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Abstract

Riemann–Hilbert Problems, Their Numerical Solution and the Computation of Nonlinear
Special Functions

Thomas D. Trogdon

Chair of the Supervisory Committee:
Professor Bernard Deconinck

Department of Applied Mathematics

The computation of special functions has important implications throughout engineering
and the physical sciences. Nonlinear special functions include the solutions of integrable
partial differential equations and the Painlevé transcendents. Many problems in water wave
theory, nonlinear optics and statistical mechanics are reduced to the study of a nonlinear
special function in particular limits. The universal object that these functions share is
a Riemann–Hilbert representation: the nonlinear special function can be recovered from
the solution of a Riemann–Hilbert problem (RHP). A RHP consists of finding a piecewise-
analytic function in the complex plane when the behavior of its discontinuities is specified.
In this dissertation, the applied theory of Riemann–Hilbert problems, using both Hölder and
Lebesgue spaces, is reviewed. The numerical solution of RHPs is discussed. Furthermore,
the uniform approximation theory for the numerical solution of RHPs is presented, proving
that in certain cases the convergence of the numerical method is uniform with respect to
a parameter. This theory shares close relation to the method of nonlinear steepest descent
for RHPs.

The inverse scattering transform for the Korteweg-de Vries and Nonlinear Schrödinger
equation is made effective by solving the associated RHPs numerically. This technique is
extended to solve the Painlevé II equation numerically. Similar Riemann–Hilbert techniques
are used to compute the so-called finite-genus solutions of the Korteweg-de Vries equation.
This involves ideas from Riemann surface theory. Finally, the methodology is applied to
compute orthogonal polynomials with exponential weights. This allows for the computation
of statistical quantities stemming from random matrix ensembles.
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Notation and Abbreviations

Ai(z) : The Airy function

BA : Baker–Akhiezer

B(x, δ) : ball centered at x with radius δ

Bθ,φ(x, δ) : See Figure 3.1.1

B+(Γ) : The weighted Bergman space

B+(Γ) = {f holomorphic in Γ+ : ‖f‖B+(Γ) <∞},

C : A generic positive constant

C± : The upper (+) and lower (−) half planes: {z ∈
C : ± Im z > 0}

CΓ : CΓf(z) =
∫

Γ
f(s)
s−z d̄s

C±
Γ : The boundary values of CΓ

C[G; Γ] : The operator u 7→ u− C−
Γ u · (G− I)

C′[G; Γ] : The operator u 7→ u− C−
Γ [u(G− I)]

C[X+,X−; Γ] : The operator u 7→ C+
Γ u ·X−1

+ − C−
Γ u ·X−1

−
C′[X+,X−; Γ] : The operator u 7→ C+

Γ [uX+]− C−
Γ [uX−]

Cn[G; Γ] : A finite-dimensional approximation of C[G; Γ]
C0,α(Γ) : The Banach space of uniformly α-Hölder con-

tinuous functions on Γ

Ck(Γ) : The Banach space of k-times differentiable func-
tions

C∞
c (Γ) : C∞ functions with compact support inside of

Γ

χA : The indicator (or characteristic) function of a
set A

codimX : The dimension of the vector space Y�X, X ⊂
Y , Y is implied

D ⋐ Ω : D is a connected component of Ω

Df : Weak differentiation of f on a self-intersecting
contour
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dimX : The dimension of a vector space X

d̄s : d̄s = 1/(2πi)ds

Dν(z) : Parabolic Cylinder function

Ep(D) : The Lp-based Hardy space on a general do-
main D

Ep(D−) : The Lp-based Hardy space on the domain Dc\
∂D

E±(Γ) : L2-based Hardy spaces of functions holomor-
phic off a self-intersecting contour

Γ+ : The domain lying above a Lipschitz graph Γ

Hk(Γ) : W k,2(Γ)

Hp : The Lp-based Hardy space on U

Hk
±(Γ) : The Sobolev spaces of Zhou:

Hk
±(Γ) = {f ∈ L2(Γ) : f ∈ Hk

z (∂D) for every D ⋐ Ω±}

H̃k
±(Γ) : Hk

±(Γ)⊕ Cn×n

I : The identity matrix, dimensionality is implied

I : The interval [−1, 1] with left-to-right orienta-
tion

indT : Fredholm index of an operator T : dim kerT −
codim ranT

indΓ f : The index of f with respect to Γ: indΓ f =
1

2πi [log f ]Γ

KdV : Korteweg-de Vries

kerT : The kernel of an operator T

K(X, Y ) : The space of compact operators from X to Y

Lp(Γ) : The Lebesgue space (with respect to arclength)
on the oriented contour Γ with norm ‖ · ‖p =
‖ · ‖Lp(Γ)

L(X, Y ) : The space of operators from X to Y

L(X) : L(X,X)

[·, ·] : Matrix commutator: [M,N ] =MN −NM

NLS : Nonlinear Schrödinger

‖ · ‖X : The norm on a linear space X

‖ · ‖u : The uniform norm: For f : Γ → C, ‖f‖u =
supz∈Γ |f(z)|

ODE : ordinary differential equation

operator : bounded linear operator
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PDE : partial differential equation

Φ± or Φ± : The boundary values of an analytic function Φ

ran T : The range of an operator T

RHP : Riemann–Hilbert problem

[G; Γ] : An L2 Riemann–Hilbert problem

Φ+(s) = Φ−(s)G(s), s ∈ Γ, Φ(∞) = I

R±(Γ) : Functions whose restrictions to appropriate con-
tours are rational

S(R) : Schwarz class of rapidly decaying functions

Sδ(R) : For δ > 0

{f ∈ S(R) : sup
x∈R

eδ|x||f (j)(x)| <∞, j = 0, 1, . . .}

Φ† : Schwarz conjugate: Φ†(z) = (Φ(z̄))T

Σ∞ : Contours that tend to straight lines at infinity

T [G; Γ] : The operator u 7→ C−
Γ u · (G− I)

Tk(x) : Chebyshev polynomial of the first kind

U : The unit sphere

Uk(x) : Chebyshev polynomial of the second kind

W k,p(Γ) : The kth-order Lp-based Sobolev space on a
self-intersecting contour

W k,p
z (Γ) : Functions in W k,p(Γ) satisfying the (k − 1)th-

order zero-sum condition
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Chapter 1

Introduction

1.1 What are special functions?

A special function is shorthand for a mathematical function which arises in many physical,
biological and computational applications or in mathematical settings. In addition, a
special function should be sufficiently basic so as to allow the mathematical community
to identify, prove and make use of many of its properties. A simple example is the cosine
function x 7→ cos(x). The cosine function, to a calculus student does not seem so ‘special’.
Indeed, nearly all of the elementary properties are found and hopefully understood during
a year-long calculus course. This is the exact purpose, ironically, of special functions. We
identify and catalog important properties to allow easy assimilation of knowledge and thus,
making the function, to the experienced user, seem mundane; certainly, not special.

For centuries, mathematicians have been studying special functions. The relative im-
portance of the subject is determined by applications throughout engineering and the
physical sciences. The catenary, discovered by Leibniz, Huygens and Bernoulli in the
1600s, describes the shape of a freely-hanging rope in terms of the hyperbolic cousin of
the cosine function, x 7→ cosh(x). An illustration of the importance of this work in early
construction can be found in King’s College Chapel, Cambridge, UK where it was used to
guide the curvature of the ceiling.

An important feature that separates cos and cosh from lines and parabolas is that they
necessarily take a transcendental1 form. Thus, they have infinite series representations

cos(x) =
∞
∑

n=0

(−1)n

(2n)!
x2n, (1.1.1)

cosh(x) =

∞
∑

n=0

1

(2n)!
x2n. (1.1.2)

The study of transcendental functions continued with the discovery of the Airy and Bessel
functions which share similar but more complicated series representations. These series
representations are oft derived using a differential equation that is satisfied by the given
special function. Such a derivation succeeds in many cases when the differential equation

1In this context transcendental means that the function cannot be expressed as a finite number of
algebraic steps, including rational powers, applied to a variable or variables [62].

7



8 CHAPTER 1. INTRODUCTION

is linear.
The 19th century was a golden age for special function theory. Techniques from the

field of complex analysis were invoked to study the so-called elliptic functions. These func-
tions are of a fundamentally nonlinear nature: elliptic functions are solutions of nonlinear
differential equations. The use of complex analysis greatly aids in the theory of elliptic
functions.

The early twentieth century marked the work of Paul Painlevé and his collaborators in
identifying the so-called Painlevé transcendents. The Painlevé transcendents are solutions
of nonlinear differential equations that possess important properties in the complex plane.
Independent of their mathematical properties, which are described at length in [51], the
Painlevé transcendents have found use in the asymptotic study of water wave models
[5, 39, 34] and in statistical mechanics [113]. We discuss these applications further in
Section 1.3.

1.2 How are special functions studied?

As we will see, an expression for a special function is not enough. As an example, consider
the formula (1.1.1) for cos(x). The important fact that cos(0) = cos(2π) is not evident
from this formula. Indeed, there exists an infinite product expansion that makes this fact
much clearer. Furthermore, (1.1.1) does not make it clear that the cosine function grows
exponentially in the complex plane while being bounded on the real line.

Another question one may ask is how to compute cos(x). The series in (1.1.1) may
be approximated by truncating it at some finite number of terms. With this methodology
cos(0) is obtained exactly, and

∣

∣

∣

∣

∣

cos(.1) −
3
∑

n=0

(−1)n

(2n)!
(.1)2n

∣

∣

∣

∣

∣

< 10−12,

a very good approximation using just the first four terms in the series. When x = 2π
it takes 17 terms to achieve the same degree of accuracy. It requires more than a naive
summing of the series (i.e. use periodicity) to compute cos(x) for large values of x.

We have identified three of the many ways to study special functions:

1. the derivation of alternate representations,

2. behavior for large values of x (i.e. asymptotic expansions), and

3. numerical computations.

In this manuscript we discuss all three methodologies but concentrate on numerical com-
putations. We also demonstrate their interdepencies.

1.3 Modern applications of nonlinear special functions

We study nonlinear special functions. Nonlinear special functions are the subclass of special
functions that are uniquely defined by a nonlinear relationship. The solutions of certain
nonlinear ordinary differential equations are nonlinear special functions, see Chapter 8.



1.3. MODERN APPLICATIONS OF NONLINEAR SPECIAL FUNCTIONS 9

So are the solutions of nonlinear partial differential equations (PDEs), see Chapters 6,
9, and 7. Additionally, orthogonal polynomials with respect to a given measure depend
nonlinearly on the measure, see Chapter 10.

1.3.1 Reduction to the Korteweg-de Vries equation

We consider the reduction of the classical Euler equations that describe 1-D invicid fluid
flow, driven by gravity. We use subscripts to denote partial derivatives.

Figure 1.3.1: A schematic for (1.3.1).

φxx + φzz = 0, (x, z) ∈ D,

φz = 0, z = 0,

ηt + ηxφx = φz, z = h+ η,

φt +
1

2

(

φ2x + φ2z
)

+ g(η + h) = 0, z = h+ η,

(1.3.1)

Here the fluid domain is D = {(x, z) : −∞ < x < ∞, 0 < z < h + η(x, t)}. The function
φ is the velocity potential, η(x, t) is the surface elevation above the at-rest depth h, see
Figure 1.3.1. Define the parameter l to be the typical wavelength and a to be the typical
amplitude. In a particular long-wave (h2/l2 → 0), shallow-water (a/h → 0) limit, a
multiple scales analysis produces the Korteweg-de Vries (KdV) equation [69, 111]:

ηt + ηx +
3

2

a

h
ηηx +

1

6

h2

l2
ηxxx +O

(

(

h2

l2

)2

+
(a

h

)2
)

= 0.

Using non-dimensional variables, in a moving frame, to first order we obtain

qt + 6qqx + qxxx = 0. (1.3.2)
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We see in Chapters 6 and 9 that the solutions of the KdV equation possesses the requisite
structure and universality to be considered special functions in (1 + 1)-dimensions.

With a sufficiently smooth and decaying initial condition, the KdV equation can be
reduced further in different regions of the (x, t)-plane. Consider the region |x| ≤ Ct1/3 for
some constant C > 0. The solution q of (1.3.2) satisfies [5]

q(x, t)− U(x, t) = O(t−1),

where

U(x, t) =
1

(3t)2/3

(

v2
(

x

(3t)1/3

)

+ v′
(

x

(3t)1/3

))

,

and v is a specific solution of the equation

vxx = xv + 2v3. (1.3.3)

This is the famous homogeneous Painlevé II equation which will be discussed in Chap-
ter 8. With the exception of elliptic functions, the Painlevé transcendents (transcendental
solutions of (1.3.3)) are the most well-known and widely-used nonlinear special functions.

1.3.2 The 2-D Ising model

The 2-D Ising model is a mathematical idealization originating in ferromagnetism, see
[72] for a sketch of the model. Unlike the water wave models above, the Ising model is
discrete. Each variable σj,k arranged in a 2-dimensional lattice, can take the values (spins)
±1 and may only interact with its nearest neighbors. An interaction energy exists between
neighbors of −E if spins differ and +E if spins agree. Thus, in its simplest form, the total
interaction energy is given by

E = −
Lv
∑

j=1

Lh
∑

k=1

(Eσj,kσj,k+1 + Eσj,kσj+1,k).

The free energy and specific heat of the Ising model was explicitly calculated by Onsager
[92] in the limit as Lv, Lh → ∞. Kaufman and Onsager computed the two-spin correlation
function

〈σ0,0σM,N〉 = lim
Lv,Lh→∞

Z−1
∑

states

σ0,0σM,Ne
E/kBT ,

where kB is Boltzmann’s constant, T is the associated temperature and Z is the partition
function. Onsager established the existence of a critical temperature Tc where the specific
heat becomes infinite. The important results of Wu, McCoy, Tracy and Barouch showed
that near Tc, the correlation function can be expressed in terms of a Painlevé III transcen-
dent [113]. Furthermore, the work of Jimbo and Miwa expressed the diagonal correlation
function 〈σ0,0σN,N 〉 in terms of a Painlevé VI transcendent [67]. Theoretical physics and
statistical mechanics has great dependence on nonlinear special functions.

It is worth noting that due to the strong connections between statistical mechanics and
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random matrix theory, it is not surprising to see Painlevé transcendents arising in random
matrix theory. See Chapter 10 for further discussion of this.

1.4 Overview

As mentioned above, the approach presented here is mainly computational. We develop
methods for the computation of both linear and nonlinear special functions. We consider
solutions of linear, constant-coefficient evolution PDEs as linear special functions in (1+1)
dimensions. Additionally, solutions of integrable nonlinear PDEs are nonlinear special
functions, also in (1+ 1) dimensions. Much of the code that is used below can be found in
ISTPackage [105], a Mathematica package that is built off [85].

This dissertation is laid out as follows. In the remainder of this section we fix notation
and discuss some essential background material that is necessary for much of the analysis
that follows. In Chapter 2, we discuss a unification of Fourier transform PDE solution
techniques for linear and nonlinear problems. This unification extends to the numerical
analysis required to solve the respective problems. The unification of these numerical
analysis techniques has not been discussed previously in the literature. Furthermore, the
method presented for the solution of linear constant-coefficient PDEs appears to not be
present in the existing literature.

The techniques that unify linear and nonlinear problems rely on the theory of Riemann–
Hilbert problems (RHPs). In short, a RHP consists of finding a piecewise-analytic function
in the complex plane where the behavior of its discontinuities is specified. More precisely,
a RHP consists of finding a function φ(z) that satisfies the following jump condition

lim
z→s

z left of Γ

φ(z) =

(

lim
z→s

z right of Γ

φ(z)

)

g(s) + f(s), s ∈ Γ, (1.4.1)

for some definite functions f, g defined on an oriented contour Γ. In Chapter 3 we discuss
a comprehensive theory for RHPs. In particular, we present results that often, in practice,
allow one to establish both the existence and the uniqueness of a solution of a given
RHP. This theory includes properties of singular integrals and singular integral equations
along with developments related to Hardy spaces and rational approximation in Hardy
spaces (Appendix A). The new contributions made here to singular integral equations are
summarized by Definition 3.7.7 and Theorems 3.7.9, 3.8.10, 3.8.21 and 3.9.1. While the
results presented in Appendix A on rational approximation are not new, we expose the full
proof of the sketches that can be found in [116] and [8].

In Chapter 4 we review the inverse scattering transform (IST) as applied to the defocus-
ing nonlinear Schrödinger equation. As is discussed in Chapter 2 the IST is a generalization
of the Fourier transform solution technique to nonlinear, integrable PDEs. We immediately
obtain a transform method that recovers the initial condition at t = 0. The so-called dress-
ing method is introduced to demonstrate that we obtain a solution for t > 0. This method
depends fundamentally on the theory of RHPs. We proceed to complete the asymptotic
analysis for the RHP derived with the IST via the Deift and Zhou method of nonlinear
steepest descent [33]. This entire process includes an elegant application of the theory in
Chapter 3.
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Chapter 5 discusses the numerical solution of RHPs, and in particular, the numerical
solution of singular integral equations. Not surprisingly, Chapter 5 has heavy dependence
on Chapter 3. In this chapter, a general framework is developed (introduced by the author
in [90]) that allows one to prove that after certain preconditioning steps (deformations)
a numerical method applied to a parameter-dependent RHP can maintain accuracy for
arbitrarily large values of said parameter. In this numerical setting, we refer to this type of
behavior as asymptotic stability. This establishes links between the numerical ideas used
in the rest of the manuscript with the method of nonlinear steepest descent [33].

Chapter 6 presents the application of the theory of Chapters 2-5 to the Korteweg-
de Vries (KdV) and modified KdV equations. This presents the first known numerical
implementation of the celebrated inverse scattering transform that can be evaluated for
all (x, t) and for all allowable initial conditions. Here asymptotic stability is realized and
verified through numerical tests and comparison with asymptotic formulae. In specific
regions of the (x, t)-plane the asymptotic stability of the numerical method is proved in a
straightforward way with a new application of the theory of Chapter 5.

This chapter is followed by more new results: the same techniques applied to the KdV
equation are applied to the focusing and defocusing nonlinear Schrödinger equations.
Similar results are demonstrated: provable asymptotic stability of the numerical method.
Darboux transformations are used to solve problems with homogeneous Robin boundary
conditions. Finally, solutions with vertical asymptotes are computed. Traditional numeri-
cal methods cannot capture these solutions.

The computation of asymptotic formulae in Chapter 6 requires the computation of
a Painlevé II transcendent. In Chapter 8 we examine the computation of solutions of
Painlevé II equation on the real line. We present the computation of solutions that often
arise in applications. This represents the first time the deformed RHP for the Painlevé
II transcendent has been solved in the literature and we include a proof of asymptotic
stability for some parameter ranges.

In Chapter 9 we present a new method for computing all finite-genus solutions of the
KdV equation. The finite-genus solutions are special periodic and quasi-periodic multi-
phase solutions of the KdV equations. These solutions arise in the analysis of the periodic
Cauchy problem for the KdV equation. The finite-genus solutions are computed from the
asymptotics of an associated Baker–Akhiezer function which is holomorphic on a finite-
genus Riemann surface except at infinity. The method we present first phrases a RHP
that is solved by the Baker–Akhiezer function. This RHP is solved via the techniques in
Chapter 5 and a uniformly accurate approximation to solutions of the KdV equation is
produced.

We conclude this manuscript with a discussion of a different kind of nonlinear special
function: orthogonal polynomials. Polynomials that are orthogonal with respect to a
measure depend nonlinearly on that measure. We present the first-known method to solve
the Fokas–Its–Kitaev [66] RHP numerically. This requires the construction of the so-called
equilibrium measure, see [88]. This method has important applications to random matrix
theory. In many cases, the measure

µn(B) =

∫

B
Kn(x, x)dx,
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that represents the expected fraction of eigenvalues of a random n×nHermitian matrix that
lie in the set B can be computed using orthogonal polynomials. We compute this measure
and demonstrate its convergence to the so-called equilibrium measure. In addition, we
use the numerical method to compute other eigenvalue statistics of some random matrix
ensembles.

1.5 Background material

1.5.1 Notation

On a given metric space we use B(x, δ) to denote the ball centered at x with radius δ.
We reserve C to denote a generic positive constant. We use χA to denote the indicator
function of the set A. The notation D ⋐ Ω is used when D is a connected component of
Ω. We reserve k, z and λ to be complex parameters.

1.5.2 Lebesgue spaces

Unless otherwise stated, we assume that Γ ⊂ C is a piecewise smooth oriented contour
with at most a finite number of transverse self-intersections. Additionally we assume
that any unbounded component of Γ tends to a straight line at infinity. The theory can be
developed under more general assumptions but this suffices for our purposes. We represent
Γ = Γ1 ∪ · · · ∪ Γn where each Γi is non-self-intersecting.

Definition 1.5.1.

Lp(Γ) =

{

f : Γ → C : f |Γi measurable,

∫

Γi

|f(k)|p|dk| <∞,∀i
}

.

We make Lp(Γ) into a Banach space by equipping it with the norm

‖f‖Lp(Γ) =

(

n
∑

i=1

∫

Γi

|f(k)|pdk
)1/p

.

The notation ‖f‖p = ‖f‖Lp(Γ) is used when Γ is clear from context.

1.5.3 Fredholm theory

Let X and Y be Banach spaces. Denote the set of operators from X to Y by L(X,Y ) and
we equip the space with its standard induced operator norm which makes the space into a
Banach algebra if X = Y . We use the term operator for an element of L(X,Y ).

Definition 1.5.2. K ∈ L(X,Y ) is said to be compact if the image of a bounded set in X
is precompact in Y . Or, equivalently, the image of the unit ball in X is precompact in Y .
Let K(X,Y ) denote the closed subspace of compact operators in L(X,Y ).

This allows us to define a (semi-)Fredholm operator.

Definition 1.5.3. T ∈ L(X,Y ) is called left(right) semi-Fredholm if there exists S ∈
L(X,Y ), called a regulator, such that ST = I +K(TS = I +K) where K ∈ K(X,Y ). An
operator is Fredholm if it is both left and right semi-Fredholm.
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Theorem 1.5.4. [41] If X is a Banach space, then an operator T on X is a Fredholm
operator if and only if dimkerT and codim ranT is finite.

Definition 1.5.5. The Fredholm index denoted indT is defined by

ind(T ) = dimkerT − codim ranT.

Theorem 1.5.6. Let T be a Fredholm operator with index κ. There exists ǫ > 0 such that
if ‖S − T‖ < ǫ then S is Fredholm with index κ.

1.5.4 Additional results

We include two theorems that are of great use in what follows.

Theorem 1.5.7. Let X and Y be two normed linear spaces with at least one being a
Banach space. Let L ∈ L(X,Y ) and L−1 ∈ L(Y,X). Let M ∈ L(X,Y ) satisfy

‖M − L‖ < 1

‖L−1‖ .

Then M is invertible, M−1 ∈ L(Y,X) and

‖M−1‖ ≤ ‖L−1‖
1− ‖L−1‖‖M − L‖ ,

‖M−1 − L−1‖ ≤ ‖L−1‖2‖M − L‖
1− ‖L−1‖‖M − L‖ .

Theorem 1.5.8. Let V be a Banach space, L ∈ L(V ). Assume for some integer m ≥ 1
that ‖L‖ < 1. Then I − L is a bijection on V and its inverse satisfies

‖(I − L)−1‖ ≤ 1

1− ‖Lm‖

m−1
∑

i=0

‖Li‖.

Throughout we are interested in matrix-valued functions so we need to define function
spaces that contain them. For M ∈ Cn×x we define the appropriate Lp-based matrix
norms:

|M |p =





n
∑

j=1

n
∑

i=1

|Mij |p




1/p

.

Note that when p = 2

|M |2 =
√
trM∗M,

where ∗ denotes conjugate transpose.
This allows us to define the space, abusing notation,

Lp(Γ) = {f : Γ →M(n,C), measurable : ‖|f(k)|p‖p <∞}
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equipped with the obvious norm. For p = 2 we set W k,p(Γ) = Hk(Γ) and this retains the
Hilbert space structure with the inner product

〈f, g〉 =
k
∑

j=1

∫

Γ
f (j)(g(j))∗|dk|.

Remark 1.5.9. Another important property of Hk(Γ) for k ≥ 1 is that there exists a
constant c > 0 such that

‖fg‖Hk(Γ) ≤ c‖f‖Hk(Γ)‖g‖Hk(Γ).

This makes the space into an algebra and with a redefinition of the norm, the space is a
Banach algebra (c = 1).
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Chapter 2

Linear and Nonlinear Partial

Differential Equations

In this chapter we discuss the solution, analytical and numerical, of a simple linear evo-
lution PDE. At their essence the ideas presented here extend to the nonlinear case. The
nonlinearization of the solution technique we present is the celebrated inverse scattering
transform. The nonlinearization of the method for calculating long-time asymptotics is
the method of nonlinear steepest descent. Finally, the nonlinearization of the numerical
method presented in this section is the numerical method discussed in the remainder of
this manuscript.

2.1 Solution of a prototypical linear PDE

Consider the solution of the initial-value problem

iqt + qxx = 0,

q(x, 0) = q0(x) ∈ S(R),
(2.1.1)

where S(R) is the Schwarz class of rapidly decaying functions. For simplicity, we assume
more. Define for δ > 0,

Sδ(R) = {f ∈ S(R) : sup
x∈R

eδ|x||f (j)(x)| <∞, j = 0, 1, . . .}.

For the remainder of this chapter we assume q0(x) ∈ Sδ(R). Consider the system of
ordinary differential equations

µx − ikµ = q, k ∈ R, (2.1.2)

µt + ik2µ = iqx − kq. (2.1.3)

It is straightforward to check that µxt = µtx if and only if iqt+qxx = 0. This fact, for linear
PDEs, was first noticed by Gel’fand and Fokas in [50]. The system (2.1.2) and (2.1.3) is a

17
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Lax pair for (2.1.1). Assuming decay in q, we solve (2.1.2)

µ(x, t) = C1(t)e
ikx +

∫ x

−∞
eik(x−s)q(s, t)ds.

By choosing C1(t) = 0 and C1(t) =
∫∞
−∞ e−iksq(s, t)ds we obtain two solutions

µ+(x, t; k) =

∫ x

−∞
eik(x−s)q(s, t)ds, µ−(x, t) = −

∫ ∞

x
e−ik(s−x)q(s, t)ds.

Note that µ± is analytic in k for k ∈ C± = {z ∈ C : ± Im z > 0}. Furthermore, integration
by parts shows that µ± = O(k−1) as |k| → ∞ in the respective domains of analyticity.
Additional integration by parts shows that (µ±)x = O(k−1) as |k| → ∞. Thus (2.1.2)
implies

q(x, t) = i lim
|k|→∞

kµ(x, t; k). (2.1.4)

Remark 2.1.1. To apply this technique with weaker assumptions on q0(x) we need to
invoke the theory of Hardy spaces. See Example 3.5.15 for an example of this technique.

Consider the difference

ν(x, t; k) = µ+(x, t; k) − µ−(x, t; k) =
∫ ∞

−∞
eik(x−s)q(s, t)ds. (2.1.5)

It follows that ν satisfies

νx − ikν = 0,

νt + ik2ν = 0.

The first equation implies ν(x, t; k) = A(t; k)eikx and the second, ν(x, t; k) = B(x; k)e−ik2t.
Evaluating at t = 0, A(0; k)eikx = B(x; k) and therefore ν(x, t; k) = A(0; k)eikx−ik2t.
Evaluating this at x = t = 0, we find

A(0; k) = q̂0(k) =

∫ ∞

−∞
e−iksq0(s)ds.

We arrive at the relation (see Figure 2.1.1)

µ+(x, t; k) − µ−(x, t; k) = eikx−ik2tq̂0(k),

µ±(x, t; k) = O(k−1), as k → ∞.

This is a scalar RHP (see (1.4.1) or Chapter 3) for a piecewise analytic function

µ(x, t; k) =

{

µ+(x, t; k), if k ∈ C+,
µ−(x, t; k), if k ∈ C−.
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Figure 2.1.1: The piecewise definition of µ. The contour in the figure represents R.

The solution techniques in Chapter 3 apply (see (3.2.1)) and we find the solution

µ(x, t; k) =
1

2πi

∫ ∞

−∞

eisx−is2tq̂0(s)

s− k
ds, k 6∈ R.

We use the reconstruction formula, (2.1.4), along with Lemma 3.6.9 to obtain

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tq̂0(k)dk. (2.1.6)

Remark 2.1.2. The Lax pair (2.1.2) and (2.1.3) can be written in an equivalent way using
differential forms [49]. It follows that

d
(

e−ikx+ik2tµ
)

= e−ikx+ik2t(qdx+ q̃dt), q̃ = iqx − kq,

is equivalent to (2.1.2) and (2.1.3). Therefore µ+ is obtained by integrating this differential
form in the (x, t)-plane from (−∞, t) to (x, t) and µ− is obtained by integration from (∞, t)
to (x, t). This approach generalizes to the nonlinear case. This also provides an alternative
approach to the linear periodic problem [106].

2.2 An asymptotic formula

Because q0 ∈ Sδ(R) it follows that q̂0 is analytic in the strip Tδ = {k ∈ C : | Im k| < δ}.
Additionally, for each n > 0, |q̂0(k)| ≤ An/(1 + |k|)n for k ∈ T δ′ for δ′ < δ. A similar
bound follows for every derivative of q̂0(k) in the same strip. This follows from the fact that
e±δ′xq0(x) ∈ S(R). We use this decay to deform the integral over the real axis. To guide the
deformation, we use the method of steepest descent for integrals. Define Θ(k) = ikx−ik2t.
We look for the stationary point, k0 such that Θ′(k0) = 0, or k0 = x/(2t). Expand Θ around
the stationary point, Θ(k) = ix2/(4t)− it(k−k0)2. To find the path of steepest descent we
set k − k0 = reiθ thus Θ(k) = ix2/(4t)− itr2e2iθ. If θ = −π/4 then Θ(k) = ix2/(4t)− tr2:
the imaginary part is constant while the the real part is negative and decreasing away from
the stationary point.

