

β11q
(1)(0, t) + β12q

(1)
x (0, t) + β13q

(1)
xx (0, t) + β14q

(2)(0, t) + β15q
(2)
x (0, t) + β16q

(2)
xx (0, t) = f1(t),

(6.16a)

β21q
(1)(0, t) + β22q

(1)
x (0, t) + β23q

(1)
xx (0, t) + β24q

(2)(0, t) + β25q
(2)
x (0, t) + β26q

(2)
xx (0, t) = f2(t).

(6.16b)

The solution to (6.13) is full rank, that is, solvable for X, whenever at least one of the

following holds

1. β14β21 6= β11β24,

2. σ1(β15β21 − β11β25) 6= σ2(β12β24 − β14β22,

3. σ2
1(β16β21 − β11β26) + σ1σ2(β15β22 − β12β25) + σ2

2(β14β24 − β13β24) 6= 0,

4. σ1(β16β22 − β12β26) 6= σ2(β13β25 − β15β23),
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5. β16β23 6= β13β26.

Proof of Proposition 6.1. In the case σ1 > 0 and σ2 < 0, the second integrals of both (6.10a)

and (6.10b) can be deformed from
∫∞
−∞ · dk to −

∫
∂D

(5)
R
· dk. We rewrite the global rela-

tions (6.7) as

eik
3tq̂(1)

(
αk

σ1

, T

)
− q̂(1)

0

(
αk

σ1

)
= σ3

1g2(ik3, T )+ iαkσ2
1g1(ik3, T )−(αk)2σ1g0(ik3, T ), (6.17a)

eik
3tq̂(2)

(
αk

σ2

, T

)
− q̂(2)

0

(
αk

σ2

)
=− σ3

2h2(ik3, T )− iαkσ2
2h1(ik3, T )

+ (αk)2σ2h0(ik3, T ),

(6.17b)

eik
3tq̂(1)

(
α2k

σ1

, T

)
− q̂(1)

0

(
α2k

σ1

)
=σ3

1g2(ik3, T ) + iα2kσ2
1g1(ik3, T )

− (α2k)2σ1g0(ik3, T ),

(6.17c)

eik
3tq̂(2)

(
α2k

σ2

, T

)
− q̂(2)

0

(
α2k

σ2

)
=− σ3

2h2(ik3, T )− ikα2σ2
2h1(ik3, T )

+ (α2k)2σ2h0(ik3, T ),

(6.17d)

which are all valid for k ∈ D(5). Evaluating (6.16) for t = s, multiplying by eik
3s, and

integrating from 0 to t one obtains

hj(ik
3, T ) +

2∑
`=0

βj+1,`+1g`(ik
3, T ) = f̃j+1(ik3, T ), j ∈ {0, 1, 2},

where

f̃j(ω, T ) =

∫ T

0

eωsfj(s) ds, j ∈ {0, 1, 2},

which is valid for k ∈ D(r) (the closure of D(r)).

In order to solve the full 6×6 system it is clear we must impose two “interface conditions,”

since the global relations (6.17) provide exactly four of the necessary six equations. If there
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is one boundary condition relating q(1) and q(2) and their spatial derivatives then one can

solve the problem on the left (right) and use the solution and remaining interface conditions

to solve the problem on the right (left). The half-line problem is well posed [25, 65] and its

solution will not be considered here. Hence, “interface conditions” of the type (6.16) are all

we need to consider.

The above argument only fails if det(A) ≡ 0 since all singularities are outside D
(5)
R .

Examining det(A) = 0 one obtains a polynomial in k. Since we need this to hold for all

k, we consider the coefficients of each power of k. Requiring at least one coefficient to be

nonzero gives the conditions stated in (6.1).

In the case σ1 > 0 and σ2 > 0, the phase velocity for x < 0 and x > 0 is positive.

Thus, information from q
(1)
0 (x) propagates toward the interface but information from q

(2)
0 (x)

propagates away from the interface as in Figure 6.5. Hence, we expect that more interface

conditions are necessary for a well-posed problem than in the case when σ1 > 0 and σ2 < 0

as in Proposition 6.1. Notice that the case of σ1 < 0 and σ2 < 0 could be considered in this

case by letting x→ −x. Hence, we consider only the case where σ1 > 0 and σ2 > 0.

x

t

q(2)(x, 0)

σ2 > 0σ1 > 0

q(1)(x, 0)

Figure 6.5: Information from the initial condition q(1)(x, 0) propagates toward the interface

while information from q(2)(x, 0) propagates away from the interface.
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Proposition 6.2. Assume σ1 > 0 and σ2 > 0. The square matrix A in (6.13) is solvable

for X if and only if three interface conditions of the following form are given.

β11q
(1)(0, t) + β12q

(1)
x (0, t) + β13q

(1)
xx (0, t) + q(2)(0, t) = f1(t), (6.18a)

β21q
(1)(0, t) + β22q

(1)
x (0, t) + β23q

(1)
xx (0, t) + q(2)

x (0, t) = f2(t), (6.18b)

β31q
(1)(0, t) + β32q

(1)
x (0, t) + β33q

(1)
xx (0, t) + q(2)

xx (0, t) = f3(t). (6.18c)

The solution to (6.13) is solvable for X whenever one or more of the following is satisfied:

1. β31 6= 0,

2. σ1β21 + σ2β32 6= 0,

3. σ2
1β11 + σ1σ2β22 + σ2

2β33 6= 0,

4. σ1β12 + σ2β23 6= 0,

5. β13 6= 0.

Remark: It may be possible to rewrite the interface conditions so that one is a boundary

condition for q(2) and still have an interface problem. However, a single boundary condition

for q(1) or a pair of boundary conditions for q(2) implies that the problem separates into a

pair of BVPs.

Proof of Proposition 6.2. In the case σ1 > 0 and σ2 > 0, the second integrals of (6.10a) can

be deformed from
∫∞
−∞ · dk to −

∫
∂D

(5)
R
· dk. The second integral of (6.10b) can be deformed

from
∫∞
−∞ · dk to

∫
∂D

(1)
R
· dk+

∫
∂D

(3)
R
· dk. We rewrite the global relations for each r ∈ {1, 3, 5}

as

eik
3tq̂(1)

(
αrk

σ1

, T

)
− q̂(1)

0

(
αrk

σ1

)
=σ3

1g2(ik3, T ) + ikαrσ2
1g1(ik3, T )

− (kαr)2σ1g0(ik3, T ),

(6.19a)
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eik
3tq̂(1)

(
αr+2k

σ1

, T

)
− q̂(1)

0

(
αr+2k

σ1

)
=σ3

1g2(ik3, T ) + ikαr+2σ2
1g1(ik3, T )

− (kαr+2)2σ1g0(ik3, T ),

(6.19b)

eik
3tq̂(2)

(
αr+1k

σ2

, T

)
− q̂(2)

0

(
αr+1k

σ2

)
=− σ3

2h2(ik3, T )− ikαr+1σ2
2h1(ik3, T )

+ (kαr+1)2σ2h0(ik3, T ),

(6.19c)

which are all valid for k ∈ D(r). Evaluating (6.18) for t = s, multiplying by eik
3s, and

integrating from 0 to t one obtains

hj(ik
3, T ) +

2∑
`=0

βj+1,`+1g`(ik
3, T ) = f̃j+1(ik3, T ), j ∈ {0, 1, 2},

where

f̃j(ω, T ) =

∫ T

0

eωsfj(s) ds, j ∈ {0, 1, 2},

which is valid for k ∈ D(r).

In order to solve the full 6 × 6 system it is clear we must impose three “interface con-

ditions”, since (6.19) provides just three equations. We must now examine the cases where

one or more of these conditions decouples into a boundary condition on either q(1) or q(2). If

there is one boundary condition relating q(1) and its spatial derivatives, then one can solve

the problem on the left and use the solution and remaining interface conditions to solve

the problem on the right. Solving the half-line problem is well posed [25, 65] and is not

considered here. Hence, “interface conditions” of the type (6.18) are all we need to consider.

Examining det(A) = 0 in this case, one obtains a polynomial in k. Since we need this to

hold for all k, we consider the coefficients of each power of k. Since we want conditions on

det(A) 6= 0 we need at least one of the coefficients to be nonzero. This gives the conditions

stated in (6.2).
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In the case σ1 < 0 and σ2 > 0, the phase velocity for x < 0 is negative and the phase

velocity for x > 0 is positive. Thus, information from the initial conditions propagates away

from the interface as in Figure 6.6. Hence, we expect that more interface conditions are

necessary for a well-posed problem than in the previous case when three interface conditions

were necessary as in Proposition 6.2.

x

t

q(2)(x, 0)

σ2 > 0σ1 < 0

q(1)(x, 0)

Figure 6.6: Information from the initial conditions q(1)(x, 0) and q(2)(x, 0) propagates away

from the interface.

Proposition 6.3. Assume σ1 < 0 and σ2 > 0. Equation (6.13) is full rank if and only if

four interface conditions are given. These conditions must be of the form

q(1)(0, t) + β14q
(2)(0, t) + β15q

(2)
x (0, t) + β16q

(2)
xx (0, t) = f1(t), (6.20a)

q(1)
x (0, t) + β24q

(2)(0, t) + β25q
(2)
x (0, t) + β26q

(2)
xx (0, t) = f2(t), (6.20b)

q(1)
xx (0, t) + β34q

(2)(0, t) + β35q
(2)
x (0, t) + β36q

(2)
xx (0, t) = f3(t), (6.20c)

β44q
(2)(0, t) + β45q

(2)
x (0, t) + β46q

(2)
xx (0, t) = f4(t). (6.20d)

The solution to (6.13) is full rank whenever one or more of the following is satisfied:

1. β35β44 6= β34β45,
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2. σ1(β34β46 − β36β44) 6= σ2(β24β45 − β25β44),

3. σ2
1(β35β46 − β36β45) + σ1σ2(β26β44 − β24β46) + σ2

2(β14β45 − β15β44) 6= 0,

4. σ1(β26β45 − β25β46) 6= σ2(β16β44 − β14β46),

5. β16β45 6= β15β46.

Remark: As four interface conditions are required, it must be possible to write (at

least) two as boundary conditions. If there are two boundary conditions for either q(1) or

q(2), then the problem separates into a pair of BVP, so we only consider the case where there

is precisely one boundary condition for each of q(1) and q(2). However, for the purposes of

stating the result, it is more convenient to write the conditions in the form (6.20).

