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Abstract

On the instability of water waves with surface tension.

Olga Trichtchenko

Chair of the Supervisory Committee:
Professor Bernard Deconinck

Department of Applied Mathematics

We analyze the stability of solutions to Euler’s equations in the presence of surface tension.

First we compute stationary solutions to periodic Euler’s equations in a travelling frame of

reference and then we analyze their spectral stability. Depending on the coefficient of surface

tension, we see resonant effects in the solutions. This results in a myriad of instabilities for

gravity-capillary waves. Since the theory for analyzing the stability of water waves is general

to all Hamiltonian systems, we extend the results to other equations, mainly ones that are

used to model water waves in different asymptotic regimes. We compare the stability results

for the model equations to those we obtain for the full water wave system and comment on

the applicability of these models.
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Chapter 1

INTRODUCTION
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Figure 1.1: The domain on which we solve Euler’s equations.

The goal of this thesis work is to investigate what effect the addition of surface tension has

on modelling water waves. The classical water wave problem is the problem of determining

the shape and dynamics of the free surface on an incompressible, inviscid fluid. Since the

fluid is irrotational, a velocity potential is introduced. For one dimensional surface waves,

the problem is described by the classical equations [86]



φxx + φzz = 0, (x, z) ∈ D,

φz = 0, z = −h, x ∈ (0, L),

ηt + ηxφx = φz, z = η(x, t), x ∈ (0, L),

φt +
1

2

(
φ2x + φ2y

)
+ gη = σ

ηxx

(1 + η2x)3/2
, z = η(x, t), x ∈ (0, L),

(1.1)

where h is the height of the fluid, g is the acceleration due to gravity and σ is the coefficient

of surface tension. Further, η(x, t) is the elevation of the fluid surface, and φ(x, z, t) is

its velocity potential. In this paper, we focus on solutions on a periodic domain D =

{(x, z) | 0 ≤ x < L,−h < z < η(x, t)}, see Fig. 1.1. By varying the depth of the water, the

coefficient of surface tension can take any positive value [1] and therefore all such values

should be considered.

An important property of these equations, is the existence of a singular limit otherwise

known as the resonance condition. It can be understood by considering a Stokes expansion

[82] for the surface of the wave. Using regular perturbation theory, we expand the surface
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Figure 1.2: Plot of (3.14) that shows the relationship between surface tension σ and resonant
modes k.

in terms of a small parameter ε representing the amplitude of the wave

η(x) =

∞∑
n=1

εnηn. (1.2)

From the work by Stokes [82] and convergence results by Levi-Civita [57] and Struik [83],

we know we can also expand the wave profile in terms of a cosine series

ηn(x) =

n∑
m=1

η̂nm cos(mx). (1.3)

From this, we obtain a solvability condition for ηn with m ∈ Z. If

(g + σ) tanh(h)−
(
g +m2σ

) tanh(mh)

m
= 0 (1.4)

does not hold, then we can solve for ηm. We call (1.4) the resonance condition. The

coefficient of surface tension σ determines the resonant harmonic m ∈ Z and was first

noticed by Wilton [92]. Numerically, it is interesting to vary σ depending on which resonant

mode we wish to capture. The relation between surface tension and resonant modes is

shown in Figure 1.2. In this thesis, we examine what happens in the cases where we are

near-resonance m 6= Z and in those where we are at resonance. However, this resonance

condition is a weakly nonlinear theory result. This implies it is valid for small amplitude
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solutions. In our work, we are interested in solutions of the fully nonlinear problem and

thus, arbitrary amplitude waves.

The work presented here follows that of Oliveras in her thesis [72] as well as Deconinck

and Oliveras [25]. They presented a thorough numerical overview of the spectral instabilities

of periodic traveling one-dimensional gravity (i.e., σ = 0) water waves. An emphasis of that

work is the presence of oscillatory instabilities even for waves in shallow water (kh < 1.363,

see [6, 87], here k = 2π/L). Since the underlying waves are periodic, their stability analysis

uses Hill’s method, see [23], which incorporates the conclusions from Floquet’s Theorem

with Fourier analysis. This associates with each wave a range of Floquet exponents µ which

may be taken as (−π/L, π/L]. In this thesis, we extend the analysis to water waves in the

presence of surface tension. Mainly, we explore how the oscillatory instabilities change when

the capillarity effect is included, paying careful attention to the resonance phenomena of

Wilton ripples.

The thesis is laid out in the following way. In Chapter 1, we provide an overview of the

literature on this classical problem. Since the field is over 300 years old, we focus mainly on

literature relevant to the work presented here. That is, we present results about periodic

travelling wave solutions of Euler’s equations as well as their stability. The next chapter

discusses results in [26]. These are the stability results for gravity waves in the presence of

surface tension. Chapter 3 describes what happens to stability as we increase the strength

of surface tension, leading to analysis of gravity-capillary waves. Chapter 4 then discusses

the resonant solutions in the presence of Wilton ripples. In Chapter 5, we extend the general

theory of stability for solutions of small amplitude, to include other examples. We finish

the thesis by summarizing and concluding the results shown in this work.
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Chapter 2

BACKGROUND AND LITERATURE REVIEW
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2.1 Introduction

The study of water waves goes back as far as Newton (1687), Euler (1761) and Bernouilli

(1738) [18], more than 300 years ago. The field benefits from theoretical contributions

in addition to experimental ones. This chapter attempts to cover the literature that is

most relevant to the current work. It is by no means comprehensive. In this work, we are

interested in solving the set of Euler’s equations describing an inviscid, irrotational fluid on

a periodic domain. This is done in two steps. First, solutions are constructed and second,

their stability is investigated. The main emphasis of the thesis is on the analysis of solutions

involving the effects of surface tension. Traditionally, it has been thought that the effects

of surface tension are stabilizing [56]. Mathematically, the addition of surface tension as a

nonlinear effect in the set of governing equations, requires more careful consideration.

Instead of solving the full system, asymptotic analysis can be used to simplify the prob-

lem. Many approximations to Euler’s equations are relevant in different regimes. For

shallow water waves for instance, there are the one-dimensional Korteweg-deVries [2] and

the two-dimensional Kadomtsev-Petviashvili equation [2]. For deep water waves, the non-

linear Schrödinger equation is a relevant model. There are also models that incorporate a

term representing surface tension effects, such as the one seen in the Kawahara equation.

There has also been a lot of focus on water waves on the whole line. We focus mainly on the

literature that presents the solutions to the full Euler’s equations for the periodic system.

We restrict our attention to the results for water waves with a one-dimensional surface.

This work can be extended to fully three-dimensional surface as was done in [72] for gravity

waves, but we have not pursued this yet.

This chapter is structured the following way. First, a discussion of the history of the

computation of traveling wave solutions is presented. Next, we review the literature on the

investigation of their stability properties. Since the focus of this work is the effect of surface

tension, special attention is given to its contribution. We finish this chapter with results

that are specific to waves with surface tension, i.e., gravity-capillary waves.
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2.2 Background

Stokes was the first to construct periodic solutions to the nonlinear Euler’s equations in 1847.

He introduced a form for a graph of a travelling wave on a periodic domain [81]. This was

done perturbatively by adding successive harmonics of a cosine profile. In 1880, he found

there is a gravity wave of maximum height that is achieved when the distance from crest

to trough is 0.142 wavelengths [18]. The first paper to show that such a series expansion in

powers of the wave amplitude (or Stokes’ expansion) converges was by Nekrasov (1921) [71]

and Levi-Civita (1925) [57]. They showed that the Stokes series converges when the ratio

of amplitude to wavelength is sufficiently small and the waves are in infinitely deep water.

Struik (1926) [83] extended this analysis for water of finite depth.

Examining periodic surface gravity-capillary waves using an expansion like the one used

by Stokes, Wilton (1915) [92] computed successive coefficients, including the effects of sur-

face tension. He showed that if the coefficient of surface tension in infinitely deep water is

proportional to 1/n, where n is an integer, the denominator of the expansion coefficients

approaches zero. Since the terms of the series are computed only up to a scaling, he postu-

lated that if you equate the constant in front of the n-th harmonic to be proportional to the

vanishing denominator, convergence of the series may once again be achieved, thus reorder-

ing the series. These solutions are referred to as Wilton ripples and have been observed in

experiments such as the one by Henderson and Hammack [40].

Following Stokes’s discovery of a wave of greatest height for gravity waves [81], Crapper

investigated the possibility of a wave of maximum height for purely capillary waves. Using

a series expansion similar to Stokes (1957), he wrote down an exact solution for capillary

waves of arbitrary amplitude on an infinitely deep fluid, and he concluded a similar result

was possible for finite depth. He found that for infinite depth, the wave of greatest height

occurs when the distance from crest to trough is 0.73 wavelengths.

2.3 Solutions

Euler’s equations are hard to solve as written. Many different ways of reformulating Euler’s

equations exist, mainly aimed at avoiding having to solve Laplace’s equation on an unknown
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domain. A lot of these reformulations rewrite the system only in terms of the surface

variables, first introduced by Zakharov [94]. We mention some such methods, but for a more

comprehensive comparison, see [90]. One method is using conformal mapping (CM) [29] to

solve the one-dimensional water wave problem. This leads to equations such as the ones used

by Longuet-Higgins and Cokelet (1976) [60] or even to the boundary integral methods used

by Vanden-Broeck et al. [86]. However, the CM approach does not easily extend to the

three-dimensional equations. Another approach defines a Dirichlet-to-Neumann operator

(DNO), see Craig and Sulem (1993) [17]. A transformed field expansion method (TFE)

developed by Bruno and Reitich [13], is currently used on the water wave problem by Akers

and Nicholls where they include the effects of surface tension [3]. The last method to

consider, different from the one in this thesis, is the boundary integral method (BIM) used

by Wilkening [90]. It does extend to three-dimension, but computationally, it is hard to set

up.

We are building on the work of Deconinck and Oliveras (2011) [25]. That means the

method most relevant to us is the reformulation due to Ablowitz, Fokas and Musslimani

(2006) [1]. In this thesis, we rewrite the water wave problem as two coupled equations, one

local and one nonlocal. This method is discussed in more detail in later sections.

Using the different reformulations, many have computed solutions to Euler’s equations.

It is important to mention some major results by some key contributors. There are two main

cases to consider, solutions to water wave equations on the whole line leading to solitary

waves, or solutions on a periodic domain. Within these, people often examine different

limits such as shallow and deep water waves. For each of these, we can examine waves

where the only force acting on the motion is gravity (gravity waves) or surface tension

(capillary waves) as well as waves with both forces having a contribution (gravity-capillary

waves). Another important classification of solutions is by the dimension of the surface, one

or two-dimensional (a two-dimensional surface leads to a fully three-dimensional problem).

For waves on the whole line, solutions are divided into waves of depression or elevation.

One can also examine wave packets, interaction of several different waves and many more

complicated scenarios, but since we focus on periodic waves in this thesis, we will not

mention the more complicated full line situations any further. However, solitary waves as
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well as their stability have been examined in [59], [14], [74], [52], [70] as well as many other

papers.

One of the most prolific contributors to the field has been J.-M. Vanden-Broeck. In

his book [86], he collects some of the results from his numerous papers (such as [78] and

[42] for the case of periodic gravity-capillary waves) and discusses the intricacies involved

when the effects of surface tension are included in the computation of solutions to Euler’s

equations. He outlines the boundary integral method as well as other numerical schemes.

He explicitly shows how Wilton ripples arise and how this effects the ordering of the series

for the solution. His book includes many forms of the solution for the periodic as well as

the whole line problem. He includes bifurcation diagrams of the different types of solutions

and how these curves are interrelated. However, he does not focus on the stability of those

waves.

2.4 Stability of Solutions

With solutions to Euler’s equations on the periodic domain in hand, it is important to

address their stability. Phillips (1960) [37] examined the dynamics of gravity waves on the

surface of deep water and realized that when certain conditions are met, the waves behave

as forced, resonant oscillators which cause energy transfer between the constituting wave

trains. This work was supported by many experimental and numerical results such as the

ones by Longuet-Higgins [60], McGoldrick [63] and others that are discussed in the next

section. Phillips focussed on a perturbation series expansion and the conditions necessary

for the higher-order terms to satisfy the linear dispersion relation. He showed that resonant

triads are not possible for gravity waves in deep water. McGoldrick also showed such triads

are possible when surface tension is incorporated [37].

Benjamin and Feir [7], Benjamin [6] as well as Whitham [87] derived the criterion that

Stokes waves on sufficiently deep water, i.e., when the product of the wavenumber k and

the fluid depth h is larger than 1.363, are modulationally unstable. For kh < 1.363, this

instability is not present. Benjamin and Feir (1967) also showed this experimentally [7].

Benjamin acknowledged the work of Phillips, but derived the nonlinear interactions by his

own methods which involved the interactions of waves of different frequencies.
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Using a different approach, Zakharov (1968) wrote the seminal paper [94] about the

stability of surface waves on a deep fluid. Starting from Euler’s equations, he showed that

the system is Hamiltonian. He derived a form for the energy in terms of the canonical

variables, the wave profile and velocity potential of the wave evaluated at the surface.

The resulting equation which is accurate to fourth order, is now known as the Zakharov

equation. He concluded that in an appropriate set of normal variables the cubic interaction

terms cancel.

By linearizing around the steady state solutions, a stability eigenvalue problem can be

obtained for the water wave equations. By examining the equality of the eigenvalues (i.e.,

locally the eigenvalue problem looks like a forced harmonic oscillator), McLean (1982) [68],

[67] found there are two classes of instabilities that should be considered. He stated that

these two classes encompass both the Benjamin-Feir instability as well as the resonance

curves found by Phillips. In addition, other previously unclassified instabilities were found.

McLean also obtained maximal growth rates for instabilities as a function of wave steepness.

Another way to investigate the spectral problem is to use the Hamiltonian nature of the

problem. In this framework, the sign of the quadratic term derived from the Hamiltonian

gives an indication to when the collision of eigenvalues on the imaginary axis results in

instablities. MacKay and Saffman (1986) [62] showed how the Hamiltonian for the water

wave problem determined the behaviour of eigenvalues as a parameter is increased. In a

more general context, this is part of the general theory of Krein signatures.

The stability of water waves on the whole line has been extensively analyzed ever since

the observations by Scott Russell of solitary waves [75]. The literature on solitary waves is

considerable. We focus mostly on the more recent and more relevant results, in particular on

the work involving surface tension. Longuet-Higgins (1988) demonstrated numerically that,

the limiting capillary-gravity waves exist in deep water [59]. It was found that solitary waves

of depression are stable and solitary waves of elevation are unstable for infinitesimally small

amplitude waves. The solutions become stable at finite steepness, see Calvo and Akylas

(2001) [14]. The computation of solutions for gravity-capillary solitary waves was extended

to three dimensions by Parau et al. (2004) [74] in infinite depth. It was found that these

waves are unstable to perturbations transverse to the direction of propagation, but that they
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Figure 2.1: An image observed by Schooley [77] which shows a longer gravity wave with
ripples due to capillary effects.

are stable to perturbations along the direction of propagation by Kim and Akylas (2007)

[52]. Milewski et al. (2010) [70] analyzed the dynamics of interacting solitary waves.

2.5 Waves with surface tension

Why study the effects of surface tension? One reason to study surface tension, is to see what

happens to the small high frequency instabilities found in [25]. Since surface tension resists

external forces on a liquid, it is thought to be a stabilizing force [56]. After the instabilities

were seen for gravity waves, it was thought that including even a small coefficient of surface

tension in the model might act to eliminate those instabilities.

Another reason the effects of surface tension are important is that it has been seen to

play a role in waves that are physically observed. It is thought that higher frequency waves

generated on the surface of the ocean are mainly waves where the dominant force is surface

tension [93]. These waves are often the prominent feature in field experiments and they

are the dominant waves in satellite imagery. Capillary waves riding on top of gravity waves

have been observed by Schooley [77], see Figure 2.1. The interesting question to ask is how

stable these types of waves are and how likely they are to persist in water once they are

generated. It is also thought that these capillary waves are the waves generated just before

a wave breaks as seen by Duncan et al. [58] and seen here in Figure 2.2.

Experimentally, one can observe the effect surface tension plays on the type of waves
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Figure 2.2: An experiment done by Duncan et at. [58] where wave breaking is observed
through a sequence of images. It is important to note that the lead-up to wave breaking
initiates capillary waves.
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Figure 2.3: Observed waveforms (left) and frequencies (right) in a wave tank as they propa-
gate down the tank [40]. The topmost plot is closest to wavemaker and the lowest is furthest
down the tank. The waves sent into the tank were almost 20 Hz and it was shown that
a wave of 10 Hz (a Wilton ripple) formed and grew in amplitude until it was dominant,
illustrating the second harmonic Wilton ripple.

generated, as was done by Henderson and Hammack [40]. Waves on the surface of a tank

were generated and observed as they propagated. In the experiment, several sensors were

placed at different points along the tank measuring the profile and the frequencies that made

up the wave as it travelled down the tank. It was found that even though waves of roughly

20 Hz were generated by the paddles at one end of the tank, frequencies that were about

10 Hz were observed as seen in Figure 2.3. This was a manifestation of Wilton ripples, an

effect due to surface tension. One can ask how far down the tank can these waves propagate

without being destroyed.

Perhaps one of the biggest contributions to understanding gravity-capillary waves and

how they relate to resonant interactions is through several works by McGoldrick through

experiment and theory. McGoldrick showed through experiments how gravity-capillary

waves lose their original profile as they propagate [63]. He also examined gravity-capillary
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waves using weakly nonlinear theory [64] and the method of multiple scales [65] showing how

these gravity-capillary waves exist. Resonant phenomena such as Wilton ripples in the case

of water waves have been studied in model equations [39] by adding resonant harmonics into

the series expansion. Akers and Gao derive an explicit series solution for Wilton ripples.

Having a more complete picture of stability results for gravity-capillary waves fits into the

existing literature. We know from work by Choi and Tiron [84] that Crapper’s solutions [19]

are unstable to subharmonic (long wave) perturbations. We know from work by Deconinck

and Oliveras [25] that gravity waves are also unstable to subharmonic perturbations. Where

do gravity-capillary waves fit in? Instabilities has been shown to exist by Jones in [49] [50],

where the author analyzed a system of coupled differential equations approximating the

interaction as a resonant phenomena. In the more recent paper [50], Jones looked at the

second harmonic Wilton ripples and solved the asymptotic expansion to third order of the

system. He examined the evolution of those solutions and showed that these are unstable

to long wave perturbations.