The estimate |q̂0(k)| ≤ An/(1+ |k|)n allows the deformation of the integral to a contour
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Figure 2.2.1: The contour Cδ′ + k0.

that passes along the local path of steepest descent. Define (see Figure 2.2.1)

Cδ′ = (−∞+ iδ′,−δ′ + iδ′] ∪ {re−iπ/4 : −
√
2δ′ < r <

√
2δ′} ∪ [δ′ − iδ′,∞+ iδ).

Consider the integral, for s < k0

Is =

∣

∣

∣

∣

∣

∫ s+iδ′

s
eikx−ik2tq̂0(k)dk

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ δ′

0
ei(s+ir)x−i(s+ir)2tq̂0(s+ ir)idr

∣

∣

∣

∣

∣

≤
∫ δ′

0
e−rx+2srt An

(1 + |s+ ir|)n dr

≤ An

(1 + |s|)n e
−rx+2k0rtδ′. (2.2.1)

Thus Is → 0 as s → −∞. Note that this follows when n = 0— q̂ need only be bounded
for this deformation to proceed for t > 0. The same argument applied to a similar contour
from s > k0 to s− iδ′ justifies the equality

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ik2tq̂0(k)dk =

1

2π

∫

Cδ′+k0

eikx−ik2tq̂0(k)dk (2.2.2)

A change of variables shows

q(x, t) =
1

2π
eix

2/(4t)−iπ/4

∫

√
2δ′

−
√
2δ′
e−tr2 q̂0(k0 + re−iπ/4)dr +O(t−n) for all n > 0,

as t → 0. A full asymptotic expansion of q can be found via a modification of Watson’s
Lemma [79, pg. 58]. In particular,

q(x, t) =
q̂0(x/(2t))

2
√
π

eix
2/(4t)−iπ/4 1√

t
+O(t−1) as t→ ∞. (2.2.3)

2.3 A steepest descent-based numerical technique

We develop a numerical technique based on applying quadrature routines to (2.2.2). We
first concentrate on the computation of the inverse Fourier transform, assuming that q̂0
can be computed accurately. Our approach is related to that of Asheim and Huybrechs
[6]. To do so, we must truncate the infinite integral. With this goal, define

Cδ′,L = Cδ′ ∩ {k ∈ C : |Re k| ≤ L}.



2.3. A STEEPEST DESCENT-BASED NUMERICAL TECHNIQUE 21

The same estimates used in (2.2.1) show that for any ǫ > 0, there exists an M , depending
only on q̂0 and δ′, so that

∣

∣

∣

∣

∣

1

2π

∫

Cδ′+k0

eikx−ik2tq̂0(k)dk − 1

2π

∫

Cδ′,M+k0

eikx−ik2tq̂0(k)dk

∣

∣

∣

∣

∣

< ǫ, for L > M.

In practice, we choose L so that the integrand is less than machine precision on Cδ′ \Cδ′,L.
In what follows, we always assume such an L is chosen.

There is a subtle complication. If δ′ is fixed, the derivative of the integrand on the
contour {re−iπ/4 : −

√
2δ′ < r <

√
2δ′} + k0 will increase with t. We scale the contour.

Define for t ≥ 1, Sδ′,L,k0 = t−1/2Cδ′,L + k0. We have |q(x, t) − qL(x, t)| < ǫ where

qL(x, t) =
1

2π

∫

Sδ′,L,k0

eikx−ik2tq̂0(k)dk.

Use k = t−1/2z + k0 ∈ Sδ′,L,k0 for z ∈ Cδ′,L as a change of variables in the integral along
with ikx+ ik2t = ix2/(4t) − it(k − k0)

2 to find

qL(x, t) =
1

2π
t−1/2eix

2/(4t)

∫

Cδ′,L

e−z2 q̂0(t
−1/2z + k0)dz.

From the uniform boundedness of every derivative of q̂0(k) in T δ′ we find that a quadrature
routine applied to

∫

Cδ′,L

e−z2 q̂0(t
−1/2z + k0)dk,

will converge uniformly in the half plane {(x, t) : x ∈ R, t ≥ c > 0}. This implies that
the computational cost to compute a solution at any given (x, t) value is bounded. This
method for computing qL(x, t) will have its relative error tend to zero. Furthermore, if a
spectral method, such as Clenshaw–Curtis quadrature is used, the convergence is spectral.

This is all, of course, assuming that we may compute q̂0 accurately in the complex
plane. To do this we use a spectral collocation method, see Appendix B to solve (2.1.2)
for an approximation of µ̃±(x, k) of µ±(x, 0; k). We solve the truncated, approximate
boundary-value problems

(µ̃±)x − ikµ̃± = q0, µ±(±l) = 0, l sufficiently large. (2.3.1)

Then

µ̃+(0, k) − µ̃−(0, k) ≈ µ+(0, 0; k) − µ−(0, 0; k) =
∫ ∞

−∞
e−ikxq0(x)dx.

This is an approximation of the Fourier transform. Furthermore, if k is complex there is
no barrier to solving (2.3.1) numerically, provided q0 has sufficient decay and smoothness.

What we have described here is a Levin-type collocation method [64] for oscillatory
integrals. One could compute the Fourier transform directly using quadrature but the
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high oscillation destroys accuracy for k outside a small neighborhood of the origin. The
accuracy of the Levin-type method is seen to increase as |k| → ∞ for k ∈ Tδ′ . Additionally,
since q0 ∈ Sδ(R), the spectral method in Appendix B converges spectrally.

2.4 Numerical results

To demonstrate the numerical method we use q0(x) = (1 + x)e−x2
so that

q̂0(k) =

√
π

2
e−

k2

4 (2− ik).

We demonstrate the spectral convergence of the method described above for computing
q̂0(k). We numerically solve (2.3.1) with 15, 30 and 60 collocation points. The error in the
resulting approximations are shown in Figure 2.4.1.
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Figure 2.4.1: An approximation of q̂0(k) when q0(x) = (1 + x)e−x2
by solving (2.3.1) with

l = 10. The error is shown using the analytical formula for q̂0 for 15 (dotted), 30 (dashed)
and 60 (solid) collocation points. Notice that doubling the number of collocation points
gives about 5 digits of accuracy. This demonstrates spectral convergence.

The corresponding solution of (2.1.1) can be computed over large spatial ranges. In
Figure 2.4.2 we show the initial condition along with the solution when t = 5. Notice the
high oscillation due to dispersion.

We also examine the validity of (2.2.3). Define the an estimate of the relative error to
be

Erel(x, t) =
√
t

∣

∣

∣

∣

1

2
√
π
eix

2/(4t)−iπ/4 1√
t
− q(x, t)

∣

∣

∣

∣

.

We use the numerical approximation q(x, t) in this formula and plot Erel(−2t, t) as t in-
creases. See Figure 2.4.3 for a validation of both the numerical method and the asymptotic
formula.
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Figure 2.4.2: The numerically computed solution of (2.4.2). We plot both real (solid) and
imaginary (dashed) parts of the solution. (a) The initial condition q0(x). (b) The solution
at t = 5. (c) A scaled plot of the solution at t = 5. Notice the high oscillation due to
dispersion.
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Figure 2.4.3: A plot of E(−2t, t) using the numerical method outlined here. This validates
both the numerical accuracy and the asymptotic formula. Since we expect uniform, relative
convergence we assume that our numerical approximation to q(x, t) is much more accurate
than the asymptotic formula.

2.5 An extension to nonlinear problems

Consider the solution of the initial-value problem for the nonlinear Schrödinger (NLS)
equation

iqt + qxx + 2λ|q|2q = 0, λ = ±1,

q(x, 0) = q0(x) ∈ S(R).
(2.5.1)

We discuss the solution of this problem with the inverse scattering in loose terms. A
rigorous discussion is found in Chapter 4.

This system has the following Lax pair [49]

µx + ik[σ3, µ] = Qµ, (2.5.2)

µt + 2ik2[σ3, µ] = Q̃µ, (2.5.3)

where

Q(x, t) =

[

0 q(x, t)
−λq̄(x, t) 0

]

, Q̃(x, t) = 2kQ− iQxσ3 + iλ|q|2σ3, σ3 =

[

1 0
0 −1

]

and [·, ·] is the standard matrix commutator. Following similar ideas that are present in
Remark 2.1.2, this Lax pair is equivalent to the differential form

d
(

ei(kx−2k2t)σ̂3µ(x, t, k)
)

= ei(kx+2k2t)σ̂3(Qµdx+ Q̃µdt), eασ̂3A = eασ3Ae−ασ3 . (2.5.4)

Integrating this differential form over various contours in the (x, t)-plane yields different
integral equations, and different solutions µ. For any solution µ, it follows that M =
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µe−i(kx+2k2t)σ3 solves

Mx + ikσ3M = QM,

Mt + 2ik2σ3M = Q̃M.

For any two solutions M1, M2 of this system M1(x, t, k) =M2(x, t, k)S(k) for some matrix
S. Thus for any two solutions µ1, µ2 of (2.5.4),

µ1(x, t, k) = µ2(x, t, k)e
−i(kx+2k2t)σ̂3S(k), (2.5.5)

for some matrix S(k). We follow [49] and define µ1, µ2 to be the solutions of

µ1(x, t, k) = I +

∫ (x,t)

(−∞,t)
e−ik(x−ξ)σ̂3 [Q(ξ, t)µ(ξ, τ, k)]dξ,

µ2(x, t, k) = I +

∫ (x,t)

(∞,t)
e−ik(x−ξ)σ̂3 [Q(ξ, t)µ(ξ, τ, k)]dξ.

(2.5.6)

Combining, standard results on Volterra integral equations (see Chapter 4) with the
boundedness properties of the exponential, we find that the first column µ+1 of µ1 is analytic
in the upper-half plane and the second column µ−1 is analytic in the lower-half plane. The
reverse is true for µ2: the first column µ−2 is analytic in the lower-half plane and the second
column µ+2 is analytic in the upper-half plane. This is, of course, dependent on some mild
conditions on Q: q ∈ Sδ(R) is certainly sufficient.

It follows from Chapter 4 that S(k) in (2.5.5) may be written in the form (see also [49])

S(k) =

[

a(k̄) b(k)

−λb(k̄) a(k)

]

.

for some functions a, b. Generally, a(k) is analytic in the upper-half plane, and for q ∈ Sδ(R)
both a(k) and b(k) are analytic in a strip that contains the real line. For simplicity we
assume that a(k) never vanishes. This is true when λ = −1 for the defocusing NLS
equation. A discussion of how to proceed when this is not the case is found in Chapter 7.

The reflection coefficient is defined by the ratio ρ(k) = b(k)/a(k). Define a sectionally
analytic function

Φ =

{

Φ+, in C+,
Φ−, in C−,

Φ+ =

[

µ+1
a(k)

, µ+2

]

, Φ− =

[

µ+2 ,
µ−1
a(k̄)

]

.

It follows [49] that Φ(x, t, k) solves the following matrix Riemann–Hilbert problem

Φ+(x, t, s) = Φ−(x, t, s)J(x, t, s), s ∈ R, Φ(x, t,∞) = I, (2.5.7)

J(x, t, k) =

[

1 + λρ(k̄)ρ(k) λρ(k̄)e−2ikx−4ik2t

ρ(k)e2ikx+4ik2t 1

]

.
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Once this is solved for Φ the solution q may be found via

q(x, t) = lim
|k|→∞

2ik(Φ − I)12, (2.5.8)

where the subscript denotes the (1, 2) entry of the matrix. Unfortunately, this Riemann–
Hilbert problem can only be solved in closed form for extremely simple initial conditions.
A numerical treatment is necessary.

Remark 2.5.1. In the method of inverse scattering the linear dispersion relation always
appears in the jump matrix. On first glance it may seem that this is not the case as the
exponential in (2.5.7) differs from that in (2.1.6), even if we allow scalings of the spectral k
variable. This can be rectified by noting that q̄(x, t) can be recovered from the (2, 1)-entry of
Φ and the complex conjugate of (2.5.1) has the dispersion relation that appears in (2.5.7).

2.6 An asymptotic formula for the nonlinear problem

The long-time asymptotics of (2.5.1) are computed by Deift and Zhou [36] when λ = −1
(defocusing NLS). A full derivation of the results of this section is found in Chapter 4.
The long-time behavior is seen to differ from the linear problem in a fundamental way.
This comparison is important from a physical and mathematical perspective. Deift and
Zhou use the method of nonlinear steepest descent for Riemann–Hilbert problems [33] to
analyze the long-time behavior of solutions of (2.5.7). From this, the long-time behavior
of q(x, t), the solution of (2.5.1), can be rigorously established. The result from [36] is for
|x/(4t)| ≤ C,

q(x, t) =
α(−x/(4t))√

t
eix

2/(4t)−iν(−x/(4t)) log 8t +O(t−1 log t), (2.6.1)

where

ν(k) = − 1

2π
log(1− |ρ(k)|2), |α(k)|2 = ν(k)/2,

argα(k) =
1

π

∫ k

−∞
log(k − ξ)d(log(1− |ρ(ξ)|2)) + π/4,

+ arg Γ(iν(k))− arg ρ(k),

and Γ is the classical Gamma function [84]. This formula shows that the behavior of
exp(−x2/(4t) + iπ/4), present in the case of the linear problem, appears in the formula
for the nonlinear problems. From the presence of the log 8t term in (2.6.1) it follows that
the solution q(x, t) to the nonlinear problem never ‘becomes linear’. There is a fundamen-
tal difference between the solutions, always. For numerical results for the focusing and
defocusing NLS equations, see Chapter 7.

2.7 Quantifying nonlinearity

In this section we use numerical methods to quantify and demonstrate the fundamental
differences between solutions of (2.1.1) and (2.5.1) with λ = −1 (defocusing). This provides
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an important motivation for studying nonlinear problems: even in solvable1 nonlinear
problems, the behavior differs consistently from the corresponding linear case. With the
extensive numerical techniques we develop below, we can examine the effect of nonlinearity
precisely. This shows to all scientists that linearization of nonlinear problems must always
be considered carefully.

Furthermore, our results demonstrate the transition of the corresponding solutions
into their asymptotic regimes. We use q0(x) = α(x + 1)e−x2

as the initial condition for
both equations, for varying constants α. The notation qN (x, t) is used to denote the
corresponding solution to the defocusing NLS equation and qL(x, t) will be used to denote
the solution of (2.1.1). We ignore any error due to the numerical algorithms and treat the
numerical results as the true solution.

2.7.1 Small time

With α = 1 we look at the small-time evolution of the function d(x, t) = qN (x, t)−qL(x, t).
The numerical results indicate that d(x, t) = O(eat) as t→ 0+, a > 0, see Figure 2.7.1 for
a demonstration of this.
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Figure 2.7.1: (a) The difference |qN (x, t)−qL(x, t)| plotted as a function of x for fixed times:
t = 0.00001 (dotted), t = 0.0001 (dashed), t = 0.001 (dot-dashed), and t = 0.01 (solid). (b)
A demonstration of the error: this plot indicates maxx∈[−30,30] |qN (x, t)−qL(x, t)| = O(eat)
as t→ 0+, a > 0.

1Though general solution formulas for the NLS equations cannot be written down, the IST provides
a constructive existence and uniqueness proof for the PDE with access to asymptotics. In this sense the
problem is solved.
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2.7.2 Long time

The analysis is more interesting in the large-time regime. We use (2.2.3) as a guide and
consider solutions along the trajectory x = −4βt for β > 0. We find

qL(−2βt, t) =
q̂0(−2β)

2
√
π

e−iβx−iπ/4 1√
t
+O(t−1) as t→ ∞,

QL(t) = qL(−2βt, t)
√
t.

Define xj = j2π/n and Sn = (x0, x1, . . . , xn−1). Consider the vector of values

VL(t
∗) = QL(t

∗ +M/βSn).

For M ≥ 1 and n sufficiently large the discrete Fourier transform of this vector will limit
to a fixed vector with only one entry non-zero as t∗ → ∞.

In the nonlinear case we have

qN(−2βt, t) =
α(β)√
t
e−iβx−iν(β) log 8t +O(t−1 log t),

QN (t) = qN (−2βt, t)
√
t.

Consider the vector QN (t∗ +M/βSn). For fixed M , a simple calculation shows that

e−iβx−iν(β) log 8t = e−iβx−iν(β) log 8t∗ +O(1/t∗),

x ∈ −4β[t∗, t∗+2πM/β] and t ∈ [t∗, t∗+2πM/β]. Therefore the discrete Fourier transform
of VN (t∗) = QN (t∗ +M/βSn) will limit to a vector with only one non-zero component as
t∗ → ∞ but this will not be a fixed vector. The logarithm will change the phase of the
non-zero component.

We also consider the discrete Fourier transform of the first term in the asymptotic
expansions. Define

qasymL (x, t) =
q̂0(x/(2t))

2
√
π

eix
2/(4t)−iπ/4 1√

t
,

qasymN (x, t) =
α(−x/(4t))√

t
eix

2/(4t)−iν(−x/(4t)) log 8t,

Qasym
L (t) = qasymL (−2βt, t)

√
t,

Qasym
N (t) = qasymN (−2βt, t)

√
t,

V asym
L (t∗) = Qasym

L (t∗ +M/βSn),

V asym
N (t∗) = Qasym

N (t∗ +M/βSn).

We use a variety tests to examine solutions. First, we compute the discrete Fourier
transform of VL(t

∗), VN (t∗), V asym
L (t∗) and V asym

N (t∗) with n ≈ M/2. Call these vectors
FVL(t

∗), FVN (t∗), FV asym
L (t∗) and FV asym

N (t∗).
In the first test, we normalize the transformed vectors so that their maximum entry

has absolute value one. This entry is then removed and the norm of the resulting vector
is compared and we call this the residual power. A small norm indicates that the vector
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has extremely localized support showing that the solution is close to the linear asymptotic
formula. See Figure 2.7.2 for a plot of the residual power as t∗ varies from 2π to 10000.
This figure shows the dramatic affect that amplitude has on the solution of the nonlinear
problem. The residual power decays much slower, initially, in the larger amplitude case.
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Figure 2.7.2: All plots show the residual power for FVN (t∗) (dotted), FV asym
N (t∗) (dashed)

and FVL(t
∗) (solid). (a) A small amplitude initial condition (α = 0.1), and (b) A medium

amplitude initial condition (α = 1).

In the second test, we monitor the phase of entry of FVL(t
∗), FVN (t∗), FV asym

L (t∗) and
FV asym

N (t∗) with maximum modulus. We restrict to t∗ = 2π+2πMm for m = 0, 1, . . .. For
this choice the only non-zero entry of FV asym

L (t∗) will have constant phase. See Figure 2.7.3
for a demonstration of a fundamental difference between the linear and nonlinear problem.
Due to the logarithmic term in (2.6.1) the phase will always differ as Figure 2.7.3 displays.

2.7.3 Small amplitude limit

In this section we analyze the effect of nonlinearity through the limit α → 0. Specifically,
define

qL,α(x, t) = qL(x, t)/α, and qN,α(x, t) = qN(x, t)/α.

Therefore, qL,α(x, t) is the solution of (2.1.1) with q0(x, t) = (x + 1)e−x2
, by linearity.

For (2.5.1) we are in essence computing the Fréchet derivative of the solution operator
evaluated near zero, acting on q0(x) = (x + 1)e−x2

. This should, for small time, be close
to the solution of the linear problem. This approximation breaks down for large time. We
demonstrate both of these facts numerically. In Figure 2.7.4 we demonstrate the decay
rate of supx∈[−40,40] |qL,α(x) − qN,α(x)| as α → 0. Much of the detail of the solution is
destroyed by the absolute value. In Figure 2.7.5 we show the convergence of both the
real and imaginary parts of qN,α to qL,α. It is apparent that the amplitude of the linear
solutions plays a role in the convergence rate.

We have demonstrated the convergence of qN,α to qL,α as α → 0 for a fixed time. We
now demonstrate that we may take a sequence of times {tj}, a sequence {αj} with αj → 0
along with appropriate sets Sj so that

Dj = sup
x∈Sj

|qN,αj (x, tj)− qL,αj(x, tj)|
√

tj 6→ 0 as αj → 0. (2.7.1)
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Figure 2.7.3: This figure shows the phase of the entry of FVL(t
∗) (solid), FV asym

L (t∗) (dot-
dashed), FVN (t∗) (dashed) and FV asym

N (t∗) (dotted) with maximum modulus. (a) A small
amplitude initial condition (α = 1), and (b) A larger amplitude initial condition (α = 1).
(c) A zoomed comparison of the dominant mode of FVL(t

∗) and F asym
L (t∗) when α = 1.
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Figure 2.7.4: The difference supx∈[−40,40] |qL,α(x, 10)− qN,α(x, 10)| as α→ 0 plotted versus
1/α as α→ 0. This demonstrates that the difference is O(α).
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Figure 2.7.5: This figure shows the convergence of qN,α to qL,α in the α → 0 limit when
t = 10. The dashed line represents qN,α for α varying from 1 to 1/4. (a) Convergence of
the real part. (b) Convergence of the imaginary part.
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The factor
√
tj is used since the asymptotics (see (2.2.3) and (2.6.1)) indicate that qL,N,α(x, t) =

O(1/
√
t) and Dj is an estimate of relative error. We let tj = j, Sj = [−10 + j, 10 + j] and

αj = 1/j for j = 1, 2, . . .. In Figure 2.7.6 we see that the solution of the nonlinear problem
does not converge to the solution of the linear problem in this particular limit.

0 200 400 600 800 1000

0.000195

0.0002

0.000205

0.00021

0.000215

j

D
j

Figure 2.7.6: The difference Dj in (2.7.1) plotted versus j. This demonstrates the lack of
convergence of the solution qN,α to qL,α in the α→ 0 limit for long time.



Chapter 3

Riemann–Hilbert Problems

We present a thorough discussion of RHPs. The goal of this chapter is to introduce the
subject in a comprehensive yet accessible way. Many proofs of well-known results are
included below. The proofs are often omitted in the literature and we believe they are
instructive. Standard references on the subject are [24, 4, 116, 18]. On first reading, many
proofs may be skipped. It should be noted that much of the development below concerning
the Sobolev zero-sum spaces is new.

The development here proceeds in the following way. We first introduce the fundamen-
tal ideas of RHPs using Hölder continuity. In particular, we develop the theory of Cauchy
integrals over closed contours. We discuss the solution of scalar RHPs and extend the
theory to non-closed contours. This leads to the study of matrix RHPs. In some cases,
a matrix RHP can be reduced to a series of scalar RHPs. When this is not the case the
approach is to provide conditions for the unique solvability of the RHP. This requires the
study of appropriate Hardy and Sobolev spaces along with the development of the theory
of Cauchy integrals on Lipschitz curves and associated singular integral equations.

The essential idea behind a RHP is that of finding a piecewise analytic function, which
we often refer to as sectionally analytic, that is discontinuous across a contour Γ ⊂ C. We
specify how the function behaves at this discontinuity through a jump condition. To be
more precise we divide C \Γ = Ω+ ∪Ω− into disjoint components Ω+ lying to the left of Γ
and Ω− lying to the right. Of course, for a general contour Γ this division is not possible.
It turns out that Γ can be augmented so this is true, see Section 3.10.

Definition 3.0.1. Γ is said to be a complete contour if Γ can be oriented in such a way
that C \ Γ = Ω+ ∪ Ω−, Ω+ ∩ Ω− = ∅ and Ω+(Ω−) lies to the left (right) of Γ. The set of
self-intersections of Γ is denoted by γ0.

Often, it is beneficial to decompose Γ = Γ1 ∪ · · · ∪ Γl so that each Γi is non-self-
intersecting.

A RHP is the task of finding a (hopefully unique) function φ(z) that satisfies the
following jump condition

lim
z→s, z∈Ω+

φ(z) =

(

lim
z→s, z∈Ω−

φ(z)

)

g(s) + f(s), s ∈ Γ,

for some definite functions f, g defined on Γ. We always assume the limit is taken in a

33
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(a) (b)

Figure 3.0.1: (a) An admissible self-intersecting contour Γ with Ω± labeled. (b) An ad-
missible non-self-intersecting contour.

non-tangential manner. In what follows we use the notation

φ+(z) = φ+(z) = lim
z→s, z∈Ω+

φ(z),

φ−(z) = φ−(z) = lim
z→s, z∈Ω+

φ(z).

The + or − may be placed in the subscript or superscript for notational convenience.

Many remarks are in order. The jump condition

φ+(s) = φ−(s)g(s) + f(s),

will be used in the case that φ is matrix or vector valued. In this case g is a matrix and
f is a matrix or vector. Throughout what follows we make many analogies between RHPs
and differential equations. For our first analogy, one must specify what is meant by φ±. In
relation to differential equations this is analogous to when one must specify classical versus
weak derivatives. There are many natural meanings of φ±, two common interpretations
are:

1. φ±(s) should exist at every interior point of the contour and be continuous functions
except at endpoints of Γ where they should be locally integrable, or

2. φ±(s) should exist almost everywhere (with respect to Lebesgue measure) and be in
an appropriate Lp space.

The first case is that of a continuous RHP and the second is that of an Lp RHP.

The definition used might affect the possibility of solving a specific RHP. In practice,
many difficult problems are reduced to RHPs and conditions on φ± fall out of the reduction
process.

In addition to boundary behavior we often specify the behavior of φ at some point in
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the complex plane, usually at ∞. A function φ is of finite degree at infinity if

lim sup
|z|→∞

|z|−n|φ(z)| <∞, for some n.

We require that for a function to solve a RHP it must be of finite degree at infinity. We
also consider matrix-valued functions and in this case we replace | · | with some matrix
norm, see Section 1.5.4.

In practice we usually specify some terms in the asymptotic series of φ at ∞, say
φ(z) = 1+O(z−1), or φ(z) = 1+1/z+O(z−2). In the former case we write φ(∞) = 1. These
conditions share an analogy with boundary/initial condition in the context of differential
equations. Unless otherwise stated we use uniform convergence, i.e.

φ(z) = p(z) +O(z−n) as z → ∞ ⇔ lim sup
R→∞

sup
|z|=R

|φ(z)− p(z)||z|n <∞.

3.1 Hölder theory of Cauchy integrals

The fundamental object of study in the theory of RHPs is the Cauchy integral. Given an
oriented contour Γ and a function f : Γ → C, the Cauchy integral is defined by

CΓf(z) =
∫

Γ

f(s)

s− z
d̄s, d̄s =

ds

2πi
. (3.1.1)

The Cauchy integral maps functions on a contour to analytic functions off the contour.
We shall see later that under specific regularity conditions these functions can be put into
a one-to-one correspondence. In this sense, Cauchy integrals are critical in the solution of
RHPs both from a numerical and an analytical perspective.

RHPs are the construction of sectionally analytic functions with specified boundary
behavior on some contour Γ. We must understand the limiting values of (3.1.1), specifically
issues related to existence and regularity.

We describe a class of functions on which the Cauchy integral has nice properties.

Definition 3.1.1. Given a domain Ω ⊂ C, a function f : Ω → C is α-Hölder continuous
on Ω if for each s ∈ Ω, there exists Λ(s), δ(s) > 0 such that

|f(s)− f(x)| ≤ Λ(s)|s− x|α, for |s− x| < δ(s).

Note that this definition is useful when α ∈ (0, 1]. If α = 1, f is Lipschitz continuous
and if α > 1, f must be constant.

Definition 3.1.2. A function f : Γ → C is uniformly α-Hölder continuous on a bounded
contour Γ if Λ and δ can be chosen independently of s.

Lemma 3.1.3. Each uniformly α-Hölder continuous function with corresponding constants
δ and Λ satisfies

sup
s1 6=s2, s1,s2∈Γ

{ |f(s1)− f(s2)|
|s1 − s2|α

}

< CΛ <∞,
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where C depends only on δ and Γ.

Proof. It suffices to show that |f(s1) − f(s2)| ≤ CΛ|s1 − s2|α for any choice of s1, s2.
We select a uniform grid on Γ: {p1, p2, . . . , pN} such that |pi − pj | ≥ δ/2 for i 6= j and
|pi − pi+1| = δ/2. We assume Γ is oriented from s1 to s2. Let pi be the first element of the
partition after s1 and pj, the first before s2. We assume |s1 − s2| ≥ δ, then

|f(s1)− f(s2)|
|s1 − s2|

≤ |f(s1)− f(pi)|
|s1 − s2|

+
|f(pi)− f(pi+1)|

|s1 − s2|
+ · · ·+ |f(pj)− f(s2)|

|s1 − s2|

≤ |f(s1)− f(pi)|
|s1 − pi|

+
|f(pi)− f(pi+1)|

|pi − pi+1|
+ · · ·+ |f(pj)− f(s2)|

|pj − s2|
≤ NΛ.

Remark 3.1.4. We use a definition of uniformly Hölder functions that differs slightly
from the classical definition. The results stated below will be necessarily local, which makes
this definition more convenient.

We end this section with a number of technical lemmas.

Lemma 3.1.5. If Γ is a bounded, smooth contour then there exists δ > 0, such that for
every s∗ ∈ Γ, |d̄s| ≤ C|dr| where r = |s− s∗| and s ∈ B(s∗, δ).

Proof. Introduce a parametrization of Γ, s(t) = α(t)+ iβ(t). Let t∗ be so that s(t∗) = s∗ =
a+ ib. Then

r = [(α(t)− a)2 + (β(t) − b)2]1/2, dr = r−1(t)[(α(t) − a)α′(t) + (β(t)− b)β′(t)]dt.