Proof of Proposition 6.3. In the case σ1 < 0 and σ2 > 0, the second integrals of both (6.10a)

and (6.10b) can be deformed from
∫∞
−∞ · dk to

∫
∂D

(1)
R
· dk+

∫
∂D

(3)
R
· dk. The appropriate global

relations can be rewritten for r ∈ {1, 3} as

eik
3tq̂(1)

(
αr+1k

σ1

, T

)
−q̂(1)

0

(
αr+1k

σ1

)
= σ3

1g2(ik3, T ) + ikαr+1σ2
1g1(ik3, T )

− (kαr+1)2σ1g0(ik3, T ),

(6.21a)

eik
3tq̂(2)

(
αr+1k

σ2

, T

)
−q̂(2)

0

(
αr+1k

σ2

)
= −σ3

2h2(ik3, T )− ikαr+1σ2
2h1(ik3, T )

+ (kαr+1)2σ2h0(ik3, T ),

(6.21b)

which are all valid for k ∈ D(r). Evaluating (6.20) for t = s, multiplying by eik
3s, and
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integrating from 0 to t one obtains

g0(ik3, T ) + β15h1(ik3, T ) + β16h2(ik3, T ) = f̃1(ik3, T ),

g1(ik3, T ) + β25h1(ik3, T ) + β26h2(ik3, T ) = f̃2(ik3, T ),

g2(ik3, T ) + β35h1(ik3, T ) + β36h2(ik3, T ) = f̃3(ik3, T ),

h0(ik3, T ) + β45h1(ik3, T ) + β46h2(ik3, T ) = f̃4(ik3, T ),

where

f̃j(ω, T ) =

∫ T

0

eωsfj(s) ds, j ∈ {1, 2, 3, 4},

which is valid for k ∈ D(r).

In order to solve the full 6× 6 system (6.13) we must impose four “interface conditions,”

since (6.21) gives only two equations. We need to examine the cases where one or more of

these conditions decouples into a boundary condition on either q(1) or q(2). Using elementary

linear algebra it is clear that at least one of these conditions must be a boundary condition. If

there are two boundary conditions relating q(1), q(2) and their spatial derivatives then one can

solve the problem on the left (right) and use the solution and remaining interface conditions

to solve the problem on the right (left). Solving the half-line problem is well posed [25, 65]

and will not be considered here. Hence, “interface conditions” of the type (6.20) are all we

need to consider.

Examining det(A) = 0 one obtains a polynomial in k. We need this condition to hold

for all k and we consider the coefficients of each power of k. Since we want conditions on

det(A) 6= 0 we need at least one of the coefficients to be nonzero. This gives the conditions

stated in (6.3).

Proposition 6.4. Assume A in (6.13) is full rank. A solution to (6.1) is given by (6.12)

where gj(ik
3, T ) and hj(ik

3, T ) for j = 0, 1, 2 are the solution to the linear system AX = Y

where A, X, and Y are given in (6.14) and the surrounding paragraph.

Proof of Proposition 6.4. Consider Aj, which is the matrix A with the jth column replaced

by Y . This matrix can be factored as Aj = ARj AMj where ARj is the six by six identity
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matrix with the (j, j) element replaced by eik
3T . Hence, det(Aj) = eik

3T det(AMj ). We solve

AX = Y using Cramer’s Rule [12]. If we show that the contribution to the solution from Y

is zero, then we have proved the proposition. The terms we are concerned with from (6.12)

are
1

2π

∫
Γ(1)

e
i k
σ1
x−ik3t (

σ2
1g2(ik3, T ) + ikσ1g1(ik3, T )− k2g0(ik3, T )

)
dk.

and
1

2π

∫
Γ(2)

e
i k
σ2
x−ik3t (

σ2
2h2(ik3, T ) + ikσ2h1(ik3, T )− k2h0(ik3, T )

)
dk.

Using Cramer’s Rule and our factorization these become

1

2π

∫
Γ(1)

e
i k
σ1
x+ik3(T−t)

(
σ2

1

det(AM(3))

det(A)
+ ikσ1

det(AM(2))

det(A)
− k2

det(AM(1))

det(A)

)
dk. (6.22a)

1

2π

∫
Γ(2)

e
i k
σ2
x+ik3(T−t)

(
σ2

2

det(AM(6))

det(A)
+ ikσ2

det(AM(5))

det(A)
− k2

det(AM(4))

det(A)

)
dk. (6.22b)

We would like to show these integrand terms are analytic and decay for large k inside the

domains around which they are integrated. Note that det(A) 6= 0 since (6.13) is full rank.

Case 1. σ1 < 0, σ2 > 0: For σ1 < 0 and σ2 > 0, Γ(1),Γ(2) = ∂D
(1)
R + ∂D

(3)
R . Using the form

of Y in this case each piece of the integrand in (6.22a) is of the form

1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t) det(AMj )

det(A)
=

1

2π

∫
Γ(1)

e
i kx
σ1

(
c1(k)q̂(1)

(
αr+1k

σ1

, T

)
+c2(k)q̂(2)

(
αr+1k

σ2

, T

))
=

1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(∫ 0

−∞
c1(k)e

−iα
r+1ky
σ1 q(1)(y, T ) dy

)
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(∫ ∞

0

c2(k)e
−iα

r+1ky
σ2 q(2)(y, T ) dy

)
dk,

where c1(k) and c2(k) involve the constants βj,`, are O(k−1) as k →∞ from within Γ(1)

and are analytic for all k ∈ D(r)
R . For k → ∞ with k ∈ D(r) the expression inside the

parenthesis is decaying exponentially fast. Thus, by Jordan’s Lemma, these integrals

along a closed, bounded curve in the complex k plane vanish for x < 0. In particular

we consider the closed curves L(1) = LD(1) ∪ LC(1) and L(3) = LD(3) ∪ LC(3) where

LD(j) = ∂D
(j)
R ∩ {k : |k| < C} and LC(j) = {k ∈ D(j)

R : |k| = C}, see Figure 6.7.
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Since the integrals along LC(1) and LC(3) vanish for large C, the integrals must vanish

since the contour LD(1) becomes ∂D
(1)
R as C → ∞. The same argument holds for

L(3) and ∂D
(3)
R . The uniform decay of the expressions in parentheses for large k is

exactly the condition required for the integral to vanish using Jordan’s Lemma. Hence

Equation (6.22a) is zero. A similar argument holds for (6.22b).

Case 2. σ1 > 0, σ2 > 0: For σ1 > 0 and σ2 > 0, Γ(1) = ∂D
(5)
R and Γ(2) = ∂D

(1)
R + ∂D

(3)
R .

Using the form of Y in this case each piece of the integrand in (6.22a) is of the form

1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t) det(AMj )

det(A)
dk=

1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c1(k)q̂(1)

(
α2k

σ1

, T

)
+c2(k)q̂(1)

(
αk

σ1

, T

))
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
c3(k)q̂(2)

(
k

σ2

, T

)
dk

=
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c1(k)

∫ 0

−∞
e
−iα

2ky
σ1 q(1)(y, T ) dy

)
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c2(k)

∫ 0

−∞
e
−iαky

σ1 q(1)(y, T ) dy

)
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c3(k)

∫ ∞
0

e
−i ky

σ2 q(2)(y, T ) dy

)
dk,

where c1(k), c2(k), and c3(k) are O(k−1), analytic in D(r), and involve the constants

βj,`. For k → ∞ with k ∈ D(r) the full expression inside the parentheses is decaying

exponentially fast. Thus, we can apply Jordan’s Lemma and Cauchy’s Theorem as in

Case 1, using curves shown in Figure 6.7. Hence, Equation (6.22a) is zero. Again, a

similar argument holds for (6.22b).

Case 3. σ1 > 0, σ2 < 0: For σ1 > 0 and σ2 < 0, Γ(1),Γ(2) = ∂D
(5)
R . Using the form of Y in
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this case each piece of the integrand in (6.22a) is of the form

1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t) det(AMj )

det(A)
dk=

1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c1(k)q̂(1)

(
αk

σ1

, T

)
+c2(k)q̂(2)

(
αk

σ2

, T

))
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c3(k)q̂(1)

(
α2k

σ1

, T

)
+ c4(k)q̂(2)

(
α2k

σ2

, T

))
dk

=
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c1(k)

∫ 0

−∞
e
−iαky

σ1 q(1)(y, T ) dy

)
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c2(k)

∫ ∞
0

e
−iαky

σ2 q(2)(y, T ) dy

)
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c3(k)

∫ 0

−∞
e
−iα

2ky
σ1 q(1)(y, T ) dy

)
dk

+
1

2π

∫
Γ(1)

e
i kx
σ1

+ik3(T−t)
(
c4(k)

∫ ∞
0

e
−iα

2ky
σ2 q(2)(y, T ) dy

)
dk,

where c1(k), c2(k), c3(k) and c4(k) are O(k−1), involve the constants βj,`, and are ana-

lytic for k ∈ D(r). For k →∞ with k ∈ D(5) the expressions inside the parentheses are

decaying exponentially fast. As before we apply Jordan’s Lemma to the appropriate

curves in Figure 6.7 and use Cauchy’s Theorem. Thus, Equation (6.22a) is zero. A

similar argument holds for (6.22b).

Taking derivatives in x and t it is clear that the expression (6.11) satisfies the PDE. When

t = 0 the second integrals in (6.11a) and (6.11b) evaluate to zero and the expressions clearly

give the initial condition q(x, 0) = q0(x).

Remark: We have not shown that (6.11) satisfies the interface conditions directly. Show-

ing this is more involved than showing it satisfies the initial conditions. The process requires

solving AX = Y for X and evaluating the explicit expression at the interface (x = 0) and

using the properties of Fourier transforms.
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6.5 Examples

In this section we give solutions to (6.1) for different signs of σ1 and σ2 with “canonical

interface conditions.” That is, we prescribe that the function and its firstN spatial derivatives

are continuous across the interface where 1 ≤ N ≤ 3 depends on the signs of σ1 and σ2.

Example 1. σ1 < 0, σ2 > 0: This example requires four interface conditions. We impose

that the function, as well as its first, second, and third derivatives are continuous

across the boundary.

q(1)(0, t) = q(2)(0, t),

q(1)
x (0, t) = q(2)

x (0, t),

q(1)
xx (0, t) = q(2)

xx (0, t),

q(1)
xxx(0, t) = q(2)

xxx(0, t),

The first three conditions can be imposed directly. The condition on the third spatial

derivative can be imposed by applying the equation and integrating in t to give (6.6).

Applying the t transform we have

1

σ3
1

g0(ik3, T )− 1

σ3
2

h0(ik3, T ) =
eik

3t − 1

ik3

(
1

σ3
1

q
(1)
0 (0)− 1

σ3
2

q
(2)
0 (0)

)
.