2.6 Summary

There is a myriad of ways that Euler’s equations can be solved. The method we choose

to use is the one due to Ablowitz, Fokas and Musslimani [1]. We use the Fourier-Floquet-

Hill method to analyze the spectral stability of fully nonlinear solutions [23]. The focus in

this thesis, is on solutions that incorporate the effect of surface tension. We analyze the

stability of these so-called gravity-capillary waves. This has not been done in great detail

in the existing literature and the work done fills in the existing gap of what we know about

the effects of surface tension on water waves.
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Chapter 3

GRAVITY WAVES WITH SURFACE TENSION
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Figure 3.1: The domain on which we solve Euler’s equations.

3.1 Introduction

In this chapter, we present the results from the paper “Stability of periodic gravity waves

in the presence of surface tension” by Deconinck & Trichtchenko [26]. Recall that we are

interested in solving the following problem



φxx + φzz = 0, (x, z) ∈ D,

φz = 0, z = −h, x ∈ (0, L),

ηt + ηxφx = φz, z = η(x, t), x ∈ (0, L),

φt +
1

2

(
φ2x + φ2y

)
+ gη = σ

ηxx

(1 + η2x)3/2
, z = η(x, t), x ∈ (0, L),

(3.1)

where h is the height of the fluid, g is the acceleration due to gravity and σ > 0 is the

coefficient of surface tension1. Further, η(x, t) is the elevation of the fluid surface, and

φ(x, z, t) is its velocity potential. In this chapter, we focus on solutions on a periodic

domain D = {(x, z) | 0 ≤ x < L,−h < z < η(x, t)}, see Fig. 3.1.

The work presented in this chapter follows that of Deconinck & Oliveras [25]. They

presented a thorough numerical overview of the spectral instabilities of periodic traveling

one-dimensional gravity (i.e., σ = 0) water waves. An emphasis of that work is the presence

of oscillatory instabilities even for waves in shallow water (kh < 1.363, see [6, 87], here

k = 2π/L). Since the underlying waves are periodic, their stability analysis uses Hill’s

method, see [23], which incorporates the conclusions from Floquet’s Theorem with Fourier

1As noted in [5], σ > 0 for liquid-gas interfaces.
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analysis. This associates with each wave a range of Floquet exponents µ which may be taken

as (−π/L, π/L]. The growth rates of the oscillatory instabilities is small, even for waves of

moderate amplitude, and the range of Floquet exponents with which they are associated is

narrow (on the order of 10−4 for L = 2π). A naive uniform distribution on (−π/L, π/L] of

Floquet exponents is bound to miss the presence of these instabilities, unless an exorbitantly

large number of µ values are considered. Numerically, this is prohibitively expensive (often,

no more than 100 µ-values are chosen), and an adaptive approach is used in [25], with more

values of µ considered near those values of the Floquet exponents where instabilities may

arise, as predicted by MacKay & Saffman [62].

Our goal is to investigate the effect of the inclusion of surface tension on the oscillatory

instabilities. It is well known that the incorporation of capillary effects leads to the presence

of resonances in the Fourier representation of the periodic traveling water waves. If the

resonance condition R(σ, g, h, L) = 0 is satisfied, so-called Wilton ripples are found [86, 92].

Even when R(σ, g, h, L) 6= 0, its value can be made arbitrarily small by the consideration

of Fourier modes with sufficiently high wave number. This results in the presence of small

denominators in the Stokes expansion of the wave profile. This is especially problematic for

waves of moderate or high amplitude, whose accurate Fourier representation requires more

modes. This is discussed in more detail in Sections 3.3 and 3.4. Because of this, we limit

our investigations to the instabilities of waves of small amplitude, so that (near-) resonance

is avoided. Waves in both shallow and deep water are considered.

The layout of this chapter is the following. Section 3.2 discusses the reformulation of

the water wave problem we use, both for the computation of the traveling wave solutions,

and for the analysis of their stability. After that, different sections are devoted to the

computation of the solutions and to the numerical investigation of their spectral stability.

In addition, we revisit the work of MacKay & Saffman [62], which allows for an analytical

prediction of which modes may lead to instabilities. We finish with conclusions.

3.2 Reformulation

The reformulation of (3.1) of Ablowitz, Fokas and Musslimani [1] follows the work of Za-

kharov [94] by writing the water wave problem in terms of just the surface variables η(x, t)
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and q(x, t) = φ(x, η(x, t), t), the velocity potential evaluated at the surface. Ablowitz, Fokas

and Musslimani [1] show that the two functions η(x, t) and q(x, t) satisfy the system

qt +
1

2
q2x + gη − 1

2

(ηt + ηxqx)2

1 + η2x
= σ

ηxx

(1 + η2x)3/2
, (3.2)∫ L

0
eikx [iηt cosh(k(η + h)) + qx sinh(k(η + h))] dx = 0, ∀k ∈ Λ, (3.3)

where Λ = {2πn/L | n ∈ Z, n 6= 0, }. In [1], only the whole line case is treated. The

extension to the periodic case is straightforward [25]. As stated, equations (3.2) and (3.3)

contain dimensional quantities. We use the same nondimensionalization as in [1], using the

period as the characteristic length scale. In effect, this allows us to equate g = 1, L = 2π

and treat all quantities in (3.2) and (3.3) as nondimensional.

Following the derivation of Deconinck and Oliveras [25], we transform to a traveling

frame of reference, moving with speed c. Thus implies the substitution x → x − ct, ηt →
ηt − cηx and qt → qt − cqx. The local and nonlocal equations (3.2) and (3.3) become

qt − cqx +
1

2
q2x + gη − 1

2

(ηt − cηx + ηxqx)2

1 + η2x
= σ

ηxx

(1 + η2x)3/2
, (3.4)∫ L

0
eikx (i(ηt − cηx) cosh(k(η + h)) + qx sinh(k(η + h))) dx = 0, k ∈ Λ. (3.5)

Traveling wave solutions are stationary in this frame of reference, thus qt = 0 = ηt. We

solve for qx using the local equation:

qx = c−
√

(1 + η2x)

(
c2 − 2gη + 2σ

ηxx

(1 + η2x)3/2

)
, (3.6)

where we have chosen the negative sign in front of the square root [16]. Substituting in the

nonlocal equation (3.5), integrating by parts and simplifying, we are left with∫ L

0
eikx

√
(1 + η2x)

(
c2 − 2gη + 2σ

ηxx

(1 + η2x)3/2

)
sinh(k(η + h))dx = 0, k ∈ Λ. (3.7)

Alternatively,∫ L

0
eikx

√
(1 + η2x)

(
c2 − 2gη + 2σ

ηxx

(1 + η2x)3/2

)
(sinh(kη) + cosh(kη) tanh(kh)) dx = 0, k ∈ Λ,

(3.8)



19

where we have separated the explicit dependence on the depth h. This is useful for numerical

purposes, and it allows for an easy limit when considering the case of water of infinite depth.

Indeed, in the limit h→∞, (3.8) gives∫ L

0
eikx

√
(1 + η2x)

(
c2 − 2gη + 2σ

ηxx

(1 + η2x)3/2

)
e|k|ηdx = 0, k ∈ Λ. (3.9)

In what follows, we equate the solution period L to 2π. Thus Λ = {n | n ∈ Z, n 6= 0, }.

3.3 Constructing traveling-wave solutions

We construct solutions to (3.8) (or (3.9)) using numerical continuation. AUTO [28] and

MatCont [36] are often used for this purpose. For our equations these software packages are

difficult to use because of the nonlocality present. Instead, we wrote our own continuation

program. The trivial solution η = 0 satisfies (3.8) for all values of c. At particular values of

the wave speed c the equation admits nontrivial solutions as well, and bifurcation branches

emanate. To determine these values of c, we linearize (3.8):

∫ 2π

0
eikx

[
c2η + (−gη + σηxx)

tanh(kh)

k

]
dx = 0, k ∈ Λ. (3.10)

With2

η =

∞∑
n=1

an cos(nx),

the linearized equation becomes

[
c2 −

(
g + k2σ

) tanh(kh)

k

]
ak = 0, k ∈ Λ. (3.11)

We impose that for k = 1, the factor in brackets is zero, so that

c =
√

(g + σ) tanh(h), (3.12)

2This form of η equates the average of the free surface to zero, without loss of generality.
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and a1 is not forced to be zero. Then, for almost all values of σ,

η = a1 cos(x), (3.13)

where a1 is an arbitrary constant. Near c =
√

(g + σ) tanh(h), (3.8) with a1 sufficiently

small, is an accurate representation of the solution. To compute η(x) as we continue up

the branch, we use Newton’s method in Fourier space as described below. This results in

a finite-term Fourier representation of the solution, which is truncated at whatever order

guarantees the numerical accuracy desired.

There are particular values of σ for which the factor in parentheses in (3.11) is zero for

a second value of k 6= 1, once c has been chosen as in (3.12). In this case, the linear solution

consists of two terms, leading to resonant solutions or Wilton ripples [86]. Since the goal

of our work is to examine the effect of small surface tension on gravity waves, we wish to

stay away from the resonance phenomenon. The factor seen in (3.11) appears at all orders.

More explicitly, the resonance condition is given by

(g + σ) tanh(h)−
(
g + k2σ

) tanh(kh)

k
= 0. (3.14)

This equation can be solved (numerically) for k, as a function of g, h, and σ. For most

parameter values, the solution k is not an integer, implying that resonance does not oc-

cur. However, for computational purposes we need to avoid near resonances as well. Near

resonances occur for integer values of k near the solution of (3.14). This leads to small

denominators in terms with these wave numbers in the Fourier series of the solution, which

presents numerical difficulties, unless their numerators are even smaller3. Thus, in order to

have a well-resolved solution, we need to stay away from Fourier modes that satisfy (3.14)

or for which the residual of this equation is small.

For fixed g and two different values of h (h = 0.5, shallow water, dashed line, and h = 1.5,

deep water, solid line), Figure 3.2 displays the solution of (3.14) in the (k, σ) plane. For

3This happens if the near-resonance occur for sufficiently high wave number terms, which are not necessary
for the accurate numerical evaluation of the series.
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Figure 3.2: Figure (a) displays the solution set of the resonance condition for different
Fourier modes k and different values of the coefficient of surface tension, for both deep
(solid curve) and shallow water (dashed curve). The red dots indicate the resonant k values
for σ = 1/(90π). Figure (b) displays the solution set as a function of depth h and wave
number k, for σ = 1/(90π) and the red dots correspond to the values of the depth we use,
h = 0.5 (shallow water) and h = 1.5 (deep water).

instance, the figure shows that for σ = 1/(90π), near resonance and the small-denominator

problem in the Fourier series occur near the 125th and the 260th mode for deep and shallow

water respectively. Provided that the desired accuracy of the solution under consideration

is achieved with far fewer terms, near resonance is not a problem. For our purposes, we

let σ = 1/(90π), and we consider solutions that require never more than 100 terms in

their Fourier expansion to achieve the numerical accuracy desired. This imposes a de facto

restriction on the amplitude of the solution we consider, while allowing for solutions that,

although not of maximal amplitude, are decidedly in the nonlinear regime. Our solutions

never exceed 50% of the maximal wave height. It should be noted that for σ = 0, resonance

is not possible. Also, in the limit of water of infinite depth, resonance occurs for k = g/σ.

3.3.1 Numerical Implementation

In order to construct the solutions numerically, using a continuation method, we truncate

the number of Fourier modes of the solution to a finite integer N . Let
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ηN (x) =

N∑
j=1

aj cos(jx). (3.15)

Recall that the nonlocal equation (3.8) is valid for every integer k 6= 0. We truncate the

number of equations to N so that k = 1, . . . , N . However the speed c at which the wave

moves is an additional unknown. Thus an extra equation is required. Different options are

possible and their convenience is dictated by how we parameterize the solution bifurcation

branch. If we parametrize using a1, then we can either prescribe a1 as a variable or we can

add the equation

a1 − ã1 = 0,

where ã1 is a prescribed value, determining the next solution on the bifurcation branch.

Parameterizing using a1 is a convenient and justifiable choice for solutions of small am-

plitude. As the amplitude is increased, this may cease to be the case, but since we are

limiting ourselves to solutions of small and moderate amplitude, this is not an issue for us.

Alternatively, one could prescribe the L2 or L∞ norm of the solution, as was done in [25].

In any case, we end with N + 1 equations determining N + 1 unknowns.

Remark. We may overdetermine the number of equations so as to solve a least-squares

problem. However, this requires the use of additional values of k > N . Since for large values

of k, the cosh and sinh contributions in the nonlocal equation become large exponentially

fast, this must be done with care to control numerical error.

Denote the vector of unknowns as

z = [c, a1, a2, a3, . . . , aN ]T .

Equating

F (N)(z) = [a1 − ã1, F1(z), F2(z), . . . , FN (z)]T ,
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where ã1 is given as a small increment of the value at the previous solution, and

F
(N)
j (z) =

∫ 2π

0
eijx

√√√√(1 + η2N,x

)(
c2 − 2gηN + 2σ

ηN,xx

(1 + η2N,x)3/2

)

· (sinh(kηN ) + cosh(kηN ) tanh(kh))dx

=

∫ 2π

0
fj(k, c, ηN , ηN,x, ηN,xx)dx,

which defines fj(k, c, ηn, ηN,x, ηN,xx). We wish to solve F (N)(z) = 0 for the unknown vector

z. Using Newton’s Method, the n-th iteration is given by

zn+1 = zn − J−1(zn)F (zn),

where J is the Jacobian with entries

(J)jl =
δFj
δzl

=

∫ 2π

0

(
∂fj
∂zl

+
∂fj
∂ηN

∂ηN
∂zl

+
∂fj
∂ηN,x

∂ηN,x
∂zl

+
∂fj

∂ηN,xx

∂ηN,xx
∂zl

)
dx,

which is readily computable. Using the form (3.15), all spatial derivatives are computed

analytically. This is in contrast to [25] where spatial collocation was used. Integration is

performed using the trapezoidal rule.

Our continuation method starts from flat water, after which we proceed to follow the

bifurcation branch with initial guess

[
√

(g + σ) tanh(h), ã1, 0, 0, 0, . . . , 0]T .

This initial guess is modified as we proceed up the branch. Python and Matlab both are

used to implement the numerical scheme. To check the convergence of the algorithm, we

check the residual error as well as the decay in the Fourier modes of the solution. Results

are given below. The continuation is started using N=20 Fourier modes only, due to the

small amplitude of the solution. Only a few of the 20 modes are distinguishable from

0 initially. As the bifurcation parameter is increased, more than 20 modes are needed

to accurately represent the solution. The value of N is increased acoordingly, i.e., more
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Figure 3.3: The solution bifurcation branches for pure gravity waves (σ = 0, black) and
gravity-capillary waves (σ = 1/(90π), red) for (a) shallow water, h = 0.5, (b) deep water,
h = 1.5 and (c) water of infinite depth.

equations are used, depending on more unknowns. This is limited by the presence of the

exponentially growing functions, which is why we work with solutions that are accurately

represented using no more than 100 Fourier modes. Throughout the exponential decay of

the Fourier amplitudes that is expected of an analytic solution profile is checked, ensuring

that the computed modes with highest wave number have neglible (less than 10−14) Fourier

amplitude.

3.3.2 Numerical Results

We compare the computed traveling wave profiles for particular values of the depth h, with

and without surface tension. The value σ = 1/(90π) is used throughout. The solution

bifurcation branches are shown in Figure 3.3. The case of no surface tension is shown in

black, while σ = 1/(90π) is red. This convention is used throughout the thesis. The top row

of Figure 3.4 displays the actual solution profile, divided by η(0), to allow for the comparison

of profiles of different amplitudes. Different columns show the results for different depth

h, with h = 0.5, h = 1.5, and h = ∞ in order. The bottom row of Figure 3.4 shows the

exponential decay of the Fourier coefficients of the computed solutions. It is clear that the

effect of small surface tension on the solution profile is perturbative only: no qualitative
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Figure 3.4: Solution profiles η(x)/η(0) for (a) shallow water, h = 0.5, (b) for deep water,
h = 1.5, and (c) for water of infinite depth, h = ∞. Note that in deep water, the profiles
of pure gravity waves (black) and gravity-capillary waves (red) with σ = 1/(90π) are al-
most indistinguishable. The exponential decay of the Fourier modes for the corresponding
solutions is shown in the bottom row.

changes are discernible and quantitative changes are small.

In the top row of Figure 3.4, normalized wave profiles with higher troughs correspond

to solutions higher on the bifurcation branches of Figure 3.4. Those solutions are also

the profiles for which the decay of the Fourier amplitudes is the slowest. Accordingly, the

Fourier representation of the profile requires more terms for comparable numerical accuracy.

It appears that the inclusion of surface tension requires more Fourier modes for the accurate

representation of the solution.
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3.4 Stability

Next, we consider the spectral stability of these solutions. Our main interest is in comparing

these results with those of Deconinck and Oliveras [25], where σ = 0. Since our traveling

wave solutions are periodic, we use the Fourier-Floquet-Hill method [23] and follow the

setup of [25]. Spectral stability of a solution is defined as

Definition 1. (Spectral Stability). The equilibrium solution u0(x) of a dynamical system

ut = N (x, u, ux, . . .) is spectrally stable if the spectrum of the linear operator obtained by

linearizing N around u0(x) has no strictly positive real part.

This implies that perturbations of this solution do not exhibit exponential growth. Assume

we have a linear operator L with elements λ of its spectrum such that

Lv = λv.

The spectrum of a linear operator is defined in the standard way [41]:

Definition 2. (Spectrum of a Linear Operator). The spectrum of the linearized oper-

ator L is given by

σ(L) = {λ ∈ C : Lv = λv and ||v(x)||∞ <∞} . (3.16)

For our purposes, the norm || · ||∞ denotes the infinity norm. Let the form of the solution

to the equations (3.4) and (3.5) in the traveling frame of reference be

q(x, t) = q0(x) + εq1(x)eλt +O(ε2), (3.17)

η(x, t) = η0(x) + εη1(x)eλt +O(ε2), (3.18)

where η0 is obtained from the numerical scheme described in the previous section and q0

follows from (3.6). Since the water wave problem is Hamiltonian [94] the spectrum (3.16) of

any traveling wave solution is symmetric with respect to both the real and imaginary axes.
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Thus, in order for the solution to be spectrally stable, it is necessary for the spectrum to

be on the imaginary axis, i.e., Re{λ} = 0, for all λ in σ(L).