Near t = t∗, we use Taylor’s theorem to write

(α(t)− a)α′(t) + (β(t)− b)β′(t) = (t− t∗)
[

α′(t∗)(α′(t∗) +O(t− t∗)) + β′(t∗)(β′(t∗) +O(t− t∗))
]

= (t− t∗)[(α′(t∗))2 + (β′(t∗))2] +O(t− t∗)2.

Additionally,

r(t) = |t− t∗|[(α′(t∗))2 + (β′(t∗))2]1/2(1 +O(|t− t∗|2)).

From boundedness and smoothness we know that there exists a constant C > 1 such that

1

C
≤ [(α′(t))2 + (β′(t))2]1/2 ≤ C.

It follows that
∣

∣

∣

∣

(α(t) − a)α′(t) + (β(t)− b)β′(t)
r(t)

∣

∣

∣

∣

≤ C +O(|t− t∗|).

Therefore for t ∈ (t∗ − γ, t∗ + γ), γ > 0,

|dt| ≤ (1 + C)|dr|,
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where γ depends on the magnitude of the second derivatives and can be made small
enough so that it does not depend on t∗ (or s∗). The smoothness of s(t) and the non-
vanishing of s′(t) gives |d̄s| ≤ C|dr| for a new constant. This is valid in B(s∗, δ) where
δ = supt∈(t∗−γ,t∗+γ) |s(t)− s∗|.

3.1.1 Boundary values

We use the notation Bθ(x, δ) = {y ∈ B(x, δ) : |Im(x − y)|/|x − y| > sin θ}. This is a
ball with two cones subtracted, see Figure 3.1.1. To allow for rotations define Bθ,φ(x, δ) =
(Bθ(x, δ)−x)eiφ +x. The following lemma begins to illustrate the importance of the class
of Hölder continuous functions.

Figure 3.1.1: A representation of Bθ,φ(s
∗, δ).

Lemma 3.1.6. Let Γ be a bounded, smooth contour. Let f : Γ → C be α-Hölder continuous
and f(s∗) = 0 for a center s∗ in Γ. Then

1. CΓf(s∗) exists, and

2. there exists δ > 0 such that CΓf(z) is continuous in Bθ,φ(s
∗, δ) for all θ > 0 where φ

is the angle the tangent at s∗ makes with the horizontal.

Proof. We prove each part separately.

1. This follows from the Hölder condition on f . The only unboundedness of the integrand
behaves like |s − s∗|α−1, which is integrable.

2. Examine

I(z) =

∫

Γ

f(s)

s− z
d̄s−

∫

Γ

f(s)

s− s∗
d̄s =

∫

Γ
f(s)

(

1

s− z
− 1

s− s∗

)

d̄s

=

∫

Γ

(f(s)− f(s∗))(z − s∗)
(s− z)(s − s∗)

d̄s.

We decompose Γ = Γδ ∪ Γc
δ where Γδ = Γ ∩B(s∗, δ) and Γc

δ is the complement relative
to Γ. We assume z ∈ B(s∗, δ) and set up some elementary inequalities. For s ∈ Γc

δ:
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• |z − s∗| < δ,

• |z − s| > δ, and

• |s− s∗| ≥ δ.

For s ∈ Γδ we use the Law of Sines (see Figure 3.1.2) to obtain |z− s∗|/|z− s| ≤ 1/ sin θ
where θ is then angle between the line from z to s∗ and that from s∗ to s. Note that θ
is bounded away from zero (and ±π) provided δ is sufficiently small.

Figure 3.1.2: A pictorial representation of |z − s∗| and |z − s|.

For δ > 0,

∣

∣

∣

∣

∣

∫

Γc
δ

(f(s)− f(s∗))(z − s∗)
(s − z)(s− s∗)

d̄s

∣

∣

∣

∣

∣

≤ |z − s∗|δ−2

∫

Γc
δ

|f(s)− f(s∗)||d̄s| ≤ C|z − s∗|δ−2

The right-hand side tends to zero as z → s∗. We estimate the remaining terms.

∣

∣

∣

∣

∫

Γδ

(f(s)− f(s∗))(z − s∗)
(s− z)(s− s∗)

d̄s

∣

∣

∣

∣

≤ Λ(s∗)
sin θ

∫

Γδ

|s− s∗|α−1|d̄s|.

Set r = |s− s∗|. The final estimate we need is that for δ sufficiently small, |d̄s| ≤ C|dr|
(see Lemma 3.1.5). Thus

|I(z)| ≤ C

(

2
Λ(s∗)
α sin θ

δα + |z − s∗|δ−2

)

. (3.1.2)

For any ǫ > 0, we choose δ so that the first term is less than ǫ and let z → s∗. This
proves that I(z) → 0 as z → s∗.

Remark 3.1.7. If f is uniformly α-Hölder continuous then the right-hand side of (3.1.2)
can be modified to depend on s∗ just though |z − s∗|.
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Now we discuss the limiting values of CΓf when f is α-Hölder continuous. We assume
that Γ is a bounded, closed curve. We denote the region lying to the left of Γ by Ω+ and
that to the right by Ω−. For any point s∗ ∈ Γ consider

CΓf(z) =
∫

Γ

f(s)− f(s∗)
s− z

d̄s+ f(s∗)
∫

Γ

d̄s

s− z

Then, using Lemma 3.1.6

lim
z→s∗, z∈Ω+

CΓf(s) = C+
Γ f(s

∗) = f(s∗) +
∫

Γ

f(s)− f(s∗)
s− s∗

d̄s, (3.1.3)

lim
z→s∗, z∈Ω−

CΓf(s) = C−
Γ f(s

∗) =
∫

Γ

f(s)− f(s∗)
s− s∗

d̄s. (3.1.4)

We assume all limits are taken non-tangentially. We rewrite the integral appearing in this
formula. For s∗ ∈ Γ we define the Cauchy principal value integral

−
∫

Γ

f(s)

s− s∗
d̄s = lim

δ→0+

∫

Γ\B(s∗,δ)

f(s)

s− s∗
d̄s.

Again, let Γδ = Γ ∩B(s∗, δ):

∫

Γ

f(s)− f(s∗)
s− s∗

d̄s = lim
δ→0+

∫

Γ\Γδ

f(s)− f(s∗)
s− s∗

d̄s

= lim
δ→0+

∫

Γ\Γδ

f(s)

s− s∗
d̄s− lim

δ→0+

∫

Γ\Γδ

d̄s

s− s∗
.

The existence of the second limit shows the existence of the first:

lim
δ→0+

∫

Γδ

d̄s

s− s∗
=

1

2πi
lim
δ→0+

log

(

s∗ − s+
s∗ − s−

)

= −1

2
,

where s± are the end points of the arc Γδ.

Remark 3.1.8. The contour Γ need not be closed. We can close Γ and define f = 0 on
the added portion. These results still follow provided we stay away from the end points of
Γ.

We arrive at the following:

Lemma 3.1.9 (Plemelj). Let Γ be a smooth arc from a to b and f be α-Hölder continuous
on Γ. Then for x ∈ Γ \ {a, b}

C+
Γ f(x) =

1

2
f(x) +−

∫

f(s)

s− x
d̄s, (3.1.5)

C−
Γ f(x) = −1

2
f(x) +−

∫

f(s)

s− x
d̄s, (3.1.6)
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and

C+
Γ f(x)− C−

Γ f(x) = f(x),

C+
Γ f(x) + C−

Γ f(x) = 2−
∫

f(s)

s− x
d̄s.

3.1.2 Regularity and singularity behavior of boundary values

We take up the issue of understanding the continuity properties of the functions C±
Γ f when

f is α-Hölder.

Lemma 3.1.10. Let Γ be a bounded, smooth arc and let f be uniformly α-Hölder contin-
uous on Γ. Let Γ′ ⊂ Γ be an arc with endpoints lying a finite distance from the endpoints
a and b of Γ. Then C±

Γ f is uniformly α-Hölder continuous on Γ′.

Proof. Let s1, s2 ∈ Γ′, then

C±
Γ f(s1)− C±

Γ f(s2) = ±1

2
(f(s1)− f(s2)) +−

∫

Γ
f(s)

(

1

s− s1
− 1

s− s2

)

d̄s.

This can be rewritten using Lemma 3.1.9:

C±
Γ f(s1)− C±

Γ f(s2) =

(

1

2
± 1

2

)

(f(s1)− f(s2)) + I(s1, s2),

I(s1, s2) =

∫

Γ

(

f(s)− f(s1)

s− s1
− f(s)− f(s2)

s− s2

)

d̄s.

Thus the study of Hölder continuity for both C±
Γ f is reduced to the study of I(s1, s2).

Define Γ′
δ = Γ′ ∩B(s1, δ) for δ > 0 such that s2 ∈ ∂B(s1, δ/2), see Figure 3.1.3. Separate

Figure 3.1.3: The positioning of s1 and s2 on Γ.

I(s1, s2) = I0(s1, s2) + I1(s1, s2) where I0 contains an integral over Γ′
δ and I1, over the
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compliment, relative to Γ, of Γ′
δ. For I0, using the Hölder condition, we obtain

|I0(s1, s2)| ≤ Λ

∫

Γ′
δ

|s− s1|α−1|d̄s|+ Λ

∫

Γ′
δ

|s− s2|α−1|d̄s|.

Define r1 = |s − s1| and r2 = |s − s2|. For sufficiently small δ, depending only on Γ,
(see Lemma 3.1.5) there exists a constant C that depends only on Γ such that |d̄s| ≤
C|dr1| and |d̄s| ≤ C|dr2|. Thus

|I0(s1, s2)| ≤ CΛ2

∫ δ

0
rα−1dr + CΛ

∫ δ/2

0
rα−1dr + CΛ

∫ 3δ/2

0
rα−1dr

≤ 5CΛα−1δα.

For I1, we write

I1(s1, s2) = (f(s2)− f(s1))

∫

(Γ′
δ)

c

d̄s

s− s1
+

∫

(Γ′
δ)

c

(f(s)− f(s2))

(

1

s− s1
− 1

s− s2

)

d̄s.

(3.1.7)

The first integral is bounded, showing that the first term satisfies a uniform α-Hölder
condition. We simplify the second integral

I2(s1, s2) =

∫

(Γ′
δ)

c

(f(s)− f(s2))

(

1

s− s1
− 1

s− s2

)

d̄s

=

∫

(Γ′
δ)

c

(f(s)− f(s2))
s1 − s2

(s − s1)(s− s2)
d̄s.

We find that for s ∈ (Γ′
δ)

C

|s− s2|
|s− s1|

≥ |s− s2|
|s− s2|+ |s2 − s1|

≥ 2

2 + δ/|s − s2|
≥ 1

2
.

We estimate

|I2(s1, s2)| ≤ Λ|s1 − s2|
∫

(Γ′
δ)

c

|s− s2|α−1

|s− s1|
|d̄s| ≤ 21−αΛ|s1 − s2|

∫

(Γ′
δ)

c

|s− s1|α−2|d̄s|.

This integral is easily bounded:

|I2(s1, s2)| ≤ 21−αΛδα−2|(Γ′
δ)

c||s1 − s2|.

This proves the lemma.

Define the space C0,α(Γ), for Γ smooth, bounded and closed, consisting of uniformly
α-Hölder continuous functions. We introduce the semi-norm

|f |0,α = sup
s1 6=s2, s1,s2∈Γ

|f(s1)− f(s2)|
|s1 − s2|α

,
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which is finite for every function in C0,α(Γ) by Lemma 3.1.3. C0,α(Γ) is a Banach space
when equipped with the norm [48]

‖f‖0,α = sup
s∈Γ

|f(s)|+ |f |0,α.

Corollary 3.1.11. C±
Γ are bounded linear operators on C0,α(Γ).

Proof. The bounds in the previous lemma and Lemma 3.1.3 depend only on δ,Λ and C.
This shows

|C±
Γ f |0,α ≤ C‖f‖0,α.

It remains to show sups∈Γ |C±
Γ f(s)| ≤ C‖f‖0,α. For s∗ ∈ Γ, consider Γδ and Γc

δ as above.
We write

C+
Γ f(s

∗) =
∫

Γc
δ

f(s)

s− s∗
d̄s+ f(s∗) +

∫

Γδ

f(s)− f(s∗)
s− s∗

d̄s.

Thus

|C+
Γ f(s

∗)| ≤ |f(s∗)|+ sup
s∈Γ

|f(s)|δ−1

∫

Γc
δ

|d̄s|+ |f |0,α
∫

Γδ

|s − s∗|α−1|d̄s| ≤ C‖f‖0,α,

by previous arguments. Taking a supremum proves the corollary for C+
Γ . The result for C−

Γ

can be inferred from Lemma 3.1.9.

Definition 3.1.12. A function f satisfies an (α, γ)-Hölder condition on a contour Γ if f
is α-Hölder away from the endpoints of Γ and if at each endpoint c, f satisfies

f(s) =
f̃(s)

(s− c)γ
, γ = a+ ib, 0 ≤ a < 1,

f̃ is α-Hölder.

Now, we discuss the important features of Cauchy integrals near endpoints of the
contours through the following lemma.

Lemma 3.1.13. Let Γ be a smooth arc from a to b with Ω+(Ω−) defined as regions ly-
ing directly to the left(right) of Γ, see Figure 3.1.4. Assume f satisfies an (α, γ)-Hölder
condition. The following holds for any endpoint c = a or b.

1. If γ = 0, then:

(a) As z → c, z ∈ Ω±

CΓf(z) = ∓f(c)
2πi

log
1

z − c
+ F0(z).
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Figure 3.1.4: An open contour with Ω± labelled.

(b) As s→ c, s ∈ Γ

CΓf(s) = ∓f(c)
2πi

log
1

s− c
+H0(s).

Here H0 and F0 both tend to definite limits at c. The upper sign is taken for
c = b, the lower for c = a. The branch cut for the logarithm is taken along Γ.

2. γ 6= 0

(a) As z → c, z ∈ Ω±

CΓf(z) = ∓ e±iγπ

2i sin(γπ)

f̃(c)

(z − c)γ
+ F0(z).

(b) As s→ c, s ∈ Γ

CΓf(s) = ∓cot(γπ)

2i

f̃(c)

(s− c)γ
+H0(s).

In this case, if α = 0 then F0 and H0 behave as above. The upper sign is taken
for c = b, the lower for c = a. If Re γ > 0 then for some 0 < α∗ < Re γ,

|F0(z)| <
A0

|z − c|α∗ , |H0(s)| <
B0

|s− c|α∗ .

Proof. We prove Part 1 here. For the proof of Part 2 see [81]. Write

∫ b

a

f(s)

s− z
d̄s = f(c)

∫ b

a

d̄s

s− z
+

∫ b

a

f(s)− f(c)

s− z
d̄s.
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Thus

f(c)

∫ b

a

d̄s

s− z
= ∓f(c)

2πi
log

1

z − c
+ V0(z),

where V0 is analytic near z = c. Thus

F0(z) = V0(z) +

∫ b

a

f(s)− f(c)

s− z
d̄s,

which tends to a definite limit as z → c by Lemma 3.1.6. The limit z → Γ,
z ∈ Ω± \B(c, δ), δ > 0 of F0(z) is H0(s) which also tends to a definite limit as
s→ c.

Remark 3.1.14. An important consequence of this result is that for functions bounded at
the end of a contour, a singularity is introduced. For functions singular at the end of a
contour, the singularity structure is preserved. More precisely, if f is (α, γ)-Hölder with
γ 6= 0 then C±

Γ f is (α′, γ′)-Hölder with Re γ = Re γ′.

3.2 The solution of scalar Riemann–Hilbert problems

We have presented a fairly wide class of functions, the α-Hölder continuous functions, for
which the limits of Cauchy integrals are well defined and regular. We continue with the
solution of the simplest RHP on smooth, closed and bounded contours.

3.2.1 Smooth, closed and bounded contours

Problem 3.2.1. Consider the continuous RHP

φ+(s)− φ−(s) = f(s), s ∈ Γ, φ(∞) = 0, f ∈ C0,α(Γ), (3.2.1)

where Γ is a smooth, bounded and closed contour.

This problem is solved directly by the Cauchy integral φ(z) = CΓf(z). Indeed, Lemma 3.1.9
gives

φ+(s)− φ−(s) = C+
Γ f(s)− C−

Γ f(s) = f(s), s ∈ Γ. (3.2.2)

To show φ(∞) = 0 we use the following lemma which provides more precise details.

Lemma 3.2.2. Let f be a bounded, measurable function and Γ a bounded contour, then

CΓf(z) =
N
∑

n=1

αnz
−n +O(zN+1),

αn = −
∫

Γ
snf(s)d̄s
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Proof. We use the geometric series. For |z| sufficiently large, |s/z| ≤ 1/2 for all s ∈ Γ.
Therefore

1

s− z
=

(

−1

z

)

1

1− (s/z)
= −1

z

(

N
∑

n=0

(s/z)n +
(s/z)N+1

1− (s/z)

)

.

We obtain the estimate
∣

∣

∣

∣

∣

1

s− z
−
(

−1

z

) N
∑

n=0

(s/z)n

∣

∣

∣

∣

∣

≤ 2

(

sup
s∈Γ

|s|
)N+1

z−(N+2).

Using the Cauchy integral again for sups∈Γ |s/z| ≤ 1/2

∣

∣

∣

∣

∣

∫

Γ

f(s)

s− z
d̄s+

N
∑

n=1

(∫

Γ
sn−1f(s)d̄s

)

z−n

∣

∣

∣

∣

∣

≤
(

2 sup
s∈Γ

|f(s)| · |Γ|
(

sup
s∈Γ

|s|
)N+2

)

z−(N+1),

where |Γ| is the arclength of Γ.

We have addressed existence in a constructive way. Now we address uniqueness. Let
ψ(z) be another solution of Problem 3.2.1. The function D(z) = ψ(z) − φ(z) satisfies

D+(s)−D−(s) = 0, s ∈ Γ,D(∞) = 0.

Since D is continuous up to Γ, D must be entire. By Liouville’s theorem, it must be
identically zero. This shows the uniqueness of our solution of Problem 3.2.1.

We wish to extend these results to the case of unbounded contours such as R. This
case is dealt with in a more straightforward way using Lp and Sobolev spaces. All solution
formulas hold with slight changes in interpretation. We defer this to Section 3.6. We move
to the next simplest case for scalar RHPs.

Problem 3.2.3. Consider the homogeneous, continuous RHP

φ+(s) = φ−(s)g(s), s ∈ Γ, φ(∞) = 1, g ∈ C0,α(Γ), (3.2.3)

where Γ is a smooth, bounded and closed contour, and g 6= 0.

Formally, this problem can be solved via the logarithm. Consider the RHP solved by
X(z) = log φ(z):

X+(s) = X−(s) +G(s) ⇔ X+(s)−X−(s) = G(s), G(s) = log g(s).

If log g(s) is well-defined and Hölder continuous the solution is given by

φ(z) = exp(CΓG(z)). (3.2.4)

For a general Hölder continuous function g, log g may not be well-defined. Indeed, even if
one fixes the branch of the logarithm, log g will generically suffer from discontinuities. To
rectify this issue we define the index of a function g with respect to traversing Γ in the
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positive direction to be the normalized increment of its argument:

indΓ g(s) =
1

2π
[arg g(s)]Γ =

1

2πi
[log g(s)]Γ =

∫

Γ
d̄ log g(s). (3.2.5)

First, if g is α-Hölder continuous and indΓ g(s) = 0 then log g(s) is also α-Hölder con-
tinuous. Indeed, in this case the branch cut of log s can be taken so that it is Lipschitz
continuous in an open set containing {g(s) : s ∈ Γ}. If indΓ g(s) = κ 6= 0 and (without loss
of generality) z = 0 is in Ω+, the region to the left of Γ, then ind s−κg(s) = 0. Thus we
can uniquely solve the problem

ψ+(z) = ψ−(s)s−κg(s), s ∈ Γ, ψ(∞) = 1,

with the expression (3.2.4) for the index zero case. There are two cases:

• If κ > 0, then

φ(z) = P (z)

{

ψ(z), z ∈ Ω+,
ψ(z)z−κ, z ∈ Ω−,

where P is a polynomial of degree κ with leading coefficient 1, solves Problem 3.2.3.

• If κ < 0, then

φ(z) = P (z)

{

ψ(z), z ∈ Ω+,
ψ(z)z−κ, z ∈ Ω−,

cannot satisfy φ(∞) = 1 for any polynomial P 6= 0. Thus the only solution bounded
at ∞ is the zero solution.

In both cases, when P = 1 we call the function φ the fundamental solution.
We move to consider inhomogeneous scalar RHPs. We will see a direct parallel be-

tween the methods presented here and the method of variation of parameters for ordinary
differential equations.

Problem 3.2.4. Consider the inhomogeneous, continuous RHP

φ+(s) = φ−(s)g(s) + f(s), s ∈ Γ, φ(∞) = 0, g, f ∈ C0,α(Γ), (3.2.6)

where Γ is a smooth, bounded and closed contour, and g 6= 0.

To solve this problem we first find the fundamental solution of the homogeneous prob-
lem. Just as in the case of variation of parameters for differential equations the solution of
the homogeneous problem allows us to solve the inhomogeneous problem. We use ν(z) to
denote the fundamental solution. Assume indΓ g(s) = κ. The Hölder continuity of s−κg(s)
shows us that ν does not vanish in the finite plane. Dividing (3.2.6) by ν and using that
ν+(s) = ν−(s)g(s),

φ+(s)

ν+(s)
=
φ−(s)
ν−(s)

+
f(s)

ν+(s)
,
φ(z)

ν(z)
= O(zκ−1) as z → ∞.

Again, there are two cases:
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• If κ ≥ 0, then we obtain an expression for φ(z)/ν(z) using the Plemelj formula
(Lemma 3.1.9)

φ(z)

ν(z)
=

∫

Γ

f(s)

ν+(s)(s− z)
d̄s = O(zκ−1) as z → ∞. (3.2.7)

• If κ < 0, then the asymptotic condition here requires higher-order decay of a Cauchy
integral. The solution formula is still (3.2.7) but we use Lemma 3.2.2 to find the
conditions

∫

Γ
sn

f(s)

ν+(s)
d̄s = 0, n = 0, . . . , κ− 1. (3.2.8)

If any of these conditions are satisfied then no solution of Problem 3.2.4 that vanishes
at infinity exists.

Once a valid expression for φ(z)/ν(z) is obtained, the general solution is given by

φ(z) = ν(z)

(∫

Γ

f(s)

ν+(s)(s− z)
d̄s+ P (z)

)

,

where P (z) is a polynomial of degree < κ if κ > 0. otherwise P is zero.

Remark 3.2.5. This method is in direct analogy with Lagrange’s method of variation of
parameters for differential equations. The solution to the homogeneous problem is used to
express the general solution of the inhomogeneous problem in term of an integral involving
the homogeneous solution and the inhomogeneous term.

Remark 3.2.6. The definition of index in (3.2.5) is in correspondence with that of the
Fredholm index. As we will see, a solution vanishing at infinity of the homogeneous problem
corresponds to an element of the kernel of an integral operator. Furthermore, (3.2.8) are
the conditions for f to lie in the range of the same integral operator.

3.3 Smooth, bounded and open contours

The solution procedure for scalar RHPs is not much more difficult in practice when the
contour Γ is not closed. When a non-self-intersecting contour is not closed, we say it is
open.

Definition 3.3.1. A contour Γ is said to be open (not closed) if a parameterization γ :
[0, 1] → Γ of Γ satisfies γ(0) 6= γ(1).

A complication comes from the fact that in the case of open contours, additional solu-
tions are introduced. To highlight this, consider the continuous RHP

φ+(s) = φ−(s)g(s), s ∈ Γ, φ(∞) = 1, g ∈ C0,α(Γ), (3.3.1)

where Γ is a smooth, bounded and open contour extending from z = a to z = b. If φ(z)
satisfies the jump condition then so does 1

2 (1 +
z−a
z−b )

kφ(z), away from a, b for any integer
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k. We impose local integrability in our definition of the solution of a continuous RHP,
otherwise we would have an infinite number of solutions.

We discuss the solution of Problem 3.2.1 in the case that Γ has open endpoints and f is
(α, γ)-Hölder. One solution is certainly CΓf(z) (see Lemma 3.1.13). To see uniqueness, let
ψ be another solution then CΓf(z)−ψ(z) is an analytic function away from the endpoints
of Γ that decays at infinity. The local integrability condition precludes the existence of
poles at the these endpoints. Again, Liouville’s theorem shows CΓf(z) = ψ(z).

We move to the solution of Problem 3.2.3 when Γ is an open contour from z = a
to z = b and g is α-Hölder. A simplifying assumption is that g does not vanish on Γ.
We proceed as if Γ is closed. Define G(s) = log g(s) taking the principal branch of the
logarithm. Taking any other branch would modify G(s) by 2πin for some integer n. It can
be shown that the choices of na and nb below remove the dependence on n.

Define

ψ(z) = exp (CΓG(z)) .

A straightforward calculation shows that ψ satisfies the appropriate jump condition. We
must determine if ψ is locally integrable and if not, modify. Using Lemma 3.1.13 we see
that for a contour from a to b

ψ(s) = (s− b)ζ(b)Hb(s), ζ(c) = ∓ log g(c)

2πi
,

ψ(s) = (s− a)ζ(a)Ha(s)

where the −(+) sign is taken if c = b (c = a). Here Ha(s), Hb(s) tend to definite limits
as s → a and b, respectively. Let ζc = λc + iµc and let nc be an integer such that
−1 < nc + λc < 1 for c = a, b. It follows that

ν(z) = (z − a)na(z − b)nbX(z),

is a solution of (3.3.1) since it is locally integrable. Note that if λc ∈ Z then nc is uniquely
specified. Specifically, if g takes only positive values then the solution is unique. In the
case of open contours, any locally integrable ν(z) is called a fundamental solution.

We follow the same procedure as above to solve Problem 3.2.4 in the case of Γ being
an open contour. Divide (3.2.6) by ν and write

φ+(s)

ν+(s)
=
φ−(s)
ν−(s)

+
f(s)

ν+(s)
,
φ(z)

ν(z)
= O(zna+nb−1) as z → ∞. (3.3.2)

We assume f satisfies an α-Hölder condition. Thus f(s)/ν+(s) satisfies an (α,−ζ(a))-
Hölder condition near z = a and a similar condition near z = b. A solution of (3.3.2),
assuming possible moment conditions (3.2.8) are satisfied, is given by

φ(z) = ν(z)

∫

Γ

f(s)

ν+(s)(s− z)
d̄s.

From Remark 3.1.14 we see that φ(z) has bounded singularities at the endpoints of Γ
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whenever ζ(c) 6= 0, otherwise there is a logarithmic singularity present. As before,

φ(z) = ν(z)

(∫

Γ

f(s)

ν+(s)(s− z)
d̄s+ P (z)

)

,

is the solution, where P (z) is a polynomial of degree less than −(na + nb) if na + nb < 0,
otherwise P = 0 and we have na + nb orthogonality conditions for a solution to exist, see
(3.2.8) with κ = na + nb.

Example 3.3.2. Consider the RHP

φ+(s) + φ−(s) = s2 − 1, s ∈ [−ℓ, ℓ], ℓ > 0, φ(∞) = 0.

Assume we want φ to be uniformly bounded in the plane. We first find the fundamental
solution, ν, taking any branch of the logarithm:

log g(s) = −iπ,

exp

(∫ ℓ

−ℓ

log g(s)

s− z
d̄s

)

=

√

z + ℓ

z − ℓ
,

−ζ(−ℓ) = ζ(ℓ) = −1

2
.

For ν to be bounded nℓ = 1 and n−ℓ = 0 so that Re(ζ(±ℓ)) + n±ℓ > 0. Thus

ν(z) =
√

(z − ℓ)(z + ℓ).

The solution φ is given by (P = 0)

φ(z) = ν(z)

(

∫ ℓ

−ℓ

(1− s)

(s− z)

d̄s
√

(s− ℓ)(s + ℓ)
+

)

,

provided that

∫ ℓ

−ℓ
(1− s)

d̄s
√

(s− ℓ)(s+ ℓ)
+ = − i

2

(

ℓ2 − 2
)

= 0.

The solution exists if ℓ =
√
2. This example is directly related to that of equilibrium

measures, see Chapter 10.

We conclude this section with another fairly simple example that is of use later.

Example 3.3.3. Consider the RHP

φ+(s) = αφ−(s), s ∈ [a, b], φ of finite degree at ∞.

Set α = |α|eiθ so that log α = log |α|+ iθ. We find a solution

ψ(z) = exp

(

log |α|+ iθ

2πi
log

(

z − b

z − a

))

=

(

z − b

z − a

)−i log |α|/(2π)+θ/(2π)

.
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The general form of a solution is

φ(z) = (z − a)na(z − b)nbψ(z),

with integers na, nb chosen so that −1 < na − θ/(2π) < 1 and −1 < nb + θ/(2π) < 1.

3.4 The solution of some matrix Riemann–Hilbert problems

The general form for the jump condition of a matrix RHP defined for a contour Γ is

Φ+(s) = Φ−(s)G(s) + F (s), s ∈ Γ,

where Φ : C \ Γ → Cm×n, G : Γ → Cn×n and F : Γ → Cm×n. Most often in our
applications, m = n = 2. We assume m = n in what follows. Unlike scalar RHPs,
matrix RHPs cannot, in general, be solved in closed form. Issues related to existence and
uniqueness are also more delicate. The general theory involves the analysis of singular
integral operators. Specifically, it involves questions related to their invertibility. We
address this in Section 3.8. Here we take a constructive approach and describe a procedure
for solving three types of RHPs: diagonal problems, constant jump matrix problems, and
triangular problems.