Using elementary row operations, we have, in the notation of Proposition 6.3, f1(T ) =

f2(T ) = f3(T ) = 0, f4(T ) = eik
3T−1
ik3

(
1
σ3
1
q

(1)
0 (0)− 1

σ3
2
q

(2)
0 (0)

)
, β25 = β36 = −1, and the

remaining βj,` = 0. Using these interface conditions and solving (6.13), Equation (6.11)

becomes
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q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

+

∫
∂D

(1)
R

α2σ1 − σ2

2πα2σ1(σ1 − σ2)
e
ikx
σ1
−ik3t

q̂
(1)
0

(
α2k

σ1

)
dk

+

∫
∂D

(1)
R

i(α− 1)

2πα2kσ1σ2(σ1 − σ2)
(e−ik

3t − 1)e
ikx
σ1 q

(1)
0 (0) dk

+

∫
∂D

(1)
R

σ2
1(α2 − 1)

2πα2σ2
2(σ1 − σ2)

e
ikx
σ1
−ik3t

q̂
(2)
0

(
α2k

σ2

)
dk

−
∫
∂D

(1)
R

iσ2
1(α− 1)

2πα2kσ4
2(σ1 − σ2)

(e−ik
3t − 1)e

ikx
σ1 q

(2)
0 (0) dk

+

∫
∂D

(3)
R

ασ1 − σ2

2πkασ1(σ1 − σ2)
e
ikx
σ1
−ik3t

q̂
(1)
0

(
αk

σ1

)
dk

+

∫
∂D

(3)
R

i(α2 − 1)

2πk(σ3
1 − σ3

2)
(e−ik

3t − 1)e
ikx
σ1 q

(1)
0 (0) dk

+

∫
∂D

(3)
R

σ2
1(α− 1)

2πασ2
2(σ1 − σ2)

e
ikx
σ1
−ik3t

q̂
(2)
0

(
αk

σ2

)
dk

−
∫
∂D

(3)
R

iσ2
1(α2 − 1)

2πσ4
2αk(σ1 − σ2)

(e−ik
3t − 1)e

ikx
σ1 q

(2)
0 (0) dk,
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q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

+

∫
∂D

(1)
R

σ2
2(α2 − 1)

2πα2σ2
1(σ1 − σ2)

e
ikx
σ2
−ik3t

q̂
(1)
0

(
α2k

σ1

)
dk

+

∫
∂D

(1)
R

i(α− 1)(σ2 − ασ1 + ασ2)

2πα2kσ3
1(σ1 − σ2)

(e−ik
3t − 1)e

ikx
σ2 q

(1)
0 (0) dk

+

∫
∂D

(1)
R

α2σ2 − σ1

2πα2σ2(σ1 − σ2)
e
ikx
σ2
−ik3t

q̂
(2)
0

(
α2k

σ2

)
dk

−
∫
∂D

(1)
R

i(α− 1)(ασ1 − ασ2 − σ2)

2πα2kσ3
2(σ1 − σ2)

(e−ik
3t − 1)e

ikx
σ2 q

(2)
0 (0) dk

+

∫
∂D

(3)
R

σ2
2(α− 1)

2πασ2
1(σ1 − σ2)

e
ikx
σ2
−ik3t

q̂
(1)
0

(
αk

σ1

)
dk

−
∫
∂D

(3)
R

i(α− 1)(σ2 + ασ1)

2πασ3
1k(σ1 − σ2)

(e−ik
3t − 1)e

ikx
σ2 q

(1)
0 (0) dk

+

∫
∂D

(3)
R

ασ2 − σ1

2πασ2(σ1 − σ2)
e
ikx
σ2
−ik3t

q̂
(2)
0

(
αk

σ2

)
dk

−
∫
∂D

(3)
R

i(α− 1)(σ2 + ασ1)

2παkσ3
2(σ1 − σ2)

(e−ik
3t − 1)e

ikx
σ2 q

(2)
0 (0) dk.

Example 2. σ1 > 0, σ2 > 0: This example requires three interface conditions. We impose

that the function, as well as its first and second derivative are continuous across the

boundary. That is,

q(1)(0, t) = q(2)(0, t),

q(1)
x (0, t) = q(2)

x (0, t),

q(1)
xx (0, t) = q(2)

xx (0, t).

(6.23)

In the notation of Proposition 6.2 f1(T ) = f2(T ) = f3(T ) = 0, β11 = β22 = β33 = −1,

and the remaining βj,` = 0. Using the interface conditions (6.23) and solving (6.13),

Equation (6.11) becomes
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q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk

+

∫
∂D

(5)
R

(σ1 − σ2)(σ1 + ασ1 + ασ2)

2πασ1(σ1 − ασ2)(σ1 + σ2 + ασ2)
e
ikx
σ1
−ik3t

q̂
(1)
0

(
αk

σ1

)
dk,

+

∫
∂D

(5)
R

σ2 − σ1

2πασ1(σ1 + σ2 + ασ2)
e
ikx
σ1
−ik3t

q̂
(1)
0

(
α2k

σ1

)
dk,

−
∫
∂D

(5)
R

3σ3
1

2πσ2(σ1 − ασ2)(σ1 + σ2 + ασ2)
e
ikx
σ1
−ik3t

q̂
(2)
0

(
k

σ2

)
dk,

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk

−
∫
∂D

(1)
R

σ2(σ2
1 + σ1σ2 − σ2

2)

2πσ2
1(σ2

1 + α(1 + α)σ1σ2 − σ2
2)
e
ikx
σ2
−ik3t

q̂
(1)
0

(
k

σ1

)
dk

+

∫
∂D

(1)
R

σ2(σ2(σ1 + σ2) + α(σ2
1 + σ2

2))

2πασ2
1(σ2

1 + α(1 + α)σ1σ2 − σ2
2)
e
ikx
σ2
−ik3t

q̂
(1)
0

(
αk

σ1

)
dk

−
∫
∂D

(1)
R

σ2
1 + (1 + α)σ1σ2 − ασ2

2

2πασ2(σ2
1 + α(1 + α)σ1σ2 − σ2

2)
e
ikx
σ2
−ik3t

q̂
(2)
0

(
α2k

σ2

)
dk

+

∫
∂D

(3)
R

σ2(σ2
1 + σ1σ2 − σ2

2)

2πσ2
1(ασ2

1(1 + α) + σ2(σ1 + σ2))
e
ikx
σ2
−ik3t

q̂
(1)
0

(
k

σ1

)
dk

+

∫
∂D

(3)
R

σ2(ασ1(σ2 − σ1) + σ2(σ1 + σ2))

2πασ2
1(ασ2

1(1 + α) + σ2(σ1 + σ2))
e
ikx
σ2
−ik3t

q̂
(1)
0

(
α2k

σ1

)
dk

−
∫
∂D

(3)
R

(1 + α)σ2
1 + σ1σ2 + ασ2

2

2πασ2(ασ2
1(1 + α) + σ2(σ1 + σ2))

e
ikx
σ2
−ik3t

q̂
(2)
0

(
αk

σ2

)
dk.

Example 3. σ1 > 0, σ2 < 0: This example requires two interface conditions. We impose

that the function and its first derivative are continuous across the boundary. That is,

q(1)(0, t) = q(2)(0, t),

q(1)
x (0, t) = q(2)

x (0, t).
(6.24)

In the notation of Proposition 6.1 f1(T ) = f2(T ) = 0, β15 = β25 = −1, and the remain-

ing βj,` = 0. Using the interface conditions (6.24) and solving (6.13), Equation (6.11)

becomes
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q(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tq̂
(1)
0 (k) dk +

∫
∂D

(5)
R

σ1 + ασ1 − σ2

2πασ1(σ1 + σ2)
e
ikx
σ1
−ik3t

q̂
(1)
0

(
αk

σ1

)
dk

+

∫
∂D

(5)
R

σ2 + ασ2 − σ1

2πασ1(σ1 + σ2)
e
ikx
σ1
−ik3t

q̂
(1)
0

(
α2k

σ1

)
dk

+

∫
∂D

(5)
R

σ1(2 + α)

2πασ2(σ1 + σ2)
e
ikx
σ1
−ik3t

q̂
(2)
0

(
αk

σ2

)
dk

−
∫
∂D

(5)
R

σ1(2 + α)

2πασ2(σ1 + σ2)
e
ikx
σ1
−ik3t

q̂
(2)
0

(
α2k

σ2

)
dk,

q(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tq̂
(2)
0 (k) dk −

∫
∂D

(5)
R

σ2(2 + α)

2πασ1(σ1 + σ2)
e
ikx
σ2
−ik3t

q̂
(1)
0

(
αk

σ1

)
dk

+

∫
∂D

(5)
R

σ2(2 + α)

2πασ1(σ1 + σ2)
e
ikx
σ2
−ik3t

q̂
(1)
0

(
α2k

σ1

)
dk

−
∫
∂D

(5)
R

σ2 + ασ2 − σ1

2πασ2(σ1 + σ2)
e
ikx
σ2
−ik3t

q̂
(2)
0

(
αk

σ2

)
dk

−
∫
∂D

(5)
R

σ1 + ασ1 − σ2

2πασ2(σ1 + σ2)
e
ikx
σ2
−ik3t

q̂
(2)
0

(
α2k

σ2

)
dk.
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Re(k)

Im(k)

C

LD(1)

LD(3)

LD(5)

L(1)
C

L(5)
C

L(3)
C

Figure 6.7: The contours LD(1) and LD(3) are shown as red solid lines and the contours

LC(1) and LC(3) are shown as red dashed lines. The contour LD(5) is shown as a green solid

line and the contour LC(5) is shown as a green dashed line. An application of Cauchy’s

Integral Theorem [1] using these contours allows elimination of the contribution of q̂(1)(·, t)

and q̂(2)(·, t) from the integral expressions (6.22).



Chapter 7

Initial to Interface Maps

The construction of a Dirichlet to Neumann map, that is, determining the boundary

values that are not prescribed as boundary conditions in terms of the initial and boundary

conditions, is important in the study of PDEs and particularly inverse problems [24, 61].

In what follows we construct a similar map between the initial values of the PDE and the

function (and some number of spatial derivatives) evaluated at the interface. This map allows

for an alternative to the approach of finding simultaneous solutions to interface problems as

presented in earlier chapters. Given the initial conditions one could find the value of the

function and its derivatives at the interface(s). This changes the problem at hand from an

interface problem to a BVP. At this point, the BVP could be solved using any number of

methods appropriate for a particular problem.

7.1 Heat equation on an infinite domain with n inter-

faces

Consider

ut = σ(x)uxx, (7.1)
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together with the initial condition u0(x) = u(x, 0) and the asymptotic conditions

lim|x|→∞ u(x, t) = 0, where −∞ < x <∞, 0 < t < T , and

σ(x) =



σ2
1, x < x1,

σ2
2, x1 < x < x2,

...

σ2
n, xn−1 < x < xn,

σ2
n+1, x > xn.