We do not restrict the period of the perturbations q1 and η1, which is possible by

using Floquet’s Theorem [44, 23]. For our problem, this implies that perturbations may be

decomposed as

q1(x) = eiµxq̃1, η1(x) = eiµxη̃1, (3.19)

where µ ∈ [−1/2, 1/2) is the Floquet exponent and q̃1, η̃1 are periodic with period 2π. It is

straightforward to apply the Floquet Theorem to the local equation, but the nonlocal case

requires modification: before perturbing (3.5) using perturbations of the form (3.19) with

arbitrary period, we replace the integral over one period by the average over the whole line

[25]:

〈f(x)〉 = lim
M→∞

1

M

∫ M/2

−M/2
f(x)dx, (3.20)

which is defined for almost periodic f(x), which includes (quasi-) periodic f(x) as in (3.19)

[8]. The generalized local equation is identical to the previous one if the integrand is periodic.

3.4.1 The Generalized Eigenvalue Problem

We linearize the following system of equations about a traveling wave solution:

qt − cqx +
1

2
q2x + gη − 1

2

(ηt − cηx + qxηx)2

1 + η2x
= σ

ηxx

(1 + η2x)3/2
,

(3.21)

lim
M→∞

1

M

∫ M/2

−M/2
eikx [i(ηt − cηx) cosh(k(η + h)) + qx sinh(k(η + h))] dx = 0, k ∈ Λ. (3.22)

Using (3.17-3.18), ignoring terms of O(ε2) and higher, and dropping the tildes, we obtain
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λ (fη1 − q1) = (q0,x − c)Dxq1 + gη1 − f [(q0,x − c)Dxη1 + η0,xDxq1] + f2η0,xDxη1

− σ D
2
xη1

1 + η
3/2
0,x

+ σ
3η0,xxη0,xDxη1
(1 + η20,x)5/2

, (3.23)

λ
〈
eikx [−iCkη1]

〉
=
〈
eikx [−iCkcDxη1 + SkDxq1 + (−iη0,xcSk + q0,xCk) kη1]

〉
, (3.24)

where

f(η0, q0) =
η0,x(q0,x − c)

1 + η20,x
, Dx = iµ+ ∂x,

Sk = sinh(k(η0 + h)), Ck = cosh(k(η0 + h)), Tk = tanh(k(η0 + h)).

Since q1 and η1 are periodic with period 2π,

q1 =

∞∑
m=−∞

Qme
imx, η1 =

∞∑
m=−∞

Nme
imx, (3.25)

with

Qn =
1

2π

∫ 2π

0
e−inxq1(x)dx, Nn =

1

2π

∫ 2π

0
e−inxη1(x)dx. (3.26)

Truncating to the 2N + 1 Fourier modes from −N to N , we define

U(x) =
[
N−N (x), . . . , N0(x), . . . , NN (x), Q−N (x), . . . Q0(x), . . . , QN (x)

]T
. (3.27)

This leads to the finite-dimensional generalized eigenvalue problem

λL1U(x) = L2U(x). (3.28)

where
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L1 =

A −I
C 0

 , L2 =

S T

U V

 (3.29)

with I and 0 the (2N + 1) × (2N + 1) identity and zero matrix, respectively. The blocks

A, S and T originate from the local equation, while C,U and V come from the nonlocal

equation. Their matrix entries are

Am,n =
1

2π

∫
ei(m−n)xfdx, Cm,n = −i 1

2π

∫
ei(m−n)xCµ+mdx,

Sm,n = − 1

2π

∫
ei(m−n)x

[
−g + f(q0x − c)i(µ+ (m−N))− f2η0xi(µ+ (m−N))

+σ
−(µ+ (m−N))2

1 + η20x
− σ2η0xxη0xi(µ+ (m−N))

(1 + η20x)2

]
dx,

Tm,n =
1

2π

∫
ei(m−n)x [(q0x − c)i(µ+ (m−N))− fη0xi(µ+ (m−N))] dx,

Um,n =
1

2π

∫
ei(m−n)x [Sµ+mi(µ+ (m−N))] dx,

Vm,n =
1

2π

∫
ei(m−n)x [−ic(µ+ (m−N))Ck + k(−iη0xcSµ+m) + q0xCµ+m] dx.

Lastly,

Cµ+m = cosh((µ+m)η0) + Tµ+m sinh((µ+m)η0),

Sµ+m = sinh((µ+m)η0) + Tµ+m cosh((µ+m)η0),

with Tµ+m = tanh((µ+m)h). All block matrices in (3.29) are of size (2N + 1)× (2N + 1)

with N being the number of modes we retain. The convergence properties of the Floquet-

Fourier-Hill method as N →∞ are discussed in [20, 45].

3.4.2 A Necessary Condition for Instabilities

Since the traveling wave solutions of Section 3.3 are constructed through numerical contin-

uation from the trivial flat water state, it is natural to begin by considering the spectral

stability of the flat water state. This is conveniently done using the Hamiltonian form of the
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problem, following Mackay and Saffman [62] and using notions from resonant interaction

theory, as in [68]. These concepts are particularly easy to use in the flat water case, since

the spectral problem (3.23-3.24) is one with constant coefficients. It is well known that

the eigenvalues corresponding to different Floquet exponents do not interact, thus we may

restrict our attention to a fixed µ value. It may be convenient to not restrict µ to the unit

interval around the origin, keeping in mind that values of µ that have the same non-integer

part are equivalent.

For flat water, η0 ≡ 0, q0 ≡ 0, and the spectral problem (3.23-3.24) becomes

λ (−q1) = (−c)Dxq1 + gη1 − σD2
xη1,

λ (−iCµ+mη1) = −iCµ+mcDxη1 + Sµ+mDxq1.

This system is easily solved, and the eigenvalues are explicitly given by

λsµ+m = ic(µ+m) + is
√

[g(µ+m) + σ(µ+m)3] Tµ+m, (3.30)

with s = ±1. At this point the assumption σ > 0 mentioned in the footnote on page 1 is

shown to be vital: if σ < 0 it is clear that the flat water state is not spectrally stable, and we

end up with a variety of nonphysical and unobserved instabilities for surface water waves.

With this assumption, all eigenvalues are on the imaginary axis and the flat water state is

spectrally stable. The spectrum of (3.23-3.24) is a continuous function of the parameters

appearing in L1 and L2 [41], including the traveling wave amplitude. In order for eigenvalues

to leave the imaginary axis, they have to do so in pairs, symmetric with respect to both

the real and imaginary axis. This is only possible through eigenvalue collisions, which

are a necessary condition for the development of instabilities [61]. Thus we examine for

which parameter values different eigenvalues given by (3.30) collide. This was originally

investigated by MacKay and Saffman [62], who found that eigenvalues with the same sign

s do not collide. Otherwise the collision condition becomes

λs1µ = λs2µ+m for any m ∈ Z, s1 6= s2. (3.31)
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Figure 3.5: Values of the Floquet exponent µ for which the collision condition is met, as
a function of depth h. As before, black curves (left) correspond to σ = 0, while curves
in red (right) are for σ = 1/90π. Different curves are obtained for different values of m,
as indicated. As h is increased, only two different values of µ for which small amplitude
instabilities may exist are approached asymptotically when σ = 0: µ = 0 and µ = 1/4. With
σ = 1/(90π) this is not the case and small amplitude solutions are potentially unstable with
respect to perturbations of many different periods.

This equation determines for which Floquet exponents µ (modulo 1) eigenvalues collide,

depending on different parameters h, g, σ. Figure 3.5 displays values of µ for which (3.31)

is satisfied, as a function of the depth h, for fixed g and σ (σ = 0 in black, and σ = 1/(90π),

in red). The different curves correspond to different values of m.

Figure 3.6 shows the positive imaginary part of the collision points (their real part is

zero) as a function of the water depth for σ = 0 (left) and σ = 1/(90π) (right). Table 3.1

compares such imaginary parts computed for different depths h with and without surface

tension. One of the goals for examining the spectral stability of non-zero amplitude traveling

wave profiles is to track whether the collided eigenvalues do result in instabilities, and if so,

how these evolve for solutions of higher amplitude.
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Figure 3.6: The imaginary part of the eigenvalues for which the collision condition is met
as a function of depth h. On the left the case of gravity waves (σ = 0) is displayed. The
case σ = 1/(90π) is shown on the right. Different curves correspond to different values of
m. Negative values would result in the mirror imagine of this figure below the horizontal
axis.

3.4.3 Numerical Procedure

We proceed to solve the generalized eigenvalue problem (3.28) using the Floquet-Fourier-

Hill method [23, 25] for a sufficient number of values of the Floquet exponent µ to ensure

that all features of the spectrum are resolved. This is done in part by tracking (see below)

the location of instabilities of solutions of smaller amplitude, as we continue up the solution

branch. The collided eigenvalues (i.e., the eigenvalues of higher multiplicity) of the flat

water state are the starting point for this. As discussed below, we find that all periodic

traveling water waves are spectrally unstable, irrespective of their amplitude and of the

depth of the water. This result is not surprising for waves in deep water, where the presence

of the Benjamin-Feir instability [7] is well known. Deconinck and Oliveras [25] computed

bubbles of instability (i.e., topological ovals of spectral elements across the imaginary axis,

which emanate from the flat-water collided eigenvalues for small wave amplitude), but these

bubbles are narrow and it was reasonable to hope that the inclusion of surface tension might

prevent their formation, leading to spectrally stable wave profiles for at least some amplitude
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h = 0.5 h = 1.5 h =∞
σ = 0 σ = 1/90π σ = 0 σ = 1/90π σ = 0 σ = 1/90π

m µ Im{λ} µ Im{λ} µ Im{λ} µ Im{λ} µ Im{λ} µ Im{λ}
1 0 0 0 0 0 0 0 0 0 0 0 0

2 0.106 0.148 0.100 0.139 0.322 0.687 0.314 0.673 0.25 0.75 0.243 0.736

3 0.375 0.519 0.345 0.478 -0.108 1.730 -0.157 1.651 0 2 -0.065 1.904

4 -0.206 1.088 -0.292 0.973 -0.095 3.188 -0.316 2.900 0.25 3.75 -0.028 3.389

Table 3.1: This table gives the Floquet parameters µ for which we have an eigenvalue
collision in the case of flat water. The approximate values shown here are for the test cases
we consider in the numerical results section, presenting only those Floquet parameters for
which the largest instabilities are expected.

and depth range. This is not the case. The goal of this and the following subsections is

to demonstrate how surface tension affects the results of [25], while it cannot overcome

the instabilities. For the three values of depth h in Figure 3.3, we examine the Floquet

parameter µ for which instabilities are present, as well as the graph of the spectrum in the

complex λ plane. We can do so along the entire solution branch in Figure 3.3. The figures

include results only for the solution labeled with a square in Figure 3.3, roughly in the

middle of the computed branch.

3.4.4 Bubble Tracking

It is interesting to note that the center of the bubbles of instability are not given by the

collision values of Table 3.1. The locations of the bubbles move as we increase the amplitude

of the traveling waves. We can track the movement of the center of the bubbles as well as of

their width numerically, as shown in Figure 3.7. This was done for shallow water bubbles,

since the bubbles are most important there. In Figure 3.7, we track the movement of

the largest and second-largest bubble of instability, respectively. As usual, black curves

correspond to σ = 0, red ones to σ = 1/(90π). Lastly, the rightmost panel of Figure 3.7

shows the change in the size of the bubble i.e., its associated instability growth rate) as a



34

0.00 0.02 0.04 0.06 0.08 0.10
Floquet parameter µ

0.10

0.11

0.12

0.13

0.14

A
m

p
lit

u
d
e
 ||
η(
x
)||
∞

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Floquet parameter µ

0.34

0.36

0.38

0.40

0.42

A
m

p
lit

u
d
e
 ||
η(
x
)||
∞

0.00 0.02 0.04 0.06 0.08 0.10
Floquet parameter µ

0.0

0.5

1.0

1.5

2.0

2.5

m
a
x
(R

e
{
λ
}

)

1e 3

Figure 3.7: Tracking the bubble location and width as a function of solution amplitude, with
curves in black for σ = 0, curves in red for σ = 1/(90π). The left panel tracks the largest
bubble, the middle panel the second largest. Their instability growth rates are shown on
the right.

function of the solution amplitude, hence the largest bubble corresponds to the top curves,

the second bubble to the bottom curves. The rapid movement of the bubbles presents a

numerical difficulty that needs to be overcome with a careful choice of the Floquet exponents

used in order to resolve all relevant features of the stability spectrum.

3.4.5 Stability Spectra

Figures 3.8-3.10 display the maximal real part of the spectral elements as a function of the

Floquet parameter µ. Nonzero values correspond to instabilities. The results for shallow

water (h = 0.5) are in Figure 3.8. They illustrate that the effect of surface tension is to

shift the range of Floquet exponents for which instabilities occur, while barely affecting

their growth rate. The zoom on the right shows that the numerical results are well resolved

and that the sharp spikes on the left lie above a range of µ values for which instabilities

are present. As the wave amplitude is decreased, the width of these ranges shrinks to zero,

approaching one of the values of µ for which eigenvalues collide for the flat water state.

Different instabilities are visible, with a wide variety of instability growth rates. Figure 3.9

shows the result for deep water (h = 1.5) and Figure 3.10 shows the result for infinitely

deep water (h =∞), where the results are dominated by the Benjamin-Feir instability, as in
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Figure 3.8: The maximal growth rate max Re(λ) as a function of the Floquet exponent µ
for h = 0.5 (shallow water). Throughout, black dots correspond to σ = 0, while red dots
are for σ = 1/(90π). Nonzero max Re(λ) denote instabilities. The right panel is a zoom of
the indicated region of the left panel.

[25]. Although the Benjamin-Feir instability is affected by the inclusion of surface tension,

it appears to be affected much less than the bubbles, which are still present, but whose

location may be shifted significantly.

In shallow water without surface tension, Deconinck and Oliveras [25] found the bubbles

of instability shown in the first row of Figure 3.11. Two zooms of the complex λ plane

shown on the left are shown there, demonstrating the absence of any instability at the

origin (middle) and an enlargement of the bubble corresponding to the dominant instability

(right). If surface tension is included, the results change as shown in the second row of

Figure 3.11. The location of the bubbles changes, as remarked above. The largest real

part is slightly increased, although this is hard to discern in Figure 3.11. The change in

bubble location is a consequence of the change in eigenvalue collision location, displayed in

Table 3.1. Importantly, more bubbles are visible with surface tension than without. This is

illustrated in the second panel where two bubbles are shown to exist close to (but not at)

the origin of the λ plane.
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Figure 3.9: The maximal growth rate max Re(λ) as a function of the Floquet exponent µ
for h = 1.5 (deep water). Throughout, black dots correspond to σ = 0, while red dots are
for σ = 1/(90π). Nonzero max Re(λ) denote instabilities.

For waves in deep water (h > 1.363) [6, 87] without surface tension, both the bubble

instabilities as well as the Benjamin-Feir instability appear. In terms of the largest growth

rate of the instabilities, the Benjamin-Feir instability dominates for h > 1.4306, see [25]. A

representative result is shown in the top row of Figure 3.12. The results with surface tension

included are shown in the bottom row. Once again, the growth rates are slightly higher

with surface tension than without. This is more obvious in Figure 3.8. Zooming into the

center of the complex plane clearly shows the figure eight characteristic of the Benjamin-

Feir instability, both with and without surface tension. However, with surface tension, two

other facets are apparent. Zooming in one more time to resolve the pattern seen at the

center, we see a bubble of instability quite clearly for σ = 1/(90π), absent for pure gravity

waves. Another feature is the splitting of the Benjamin-Feir figure eight, away from the

origin. This occurs for gravity waves as well, but it appears to happen for gravity-capillary

waves for traveling waves of significantly lower amplitude.

Finally, the case of infinite depth is examined in Figure 3.13. As before, the results for

pure gravity waves (σ = 0) are shown in the top row, those with σ = 1/(90π) in the bottom
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Figure 3.10: The maximal growth rate max Re(λ) as a function of the Floquet exponent µ
for h = ∞ (infinitely deep water). Throughout, black dots correspond to σ = 0, while red
dots are for σ = 1/(90π). The right panel is a zoom of the indicated region of the left panel.

row. Once again, the Benjamin-Feir instability and bubble instabilities are observed. The

Benjamin-Feir instability is even more dominant than before, as shown in Figure 3.13. Both

with and without surface tension, the bubbles can barely be seen. As for h = 1.5, zooming

into the origin, shows that the Benjamin-Feir instability has split away from the origin for

a traveling wave of this amplitude.

3.5 Conclusions

We have investigated the effect of small surface tension on the spectral stability of the one-

dimensional evolution of periodic traveling water waves within the context of the classical

Euler equations governing potential flow. First, we used numerical continuation to extend

the results of [25] by computing traveling wave solutions of the Euler equations in the

presence of surface tension. This was done using the water wave formulation of Ablowitz,

Fokas, and Musslimani [1], and care was taken to avoid resonant or near-resonant waves.

With these solutions in hand, we numerically computed their stability spectrum using
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Figure 3.11: The complex λ plane for waves in shallow water (h=0.5), without (top) and
with (bottom) surface tension. A discussion is presented in the main text.

the Floquet-Fourier-Hill method [23], ensuring that all relevant aspects of the spectrum were

captured. To this end, we tracked the location of the bubbles of instability that originate

from collided eigenvalues in the flat water state. We found that the inclusion of surface

tension does not overcome the formation of the bubbles, so that all periodic traveling waves

of the water wave problem are spectrally unstable. For pure gravity waves (σ = 0), this

conclusion was already reached in [25], which focuses on the one-dimensional problem, and

it can be inferred from restricting the two-dimensional studies of [68, 34] to one spatial

dimension by allowing only one-dimensional perturbations. In fact, with surface tension,

the growth rates observed are somewhat larger than those seen without. Our instability

conclusion holds for both shallow and deep water. In shallow water, the bubbles appear to be

the only mechanism for instability, while in deep water the Benjamin-Feir or modulational

instability is typically dominant.
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Figure 3.12: The complex λ plane for waves in deep water (h=1.5), without (top) and with
(bottom) surface tension. A discussion is presented in the main text.
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Figure 3.13: The complex eigenvalue plane showing bubble instabilities in water of infinite
depth, σ = 1/90π in red and σ = 0 in black.
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Chapter 4

GRAVITY-CAPILLARY WAVES
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4.1 Introduction

In this chapter, we present results from the paper “Instabilities of periodic gravity-capillary

waves” by Trichtchenko, Deconinck and Wilkening, to be published. We are once again

interested in finding the fully nonlinear solutions to Euler’s equations and analyzing their

spectral stability using Fourier-Floquet-Hill method [23]. We follow the work of Deconinck

and Oliveras [25] as well as the work presented in the last chapter, but here we focus on

the regime where forces of gravity and surface tension are almost equally important, i.e.

gravity-capillary waves. We are mainly interested in solving Euler’s equations in shallow

water and therefore fix the water depth to be h = 0.05.