All solution techniques in this section rely on the reduction of the matrix problem to
a sequence of scalar problems. When these techniques fail we must develop a completely
new theory that is in some sense independent of dimensionality. This will be developed in
the remaining sections of this chapter.

3.4.1 Diagonal Riemann–Hilbert problems

Problem 3.4.1. Consider RHPs of the form

Φ+(s) = Φ−(s)D(s), s ∈ Γ, Φ(∞) = I, Φ : C \ Γ → Cn×n, (3.4.1)

and D(s) = diag(d1(s), . . . , dnn(s)) with detD(s) 6= 0. We assume that log di(s) ∈ C0,α(Γ)
for each i and some α > 0.

This problem decouples into n scalar RHPs:

φ+i (k) = φ−i (k)di(k), k ∈ Γ, φi(∞) = 1, i = 1, . . . , n. (3.4.2)

Each of these has a solution

φi(z) = exp

(
∫

Γ

log di(s)

s− z
d̄s

)

,

provided that ind log di(s) = 0. We assume this in what follows. A solution of (3.4.1)
is given by Φ(z) = diag(φ1(z), . . . , φn(z)). If we restrict to smooth, closed and bounded
contours the solution is unique. To see this let Ψ be another solution. It is clear Φ−1(z)
exists for all z ∈ C \ Γ. Thus

Ψ+(s)Φ−1
− (s) = Ψ−(s)D(s)D−1(s)Φ−1

− (s) = Ψ−(s)Φ−1
− (s).
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Liouville’s theorem applied to each element shows that Ψ(s)Φ−1(s) is constant. The con-
dition at infinity implies Ψ and Φ are the same function. As one would imagine, the
theory for diagonal matrix RHPs on open contours mimics that of scalar problems on open
contours. This will be explored to some extent in the following section.

3.4.2 Constant jump matrix problems

Problem 3.4.2. Consider the RHP

Φ+(s) = Φ−(s)A, s ∈ (a, b), Φ of finite degree at ∞,

where A is an invertible, diagonalizable matrix A = UΛU−1, Λ = diag(λ1, . . . , λn).

The condition that the matrix is diagonalizable reduces this to a diagonal RHP for
H(s) = Φ(s)U :

H+(s) = H−(s)











λ1
λ2

. . .

λn











.

We decouple this as we did for (3.4.1):

H+
i (s) = H−

i (s)λi.

Example 3.3.3 gives us the form of all the possible solutions of this problem. Thus φ(z) =
diag(H1(z), . . . ,Hn(z))U

−1 is a solution. Note that if λi = 0 for some i the solution
procedure fails.

Example 3.4.3. Consider the RHP

Φ+(s) = Φ−(s)

[

0 c
1/c 0

]

, s ∈ (a, b), c 6= 0, Φ of finite degree at ∞.

First, diagonalize

[

0 1/c
c 0

]

= U

[

−1 0
0 1

]

U−1, U−1 =

[

−1/c 1
1/c 1

]

.

We solve the two auxiliary problems

H+
1 (z) = −H−

1 (z),

H+
2 (z) = H−

2 (z).

It is clear that H2(z) = 1 and

H1(z) = (z − a)na(z − b)nb

√

z − b

z − a
, na = 0, 1, nb = −1, 0,
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are the corresponding fundamental solutions. The solution is

Φ(z) =

[

−H1(z)/c H1(z)
H2(z)/c H2(z)

]

.

We can multiply Φ on the left by any matrix of polynomials to obtain another solution of
finite degree.

We include one more example that is used later.

Example 3.4.4. Consider the RHP

Φ+(s) = Φ−(s)

[

0 1
−1 0

]

, s ∈ (a, b), Φ of finite degree at ∞.

First, diagonalize

[

0 1
−1 0

]

= U

[

i 0
0 −i

]

U−1, U−1 =

[

−i 1
i 1

]

.

We solve the two auxiliary problems

H+
1 (z) = iH−

1 (z),

H+
2 (z) = −iH−

2 (z).

We find that

H1(z) = exp

(∫ b

a

log i

s− z
d̄s

)

=

(

z − b

z − a

)1/4

,

H2(z) = exp

(
∫ b

a

log−i
s− z

d̄s

)

=

(

z − b

z − a

)−1/4

,

are the corresponding fundamental solutions. The solution is

Φ(z) =

[

−iH1(z) H1(z)
iH2(z) H2(z)

]

.

Again, we can multiply Φ on the left by any matrix of polynomials to obtain another solution
of finite degree.

3.4.3 Triangular Riemann–Hilbert problems

We restrict attention to smooth, closed and bounded contours. Consider the RHP of the
form

Φ+(s) = Φ−(s)U(s), s ∈ Γ, Φ(∞) = I,

where U(s) is upper triangular. To ensure unique solvability, assume indΓ Ui,i(s) = 0 for
i = 1, . . . , n. This can be generalized. In essence, this problem is solved solving successive
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scalar RHPs. It is important to note that each row can be solved independent of other
rows. The first row of the solution is determined by the following scalar problems

Φ+
1,1(s) = Φ−

1,1(s)U1,1(s), Φ1,1(∞) = 1,

Φ+
1,2(s) = Φ−

1,2(s)U2,2(s) + Φ−
1,1(s)U1,2(s), Φ1,2(∞) = 0,

Φ+
1,3(s) = Φ−

1,3(s)U3,3(s) + Φ−
1,1(s)U1,3(s) + Φ−

1,2(s)U2,3(s), Φ1,3(∞) = 0,

...

Note that Φ−
1,1(s)U1,2(s) in the second equation above can be considered an inhomogeneous

term since Φ1,1 is known for the first equation. For the second row,

Φ+
2,1(s) = Φ−

2,1(s)U1,1(s), Φ2,1(∞) = 0,

Φ+
2,2(s) = Φ−

2,2(s)U2,2(s) + Φ−
2,1(s)U1,2(s), Φ2,2(∞) = 1,

Φ+
2,3(s) = Φ−

2,3(s)U3,3(s) + Φ−
2,1(s)U1,3(s) + Φ−

2,2(s)U2,3(s), Φ2,3(∞) = 0,

...

From the condition indU1,1(s) = 0 we know Φ2,1(z) = 0 which means that the RHP
for Φ2,2 is homogeneous and the condition at infinity can be satisfied. In general, for row
j, the first j − 1 entries vanish identically. We present the general procedure.

1. Solve

Φ+
j,j(s) = Φ−

j,j(s)Uj,j(s), Φj,j(∞) = 1, j = 1, . . . , n.

All of these solutions exist and are unique by the imposed index conditions.

2. For each j = 1, . . . , n, solve for i = 1, . . . , n− j

Φ+
j,j+i(s) = Φ−

j,j+i(s)Uj+1,j+1(s) + Fi,j(s),

Fi,j(s) =

i−1
∑

k=1

Φi,i−k(s)Ui−k,j(s).

The resulting solution is unique. This can be shown by the same argument used at the
end of Section 3.4.1.

Remark 3.4.5. We can solve a general problem of the form

Φ+(s) = Φ−(s)A,

where A is a constant, possibly non-normal, matrix. We find its Jordan normal form and
apply the method for upper triangular RHPs.

We end this section with an important example that connects matrix RHPs with scalar
RHPs.
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Example 3.4.6. Consider the RHP

Φ+(s) = Φ−(s)

[

1 f(s)
0 1

]

, f ∈ C0,α(Γ), Φ(∞) = I.

We follow the general procedure. First solve

Φ+
1,1(s) = Φ−

1,1(s), Φ1,1(∞) = 1,

Φ+
2,2(s) = Φ−

2,2(s), Φ2,2(∞) = 1.

It is clear that Φ1,1 = Φ2,2 = 1. It remains to find Φ1,2:

Φ+
1,2(s) = Φ−

1,2(s) + f(s), Φ1,2(∞) = 0.

Therefore Φ1,2(z) = CΓf(z) and

Φ(z) =

[

1 CΓf(z)
0 1

]

.

3.5 Hardy spaces

In this section we discuss functions analytic off a contour which have boundary values (in
some sense) on that contour. This is a natural setting in which to study RHPs. This
allows the extension of the Cauchy integral formula to a larger class of functions and it
allows precise properties of the Cauchy integral to be established. The following results
are closely related to Lp spaces. All results are proved for p = 2. When the generality does
not distract from the end goal, we state results for general p.

3.5.1 Hardy spaces on the unit disk

Let f(z) be analytic for z ∈ U = {|z| < 1}. For r < 1 and 0 < p ≤ ∞ we define the
quantity

Mp(f, r) =

∫

|z|=r
|f(z)|p|dz|.

Definition 3.5.1. We say that a function is of class Hp if

sup
r<1

Mp(f, r) <∞.

We state an essential result, see [47].

Theorem 3.5.2. If f ∈ Hp for 0 < p < ∞, define f(z) = limr→1− f(rz) for z ∈ U

whenever the limit exists. Then f is defined a.e. ( i.e, the limit exists a.e.),

lim
r→1−

Mp(f, r) =Mp(f, 1),
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and

lim
r→1−

∫

∂U
|f(rz)− f(z)|p|dz| = 0.

Another result that is of fundamental importance for what follows is also found in [47]:

Theorem 3.5.3. Every function f ∈ H1 can be expressed as the Cauchy integral of its
boundary function. In fact,

f (k)(z) = k!

∫

∂U

f(ζ)

(ζ − z)k+1
d̄ζ, |z| < 1, k ∈ N,

and this integral vanishes identically for |z| > 1.

Since ∂U is of finite measure, Hp ⊂ H1 for all p > 1.

3.5.2 Hardy spaces on general domains

The theory for the unit circle does not suffice for the RHPs we consider. We could deal
with general domains by conformal mapping. In going from the unit circle to the real line
we can use the fractional transformation

k = i
z + 1

z − 1
,

to map the unit circle in the z-plane to the real line in the k-plane. If this is used as a
change of variables in an integral then

dz 7→ 2

i(k − i)2
dk.

Proceeding this way, the Hardy space on the line will not share a nice relationship with
Lp(R). It is clear below why such a straightforward relationship is beneficial. To develop
a different definition we follow [47], Chapter 10 for bounded domains. Then we make
the extension to unbounded domains. Assume D ⊂ C is simply connected and ∂D is a
rectifiable Jordan curve (i.e. a non-self-intersecting, continuous closed curve).

Definition 3.5.4. A function f(z) analytic in D is of class Ep(D) if there exists a sequence
Ci, i = 1, 2, . . ., of rectifiable curves tending to ∂D in the sense that Ci eventually encloses
every compact subset of D on the Riemann sphere, such that

lim sup
i→∞

∫

Ci

|f(z)|p|dz| <∞.

We summarize some results from [47] in the following theorem:

Theorem 3.5.5. Let φ(w) map {|w| < 1} conformally onto D, and let Γr be the image of
|w| = r under φ. Then the following are equivalent:

• sup
r<1

∫

Γr

|f(z)|p|dz| <∞,
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• f(z) ∈ Ep(D),

• F (w) = f(ϕ(w))[ϕ′(w)]1/p ∈ Hp for some conformal mapping ϕ(w) of |w| < 1 onto
D,

• F (w) ∈ Hp for all such mappings ϕ.

Furthermore, Theorem 3.5.3 holds with ∂U replaced by ∂D. This shows that Defini-
tion 3.5.4 is a consistent extension of Definition 3.5.1.

Remark 3.5.6. If there exists C > 1 such that

1

C
< |ϕ′(w)| < C,

then Ep(D) and Hp are isomorphic.

Define the space Ep(D−) which is the class of functions analytic on C \D with finite
Lp norms as curves approach ∂D in analogy with Definition 3.5.4. For the Cauchy integral
formula to hold we need to impose the restriction that f(∞) = 0.

Denote the class of Jordan curves which tend to straight lines at infinity by Σ∞. We
now use all of these ideas to deal with a simply connected, unbounded domain. We still
need to ensure that ∂D is regular enough at ∞ so we ask that ∂D ∈ Σ∞. This will always
be assumed unless specified otherwise.

Definition 3.5.7. When D is unbounded, a function f(z) analytic in D is of class Ep(D)
if there exists a sequence Cn ∈ Σ∞, n = 1, 2, . . ., of curves tending to ∂D, in the sense that
Cn eventually surrounds every compact subset of D, such that

∫

Cn

|f(z)|p|dz| ≤M <∞.

Theorem 3.5.8 ([117]). The Cauchy integral formula holds for every f ∈ Ep(D), 1 ≤ p <
∞, even when ∞ ∈ ∂D.

Proof. Assume that 0 ∈ C \D. Consider the conformal map z 7→ 1/z. It is clear that the
Cauchy integral formula holds if and only if

1

z
f

(

1

z

)

=

∫

∂D−1

1
ζ f
(

1
ζ

)

ζ − z
d̄ζ, z ∈ ∂D,

where D−1 = {z : 1/z ∈ D}. Let Γ ∈ Σ∞ be a curve in D. Then Γ−1 is a rectifiable curve
in D−1 and

∫

Γ−1

|1/zf(1/z)||dz| =
∫

Γ
|1/zf(z)||dz| ≤ ‖1/z‖Lq(Γ)‖f‖Lp(Γ), (1/p + 1/q = 1).

So ‖1/z‖Lq(∂D) <∞ since q > 1. This shows that 1/zf(1/z) ∈ Ep(D−1) since ‖1/z‖Lq(Γ) <
C where C only depends on D and q. Therefore the Cauchy integral formula holds and
the conclusion follows.
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We look to provide an additional characterization of Ep(D). To do this we need to
restrict the class of curves. First, we assume ∂D is Lipschitz and in Σ∞. After possible
rotation, we assume the form

∂D = {x+ iν(x) : x ∈ R},

where ν is real-valued and ‖ν ′‖∞ < ∞. Such a curve will be referred to as a Lipschitz
graph. We restrict the approximating curves Cn. Assume the sequence Cn is given by a
shift of ∂D:

Cn = {z + iν(x) + i/n : z ∈ ∂D}.

Other choices of Cn yield the same result. In particular this says that the curves Cn are
Lipschitz with uniformly bounded Lipschitz constant. As before, let C+

n = {z : Im z >
|ν(x) + 1/n|}. Define the distance to the curve

dΓ(z) = inf
a∈Γ

|a− z|.

It is clear that

|dΓ(z) − dCn(z)| < 1/n, ∀z ∈ C+
n .

Lemma 3.5.9. The map f 7→ ‖f‖Ep(D) = lim supn→∞ ‖f‖Cn satisfies

‖f‖Lp(∂D) ≤ ‖f‖Ep(D). (3.5.1)

Additionally, ‖f‖Ep(D) defines a norm on Ep(D).

Proof. It is clear that ‖ · ‖Ep(D) defines a semi-norm. Since the Cauchy integral formula
holds for each f ∈ Ep(D), (3.5.1) shows it is a norm. Now we prove (3.5.1). It follows from
previous results that z−1f(z−1) ∈ Ep(D−1) and has limits a.e. on ∂D−1. This implies

f(z + i/n) → f(z) a.e. .

We have for n > 1
∫

Cn

|f(z)|p|dz| =
∫

Γ
|f(z + i/n)|p|dz|.

Fatou’s Lemma gives

∫

Γ
|f(z)|p|dz| ≤ lim inf

n→∞

∫

Γ
|f(z + i/n)|p|dz| ≤ lim sup

n→∞

∫

Cn

|f(z)|p|dz|

= lim sup
n→∞

∫

Cn

|f(z)|p|dz|,

and the lemma is proved.
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Given a Lipschitz graph Γ, define the weighted Bergman space by

B+(Γ) = {f holomorphic in Γ+ : ‖f‖B+(Γ) <∞},

with norm defined by

‖f‖B+(Γ) =

(∫∫

Γ+

|f(z)|2dΓ(z)dxdy
)1/2

.

B+(Γ) is a Hilbert space [19].

We pause for some technical lemmas that are required in what follows. Note that the
following results make explicit use of the Hilbert space structure. Therefore we restrict to
p = 2. The main results here, Lemma 3.5.12 and Theorem 3.5.13, hold for 1 < p <∞ [76].

Lemma 3.5.10 ([19]). Suppose f ∈ L2(Γ) and define F = CΓf . Then

‖F‖L2(Γ) ≤ C(1 + ‖ν ′‖∞)‖F ′‖B+(Γ).

Lemma 3.5.11 ([19]). Let f ∈ H+(Γ) and define

Tf(ζ) =

∫ ∫

Γ+

f(z)dΓ(z)

(z − ζ)2
dxdy, ζ ∈ Γ.

Then ‖Tf‖L2(Γ) ≤ C(1 + ‖ν ′‖∞)‖f‖B+(Γ).

Lemma 3.5.12. Let Γ1 = {x + iν1(x) : x ∈ R} be a Lipschitz graph in Γ+. Then for
f ∈ L2(Γ),

‖C+
Γ f‖L2(Γ1) ≤ C(1 + ‖ν ′1‖∞)(1 + ‖ν ′‖∞)‖f‖L2(Γ).

Proof. To prove this we follow [19]. Let

B = {h ∈ H+(Γ) : ‖h‖H+(Γ) ≤ 1, h compactly supported in Γ+}.

Then we know that for any f ∈ H+(Γ), ‖f‖H+(Γ) = suph∈B |〈f, h〉H+(Γ)|. Also define

C+
Γ
′
f(z) = d/dzC+

Γ f(z). Lemma 3.5.10 applied to Γ1 and Γ+
1 along with Fubini’s Theorem

gives

‖C+
Γ f‖L2(Γ1) ≤ C(1 + ‖ν ′1‖∞)‖C+

Γ
′
f‖H+(Γ+

1 )

= C(1 + ‖ν ′1‖∞)

(

∫∫

Γ+
1

|C+
Γ
′
f(z)|2dΓ1(z)dxdy

)1/2

.
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From the choice of Γ1 we have that dΓ1(z) ≤ dΓ(z), so

∫∫

Γ+
1

|C+
Γ
′
f(z)|2dΓ1(z)dxdy ≤

∫ ∫

Γ+

|C+
Γ
′
f(z)|2dΓ(z)dxdy

= sup
h∈B

|〈C+
Γ
′
f, h〉H+(Γ)|2

= sup
h∈B

∣

∣

∣

∣

∫ ∫

Γ+

(

−
∫

Γ

f(ζ)dζ

(z − ζ)2

)

h(z)dΓ(z)dxdy

∣

∣

∣

∣

2

= C sup
h∈B

∣

∣

∣

∣

∫

Γ
f(ζ)T (h)(ζ)dζ

∣

∣

∣

∣

2

≤ sup
h∈B

‖f‖L2(Γ)‖T (h)‖2L2(Γ)

≤ C(1 + ‖ν ′‖∞)2‖f‖2L2(Γ).

This proves the lemma.

Theorem 3.5.13. C+
Γ g ∈ E2(Γ+) whenever g ∈ L2(Γ).

Proof. It suffices to show that C+
Γ is a bounded operator from L2(Γ) to L2(Cn) and the

bound can be taken to be uniform in n. Applying Lemma 3.5.12 to the sequence {Cn}
proves the result.

Corollary 3.5.14. The following are direct consequences of Theorem 3.5.13. Assume that
Γ ∈ Σ∞, then

• E2(Γ+) = {C+
Γ f : f ∈ L2(Γ)},

• ‖ · ‖L2(Γ) and ‖ · ‖E2(Γ+) define equivalent norms,

• E2(Γ+) is a Hilbert Space, and

• C±
Γ is well-defined and bounded from L2(Γ) to itself.

Since the Cauchy integral formula holds when applied to E2(Γ+) functions we have that
C+
Γ f − f = 0 a.e on Γ for f ∈ E2(Γ+). It follows from Theorem 3.5.13 that

∥

∥

∥

∥

d

dz
CΓ(C+

Γf − f)

∥

∥

∥

∥

B+(Γ)

≤ ‖C+
Γ f − f‖L2(∞) = 0.

Therefore C+
Γ (C+

Γ f − f) is constant. That constant must be zero from the z → ∞ limit.
We obtain

C+
Γ C+

Γ f = C+
Γ f, (3.5.2)

and C+
Γ is a projector on L2(Γ). Also, it is well-known that the Plemelj formula holds:

C+
Γ f − C−

Γ f = f, (3.5.3)
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for f ∈ L2(Γ). This can be seen by the fact that for f ∈ L2(Γ), F (x) = f(ℓ(x)) ∈ L2(R),
ℓ(x) = x + iν(x). Approximate F by step functions Fn in L2(R). Then fn = Fn ◦ ℓ−1

converges to f in L2(Γ). It is straightforward to check that C+
Γ fn(s)−C−

Γ fn(s) = fn(s) a.e..
This implies the Plemelj formula for all L2(Γ) functions. Alternatively, the result follows
from Theorem A.0.13.

We know that if f ∈ E2(Γ+) then C+
Γ f = f . This implies that

C−
Γ f = 0, f ∈ E2(Γ+). (3.5.4)

If we consider E2(Γ−) then we replace + with − in (3.5.4) and (3.5.2) becomes

C−
Γ C−

Γ f = −C−
Γ f, (3.5.5)

when we take orientation into account.

Example 3.5.15. Consider the derivation of (2.1.4) and more specifically, (2.1.6). We
relax the assumption q0 ∈ Sδ(R) to q0 ∈ H1(R). What follows is performed assuming global
existence of a solution in H1(R). We have two claims to show:

• µ±(x, t; ·) ∈ E2(Γ±), and

• q(x, t) = i lim|k|→∞ kµ(x, t; k).

Then (2.1.6) follows since q̂0 ∈ L1(R) (see Lemma 3.6.9). We show the claims only for
µ+ since they follow for µ− follows in precisely the same way. Let k = kr + iki and it is
clear that

∥

∥

∥

∥

∫ x

−∞
ei(·+iki)(x−s)q(s, t)ds

∥

∥

∥

∥

L2(R)

≤ ‖q(·, t)‖L2((−∞,x)) ≤ ‖q(·, t)‖L2(R) (3.5.6)

since the Fourier transform is unitary on L2(R). This shows µ+(x, t; ·) ∈ E2(R+). To show
the second claim it suffices to show that µx(x, t; k) = o(1) as |k| → ∞ for k bounded away
from the real line. We integrate the expression for µ+x by parts:

µx(x, t; k) = q(x, t) + ik

∫ x

−∞
eik(x−s)q(s, t)ds =

∫ x

−∞
eik(x−s)qx(s, t)ds.

Replacing q with qx in (3.5.6) shows that µx(x, t; ·) ∈ E2(R−). To prove the last claim we
appeal to Lemma 3.6.11.

It may seem unsatisfactory that we have used properties of the Fourier transform in this
derivation. One often thinks of the Lax pair as a replacement for guessing the necessary
transform. Invoking properties of the Fourier transform becomes necessary as one reduces
regularity. Note that the derivation of (2.1.6) under more restrictive conditions required
no knowledge of the Fourier transform.

3.6 Cauchy integrals on intersecting contours

As seen above, the theory of Cauchy integrals is more naturally developed in Lp spaces.
This development extends in a straightforward way to contours with self intersections,
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provided that the contour can be separated into Lipschitz components. We concentrate on
p = 2 but the results extend to 1 < p < ∞. We have shown that if Γ is a Lipschitz graph
then

‖CΓf‖L2(Γ) ≤ C(K)‖f‖L2(Γ),

where C(K) depends continuously on the Lipschitz constant of Γ.

Corollary 3.6.1. Assume Γ is a Lipschitz graph defined by x+iϕ(x), x ∈ R, after possible
rotation. Let Γa,b = {x+ iϕ(x) : x ∈ (a, b)} for a < b in the extended real numbers. Then
for f ∈ L2(Γa,b), and c < d

1. ‖CΓa,b
f‖L2(Γc,d) ≤ C(K)‖f‖L2(Γa,b), and specifically,

2. ‖CΓa,b
f‖L2(Γa,b) ≤ C(K)‖f‖L2(Γa,b),

with the same constant C(K) as in Lemma 3.5.12 with ν1 = ν.

Proof. Let f be defined on Γa,b. Extend it to Γ by f = 0 on Γ \ Γa,b. Then

‖CΓa,b
f‖L2(Γc,d) = ‖CΓf‖L2(Γc,d) ≤ ‖CΓf‖L2(Γ) ≤ C(K)‖f‖L2(Γ) = C(K)‖f‖L2(Γa,b).

Set c = a, d = b to obtain the second claim.

Remark 3.6.2. This corollary states that if one can extend a finite or semi-infinite contour
Γ to be a Lipschitz graph by adding contours then C±

Γ is a bounded operator on L2(Γ). This
can be done by adding contours with constant slope that do not increase the Lipschitz
constant.

Lemma 3.6.3. Let Γ = Γ1∪· · ·∪Γl where each Γi is a smooth non-self-intersecting contour.
Assume there exist constants Cij such that for f ∈ L2(Γj), ‖CΓjf‖L2(Γi) ≤ Cji‖f‖L2(Γj)

Then

‖CΓf‖L2(Γ) ≤ C‖f‖L2(Γ), C = max
1≤j≤n

(

n
∑

i=1

C2
ji

)1/2

.

Proof. Define χi to be the characteristic function of Γi. We write

‖CΓf‖L2(Γ) =

∥

∥

∥

∥

∥

∥

n
∑

i=1

χiCΓ





n
∑

j=1

χjf





∥

∥

∥

∥

∥

∥

L2(Γ)

=

∥

∥

∥

∥

∥

∥

n
∑

i=1

χi

n
∑

j=1

CΓjf

∥

∥

∥

∥

∥

∥

L2(Γ)

≤
n
∑

i=1

n
∑

j=1

∥

∥χiCΓjf
∥

∥

L2(Γ)
=

n
∑

i=1

n
∑

j=1

∥

∥CΓjf
∥

∥

L2(Γi)

≤
n
∑

j=1

n
∑

i=1

Cji ‖f‖L2(Γj)
≤ max

j

(

n
∑

i=1

C2
ji

)1/2




n
∑

j=1

‖f‖2L2(Γj)





1/2

.

The final inequality follows from the Cauchy-Schwarz inequality.
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The lemma can be used to extend the boundedness of C±
Γ to curves that can be de-

composed into a finite number of Lipschitz components with transverse intersections. It
is worth nothing that this process does not result in the optimal bound on the Cauchy
integral operator. The following lemma demonstrates how the decomposition leads us to
an extension, in a simple case.

Figure 3.6.1: The intersection of two Lipschitz graphs Γ (dashed) and Γ′ (solid).

Lemma 3.6.4. Let Γ and Γ′ be two Lipschitz graphs that intersect at a single point in
the finite plane, see Figure 3.6.1. Without loss of generality we assume the intersection
point is the origin. Let Γi, i = 1, . . . , 4 be the components of Γ ∪ Γ′ \ {0}. Assume that
every combination Γij = Γi ∪ Γj for i 6= j is a Lipschitz graph. Then CΓ∪Γ′ is bounded on
L2(Γ ∪ Γ′) with a constant that depends only on the Lipschitz constants of Γij.

Proof. By Lemma 3.6.3 it suffices to show the existence of Cji > 0, depending on just
Lipschitz constants, such that ‖CΓif‖L2(Γj) ≤ Cji‖f‖L2(Γi). Corollary 3.6.1 shows their
existence.

More generally, if Γ can be broken up into contours {Γi}ni=1 such that for i 6= j, there
exists a Lipschitz graph Γij such that Γi ∪ Γj ⊂ Γij then C±

Γ is bounded on L2(Γ). Using
these ideas, we aim to define Hardy spaces of functions when Γ has intersections. The
following three definitions accomplish this.

Definition 3.6.5. Γ is said to be an admissible contour if

• Γ is complete with only transverse self-intersections and

• for each D ⋐ Ω±, ∂D is piecewise smooth and if ∂D is unbounded, it is a Lipschitz
graph.

Remark 3.6.6. From Lemma 3.5.12, Corollary 3.6.1 and Lemma 3.6.3 it follows that C±
Γ

are bounded as operators on L2(Γ) whenever Γ is admissible.

Definition 3.6.7. If Γ is an admissible contour then E±(Γ) consists of functions F holo-
morphic in Ω±, such that F ∈ E2(Di) for each Di ⋐ Ω±. It is clear that E±(Γ) may be
identified with

⊕

i

E2(Di).
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Definition 3.6.8. A function Φ is a E±(Γ) solution of a RHP if it satisfies the jump
condition and (Φ− I)|Ω± ∈ E±(Γ) or Φ− I ∈ E+(Γ)⊕ E−(Γ).

Note that this definition, in some sense, captures the Φ(∞) = I condition and that the
Cauchy integral formula holds for these functions, for each D ⋐ Ω± we have Φ = I + C∂Du
for u ∈ E2(D), implying u ∈ L2(∂D). From above, (3.5.4) implies that C∂Du vanishes
identically outside D. By patching together these representations we find that Φ = I+CΓû
for some û ∈ L2(Γ).

We end this section with estimates that are useful in what follows.

Lemma 3.6.9. If f(s), sf(s) ∈ L2(Γ) then the following estimate holds:

∫

Γ

f(s)

s− z
d̄s = −1

z

∫

Γ
f(s)d̄s+O(z−2),

if z, sufficiently large, satisfies infs∈Γ | arg z − arg s| > c > 0.

Proof. Consider

∣

∣

∣

∣

∫

Γ

f(s)

s− z
d̄s+

1

z

∫

Γ
f(s)d̄s

∣

∣

∣

∣

≤ |z|−1

(∫

Γ
|(1 + |s|)f(s)|2d̄s

)1/2(∫

Γ

1

(1 + |s|)2 |H(s, z)| d̄s
)1/2

,

H(s, z) =
1

(s/z)− 1
+ 1.