We can rewrite (7.1) as the set of equations

u
(j)
t =σ2

ju
(j)
xx , xj−1 < x < xj, 0 < t < T, (7.2)

for 1 ≤ j ≤ n + 1 where x0 = −∞ and xn+1 = ∞. We impose the continuity interface

conditions

u(j)(xj, t) =u(j+1)(xj, t), t > 0,

σ2
ju

(j)
x (xj, t) =σ2

j+1u
(j+1)
x (xj, t), t > 0,

for 1 ≤ j ≤ n. Since u(j)(x, t) is defined on the open interval xj−1 < x < xj, when

we write u(j)(xj, t) we mean limx→x−j
u(j)(x, t). Similarly, we denote limx→x+j

u(j+1)(x, t) by

u(j+1)(xj, t). Without loss of generality we shift the problem so that x1 = 0. Using the usual

steps of the Fokas method we have the local relations

(e−ikx+ωjtu(j)(x, t))t =(σ2
j e
−ikx+ωj(k)t(u(j)

x (x, t) + iku(j)(x, t)))x, (7.3)

where ωj(k) = (σjk)2. These relations are a one-parameter family obtained by rewrit-

ing (7.2).

Integrating over the appropriate cells of the domain (see Figure 7.1) and applying Green’s
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x

t

x1 = 0 ∞−∞

T

xnxn−1x2 · · ·

Figure 7.1: Domains for the application of Green’s Theorem in the case of an infinite domain

with n interfaces.

Theorem we find the global relations:

0 =

∫ xj

xj−1

e−ikxu
(j)
0 (x) dx−

∫ xj

xj−1

e−ikx+ωj(k)Tu(j)(x, T ) dx

+

∫ T

0

σ2
j e
−ikxj+ωj(k)s(u(j)

x (xj, s) + iku(j)(xj, s)) ds

−
∫ T

0

σ2
j e
−ikxj−1+ωj(k)s(u(j)

x (xj−1, s) + iku(j)(xj−1, s)) ds,

(7.4)

for 1 ≤ j ≤ n + 1. Define D = {k ∈ C : Re(ωj(k)) < 0}, DR = {k ∈ D : |k| < R} and

D+
R = {k ∈ DR : Im(k) > 0} as in Figure 2.6 where R > 0 is an arbitrary finite constant.

When j = 1 (7.4) is valid for k ∈ C+\D. Similarly, for j = n+1, (7.4) is valid for k ∈ C−\D.

For 2 ≤ j ≤ n, (7.4) is valid for k ∈ C\D. The dispersion relation ωj(k) = (σjk)2 is invariant

under the symmetry k → −k. We supplement the n + 1 global relations above with their

evaluation at −k, namely,

0 =

∫ xj

xj−1

eikxu
(j)
0 (x) dx−

∫ xj

xj−1

eikx+ωj(k)Tu(j)(x, T ) dx

+

∫ T

0

σ2
j e
ikxj+ωj(k)s(u(j)

x (xj, s)− iku(j)(xj, s)) ds

−
∫ T

0

σ2
j e
ikxj−1+ωj(k)s(u(j)

x (xj−1, s)− iku(j)(xj−1, s)) ds,

(7.5)



7.1. HEAT EQUATION ON AN INFINITE DOMAIN WITH N INTERFACES 161

for 1 ≤ j ≤ n+ 1. When j = 1, (7.5) is valid for k ∈ C− \D. Similarly, for j = n+ 1, (7.5)

is valid for k ∈ C+ \ D. For 2 ≤ j ≤ n, (7.5) is valid for all k ∈ C \ D. Without loss of

generality we choose to work with the equations valid in the upper half plane. Define

g
(j)
0 (ω, t) =

∫ t

0

eωsu(j)(xj, s) ds =

∫ t

0

eωsu(j+1)(xj, s) ds,

g
(j)
1 (ω, t) =

∫ t

0

eωsu(j)
x (xj, s) ds =

σ2
2

σ2
1

∫ t

0

eωsu(j+1)
x (xj, s) ds,

û(j)(k, t) =

∫ xj

xj−1

e−ikxu(j)(x, t) dx,

û
(j)
0 (k) =

∫ xj

xj−1

e−ikxu
(j)
0 (x) dx,

for 1 ≤ j ≤ n. Using the change of variables k = κ/σj on the jth equation, the global

relations valid in the upper-half plane are

eκ
2T û(1)

(
κ

σ1

, T

)
− û(1)

0

(
κ

σ1

)
= e−iκx1/σ1

(
iκ

σ1

g
(1)
0 (κ2, T ) + g

(1)
1 (κ2, T )

)
, (7.6a)

eκ
2T û(j)

(
κ

σj
, T

)
− û(j)

0

(
κ

σj

)
=e

−iκxj
σj

(
iκ

σj
g

(j)
0 (κ2, T ) + g

(j)
1 (κ2, T )

)
− e

−iκxj−1
σj

(
iκ

σj
g

(j−1)
0 (κ2, T ) +

σ2
j−1

σ2
j

g
(j−1)
1 (κ2, T )

)
,

(7.6b)

eκ
2T û(j)

(
−κ
σj
, T

)
− û(j)

0

(
−κ
σj

)
=e

iκxj
σj

(
−iκ
σj

g
(j)
0 (κ2, T ) + g

(j)
1 (κ2, T )

)
+ e

iκxj−1
σj

(
iκ

σj
g

(j−1)
0 (κ2, T )−

σ2
j−1

σ2
j

g
(j−1)
1 (κ2, T )

)
,

(7.6c)

eκ
2T û(n+1)

(
−κ
σn+1

, T

)
− û(n+1)

0

(
−κ
σn+1

)
= e

iκxn
σn+1

(
iκ

σn+1

g
(n)
0 (κ2, T )− σ2

n

σ2
n+1

g
(n)
1 (κ2, T )

)
,

(7.6d)

for 2 ≤ j ≤ n. Equation (7.6) can be written as a linear system for the interface values:
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A(κ)X(κ2, T ) = Y (κ) + Y(κ, T ),

where

X(κ2, T ) =
(
g

(1)
0 , g

(2)
0 , . . . , g

(n)
0 , g

(1)
1 , g

(2)
1 , . . . , g

(n)
1

)>
,

Y (κ) = −
(
û

(1)
0

(
κ

σ1

)
, . . . , û

(n)
0

(
κ

σn

)
, û

(2)
0

(
−κ
σ2

)
, . . . , û

(n+1)
0

(
−κ
σn+1

))>
,

Y(κ, T ) = eκ
2T

(
û(1)

(
κ

σ1

, T

)
, . . . , û(n)

(
κ

σn
, T

)
, û(2)

(
−κ
σ2

, T

)
, . . . , û(n+1)

(
−κ
σn+1

, T

))>
,

and

A(κ) =

iκ
σ1
e
−iκx1

σ1 e
−iκx1

σ1

−iκ
σ2
e
−iκx1

σ2
iκ
σ2
e
−iκx2

σ2
−σ2

1

σ2
2
e
−iκx1

σ2 e
−iκx2

σ2

. . . . . . . . . . . .

−iκ
σn
e−i

κxn−1
σn

iκ
σn
e−i

κxn
σn

−σ2
n−1

σ2
n
e−i

κxn−1
σn e−i

κxn
σn

iκ
σ2
e
i κ
σ2
x1 −iκ

σ2
e
i
κx2
σ2

−σ2
1

σ2
2
e
i
κx1
σ2 e

i
κx2
σ2

. . . . . . . . . . . .

iκ
σn−1

ei
κxn−1
σn

−iκ
σn
ei
κxn
σn

−σ2
n−1

σ2
n
ei
κxn−1
σn ei

κxn
σn

iκ
σn+1

e
i κxn
σn+1

−σ2
n

σ2
n+1

e
i κxn
σn+1



.

The matrix A(κ) consists of four n × n blocks as indicated by the dashed lines. The two

blocks in the upper half of A(κ) are zero except for entries on the main and −1 diagonals.

The lower two blocks of A(κ) only have nonzero entries on the main and +1 diagonals.

The matrix A(κ) is singular for isolated values of κ. Asymptotically, for large |κ|, the zeros

of det(A(κ)) are on the real line [42]. Since asymptotically there are no zeros in D+
R , a

sufficiently large R may be chosen such that A(κ) is nonsingular for every κ ∈ D+
R and

det(A(κ)) 6= 0.
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Remark. We have been unable to construct physical examples where the zeros of

det(A(κ)) are in D+ and are different from 0. However, if nonphysical values of the pa-

rameters are chosen (e.g., σj imaginary), then det(A(κ)) has zeros in D+.

Using Cramer’s Rule to solve this system, we have

g
(j)
0 (κ2, T ) =

det(Aj(κ, T ))

det(A(κ))
, (7.7a)

g
(j)
1 (κ2, T ) =

det(Aj+n(κ, T ))

det(A(κ))
, (7.7b)

where 1 ≤ j ≤ n and Aj(κ, T ) is the matrix A(κ) with the jth column replaced by Y + Y .

This does not give an effective initial-to-interface map because (7.7) depends on the solutions

û(j)(·, T ). To eliminate this dependence we multiply (7.7) by κe−κ
2t and integrate around

D+
R , as is typical in the construction of Dirichlet-to-Neumann maps [25]. Switching the order

of integration we have

∫ T

0

u(j)(xj, s)

∫
∂D+

R

κeκ
2(s−t) dκ ds =

∫
∂D+

R

e−κ
2tκ det(Aj(κ, T ))

det(A(κ))
dκ, (7.8a)∫ T

0

u(j)
x (xj, s)

∫
∂D+

R

κeκ
2(s−t) dκ ds =

∫
∂D+

R

e−κ
2tκ det(Aj+n(κ, T ))

det(A(κ))
dκ. (7.8b)

Using the change of variables i` = κ2 and the classical Fourier transform formula for the

delta function we have

u(j)(xj, t) =
1

iπ

∫
∂D+

R

e−κ
2tκ det(Aj(κ, T ))

det(A(κ))
dκ, (7.9a)

u(j)
x (xj, t) =

1

iπ

∫
∂D+

R

e−κ
2tκ det(Aj+n(κ, T ))

det(A(κ))
dκ. (7.9b)
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To examine the right-hand-side of (7.9) we factor the matrix A(κ) as AL(κ)AM(κ) where

AL(κ) =



e
−i κ

σ1
x1

e
−i κ

σ2
x2

. . .

e−i
κ
σn
xn

e
i κ
σ2
x1

e
i κ
σ3
x2

. . .

e
i κ
σn+1

xn


is a diagonal matrix. The elements of AM(κ) are either 0, O(κ), or decaying exponentially

fast for κ ∈ D+
R . Hence,

det(AM(κ)) = c(κ) = O(κn),

for large κ in D+
R . Now, det(A(κ)) = c(κ) det(AL(κ)) as κ→∞ for κ ∈ D+

R . Similarly, factor

Aj(κ, T ) = AL(κ)AMj (κ, T )ARj (κ, T ) where ARj (κ, T ) is the 2n× 2n identity matrix with the

(j, j) component replaced by eκ
2T . Then det(Aj(κ, T )) = eκ

2T det(AL(κ)) det(AMj (κ, T )).