An important property of Euler’s equations is the existence of resonant phenomena.

It can be understood by considering a Stokes expansion [82] for the surface of the wave.

Using regular perturbation theory, we expand the surface in terms of a small parameter ε

representing the amplitude of the wave

η(x) =
∞∑
n=1

εnηn. (4.1)

From the work by Stokes [82] and convergence results by Levi-Civita [57] and Struik [83],

we know we can also expand the wave profile in terms of a cosine series

ηn(x) =

n∑
m=1

η̂nm cos(mx). (4.2)

From this, we obtain a solvability condition for ηn with m ∈ Z. If

(g + σ) tanh(h)−
(
g +m2σ

) tanh(mh)

m
= 0 (4.3)

does not hold, then we can solve for ηm. We call (4.3) the resonance condition. The

coefficient of surface tension σ, determines the resonant harmonic m ∈ Z. This was first

noticed by Wilton [92]. Numerically, it is interesting to vary σ depending on which resonant

mode we wish to capture. The relation between surface tension and resonant modes is shown

in Figure 4.1. In this chapter, we examine what happens in the cases where we are near-

resonance k 6= Z and in those where we are at resonance. However, this resonance condition

is a weakly nonlinear theory result. This implies it is valid for small amplitude solutions. In
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Figure 4.1: The relationship between surface tension σ and resonant modes k.

our work, we are interested in solutions of the fully nonlinear problem and thus, arbitrary

amplitude waves.

Deconinck and Oliveras and the previous chapter present a thorough numerical overview

of the spectral instabilities of periodic travelling one-dimensional gravity water waves and

gravity waves with a small coefficient of surface tension. An emphasis of that work, is the

presence of oscillatory instabilities even for waves in shallow water. Since the underlying

waves are periodic, their stability analysis uses Hill’s method [23], which incorporates the

conclusions from Floquet’s Theorem with Fourier analysis. This associates with each wave

a range of Floquet exponents µ which may be taken as (−π/L, π/L]. The growth rates of

the oscillatory instabilities are small, even for waves of moderate amplitude, and the range

of Floquet exponents with which they are associated is narrow (on the order of 10−4 for

L = 2π). Numerically, it is prohibitively expensive to consider an equally spaced set of µ

values to capture these instabilities. Instead, more values of µ are considered near those

values of the Floquet exponents where instabilities may arise, as predicted by MacKay and

Saffman [62]. In that work, it was shown that both gravity as well as gravity waves with a

small coefficient of surface tension, are unstable to high frequency perturbations.

It is well known that the incorporation of capillary effects leads to the presence of

resonances in the Fourier representation of the periodic travelling water waves. If the
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resonance condition (4.3) is satisfied, so-called Wilton ripples are found [86, 92]. This

results in the presence of small denominators in the Stokes expansion of the wave profile.

This is especially problematic for waves of moderate or high amplitude, whose accurate

Fourier representation requires more modes. This is precisely the limit in which we work.

However, in this limit, accuracy becomes very important. For the purposes of this work,

we have used two different methods to compute accurate solutions. We use the quadruple

precision results and examine their stability.

The layout of this chapter is as follows. The next section discusses the reformulation of

the water wave problem we use and compares two different methods for computing solutions.

We proceed by showing some sample solutions. Then we briefly describe the numerical

method used to compute spectral stability. This is followed by numerical results of the

stability calculations. We finish with conclusions and possible extensions to the project.

4.2 Solutions

We compute the solutions to Euler’s equations numerically by using two methods. One

method takes advantage of a reformulation by Ablowitz, Fokas and Musslimani [1]. The

second method makes use of Dirichlet to Neumann operators [17]. Since the first method

was described in the previous chapter, we focus on briefly outlining the second method.

4.2.1 Boundary Integral Method

The second method used to compute the solutions to Euler’s equations is based on a method

by Wilkening for the time periodic problem [91], but modified for the spatially periodic

problem. As before, we switch into a travelling frame of reference moving at speed c and

look at the stationary problem. If we only consider the equations at the surface for which

q(x, t) = cφ(x, η(x, t), t) where we also rescaled the velocity potential, then
η = ηxqx − qz,

c2q = c2φzη + c2
1

2

(
φ2x + φ2z

)
+ gη − σ ηxx

(1 + η2x)3/2
.

(4.4)

As written, we have a system of two equations and two unknown surface variables q(x) and

η(x). We can solve the first equation by making using of the inverse of the Dirichlet to
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Neumann operator G(η) [17]. If we rewrite the first equation as

q = −G−1(η)ηx, (4.5)

then we can use the method introduced by Wilkening in [91] as was done in the time periodic

problem, except in this case applying the inverse to map the Neumann data to Dirichlet

data. The second equation is solved via the modified Levenberg-Marquardt method [91],

where we use it as an objective function in the case of spatially periodic waves with zero

mean (represented by P [·]) as given by

aq = P

[
aφzη + a

1

2

(
φ2x + φ2z

)
+ gη − σ ηxx

(1 + η2x)3/2

]
, (4.6)

with a = c2. The velocity potential φ is computed by solving Laplace’s equations for the

bulk of the fluid. The solutions shown in Figure 4.6 were computed on a laptop using

compiled C code. We use as many Fourier modes as needed to make sure the highest modes

stay at machine precision. These numerical results are different from gravity waves with a

small coefficient of surface tension as seen in [26] because they no longer show a monotonic

decay of Fourier modes. The solutions computed here, show resonant modes governed by

the value of surface tension. This will be discussed in more detail later.

4.2.2 Discussion of Numerical Methods

The reason we use the boundary integral method, as implemented by Wilkening for this

problem, is that the gravity-capillary solutions are very sensitive to numerical accuracy.

The algorithm for the boundary integral method as well as its supplemental routines is

implemented in quadruple precision in C. We can see the results for double and quadruple

precision calculations in Figure 4.2. The different colours in the figure represent solutions

for different amplitudes in Fourier space. It can be seen that in the highlighted region for the

double precision calculations on the left, the first few iterations over-estimate the amplitude

of the resonant coefficient. It shows that the 20th Fourier mode at first decays and then

grows. In the quadruple precision case on the right, as we increase wave amplitude, the

Fourier modes show only growth for these small amplitude solutions. For the purposes of
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Figure 4.2: Comparison of double (left) and quadruple precision (right) calculations of
different amplitude solutions in Fourier space. The x-axis represents the Fourier mode and
the y-axis is the amplitude of that Fourier coefficient plotted on a semi-log scale. On the
left, it can be seen that the 20th Fourier mode for the small amplitude solutions is initially
overestimated.

our work, since our computation of the spectral stability problem are double precision, we

show the modes that are higher than 10−16, but we use these higher precision solutions.

4.3 Numerical Results for the Solutions

We begin by first presenting the bifurcation branch of solutions for different coefficients of

surface tension, examining how gravity-capillary waves look when the balance between the

two forces is varied. The bifurcation branches for different values of surface tension is seen

in Figure 4.3. Noting the relation between the resonant mode and surface tension as seen

in Figure 4.1 and that the smaller the resonant mode, the smaller the parameter of surface

tension, we have labelled the curves according to their resonant modes. We can see that

as we decrease the strength of surface tension, the directions of the bifurcation branches

change.

We present the wave profiles for the coefficients of surface tension shown in Figure 4.3

in Figure 4.4 and Figure 4.5. These profiles are for the waves at the top of each bifurcation

branch. On the left we present the wave profile in physical space and on the right, its Fourier

coefficients on a semi-log scale. In Figure 4.4, we see that the main wave profile has a few
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Figure 4.3: Multiple bifurcation branches for different coefficients of surface tension. The y-
axis shows the first Fourier coefficient of the wave which is used as a continuation parameter
and the x-axis is the speed of the wave.

small dimples and that the trough gets lower as we increase amplitude. This is indicative

of a wave where surface tension has a strong effect. The coefficient of surface tension is

8.319× 10−4, 8.310× 10−4 and 8.297× 10−4 (from top to bottom) with resonant modes at

k = 3, k = 4 and k = 5. Figure 4.5 shows wave profiles and their Fourier modes for waves

where the dominant force is gravity. As in the case of a small coefficient of surface tension

presented in the previous chapter, these waves have a shallow trough and steep crests. The

top plot is for resonance at k = 10, the middle is for k = 10.5 and the bottom is for k = 11.

We can see from the semi-log plots of the Fourier coefficients, that not only the resonant

modes are present, but also their harmonics. Finally, in Figure 4.6, we fix the coefficient of

surface tension so the 10th mode is resonant and we plot the wave profiles at three points

on the bifurcation branch.

It is interesting to examine how individual Fourier modes grow as the amplitude of the

wave increases. This is shown in Figure 4.7, Figure 4.8 and Figure 4.9. In these figures,
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we plot the first 3 modes in the top row, the very center plot is always the resonant mode

with the neighbouring modes to each side, the bottom row shows what happens to the

harmonic as well as its neighbouring modes. The general trend is that the higher Fourier

modes are of smaller amplitude than the mode we use as the continuation parameter, a1.

In Figure 4.6, we looked only at the logarithm of the absolute value of the coefficients.

Here, we actually see these coefficients oscillate between positive and negative values as the

amplitude is increased.

4.4 Stability

As presented in the last chapter, we use the Fourier-Floquet-Hill method to examine the

stability of the solutions presented. Let the previously computed solution be η0(x) and

η1(x) perturbations of a different period, then

η(x, t) = η0(x) + εη1(x)eλt + . . . . (4.7)

Further, we apply Floquet decomposition, introduce a Floquet parameter µ and then apply

the Fourier decomposition

η1 =

∞∑
m=−∞

N̂me
i(m+µ)x. (4.8)

After some manipulations and truncation of Fourier modes, we obtain a generalized eigen-

value problem. For details on the matrix entries, see the previous chapter. Since the problem

is Hamiltonian, whenever R{λ} 6= 0, this implies the solution is unstable. We can compute

the eigenvalues for flat water explicitly

λ±µ+m = ic(µ+m)± i
√

[g(µ+m) + σ(µ+m)3] tanh((µ+m)h). (4.9)

and conclude that flat water is spectrally stable. Eigenvalues are continuous with respect

to the wave amplitude and therefore as amplitude increases they may develop a non-zero

real part. Thus, a necessary condition for loss of stability is

λ±µ = λ±µ+m. (4.10)
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Some sample stability results are shown in Figure 4.12. The two new observed phenom-

ena are the bubble at the center and the presence of double bubbles. The bubble around

the center can be explained by noting that if µ = 0, i.e. the perturbations are of the same

period as the solution, λ±0 = 0, the collision condition becomes

λ±m = icm± i
√

[gm+ σm3] tanh(mh) = 0. (4.11)

Solving for σ using λ+m, we obtain resonance condition again

σ =
g

m

(
tanh(mh)−m tanh(h)

tanh(h)−m tanh(mh)

)
. (4.12)

The presence of the double bubble is postulated to be a consequence of the fact that for 2π

periodic waves, the bifurcation branch of nontrivial solutions starts at

c =
√

(g + σ) tanh(h). (4.13)

The resonance condition (4.3) for a Wilton ripple to occur at k = 10 and thus a fixed σ also

gives that

c =
√

(g + (102)σ) tanh(10h). (4.14)

4.4.1 Convergence

Computation of stability spectra can be an expensive calculation. To make sure to capture

instabilities, we need to sample a lot of Floquet parameters. For the purposes of our work,

we sampled 2000 values, with µ ∈ [0, 0.5). The main goal was to see if gravity-capillary

waves were unstable, and we saw instabilities in all the solutions we examined. Since we

have to truncate the number of Fourier modes of the perturbation in (4.8), we examined the

convergence as it depends on the number of those modes. Figure 4.10 shows a plot of the

maximum instability with respect to the Floquet parameter where it is found. The results

for 16-36 modes lie on top of each other and are indistinguishable by eye. However, we can

see that when there are not enough Fourier modes of the perturbation, there are relatively

large differences in the results for the types of instabilities observed. We used the Cauchy

error to measure the difference between results at successive numbers of Fourier modes. As

Figure 4.11 shows, at 24 modes, the results changes only by 10−14. We use either 24 or 32

modes to compute our stability results.
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4.5 Stability Results

There are a lot of different parameters to explore. We can examine the stability as we

change the coefficient of surface tension as well as wave amplitude, for different Floquet

parameters. Keeping surface tension fixed such that the resonant mode is at k = 10 and

varying wave amplitude, the results are shown in Figure 4.12. As seen in [25] and [26], we

have bubble instabilities. However, for a larger amplitude solution, we also start to see the

presence of a bubble around the origin. For an even larger amplitude, we see the appearance

of a double bubble. This is consistent with a value of surface tension for a resonance at

k = 10.5 as well as k = 11 in Figure 4.13 and Figures 4.14. However, in Figure 4.14, the

last row presents a zoom of the center region, which is where the double bubbles appear,

and which is also of a different shape than we have observed in previous results.

It is also interesting to look at the eigenfunctions corresponding to the largest instabil-

ities shown in Figures 4.15- 4.16. First, we plot the eigenfunctions corresponding to the

eigenvalues with the largest real part for each Floquet parameter µ as shown on the left of

Figures 4.15- 4.16. Then we plot the eigenfunction given by (4.8) for the largest, positive

eigenvalue in the complex plane, with its real part on the x-axis and imaginary part on

the y-axis as shown on the right of Figures 4.15 and Figure 4.16. We see the frequently

visited parts of the complex eigenvalue plane from these plots. Also, we can get an idea

of the periodicity of the eigenfunction. This is based on the denominator of the Floquet

parameter, which can be a very large number in some cases. This can be done by comparing

Figures 4.16 and 4.17. We can identify the shape seen in Figure 4.17 as an eigenfunction

with Floquet parameter µ = 1/5 = 0.2 and µ = 1/2 = 0.5 respectively and we see these

shapes repeated in Figure 4.16. Further, Figures 4.18 - 4.24 show how the full solution to

the linearized water wave problem evolves according to

η(x, t) = η0(x) + εeλt
N∑

m=−N
N̂me

i(m+µ)x + c.c., (4.15)

where N represent the number of Fourier modes of the perturbation that we keep. In the

present work, we keep ε to be 0.1a1, i.e. 10% of the first Fourier coefficient of the solution.

Note that the complex conjugate represented by c.c. in (4.15) involves 4 terms because in a
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Hamiltonian problem, the eigenvalues come in quadruplets unless they lie on the real axis.

In that case, we need just 2 terms to preserve the Hamiltonian nature of the problem.

4.6 Conclusion

Using the same type of numerical techniques as in [25], [26] and [91], numerical solutions and

stability of those solutions is computed. The computation of the fully nonlinear solutions

in the regime of Wilton ripples is new, as is the analysis of their spectral stability. The new

features in the complex eigenvalue plane that we see which were not present in gravity waves

with small surface tension, are the double bubbles and the instability around the origin of

the complex eigenvalue plane. We also see that these newly computed solutions are unstable

to more Floquet parameters. By evolving the solution with the added perturbation, we see

that the original wave profile gets overtaken by these perturbations.

There are still more avenues to explore. It would be interesting to further observe

the growth of these instabilities as we vary the amplitude as well as the movement of

these bubbles with respect to the Floquet parameter. However, this is computationally

challenging. Preliminary results show that in cases examined in the previous chapter, the

growth of these instabilities increases monotonically. Here we see that the growth rates are

not monotonic, leading to more stable solutions for certain wave amplitudes. This seems to

correspond to the solutions that have a more well-ordered Fourier representation. Finally,

it would be interesting to push the accuracy of these methods to see if there is a maximal

wave amplitude.
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Figure 4.4: Wave profiles (left) and corresponding coefficients in Fourier space (right) for
waves where surface tension is the dominating force. We see that the main wave profile
has a few small dimples and that the trough gets lower for larger amplitude waves. The
coefficient of surface tension is 8.319 × 10−4, 8.310 × 10−4 and 8.297 × 10−4 (from top to
bottom) with resonant modes being at k = 3, k = 4 and k = 5.
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Figure 4.5: Wave profiles (left) and corresponding coefficients in Fourier space (right) for
waves where gravity is the dominating force. We see that the main wave profile has a few
small dimples and that the trough gets lower with increase in amplitude. The coefficient of
surface tension is 8.319 × 10−4, 8.310 × 10−4 and 8.297 × 10−4 (from top to bottom) with
resonant modes being at k = 10, k = 10.5 and k = 11.
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Figure 4.6: Wave profiles for different amplitude solutions (left) and the semi-log plot in
Fourier space (right) for a parameter of surface tension such that resonance is at k = 10
(σ = 8.196× 10−4).
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Figure 4.7: We examine several modes as the wave amplitude is increased for a coefficient
of surface tension such that the resonant mode is the 5th one. We see that not only does
the resonant mode grow, but so do its harmonics.
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Figure 4.8: We examine several modes as the wave amplitude is increased for a coefficient
of surface tension such that the resonant mode is the 10th one. We see that not only does
the resonant mode grow, but so do its harmonics.



57

Figure 4.9: We examine several modes as the wave amplitude is increased for a coefficient
of surface tension such that the resonant mode is the 11th one. We see that not only does
the resonant mode grow, but also its harmonics.
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Figure 4.10: Results obtained when using a different number of Fourier modes to obtain
the stability spectrum. Here we plot the maximum unstable eigenvalue with respect to the
Floquet parameter and we observe that using 24, 32 and 36 modes visibly gives the same
result. In other cases, the Floquet parameter with the most unstable eigenvalues changes.