Since (1+ |s|)−2 is integrable, by the Dominated Convergence Theorem it suffices to show
that H(s, z) is bounded, uniformly in s and z and tends to zero as z → ∞ for each fixed
s. The latter statement is clear. We prove the former. Assume z ≥ 1 and let s/z = |r|eiθ,
|θ| > c. Therefore

|(s/z)− 1|2 = (r cos θ − 1)2 + r2 sin2 θ >

{

(r cos θ − 1)2, if r < 1/(2 cos θ),
r2 sin2 θ, if r ≥ 1/(2 cos θ).

Thus

|(s/z) − 1|2 ≥
{

4, if r < 1/(2 cos θ),
1
2 tan

2 θ, if r ≥ 1/(2 cos θ).

Thus H(s, z) is bounded uniformly in z and s.

The assumptions in this lemma can be relaxed at the expense of weaker asymptotics.

Lemma 3.6.10. For f ∈ L1(Γ),

lim
z→∞

z

∫

Γ

f(s)

s− z
d̄s = −

∫

Γ
f(s)d̄s,

where the limit is taken in a direction that is not tangential to Γ.

Different results hold for f ∈ L2(Γ):
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Lemma 3.6.11. If f ∈ L2(Γ) then the following estimate holds:

∫

Γ

f(s)

s− z
d̄s = o(1),

if z, sufficiently large, satisfies infs∈Γ | arg z − arg s| > c > 0.

Proof. Consider

∣

∣

∣

∣

∫

Γ

f(s)

s− z
d̄s

∣

∣

∣

∣

≤ ‖f‖L2(Γ)

(∫

Γ

|d̄s|
|s− z|2

)1/2

. (3.6.1)

The calculations in the proof of Lemma 3.6.9 show that under the hypothesis infs∈Γ | arg z−
arg s| > c > 0 |s−z|−2 ≤ C(1+|s|)2 for some constant C > 0. The Dominated Convergence
Theorem applied to the last integral in (3.6.1) proves the result.

3.7 Sobolev spaces

In applications stemming from RHPs and in the numerical solution of RHPs, the smooth-
ness of the solutions on the boundary is a necessary object of study. We begin with a
discussion of differentiability on oriented contours.

Let Γ be a smooth contour and f : Γ → C. We say f is Γ-differentiable if for each
s∗ ∈ Γ there exists a value f ′(s∗) such that for s ∈ Γ

f(s) = f(s∗) + f ′(s∗)(s − s∗) + (s − s∗)Es∗(s− s∗),

where |Es∗(s − s∗)| → 0 as |s − s∗| → 0. Note that this is weaker than complex differen-
tiability since we restrict to s ∈ Γ.

Example 3.7.1. The function f(z) = |z|2 is Γ-differentiable for any smooth contour Γ
but it is nowhere analytic.

Assume Γ = Γ1∪ · · · ∪Γl where each Γi is non-self-intersecting and C∞ smooth. It will
be clear that a finite degree of smoothness is sufficient. We define, D, the distributional
differentiation operator for functions defined on Γ \ γ0 where γ0 is, as before, the set of
self-intersections of Γ. For a function ϕ ∈ C∞

c (Γi) we represent a linear functional g via
the dual pairing

g(ϕ) = 〈g, ϕ〉Γi .

To Dig we associate the functional

−〈g, ϕ′
i〉Γi .

For f ∈ L2(Γ) consider fi = f |Γi , the restriction of f to Γi. In the case that the distribution
Difi corresponds to a locally integrable function

〈Difi, ϕ〉Γi =

∫

Γi

Difi(z)ϕ(z)dz = −
∫

Γi

fi(z)ϕ
′(z)dz,
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for each i, we define

Df(z) = Difi(z) if z ∈ Γi \ γ0.

This allows us to define

Hk(Γ) =
{

f ∈ L2(Γ) : Djf ∈ L2(Γ), j = 0, . . . , k
}

,

with norm

‖f‖2Hk(Γ) =
k
∑

j=0

‖D(j)f‖2L2(Γ).

We write W k,∞(Γ) for the Sobolev space with the L2 norm replaced with the L∞ norm.
An important note is that we will be dealing with matrix-valued functions, and hence the
definitions of all these spaces must be suitably extended. Since all finite-dimensional norms
are equivalent, we can use the above definitions in conjunction with any matrix norm to
define a norm for matrix-valued functions provided the norm is sub-additive. If the Hilbert
space structure of Hk(Γ) is needed then a specific choice of the matrix norm is necessary
so that it originates from an inner product.

Remark 3.7.2. It is clear that this construction works in any Lp space allowing for the
definition of the space W k,p(Γ).

We state a well-known result concerning Sobolev spaces on the line. This may be
deduced from the results in [48].

Theorem 3.7.3. If f ∈ Hk((a, b)) then

• f is differentiable a.e. in (a, b) and f (j)(z) = Djf(z) a.e., j ≤ k and

f (j)(x)− f (j)(a) =

∫ x

a
f (j+1)(s)ds, 0 ≤ j < k, (3.7.1)

•
∑k−1

i=0 ‖f (i)‖u ≤ C‖f‖Hk(Γ),

• limx→a f
(j)(x) and limx→b f

(j)(x) exist for 0 ≤ j < k,

• f has a unique Ck−1([a, b]) representation,

• multiplication is continuous: ‖fg‖Hk((a,b)) ≤ C‖f‖Hk((a,b))‖g‖Hk((a,b)), and

• f (j) is uniformly 1/2-Hölder continuous on [a, b] for 0 ≤ j < k.

If a or b is infinite the same conclusions follow but with Ck−1 replaced with Ck−1
0 , the

space of Ck−1 functions, decaying at infinity. If Γ is bounded and α : [−1, 1] → Γ is a C∞

parametrization of Γ then it is clear that Hk((−1, 1)) and Hk(Γ) are isomorphic for every
k.

Remark 3.7.4. Since f ∈ Hk(Γ) may be arbitrary on a set of measure zero, we always
assume we are working with the Ck−1 extension.
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Given a contour Γ, let γ0 be the set of self-intersections. The behavior of functions
at these intersection points is important for what follows. In particular, C±

Γ f will not be
smooth if is not sufficiently well-behaved at intersection points, even if f is smooth.

Definition 3.7.5. Assume that a ∈ γ0 and let Γ1, . . . ,Γm be a counter-clockwise ordering
of sub-components of Γ which contain z = a as an endpoint. For f ∈ Hk(Γ), define

f
(j)
i =

{

− limz→a

(

d
dz

)j
f |Γi(z) if Γi is oriented away from a,

limz→a

(

d
dz

)j
f |Γi(z) if Γi is oriented toward a.

(3.7.2)

We say that f satisfies the (k − 1)th-order zero-sum condition if for all a ∈ γ0

m
∑

i=1

f
(j)
i = 0, for j = 0, . . . , k − 1. (3.7.3)

Remark 3.7.6. These definitions imply f (j) = 0, j = 0, . . . , k − 1 when f satisfies the
zero-sum condition and Γ has an isolated endpoint (in which case Γ is not complete and
hence, not admissible). This is discussed further in Section 3.10.

Definition 3.7.7. Define

Hk
z (Γ) = {f ∈ Hk(Γ) : f satisfies the (k − 1)th-order zero-sum condition}.

By Theorem 3.7.3, point evaluation of any of the k − 1 derivatives of an Hk function
is a bounded linear functional. Thus Hk

z (Γ) is a closed subspace of Hk(Γ). We see below
that Hk

z (Γ) is the appropriate Sobolev space on which to consider the operators C±
Γ . With

this motivation, we begin with a lemma.

Lemma 3.7.8. Let Γ be a smooth, non-closed curve from z = a to z = b, oriented from a
to b. If f ∈ H1(Γ), then

D−
∫

Γ

f(ζ)

ζ − z
dζ =

f(a)

a− z
− f(b)

b− z
+−
∫

Γ

Df(ζ)

ζ − z
dζ.

The important consequence of this lemma is that Dj, 0 ≤ j ≤ k, commutes with the
Cauchy operators C±

Γ for functions in Hk
z (Γ). Thus C±

Γ are bounded from Hk
z (Γ) to H

k(Γ)
with the operator norm being the same as the L2(Γ) norm. Indeed, a stronger statement
is true.

Theorem 3.7.9. Let Γ be an admissible contour with ‖CΓf‖L2(Γ) ≤ C‖f‖L2(Γ). If f ∈
Hk

z (Γ) then C±
Γ f ∈ Hk

z (Γ) and hence ‖CΓf‖Hk
z (Γ)

≤ C‖f‖Hk
z (Γ)

.

Lemma 3.7.10 (Uniform Hölder continuity near intersection points). Let Γ be an admis-
sible contour, f ∈ H1

z (Γ) and a ∈ γ0. There exists δ > 0 such that C±
Γ f is uniformly

1/2-Hölder continuous in each D ⋐ B(a, δ) \ Γ and hence in D.

Proof. Let the components of Γ′ = (Γ ∩ B(a, δ)) \ {0} be denoted by Γ1, . . . ,Γn, with
counter-clockwise ordering, see Figure 3.7.1. Choose δ > 0 sufficiently small so that Γi∪Γj,
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i 6= j, is a Lipschitz graph. Let x1 ∈ Γ1, x2 ∈ Γ2 and let Λ be the line segment from x1 to
x2. For i = 1, 2, define ri = |xi − a|. Assume ri < δ/2.

For f ∈ H1
z (Γ), extend f trivially to vanish on Λ. Set F = CΓ′f . Then f still satisfies

the zero-sum condition on Γ′ ∪ Λ and F is H1 on Λ:

|F (x)− F (x′)| ≤ ‖CΓ′f ′‖L2(Λ)

√

|x− x′|.

But we know that ‖CΓ′f ′‖L2(Λ) = ‖CΓ′∪Λf ′‖L2(Λ) ≤ C(Λ)‖f‖L2(Γ′∪Λ) = C(Λ)‖f‖H1(Γ′). We
estimate how C(Λ) varies with respect to Λ.

Figure 3.7.1: Zooming in on the intersection point a with a counter-clockwise ordering of
the components Γ′.

We extend each Γi to Γ̃i by adding semi-infinite rays at each end point of Γi, while
minimizing the Lipschitz constant for Γ̃i. The same is done for Λ, giving Λ̃. If the smallest
of the angles made by the intersection of Γ̃i with Λ̃ is greater than π/4 then we connect
Γi to Λ with a Lipschitz contour (passing through the intersection of Γ̃i and Λ̃ to obtain
a Lipschitz contour with bounded Lipschitz constant, independent of Λ. This is a ‘nearly’
perpendicular intersection. If this is not true we apply Lemma 3.5.12, after possible ex-
tensions. These extensions will have bounded Lipschitz constants, independent of Λ, since
the contours are ‘nearly’ parallel. This process is described in Figure 3.7.2. Thus, there
exists constants Ci, C

′
i, independent of x1, x2 and hence independent of Λ such that

‖C±
Γi
f‖L2(Λ) ≤ Ci‖f‖L2(Γi), f ∈ L2(Γi),

‖C±
Λ f‖L2(Γi) ≤ C ′

i‖f‖L2(Λ), f ∈ L2(Λ).

By Lemma 3.6.3 we know that C±
Γ′∪Λ has norm independent of x1, x2. It is clear that the

effect of CΓ\Γ′f is analytic in a neighborhood of Λ. This proves the lemma.

Proof. We return to the proof of Theorem 3.7.9. For f ∈ Hk
z (Γ) we extend f to a function

f̃ by defining it to be zero on Λ. Then f̃ ∈ Hk
z (Γ ∪ Λ) so that Dj(CΓf̃) = CΓDj f̃ . Since

Dj f̃ ∈ Hk−j(Γ ∪ Λ) for 0 ≤ j ≤ k, we apply Lemma 3.7.10. Then Dj(CΓf̃) is uniformly
Hölder in the sense of Lemma 3.7.10. Choose a ∈ γ0. By the orientation of an admissible
Γ, for every contour Γ1 oriented towards a there exists a contour Γ2 oriented away such
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Figure 3.7.2: The extensions Γ̃1, Γ̃2 and Λ̃ of Γ1, Γ2 and Λ. The combination Γ̃1 and Λ̃
display the nearly parallel case whereas the combination of Γ̃2 and Λ̃ display the nearly
perpendicular case. We see that Γ̃11 ∪ Λ̃2 ∪ Λ̃3 is a Lipschitz graph lying above (after
rotation) Λ̃1 ∪ Γ̃12 ∪ Γ̃13. Thus Lemma 3.5.12 is applicable in this case to find a bound
for the Cauchy integral along Γ1, evaluated on Λ and vice versa. Also Γ̃23 ∪ Λ̃2 ∪ Λ̃1 and
Λ̃1 ∪ Λ̃2 ∪ Γ̃22 ∪ Γ̃21 are Lipschitz graphs and this fact provides a bound for the Cauchy
integral along Γ2 evaluate on Λ (and vice versa).

that both contours are part of the boundary of the same component of Ω±. By the uniform
Hölder continuity of C±

Γ f

lim
z→a

(

d

dz

)j

C±
Γ f |Γ1(z) = lim

z→a

(

d

dz

)j

C±
Γ f |Γ2(z).

This implies the zero-sum condition.

3.7.1 The Sobolev spaces of Zhou

The spaces Hk
z (Γ) have not appeared in the classical theory of RHPs. In the influential

paper of Zhou [116], he considered the two Sobolev spaces (for an admissible Γ)

Hk
±(Γ) = {f ∈ L2(Γ) : f ∈ Hk

z (∂D) for every D ⋐ Ω±},

Both are equipped with the standard Hk norm. These spaces fit nicely within the frame-
work of the Gohberg–Krein matrix factorization theory [18] that is discussed in Section 3.8.
It is easy to see that Hk

±(Γ) ⊂ Hk
z (Γ). Furthermore, Lemma 3.7.10 shows that if f ∈ Hk

z (Γ)
then C±

Γ f ∈ Hk
±(Γ). Since f = C+

Γ f − C−
Γ f we can express

Hk
z (Γ) = Hk

+(Γ) +Hk
−(Γ),
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where a decomposition is given by C+
Γ f and −C−

Γ f . The following additional properties
follow [117, 116]:

• C±
Γ : Hk

±(Γ) → Hk
±(Γ), and

• C±
Γ : Hk

∓(Γ) → Hk
+(Γ) ∩Hk

−(Γ).

3.8 Singular integral equations

We discuss the theory of singular integral equations (SIEs), focusing on the solution of
RHPs through SIEs. Consider the solution of an Lp RHP of the form

Φ+(s) = Φ−(s)G(s) + F (s), s ∈ Γ, Γ admissible, Φ(∞) = I. (3.8.1)

Assume for simplicity that all functions above are n× n matrices.

3.8.1 Singular integral equations on L2(Γ)

We look for solutions where Φ±(s) exist almost everywhere and Φ±− I ∈ L2(Γ). It is clear
that if Φ is an E±(Γ) solution then it is a solution in the above sense. It turns out that
considering the seemingly more restrictive class of E±(Γ) solutions is sufficient.

Remark 3.8.1. It can be inferred from the results in [76, p. 163] that an L2 solution is
an E±(Γ) solution.

If we can find an E±(Γ) solution then Φ(z) = I + CΓu(z) for some u ∈ L2(Γ). We make
this substitution in (3.8.1) and use Lemma 3.1.9 (more precisely, (3.5.3)) to find

u(s)− C−
Γ u(s)(G(s)− I) = G(s)− I + F (s), s ∈ Γ. (3.8.2)

This is a singular integral equation for u. We use this equation extensively. We write

Φ+(s)− I = Φ−(s)(G(s)− I) + F (s) + Φ−(s)− I, s ∈ Γ.

After making mild assumptions on G and F (made clear below), we apply C−
Γ noting

that C−
Γ (Φ

+(s) − I) = 0 and C−
Γ (Φ

−(s) − I) = −(Φ−(s) − I) from (3.5.2) and (3.5.4).
Rearranging, we obtain

Φ− − C−
Γ [Φ

−(·)(G(·) − I)] = I + F, s ∈ Γ. (3.8.3)

This is the equation introduced by Beals and Coifman [8] and studied by Zhou [116]. It is
a fundamental aspect of the method of nonlinear steepest descent [33].

The discussion turns to function spaces and the mapping properties of these operators.
To ease notation, define

C[G; Γ]u = u− C−
Γ u(G− I),

C′[G; Γ]Φ− = Φ− − C−
Γ [Φ

−(·)(G(·) − I)].



70 CHAPTER 3. RIEMANN–HILBERT PROBLEMS

It is clear that if G(s) ∈ L∞(Γ) then C[G; Γ] is bounded on L2(Γ). We impose that the
right-hand side of (3.8.2) is an L2(Γ) function. Thus, we require that G − I, F ∈ L2(Γ).
In the second case, since Φ− = f + I, f ∈ L2(Γ). Thus

Φ−(G− I) = f(G− I) +G− I,

which is also in L2(Γ) provided the same conditions on G hold.

3.8.2 Singular integral equations on Sobolev spaces

It is easy to see that for u ∈ Hk
z (Γ) with Γ having self-intersections that C−

Γ u(s)(G(s)− I)
does not generically satisfy the zero-sum condition. This is the case no matter how smooth
G is. If one wishes to find smooth solutions of (3.8.2), a regularity condition for G must be
satisfied at each intersection point, in addition to G being smooth away from intersection
points.

Definition 3.8.2. A jump matrix G defined on Γ is k-regular if Γ is admissible and G has
a factorization

G(s) = X−1
− (s)X+(s),

where X± − I,X−1
± − I ∈ Hk

±(Γ).

It is clear that this requires G− I,G−1 − I ∈ Hk(Γ).

Definition 3.8.3. Assume a ∈ γ0, the set of self-intersections of Γ. Let Γ1, . . . ,Γm be a
counter-clockwise ordering of sub-components of Γ which contain z = a as an endpoint.
For G ∈ Hk(Γ) we define Ĝi by G|Γi if Γi is oriented outwards and by (G|Γi)

−1 otherwise.
We say that G satisfies the (k − 1)th-order product condition if, using the (k − 1)th-order
Taylor expansion of each Ĝi, we have

m
∏

i=1

Ĝi = I +O
(

|z − a|k
)

, ∀a ∈ γ0. (3.8.4)

The product condition is precisely the condition that produces smooth solutions. The
classical theory on elliptic PDEs would indicate that singularities should be present at
every corner of the domain. A kth-order product condition indicates that the singularity
still posses some differentiability. In the case that each Ĝi is analytic in a neighborhood of
an intersection point, we see there is no singularity and solutions will be infinitely smooth
(actually, analytic).

Remark 3.8.4. In analogy with the product condition, if Γ is not complete this implies

that ∂
(j)
z (G − I) = 0, j = 0, . . . , k − 1 at each isolated endpoint. See Section 3.10 for a

deeper discussion of this.

Theorem 3.8.5 ([117]). G−I,G−1−I ∈ Hk(Γ) and G satisfies the (k−1)th-order product
condition if and only if G is k-regular.
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Figure 3.8.1: A sample self-intersection with consistent orientation and Gi labelled.

The proof of this theorem is straightforward when viewed from the correct angle al-
though it is lengthy. We prove it for the simple case of Γ = R ∪ iR, see Figure 3.8.1. To
ensure we have the orientation correct we define

Γ1 = (0,∞),

Γ2 = i(∞, 0),

Γ3 = (0,−∞),

Γ4 = i(−∞, 0).

Also, define

Gi(s) = G̃i(s) +O(sk), G̃i(s) =
k−1
∑

j=0

Ajs
j , s ∈ Γi, i = 1, 2, 3, 4.

First, assume that Gi = G̃i and we do not care about large s behavior. We must find
the proper X± factorization of the full jump G. We start with Γ1. Define X−|Γ1 = I so
that X+|Γ1 = G̃1. We move counter-clockwise around Figure 3.8.1. Set X+|Γ2 = G̃1 which
requires X−|Γ2 = G̃1G̃

−1
2 . Set X−|Γ3 = G̃1G̃

−1
2 which requires X+|Γ3 = G̃1G̃

−1
2 G̃3. Finally,

X+|Γ4 = G̃1G̃
−1
2 G̃3 and X−|Γ4 = G̃1G̃

−1
2 G̃3G̃

−1
4 . Under the assumptions that the jump

satisfies the (k − 1)th-order product condition we see that X−|Γ4 = I +O(|s|k).
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We move to the general case where Gi = G̃i +O(sk). Let φ ∈ C∞(Γ) satisfy

φ(s) =

{

I, if |s| < r,
0, if |s| > 2r.

We note that if we can find a local factorization in a small neighborhood of s = 0, G =
X̃−1

− X+ such that X̃− is invertible in this neighborhood then X̃−φ + (I − φ) is a good
candidate for X− provided that its determinant does not vanish. We must show that φ
can be chosen so that (X̃− − I)φ + I is non-singular. This only needs to be discussed for
r ≤ |s| ≤ 2r. For simplicity, we choose φ to be a scalar-valued function t(s) multiplied by
the identity matrix. A little thought shows that the problem on Γ1 reduces to choosing
t(s) : [r, 2r] → C so that t(r) = 1, t(2r) = 0 and the eigenvalues of (X̃− − I)φ are never
−1. The eigenvalues of X̃− − I for s ∈ [r, 2r] will be located in a collection of balls in
the complex plane with radii that tend to zero as s → 2r. We see that φ will rotate and
shrink these towards the origin as s increases from r to 2r. It follows that t(s) can always
be chosen provided that r is sufficiently small. With this choice X− = (X̃− − I)φ+ I and
X+ = X−G. The definition of t differs on each contour Γi. We now construct X̃±. Define

X̃−|Γ1 = I

X̃+|Γ1 = G̃1 +G1 − G̃1

X̃+|Γ2 = G̃1

X̃−|Γ2 = G̃1G̃
−1
2 + G̃1(G̃

−1
2 − G̃−1

2 )

X̃−|Γ3 = G̃1G̃
−1
2

X̃+|Γ3 = G̃1G̃
−1
2 G̃3 + G̃1G̃

−1
2 (G3 − G̃3)

X̃+|Γ4 = G̃1G̃
−1
2 G̃3

X̃−|Γ4 = G̃1G̃
−1
2 G̃3G̃

−1
4 + G̃1G̃

−1
2 G̃3(G

−1
4 − G̃−1

4 ).

It is easy to see that, X̃−1
− X̃+ = G and X̃± agrees with X̃± on the next contour up to

O(|s|k).

The factorization G = X−1
− X+ is now applied to (3.8.2).

u− C−
Γ u(X

−1
− X+ − I) = X−1

− X+ − I + F,

uX−1
+ − C−

Γ u(X
−1
− −X−1

+ ) = X−1
− −X−1

+ + FX−1
+ ,

C+
Γ uX

−1
+ − C−

Γ uX
−1
+ − C−

Γ u(X
−1
− −X−1

+ ) = X−1
− −X−1

+ + FX−1
+ ,

C+
Γ uX

−1
+ − C−

Γ uX
−1
− = X−1

− −X−1
+ + FX−1

+ . (3.8.5)

Note that if f ∈ Hk
±(Γ) and g ∈ Hk

z (Γ) then fC±
Γ g ∈ Hk

±(Γ) ⊂ Hk
z (Γ). This operation is

continuous since multiplication is continuous in Hk. Thus

C[X+,X−; Γ]u = C+
Γ uX

−1
+ − C−

Γ uX
−1
−

is an operator on Hk
z (Γ). This is especially convenient since this transformation does not

change u. For the right-hand side to be an Hk
z (Γ) function, we require that F ∈ Hk

+(Γ).
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We turn our attention to (3.8.3).

Φ− − C−
Γ [Φ

−(·)(X−1
− (·)X+(·)− I)] = I + F.

Define Ψ = Φ−X−1
− . Then

ΨX− − C−
Γ [Ψ(·)(X+(·)−X−(·))] = I + F,

C+
Γ [Ψ(·)X−(·)] − C−

Γ [Ψ(·)X−(·)]− C−
Γ [Ψ(·)(X+(·)−X−(·))] = I + F,

C+
Γ [Ψ(·)X−(·)] − C−

Γ [Ψ(·)X+(·)] = I + F. (3.8.6)

To property interpret this equation we define H̃k
±(Γ) = Hk

±(Γ) ⊕ Cn×n. For A ∈ Cn×n

we define C+
ΓA = A and C−

ΓA = 0 so that Lemma 3.1.9 holds. For Ψ ∈ H̃k
−(Γ) ∩ H̃k

+(Γ),

ΨX± ∈ H̃k
±(Γ). Thus using C±

Γ : Hk
±(Γ) → Hk

±(Γ) we find that C±
Γ [ΨX∓] ∈ H̃k

−(Γ)∩H̃k
+(Γ).

The operator

C′[X+,X−; Γ]Ψ = C+
Γ [Ψ(·)X−(·)] − C−

Γ [Ψ(·)X+(·)],

is bounded on H̃k
−(Γ) ∩ H̃k

+(Γ) and we require in F ∈ H̃k
−(Γ) ∩ H̃k

+(Γ).

Fredholm properties

We first state our main rational approximation theorem that is proved in Appendix A.

Definition 3.8.6. When Γ is admissible, let R±(Γ) be functions r such that r|∂D is equal
a.e. to a rational function for every D ⋐ Ω±.

Remark 3.8.7. When Ω± has more than one component (on the Riemann sphere) a
function f ∈ R±(Γ) does not have to agree a.e. on Γ with a rational function. For example,
let Γ be the contour in Figure 3.8.1. The function

f(z) =

{

(z − ei5π/4)−n, if z ∈ Γ1 ∪ Γ2,

(z − eiπ/4)−n, if z ∈ Γ3 ∪ Γ4,

is an R±(Γ) function but it is clearly not a true rational function.

Theorem 3.8.8. If Γ is admissible then R±(Γ) ∩ L2(Γ) is dense in Hk
±(Γ) and L2(Γ) ∩

R±(Γ)⊕Cn×n is dense in H̃k
±(Γ).

Remark 3.8.9. In light of these results there is a simple way to define the above spaces.
Hk

±(Γ) is the closure of functions f such that f |∂D, D ⊂ Ω±, is rational in the Hk(Γ) norm.
Furthermore, Hk

z (Γ) = Hk
+(Γ) + Hk

−(Γ) with ±C±
Γ providing a decomposition. Note that

these definitions coincide only when Γ is sufficiently regular (piecewise Ck is sufficient).

Throughout this section we assume that Γ is admissible and that the jump matrix
G = X−1

− X+ is k-regular.

Theorem 3.8.10. The following operators are Fredholm

• C[Γ;X+,X−] on Hk
z (Γ) and
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• C[Γ;G] on L2(Γ).

Proof. We begin the proof with a lemma.

Lemma 3.8.11. If g ∈ H̃k
∓(Γ), the operator L±

g defined by

L±
g u = C±

Γ [[C∓
Γ u]g],

is compact on Hk
z (Γ), H

k
+(Γ) ∩Hk

−(Γ) and L
2(Γ).

Proof. We prove this for the upper sign. The result follows analogously for the lower sign.
Assume g ∈ H̃k

−(Γ) and let gn be a sequence of R−(Γ) functions that converge to g in
Hk

−(Γ). Let D ⋐ Ω−, F± = C±
Γ u and let g̃n be the rational function that agrees with gn|∂D

a.e. We note that

Res

{

F (s)g̃n(s)

s− z
; s = k

}

, (3.8.7)

when k is a pole of gn is a bounded, rank-one operator on all Sobolev spaces we consider
here. We show that CΓ[[C−

Γ u]gn] is a finite sum of such residues for z ∈ Ω+. For z ∈ Ω+

we express

CΓ[[C−
Γ u]gn] = −

∑

D⋐Ω−

C∂D[[C−
Γ u]gn],

where the minus sign comes from orientation. On ∂D for all D ⋐ Ω−, [C−
Γ u]gn has a

meromorphic extension in D and therefore C∂D[[C−
Γ u]gn] must be a finite sum of residues

of the form (3.8.7). Note that z 6∈ D. Summing over every component of Ω− we see that
the operator is finite rank. Since ‖L±

gn −L±
g ‖L(Hk

z (Γ))
→ 0 as n→ ∞, we conclude that L±

g

is compact because the limit of compact operators is itself compact.

Note that the operators are compact on L2(Γ) provided g ∈ H1
±(Γ) to allow (uniform)

rational approximation.

We return to the proof the theorem. We show that C[X−1
+ ,X−1

− ; Γ] is a regulator for
C[X+,X−; Γ].

Hu = C[X+,X−; Γ][C[X−1
+ ,X−1

− ; Γ]u] =C+
Γ (u+ C+

Γ u(X
−1
+ − I)− C−

Γ u(X
−1
− − I))X+

− C−
Γ (u+ C+

Γ u(X
−1
+ − I)− C−

Γ u(X
−1
− − I))X−

=C+
Γ (u+ C+

Γ u(X
−1
+ − I))X+ − C−

Γ (u− C−
Γ u(X

−1
− − I))X−

−C+
Γ (C−

Γ u(X
−1
− − I))X+ − C−

Γ (C+
Γ u(X

−1
+ − I))X−.

We concentrate on the first two terms since the last two are compact by Lemma 3.8.11.

C+
Γ (u+ C+

Γ u(X
−1
+ − I))X+ = C+

Γ (u+ C+
Γ uX

−1
+ − C+

Γ u)X+

= C+
Γ (C+

Γ uX
−1
+ − C−

Γ )X+ = C+
Γ (C+

Γ uX
−1
+ )X+,

C−
Γ (u− C−

Γ u(X
−1
− − I))X− = −C−

Γ (C−
Γ uX

−1
− )X−.
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Then,

C+
Γ (u+ C+

Γ u(X
−1
+ − I))X+ − C−

Γ (u− C−
Γ u(X

−1
− − I))X−

= C+
Γ (C+

Γ uX
−1
+ )X+ + C−

Γ (C−
Γ uX

−1
− )X−

= C+
Γ u+ C−

Γ (C+
Γ uX

−1
+ )X+ − C−

Γ u+ C+
Γ (C−

Γ uX
−1
− )X−

= u+ C−
Γ (C+

Γ uX
−1
+ )X+ + C+

Γ (C−
Γ uX

−1
− )X−.