Thus, the integrand we are considering in (7.9) is

∫
∂D+

R

e−κ
2tκ det(Aj(κ, T ))

det(A)
dκ =

∫
∂D+

R

eκ
2(T−t)κ det(AMj (κ, T ))

c(κ)
dκ.

The elements of AMj (κ, T ) are the same as those in AM(κ) except in the jth column.

Expanding the determinant of AMj (κ, T ) along the jth column we see that

eκ
2(T−t)κ det(AMj (κ, T ))

c(κ)
=

n∑
`=1

(
c`(κ)

(
e
iκx`
σ`

+κ2(T−t)
û(`)

(
κ

σ`
, T

)
− e−κ

2t+
iκx`
σ` û

(`)
0

(
κ

σ`

))
+ c`+n(κ)

(
e
−iκx`
σ`+1

+κ2(T−t)
û(`+1)

(
−κ
σ`+1

, T

)
− e−κ

2t− iκx`
σ`+1 û

(`+1)
0

(
−κ
σ`+1

)))
,

(7.10)

where c` = O(κ0) and c`+n = O(κ) for 1 ≤ ` ≤ n. The terms involving û(`)(·, T ), the solutions

of our equation, are decaying exponentially for κ ∈ D+
R . Thus, by Jordan’s Lemma [1], the
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integral of this term along a closed, bounded curve in C+ vanishes. In particular we consider

the closed curve L+ = LD+
R
∪ L+

C where LD+
R

= ∂D+
R ∩ {k : |k| < C} and L+

C = {k ∈ D+
R :

|k| = C}, see Figure 1.3. Since the integral along L+
C vanishes for large C, (7.10) must vanish

since the contour LD+
R

becomes ∂D+
R as C →∞.

Since the terms involving the elements of Y(κ, T ) evaluate to zero in the solution expres-

sion we have the solution

u(j)(xj, t) =
1

iπ

∫
∂D+

R

e−κ
2tκ det(Aj(κ))

det(A(κ))
dκ, (7.11a)

u(j)
x (xj, t) =

1

iπ

∫
∂D+

R

e−κ
2tκ det(Aj+n(κ))

det(A(κ))
dκ, (7.11b)

where Aj(κ) is the matrix A(κ) with the jth column replaced by Y (κ). Equation 7.11 is

an effective map between the values of the function at the interface and the given initial

conditions.

Remark. Note that since the problem is linear, one could have assumed the initial

condition was zero for x outside the region x`−1 < x < x`. Then, the map would be in terms

of just u
(`)
0 (·). Summing over 1 ≤ ` ≤ n+ 1 would give the complete map for a general initial

condition.

As an example of a specific initial-to-interface map we consider the equation (7.1) with

n = 1. Using (7.11) we have

σ2
1u

(1)
x (0, t) =

iσ1σ2

π(σ1 + σ2)

∫
∂D+

R

κe−κ
2t

(
σ1û

(1)
0

(
κ

σ1

)
− σ2û

(2)
0

(
−κ
σ2

))
dκ,

u(1)(0, t) =
1

π(σ1 + σ2)

∫
∂D+

R

e−κ
2t

(
σ2

1û
(1)
0

(
κ

σ1

)
+ σ2

2û
(2)
0

(
−κ
σ2

))
dκ.

In this case we can deform D+
R back to the real line easily. For general n this is not the case.
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Switching the order of integration and evaluating the κ integral we have

σ2
1u

(1)
x (0, t) =

σ1σ2

2t3/2
√
π(σ1 + σ2)

(∫ 0

−∞
ye−y

2/(4tσ2
1)u

(1)
0 (y) dy +

∫ ∞
0

ye−y
2/(4tσ2

2)u
(2)
0 (y) dy

)
,

(7.12a)

u(1)(0, t) =
1√

πt(σ1 + σ2)

(
σ2

1

∫ 0

−∞
e−y

2/(4tσ2
1)u

(1)
0 (y) dy + σ2

2

∫ ∞
0

e−y
2/(4tσ2

2)u
(2)
0 (y) dy

)
,

(7.12b)

which is an explicit map from the initial data to the value of the temperature and its associ-

ated flux at the interface, x = 0. If one allows σ1 = σ2 the problem is simply that of the heat

equation on the whole line. Equation (7.12) with σ1 = σ2 is exactly the Green’s Function

solution of the whole line problem evaluated at x = 0 [38].

7.2 Heat equation on a finite domain with n interfaces

Consider (7.1) on a finite domain, x0 ≤ x ≤ xn+1, with the boundary conditions

β1u
(1)(x0, t) + β2u

(1)
x (x0, t) =f1(t), t > 0, (7.13a)

β3u
(n+1)(xn+1, t) + β4u

(n+1)
x (xn+1, t) =f2(t), t > 0. (7.13b)

As before, we rewrite (7.1) as the set of equations

u
(j)
t =σ2

ju
(j)
xx , xj−1 < x < xj, 0 < t < T,

for 1 ≤ j ≤ n+ 1 subject to the continuity interface conditions

u(j)(xj, t) =u(j+1)(xj, t), t > 0,

σ2
ju

(j)
x (xj, t) =σ2

j+1u
(j+1)
x (xj, t), t > 0,

for 1 ≤ j ≤ n. Without loss of generality shift the problem so x0 = 0.

The following steps are very similar to those presented in the previous section. In what

follows we give a brief outline of the changes needed to solve on a finite domain.
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x
x1 xn+1x0 = 0

t

T

xnxn−1x2 · · ·

Figure 7.2: Domains for the application of Green’s Theorem in the case of a finite domain

with n interfaces.

Integrating the local relations (7.3) around the appropriate domain (see Figure 7.1) and

applying Green’s Theorem we find the global relations (7.4) and their evaluation at −k (7.5).

In contrast to Section 7.1, these 2n+ 2 global relations are all valid for k ∈ C \D.

Without loss of generality we choose to work with the equations valid in the upper-half

plane. In addition to the definitions in Section 7.1 we define

g
(0)
0 (ω, t) =

∫ t

0

eωsu(1)(x0, s) ds,

g
(n+1)
0 (ω, t) =

∫ t

0

eωsu(n+1)(xn+1, s) ds,

g
(0)
1 (ω, t) =

∫ t

0

eωsu(1)
x (x0, s) ds,

g
(n+1)
1 (ω, t) =

∫ t

0

eωsu(n+1)
x (xn+1, s) ds,

f̃m(ω, t) =

∫ t

0

eωsfm(s) ds,

for m = 1, 2. Using the change of variables k = κ/σj, the global relations valid in the
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upper-half plane are

eκ
2tû(j)

(
κ

σj
, T

)
− û(j)

0

(
κ

σj

)
= e

−iκxj
σj

(
iκ

σj
g

(j)
0 (κ2, T ) + g

(j)
1 (κ2, T )

)
− e

−iκxj−1
σj

(
iκ

σj
g

(j−1)
0 (κ2, T ) +

σ2
j−1

σ2
j

g
(j−1)
1 (κ2, T )

)
,

(7.14a)

eκ
2tû(j)

(
−κ
σj
, T

)
− û(j)

0

(
−κ
σj

)
= e

iκxj
σj

(
−iκ
σj

g
(j)
0 (κ2, T ) + g

(j)
1 (κ2, T )

)
+ e

iκxj−1
σj

(
iκ

σj
g

(j−1)
0 (κ2, T )−

σ2
j−1

σ2
j

g
(j−1)
1 (κ2, T )

)
,

(7.14b)

for 1 ≤ j ≤ n + 1 where we define σ0 = σ1 for convenience. These equations, together with

the boundary values (7.13), can be written as a linear system for the interface values

AFXF = Y F + YF ,

where

XF (κ2, T ) =
(
g

(0)
0 , g

(1)
0 , . . . , g

(n+1)
0 , g

(0)
1 , g

(1)
1 , . . . , g

(n+1)
1

)>
,

Y F (κ, T ) = −
(
−f̃1(iκ2, T ), û

(1)
0

(
κ

σ1

)
, . . . , û

(n+1)
0

(
κ

σn

)
, û

(1)
0

(
−κ
σ1

)
, . . . , û

(n+1)
0

(
−κ
σn+1

)
,−f̃2(iκ2, T )

)>
,

YF (κ, T ) = eκ
2T

(
0, û(1)

(
κ

σ1
, T

)
, . . . , û(n+1)

(
κ

σn
, T

)
, û(1)

(
−κ
σ1
, T

)
, . . . , û(n+1)

(
−κ
σn+1

, T

)
, 0

)>
,

and

AF (κ) =

β1 β2

−iκ
σ1
e
−iκx0

σ1
iκ
σ1
e
−iκx1

σ1 −σ2
0

σ2
1
e
−iκx0

σ1 e
−iκx1

σ1

. . .
. . .

. . .
. . .

−iκ
σn+1

e
−i κxn

σn+1 iκ
σn+1

e
−iκxn+1

σn+1
−σ2

n

σ2
n+1

e
−i κxn

σn+1 e
−iκxn+1

σn+1

iκ
σ1
e
i
κx0
σ1

−iκ
σ1
e
i
κx1
σ1

−σ2
0

σ2
1
e
i
κx0
σ1 e

i
κx1
σ1

. . .
. . .

. . .
. . .

iκ
σn+1

e
i
κxn+1
σn+1 −iκ

σn+1
e
i
κxn+1
σn+1

−σ2
n

σ2
n+1

e
i κxn
σn+1 e

i
κxn+1
σn+1

β3 β4



.
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The matrix AF (κ) is made up of four (n + 2) × (n + 2) blocks as indicated by the dashed

lines. The two blocks in the upper half of AF (κ) are zero except for entries on the main

and −1 diagonals. The lower two blocks of AF (κ) only have entries on the main and +1

diagonals.

As before we use Cramer’s Rule to solve this system. After multiplying the solutions by

κe−κ
2t, integrating around D+

R , and simplifying as in the previous section we follow a similar

process to show the terms from YF (κ, T ) do not contribute to our solution formula using

Jordan’s Lemma and Cauchy’s Theorem. One can show that AFj (κ, T ) can be replaced by

AFj (κ, t) by writing
∫ T

0
· ds as

∫ t
0
· ds +

∫ T
t
· ds and noticing where the function in analytic

and decaying. If the boundary conditions (7.13) are time-independent then so is AFj .