Figure 4.11: Results obtained when using a different number of Fourier modes to obtain
the stability spectrum. Here we plot the log of the Cauchy error and see that increasing the
accuracy from 24 to 32 modes, we only have an error of 10−14.
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Figure 4.12: Some stability results for the solutions with the parameter of surface tension
such that resonance occurs in the 10th mode shown in Figure 4.6. Amplitude of the solution
analyzed increases top to bottom. The left column shows a fixed window in the complex
eigenvalue plane and the right shows a zoom as indicated by the scales on the axes.
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Figure 4.13: Some stability results for the solutions shown in Figure 4.5 with the parameter
of surface tension such that resonance occurs at k = 10.5. The amplitude of the solution
analyzed increases top to bottom. The left column shows a fixed window in the complex
eigenvalue plane and the right shows a zoom as indicated by the scales on the axes.
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Figure 4.14: Some stability results for the solutions shown in Figure 4.5 with the parameter
of surface tension such that resonance occurs at k = 11. The amplitude of the solution
analyzed increases top to bottom. The left column shows a fixed window in the complex
eigenvalue plane and the right shows a zoom as indicated by the scales on the axes.
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Figure 4.15: This figure shows some stability results for a coefficient of surface tension that
gives resonance at k = 10 as we vary the amplitude. On the left, we see for which Floquet
parameters we have the largest instabilities that in turn gives us the period of the unstable
perturbations. On the right, we have the polar plot of the real versus imaginary parts of
the eigenfunctions for the largest instabilities.
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Figure 4.16: This figure shows some stability results for a coefficient of surface tension that
gives resonance at k = 10.5 and 11 while the wave amplitude remains fixed. On the left,
we see for which Floquet parameters we have the largest instabilities that in turn gives us
the period of the unstable perturbations. On the right, we have the polar plot of the real
versus imaginary parts of the eigenfunctions corresponding to the largest instabilities.
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Figure 4.17: Replotting of the figures seen in the right column, but for rational Floquet
parameters near the largest eigenvalues for resonance at k = 10.5 and k = 11 with µ = 0.2
and µ = 0.5 respectively.

Figure 4.18: Evolution of the wave profiles when perturbed with the eigenfunctions corre-
sponding to the largest eigenvalue show in the top box of Figure 4.12. The top box is the
initial profile at t = 0, the middle is at t = 1.3 × 107 and the bottom is for t = 4.0 × 107

with µ = 0.23115578 and λ = 4.81475800724× 10−7 − 9.71119481185i× 10−7
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Figure 4.19: Evolution of the wave profiles when perturbed with the eigenfunctions corre-
sponding to the largest eigenvalue show in the top box of Figure 4.12. The top box is the
initial profile at t = 0, the middle is at t = 1.0 × 106 and the bottom is for t = 5.0 × 106

with µ = 0.5 and λ = 3.32016333269× 10−6
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Figure 4.20: Evolution of the wave profiles when perturbed with the eigenfunctions corre-
sponding to the largest eigenvalue shown in the top box of Figure 4.12. The top box is the
initial profile at t = 0, the middle is at t = 3.0 × 105 and the bottom is for t = 2.0 × 106

with µ = 0.48994975 and λ = 6.25673658085× 10−6 + 1.54887125215i× 10−5
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Figure 4.21: Evolution of the wave profiles when perturbed with the eigenfunctions µ =
0.1971972 and λ = 5.57044284138×10−6−5.71304295611i×10−6 to the coefficient of surface
tension for resonance at k = 10.5. The top box is the initial profile at t = 0, the middle is
at t = 5.0× 105 and the bottom is for t = 5.0× 106.
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Figure 4.22: Evolution of the wave profiles when perturbed with the eigenfunctions µ =
0.1971972 and λ = 6.05817717444×10−6−5.8089465785i×10−6 to the coefficient of surface
tension for resonance at k = 10.5. The top box is the initial profile at t = 0, the middle is
at t = 5.0× 105 and the bottom is for t = 5.0× 106.
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Figure 4.23: Evolution of the wave profiles when perturbed with the eigenfunctions µ =
0.47347347 and λ = 1.94133924544 × 10−6 + 8.09440532587i × 10−6 to the coefficient of
surface tension for resonance at k = 10.5. The top box is the initial profile at t = 0, the
middle is at t = 1.2× 106 and the bottom is for t = 7.0× 106.
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Figure 4.24: Evolution of the wave profiles when perturbed with the eigenfunctions µ =
0.49149149 and λ = 3.59926705991 × 10−6 + 1.04354199298i × 10−5 to the coefficient of
surface tension for resonance at k = 10.5. The top box is the initial profile at t = 0, the
middle is at t = 7.0× 105 and the bottom is for t = 4.0× 106.
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Chapter 5

A GENERAL THEORY FOR THE STABILITY OF
SMALL-AMPLITUDE SOLUTIONS OF HAMILTONIAN PDES
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5.1 Introduction

In this chapter, we present the results to be published in a paper titled “High-frequency in-

stabilities of small-amplitude solutions of Hamiltonian PDEs” by Deconinck & Trichtchenko.

This is a more general theory than what has been presented so far in the previous chap-

ters. As already mentioned, studying what happens when we linearize about a solution (for

example the trivial case of u = 0) of a partial differential equation (PDE) dictates much

of the dynamics of its solutions, including their stability or instability. In this chapter, we

focus specifically on the spectral stability of periodic travelling-wave solutions of Hamilto-

nian PDEs as they bifurcate away from a trivial (usually zero) solution. Our work follows

earlier ideas of MacKay [61] and MacKay and Saffman [62].

We start from an autonomous Hamiltonian system of PDEs [4] i.e.,

ut = J
δH

δu
. (5.1)

Here and throughout, indices x or t denote partial derivatives. Further, u = (u1(x, t), . . . , uN (x, t))T

is an N -dimensional vector function defined in a suitable function space, and J is a Poisson

operator [4, 30]. More details and examples are given below. Finally, H =
∫
DH(u, ux, . . .)dx

is the Hamiltonian, whose density H depends on u and its spatial derivatives, defined for

x ∈ D. We consider only the stability of periodic solutions, thus D is any interval of

length L, the period. For some of our examples H will depend on spatial derivatives of u of

arbitrary order.

To investigate the stability of travelling wave solutions of this system, we reformulate

(5.1) in a frame moving with speed c, using the transformation x̂ = x − ct, t̂ = t, and

considering solutions u(x̂, t̂) = U(x̂) (successively omitting hats). This leads to

ut − cux = J
δH

δu
⇔ ut = J

δHc

δu
, (5.2)

for a modified Hamiltonian Hc. Travelling wave solutions are solutions of the ordinary

differential system

−cUx = J
δH

δU
⇔ 0 = J

δHc

δU
. (5.3)



73

Thus if J is invertible, travelling waves are stationary points of the Hamiltonian Hc. The

system (5.3) typically has the zero (trivial) solution for a range of c values. The small-

amplitude solutions whose stability we investigate bifurcate away from these trivial zero-

amplitude solutions at special values of the speed parameter c, as is schematically shown

in Fig. 5.1. It is our goal to see to what extent anything can be said about the stability

of the small-amplitude solutions (with amplitudes in the shaded regions of Fig. 5.1) from

knowledge of the zero-amplitude solutions at the bifurcation point. An outline of the steps

in this process is as follows

1. Obtain the quadratic Hamiltonian H0
c for the system linearized around the zero

solution.

2. Compute the dispersion relation ω(k) using Fourier analysis. For periodic systems

of period L, the values of k are restricted to be of the form 2πn/L, n ∈ Z.

3. Determine at which values of c = ω/k, the bifurcation branches start.

4. Compute the stability spectrum λ for the zero solution using a Floquet decompo-

sition.

5. Check the collision condition for different λ.

6. Compute the Krein signature at the collision point for the colliding eigenvalues.

5.2 Motivating example

Our investigations began with the study of the so-called Whitham equation [88], [89, page

368]. The equation is usually posed on the whole line,

ut +N(u) +

∫ ∞
−∞

K(x− y)uy(y, t)dy = 0, (5.4)

where N(u) denotes the collection of all nonlinear terms in the equation. It is assumed

that limε→0N(εu)/ε = 0. The last term encodes the dispersion relation of the linearized
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Amplitude

cP1 P2 P3

Figure 5.1: A cartoon of the bifurcation structure of the travelling waves for a third-order
(N = 3) system: solution branches bifurcate away from the trivial zero-amplitude solution
at specific values of the travelling wave speed c.

Whitham equation. The kernel K(x) is the inverse Fourier transform of the phase speed

c(k), where c(k) = ω(k)/k, with ω(k) the dispersion relation. Here c(k) is assumed to be

real valued and nonsingular for k ∈ R. Thus

K(x) =
1

2π
−
∫ ∞
−∞

c(k)eikxdk, (5.5)

where −
∫

denotes the principal value integral. Depending on c(k), this equation may have

to be interpreted in a distributional sense [32, 80]. Letting u ∼ exp(ikx − ω(k)t), it is

a straightforward calculation to see that the dispersion relation of the linear Whitham

equation is ω(k). In fact, the linear Whitham equation is easily seen to be a rewrite of the

linear evolution equation [2]

ut = −iω(−i∂x)u, (5.6)

where ω(−i∂x) is a linear operator with the property ω(k) = −ω(−k). Indeed, letting

ω(−i∂x) act on



75

u(x, t) =
1

2π

∫ ∞
−∞

eikxû(k, t)dk, (5.7)

and replacing û(k, t) by

û(k, t) =

∫ ∞
−∞

e−ikyu(y, t)dy, (5.8)

the linear part of (5.4) is obtained after one integration by parts. We restrict our consider-

ations to odd dispersion relations, to ensure the reality of the Whitham equation.

One of Whitham’s reasons for writing down the equation [88, 89] was to describe waves

in shallow water (leading to the inclusion of a KdV-type nonlinearity N(u) ∼ uux) that feel

the full dispersive response of the one-dimensional water wave problem (without surface

tension), for which

ω2(k) = gk tanh(kh), (5.9)

with g the acceleration of gravity and water depth h. It is common to choose c(k) =

ω1(k)/k > 0 in (5.4), so that ω1(k) is the root of (5.9) with the same sign as k. In what

follows, we refer to this choice as the Whitham equation. The stability of periodic travelling

wave solutions of the Whitham equation has received some attention recently. Notable are

[31], where the focus is on solitary waves, and [43], where the modulational instability of

small-amplitude periodic solutions is emphasized. Most recently, the spectral stability of

periodic solutions of the Whitham equation was examined in [76]. The goal of considering an

equation like (5.4) is to capture as much of the dynamics of the full water wave problem as

possible, without having to cope with the main difficulties imparted by the full water wave

problem [86] discussed in previous chapters. One of the important aspects of the dynamics

of a nonlinear problem is the (in)stability of its travelling wave solutions. Thus far, we

have shown that periodic travelling wave solutions of the one-dimensional Euler water wave

problem are spectrally unstable for all possible values of their parameters h, g, amplitude,

and wave period. The nature of the instabilities depends on the value of these parameters:

as is well known, waves in deep water are susceptible to the Benjamin-Feir or modulational

instability (see [96] for a review). In addition, waves in both deep and shallow water of all
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non-zero amplitudes are unstable with respect to high-frequency perturbations. The work

in [76] does not reveal any high-frequency instabilities for solutions of small amplitude in

water that is shallow in the context of the Whitham equation. Thus an important aspect of

the Euler water wave dynamics is absent from (5.4). We will provide an analytical indication

that the Whitham equation misses the presence of these instabilities, while explaining why

they are missed. This explanation leads to a way to address this problem.

For suitable N(u), the Whitham equation (5.4) is a Hamiltonian system. The La-

grangian structure with the dispersion relation given by ω1(k) as in (5.9) was already given

by Whitham in [88], from which the Hamiltonian structure easily follows. Explicitly, for

the linearized Whitham equation posed on the whole line, for any odd ω(k) we have

H = −1

2

∫ ∞
−∞

∫ ∞
−∞

K(x− y)u(x)u(y)dxdy, (5.10)

with J = ∂x. Then

ut = ∂x
δH

δu
. (5.11)

If instead the linearized equation is posed with periodic boundary conditions u(x+ L, t) =

u(x, t), it follows immediately from (5.6) that we have

ut +

∫ L/2

−L/2
K(x− y)u(y)dy = 0, (5.12)

where we have used a Fourier series instead of a Fourier transform. Further,

K(x) =
1

L

∞∑
j=−∞

c(kj)e
ikjx, (5.13)

and kj = 2πj/L, j ∈ Z. The Hamiltonian formulation for the periodic Whitham equation

(5.12) is also given by (5.11), but with

H = −1

2

∫ L/2

−L/2

∫ L/2

−L/2
K(x− y)u(x)u(y)dxdy. (5.14)

In fact, a formal limit L→∞ immediately results in the recovery of the equation posed on

the whole line. Thus the Whitham equation and its periodic solutions fit into the framework
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developed in this manuscript. It is one of many examples we use below. Other notable

examples are the Euler water wave problem (as expected, allowing us to check our results

with those of MacKay & Saffman [62]), the KdV equation, the Sine-Gordon equation, etc.

We are particularly interested in the comparison between the results for the Euler water

wave problem and those for the Whitham equation.

The results of Examples 5.4.2 and 5.5.2 show that the Whitham equation cannot possess

the high-frequency instabilities present in the water wave problem. This leads us to propose

a new model equation, a so-called Boussinesq-Whitham or bidirectional Whitham equation.

This equation is shown to at least satisfy the same necessary condition for the presence of

high-frequency instabilities as the water wave problem, and these high-frequency instabilities

originate from the same points on the imaginary axes as they do for the Euler equations.

5.3 Method

We gave the basic steps for the method in the introduction, but here we discuss the details

of each of the steps of the method. Throughout this chapter, our emphasis is on generality

and usability, as opposed to rigor. As a consequence some of the statements made below

are necessarily vague: more precise statements would limit the generality aimed for. Within

the context of more specific examples, more precision may be possible.

1. Quadratic Hamiltonian. A linear system of equations is obtained by linearizing the

system (5.3) around the zero solution: let u = εv+O(ε2) and omit terms of order o(ε).

Alternatively, if J is independent of u and its spatial derivatives, one may expand the

Hamiltonian Hc as a function of ε and retain its quadratic terms. This Hamiltonian

H0
c of the linearized system is the starting point for the next steps.

2. Dispersion relation. The linearized system has constant coefficients and is easily

solved using Fourier analysis. Its time dependence is governed by the dispersion

relation F (ω, k) = 0 of the problem. Here F (ω, k) = 0 is of degree N in ω. It is a

fundamental assumption of our approach that all solutions ωj(k) are real for k ∈ R.

The dispersion relation can be expressed entirely in terms of the coefficients appearing
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in the quadratic Hamiltonian H0
c . Recall that the dispersion relation is obtained

by investigating solutions whose spatial and temporal dependence is proportional to

exp(ikx− iωt). For periodic systems of period L, the values of k are restricted to be

of the form 2πn/L, n ∈ Z.

3. Bifurcation branches. The values of the phase speed c = ω/k for which nontriv-

ial solutions bifurcate away from the zero-amplitude solution are determined by the

condition that the zero solution is not the unique solution to the Fourier transformed

problem. In effect, this is the classical bifurcation condition that a Jacobian is singular.

This simple calculation determines the bifurcation branch starting points explicitly in

terms of the different solutions to the dispersion relation. In what follows, we follow

the first branch, starting at c1, without loss of generality.

It is assumed that only a single non-trivial bifurcation branch emanates from a bifur-

cation point. Although more general cases can be incorporated, we do not consider

them here. Further, we fix the period of the solutions on the bifurcation branch (usu-

ally to 2π). Other choices can be made. Instead of varying the amplitude as a function

of the speed for fixed period, one could fix the speed and vary the period, etc. The

methods presented can be redone for those scenarios in a straightforward fashion.

4. Stability spectrum. The spectrum of the linear operator determining the spectral

stability of the zero solution at the bifurcation branch on the first branch is calcu-

lated. Since this spectral problem has constant coefficients, this calculation can be

done explicitly. Again, this is done entirely in terms of the dispersion relation of the

problem. Using a Floquet decomposition (see [23, 51]), the spectrum is obtained as a

collection of point spectra, parameterized by the Floquet exponent µ ∈ (−π/L, π/L].

Due to the reality of the branches of the dispersion relation, the spectrum is confined

to the imaginary axis. In other words, the zero-amplitude solutions are spectrally

stable. The use of the Floquet decomposition allows for the inclusion of perturba-

tions that are not necessarily periodic with period L. Instead, the perturbations may

be quasiperiodic with two incommensurate periods, subharmonic (periodic, but with
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period an integer multiple of L), or spatially localized [23, 38, 51].

5. Collision condition. Given the explicit expression for individual eigenvalues λ, it is

easy to find the conditions for which eigenvalues corresponding to different parameters

(Floquet exponent, branch number of the dispersion relation, etc.) coincide on the

imaginary axis. This is referred to as the collision condition. Once again, it is given

entirely in terms of the dispersion relation.

It is a consequence of the Floquet theorem [15] that collisions need to be considered

only for spectral elements corresponding to the same value of the Floquet exponent

since the subspaces of eigenfunctions for a fixed Floquet exponent are invariant under

the flow of the linearized equation.

6. Krein signature. Having obtained the stability spectrum at the starting point of

the bifurcation branches, we wish to know how the spectrum evolves as we move up a

bifurcation branch. One tool to investigate this is the Krein signature [53, 54, 55, 61,

69]. In essence, the Krein signature of an eigenvalue is the sign of the Hamiltonian

of the linearized system evaluated on the eigenspace of the eigenvalue. Different

characterizations are given below. If two imaginary eigenvalues of the same signature

collide as a parameter changes, their collision does not result in them leaving the

imaginary axis. Thus the collision of such eigenvalues does not result in the creation

of unstable modes. In other words, it is a necessary condition for collisions to lead

to instability that the Krein signature of the colliding eigenvalues is different. This

scenario is illustrated in Fig. 5.2. That figure also illustrates the quadrifold symmetry

of the stability spectrum of the solution of a Hamiltonian system: for each eigenvalue

λ ∈ C, λ∗, −λ and −λ∗ are also eigenvalues. Here λ∗ denotes the complex conjugate

of λ. It should be noted that the occurrence of a collision is required for eigenvalues

to leave the imaginary axis, due to the quadrifold symmetry of the spectrum.

Thus we calculate the Krein signature of any coinciding eigenvalues, obtained in Step 5.

If these Krein signatures are equal, the eigenvalues will remain on the imaginary axis

as the amplitude is increased. Otherwise, the eigenvalues may leave the imaginary
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Figure 5.2: Colliding eigenvalues in the complex plane as a parameter is increased. On
the left, two eigenvalues are moving towards each other on the positive imaginary axis,
accompanied by a complex conjugate pair on the negative imaginary axis. In the middle,
the eigenvalues in each pair have collided. On the right, a Hamiltonian Hopf bifurcation
occurs: the collided eigenvalues separate, leaving the imaginary axis (implying that the two
Krein signatures were different).

axis, through a so-called Hamiltonian Hopf bifurcation [85], resulting in instability.