Adding this all together we obtain

Hu = u+ C−
Γ (C+

Γ uX
−1
+ )X+ + C+

Γ (C−
Γ uX

−1
− )X−−

C+
Γ (C−

Γ u(X
−1
− − I))X+ − C−

Γ (C+
Γ u(X

−1
+ − I))X−

= u+ Tu,

where T is compact and therefore the operator is right Fredholm. Changing the roles of
X± and X−1

± we obtain that the operator is indeed Fredholm.

To see that C[G; Γ] is Fredholm on L2(Γ) note that C[X+,X−; Γ]u · X+ = C[G; Γ]u.
Thus the operator defined by u 7→ C[X−1

+ ,X−1
− ; Γ](uX−1

+ ) is a regulator for C[G; Γ].

Similar calculations show that C′[X+,X−; Γ] and C′[G; Γ] are Fredholm:

Theorem 3.8.12 ([116]). The following operators are Fredholm

• C′[Γ,X+,X−] on H̃k
+(Γ) ∩ H̃k

−(Γ), and

• C′[G; Γ] on L2(Γ).

3.8.3 Determining the index and kernel

We have shown that singular integral operators associated with RHPs are Fredholm under
some precise conditions on the jump matrix. We aim to determine conditions under which
the associated integral operators are invertible. To do this we must briefly discuss Gohberg–
Krein (GK) matrix factorization theory in a simplified form. This theory may be discussed
in great depth and detail. It is an elegant theory with profound results. In view of the
density of rational functions, we use GK theory to only discuss the RHPs with jump
matrices that are the product of an R−(Γ) and an R+(Γ) function.

GK factorization of rational matrix functions

Let Γ be a rectifiable Jordan curve. A matrix A : Γ → Cn×n with each entry being
a rational function (i.e. a rational matrix function) is said to admit a right-standard
factorization relative to Γ if

A = A−θA+,
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Where A± are bounded rational functions with all poles in Ω∓ such that detA± 6= 0 in
Ω±. Furthermore,

θ(z) = diag

((

z − z+
z − z−

)κ1

, . . . ,

(

z − z+
z − z−

)κn
)

,

for z± ∈ Ω±. These conditions imply that A−1
± has no poles in Ω±. The integers κ1 ≥

. . . ≥ κn are the right-partial indices, or just partial indices, and κ =
∑n

i=1 κi is the total
index . We will see that κ has a direct relationship to the Fredholm index of the associated
singular integral operators. The following theorem is a fundamental result from the first
chapter of [18].

Theorem 3.8.13. Let A be a rational matrix function with non-vanishing determinant on
Γ. Then A admits a right-standard factorization relative to Γ for any z± ∈ Ω± and the
partial indices are determined uniquely.

We extend this result to intersecting contours. We abuse notation and call the matrix
A = X−1

− X+ where X± ∈ R±(Γ) a rational matrix function. It is important to note that
A may not itself be a true rational function.

Theorem 3.8.14. Assume that Γ is admissible and that A is a rational matrix function.
Then A admits a right-standard factorization relative to Γ.

Proof. We follow [116] and perform induction on the number of components of Ω± as
subsets of the Riemann sphere. First, we assume X+ = I so that A = X−1

− ∈ R−(Γ). The
general case is reduced to this case below.

If Ω− has one component, Theorem 3.8.13 implies the result. Now assume A = X−1
−

admits a right-standard factorization if Ω− has m < n components. We show it admits a
factorization when Ω− has n components.

Assume Ω− has n components. Let D ⊂ Ω− be a component. Then Â = A|Γ\∂D ∈
R−(Γ \ ∂D) admits a GK factorization since Γ \ ∂D is admissible and C \ (Γ \ ∂D) =
Ω′
+ ∪Ω′

−, a disjoint union, similar to Ω±. Thus

Â = m1−θ1m1+, θ1(z) = diag

((

z − z+
z − z−

)κ1

, . . . ,

(

z − z+
z − z−

)κn
)

,

z+ ∈ Ω+ and z− ∈ Ω−. We use m1 to denote either function m1± away from (Γ \ ∂D).
This factorization is used to, in effect, reduce the factorization problem to one on ∂D.

Fix z′− ∈ Ω′
+ and define

θ̂1(z) = diag

((

z − z−
z − z′−

)κ1

, . . . ,

(

z − z−
z − z′−

)κn
)

.

Next, define Ã = m1−v̂m
−1
1+θ̂1 for v̂ = v|∂D. Since Ã is a rational function on a rectifiable

Jordan curve Theorem 3.8.13 gives that Ã admits a right-standard factorization relative
to ∂D according to Theorem 3.8.14:

Ã = m2−θ2m2+, θ2(z) = diag

((

z − z+
z − z′−

)ν1

, . . . ,

(

z − z+
z − z′−

)νn)

.
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To be consistent we must also decompose C \ ∂D = Ω′′
+ ∪ Ω′′

−. Define

θ(z) = diag

((

z − z−
z − z′−

)ν1

, . . . ,

(

z − z−
z − z′−

)νn)

,

and θ̂2 = θ2θ
−1. We construct a sectionally analytic function

m =







θ̂2m2θ̂
−1
1 m1, if z ∈ Ω+,

m1θ1θ̂1m
−1
2 θ−1

2 , if z ∈ Ω′
− ∩ Ω−,

m−1
1 m2, if z ∈ Ω′′

− ∩ Ω−.

For z ∈ Γ \ ∂D

m−θm+ = m1−θ1θ̂1m
−1
2−θ

−1
2 θθ̂2m2+θ̂

−1
1 m1+ = m1−θ1m1+ = Â,

since m2− = m2+ on Γ \ ∂D. For z ∈ Γ \ ∂D we have

m−θm+ = m−1
1−ṽθ

−1
1 m1+ = A|∂D.

Thus m−θm+ is the desired factorization. Switching − with + we see that we may find a
right-standard factorization if A ∈ R+(Γ).

For the general case A = X−1
− X+ we find X+ = m1−θ1m1+. We factor X−1

− m1−θ1 =
m2−θ2m2+. Thus A = m2−θ2(m2+m1+). This is the desired factorization.

Theorem 3.8.15 ([116]). The partial indices κ1 ≥ · · · ≥ κn are unique.

Proof. Assume two factorizations of A = m1−θ1m1+ = m2−θ2m2+ with

θ1(z) = diag (zκ1 , . . . , zκn) ,

θ2(z) = diag (zν1 , . . . , zνn) ,

κi ≤ κi+1, νi ≤ νi+1.

We may assume θ1, θ2 are of this simple form by using a Möbius transformation that
takes rational functions to rational functions. After this transformation assume 0 ∈ Ω−,
∞ ∈ Ω+. We obtain

n+θ1 = θ2n−, n− = m−1
2−m1−, n+ = m2+m

−1
1+. (3.8.8)

Set n− = (n−ij)1≤i,j≤n and n+ = (n+ij)1≤i,j≤n. Assume that κl < νl for some l. Then

ν1 ≤ . . . ≤ νl < κl ⇒ νi − κj < 0, j ≥ l, i ≤ l.

From (3.8.8)

n+ij(z)z
κj−νi = n−ij(z).

If κj − νi < 0, then n−ij(z)z
κj−νi is an entire function that decays at infinity: it must be

identically zero.
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Thus n−ij(z) = 0 for j ≥ l, i ≤ l, i.e. n− has an l× (n− l)+ 1 block of zeros. The span
of the last (n− l) + 1 columns of n− is at most n− l (the dimension of the non-zero block
below the zero-block). Thus the rank of n− is at most l − 1 + n− l = n− 1 contradicting
the fact that n− is invertible. The case κl < νl can be treated with a slightly modified
version of this argument.

Now that we have established that the partial indices are unique we relate them to the
Fredholm index of an operator. We begin with a lemma.

Lemma 3.8.16. Assume G is k-regular. If X± and X ′
± represent two (algebraic) factor-

izations of G then

u 7→ uX±(X
′
±)

−1

is an invertible operator on Hk
z (Γ).

Proof. It is clear that X±(X ′
±)

−1 is bounded and invertible on Hk(Γ). We need to show
it preserves the zero-sum conditions. With

X−1
− X+ = (X ′

−)
−1X ′

+,

we find

X+(X
′
+)

−1 = X−(X
′
−)

−1 ∈ Hk
−(Γ) ∩Hk

+(Γ).

Since a function inHk
−(Γ)∩Hk

+(Γ) has limits agreeing from every direction at an intersection
point it is clear that the zero-sum condition is preserved under multiplication by such
functions.

Theorem 3.8.17. Let Γ be an admissible contour and G : Γ → Cn×n be a rational
matrix function. Assume G has partial indices κ1 ≥ · · · ≥ κn. Then for any (algebraic)
factorization of G = X−1

− X+ we have

• dimker C[X+,X−; Γ] = n
∑

κi>0 |κi|,

• codim ran C[X+,X−; Γ] = n
∑

κi<0 |κi|, and

• ind C[X+,X−; Γ] = −n
∑n

i=1 κi.

Proof. Let G = R−1
− θR+ be a right-standard factorization of G. We claim that

[C[Γ; I, θ]C[R+, R−; Γ]u]R+X
−1
+ = C[X+,X−; Γ].

This can be verified using the projection properties of the Cauchy operator. We digress
for an important lemma.

Lemma 3.8.18. If a k-regular RHP with jump matrix G has a solution Φ ∈ E±(Γ) with
Φ± − I,Φ−1

± − I ∈ Hk
±(Γ) then

C[X+,X−; Γ]
−1u = C+

Γ [uX+Φ
−1
+ ]Φ+ − C−

Γ [uX+Φ
−1
+ ]Φ−.
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Proof. Let Tu = C+
Γ [uX+Φ

−1
+ ]Φ+ − C−

Γ [uX+Φ
−1
+ ]Φ− First we find that

(C[X+,X−; Γ]u)X+Φ
−1
+ = C+

Γ uΦ
−1
+ − C−

Γ uΦ
−1
− .

The projection properties of C±
Γ show that C+

Γ uΦ
−1
+ − C−

Γ uΦ
−1
− and C+

Γ uΦ+ − C−
Γ uΦ− are

inverses. Thus T ◦ C[X+,X−; Γ] = I. We show the other composition. We find

C[X+,X−; Γ] ◦ Tu = C+
Γ [uX+Φ

−1
+ ]Φ+X

−1
+ − C−

Γ [uX+Φ
−1
+ ]Φ−X

−1
− ,

= u+ C−
Γ [uX+Φ

−1
+ ]Φ+X

−1
+ − C−

Γ [uX+Φ
−1
+ ]Φ−X

−1
− .

It is clear from previous calculations that Φ+X
−1
+ = Φ−X

−1
− , proving the identity.

We return to the theorem. It is clear that u 7→ uR+X
−1
+ defines an invertible operator.

The lemma shows that C[Γ;R+, R−] is also invertible. Thus any deficiency of C[Γ,X+,X−]
must come from

C[I, θ; Γ] = C+
Γ · −C−

Γ · θ.

Recall that

θ(z) = diag

((

z − z+
z − z−

)κ1

, . . . ,

(

z − z+
z − z−

)κn
)

.

We convert this to an equivalent RHP. We look for solutions of

Φ+(s) = Φ−(s)θ(s), s ∈ Γ,Φ(∞) = 0.

This is a diagonal RHP. We use the methods of Section 3.4.1, determining n scalar problems

φ+i (s) = φ−i (s)M
κi(s), M(s) =

s− z+
s− z−

, s ∈ Γ, φi(∞) = 0, i = 1, . . . , n. (3.8.9)

It is easy to check that if κi > 0 then

φ+i (z) =

κi−1
∑

l=0

αlM
l(z), φ−i (z) =

κi−1
∑

l=0

αlM
−κi+l(z),

is a solution of (3.8.9) for any choice of {αl} and therefore Φ±(z) = diag(φ±1 (z), . . . , φ
±
n )

and u(s) = Φ+(s) − Φ−(s) is an element of the kernel of C[I, θ; Γ]. For κi ≤ 0, solutions
must be of this same form but we may change what l ranges over. Since all exponents on
φ−i must be negative, we find κi > l. Considering φ+i we see that for it to be analytic,
αl = 0 for all l. We have characterized the kernel by

∑

κi>0 κi elements.

To analyze the range we set u = u+ + u− where u± ∈ C±
ΓH

k
z (Γ). If we choose u− = 0

we find C[I, θ; Γ]u+ = u+. Therefore C+
ΓH

k
z (Γ) is in the range. Now choose u+ = 0. We

find C[I, θ; Γ]u = C−
Γ u−θ. We break this into components and consider

C−
Γ u

−
i M

κi .
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If κi ≥ 0 and u ∈ E−(Γ) then M−κiu ∈ E−(Γ) implying that

C−
Γ (M

−κiu)Mκi = u.

Thus this component maps onto C−
ΓH

k
z (Γ). Now if κi < 0 then C−

Γ u
−
i M

κi will always have
a (−κi)-th order zero at z = z−. Implying that if g ∈ ran C−

Γ ·Mκi then d
dzC

−
Γ g(z−) = 0

for j = 0, . . . ,−κi − 1. This amounts to
∑

κi<0 |κi| orthogonality conditions. Thus we
have characterized the deficiency of the range by

∑

κi<0 |κi| bounded linear functionals.
We have constructed the kernel and identified deficiency of the range when C[I, θ; Γ] acts
on vectors. Since each row is acted on independently, the dimension of the kernel and
codimension of the range is multiplied by the number of rows.

Remark 3.8.19. If we apply C[X+,X−; Γ] on m× n matrices then

• dimker C[X+,X−; Γ] = m
∑

κi>0 |κi|,

• codim ran C[X+,X−; Γ] = m
∑

κi<0 |κi|, and

• ind C[X+,X−; Γ] = −m∑n
i=1 κi.

We connect the total index κ to something easily computable. If A is a rational matrix
function with a right-standard factorization then

A = A−θA+ ⇒ detA = detA−

(

z − z+
z − z−

)κ

detA+.

It follows that

ind∂D detA± = 0, D ⋐ Ω±,

ind∂D

[(

z − z+
z − z−

)κ]

=

{

κ, if z+ ∈ D,
0, otherwise,

(3.8.10)

using the argument principle. Orientation is taken into account in the second expression
(3.8.10). Summing over components,

∑

D⊂Ω+

∫

∂D
d̄ log

(

detA+

(

z − z+
z − z−

)κ)

= κ,
∑

D⊂Ω−

∫

∂D
d̄ log detA− = 0.

We decompose Γ = Γ1 ∪ · · · ∪ Γl, with Γl smooth and non-self-intersecting. Then

κ =
∑

D⊂Ω+

∫

∂D
d̄ log

(

detA+

(

z − z+
z − z−

)κ)

−
∑

D⊂Ω−

∫

∂D
d̄ log detA− =

l
∑

j=1

∫

Γj

d̄ log detA.

We obtain the following theorem.
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Theorem 3.8.20. Let Γ be admissible and G be a rational matrix function with an alge-
braic factorization X± ∈ Hk

±(Γ) then

ind C[X+,X−; Γ] = n

l
∑

j=1

∫

Γl

d̄ log detG,

as an operator on Hk
z (Γ).

Theorem 3.8.21. Theorem 3.8.20 holds when G is k-regular.

Proof. Let G = X−1
− X+ and approximate X± with a convergent sequence of rational

matrix functions {Xn
±}. It follows that

‖C[X+,X−; Γ]− C[Xn
+,X

n
−; Γ]‖L(Hk

z (Γ))
→ 0 as n→ ∞.

Thus for n sufficiently large C[Γ;Xn
+,X

n
−] has the same index as C[X+,X−; Γ]. We express

ind C[Xn
+,X

n
−; Γ] = n

l
∑

j=1

∫

Γl

d̄ log detXn
+ − d̄ log detXn

+

= n
∑

D⊂Ω+

ind∂D detXn
+ −

∑

D⊂Ω−

ind∂D detXn
−.

Since Xn
± → X± in L∞(Γ), we have that for sufficiently large n

ind C[Xn
+,X

n
−; Γ] = n

∑

D⊂Ω+

ind∂D detX+ − n
∑

D⊂Ω−

ind∂D detX−

= n
l
∑

j=1

∫

Γl

d̄ log detG = ind C[X+,X−; Γ].

Remark 3.8.22. Note that the index is independent of k and if G is k-regular then the
invertibility of C[X+,X−; Γ] on Hj

k(Γ) for one j ∈ [0, k] implies invertibility for any j.
Similar statements follow for C[G; Γ].

Remark 3.8.23. Let Φ be a bounded L2 solution of the RHP with jump G, indΓ detG = 0.
Then

detΦ+ = detΦ− detG, detΦ(∞) = 1. (3.8.11)

Assume that indΓ detG = 0 and that detG be 1-regular. The theory presented thus far
shows that detΦ is the only solution to this problem (the only partial index is zero). Indeed,
in many cases, G = X−1

− X+, so that detG must satisfy the (scalar) product condition. We
find a possibly new algebraic factorization detG = Y+/Y− for scalar-valued functions Y±.
Enumerate {D+

i } and {D−
i } where D±

i ⋐ Ω±. Select points z±i ∈ D±
i and define the



82 CHAPTER 3. RIEMANN–HILBERT PROBLEMS

integers

κ±i = indD±
i
Y±.

Let

P (z) =
∏

D+
i ⋐Ω+

(z − z+i )
−κ+

i ,

M(z) =
∏

D−
i ⋐Ω−

(z − z−i )
−κ−

i .

It follows from indΓG = 0 that lim|z|→∞P (z)/M(z) = 1 and

κ+i = indD+
i
Y+P/M = 0, κ−i = indD−

i
Y−M/P = 0.

Define Z+ = Y+P/M and Z− = Y−M/P so that G = 1/Z−Z+. Again Z± are scalar-
valued. We find a representation for detΦ:

log det Φ(z) =

∫

Γ

logZ+(s)− logZ−(s)
s− z

ds =
∑

D+
i ⋐Ω+

∫

D+
i

logZ+(s)

s− z
ds−

∑

D−
i ⋐Ω−

∫

D−
i

logZ−(s)
s− z

ds.

From this it is clear that detΦ cannot vanish; both Cauchy integrals are bounded. It is
worth noting that if detG = 1 then detΦ = 1.

Some remarks are in order.

Remark 3.8.24. Theorems 3.8.17 and 3.8.20 hold for C[G; Γ] and C′[G; Γ] in L2(Γ) pro-
vided k ≥ 1 and C′[X+,X−; Γ] on H̃k

+(Γ) ∩ H̃k
−(Γ).

Remark 3.8.25. In applications it is often the case that detG = 1. This immediately
shows that the index is zero.

We have shown there is a one-to-one correspondence between E±(Γ) solutions of a
RHP with jump matrix G and solutions of C[Γ;X+,X−]u = X−1

+ − X−1
− . The question

of solvability of a RHP is reduced to the question of invertibility of a Fredholm singular
integral operator. To show this, one usually determines that the singular integral operator
has index zero. Additional results show that the kernel must be trivial. An appeal to the
open mapping theorem and one of its well-known corollaries proves the invertibility of the
operator:

Theorem 3.8.26 (Open Mapping). Let X and Y be Banach spaces. If T ∈ L(X,Y ) is
surjective, then T is open.

Corollary 3.8.27. If X and Y are Banach spaces and T ∈ L(X,Y ) is bijective, then T
is an isomorphism: T−1 ∈ L(Y,X).

To get a handle on the kernel we present an incarnation of the so-called vanishing
lemma.
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Definition 3.8.28. A contour is said to be Schwarz invariant if Γ̄ = Γ, respecting orien-

tation. The Schwartz conjugate of a function f is defined by f †(z) = f(z̄)
T
.

Theorem 3.8.29 (Vanishing Lemma [116]). Let G be defined on a Schwarz invariant,
admissible contour Γ. If G is k-regular, ReG is positive semi-definite on R, positive definite
on a set of positive measure, and G = G† on Γ \R then dimker C[X+,X−; Γ] = 0.

Proof. Let Φ be a vanishing solution of the associated RHP:

Φ+(s) = Φ−(s)G(s), Φ(∞) = 0.

Thus u = Φ+ − Φ− ∈ ker C[X+,X−; Γ]. Let D ⋐ C \ Γ, then D†
⋐ C \ Γ. Further,

∂D† = (∂D)†, respecting orientation. Set u1 = Φ|∂D and u2 = Φ|∂D† . Since u1 ∈ E2(D)
we know that

∫

∂D u1(z)r(z)dz = 0 for any rational function r with poles outside D. Since

u†2 may be approximated with rational functions in L2(∂D) satisfying this condition, we
find

∫

∂D
u1(z)u

†
2(z)dz = 0.

Summing over all components in the upper-half plane we find

∑

D⊂C+\Γ

∫

±∂D
u1(z)u

†
2(z)dz = 0. (3.8.12)

We choose ± to make ∂D is positively oriented. Let Γi be smooth components of Γ in the
open upper-half plane. Then Γi is part of the boundary of two components D± ⊂ Ω±, and
Φ has boundary values u±1 from Ω± on Γi. Boundary values for u2, u

±
2 exist analogously

on Γ†
i . Integrals along Γi appear twice in (3.8.12):

∫

Γi

u+1 (z)(u
−
2 )

†(z)dz =

∫

Γi

u−1 (z)G(z)(u
−
2 )

†(z)dz,

∫

−Γi

u−1 (z)(u
+
2 )

†(z)dz =

∫

−Γi

u−1 (z)G
†(z)(u−2 )

†(z)dz.

Using G = G† off the real line, we see that these integrals cancel. Only integrals on the
real line survive, producing

∑

D⊂C+\Γ

∫

±∂D
u1(z)u

†
2(z)dz =

∫

R

u+1 (x)u
−
2 (x)dx =

∫

R

u−1 (x)G̃(x)u−1 (x)dx.

Where G̃ = G or G† depending on how each subset of the real line is oriented. This
equation is added to (subtracted from) its Schwarz reflection providing us with

0 =

∫

R

u−1 (x)(G(x) +G†(x))u−1 (x)dx.

Thus u−1 = 0 and hence Φ− is zero a.e. on R by positive definiteness. It is known that any
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function in E2(D) which vanishes on a set of positive measure on the boundary must be
identically zero. If Φ is zero in any component of C\Γ then the jump condition forces Φ to
be zero in all neighboring components. We conclude that Φ = 0 and dimker C[X+,X−; Γ] =
0.

Remark 3.8.30. The notion of partial indices can be generalized to so-called decomposing
algebras. If these are used Theorem 3.8.29 can be strengthened to show invertibility of the
operator without appealing to a zero index statement. We do not elaborate on this here but
note that for our purposes detG is constant. Establishing zero index is then trivial.

3.9 Additional smoothness aspects of Riemann–Hilbert prob-

lems

We expand on the theory above by providing estimates for the derivatives of solutions
of singular integral equations. This provides criteria in terms of the jump matrix to test
when the solution of one problem is “close” to the solution of another problem. To simplify
notation we associate [G; Γ] with the L2 RHP

Φ+(s) = Φ−(s)G(s), s ∈ Γ, Φ(∞) = I.

If G is k-regular we also say [G; Γ] is k-regular.

Theorem 3.9.1. Given a RHP [G; Γ] which is k-regular, assume C[G; Γ] is invertible on
L2(Γ). Then the solution of (3.8.2), u ∈ Hk

z (Γ), satisfies

Dku = C[G; Γ]−1

(

Dk(G− I) +Dk(C−
Γ u · (G− I))− C−

ΓD
ku · (G− I)

)

, (3.9.1)

where the right-hand side of (3.9.1) does not depend on Dku.

Corollary 3.9.2. Under the hypotheses of Theorem 3.9.1, u satisfies an inequality of the
form

‖u‖Hk(Γ) ≤ pk

(

‖G− I‖W k,∞(Γ)‖C[G; Γ]−1‖L(L2(Γ))

)

‖C[G; Γ]−1‖L(L2(Γ))‖G − I‖Hk(Γ),

(3.9.2)

where pk is a polynomial of degree k whose coefficients depend on ‖C−
Γ ‖L(L2(Γ)).

Proof. Taking the norm of (3.9.1) gives a bound on the semi-norm ‖Dku‖L2(Γ) in terms
of ‖u‖Hk−1(Γ). Using (3.9.1) for k − 1 gives a bound in terms of ‖u‖Hk−2(Γ). This process
produces a bound of the form (3.9.2).

Remark 3.9.3. The expression for the derivative in Theorem 3.9.1 can be used to bound
Sobolev norms of the solution in terms of Sobolev norms of the jump matrix if a bound on
the norm of the inverse operator is known. In some cases, when the jump matrix depends
on a parameter, and the Sobolev norms of the jump matrix are bounded or decaying, the
resulting bounds are useful.
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We often use the following theorem which is derived from the results in [51].

Lemma 3.9.4. Consider a sequence of k-regular RHPs {[Gξ; Γ]}ξ≥0 on the fixed contour
Γ. Assume Gξ → G in W k,∞(Γ) ∩Hk(Γ) as ξ → ∞, then

• If C[G; Γ] is invertible on L2(Γ) then there exists a T > 0 such that C[Gξ ; Γ] is also
invertible for ξ > T .

• If Φξ is the solution of [Gξ ,Γ], and Φ is the solution of [G; Γ], then Φ±
ξ −Φ± → 0 in

Hk(Γ).

• ‖Φξ − Φ‖W j,∞(S) → 0, for all j ≥ 1, whenever S is bounded away from Γ.

Proof. The first statement follows from the fact that C[Gξ ; Γ] converges to C[G; Γ] in the
operator norm. The second property follows from Corollary 3.9.2. The final property is a
consequence of the Cauchy-Schwartz inequality and the fact that ‖uξ − u‖L2(Γ) → 0.

3.10 Truncation, augmentation and practical aspects of

Riemann–Hilbert problems

When RHPs are used in practice the contour involved is often not complete. Furthermore,
we aim to solve RHPs numerically (in Chapter 5) and contours of infinite length may cause
problems. In this section we discuss what can be done when a contour is not complete
and how for most RHPs on infinite contours there exists a ‘nearby’ problem on a bounded
contour.

3.10.1 Augmentation

Throughout much of the above discussion we assumed Γ is complete. Here we demonstrate
that this can be assumed for all L2 RHPs without loss of generality. Let Γ be an incomplete
but piecewise smooth contour with only transverse intersections. We describe a procedure
that converts Γ to complete contour. We start with a definition.

Definition 3.10.1. Let γ0 be the set of self-intersections of the contour Γ. We say a point
a ∈ Γ is an open endpoint if a is a limit point of only one of the connected components of
Γ \ (γ0 ∪ {a}).

For example, the interval [−1, 1] has ±1 as open endpoints. We join all open endpoints
back to Γ or to ∞ with smooth contours. Define the resulting contour to be Γ′. Now
Ω = C \ Γ′ consists of disjoint open sets D such that ∂D is piecewise smooth with only
transverse intersections. Note this is not necessarily true of C \ Γ. Choose D1 ⋐ Ω and
re-orient (if necessary) Γ′ so that Γ′ ∩ D̄1 = ∂D1 (positively oriented) where orientation
is accounted for in the equality. Look at all neighboring components D2, . . . ,Dm of D1.
Either Γ′ can be reoriented so that Γ′ ∩ D̄2 = −∂D2 (negatively oriented), or not. If not,
additional contours are added resulting in Γ′′ so that this can be accomplished. We repeat
this process until the contour is complete. We demonstrate this procedure in Figure 3.10.1.
This procedure works for any such contour Γ
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(a) (b)

(c)

Figure 3.10.1: The augmentation of an incomplete contour with open endpoints to a com-
plete contour. For this sketch we assume all contours are finite. (a) The initial contour.
(b) Fixing D1 and adding contours, as needed to obtain Γ′. (c) The resulting contour Γ′′

is now complete with Ω± clearly defined.
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For a RHP [G; Γ] we discuss the extension to a new RHP, [G̃,Γ′′], and the conditions
needed so that [G̃,Γ′′] will be k-regular. First, define G̃ = I on Γ′′ \ Γ. Next if a given
component Γi of Γ had its orientation reversed as a component of Γ′′, define G̃ = G−1 on
Γi. It is easily seen that if G satisfies the (k−1)th-order product condition on Γ then [G̃,Γ′′]
is k-regular. Also, it is clear that the solutions of [G; Γ] and [G̃; Γ′′] are in a one-to-one
correspondence.

Next, we compare the singular integral equations

C[G,Γ]u = G− I, on Γ, (3.10.1)

C[G̃,Γ′′]ũ = G̃− I, on Γ′′. (3.10.2)

It follows that (3.10.2) is equivalent to (3.10.1). Indeed, on Γ′′ \ Γ

C[G̃,Γ′′]ũ = ũ− C−
Γ′′u · (G̃− I) = ũ = 0. (3.10.3)

Furthermore, let Γi ⊂ Γ have reversed orientation −Γi ⊂ Γ′′. Let Γc
i be the complement of

Γi with respect to Γ′′. On Γi

ũ− C−
Γ′′ ũ · (G̃− I) = G̃− I,

(C+
−Γi

+ C+
Γc
i
)ũ− (C−

−Γi
+ C−

Γc
i
)ũ · G̃ = G̃− I,

(C+
−Γi

+ C+
Γc
i
)ũ− (C−

−Γi
+ C−

Γc
i
)ũ ·G−1 = G−1 − I,

(C+
−Γi

+ C+
Γc
i
)ũ ·G− (C−

−Γi
+ C−

Γc
i
)ũ = I −G.