In general, the initial-to-interface map for the heat equation on a finite domain with n

interfaces is given by

u(j)(xj, t) =

∫
∂D+

R

e−κ
2t
κ det(AFj (κ, t))

iπ det(AF (κ))
dκ, (7.16a)

u(j)
x (xj, t) =

∫
∂D+

R

e−κ
2t
κ det(AFj+n(κ, t))

iπ det(AF (κ))
dκ. (7.16b)

where AFj (κ, t) is the matrix AF (κ, t) with the jth column replaced by Y F (κ, t).



Chapter 8

The Stefan problem for the heat

equation

A Stefan problem is a BVP for a PDE with a phase boundary that can move with

time. In what follows, we consider the temperature distribution in a homogeneous medium

undergoing a phase change, i.e., ice melting into water. We solve the heat equation on the

time-dependent domain and impose an initial temperature distribution as well as the “Stefan

condition.” This condition expresses the local velocity of a moving boundary as a function

of quantities evaluated at both sides of the boundary. This is derived as usual by imposing

conservation of energy. These problems take their name from Jožef Stefan [60] but were first

considered by Lamé and Clapeyron [40]. In the case when the dependence of the boundary

on time is known, this problem has been studied using the Fokas method in [26, 28, 29, 52].

This work is part of an ongoing collaboration with B. Deconinck, J. Lenells, B. Pelloni, and

V. Vasan.
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t

x

t = T

l(0)

qt = qxx q ≡ 0

l(t)

Figure 8.1: The domain under consideration in (8.1) including the moving boundary l(t).

8.1 The one-phase Stefan problem on a semi-infinite

domain

We consider the heat equation in one time-dependent domain as shown in Figure 8.1,

qt − qxx = 0, 0 < x < l(t), t ≥ 0, (8.1)

with l(t) a monotonic unknown function. The given initial, boundary, and interface condi-

tions are

q(x, 0) =q0(x), 0 < x < l(t), (8.2a)

qx(0, t) =f(t), 0 < t < T, (8.2b)

q(l(t), t) =0, 0 < t < T, (8.2c)

qx(l(t), t) =− l′(t), 0 < t < T, . (8.2d)
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8.1.1 A similarity solution

Consider (8.1) and (8.2) and choose ζ = x/
√
t. We look for a similarity solution q(x, t) =

Q(ζ). The heat equation in the semi-infinite region l(0) < x < l(t) for t > 0 becomes the

ordinary differential equation

2Q′′(ζ) + ζQ′(ζ) = 0, (8.3)

where ′ denotes a derivative with respect to ζ. Solving for Q(ζ) we have

Q(ζ) = c1 + c2

√
π erf

(
ζ

2

)
,

where c1 and c2 are constants of integration and erf(y) = 2/
√
π
∫ y

0
e−s

2
ds. To find c2 we

impose q(0, t) = f(t). This gives c2 =
√
tf(t). However, c2 must be constant with respect to

t so f(t) = c3√
t

where c3 is constant. To solve for c1 we use the condition of continuity at the

interface, q(l(t), t) = 0. Then

c1 = −c3

√
π erf

(
l(t)

2
√
t

)
.

Again, c1 must be a constant (independent of t) so l(t) = c4

√
t where c4 is a constant. Hence,

our similarity solution is

Q(ζ) = c3

√
π

(
erf

(
ζ

2

)
− erf

(c4

2

))
. (8.4)

Imposing qx(l(t), t) = −l′(t) we find

c4 + 2c3e
− c

2
4
4 = 0, (8.5)

which can be solved numerically for c4.
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8.1.2 A generalized Dirichlet to Neumann map using the Fokas

method

Consider (8.1) with the initial and boundary conditions (8.2). We begin with the local

relation, a one-parameter family rewrite of (8.1):

(e−ikx+ω(k)tq(x, t))t = (e−ikx+ω(k)t(qx(x, t) + ikq(x, t)))x, (8.6)

where ω(k) = k2. Integrating around the domain (0, l(t))× (0, t) (see Figure 8.2), assuming

continuity, and applying Green’s Theorem we have the global relation

0 =

∫ l(0)

0

e−ikxq0(x) dx−
∫ t

0

e−ikl(s)+ω(k)sl′(s) ds

−
∫ l(t)

0

e−ikx+ω(k)tq(x, t) dx−
∫ t

0

eω(k)s(f(s) + ikq(0, s)) ds.

(8.7)

t

x
l(0)

l(t)

Figure 8.2: Domain for the application of Green’s Theorem for the one-phase Stefan problem.

Let D = {k ∈ C : Re(ω(k)) < 0} = D+ ∪D−. The region D is shown in Figure 8.3.
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D+

Im(k)

Re(k)

B1B2

B3

D−

Figure 8.3: The domains D+ and D− for the Stefan problem.

Since the dispersion relation ω(k) is invariant under k → −k we supplement (8.7) with

0 =

∫ l(0)

0

eikxq0(x) dx−
∫ t

0

eikl(s)+ω(k)sl′(s) ds

−
∫ l(t)

0

eikx+ω(k)tq(x, t) dx−
∫ t

0

eω(k)s(f(s)− ikq(0, s)) ds.

(8.8)

To eliminate the integral containing the unknown q(0, s) we add (8.7) and (8.8) to find

−
∫ l(t)

0

eω(k)tq(x, t)(e−ikx + eikx) dx = 2

∫ t

0

eω(k)sf(s) ds

+

∫ t

0

eω(k)sl′(s)(e−ikl(s) + eikl(s)) ds−
∫ l(0)

0

q0(x)(e−ikx + eikx) dx.

(8.9)

In analog to inverting the Fourier transform we multiply (8.9) by keikl(t)−ω(k)t and inte-
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grate over ∂D+:

−
∫
∂D+

∫ l(t)

0

kq(x, t)(eik(l(t)−x) + eik(l(t)+x)) dx dk

=2

∫
∂D+

∫ t

0

keω(k)(s−t)+ikl(t)f(s) ds dk

+

∫
∂D+

∫ t

0

keω(k)(s−t)l′(s)(eik(l(t)−l(s)) + eik(l(t)+l(s))) ds dk

−
∫
∂D+

∫ l(0)

0

kq0(x)e−ω(k)t(eik(l(t)−x) + eik(l(t)+x)) dx dk.

(8.10)

We simplify the terms in (8.10) one by one. In the term on the left-hand-side of (8.10), the

integral
∫
∂D+ can be closed in the upper-half plane. In order for this to be valid we must

assume l(t) > 0 for all t. Thus,
∫
∂D+ becomes −

∫
B3

where B3 is the dashed blue path at

infinity in Figure 8.3. Then, integrating by parts twice we find

−
∫
∂D+

∫ l(t)

0

kq(x, t)(eik(l(t)−x) + eik(l(t)+x)) dx dk

=

∫
B3

(
−l′(t)
k

(e2ikl(t) + 1)− 2

k
f(t)eikl(t) +O(k−2)

)
dk.

(8.11)

Consider the last term of (8.11). We note that∫
B3

dk

k2
= lim

R→∞

∫ 3π/4

π/4

i

Reiθ
dθ = 0.

Similarly ∫
B3

dk

kn
= lim

R→∞

∫ 3π/4

π/4

i

R(n−1)eiθ(n−1)
dθ = 0,

for n ≥ 2. Thus, we eliminate the O(k−2) terms. Equation (8.11) becomes

∫
B3

(
−l′(t)
k

(e2ikl(t) + 1)− 2

k
f(t)eikl(t)

)
dk

=− iπ

2
l′(t) +

∫
B3

(
−l′(t)
k

e2ikl(t) − 2

k
f(t)eikl(t)

)
dk

=− iπ

2
l′(t)

(8.12)
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where the last equality can be seen by noting the exponential decay in the integral and using

Jordan’s Lemma. Thus, (8.10) becomes

−iπ
2
l′(t) =2

∫
∂D+

∫ t

0

keω(k)(s−t)+ikl(t)f(s) ds dk

+

∫
∂D+

∫ t

0

keω(k)(s−t)l′(s)(eik(l(t)−l(s)) + eik(l(t)+l(s))) ds dk

−
∫
∂D+

∫ l(0)

0

kq0(x)e−ω(k)t(eik(l(t)−x) + eik(l(t)+x)) dx dk.

(8.13)

Considering the decay and analyticity properties of the first term on the right-hand side

of (8.13), we deform
∫
∂D+ to

∫∞
−∞+

∫
B1

+
∫
B2

where B1 and B2 are the dashed blue paths at

infinity in Figure 8.3:

2

∫
∂D+

∫ t

0

keω(k)(s−t)+ikl(t)f(s) ds dk =2

∫ ∞
−∞

∫ t

0

keω(k)(s−t)+ikl(t)f(s) ds dk

+ 2

∫
B1+B2

∫ t

0

keω(k)(s−t)+ikl(t)f(s) ds dk.

(8.14)

Switching the order of integration and integrating the first term in (8.14) and integrating by

parts twice for the integral over B1 +B2, the right-hand-side of (8.14) is

i
√
πl(t)

∫ t

0

e−
l(t)2

4(t−s)f(s)

(t− s)3/2
ds+2

∫
B1+B2

(
eikl(t)

(
f(t)

k
− f(0)

k
e−ω(k)t

)
−
∫ t

0

f ′(s)

k
eω(k)(s−t) ds

)
dk.

The second integral evaluates to zero using integration by parts and Jordan’s Lemma.

Hence, (8.13) becomes

−iπ
2
l′(t) =i

√
πl(t)

∫ t

0

e−
l(t)2

4(t−s)f(s)

(t− s)3/2
ds

+

∫
∂D+

∫ t

0

keω(k)(s−t)l′(s)(eik(l(t)−l(s)) + eik(l(t)+l(s))) ds dk

−
∫
∂D+

∫ l(0)

0

kq0(x)e−ω(k)t(eik(l(t)−x) + eik(l(t)+x)) dx dk.

(8.15)

Next, we consider the second term on the right-hand side of (8.15). Similar to above we

deform
∫
∂D+ to

∫∞
−∞+

∫
B1

+
∫
B2

. Then, switching the order of integration in the first integral
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and integrating by parts we find

∫ t

0

∫ ∞
−∞

keω(k)(s−t)l′(s)(eik(l(t)−l(s)) + eik(l(t)+l(s))) dk ds

+

∫
B1+B2

∫ t

0

keω(k)(s−t)l′(s)(eik(l(t)−l(s)) + eik(l(t)+l(s))) ds dk

=
i
√
π

2

∫ t

0

l′(s)

(t− s)3/2

(
e−

(l(t)+l(s))2

4(t−s) (l(t) + l(s)) + e−
(l(t)−l(s))2

4(t−s) (l(t)− l(s))
)

ds

+

∫
B1+B2

[
l′(t)

k
(1 + e2ikl(t))− l′(0)

k
e−ω(k)t(eik(l(t)−l(0)) + eik(l(t)+l(0)))

−
∫ t

0

eω(k)(s−t) (il′(s)2(eik(l(t)+l(s)) − eik(l(t)−l(s))) + l′′(s)(eik(l(t)+l(s)) + eik(l(t)−l(s)))
)

ds

]
dk.