Thus we establish a necessary condition for the instability of periodic solutions of

small amplitude. The Krein signature condition cannot be expressed entirely in terms

of the dispersion relation, and the coefficients of H0
c are required as well. Please refer

to the next two sections for details.

Although all calculations are done for the zero-amplitude solutions at the starting point

of a bifurcation branch, the continuous dependence of the stability spectrum on the pa-

rameters in the problem [41], including the velocity of the travelling wave or the amplitude

of the solutions, guarantees that the stability conclusions obtained persist for solutions of

small amplitude. Thus meaningful conclusions about solutions in the shaded regions of the
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bifurcation branches of Fig. 5.1 are reached, despite the fact that we are unable to say

anything about the size of the maximal amplitude for which these conclusions are valid.

5.4 Scalar Hamiltonian PDEs

In this section, we investigate the stability of 2π-periodic travelling wave solutions of Hamil-

tonian systems of the form

ut = ∂x
δH

δu
, (5.15)

where u(x, t) is a scalar real-valued function. Thus J = ∂x. Since this Poisson operator

is singular, all equations of this form conserve the quantity
∫ 2π
0 udx, which is the Casimir

for this Poisson operator. Systems of this form include the Korteweg- de Vries equation

[35, 95] and its many generalizations, the Whitham equation (5.4), and many others. As

mentioned above, our only interest is in the linearization of these equations around their

trivial solution. We write the quadratic part H0 of H as

H0 = −1

2

∫ 2π

0

∞∑
n=0

αnu
2
nxdx, (5.16)

where the coefficients αn ∈ R. For most examples, the number of terms in (5.16) is finite,

and all but a few of the coefficients αn are nonzero. For the Whitham equation (5.4),

the number of nonzero terms is infinite, but convergence is easily established. Using the

notation (5.16), the linearized equation is

ut = −
∞∑
n=0

(−1)nαnu(2n+1)x. (5.17)

As before, indices on u denote partial derivatives. Specifically, u(2n+1)x denotes ∂2n+1
x u. We

proceed with the six steps outlined in the introduction.

1. Quadratic Hamiltonian. The modified Hamiltonian H0
c is given by

H0
c =

c

2

∫ 2π

0
u2dx− 1

2

∫ 2π

0

∞∑
n=0

αnu
2
nxdx. (5.18)



82

2. Dispersion relation. For equations of the form (5.15), the dispersion relation has

only a single branch:

ω(k) =
∞∑
n=0

αnk
2n+1, (5.19)

The absence of even powers of k in (5.19) is due to our imposition that (5.17) is a

conservative equation, i.e., there is no dissipation. All integers are allowable k values,

since we have equated the period to be 2π. The equation (5.17) may be written as

ut = −iω(−i∂x)u. (5.20)

3. Bifurcation branches. Since (5.15) is scalar, only one branch can bifurcate away

from the trivial solution. To find the corresponding value of c, we write (5.17) in a

moving frame, as

ut − cux = iω(i∂x)u. (5.21)

This equation has its own dispersion relation, given by

Ω(k) = ω(k)− ck, (5.22)

obtained by looking for solutions of the form u = exp(ikx − iΩt)û. Letting u =∑∞
n=−∞ exp(inx)ûn, it follows that ∂tûn = −iΩ(n)ûn. Thus a nonzero stationary

solution may exist provided Ω(N) = 0, for N ∈ N, N 6= 0. We have used the oddness

of Ω(N) to restrict to strictly positive values of N . Thus the starting point of the

bifurcation branch in the (speed, amplitude)-plane is (c, 0), where c is determined by

c =
ω(N)

N
, (5.23)
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for any integer N > 0. Choosing N > 1 implies that the fundamental period of the

solutions is not 2π, but 2π/N . In practice, we choose N = 1.

A Fourier series approximation to the explicit form of the small-amplitude solutions

corresponding to this bifurcation branch may be obtained using a standard Stokes

expansion [81, 89].

4. Stability spectrum. In order to compute the stability spectrum associated with

the zero-amplitude solution at the start of the bifurcation branch, we let u(x, t) =

U(x) exp(λt)+c.c., where c.c. denotes the complex conjugate of the preceding term.

As usual, if any λ are found for which the real part is positive, the solution is spectrally

unstable [51]. All bounded eigenfunctions U(x) may be represented as

U(x) =

∞∑
n=−∞

ane
i(n+µ)x, (5.24)

where µ ∈ (−1/2, 1/2] is the Floquet exponent. Such a representation for U(x) is

valid even for solutions on the bifurcation branch of nonzero amplitude [23]. Since

(5.21) is a problem with constant coefficients, only a single term in (5.24) is required.

We obtain

λ(µ)n = −iΩ(n+ µ) = −iω(n+ µ) + i(n+ µ)c, n ∈ Z. (5.25)

As expected, all eigenvalues are imaginary, and the zero-amplitude solution is neutrally

stable. For a fixed value of µ, (5.25) gives a point set on the imaginary axis in the

complex λ plane. As µ is varied in (−1/2, 1/2], these points trace out intervals on the

imaginary axis. Depending on ω(k), these intervals may cover the imaginary axis.

5. Collision condition. The most generic scenarios for two eigenvalues given by (5.25)

to collide are that (i) two of them are zero, and they collide at the origin, and (ii) two

of them are equal, but nonzero. We ignore the first possibility, since the next step

proves to be inconclusive for this case, as discussed in the introduction. The second
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possibility requires λ
(µ)
n = λ

(µ)
m , for some m,n ∈ Z, m 6= n, µ ∈ (−1/2, 1/2], and λ

(µ)
n ,

λ
(µ)
m 6= 0. This may be rewritten as

ω(n+ µ)− ω(m+ µ)

n−m =
ω(N)

N
, m, n ∈ Z,m 6= n and µ ∈ (−1/2, 1/2]. (5.26)

This equation has an elegant graphical interpretation: the right-hand side is fixed by

the choice of N , fixing the bifurcation branch in Step 3. It represents the slope of a

line through the origin and the point (N,ω(N)) in the (k, ω) plane. The left hand side

is the slope of a line in the same plane passing through the points (n + µ, ω(n + µ))

and (m+ µ, ω(m+ µ)), see Fig. 5.3.

Even though the graph of the dispersion relation admits parallel secant lines, this is

not sufficient for a solution of (5.26), as it is required that their abscissas are an integer

apart.

ω(k)

k
(n+ µ, ω(n+ µ))

(m+ µ, ω(m+ µ))

(N,ω(N))

Figure 5.3: The graphical interpretation of the collision condition (5.26). The solid curve is
the graph of the dispersion relation ω(k). The slope of the dashed line in the first quadrant
is the right-hand side in (5.26). The slope of the parallel dotted line is its left-hand side.
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6. Krein signature. The Krein signature of an eigenvalue is the sign of the Hamiltonian

H0
c evaluated on the eigenspace associated with the eigenvalue. We are considering

two simple eigenvalues colliding, thus the eigenspace for each eigenvalue consists of

multiples of the eigenfunction only. To allow for eigenfunctions of the form an exp(i(n+

µ)x + λ
(µ)
n t)+c.c, which are not 2π-periodic (unless µ = 0), it is necessary to replace

the integral in (5.16) with a whole-line average. More details on this process are found,

for instance, in [25]. A simple calculation shows that the contribution to H0
c from the

(n, µ) mode is proportional to

H0
c |(n,µ) ∼ −|an|2

Ω(n+ µ)

n+ µ
. (5.27)

Other terms are present in the Hamiltonian density, but they have zero average.

The sign of this expression is the Krein signature of the eigenvalue λ
(µ)
n . Thus a

necessary condition for λ
(µ)
n and λ

(µ)
m to leave the imaginary axis for solutions of

positive amplitude is that the signs of (5.27) with (n, µ) and (m,µ) are different,

contingent on µ, m and n satisfying (5.26). Explicitly, this condition is

sign

[
ω(n+ µ)

n+ µ
− c
]
6= sign

[
ω(m+ µ)

m+ µ
− c
]
. (5.28)

Alternatively, the product of the left-hand side and the right-hand side should be

negative. Using (5.26), (5.28) becomes

(n+ µ)(m+ µ) < 0, (5.29)

or, provided mn 6= 0, and using that µ ∈ (−1/2, 1/2],

nm < 0. (5.30)
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Remark.

• It is clear from (5.27) why our methods do not lead to any conclusions about collisions

of eigenvalues at the origin. If λ
(µ)
n = 0, then Ω(n + µ) = 0, and the contribution to

the Hamiltonian of such a mode vanishes. As a consequence, the associated Krein

signature is zero.

• When the theory of [53] is restricted to the case of solutions of zero-amplitude, so as

to recover the constant coefficient stability problem, the graphical stability criterion

given there coincides with the one presented here.

5.4.1 The (generalized) Korteweg - de Vries equation

We consider the generalized KdV (gKdV) equation

ut + σunux + uxxx = 0, (5.31)

where we restrict n to integers 1 or greater. Here σ is a constant coefficient, chosen as

convenient. Important special cases discussed below are the KdV equation (n = 1) and

the modified KdV (mKdV) equation (n = 2). Many of the details below extend easily to

more general nonlinearities, with the main requirement being that the linearized equation

is ut + uxxx = 0. The stability of periodic solutions of the gKdV equation has received

some attention recently [11, 12, 22, 46]. For the integrable cases n = 1 and n = 2, more

detailed analysis is possible, see [9, 21, 24]. We do not claim to add anything new to these

discussions, but we wish to use this example to illustrate how the six-step process outlined

in this section leads to easy conclusions before moving on to more complicated settings.

1. The modified Hamiltonian is given by

H0
c =

1

2

∫ 2π

0
(u2x + cu2)dx. (5.32)

2. The dispersion relation is



87

ω = −k3. (5.33)

3. Bifurcation branches in the (c, amplitude)-plane start at (c, 0), with

c =
ω(k)

k
= −k2. (5.34)

Since we desire 2π periodic solutions, we choose k = 1. Any choice k = N , where N is

a non-zero integer is allowed. Choosing k = 1, bifurcation branches start at (−1, 0).

For the integrable cases n = 1 (KdV) and n = 2 (mKdV), these bifurcation branches

may be calculated in closed form. For the KdV equation in a frame travelling with

speed c, the 2π-periodic solutions are given by (with σ = 1)

u =
12κ2K2(κ)

π2
cn2

(
K(κ)x

π
, κ

)
, (5.35)

where cn denotes the Jacobian elliptic cosine function and K(κ) is the complete elliptic

integral of the first kind [27, 73]. Further,

c(κ) =
4K2(κ)

π2
(2κ2 − 1), (5.36)

resulting in an explicit bifurcation curve (c(κ), 12κ2K2(κ)/π2), parameterized by the

elliptic modulus κ ∈ [0, 1). This bifurcation curve is shown in Fig. 5.4a.

For the mKdV equation (n = 2), different families of travelling-wave solutions exist

[24]. We consider two of the simplest. For σ = 3 (focusing mKdV), a family of

2π-periodic solutions is given by

u =
2
√

2κK(κ)

π
cn

(
2K(κ)x

π
, κ

)
, (5.37)

with c(κ) given by (5.36), resulting in an explicit bifurcation curve (c(κ), 2
√

2κK(κ)/π),

parameterized by the elliptic modulus κ ∈ [0, 1). This bifurcation curve is shown in
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Figure 5.4: The amplitude vs. c bifurcation plots for the travelling-wave solutions of the
generalized KdV equation (5.31). (a) The KdV equation, n = 1, for the cnoidal wave
solutions (5.35). Note that all bifurcation branches start at (−1, 0), as stated above.

Fig. 5.4b. It should be noted that a solution branch exists where the solution is ex-

pressed in terms of the Jacobian dn function [27, 73]: u =
√

(2)K(κ)dn(K(κ)x/π, κ)/π,

but this solution does not have a small-amplitude limit and our methods do not ap-

ply directly to it. Rather, the solutions limit to the constant solution u = 1/
√

2 as

κ→ 0. A simple transformation v = u− 1/
√

2 transforms the problem to one where

our methods apply.
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For σ = −3 (defocusing mKdV), a period 2π solution family is

u =
2
√

2κK(κ)

π
sn

(
2K(κ)x

π
, κ

)
, (5.38)

with c(κ) = −4(1+κ2)K2(κ)/π2. Here sn is the Jacobian elliptic sine function [27, 73],

resulting in an explicit bifurcation curve (c(κ), 2
√

2κK(κ)/π), parameterized by the

elliptic modulus κ ∈ [0, 1). This bifurcation curve is shown in Fig. 5.4c.

4. The stability spectrum is given by (5.25), with ω(k) = −k3 and c = −1, resulting in

λ(n)µ = i(n+ µ)(1 + (n+ µ)2). (5.39)

These eigenvalues cover the imaginary axis, as n and µ are varied. The imaginary part

of this expression is displayed in Fig. 5.5a. For the sake of comparison with Fig. 2 in [9]

we let µ ∈ [−1/4, 1/4), which implies that n is any half integer. The results of Fig. 2

in [9] are for elliptic modulus κ = 0.8, implying a solution of moderate amplitude. The

comparison of these two figures serves to add credence to the relevance of the results

obtained using the zero-amplitude solutions at the start of the bifurcation branch.

5. With k = n+ µ and k + l = m+ µ, for some l ∈ Z, the collision condition is written

as

l2 + 3kl + 3k2 − 1 = 0, (5.40)

where the trivial solution l = 0 has been discarded. This is the equation of an ellipsoid

in the (k, l) plane. It intersects lines of nonzero integer l in six integer points: ±(1,−2),

±(0, 1), ±(1,−1). Since for all of these, Ω(k) = 0, any collisions happen only at the

origin λ
(µ)
n = 0. This is also illustrated in Fig. 5.5b.

6. The final step of our process is preempted by the results of the previous step. No

Krein signature of colliding eigenvalues can be computed, since no eigenvalues collide.
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µ

Imλ
(µ)
n

0 k

Ω(k + n)

(a) (b)

Figure 5.5: (a) The imaginary part of λ
(µ)
n ∈ (−0.7, 0.7) as a function of µ ∈ [−1/4, 1/4).

(b) The curves Ω(k + n), for various (integer) values of n, illustrating that collisions occur
at the origin only.

Since eigenvalues do not collide away from the origin they cannot leave the imaginary

axis through such collisions and no high-frequency instabilities occur for small amplitude

solutions of the gKdV equation. This result applies to the KdV and mKdV equations as

special cases. The absence of high-frequency instabilities for small amplitude solutions is

consistent with the results in, for instance, [9, 21, 22].

5.4.2 The Whitham equation

As our final scalar example, we consider the Whitham equation (5.4). For this example,

no analytical results exist, but the work of Sanford et al. [76] allows for a comparison with

numerical results. Sanford et al. do not report the presence of high-frequency instabili-

ties for solutions of any period, and their absence has been verified by us using the same

methods. Hur & Johnson [43] consider periodic solutions, focusing on the modulational

instability. However, they do include a Krein signature calculation of the eigenvalues of the

zero-amplitude solutions, reaching the same conclusions obtained below. In what follows

the nonlinear term N(u) will be ignored, as in the previous examples.
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1. The modified Hamiltonian is H0
V = V

2

∫ 2π
0 u2dx− 1

2

∫ π
−π
∫ π
−πK(x− y)u(x)u(y)dxdy.

We use V to denote the speed of the travelling wave, to avoid confusion with the phase

speed c(k) in the kernel of the Whitham equation.

2. The dispersion relation is given by (5.9).

3. The bifurcation branch starts at (V, 0) = (
√
g tanh(h), 0), where we have chosen N = 1

so that the minimal period of the solutions is 2π.

4. The elements of the stability spectrum are given by

λ(µ)n = i(n+ µ)
√
g tanh(h)− isign(n+ µ)

√
g(n+ µ) tanh(h(n+ µ)). (5.41)

5. The dispersion relation for the Whitham equation is plotted in Fig. 5.6(a), together

with the line through the origin with slope ω(1)/1. Since the dispersion relation is

concave down (up) in the first (third) quadrant, no secant line of the dispersion relation

through two points with abscissa that are integers apart exists that is parallel to the

line through the origin, but does not coincide with it. Thus collisions of eigenvalues

away from the origin do not occur. This is also illustrated in Fig. 5.6(b), where the

imaginary part of λ
(µ)
n is plotted for various integers n.

6. No Krein signature calculation is relevant since eigenvalues do not collide away from

the origin.

We have followed the methods in [76] in order to verify the theory. Using the cosine

collocation method with 128 Fourier modes, we can compute solutions along the bifurcation

branch. Choosing a relatively small amplitude solution shown on the left in Figure 5.7.

Analyzing the spectral stability of that solution using the Fourier-Floquet-Hill method [23],

we obtain the spectrum seen on the right of Figure 5.7, for which we used 2000 Floquet

parameters. Only the presence of the Benjamin-Feir instability is seen and no high frequency

instabilities as predicted.
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k

ω(k)

k

Ω(k + n)

(a) (b)

Figure 5.6: (a) The dispersion relation for the Whitham equation. The line through the
origin has slope ω(1)/1, representing the right-hand side of (5.26). (b) The curves Ω(k+n),
for various (integer) values of n, illustrating that collisions occur at the origin only.

Figure 5.7: A small amplitude wave profile (left) and the corresponding complex eigenvalue
plane (right) for the Whitham equation showing no presence of high frequency instabilities.

We conclude that periodic solutions of sufficiently small amplitude of the Whitham

equation are not succeptible to high-frequency instabilities. This is consistent with the

results presented in [76] and reproduced in Figure 5.7. Thus, the Whitham equation is

unable to replicate the instabilities found in the shallow depth water wave problem for
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solutions of small amplitude, despite having a dispersion relation that is identical to one

branch of the water wave dispersion relation. We will return to this in the next section

where a similar theory is developed for Hamiltonian PDEs with canonical Poisson structure,

including the water wave problem [94].