On Γi we have C+
Γc
i
ũ = C−

Γc
i
ũ and using the orientation C±

−Γi
= C∓

Γi
. We obtain

(C+
Γi

+ C+
Γc
i
)ũ− (C−

Γi
+ C−

Γc
i
)ũ ·G = G− I.

This argument applied to each re-oriented contour combined with (3.10.3) shows

ũ− C−
Γ ũ · (G− I) = G− I.

Thus proving equivalence. We arrive at the following theorem.

Theorem 3.10.2. Let Γ be a possibly incomplete contour and let G satisfy the (k − 1)th-
order product condition on Γ. If for any augmentation Γ′′ of Γ and extension G̃ of G,
C[G̃; Γ′′] is invertible on L2(Γ), so is C[G; Γ], and u = C[G; Γ]−1(G − I) ∈ Hk

z (Γ).

Remark 3.10.3. A theoretical contribution of this work is that the Sobolev spaces of Zhou
do not make sense on incomplete contours. As we have seen, the spaces Hk

z (Γ) are ideal
when Γ is incomplete. This is one reason for considering C[G; Γ] instead of C′[G; Γ].

3.10.2 Truncation

Thus far we have justified augmenting incomplete contours to obtain an equivalent RHP
on complete contours. Often, in practice, we start with a RHP posed on an unbounded
contour and we wish to truncate it to a problem on a finite contour. The following result
justifies this process.
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Proposition 3.10.4. Assume [G; Γ] is k-regular. For every ǫ > 0 there exists a function
Gǫ defined on Γ and a bounded contour Γǫ ⊂ Γ such that:

• Gǫ = I on Γ \ Γǫ,

• ‖Gǫ −G‖W k,∞(Γ)∩Hk(Γ) < ǫ

• [Gǫ,Γǫ] is k-regular and

‖C[G; Γ] − C[Gǫ,Γ]‖L(L2(Γ)) < ǫ‖C−
Γ ‖L(L2(Γ)).

Proof. A matrix-valued function f is chosen such that

• f |Γi ∈ C∞(Γi),

• f = I in a neighborhood of all intersection points,

• f has compact support, and

• ‖(G− I)f + I −G‖W k,∞(Γ)∩Hk(Γ) < ǫ.

Equate Gǫ = (G− I)f + I. The last property follows immediately.

This justifies the truncation of infinite contours to bounded contours and it shows
this process preserves smoothness. For numerical computations in the next chapter, we
truncate contours when the jump matrix is, to machine precision, the identity matrix.

3.10.3 Lensing

Here we go over, in detail, the process of lensing a RHP. This is one of the many deformation
techniques that are useful both in the numerical method presented in the following chapter
and for the method of nonlinear steepest descent. We start with a RHP (Figure 3.2(b))

Φ+
1 (k) = Φ−

1 (k)G(k), k ∈ Γ ⊂ R,

Φ1(∞) = I.

We choose Γ ⊂ R for simplicity and assume 0 ∈ Γ. Assume that G has a factorization

G(k) =M3(k)M2(k)M1(k).

Assume for simplicity that all matrices are nonsingular. Fix an r > 0 and define the regions
Ωi, i = 1, 2, 3, 4, see Figure 3.2(a), by

Ω1 = {k ∈ C : Im k > 0 and |k| > r},
Ω2 = {k ∈ C : Im k < 0 and |k| > r},
Ω3 = {k ∈ C : Im k > 0 and |k| < r},
Ω4 = {k ∈ C : Im k > 0 and |k| < r}.
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Further assume that M3 has an analytic extension in a neighborhood of Ω4 and M1 has
an analytic extension in a neighborhood of Ω3. We wish to change the RHP on (−r, r) by
a lensing process. Define a new function Φ2 by (Figure 3.2(c))

Φ2(k) =







Φ1(k)M
−1
1 (k), if k ∈ Ω3,

Φ1(k)M3(k), if k ∈ Ω4,
Φ1(k), otherwise.

Define new contours Γi, i = 1, 2, 3, 4, 5, all oriented in the direction of increasing real part,
by

Γ1 = Γ ∩ (−∞, r),

Γ2 = {k ∈ C : Im k > 0 and |k| = r},
Γ3 = (−r, r),
Γ4 = {k ∈ C : Im k < 0 and |k| − r},
Γ5 = Γ ∩ (r,∞).

We compute the jumps of Φ2 on these contours. As an example consider Γ2. Set

Φ+
2 (k) = Φ−

2 (k)U(k), k ∈ Γ2,

for some matrix U(k) to be determined. In this case Φ+
2 (k) = Φ+

1 (k) = Φ−
1 (k) =

Φ−
2 (k)M1(k). We find that U(k) = M1(k). Repeating this process on all contours shows

that Φ2 satisfies the following RHP (Figure 3.2(d))

Φ+
2 (k) =























Φ−
2 (k)G(k), if k ∈ Γ1,

Φ−
2 (k)M1(k), if k ∈ Γ2,

Φ−
2 (k)M2(k), if k ∈ Γ3,

Φ−
2 (k)M3(k), if k ∈ Γ4,

Φ−
2 (k)G(k), if k ∈ Γ5,

Φ2(∞) = I.

It is clear that this generalizes to contours off the line and is only limited by the analyticity
properties of the factorization. Furthermore, ifM1,M3 → I as k → ∞ in the proper regions
the lensing can be employed in infinite regions. Note that one of the matrices Mi could be
the identity in which case that contour is dropped from the RHP.

3.10.4 Conjugation

Conjugation is a simple concept but it allows additional deformations of a RHP. Consider
a RHP [G; Γ] with solution Φ. Let Ψ±,Ψ

−1
± ∈ L∞(Γ) be a solution of another problem

[H; Γ]. Then

Φ+Ψ
−1
+ = Φ−Ψ

−1
− Ψ−GH

−1Ψ−1
− .

Concisely, ΦΨ−1 is a solution of [Ψ−GH−1Ψ−1
− ; Γ]. If H = G then the jump becomes the

identity. This method is especially useful in conjunction with lensing.
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O r-r

W1

W2

W3

W4

(a)

GG
O

(b)

F2 = F1M1
-1

F2 = F1M3

F2 = F1

F2 = F1

G
O r-r

(c)

G1

G2

G

M1

M3

M2 G

G4

G5G3

O r-r

(d)

Figure 3.10.2: The lensing process. (a) Regions in the complex k-plane, (b) Contours and
jump matrices for the RHP for Φ1, (c) Definition of Φ2, (d) Contours and jump matrices
for the RHP for Φ2.

Example 3.10.5. Assume M2 (Figure 3.10.2) is diagonal. The problem [M2; Γ3] (see
Figure 3.10.2 for Γ3) can be solved with the techniques in Section 3.4.1. Let Ψ be this
solution. By Lemma 3.1.13 we know that Ψ will have singularities at ±r. The function
Σ = Φ2Ψ

−1 satisfies

Σ+ = Σ−Ψ−GΨ
−1
+ , on Γ1,Γ5,

Σ+ = Σ−Ψ−M1Ψ
−1
+ , on Γ2,

Σ+ = Σ−Ψ−M3Ψ
−1
+ , on Γ4,

Σ+ = Σ−, on Γ3.

This process has removed the jump on Γ3 from the RHP at the expense of singularities at
±r. This will be used in the numerical solution of many RHPs. If the entries of M2 are
real-valued ± it can be shown using Lemma 3.1.13 that the solution of [M1; Γ3] is bounded
in the whole plane.

3.10.5 Contour scaling and decoupling

For simplicity, assume the RHP [Gξ,Γξ] depends on a single parameter ξ ≥ 0. Further,
assume Γξ = α(ξ)Λ + β(ξ) where Λ is a fixed contour. It follows that the matrix-valued
function

Hξ(k) = Gξ(α(ξ)k + β(ξ))

is defined on Λ.

We introduce a parameter into the problem to demonstrate a situation in which the
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RHPs on each disjoint contour decouple from each other in the limit.

Example 3.10.6. Assume Γξ = Γξ
1 ∪ Γξ

2 and

Γξ
1 = α1(ξ)Λ1 + β1,

Γξ
2 = α2(ξ)Λ2 + β2, |β1 − β2| > 0.

Assume that both Λ1 and Λ2 are bounded. We consider the L2 norm of the Cauchy operator
applied to a function defined on Γξ

1 and evaluated on Γξ
2: C

Γξ
1
u(z)|

Γξ
2
. Explicitly,

C
Γξ
1
u(z) =

∫

Γξ
1

u(s)

s− z
d̄x.

This is a Hilbert–Schmidt operator, and

‖C
Γξ
1
‖2L(L2(Γξ

1),L
2(Γξ

2))
≤
∫

Γξ
1

∫

Γξ
2

|dxdk|
|x− k|2 . (3.10.4)

A simple change of variables shows that

‖C
Γξ
1
‖2L(L2(Γξ

1),L
2(Γξ

2))
≤ |α1(ξ)α2(ξ)|

∫

Λ1

∫

Λ2

|dsdy|
|α1(ξ)s − α2(ξ)y + β1 − β2|2

. (3.10.5)

Since the denominator in the integral in (3.10.5) is bounded away from zero and both Λi

are bounded, the right-hand side tends to zero if either α1 or α2 tend to zero.
This argument, with more contours, is used in Chapter 5 to justify Algorithm 5.1.11

in this limit by noting that this type of Cauchy operator (evaluation off the contour of
integration) constitutes the operator T in Section 5.1. We have the representation

C[Gξ; Γξ] =

[

C[Gξ
1; Γ

ξ
1] 0

0 C[Gξ
2; Γ

ξ
2]

]

+ T ξ,

where ‖T ξ‖L(L2(Γ)) → 0 as ξ → ∞.
Similarly, this analysis follows in some cases when βi depends on ξ. For example, when

inf
t∈S

|β1(ξ)− β2(ξ)| = δ > 0. (3.10.6)

One can extend this to the case where (3.10.6) is not bounded away from zero but approaches
zero slower than a1(ξ)a2(ξ).



92 CHAPTER 3. RIEMANN–HILBERT PROBLEMS



Chapter 4

Inverse Scattering and Nonlinear

Steepest Descent

We present a unified discussion of the solution of IVP for the defocusing NLS equation

iqt + qxx − 2λ|q|2q = 0, λ = 1

q(x, 0) = q0(x) ∈ Sδ(R).
(4.0.1)

The full development presented in this chapter requires q0 ∈ Sδ(R) but the assumptions on
q0 for each individual result is made explicit. The use of spaces of non-smooth functions
illustrates the parallels between the inverse scattering transform and the Fourier transform.
First, we present the solution of this problem using the inverse scattering transform with
the formalism of Fokas [49]. As presented in (2.5.7) and (2.5.8), the solution of the NLS
equation can be recovered from the solution of a matrix RHP. The development up to
this point makes no use of λ = 1 (λ = −1 for the focusing NLS equation). We apply the
Deift and Zhou method of nonlinear steepest descent to this RHP to extract the long-time
asymptotics with λ = 1. This whole process invokes much of the theory of Chapter 3.

4.1 The inverse scattering transform

Our starting point is the expressions for µ1 and µ2 in (2.5.6):

µ1(x, t, k) = I +

∫ (x,t)

(−∞,t)
e−ik(x−ξ)σ̂3 [Q(ξ, τ)µ(ξ, τ, k)]dξ,

µ2(x, t, k) = I +

∫ (x,t)

(∞,t)
e−ik(x−ξ)σ̂3 [Q(ξ, τ)µ(ξ, τ, k)]dξ,

(4.1.1)

and the relationship

µ1(x, t, k) = µ2(x, t, k)e
−i(kx+2k2t)σ̂3S(k). (4.1.2)

93
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Define the operator T±,k by

T±,ku(x) =

∫ (x,0)

(±∞,0)
e−i(k(x−ξ))σ̂3 [Q(ξ, 0)u(ξ)]dξ.

Since each component of Q(x, 0) is an L1(R) function, it is easily seen that T k
±,k is bounded

on L∞(R).

Lemma 4.1.1. For q0 ∈ L1(R) and k ∈ R, ‖T n
±,k‖L(L∞(R)) ≤ C‖q0‖nL1(R)/n!.

Proof. Since k ∈ R we consider

eikxσ̂3 [T±,ku(x)] =

∫ (x,0)

(±∞,0)
eikξσ̂3Q(ξ, 0)eikξσ̂3u(ξ)dξ.

So as to consider a kernel that is applied by left multiplication only, define û(x) = eikxσ̂3u(x)
and Q̂(ξ, 0) = eikxσ̂3Q(x, 0). It is clear that the claim follows if we show that

T̂±,kû(x) =

∫ (x,0)

(±∞,0)
Q̂(ξ, 0)û(ξ)dξ. (4.1.3)

It is also clear that, after switching the order of integration using Fubini’s theorem, the
operator T̂ n

±,k has the iterated kernel defined by

Q̂0(x, ξ) = Q̂(ξ, 0),

Q̂n(x, ξ) = Q̂(ξ, 0)

∫ x

ξ
Q̂n−1(x, s)ds.

Therefore

‖T̂ n
±,k‖L(L∞(R)) ≤

∫ ∞

−∞
|Q̂(ξ, 0)|

(
∫ ∞

ξ
|Q̂(ξ, 0)|

)n−1

dξ,

where |Q̂(ξ, 0)| denotes any consistent sub-multiplicative matrix norm. This right-hand
side simplifies:

‖T̂ n
±,k‖L(L∞(R)) ≤

(∫ ∞

−∞
|Q̂(ξ, 0)|dξ

)n

/n!.

This proves the result.

This lemma combined with Theorem 1.5.8 shows the existence of µ1(x, 0, k) and µ2(x, 0, k)
for x and k on the real line. In what follows we wish to have the same existence statement
in a neighborhood of the real line. There is necessarily some exponential growth/decay
involved.

Lemma 4.1.2. Assume q0 ∈ Sδ(R). Then µ1(x, 0, k) and µ2(x, 0, k) are uniquely defined
by (4.1.1) for | Im k| < δ/2.
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Proof. We consider µ1. The argument for µ2 follows in precisely the same way. Define
µ̂1(x, k) = eikxσ3µ1(x, 0, k). From (4.1.1) we have

(I − T̂−,k)µ̂1 = I.

This equation is uniquely solvable via iteration for µ̂1 ∈ L∞(R) since Q̂(ξ, 0) ∈ L1(R).
Therefore µ1 is uniquely defined by (4.1.1) despite the fact that it contains exponentially
growing components for k 6∈ R.

Next, we discuss the analyticity properties of µ1 and µ2 with respect to k. For now, we
consider q0 ∈ Sδ(R) and generalize after. The analyticity of µ1 follows from the analyticity
of µ̂1. Choose k and h so that | Im k| < δ/2 and | Im(k + h)| < δ/2 and consider

µ̂1(x, k + h)− µ̂1(x, k)

h

=
1

h

∫ x

−∞

(

ei(k+h)(x−ξ)σ̂3Q(ξ, 0)µ̂1(ξ, k + h)− eik(x−ξ)σ̂3Q(ξ, 0)µ̂1(ξ, k)
)

dξ

=

∫ x

−∞
eik(x−ξ)σ̂3Q(ξ, 0)

(

µ̂1(ξ, k + h)− µ̂1(ξ, k)

h

)

dξ

+

∫ x

−∞

(

ei(k+h)(x−ξ)σ̂3Q(ξ, 0) − eik(x−ξ)σ̂3Q(ξ, 0)

h

)

µ̂1(ξ, k + h)dξ.

The complex differentiability of µ̂1 follows once we show that the last term tends to a
definite limit in the L∞(R) norm. A straightforward calculation shows that

∫ ∞

−∞

∣

∣

∣

(

ei(k+h)ξσ3 − eikξσ3

)

Q(ξ, 0)
∣

∣

∣ dξ ≤
∫ ∞

−∞
2eγξ |Q(ξ, 0)|dξ,

γ = max{| Im(k + h)|, | Im k|}.

Therefore the Dominated Convergence Theorem demonstrates that this integral tends to
zero as h → 0. This proves the continuity of T̂±,k, (I − T̂±,k)

−1 and hence µ̂1(x, k) with
respect to k for | Im k| < δ/2. A similar calculation, along with the continuity of µ̂1(x, k)
shows that

lim
h→0

∫ x

−∞

(

ei(k+h)ξσ̂3Q(ξ, 0) − eikξσ̂3Q(ξ, 0)

h

)

µ̂1(ξ, k + h)dξ

=

∫ x

−∞
iξ[eikξσ3 , Q(ξ, 0)]µ̂1(ξ, k)dξ,

in L∞(R), see [53, Theorem 2.17]. Furthermore, similar methods and integration by parts
indicates that µ1(x, 0, k) − I = O(1/k) and µ2(x, 0, k) − I = O(1/k) as k → ∞. For fixed
x, the same is true of all k derivatives of µ1 and µ2. We obtain the following result:

Lemma 4.1.3. If q0 ∈ Sδ(R) then µ1(x, 0, k) and µ2(x, 0, k) are analytic functions of k in
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the open strip | Im k| < δ/2. For fixed x and | Im k| ≤ C < δ/2

∂nk (µ1(x, 0, k) − I) = O(1/k) as k → ∞,

∂nk (µ2(x, 0, k) − I) = O(1/k) as k → ∞.

We turn to results for q0 in more general spaces. It follows that each column of µ1 and
µ2 is determined independently of the other. Furthermore, the only exponential present in
the first column of the equation for µ1 is e2ik(x−ξ) implying that the first column µ+1 of µ1
is analytic in the open upper-half plane. Indeed, µ+1 satisfies

µ+1 (x, 0, k) =

[

1
0

]

+

∫ x

−∞
Q(ξ, 0)

[

e2ik(x−ξ) 0
0 1

]

µ+1 (ξ, 0, k)dξ. (4.1.4)

The methods of Lemma 4.1.3 applied to this equation prove the desired analyticity prop-
erties. Note that this follows assuming only that q0 ∈ L1(R). Similarly, the second column
µ−1 is analytic in the open lower-half plane. For µ2 the reverse is true. The first (second)
column µ−2 (µ+2 ) of µ2 is analytic in the open lower- (upper-) half plane. We consider
(4.1.4) in more detail.

Lemma 4.1.4. If q0 ∈ L1 ∩ L2(R), v+1 = µ+1 − [1, 0]T is an element of the Hardy space
E(R+).

Proof. Consider the equation satisfied by v+1 :

v+1 (x, 0, k) −
∫ x

−∞
Q(ξ, 0)

[

e2ik(x−ξ) 0
0 1

]

v+1 (ξ, 0, k)dξ =

∫ x

−∞
Q(ξ, 0)

[

e2ik(x−ξ)

0

]

dξ.

We have already demonstrated that for k ∈ R this equation can be solved by iteration.
The iterated kernel is given by

K0(x, ξ) = Q(ξ, 0)

[

e2ik(x−ξ) 0
0 1

]

,

Kn(x, ξ) = K0(x, ξ)

∫ x

s
Kn−1(x, s)ds.

Then

v+1 (x, 0, k) = f(x, k) +
∞
∑

n=0

∫ x

−∞
Kn(x, ξ)f(ξ, k)dξ, (4.1.5)

f(x, k) =

∫ x

−∞
Q(ξ, 0)

[

e2ik(x−ξ)

0

]

dξ.
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We estimate the L2(R) norm

(

∫ ∞

−∞

∣

∣

∣

∣

∫ x

−∞
Kn(x, ξ)f(ξ, k)dξ

∣

∣

∣

∣

2

dk

)1/2

≤
∫ x

−∞

(∫ ∞

−∞
|Kn(x, ξ)f(ξ, k)|2dk

)1/2

≤
∫ x

−∞
sup
k∈R

|Kn(x, ξ)|dξ × sup
ξ∈R

‖f(ξ, ·)‖L2(R),

where the first inequality follows from Minkowski’s inequality for integrals [53, Theorem
6.19]. We estimate the two factors separately. First,

∫ x

−∞
sup
k∈R

|Kn(x, ξ)|dξ ≤
∫ ∞

−∞
|Q(ξ, 0)|

(∫ ∞

ξ
|Q(ξ, 0)|dξ

)n−1

≤ C‖q0‖nL1(R)/n!. (4.1.6)

A simple change of variables relates f to the Fourier transform

f(ξ, k) =
1

2

∫ 0

−∞
eiksQ(ξ + s/2)

[

e−iks

0

]

ds,

and therefore ‖f(ξ, ·)‖L2(R) ≤ C‖Q‖L2(R. Since
∑

nC
n/n! converges for any C > 0, we

have shown the L2 norm of v+1 (x, 0, ·) is bounded on the real axis. For Im(k) > 0 we note
that all bounds hold, showing that v+1 ∈ E(R+).

Similar arguments apply to µ−1 and µ±2 to show that once [1, 0]T or [0, 1]T is subtracted
they are elements of an appropriate Hardy space. We also look at decay properties of the
columns of µ1 − I and µ2 − I.

Lemma 4.1.5. For q0 ∈ L1(R), |f(x, k)| = o(1) as |k| → ∞ for Im(k) ≥ 0.

Proof. Fix ǫ > 0. We approximate λq̄ with a simple function
∑

j αjχAj so that ‖q̄ −
∑

j αjχAj‖L1(R) < ǫ/2. Let |k| > 4
∑

j |αj |/ǫ. Then for |k| > 1

|f(x, k)| ≤

∣

∣

∣

∣

∣

∣

∫ x

−∞
eik(x−ξ)



(λq̄(ξ)−
∑

j

αjχAj(ξ)



 dξ

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫ x

−∞
eik(x−ξ)

∑

j

αjχAj(ξ)dξ

∣

∣

∣

∣

∣

∣

≤ ǫ.

Lemma 4.1.6. For q0 ∈ L1∩L2(R), µ+1 (x, 0, k) = [1, 0]T +o(1) as |k| → ∞ for Im(k) ≥ 0.

Proof. Taking a supremum over k ∈ R in (4.1.5), while noting that f(x, k) has the desired
decay and the estimate (4.1.6) can still be applied, produces the result.

Remark 4.1.7. Similar statements to Lemma 4.1.6 follow for µ−1 in C− and µ±2 in C±.

We move to a discussion of the matrix S(k) that is defined by (4.1.2). Abel’s identity
shows that µ1(x, 0, k) and µ2(x, 0, k) have determinant independent of x. Indeed, both
satisfy

(

eikxσ̂3µ
)

x
= eikxσ̂3Q(eikxσ̂3µ).
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Since eikxσ̂3Q is traceless, detµ1 and detµ2 are independent of x. Then for each k we
let x → −∞ for µ1 and x → ∞ for µ2 to see that detµ1(x, 0, k) = detµ2(x, 0, k) = 1.
Therefore detS(k) = 1. For j = 1, 2, the first column v1 of µj satisfies

v1x + ik

[

0 0
0 −2

]

v1 = Qv1, v1((−1)j∞) =

[

1
0

]

,

while the second column v2 satisfies

v2x + ik

[

2 0
0 0

]

v2 = Qv2, v2((−1)j∞) =

[

0
1

]

.

Let v2(x, 0, k) = [v21(x, 0, k), v22(x, 0, k)]
T and define

v∗2(x, 0, k) =

[

v22(x, 0, k̄)

λv21(x, 0, k̄)]

]

.

It follows that v1(x, 0, k) = v∗2(x, 0, k). This means that swapping rows and columns,
followed by Schwarz conjugation and multiplication on the off-diagonal by λ leaves any
solution µ invariant. Let

S(k) =

[

a(k) B(k)
b(k) A(k)

]

.

A tedious, but simple calculation shows that A(k) = a(k̄) and B(k) = λb(k̄) where λ2 = 1
is used explicitly. Furthermore detS(k) = 1 implies

|a(k)|2 − λ|b(k)|2 = 1 for k ∈ R. (4.1.7)

Using detµ1 = detµ2 = 1 and the fact that each entry of µ1 and µ2 is in L∞ ∩ L2(R) we
find that a− 1, b ∈ L∞ ∩ L2(R). If q0 ∈ Sδ(R) it follows that S(k) is analytic in the strip
| Im k| < δ/2. If we only require q0 ∈ L1 ∩ L2(R), b cannot, in general, be analytically
extended off R but a− 1 ∈ E(R+).

Following Lemma 4.1.6, for sufficiently large k ∈ C+, a(k) must be bounded away from
zero. We assume here that a(k) does not vanish in the finite plane, implying that 1/a(k)
is bounded in C+. This assumption is known to be true when λ = 1 [8]. Define

Φ =

{

Φ+, in C+,
Φ−, in C−,

Φ+ =

[

µ+1
a(k)

, µ+2

]

, Φ− =

[

µ−2 ,
µ−1
a(k̄)

]

.
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It follows that Φ(x, t, k) solves the following RHP when t = 0:

Φ+(x, t, s) = Φ−(x, t, s)G(x, t, s), s ∈ R, Φ(x, 0,∞) = I, (4.1.8)

G(x, t, k) =

[

1− λρ(k̄)ρ(k) −λρ(k̄)e−2ikx−4ik2t

ρ(k)e2ikx+4ik2t 1

]

and

Q(x, 0) = −i lim
|k|→∞

[σ3, kΦ(x, 0, k)].

This is seen by noting that Φ solves (2.5.2) and Φx = O(1/k) if q0 ∈ Sδ(R). Indeed, the
arguments in Remark 4.1.7 show the decay of Φx.

We derive another representation for a(k). Note that

M(x, k) =
[

µ+1 (x, 0, k) µ+2 (x, 0, k)
]

is a solution of (2.5.2). Furthermore, it follows that a(k) = detM(x, k). Since µ+2 → [0, 1]T

as x → ∞ we find that a(k) = limx→∞ µ+11(x, 0, k) where µ+11 denotes the first component
of µ+1 . We look at the large x behavior of f(x, k). We find

‖f(x, k)‖ ≤
∣

∣

∣

∣

∫ ∞

−∞
e−2ikξq0(ξ)dξ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

x
e−2ikξq0(ξ)dξ

∣

∣

∣

∣

≤ |q̂0(2k)| + I(x),

where I(x) → 0 as x → ∞. For the remainder of this section we assume q0 ∈ Sδ(R), so
that the Fourier transform satisfies q̂0(k) ∈ S(R). This implies that a(k) = 1 + O(1/kn)
as k → ∞ for every n > 0. Combining this with (4.1.7) we see b(k) = O(1/kn) for every
n > 0. Also, following Lemma 4.1.3 we see that a− 1, b ∈ Hk(R) for every k > 0 whenever
q0 ∈ Sδ(R). These facts suffice for the theory we present here, yet more regularity can be
shown: for q0 ∈ S(R) it is known that b/a ∈ S(R) [8].

Remark 4.1.8. The RHP for Φ has a unique solution. The jump matrix G has unit
determinant so the Fredholm index of the associated singular integral operator C[J ;R] is
zero (Theorem 3.8.20). Furthermore, the symmetry of G(x, t, k) is such that the vanishing
lemma applies (Theorem 3.8.29).

We prove a result that concerns the differentiability of Φ with respect to x or t.

Lemma 4.1.9. Consider a RHP of the form

Ψ+(x, s) = Ψ−(x, s)K(x, s), s ∈ Γ, Φ(x,∞) = I,

K(x, s) = Hd(s) + eiγ(s)xσ̂3Ho(s), x ∈ R, γ : Γ → R,

where Hd contains the diagonal elements of K and eγ(s)xσ̂3Ho, the off-diagonal elements.
With Γ being admissible, assume K(x, ·) − I ∈ L2 ∩ L∞(R) and C[K,Γ] is invertible on
L2(Γ) with bounded inverse. If γ(s)H0(s) ∈ L2 ∩ L∞(Γ) then ∂xΨ(x, k) exists for every x
and k ∈ C \ Γ.
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Proof. Let u(x) be the solution of u(x) − C−
Γ u

(x)(K(x, ·) − I) = K(x, ·) − I. Consider the
difference

u(x+h) − u(x)

h
− 1

h

(

C−
Γ u

(x)(K(x, ·)− I)− C−
Γ u

(x+h)(K(x+ h, ·)− I)
)

=
K(x, ·)−K(x+ h, ·)

h
,

Define v(x,h) = (u(x+h) − u(x))/h. We find

C[K(x, ·),Γ]v(x,h) = (I + C−
Γ u

(x+h))
K(x, ·)−K(x+ h, ·)

h
.

The right-hand side tends to (I+C−
Γ u

(x))∂xK(x, ·) in L2(Γ). Using the boundedness of the
inverse operator we find that v(x) = limh→0 v

(x,h) exists in L2(Γ). Therefore ∂xΨ(x, k) =
CΓv(x).

We state a result from [49] that allows us to complete the solution of the initial value
problem for the NLS equations.

Proposition 4.1.10 (The dressing method [49]). Assume Γ is an admissible contour. Let
M(x, t, k) satisfy the 2× 2 RHP

M+(x, t, s) =M(x, t, s)e−i(sx+2s2t)σ̂3S(s), s ∈ Γ, M(x, t,∞) = I,

where detS(k) = 1. Here the subscripts denote the (1, 1) component. Assume this RHP
has a unique solution that is differentiable in x and t for every k 6∈ Γ. Then M satisfies
(2.5.2) and (2.5.3) with

Q(x, t) =

[

0 q1(x, t)
q2(x, t) 0

]

.

defined by

Q(x, t) = i lim
k→∞

[σ3, kM(x, t, k)].

Furthermore, Q satisfies iQt −Qxxσ3 + 2Q3σ3 = 0.

Choosing jumps so that q2 = λq̄1 produces solutions of NLS equations. We combine
Proposition 4.1.10 with Lemma 4.1.9 to obtain the final result of this section.