Assuming l(t) is monotone and noticing that continuing to do integration by parts leads to

terms with decaying exponentials, the expression above becomes

i
√
π

2

∫ t

0

l′(s)

(t− s)3/2

(
e−

(l(t)+l(s))2

4(t−s) (l(t) + l(s)) + e−
(l(t)−l(s))2

4(t−s) (l(t)− l(s))
)

ds+

∫
B1+B2

l′(t)

k
dk

=
i
√
π

2

∫ t

0

l′(s)

(t− s)3/2

(
e−

(l(t)+l(s))2

4(t−s) (l(t) + l(s)) + e−
(l(t)−l(s))2

4(t−s) (l(t)− l(s))
)

ds+
iπ

2
l′(t).

Hence, (8.15) is

−iπl′(t) =i
√
πl(t)

∫ t

0

e−
l(t)2

4(t−s)f(s)

(t− s)3/2
ds

+

∫ t

0

i
√
πl′(s)

2(t− s)3/2

(
e−

(l(t)+l(s))2

4(t−s) (l(t) + l(s)) + e−
(l(t)−l(s))2

4(t−s) (l(t)− l(s))
)

ds

−
∫
∂D+

∫ l(0)

0

kq0(x)e−ω(k)t(eik(l(t)−x) + eik(l(t)+x)) dx dk.

(8.16)

Finally, we consider the last term on the right-hand side of (8.16). As before, we deform∫
∂D+ to

∫∞
−∞+

∫
B1

+
∫
B2

, switch the order of integration for the first integral and in the

second integral we integrate by parts and recognize that every term in the integral over B1
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and B2 have decaying exponentials.

−
∫ l(0)

0

∫ ∞
−∞

kq0(x)e−ω(k)t(eik(l(t)−x) + eik(l(t)+x)) dx dk

−
∫
B1+B2

∫ l(0)

0

kq0(x)e−ω(k)t(eik(l(t)−x) + eik(l(t)+x)) dk dx

=−
∫ l(0)

0

i
√
π

2t3/2
q0(x)

(
e−

(l(t)+x)2

4t (l(t) + x) + e−
(l(t)−x)2

4t (l(t)− x)

)
dx.

Finally (8.16) becomes

l′(t) =− l(t)√
π

∫ t

0

e−
l(t)2

4(t−s)f(s)

(t− s)3/2
ds

− 1

2
√
π

∫ t

0

l′(s)

(t− s)3/2

(
e−

(l(t)+l(s))2

4(t−s) (l(t) + l(s)) + e−
(l(t)−l(s))2

4(t−s) (l(t)− l(s))
)

ds

+
1

2
√
π

∫ l(0)

0

q0(x)

t3/2

(
e−

(l(t)+x)2

4t (l(t) + x) + e−
(l(t)−x)2

4t (l(t)− x)

)
dx.

(8.17)

Defining the kernel K(x, r; l(t)) = 1
2r3/2

√
π

(
e−

(l(t)+x)2

4r (l(t) + x) + e−
(l(t)−x)2

4r (l(t)− x)
)

, Equa-

tion (8.17) is

l′(t) = −
∫ t

0

K(0, t−s; l(t))f(s) ds−
∫ t

0

l′(s)K(l(s), t−s; l(t)) ds+

∫ l(0)

0

q0(x)K(x, t; l(t)) dx.

(8.18)

An analogous result for Dirichlet boundary conditions is presented in Section 12-5 of [32].

Their result is obtained using “potential theoretic methods” rather than the Fokas method.

8.1.3 The Fokas Method for interface problems

In this section we find l′(t) using another method. Once again consider (8.1) subject to

the initial and boundary conditions (8.2). We begin with the global relation (8.7) and its

evaluation at −k, Equation (8.8). Our goal is to solve for q(x, t) using the Fokas method

and then use the Stefan condition (qx(l(t), t) = −l′(t)) to get an equation for l′(t).



8.1. THE ONE-PHASE STEFAN PROBLEM ON A SEMI-INFINITE DOMAIN 179

Inverting the x-transform in (8.7) we have

q(x, t) =
1

2π

∫ ∞
−∞

∫ l(0)

0

eik(x−y)−ω(k)tq0(y) dy dk − 1

2π

∫ ∞
−∞

∫ t

0

eik(x−l(s))+ω(k)(s−t)l′(s) ds dk

− 1

2π

∫ ∞
−∞

∫ t

0

eikx+ω(k)(s−t)f(s) ds dk − i

2π

∫ ∞
−∞

∫ t

0

keikx+ω(k)(s−t)q(0, s) ds dk,

for 0 < x < l(t) and t > 0. The integrand of the fourth k-integral is entire and decays

as k → ∞ for k ∈ C+ \ D+. Using the analyticity of the integrand and applying Jordan’s

Lemma we can replace the contour of integration of the fourth integral by
∫
∂D+ :

q(x, t) =
1

2π

∫ ∞
−∞

∫ l(0)

0

eik(x−y)−ω(k)tq0(y) dy dk

− 1

2π

∫ ∞
−∞

∫ t

0

eik(x−l(s))+ω(k)(s−t)l′(s) ds dk

− 1

2π

∫ ∞
−∞

∫ t

0

eikx+ω(k)(s−t)f(s) ds dk

− i

2π

∫
∂D+

∫ t

0

keikx+ω(k)(s−t)q(0, s) ds dk.

(8.19)

Equation (8.19) for q(x, t) depends on the unknown function q(0, s). We use (8.8) to

solve for q(0, s) and substitute this into (8.19):

q(x, t) =
1

2π

∫ ∞
−∞

∫ l(0)

0

e−ω(k)tq0(y)
(
eik(x−y) + eik(x+y)

)
dy dk

− 1

2π

∫ ∞
−∞

∫ t

0

eω(k)(s−t)l′(s)
(
eik(x−l(s)) + eik(x+l(s))

)
ds dk

− 1

π

∫ ∞
−∞

∫ t

0

eikx+ω(k)(s−t)f(s) ds dk − 1

2π

∫
∂D+

∫ l(t)

0

eik(x+y)q(y, t) dy dk.

(8.20)

where we have interchanged
∫
∂D+ and

∫∞
−∞ whenever convenient by employing Cauchy’s

Theorem and Jordan’s Lemma. The final term in the expression above depends on q(y, t)

which is unknown. However, the integrand is analytic for all k ∈ C+ and
∫ l(t)

0
eikyq(y, t) dy

decays for k →∞ for k ∈ C+. Thus, by Jordan’s Lemma, the integral of
∫ l(t)

0
eik(x+y)q(y, t) dy

along a closed, bounded curve in C+ vanishes. In particular we consider the closed curve
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L+ = LD+ ∪ L+
C where LD+ = ∂D+ ∩ {k : |k| < C} and L+

C = {k ∈ D+ : |k| = C}, see

Figure 1.3.

Since the integral along L+
C vanishes for large C, the fourth integral on the right-hand

side of (8.20) must vanish since the contour LD+ becomes ∂D+ as C → ∞. The uniform

decay of
∫ l(t)

0
eik(x+y)q(y, t) dy for large k is exactly the condition required for the integral to

vanish, using Jordan’s Lemma. Now, we have an explicit representation for q(x, t) in terms

of initial conditions, boundary conditions, and the moving boundary l(t):

q(x, t) =
1

2π

∫ ∞
−∞

∫ l(0)

0

e−ω(k)tq0(y)
(
eik(x−y) + eik(x+y)

)
dy dk

− 1

2π

∫ ∞
−∞

∫ t

0

eω(k)(s−t)l′(s)
(
eik(x−l(s)) + eik(x+l(s))

)
ds dk

− 1

π

∫ ∞
−∞

∫ t

0

eikx+ω(k)(s−t)f(s) ds dk.

(8.21)

Switching the order of integration and evaluating the k integrals we have

q(x, t) =
1

2
√
π

∫ l(0)

0

q0(y)√
t

(
e−

(x−y)2
4t + e−

(x+y)2

4t

)
dy

− 1

2
√
π

∫ t

0

l′(s)√
t− s

(
e−

(x−l(s))2
4(t−s) + e−

(x+l(s))2

4(t−s)

)
ds

− 1√
π

∫ t

0

e−
x2

4(t−s)f(s)√
t− s

ds.

(8.22)

In order to find l(t) we take an x derivative of (8.22) and evaluate at (x, t) = (l(t), t). Since

we are evaluating the inverse Fourier transform at the edge of the domain (x = l(t)) where

there is a discontinuity we are actually reconstructing the average across the discontinuity

which is qx(l(t), t)/2. Thus, we take the derivative of (8.22) and evaluate at (x, t) = (l(t), t)

and multiply by 2 to find

l′(t) =
1

2
√
π

∫ l(0)

0

q0(y)

t3/2

(
e−

(l(t)+y)2

4t (l(t) + y) + e−
(l(t)−y)2

4t (l(t)− y)

)
dy

− 1

2
√
π

∫ t

0

l′(s)

(t− s)3/2

(
e−

(l(t)−l(s))2
4(t−s) (l(t)− l(s)) + e−

(l(t)+l(s))2

4(t−s) (l(t) + l(s))

)
ds

− l(t)√
π

∫ t

0

e−
l(t)2

4(t−s)f(s)

(t− s)3/2
ds.

(8.23)
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This is the same expression as (8.17) in the previous section.

Remarks:

• If l(t) is constant then l(0) =∞, l′(s) = 0, and (8.21) becomes the solution to the heat

equation on the half line with Neumann boundary conditions.

• Plugging qx(0, t) = f(t) = c3√
t
, and l(t) = c4

√
t where c4 is determined implicitly by

plugging (8.5) into (8.22) and doing a change of variables one can easily see that the

equation is dependent only on terms of the form ζ = x√
t
. This is consistent with the

similarity solution given by (8.4).

• Taking derivatives of qx(l(t), t) = −l′(t) with respect to t and evaluating at t = 0 gives

relationships between q0(l(0)) and its derivates and l(0) and its derivatives. Namely

q0
′(l(0)) =0,

q′′0(l(0))l′(0) + q′′′0 (l(0)) =− l′′(0),

q′′0(l(0)l′′(0) + q′′′0 (l(0))l′(0)2 + 2q′′′′(l(0))l′(0) + q′′′′′(l(0)) =− l′′′(0),

...