5.5 Two-component Hamiltonian PDEs with canonical Poisson structure

We generalize the ideas of the previous section to the setting of two-component Hamiltonian

PDEs with canonical Poisson structure. In other words, the evolution PDE can be written

as

∂

∂t

 q

p

 = J∇H ⇔


qt =

δH

δp

pt = −δH
δq

, (5.42)

where the Poisson operator J is given by

J =

 0 1

−1 0

 . (5.43)

This Poisson operator is nonsingular, thus there are no Casimirs. Examples of systems of

this form are the Nonlinear Schrödinger equation in real coordinates [10], the Sine-Gordon

equation [33, 47, 48], and the water wave problem [94]. As before, our interest is in the

linearization of this system around the zero-amplitude solution. The quadratic Hamiltonian

corresponding to this linearization can be written as

H0 =

∫ 2π

0

(
1

2

∞∑
n=0

cnq
2
nx +

1

2

∞∑
n=0

bnp
2
nx + p

∞∑
n=0

anqnx

)
dx, (5.44)

with An, Bn, Cn ∈ R. Typically the number of terms in the sums above is finite, but

an example like the water wave problem requires the possibility of an infinite number of

nonzero contributing terms in the Hamiltonian. As for the Whitham equation, convergence

of the resulting series is not problematic. The form (5.44) is the most general form of a

quadratic Hamiltonian depending on two functions q(x, t) and p(x, t). Indeed, any quadratic
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term of a form not included above is reduced to a term that is included by straightforward

integration by parts. The linearization of (5.42) is given by


qt =

∑∞
n=0 anqnx +

∑∞
n=0(−1)nbnp2nx,

pt = −∑∞n=0(−1)ncnq2nx −
∑∞

n=0(−1)nanpnx.

(5.45)

We proceed with the six step program outlined in the introduction.

1. Quadratic Hamiltonian. The modified Hamiltonian H0
c is given by

H0
c =

∫ 2π

0

(
cpqx +

1

2

∞∑
n=0

cnq
2
nx +

1

2

∞∑
n=0

bnp
2
nx + p

∞∑
n=0

anqnx

)
dx. (5.46)

This expression serves as a repository for the coefficients which are needed in what

follows.

2. Dispersion relation. We look for solutions to (5.45) of the form q = q̂ exp(ikx −
iωt) and p = p̂ exp(ikx − iωt). Requiring the existence of non-trivial (i.e., non-zero)

solutions, we find that ω(k) is determined by

det


iω +

∞∑
n=0

an(ik)n
∞∑
n=0

bnk
2n

−
∞∑
n=0

cnk
2n iω −

∞∑
n=0

an(−1)n(ik)n

 = 0. (5.47)

This is a quadratic equation for ω(k) resulting in two branches of the dispersion

relation, ω1(k) and ω2(k). Assuming that (5.45) is dispersive, ω1(k) and ω2(k) are

real-valued for k ∈ R. This is not easily translated in a condition on the coefficients

an, bn, cn and dn, since their reality is not assumed.

3. Bifurcation branches. Travelling wave solutions are stationary solutions of
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
qt = cqx +

∑∞
n=0 anqnx +

∑∞
n=0(−1)nbnp2nx = δH0

c
δp ,

pt = cpx −
∑∞

n=0(−1)ncnq2nx −
∑∞

n=0(−1)nanpnx = − δH0
c

δq .

(5.48)

This system has the dispersion relations Ω1,2(k) = ω1,2(k)− ck. In Fourier space the

stationary equations become


0 = ikcq̂ +

∑∞
n=0 an(ikn)q̂ +

∑∞
n=0(−1)nbn(ik)2np̂,

0 = ikcp̂−∑∞n=0(−1)ncn(ik)2nq̂ −∑∞n=0(−1)nan(ik)np̂.

(5.49)

Thus c is obtained from the condition that these equations have a nontrivial solution

(q̂, p̂). This condition requires that the 2× 2 determinant of the system above is zero.

A simple comparison with (5.47) gives that there are two bifurcation points given

by (ω1(N)/N, 0) and (ω2(N)/N, 0). Any positive integer value of N is allowed, but

we usually choose N = 1 so that the fundamental period is 2π. In what follows, we

examine the small-amplitude solutions starting from the branch (c, 0) = (ω1(N)/N, 0),

without loss of generality.

4. Stability spectrum. To find the stability spectrum, we let q = Q exp(λt), p =

P exp(λt). Using Floquet’s Theorem,

Q = eiµx
∞∑

j=−∞
Qje

ijx, P = eiµx
∞∑

j=−∞
Pje

ijx, (5.50)

with µ ∈ (−1/2, 1/2]. Since (5.48) has constant coefficients, it suffices to consider

monochromatic waves, i.e., only one term of the sums in (5.50) is retained. It follows

that λ satisfies (5.47) with iω replaced by −λ+ i(n+ µ)c. Thus

λ
(µ)
n,l = i(n+ µ)c− iωl(n+ µ) = −iΩl(n+ µ), l = 1, 2. (5.51)
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As expected, the zero solution is neutrally stable, since ω1,2(k) are real, assuming

dispersive equations. The stability spectrum consists of two one-parameter point sets,

one for l = 1 and the other for l = 2.

5. Collision conditions. Ignoring collisions at the origin, we require λ
(µ)
n1,l1

= λ
(µ)
n2,l2

6= 0

for some n1, n2 ∈ Z, µ ∈ (−1/2, 1/2], l1, l2 ∈ {1, 2}. This gives

ωl1(n1 + µ)− ωl2(n2 + µ)

n1 − n2
=
ω1(N)

N
. (5.52)

The right-hand side depends on ω1 since we have chosen in Step 3. As before, this

collision condition may be interpreted as a parallel secant condition, but with the

additional freedom of being able to use points from both branches of the dispersion

relation. This is illustrated in Fig. 5.8.

N

ω(k)

k

n+ µm+ µ

ω1(k)

ω2(k)

P1

P2

P3

P4

P5

P6

Figure 5.8: The graphical interpretation of the collision condition (5.52). The dashed curves
are the graphs of the dispersion relations ω1(k) and ω2(k). The slope of the segment P1P2 is
the right-hand side in (5.52). The collision condition (5.52) seeks points whose abscissas are
an integer apart, so that at least one of the segments P3P4, P3P6, P5P4 or P5P6 is parallel
to the segment P1P2.
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6. Krein signature. In the setting of a system of Hamiltonian PDEs as opposed to

a scalar PDE, we use a different but equivalent characterization of the Krein signa-

ture [61]. The Krein signature is the contribution to the Hamiltonian of the mode

under consideration. Since our Hamiltonians are quadratic, this implies that the Krein

signature of the eigenvalue λ with eigenvector v is given by

signature(λ, v) = sign(v†Lcv), (5.53)

where Lc is the Hessian of the Hamiltonian H0
c , and v† denotes the complex conjugate

of the transposed vector. Since the Hessian Lc is a symmetric linear operator, the

argument of the sign in (5.53) is real. Recall that the linearization of the system (5.3)

can be written as

∂t

 q

p

 = JLc

 q

p

 , (5.54)

which makes it easy to read off Lc. For the case of (5.48),

Lc =


∞∑
n=0

cn(−1)n∂2nx −c∂x +

∞∑
n=0

an(−1)n∂nx

c∂x +

∞∑
n=0

an∂
n
x

∞∑
n=0

bn(−1)n∂2nx

 . (5.55)

Next, the eigenvectors v are given by

 q

p

 = eλt+iµx+inx

 Qn

Pn

 , (5.56)

where (Qn, Pn)T satisfies

λ

 Qn

Pn

 = JL̂c

 Qn

Pn

 . (5.57)
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Here L̂c is the symbol of Lc, i.e., the 2×2 matrix obtained by replacing ∂x → i(n+µ)

in (5.55):

L̂c =


∞∑
n=0

cn(n+ µ)2n −ic(n+ µ) +

∞∑
n=0

an(−1)n(in+ iµ)n

ic(n+ µ) +
∞∑
n=0

an(in+ iµ)n
∞∑
n=0

bn(n+ µ)2n

 .

(5.58)

Using (5.57), (5.53) is rewritten as

signature
(
λ
(µ)
n,l , v

(µ)
n,l

)
= sign

λ(µ)n,l det

 Qn Pn

Q∗n P ∗n

 . (5.59)

The determinant is imaginary, since interchanging the rows gives the complex conju-

gate result. Since λ
(µ)
n,l is imaginary, the result is real and the signature is well defined.

Again, it is clear that no conclusions can be drawn if λ
(µ)
n,l = 0. Since we wish to

examine whether signatures are equal or opposite, we consider the product of the

signatures corresponding to λ
(µ)
n1,l1

and λ
(µ)
n2,l2

. Using (5.58) we find that signatures are

opposite, provided that

∞∑
j1=0

cj1(n1 + µ)2j1
∞∑
j2=0

cj2(n2 + µ)2j2

ωl1(n1 + µ) +

∞∑
j3=0

a2j3+1(−1)j3(n1 + µ)2j3+1

×
ωl2(n2 + µ) +

∞∑
j4=0

a2j4+1(−1)j4(n2 + µ)2j4+1

 < 0. (5.60)

The above condition is obtained by expressing the eigenvectors in (5.57) in terms of

the entries of the first row of (5.58). An equivalent condition is obtained using the

second row:
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∞∑
j1=0

bj1(n1 + µ)2j1
∞∑
j2=0

bj2(n2 + µ)2j2

ωl1(n1 + µ)−
∞∑
j3=0

a2j3+1(−1)j3(n1 + µ)2j3+1

×
ωl2(n2 + µ)−

∞∑
j4=0

a2j4+1(−1)j4(n2 + µ)2j4+1

 < 0. (5.61)

Depending on the system at hand, the condition (5.60) or (5.61) may be more conve-

nient to use.

Remark. An important class of systems is those for which ω1(k) = −ω2(k). We refer

to such systems as even systems. It follows immediately from (5.47) that for even systems

a2j+1 = 0, j = 1, 2, . . .. The Krein conditions (5.60) and (5.61) simplify significantly,

becoming

ωl1(n1 + µ)ωl2(n2 + µ)

∞∑
j1=0

cj1(n1 + µ)2j1
∞∑
j2=0

cj2(n2 + µ)2j2 < 0, (5.62)

or

ωl1(n1 + µ)ωl2(n2 + µ)

∞∑
j1=0

bj1(n1 + µ)2j1
∞∑
j2=0

bj2(n2 + µ)2j2 < 0. (5.63)

We summarize our results.

Assume that the linearization of the Hamiltonian system (5.42) is dispersive (i.e., its

dispersion relations ω1(k) and ω2(k) are real valued for k ∈ R). Let N be a strictly positive

integer. Consider 2π/N -periodic travelling wave solutions of this system of sufficiently small-

amplitude and with velocity sufficiently close to ω1(N)/N . In order for these solutions to

be spectrally unstable with respect to high-frequency instabilities as a consequence of two-

eigenvalue collisions, it is necessary that there exist l1, l2 ∈ {1, 2}, n1, n2 ∈ Z, n1 6= n2,

µ ∈ (−1/2, 1/2] for which

ωl1(n1 + µ)

n1 + µ
6= ω1(N)

N
,
ωl2(n2 + µ)

n2 + µ
6= ω(N)

N
, (5.64)

such that
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ωl1(n1 + µ)− ωl2(n2 + µ)

n1 − n2
=
ω1(N)

N
, (5.65)

and (5.60), or equivalently, (5.61) holds.

We proceed with examples.

5.5.1 The Sine-Gordon equation

As a first example, we consider the Sine-Gordon (SG) equation [79]:

utt − uxx + sinu = 0. (5.66)

The stability of the periodic travelling wave solutions of this equation has been studied

recently by Jones et al. [47, 48]. Different classes of periodic travelling wave solutions exist,

but only two of those can be considered as small-amplitude perturbations of a constant

background state. We consider the so-called superluminal (c2 > 1) librational waves. The

subluminal (c2 < 1) librational waves require the use of the transformation v = u − π so

that their small amplitude limit approaches the zero solution. We do not consider them

here. The limits of the rotational waves are either soliton solutions or have increasingly

larger amplitude. As such the rotational waves do not fit in the framework of this paper.

An overview of the properties of these solutions as well as illuminating phase-plane plots

are found in [47]. In contrast to [47, 48], we fix the period of our solutions, as elsewhere in

this paper. This makes a comparison of the results more complicated.

1. Quadratic Hamiltonian. With q = u, p = ut,

H0
c =

∫ 2π

0

(
cpqx +

1

2
p2 +

1

2
q2 +

1

2
q2x

)
dx. (5.67)

Thus b0 = 1, c0 = 1, c1 = 1 are the only non-zero coefficients.

2. Dispersion relation. Using (5.47),
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ω1,2 = ±
√

1 + k2. (5.68)

These expressions are real valued for k ∈ R, thus the SG equation is dispersive, when

linearized around the superluminal librational waves. Both branches of the dispersion

relation are displayed in Fig. 5.9a.

3. Bifurcation branches. With N = 1, we obtain c = ω1(1)/1 =
√

2.

4. Stability spectrum. The stability spectrum is given by (5.51):

λ
(µ)
n,l = −iΩl(n+ µ) = i(n+ µ)

√
2∓ i

√
1 + (n+ µ)2, (5.69)

with l = 1 (l = 2) corresponding to the − (+) sign. Here n ∈ Z, µ ∈ [−1/2, 1/2).

5. Collision condition. The collision condition (5.52) becomes

ω(n1 + µ)− ω2(n2 + µ)

n1 − n2
=
√

2. (5.70)

We have chosen ωl1 = ω1 and ωl2 = ω2, since it is clear that the collision condition

can only be satisfied if points from both dispersion relation branches are used. This

is illustrated in Fig. 5.9a. In fact, many collisions occur, as is illustrated in Fig. 5.9b.

One explicit solution is given by

n1 = 3, n2 = 0, µ =

√
10− 3

2
≈ 0.081138830. (5.71)

6. Krein signature. Since ω2(k) = −ω1(k), we may use the conditions (5.62) or (5.63).

Since only one bj 6= 0, (5.63) is (slightly) simpler to use. We get that

ω1(n1 + µ)ω2(n2 + µ) < 0 (5.72)
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Figure 5.9: (a) The two branches of the dispersion relation for the Sine-Gordon equation.
The line segment P1P2 has slope ω(1)/1, representing the right-hand side of (5.52). The
slope of the parallel line segment P3P4 represents the left-hand side of (5.52). (b) The two
families of curves Ω1(k+n) (red, solid) and Ω2(k+n) (black, dashed), for various (integer)
values of n, illustrating that many collisions occur away from the origin.

is a necessary condition for the presence of high-frequency instabilities of small-

amplitude superluminal librational solutions of the SG equation. The condition is

trivially satisfied as it was remarked in the previous step that points from both dis-

persion relation branches have to be used to have collisions.

Now that we have the conclusion that there are eigenvalue collisions that may lead

to instabilities, we can verify what happens numerically. Using elliptic functions, we can

compute the solution to the Sine-Gordon equation analytically, making sure it is 2π periodic.

This solutions is shown on the left of Figure 5.10. After analyzing the stability of that

solution, the right inset of Figure 5.10, shows there are no high frequency instabilities, only

the Benjamin-Feir instability. This is consistent with the analysis shown in [47] and [48].

5.5.2 The water wave problem

As a final example, we consider the water wave problem: the problem of determining the

dynamics of the surface of an incompressible, irrotational fluid under the influence of grav-
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Figure 5.10: A small amplitude wave profile (left) and the corresponding complex eigen-
value plane (right) for the Sine-Gordon equation showing no presence of high frequency
instabilities, despite the collision of eigenvalues of opposite Krein signature.

ity. For this example, the effects of surface tension are ignored and we consider only two-

dimensional fluids, i.e., the surface is one dimensional. The Euler equations governing the

dynamics are

φxx + φzz = 0, (x, z) ∈ D, (73a)

φz = 0, z = −h, (73b)

ηt + ηxφx = φz, z = η(x, t), (73c)

φt +
1

2
(φ2x + φz) + gη = 0, z = η(x, t), (73d)

where x and z are the horizontal and vertical coordinate, respectively; z = η(x, t) is the

free top boundary and φ(x, z, t) is the velocity potential. Further, g is the acceleration of

gravity and h is the average depth of the fluid.

The main goal of the water wave problem is to understand the dynamics of the free

surface η(x, t). Thus it is convenient to recast the problem so as to involve only surface

variables. Zakharov [94] showed that the water wave problem is Hamiltonian with canonical

variables η(x, t) and ϕ(x, t) = φ(x, η(x, t), t). In other words ϕ(x, t) is the velocity potential

evaluated at the surface. Following [17], the Hamiltonian is written as
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H =
1

2

∫ 2π

0

(
ϕG(η)ϕ+ gη2

)
dx, (74)

where G(η) is the Dirichlet → Neumann operator: G(η)ϕ = (1 + η2x)1/2φn, at z = η(x, t).

Here φn is the normal derivative of φ. Using the water wave problem, G(η)ϕ = φz−ηxφx =

ηt, which is the first of Hamilton’s equations: the water wave problem for η(x, t) and ϕ(x, t)

is

ηt =
δH

δϕ
, ϕt = −δH

δη
. (75)

1. Quadratic Hamiltonian. Since for our purposes, only the linearization of (75) in

a moving frame is required, it suffices to evaluate the Dirichlet → Neumann operator

G(η) at the flat surface η = 0, resulting in

G(0) = −i∂x tanh(−ih∂x). (76)

The quadratic Hamiltonian H0
c is given by

H0
c = c

∫ 2π

0
ϕηxdx+

1

2

∫ 2π

0

(
ϕ(−i tanh(−ih∂x)ϕx + gη2

)
dx, (77)

giving rise to the linearized equations in a frame moving with velocity c:

ηt =
δH0

c

δϕ
= cηx − i tanh(−ih∂x)qx, (78a)

ϕt = −δH
0
c

δη
= cϕx + gη. (78b)

2. Dispersion relation. The well-known dispersion relation [86] for the water wave

problem is immediately recovered from the linearized system (78a-b) with c = 0 (so

as to not be in a moving frame), resulting in

ω2 = gk tanh(kh). (79)
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Note that the right-hand side of this expression is always positive. Thus there are two

branches to the dispersion relation:

ω1,2 = ±sign(k)
√
gk tanh(kh). (80)

Thus ω1 (ω2) corresponds to positive (negative) phase speed, independent of the sign

of k.

3. Bifurcation branches. Branches originate from (c, amplitude) = (ω1(1)/1, 0) and

(c, amplitude) = (ω2(1)/1, 0). Without loss of generality, we focus on the first branch,

for which the phase speed
√
g tanh(h) is positive. This allows for a straightforward

comparison of our results with those for the Whitham equation, in Example 5.4.2.

4. Stability spectrum. The elements of the spectrum are given by

λ
(µ)
n,1 = −iΩ1(n+ µ)

= i(n+ µ)
√
g tanh(h)− i sign(n+ µ)

√
g(n+ µ) tanh(h(n+ µ)), (81a)

λ
(µ)
n,2 = −iΩ2(n+ µ)

= i(n+ µ)
√
g tanh(h) + i sign(n+ µ)

√
g(n+ µ) tanh(h(n+ µ)). (81b)

The sign(n + µ)’s may be omitted in these expressions, as the same set of spectral

elements is obtained.

5. Collision condition. The condition (5.52) is easily written out explicitly, but for

our purposes it suffices to plot Ω1(k + n) and Ω2(k + n), for different values of n.

This is done in Fig. 5.11b with g = 1 and h = 1. Although only the first collision is

visible in the figure (all intersection points are horizontal integer shift of each other

and correspond to the same value of µ and λ
(µ)
n,j), it is clear from the curves shown
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that many collisions occur. The figure is qualitatively the same for all finite values of

depth.

All such collision points are potential origins of high-frequency instabilities, once it

is established in the next step that their Krein signatures differ. It appears from

the numerical results in [25] as well as previous chapters that the bubble of non-

imaginary eigenvalues closest to the origin contains the high-frequency eigenvalues

with the largest real part. Thus for waves in shallow water kh < 1.363 (no Benjamin-

Feir instability) [6, 87, 96], these are the dominant instabilities. For waves in deep

water (kh > 1.363) the Benjamin-Feir instability typically dominates, although there

is a range of depth in deep water where the high-frequency instabilities have a larger

growth rate, see [25]. The dependence on depth h of the location on the imaginary

axis from which the high-frequency bubble closest to the origin bifurcates is shown in

Fig. 5.11(c), with g = 1. As h→∞, the imaginary part of λ→ 3/4. This asymptote

is drawn in Fig. 5.11(c) for reference. This figure demonstrates that for all positive

values of the depth h, the instabilities considered are not modulational as they do not

bifurcate away from the origin as the amplitude increases.

6. Krein signature. The conditions (5.62) and (5.63) become

ωl1(n1 + µ)ωl2(n2 + µ)g2 < 0, (82)

and

ωl1(n1+µ)ωl2(n2+µ)

∞∑
j1=1

αj1−1h
2j1−1(n1+µ)2j1

∞∑
j2=1

αj2−1h
2j2−1(n2+µ)2j2 < 0, (83)

respectively. Here the coefficients αj are related to the Bernoulli numbers [27], as they

are defined by the Taylor series

tanh(z) =

∞∑
j=0

ajz
2j+1, |z| < π/2. (84)
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Figure 5.11: (a) The two branches of the dispersion relation for the water wave problem
(g = 1, h = 1). The line through the origin has slope ω1(1)/1, representing the right-hand
side of (5.52). (b) The two families of curves Ω1(k + n) (red, solid) and Ω2(k + n) (black,
dashed), for various (integer) values of n, illustrating that many collisions occur away from
the origin. (c) The origin of the high-frequency instability closest to the origin as a function
of depth h.

Because of the finite radius of convergence of this series, (83) is only valid for small

values of the wave numbers n1 + µ and n2 + µ, but it is possible to phrase all results

in terms of tanh directly, avoiding this difficulty. For instance, using (84), (83) may

be rewritten as
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ωl1(n1 + µ)ωl2(n2 + µ)
ω2
α(n1 + µ)

g

ω2
β(n2 + µ)

g
< 0

⇒ ωl1(n1 + µ)ωl2(n2 + µ) < 0,

in agreement with (82). The indices α, β ∈ {0, 1} are irrelevant since ωα and ωβ both

appear squared. This serves to illustrate that for specific examples one of the two

criteria (5.60) and (5.61) (or (5.62) and (5.63) for even systems) may be significantly

easier to evaluate, although they are equivalent.

It was remarked in Example 5.4.2 that no collisions are possible due to the concavity of

the dispersion relation. As a consequence, all collisions away from the origin observed

in Fig. 5.11b involve both branches of the dispersion relation, i.e., they involve a solid

curve and a dashed curve. This is easily seen from Fig. 5.11a: a parallel cord with

abscissae of the endpoints that are integers apart is easily found by sliding a parallel

cord away from the cord ((0, 0), (1, ω1(1))) until the integer condition is met. This

implies that ωl1(n1 +µ) and ωl2(n2 +µ) in the collision condition (5.52) have opposite

sign and (82) is always satisfied. Thus colliding eigenvalues of zero-amplitude water

wave solutions always have opposite Krein signature. As a consequence, the necessary

condition for the presence of high-frequency instabilities is met. In fact, it was observed

in [25] that all colliding eigenvalues give rise to bubbles of instabilities as the amplitude

was increased. In fact, a similar analysis also shows this is true for waves with surface

tension. These results were presented in previous chapters.

Our general framework easily recovers the results of MacKay & Saffman [62]. There

the set-up is for arbitrary amplitudes of the travelling wave solutions, but the results

are only truly practical for the zero-amplitude case.

Remark. It follows from these considerations that the high-frequency instabilities

present in the water wave problem are a consequence of counter-propagating waves as no

such instabilities are present in the Whitham equation (5.4). Although it is often stated

that the value of the Whitham equation lies in that it has the same dispersion relation as
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the water wave problem (see for instance [89]), this is in fact not the case as it contains only

one branch of the dispersion relation. Thus the equation does not allow for the interaction

of counter-propagating modes, and as such misses out on much of the important dynamics

of the Euler equations.

5.6 A Boussinesq-Whitham equation

The goal of this section is the introduction of a model equation that has the same dispersion

relation as the Euler equations (73a-d) at the level of heuristics that led Whitham to the

model equation (5.4). In other words, we propose a bidirectional Whitham equation, so as

to capture both branches of the water wave dispersion relation. We refer to this equation

as the Boussinesq-Whitham (BW) equation. It is given by

qtt = ∂2x

(
αq2 +

∫ ∞
−∞

K(x− y)q(y)dy

)
, (85)

where

K(x) =
1

2π

∫ ∞
−∞

c2(k)eikxdk, (86)

and c2(k) = g tanh(kh)/k, α > 0 for the water wave problem without surface tension.

Since our methods focus on the analysis of zero amplitude solutions, the sign of α is not

relevant in what follows. This equation is one of many that may stake its claim to the

name “Boussinesq-Whitham equation”. Equation (85) is a “Whithamized” version of the

standard Bad Boussinesq equation and it may be anticipated that it captures at least the

small-amplitude instabilities of the water wave problem in shallow water. It should be

remarked that the Bad Boussinesq equation is ill posed as an initial-value problem [66],

but it might be anticipated that the inclusion of the entire water-wave dispersion relation

overcomes the unbounded growth that is present due to the polynomial truncation. We

return to this at the end of this section.

Before applying our method to examine the potential presence of high-frequency instabil-

ities of small-amplitude solutions of the BW equations, we need to present its Hamiltonian
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structure. Further, since (85) is defined as an equation on the whole line, a periodic analogue

is required, as in Section 5.2.

It is easily verified that (85) is Hamiltonian with Poisson operator [66]

J =

 0 ∂x

∂x 0

 , (87)

and Hamiltonian

H =

∫ ∞
−∞

(
1

2
p2 +

α

3
q3
)
dx+

1

2

∫ ∞
−∞

dx

∫ ∞
−∞

dyK(x− y)q(x)q(y). (88)

Indeed, (85) can be rewritten in the form (5.1) with u = (q, p)T .

To define a periodic version of (85), let

K(x) =
1

L

∞∑
j=−∞

c2(kj)e
ikjx, (89)

where kj = 2πj/L, j ∈ Z. The periodic BW equation is obtained from (5.1), using (87)

and (88), but with all ± infinities in the integration bounds replaced by ±L/2, respectively.

Since (85) has a Poisson operator (87) that is different from those used in Sections 5.4

and 5.5, minor modifications to the use of the method are necessary.

1. Quadratic Hamiltonian. Ignoring the contributions of the nonlinear term, the

quadratic Hamiltonian in a frame of reference moving with speed V is given by

H0
V =

∫ 2π

0

(
V qp+

1

2
p2
)
dx+

1

2

∫ 2π

0
dx

∫ 2π

0
dyK(x− y)q(x)q(y), (90)

where we have fixed the period of the solutions to be L = 2π. The inclusion of the

first term in (90) is one place where the effect of the different form for J is felt, as its

functional form is a direct consequence of the form of (87).

2. Dispersion Relation. A direct calculation confirms that

ω2 = gk tanh(kh), (91)



111

which is, by construction, identical to the dispersion relation for the full water wave

problem, see (79). This gives rise to two branches of the dispersion relation (80),

corresponding to right- and left-going waves.

3. Bifurcation Branches. Bifurcation branches for 2π-periodic solutions start at

(V1,2, 0), where the phase speeds V1,2 are given by V1,2 = ±
√
g tanh(k).

4. Stability Spectrum. The stability spectrum elements are, again by construction,

identical to those for the water wave problem, given in (81a-b).

5. Collision Condition. Given that the spectral elements are identical to those for

the water wave problem, the collision condition is identical too. It is displayed in

Fig. 5.11(a-b). Thus, collisions away from the origin occur. It remains to be seen

whether these can result in the birth of high-frequency instabilities.

6. Krein Signature. As for the canonical case of Section 5.5, we use (5.53). Thus we

calculate the Hessian Lc of the Hamiltonian H0
c .

Let

c2(k) =
∞∑
j=0

γjk
2j , (92)

where γj = gh2j+1aj , with the coefficients aj defined in (84). A direct calculation

gives that the Hamiltonian (90) is rewritten as

H0
V =

1

2

∫ 2π

0

p2 + V qp+

∞∑
j=0

γjq
2
jx

 dx. (93)

Using this form of the Hamiltonian, the calculation of the Hessian is straightforward,

leading to
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LV =


∞∑
j=0

γj(−1)j∂2jx V

V 1

 . (94)

Next, we compute the eigenvectors v = (q, p)T . We have

 q

p

 = eiλt

 Q(x)

P (x)

 , (95)

where (Q,P )T satisfies

λ

 Q

P

 =

 0 ∂x

∂x 0

LV
 Q

P

 . (96)

This is a second place where the Poisson operator J plays a crucial role as it affects

the form of v = (q, p)T , and thus the expression for the signature. One easily verifies

that

 Q

P

 = ei(n+µ)x

 i(n+ µ)

λ− i(n+ µ)V

 (97)

satisfies (96).

We need to evaluate the sign of
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 Q

P

† LV
 Q

P



= e−i(n+µ)x

 −i(n+ µ)

−λ+ i(n+ µ)V

T


∞∑
j=0

γj(−1)j∂2jx V

V 1


 i(n+ µ)

λ− i(n+ µ)V

 ei(n+µ)x

=

 −i(n+ µ)

−λ+ i(n+ µ)V

T


∞∑
j=0

γj(n+ µ)2j V

V 1


 i(n+ µ)

λ− i(n+ µ)V



=

 −i(n+ µ)

iω(n+ µ)

T  c2(n+ µ) V

V 1

 i(n+ µ)

−iω(n+ µ)


= 2ω(n+ µ) (ω − (n+ µ)V ) . (98)

Let the signature associated with the first eigenvalue be the sign of 2ωj1(ωj1 − (n1 +

µ)V ), where ωj1 is a function of n1 + µ. Similarly, for the second eigenvalue, the

signature is the sign of 2ωj2(ωj2 − (n2 + µ)V ). Using the collision condition λ
(µ)
n1,j1

=

λ
(µ)
n2,j2

, the product of these two expressions is

Product = 4ωj1ωj2(ωj1 − (n1 + µ)V )(ωj2 − (n2 + µ)V )

= 4ωj1ωj2(ωj2 − (n2 + µ)V )2,

which is less than zero since collisions can only occur for eigenvalues associated with

opposite branches of the dispersion relation, see Fig. 5.11b. It follows that, as in

the water wave case, the signatures of colliding eigenvalues are always opposite, and

the necessary condition for spectral instability is met. Thus, unlike the Whitham

equation (5.4), the Boussinesq-Whitham model (85) does not exclude the presence of

high-frequency instabilities of small-amplitude solutions.

We verify the result numerically by using the cosine collocation method as in [76], but

with a modification for the BW equation, taking into account the second order time deriva-
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Figure 5.12: A small amplitude wave profile (left) and the corresponding complex eigen-
value plane (right) for the Boussinesq-Whitham equation showing a lot of high frequency
instabilities.

tive. A small amplitude wave profile is seen on the left panel in Figure 5.12. In this wave

profile, it is seen that the average wave amplitude is not zero. Numerically, it is difficult to

compute a solution for the BW equation starting with a zero average solution, but there is

a symmetry that can be applied to scale to a zero average solution. On the right panel in

Figure 5.12, we have the plot of the complex eigenvalue plane, showing the Benjamin-Feir

as well as high frequency instabilities.In order to refine these bubble instabilities, we used

2000 Floquet parameters. Figure 5.13 shows two different areas of the complex eigenvalue

plane, mainly the largest instability due to Benjamin-Feir shown on the left, as well as the

largest high frequency instability shown on the right. These numerical results confirm that

the Boussinesq-Whitham equation is a model equation that does exhibit the presence of the

instabilities also seen in the full water wave equations.

5.7 Conclusion

In this chapter, we showed how to extend the stability analysis to other Hamiltonian PDEs

describing periodic systems. We presented a criteria for predicting for which small amplitude

solutions in a moving frame of reference, can be unstable. This is determined by a 6 step

process for both scalar and two-component Hamiltonian systems. This was illustrated by
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Figure 5.13: A zoom into the center region of the complex eigenvalue plane for the
Boussinesq-Whitham equation (left) and a zoom into one of the bubbles representing the
largest high frequency instability (right).

examining stability of the generalized KdV equation, the Whitham equation, Sine-Gordon

and the water wave problem. Knowing that in the water wave model, we have high frequency

instabilities as shown in [25] as well as the previous chapters, a model equation for water

waves should include the presence of these instabilities. The Boussinesq-Whitham equation

was shown to capture the high frequency instabilities, proving to be a more accurate model

for water waves than the Whitham equation that did not include these instabilities.

Previously, we mentioned the possibility of a “Bad Boussinesq-Whitham” equation.

When numerically solving for the BW equation, we are free to choose a conserved quantity

such as the average of the solution. This quantity shows up when we compute the essential

spectrum of the problem. This spectrum will grow to infinity unless we choose the average

of the solution to be 0 such that the eigenvalues lie on the imaginary axis. This needs to be

explored further. Mainly, it is hard to solve the zero average problem numerically. However,

this is the solution we need to use for stability analysis. Currently, we introduce a shift to

go between these two regimes. This shift takes advantage of the symmetries of the problem,

but these have not been explored in great detail. More work has to be done to finalize the

Boussinesq-Whitham example.
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Chapter 6

CONCLUSION AND FUTURE WORK



117

The main goal of this thesis was to analyze the stability of solutions to Euler’s equations

in the presence of surface tension. In the first chapter, we started by reviewing existing

results and describing how this work adds to this literature. It was seen that for pure

gravity waves as in [25], there are instabilities in both deep and shallow water. In shallow

water, these instabilities are due to high frequency perturbations and they are present even

in deep water along with the Benjamin-Feir instability. At first, we showed what happens

when we treat the addition of surface tension as a perturbation to the gravity wave case.

We used the AFM formulation [1] to solve Euler’s equations and the Fourier-Floquet-Hill

method [23] to analyze the spectral stability of solutions. In Chapter 3, we saw that these

instabilities are still present even with a small coefficient of surface tension. In Chapter

4, we increased the value of the coefficient of surface tension, which led to the presence

of resonances. We used a boundary integral formulation to solve Euler’s equations [91]

to increase speed and accuracy of the computation. Once again, looking at the spectral

stability of these solutions, we see the high frequency instabilities. In fact, there are more

interesting instabilities for gravity-capillary waves. These are the double bubbles as well

as the interesting patterns around the origin of the complex eigenvalue plane as seen in

Chapter 4. In the last chapter of the thesis, we showed that using similar methods, we

can analyze more than just Euler’s equations. By looking at small amplitude solutions of

Hamiltonian systems, we can follow a simple 6 step procedure to check if high frequency

instabilities can occur. If the eigenvalues for the spectral stability problem collide for a

particular Floquet parameter and these eigenvalues have opposite Krein signature, then the

solution can become unstable as amplitude is increased. This is illustrated with several

example equations including ones that are used to model water waves such as the Whitham

equation. Since Euler’s equations exhibit these types of instabilities, models for water waves

should too. This is why we propose to use a modified Boussinesq-Whitham equation that

exhibits these properties.

There are still a few questions that arise from our work that need further analysis.

• We want to analyze how the high frequency instabilities change as we vary wave

amplitude. It can be seen from the numerical results that these instabilities may
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decrease and the solution may become more stable at some wave amplitudes. However,

examining their stability more carefully requires significant numerical accuracy and a

large sample space of Floquet parameters. At the moment this is easy to implement,

although time consuming.

• The numerical scheme for computing solutions has been set up, but it has not been

pushed to its limits. An interesting question to answer is how high of an amplitude

solution exists in the case of gravity-capillary waves? Do the resonant modes just

oscillate with larger and larger amplitudes as we go up the bifurcation branch?

• We have only begun to examine the stability of waves where the surface tension is

the dominant force. It would be interesting to compare and contrast the stability of

waves where the trough gets shallower and the solutions resemble gravity waves as

compared to those where the trough gets elongated and the solutions more resemble

those for pure capillary waves.

• Interesting phenomena arise when we look near the origin of the complex eigenvalue

plane of the stability spectra. We can track and analyze how some of these patterns

arise.

• In looking at other Hamiltonian systems, we have come up with examples for where

the Krein signature condition is either satisfied or not satisfied for the whole problem.

However, there is a case where the Krein condition is only satisfied for some collisions

and that is for the Kawahara equation. We have numerically analyzed this case, but

saw that even in the case where the Krein condition was not satisfied, we still see

instabilities numerically. Resolving this discrepancy remains ongoing work.

• Numerical computation of the stability for the Boussinesq-Whitham equation is still

problematic. At the moment, we cannot compute solutions of zero average, however it

is near those that we have to analyze stability. Otherwise, we can see growing modes

in the essential spectrum. At the moment, we invoke the symmetries of the equations
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to analyze the spectrum in the correct regime, but this statement needs to be more

precise. We need to write down the exact regime for which the Boussinesq-Whitham

equation is a good equation to use to model water waves.
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