(8.24)

for as many derivatives as one would care to take. Similarly, if we begin with q(l(t), t) =

0 and take derivatives with respect to t we have

q0(l(0)) =0,

q′′0(l(0)) + q′0(l(0))l′(0) =0,

q′′′′0 (l(0)) + q′′′0 (l(0))(l′(0) + 1) + q′′0(l(0))l′(0)2 + q′0(l(0))l′′(0) =0,

...

(8.25)

where again we can take as many derivatives as we would like.

If l(t) is analytic, then it has a Taylor expansion [1]. Assuming l(t) =
∑∞

j=0 ljt
j and

observing that the exponential decay in K(x, t; l(t)) as t → 0 we know lj = 0 for all
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j ≥ 1 . An easy calculation shows that l(t) is a spectrally small (beyond all orders)

function of t. That is, any derivative of l(t) evaluated at t = 0 is 0. Using this in (8.24)

and (8.25) we find that q0(l(0)) and all its derivatives must be exactly 0. This is

obviously not a physically relevant problem. It follows that l(t) is not analytic.

• It is not clear that we could analytically find l(t). A numerical fixed point method for

solving (8.23) is suggested in [32]. We implemented this in Mathematica by numerically

approximating all functions by third order polynomials and considered the method

converged at each step when the values were within 10−6 of the previous iteration. For

the results plotted in 8.4 we assumed l(0) = 1, q0(x) = x − 1, and f(t) = cos(t). We

used a step size of .0001 in time.

Figure 8.4: A numerical solution for l(t).
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8.2 The two-phase Stefan problem on an infinite do-

main

We consider the heat equation in two time-dependent domains, ice and water:

qWt − σ2
W q

W
xx =0, x < l(t), t ≥ 0, (8.26a)

qIt − σ2
Iq
I
xx =0, x > l(t), t ≥ 0, (8.26b)

with l(t) a monotonic unknown function. The given initial, boundary, and interface condi-

tions are

qW (x, 0) =qW0 (x) (8.27a)

qI(x, 0) =qI0(x) (8.27b)

lim
x→−∞

qW (x, t) =γW , (8.27c)

lim
x→∞

qI(x, t) =γI , (8.27d)

qW (l(t), t) = qI(l(t), t) =0, (8.27e)

σ2
Iq
I
x(l(t), t)− σ2

W q
W
x (l(t), t) =l′(t), (8.27f)

where γI < 0 and γW > 0. The domain is as pictured in Figure 8.5.

8.2.1 A similarity solution

Consider (8.26) subject to the conditions (8.27) and choose ζ = x/
√
t. We look for a

similarity solution qW (x, t) = QW (ζ) and qI(x, t) = QI(ζ). Our equation becomes the set of

ordinary differential equations

ζQW
ζ + 2σ2

WQ
W
ζζ =0, ζ <

l(t)√
t
, t > 0, (8.28a)

ζQI
ζ + 2σ2

IQ
I
ζζ =0, x >

l(t)√
t
, t > 0. (8.28b)
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t

x

t = T

l(0)

qWt = σ2
W q

W
xx qIt = σ2

Iq
I
xx

l(t)

Figure 8.5: The domain over which one solves the heat equation including the moving

boundary l(t) for the Stefan problem.

Our boundary and interface conditions transform similarly to become

lim
ζ→−∞

QW (ζ) =γW ,

lim
ζ→∞

QI(ζ) =γI ,

QW

(
l(t)√
t

)
= QI

(
l(t)√
t

)
=0,

σ2
I√
t
QI
ζ

(
l(t)√
t

)
− σ2

W√
t
QW
ζ

(
l(t)√
t

)
=l′(t).

Solving (8.28) and imposing the asymptotic conditions (8.27c) and (8.27d) we find

QW (ζ) =c1 + (c1 − γW ) erf

(
ζ

2σW

)
,

QI(ζ) =c2 + (γI − c2) erf

(
ζ

2σI

)
,

(8.29)

where c1 and c2 are constants of integration. To find c1 and c2 we impose the conditions at

the interface. This requires

c1 =
γW erf

(
l(t)

2σW
√
t

)
erf
(

l(t)

2σW
√
t

)
+ 1

,

c2 =
γI erf

(
l(t)

2σI
√
t

)
erf
(

l(t)

2σI
√
t

)
− 1

.
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However c1 and c2 are constants independent of ζ(x, t). Thus, l(t) = 2c3σIσW
√
t where c3 is

a constant. Hence, our similarity solution is

QW (ζ) =
γW

(
erf (c3σI)− erf

(
ζ

2σW

))
erf (c3σI) + 1

,

QI(ζ) =
γI

(
erf (c3σW )− erf

(
ζ

2σI

))
erf (c3σW )− 1

.

(8.30)

Imposing the Stefan condition we have an implicit equation for c3

c3σIσW
√
π =

e−c
2
3σ

2
IγWσW

erf(c3σI) + 1
− e−c

2
3σ

2
W γIσI

erf(c3σW )− 1
. (8.31)

Choosing the parameter values σI = 2, σW = 3, γW = 6, and γI = −1 and numerically

solving for c3 one can plot the solution as in Figure 8.6.

Remarks:

• The two-phase problem is clearly more physically relevant than the one-phase problem.

As far as we know there are no solutions to this problem in the literature.

• The solution to this problem using an analog to the methods presented in Sections 8.1.2

and 8.1.3 is currently under investigation although the addition of a non-constant

second domain introduces significant challenges.
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Figure 8.6: The solution to (8.28) with σI = 2, σW = 3, γW = 6, γI = −1, and c3 the

numerical solution to (8.31).



Appendix A

The transport and heat equations

We wish to find u(1)(x, t) and u(2)(x, t) satisfying

u
(1)
t (x, t) =− c1u

(1)
x (x, t), x < 0, t > 0,

u
(2)
t (x, t) =σ2

2u
(2)
xx (x, t), x > 0, t > 0,

(A.1)

subject to the asymptotic conditions

lim
x→−∞

u(1)(x, t) =0, t > 0,

lim
x→∞

u(2)(x, t) =0, t > 0,
(A.2)

the initial conditions

u(1)(x, 0) =u
(1)
0 (x), x < 0,

u(2)(x, 0) =u
(2)
0 (x), x > 0,

(A.3)

and the interface condition

ρ1u
(1)(0, t) =ρ2u

(2)(0, t), t > 0, (A.4)

where c1, σ2, ρ1 and ρ2 are t-independent nonzero constants. The sub- and super-indices 1

and 2 denote the left and right domain, respectively as in Figure A.1. In what follows we

assume that c1 and σ2 are both positive for convenience.
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u
(1)
t = −c1u

(1)
x u

(2)
t = σ2

2u
(2)
xx

x
−∞ 0 ∞

Figure A.1: The transport equation on the left semi-infinite domain and heat equation on

the right semi-infinite domain.

We follow the standard steps in the application of the Fokas Method beginning with the

local relations

(
e−ikx+ω1tu(1)(x, t)

)
t

=
(
−c1e

−ikx+ω1tu(1)(x, t)
)
x
, (A.5a)(

e−ikx+ω2tu(2)(x, t)
)
t

=
(
σ2

2e
−ikx+ω2t(u(2)

x (x, t) + iku(2)(x, t))
)
x
. (A.5b)

These are one parameter family relations obtained by rewriting (A.1) where ω1(k) = ikc1 and

ω2(k) = (σ2k)2. Applying Green’s Theorem in the strips (−∞, 0)× (0, t) and (0,∞)× (0, t)

respectively (see Figure 2.2), we find the global relations

0 =

∫ 0

−∞
e−ikxu

(1)
0 (x) dx−

∫ 0

−∞
e−ikx+ω1tu(1)(x, t) dx−

∫ t

0

c1e
ω1su(1)(0, s) ds, (A.6a)

0 =

∫ ∞
0

e−ikxu
(2)
0 (x) dx−

∫ ∞
0

e−ikx+ω2tu(2)(x, t) dx

−
∫ t

0

σ2
2e
ω2s
(
u(2)
x (0, s) + iku(2)(0, s)

)
ds.

(A.6b)

For k ∈ C, we define the following

û(1)(k, t) =

∫ 0

−∞
e−ikxu(1)(x, t) dx, û

(1)
0 (k) =

∫ 0

−∞
e−ikxu

(1)
0 (x) dx,

û(2)(k, t) =

∫ ∞
0

e−ikxu(2)(x, t) dx, û
(2)
0 (k) =

∫ ∞
0

e−ikxu
(2)
0 (x) dx.

Using these definitions and the interface condition, the global relations (A.6) are rewritten

as
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0 =û
(1)
0 (k)− eω1tû(1)(k, t)−

∫ t

0

c1e
ω1su(1)(0, s) ds, (A.7a)

0 =û
(2)
0 (k)− eω2tû(2)(k, t)−

∫ t

0

σ2
2e
ω2s

(
u(2)
x (0, s) +

ikρ1

ρ2

u(1)(0, s)

)
ds. (A.7b)

Inverting the Fourier transforms in (A.7) we have the solution formulas

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk − c1

2π

∫ ∞
−∞

∫ t

0

eikx−ω1(t−s)u(1)(0, s) ds dk, (A.8a)

u(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk

− σ2
2

2π

∫ ∞
−∞

∫ t

0

eikx−ω2(t−s)
(
u(2)
x (0, s) +

ikρ1

ρ2

u(1)(0, s)

)
ds dk.

(A.8b)

Switching the order of integration, the integrand of the second term in equation (A.8a) is

entire and decays for k ∈ C− since c1 is positive. Thus, using Jordan’s Lemma and Cauchy’s

Theorem that term is zero. In (A.8b) the integrand of the second term decays and is entire

for C−/D−. Hence, we have closed-form solutions depending only on initial conditions:

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k) dk, (A.9a)

u(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk

+
σ2

2

2π

∫
∂D−

∫ t

0

eikx−ω2(t−s)
(
u(2)
x (0, s) +

ikρ1

ρ2

u(1)(0, s)

)
ds dk.

(A.9b)

Switching the order of integration in the first integral and evaluating the integral with respect

to k we find the familiar d’Alembert form of the solution to the transport equation [51]

u(1)(x, t) =u
(1)
0 (x− c1t), (A.10a)

u(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−ω2tû
(2)
0 (k) dk

+
σ2

2

2π

∫
∂D−

∫ t

0

eikx−ω2(t−s)
(
u(2)
x (0, s) +

ikρ1

ρ2

u(1)(0, s)

)
ds dk.

(A.10b)
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Of course, this example is trivial since one could easily solve the transport equation on the

left and use the solution to impose boundary conditions for the heat equation on the right.

We include this problem in an appendix as a proof of concept. This simple example shows

how the Fokas Method might be applied to problems with different equations in adjacent

domains. We hope to apply this method to more complex problems in the future.
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