Theorem 4.1.11. Assume q0 ∈ Sδ(R). Then S(k) is analytic for | Im k| < δ/2 and
ei(kx−2k2t)σ̂3S(k) − I ∈ H1(R) for all k > 0 and ρ ∈ S(R). Furthermore, the RHP in
(4.1.8) has a unique solution for every x and t. The solution of NLS with q(x, 0) = q0(x)
is given by

−i lim
|k|→∞

[σ3, kΦ(x, t, k)]12 = −2i lim
|k|→∞

kΦ12(x, t, k),

where the limit is taken in a direction that is not tangential to R.
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4.2 Nonlinear steepest descent

We discuss the Deift and Zhou method of nonlinear steepest descent as applied to (4.1.8).
Nonlinear steepest descent has been used to analyze the asymptotic behavior of many
RHPs [24, 34, 35, 37, 38]. The full theory for the NLS equation applies to initial conditions
lying in appropriate weighted Sobolev spaces [38]. For simplicity and ease of exposition we
restrict to q0 ∈ Sδ(R).

We begin by introducing factorizations of G(x, t, k). It turns out that supk∈R |ρ(k)| < 1
[8] and this implies that G admits both an UL and an LDU factorization for all x, t, k ∈ R:

G(x, t, k) =M(k)P (k) = L(k)D(k)U(k),

P (k) =

[

1 0

ρ(k)e2i(kx+2k2t) 1

]

, M(k) =

[

1 λρ(k̄)e−2i(kx+2k2t)

0 1

]

,

L(k) =

[

1 0
ρ(k)
τ(k)e

2i(kx+2k2t) 1

]

, D(k) =

[

τ(k) 0
0 1/τ(k)

]

,

U(k) =

[

1 λρ(k̄)
τ(k) e

−2i(kx+2k2t)

0 1

]

, τ(k) = 1− λρ(k)ρ(k̄).

From the results of the previous section, each of these factors is analytic and limits rapidly
to the identity in the strip | Im k| < δ/2. The deformations of the RHP that follow are
centered around the stationary phase point for e−2i(kx+2k2t): k0 = −x/(4t), see Section 2.2.
We break the asymptotic calculations up into two cases: t = 0 and t≫ 0.

4.2.1 Asymptotics for t = 0 as |x| → ∞.

These asymptotics are already known since we have specified the initial condition. It is
instructive to see how this behavior can be extracted from the RHP. For x < 0, we use only
the LDU factorization and the lensing process, see Section 3.10.3. Define for 0 < δ′ < δ/2

Φ1(k) =







Φ(k)U−1(k), if 0 < Im k < δ′,
Φ(k)L(k), if − δ′ < Im k < 0,
Φ(k), if | Im k| > δ′,

where we have suppressed the x and t dependence for convenience. The function Φ1 solves
the RHP

Φ+
1 (k) = Φ+

1 (k)G1(k), G1(k) =







U(k), if Im k = δ′,
L(k), if Im k = −δ′,
D(k), if Im k = 0.

The exponential in U(k), the only jump in the upper-half plane, is of the form exp(2xδ′ +
2ixs) for s ∈ R. It is clear that

‖U − I‖L1∩L∞(R+iδ′) < Ce2xδ
′

and ‖L− I‖L1∩L∞(R−iδ′) < Ce2xδ
′

.
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k0L

D

U P

M

γ

π/4

Figure 4.3.1: Jump contours after lensing for the RHP for Φ2. The distance between the
horizontal contours in the upper/lower-half planes is δ′.

Hence the same bounds hold for L2(R ± iδ). Lemma 3.9.4 implies that u, the solution of
C[G1; Γ1]u = G− I with Γ1 = R ∪ (R+ iδ′) ∪ (R− iδ) tends exponentially to the solution
of C[D;R]v = D − I in the L2 norm. The solution of this diagonal problem can be found
explicitly (see Section 3.4.1):

∆(k; k0) =

[

δ(k; k0) 0
0 δ−1(k; k0)

]

, δ(k; k0) = exp
(

C(−∞,k0)τ(k)
)

,

with k0 = ∞. It is important that the (1, 2) component of ∆(k; k0) is identically zero.
From the expression

u = C−
Γ1
u(G1 − I) +G1 − I,

we use that u has bounded L2 norm as x → −∞ and see that the (1, 2) component of u
satisfies

‖u12‖L1(Γ1) ≤ C‖u‖L2(Γ1)‖G1 − I‖L2(Γ1) + ‖G1 − I‖L1(Γ1) ≤ C ′e2xγ
′

,

for a new constant C ′. From Lemma 3.6.9, q(x, 0) does indeed exponentially decay as
x → −∞. Similar arguments show the same exponential behavior as x → +∞ when the
UL factorization is used.

4.3 Asymptotics as t → ∞
We concern ourselves with the asymptotics of the solution in the more physically relevant
region |k0| = | − x/(4t)| < M for some M > 0 as t → ∞. The derivation of these
asymptotics requires significantly more machinery. We follow [36]. We lens the RHP for Φ
on (−∞, k0) using the LDU factorization and lens it on (k0,∞) using the UL factorization.
Let Φ2 denote the new function we seek after lensing. The jump contours and jumpmatrices
for Φ2 are shown in Figure 4.3.1.

With the exception of the jump matrix on (−∞, k0), all jump matrices associated with
Φ2 tend to the identity matrix exponentially away from the stationary phase point k0. We
remove the jump on (−∞, k0). Define Φ3(k) = Φ2(k)∆

−1(k; k0). A simple exercise shows
that Φ3 satisfies the jumps in Figure 4.3.2.
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γ

k0

π/4

∆P∆
−1

∆M∆
−1

∆L∆
−1

∆U∆
−1

Figure 4.3.2: The jump matrices and jump contours for Φ3. This incorporates the removal
of the jump on (−∞, k0).

The exponent present in the jump matrices can be written in the form exp(± t(−4k20 +
4i(k−k0)2)). This indicates increased localization as t → ∞. Define h(k) = −4k20 +4i(k−
k0)

2. Near the stationary point we should be able to approximate the jump matrices by

[M ](k) =

[

1 λρ(k̄0)e
−th(k)

0 1

]

, [P ](k) =

[

1 0

ρ(k0)e
th(k) 1

]

,

[L](k) =

[

1 0
ρ(k0)
τ(k0)

eth(k) 1

]

, [D](k) =

[

τ(k0) 0
0 1/τ(k0)

]

,

[U ](k) =

[

1 λρ(k̄0)
τ(k0)

e−th(k)

0 1

]

, [∆](k; k0) = ∆s(k; k0)∆r(k0; k0),

(4.3.1)

with

∆s(k; k0) = diag((k0 − k)f(k0)/(2πi), (k0 − k)−f(k0)/(2πi)),

f(z) = log(τ(z/
√
8t+ k0)),

∆r(k; k0) is Hölder continuous at k = k0.

In the next section we solve a problem with the localized jumps explicitly in terms of
parabolic cylinder functions.

4.3.1 Construction of the global parametrix

We define global parametrix to be the solution of

Ψ(z)+ = Ψ−(z)















[P ]∆(z), if z ∈ eiπ/4(0,∞),

[U ]∆(z), if z ∈ ei3π/4(0,∞),

[L]∆(z), if z ∈ ei5π/4(0,∞),

[M ]∆(z), if z ∈ ei7π/4(0,∞),

Ψ(∞) = I,
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Figure 4.3.3: The jump contours for Φ with piecewise definition Vk0 and the regions Ωi,
i = 1, . . . , 4.

where [P ]∆(z) = [∆](z/
√
8t + k0; k0)[P ](z/

√
8t + k0)[∆]−1(z/

√
8t + k0; k0) and similarly

for L, U , and M . Note that the (1, 1) component of ∆s(k0; k0) can be written as

(∆s)11(z/
√
8t+ k0; k0) = (8t)f(k0)/(4πi)zf(k0)/(2πi).

The RHP can be simplified. It is clear that (8t)f(k0)/(4πi) and ∆r(k0; k0) have no dependence
on z (or on k), we define

Ψ1(k) = ∆−1
r (k0; k0)(8t)

−f(k0)/(4πi)σ3Ψ(k)(8t)f(k0)/(4πi)σ3∆r(k0; k0). (4.3.2)

It follows that Ψ1 solves

Ψ+
1 (z) = Ψ−

1 (z) z
f(k0)/(4πi)σ̂3 [e(−2ik20t−iz2/4)σ̂3Vk0 ], z ∈ eiπ/4 × (R ∪ iR), Ψ1(∞) = I,

where Vk0 and the orientation of eiπ/4 × (R ∪ iR) is shown in 4.3.3. This RHP is now
deformed to one on the real line using a reverse lensing process. The resulting problem is
not a classical L2 RHP but it is exactly solvable. For z 6∈ eiπ/4 × (R ∪ iR), define

Ψ2(z) = Ψ1(z)























































zf(k0)/(4πi)σ̂3

(

e(−2ik20t−iz2/4)σ̂3

[

1 0
ρ(k0) 1

])

, if z ∈ Ω1,

zf(k0)/(4πi)σ̂3

(

e(−2ik20t−iz2/4)σ̂3

[

1 λρ̄(k0)
τ(k0)

0 1

])

, if z ∈ Ω2,

z−f(k0)/(4πi)σ̂3

(

e(−2ik20t−iz2/4)σ̂3

[

1 0

− ρ(k0)
τ(k0)

1

])

, if z ∈ Ω3,

z−f(k0)/(4πi)σ̂3

(

e(−2ik20t−iz2/4)σ̂3

[

1 −λρ̄(k0)
0 1

])

, if z ∈ Ω4.
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It follows that Ψ2 satisfies for z ∈ R

Ψ+
2 (z) = Ψ−

2 (z)e
(−2ik20 t−iz2/4)σ̂3

(

z
f(k0)/(4πi)σ3
− G(0, 0, k0)z

−f(k0)/(4πi)σ3
+

)

, Ψ2(∞) = I.

We introduce a final transformation. Define Ψ3(z) = Ψ2(z)z
f(k0)/(4πi)σ3e(2ik

2
0t+iz2/4)σ̂3 ,

which satisfies

Ψ+
3 (z) = Ψ−

3 (z)G(0, 0, k0), z ∈ R, (4.3.3)

Ψ3(z) = (I +Ψ2,1/z + · · · )zf(k0)/(4πi)σ3e2ik
2
0t+iz2/4σ̂3 , as z → ∞. (4.3.4)

Since the jump matrix has no z dependence it can be seen that ∂zΨ3(z) ·Ψ−1
3 (z) = O(z)

has no jump on the real axis. Liouville’s theorem shows that ∂zΨ3(z) · Ψ−1(z) must be a
first-degree polynomial. A straightforward calculation shows

∂zΨ3Ψ
−1
3 =

(

− iz
2
σ3 −

i

2
Ψ31σ3 +O(1/z)

)

×
(

I − 1

2
Ψ2,1 +O(1/z2)

)

= − iz
2
σ3 +

i

2
[σ3,Ψ21].

We obtain a differential equation for Ψ3:

∂zΨ3(z) =

[

−iz/2 κ
κ̄ iz/2

]

Ψ3(z), κ = (Ψ2,1)12,

where the subscripts denote the (1, 2) component of Ψ31. Note that at this point κ is not
known and once we obtain it, we have determined the leading asymptotic behavior of the
(1, 2)-component of Ψ2. Examining the first column and differentiating, we see

∂z(Ψ3)11(z) = −z i
2
(Ψ3)11(z) + κ(Ψ3)21(z),

∂z(Ψ3)21(z) = κ̄(Ψ3)11(z) + z
i

2
(Ψ3)21(z),

∂2z (Ψ3)11(z) = −z i
2
∂z(Ψ3)11(z)−

i

2
(Ψ3)11(z) + κ∂z(Ψ3)21(z).

Therefore

∂2z (Ψ3)11(z) =

(

−z
2

4
− i

2
+ |κ|2

)

(Ψ3)11(z), (4.3.5)

∂2z (Ψ3)21(z) =

(

−z
2

4
+
i

2
+ |κ|2

)

(Ψ3)21(z). (4.3.6)

The parabolic cylinder function Dν(z) solves [84]:

d2Dν(z)

dz2
+

(

−1

4
z2 +

1

2
+ ν

)

= 0. (4.3.7)
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It follows that (Ψ3(z))11 = α11Di|κ|2(e
iπ/4z) and similarly (Ψ3(z))21 = α21D−1+i|κ|2(e

iπ/4z).
Applying this reasoning to the second column of Ψ3 we find the expression

Ψ3(z) =

[

α11Di|κ|2(e
iπ/4z) α12D−1−i|κ|2(e

−iπ/4z)

α21D−1+i|κ|2(e
iπ/4z) α22Di|κ|2(e

−iπ/4z)

]

X(z),

for some undetermined matrix S(z). We choose X(z) to be piecewise constant so that
condition (4.3.4) is satisfied. It is shown in [40] that necessarily

α11 = eπ|β|
2/4, α12 = eπ|β|

2/4−3iπ/4κ, α21 = ᾱ12, α22 = α11,

and

X(z) =































[

1 0
2π

κ Γ(−i|κ|2)e
−π|κ|2/2+iπ/4 1

]

, if Im z > 0,

[

1 2π
κ̄ Γ(i|κ|2)e

−π|κ|2/2−iπ/4

0 1

]

, if Im z < 0,

here Γ(z) is the Gamma function [84]. The condition X+(z) = X−(z)G(0, 0, k0) from
(4.3.3) dictates the choice of κ:

[

τ(k0) −λρ̄(k0)
ρ(k0) 1

]

=

[

e−2π|κ|2 −
√
2π

κ Γ(i|κ|2)e
−π|κ|2/2−iπ/4

√
2π

κ̄ Γ(−i|κ|2)e
−π|κ|2/2+iπ/4 1

]

,

where we used that Γ(z)Γ(−z) = −π/(z sin(πz)). Thus

|κ|2 = − 1

2π
log τ(k0),

arg κ =
π

4
+ arg Γ(i|κ|2)− arg ρ(k0).

This determines κ and hence limz→∞(Ψ2)12. Since Ψ1(z) = Ψ2(z) on the positive imaginary
axis, we take the large z limit along it. We find κ = limz→∞(Ψ1)12. From (4.3.2)

lim
z→∞

zΨ12(z) = (8t)−f(k0)/(2πi)e−2r(k0)+4itk20κ,

where

e−r(k0) = ∆r(k0; k0),

r(k0) =
1

2πi

∫ k0

−∞
log(s− k0)d(log(1− λ|ρ(s)|2)ds.
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Figure 4.3.4: The contours Γ (solid) and Γ̂ (dashed) and their overlap region C0.

This is derived by integrating C(−∞,k0) log τ(k) by parts. If we can show that after scaling
Ψ approximates Φ2 in an appropriate way, we have shown (2.6.1) without the error bound:

q(x, t) ∼ i
1√
2t
(8t)−f(k0)/(2πi)e−2r(k0)+4itk20κ.

The factor of 1/
√
t appears from the transformation back to the k-plane:

lim
k→∞

k(Ψ2(k))12 =
1√
8t

lim
z→∞

z(Ψ2(z/
√
8t+ k0))12. (4.3.8)

4.3.2 Error analysis

The error analysis is best performed in the z plane. That is, we must scale and shift the
jump contour and jump matrices for Φ2: define Φ̂2(z) = Φ2(z/

√
8t+k0). The jump contour

Γ for Ψ and Γ̂ for Φ̂2 are shown in Figure 4.3.4. Let V be the jump matrix for Ψ and V̂
be the jump matrix for Ψ̂2. We extend both jump matrices to Γ ∪ Γ̂ by defining them to
be the identity matrix outside of their initial domain of definition. We show that

‖u− û‖L1(Γ∪Γ̂) = O(t−1/2 log t).

We claim that it suffices to show that

‖V − V̂ ‖L1∩L∞(Γ∪Γ̂) = O(t−1/2 log t). (4.3.9)

Indeed, in this case Lemma 3.9.4 shows that

‖u− û‖L2(Γ∪Γ̂) = O(t−1/2 log t). (4.3.10)



108 CHAPTER 4. INVERSE SCATTERING AND NSD

From the integral equations satisfied by u and û:

u− û = CΓ∪Γ̂(u− û)(V − I)− CΓ∪Γ̂u(V − V̂ ) + V − V̂ .

The Cauchy-Schwarz inequality along with the triangle inequality proves the result. Indeed,
‖V − I‖L2(Γ∪Γ̂) and ‖u‖L2(Γ∪Γ̂) are uniformly bounded and (4.3.10) along (4.3.9) shows the
sufficiency.

It follows that the contour of intersection C0 = Γ ∩ Γ̂ is defined by

C0 = 4tδ′eiπ/4 ([−1, 1] ∪ [−i, i]) ,

with appropriate orientation. The contribution to the solution from Γ̂\C0 is exponentially
small with respect to t. This follows directly from the arguments given in Section 4.2.1.
Next, we consider the difference ‖V − V̂ ‖L1∩L∞(Γ\C0). Since supz∈C |zic| < ∞, c ∈ R, it
is clear that the contribution on each connected component of Γ \ C0 is bounded by a
constant multiplied by

I(t) =

∫ ∞

4
√
tδ′
e−x2/4dx.

The asymptotics of the error function shows I(t) decays beyond all orders as t→ ∞.

We consider ‖V − V̂ ‖L1∩L∞(C0). We must analyze the difference for k(z) = z/
√
8t+k0,

∆(k(z))P (k(z))∆−1(k(z); k0)− [P ](z).

We return to the k-plane. Since ρ can be recovered from a Cauchy integral of its boundary
values on the boundary of any strip about the real axis with width less than δ, we know
that it must be uniformly Lipschitz in the strip | Im k| < δ′ for δ′ < δ/2. Therefore, with
4tδ′ > 1 and for some C > 0,

|U(k0)− U(k)| < C|k − k0|,
|L(k0)− L(k)| < C|k − k0|,
|P (k0)− P (k)| < C|k − k0|,

|M(k0)−M(k)| < C|k − k0|.

When setting k(z) = z/
√
8t + k0 we obtain bounds on the L∞ norms of these differences

that are O(t−1/2). In addition, we consider

∆(k; k0)−∆r(k0; k0)∆s(k; k0) = (∆r(k; k0)−∆r(k0; k0))∆s(k; k0). (4.3.11)

This can be simplified further. Since 0 < τ(k) < 1, for y > 0

1 ≥ |δ(x + iy; k0)| ≥ exp

(

1

2π

∫ k0

−∞

log τ(s)

(s− x)2 + y2
yds

)

≥ (1− ‖ρ‖L∞(R))
1/2,

where we used that the Poisson kernel integrates to unity. Similar arguments show for
y < 0 that 1 ≤ |δ(x + iy, k0)| ≤ (1− ‖ρ‖L∞(R))

−1/2. Thus δ is uniformly bounded in both
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k and k0. To analyze the difference (4.3.11) it suffices to consider

I −∆−1
r (k; k0)∆r(k0; k0).

This is further reduced to the study of

I1(k; k0) =

∫ k0

−∞
log

(

s− k

s− k0

)

d log τ(s) = (k0 − k) log(k0 − k)
τ ′(k0)
τ(k0)

− (k0 − k)

∫ k0

−∞
log(s− k0)d

(

τ ′(s)
τ(s)

)

+

∫ k0

−∞
log(s− k) log

(

s− k

s− k0

)

d

(

τ ′(s)
τ(s)

)

.

For k in a neighborhood of k = k0, we have |I1(k; k0)| ≤ |k0 − k| log |k0 − k|. Therefore
‖V − V̂ ‖L∞(C0) = O(t−1/2 log t). To bound the L1 norm we notice that it involves integrals
of the form

∫ 4δ′
√
t

0
e−x2/4δ−2(ϕ(x); k0)

[

ρ(ϕ(x)) − ρ(ϕ(0))eI1(ϕ(x);k0)/(πi)
]

dx,

ϕ(x) = x
eiθ√
8t

+ k0 for θ = (2n− 1)π/4.

Since the L∞ norm of the term in the brackets is O(t−1/2 log t) we find ‖V − V̂ ‖L1(C0) =

O(t−1/2 log t). This shows that ‖u − û‖L1(Γ∪Γ̂) = O(t−1/2 log t). Upon considering (4.3.8)

we obtain the error bound in (2.6.1).
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Chapter 5

The Numerical Solution of

Riemann–Hilbert Problems

In this chapter we build up to the efficient and effective numerical solution of Riemann–
Hilbert problems. Two main topics must be discussed. The first and obvious topic is the
construction of a numerical method. A method is derived in [89] and we review the details
in Section 5.3. The method is based around solving

C[G; Γ]u = G− I. (5.0.1)

The second topic is the preconditioning of (5.0.1). To understand the need for precon-
ditioning, consider the jump matrix in (2.5.7). We consider the solution of

u− C−
Γ u · (G− I) = G− I, G(x, t, k) =

[

1 −λρ(k̄)e−2ikx−4ik2t

ρ(k)e2ikx+4ik2t 1− λρ(k̄)ρ(k)

]

.

(5.0.2)

Rearranging, we find u = (I + C−
Γ u)(G − I). The matrix G(x, t, k) has rapid oscillations

for x and t non-zero and unless there is some highly unlikely cancellation, u will also
contain rapid oscillations. The conditioning and convergence of a numerical method is
highly correlated to the magnitude of the derivatives of the solution. We expect to lose
accuracy for large x and t and in practice, due to finite-precision arithmetic, one can solve
(5.0.2) accurately only in a small neighborhood of the origin in the (x, t)-plane. This is
in direct analogy to the complication one encounters if (2.1.6) is integrated numerically
without contour deformation. The deformations of Section 2.3 turn the oscillations into
exponential decay and quadrature remains accurate.

As is demonstrated in Chapter 4, the method of nonlinear steepest descent allows the
transformation of an oscillatory Riemann–Hilbert problem to a Riemann–Hilbert problem
isolated near the associated stationary points of an oscillatory term in the jump matrix.
From a numerical point of view, the contours for the isolated Riemann–Hilbert problem
must be scaled in much the same way as for the linear problem in Section 2.3. The
analysis of this technique is more difficult and the focus of this chapter is to first derive
sufficient conditions for which we can prove that the approach of solving RHPs numerically

111
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on scaled contours is guaranteed to be accurate in asymptotic regimes, i.e., for arbitrarily
large values of parameters. We refer to this type of behavior as asymptotic stability or
uniform approximation.

The choice of these scaling factors for contours is not a trivial task. We use the following
rule of thumb:

Assumption 5.0.1. If the jump matrix G has a factor eξθ and βj corresponds to a qth
order stationary point ( i.e., θ(z) ∽ C1 + C2(z − βj)

q), then the scaling which achieves
asymptotic stability is αj(ξ) = |ξ|−1/q.

The heuristic reason for this choice is as follows. If z = |ξ|−1/qk + βj , then for k in a
bounded set we have

ξθ(z) = C1ξ + C2e
i arg ξkq + o(1) as |ξ| → ∞.

It turns out in many cases that C1ξ is purely imaginary. This has ideal boundedness
properties. We prove the validity of this assumption for the deformations below on a case-
by-case basis. Note that this is in direct correspondance with the technique described in
Chapter 2 for (2.1.1).

In addition, we show the deep connection between the success of the numerical method
and the success of the method of nonlinear steepest descent [33]. A notable conclusion is
that one can expect that whenever the method of nonlinear steepest descent produces an
asymptotic formula, the numerical method can be made asymptotically stable. Achieving
this requires varying amounts of preconditioning of the RHP. This can vary from not
deforming the RHP at all, all the way to using the full deformation needed by the analytical
method. An important question is: “when can we stop deforming to a have a reliable
numerical method?” Our main results are in Section 5.2 and these results provide an
answer to this question. In short, although we do not require the knowledge of local
parametrices to construct the numerical method, their existence ensures that the numerical
method remains accurate, and their explicit knowledge allows us to analyze the error of
the approximation directly.

It is often the case that RHPs as originally stated in the method of nonlinear steepest
descent are not tractable with known numerical methods. For example, in Chapter 6 the
jump matrix of the RHP at an intermediate stage of deformation has two singularities in
the finite complex plane. We demonstrate additional deformation techniques in Chapter 6
(and every chapter that follows) that allow one to move contours away from the singularity.
Other singular cases may arise. In some RHPs the jumpmatrix may not tend to the identity
at an endpoint of the contour. A RHP of this form does not satisfy the product condition
(see Definition 3.8.3) and does not initially fit into the framework we lay out. An approach
for rectifying this issue — based on removing the singularities using local parametrices —
is worked out in Chapter 9. Finally, in the theory of orthogonal polynomials there exists
RHPs that have no known closed-form parametrix for the asymptotic analysis, such as
the higher-order Tracy–Widom distributions [16]. Despite no explicit parametrix being
known, the method described here can effectively compute solutions, see Chapter 10.

This chapter is structured as follows. We use an abstract framework for the numerical
solution of RHPs which allows us to address asymptotic accuracy in a more concise way
(Section 5.1). Additionally, other numerical methods (besides the one used for the appli-
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Lemma 3.9.4 + Theorem 5.1.6 + Lemma 5.1.12

ւ ց
Theorem 3.9.1 Theorem 5.1.14 Lemma 5.2.5

↓ ↓ ↓
Corollary 3.9.2 −→ Theorem 5.2.4 Lemma 5.2.6

↓
Lemma 5.2.8

↓
Proposition 5.2.11 Theorem 5.2.9

Figure 5.0.1: The interdependency of results related to the development of the framework.
The fundamental results of this chapter are listed in bold.

cations) may fit within the framework. Then, we prove our main results which provide
sufficient conditions for uniform approximation (Section 5.2). The numerical approach of
[89] is placed within the general framework, along with necessary assumptions which allows
a realization of uniform approximation (Section 5.3).

The fundamental results of this chapter are necessarily encoded in the notation, defini-
tions and intermediate results that follow. Here we provide a road map to guide the reader
through this chapter, see Figure 5.0.1. Theorems 5.2.4 and 5.2.9 represent the fundamental
results of this chapter. Both present a detailed asymptotic analysis of Algorithm 5.1.11.
To enhance readability we present a summary of each theorem and proposition:

• Theorem 5.1.6: Sufficient conditions for the convergence of projection-based nu-
merical methods for operator equations are derived.

• Algorithm 5.1.11: The approach of scaling contours and solving a sequence of
RHPs is encoded.

• Theorem 5.1.14: General conditions for the convergence of Algorithm 5.1.11 are
proved.

• Theorem 5.2.4: One set of sufficient conditions for the uniform accuracy of Algo-
rithm 5.1.11 is provided.

• Theorem 5.2.9: A set of relaxed conditions, with weakened results, for the uniform
accuracy of numerical methods is provided. This result is derived using a numerical
parametrix, see Definition 5.2.7.

• Proposition 5.2.11: Checking the conditions of Theorem 5.2.4 or the requirements
of Definition 5.2.7 can be difficult. This proposition assists in that process.
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5.1 The numerical solution of Riemann–Hilbert problems

The goal of this section is to introduce the necessary tools to approximate the solution of
the operator equation

C[G; Γ]u = G− I. (5.1.1)

We start with two projections In and Pn, both of finite rank. Assume Pn is defined on
H1

z (Γ) and In is defined on H1(Γ). Define Xn = ranPn and Yn = ran In equipping both
spaces with the inherited L2(Γ) norm. We obtain a finite-dimensional approximation of
C[G; Γ] by defining

Cn[G; Γ]u = InC[G; Γ]u.

It follows that Cn[G; Γ] : Xn → Yn. This is useful under the assumption that we can
compute C[G; Γ] exactly for all u ∈ Xn. An approximate solution of (5.1.1) is obtained by

un = Cn[G; Γ]−1In(G− I),

whenever the operator is invertible. We use the pair (In,Pn) to refer to this numerical
method.

Remark 5.1.1. In the numerical framework of [89], solving the associated linear system
results in a solution that must satisfy the first-order zero-sum condition, justifying the
theoretical construction above, see Theorem 5.3.8.

To simplify notation, we define T [G; Γ]u = C−
Γ u(G− I) (so that C[G; Γ] = I −T [G; Γ])

and Tn[G; Γ] = InT [G; Γ]. We use a few definitions to describe the required properties of
the projections.

Definition 5.1.2. The approximation Cn[G; Γ] to C[G; Γ] is said to be of type (α, β, γ) if,
whenever C[G; Γ] is invertible for n > N , Cn[G; Γ] is invertible and

• ‖Cn[G; Γ]‖L(H1
z (Γ),Yn) ≤ C1n

α(1 + ‖G− I‖L∞(Γ)‖C−
Γ ‖L(L2(Γ))),

• ‖Cn[G; Γ]−1‖L(Yn,Xn) ≤ C2n
β‖C[G; Γ]−1‖L(L2(Γ)) and

• ‖Tn[G; Γ]‖L(Xn,Yn) ≤ C3n
γ‖G− I‖L∞(Γ)‖C−

Γ ‖L(L2(Γ)).

The constants C1, C2 and C3 are allowed to depend on Γ.

The first and second conditions in Definition 5.1.2 are necessary for the convergence
of the numerical method. This will be made more precise below. The first and third
conditions are needed to control operator norms as G varies. It is not surprising that the
first and the third conditions are intimately related. In Section 5.3 we demonstrate the
connection.

Remark 5.1.3. Some projections, mainly those used in Galerkin methods, can be defined
directly on L2(Γ). In this case we replace the first condition in Definition 5.1.2 with

‖Cn[G; Γ]‖L(L2(Γ),Yn) ≤ C1n
α(1 + ‖G − I‖L∞(Γ)‖C−

Γ ‖L(L2(Γ))).
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This condition and the second condition with α = γ are implied by requiring

‖In‖L(L2(Γ),Yn) ≤ C1n
α.

In this sense Galerkin methods are more natural for RHPs, although we use the collocation
method of [89] below because a Galerkin method has yet to be developed.

Definition 5.1.4. The pair (In,Pn) is said to produce an admissible numerical method if

• The method is of type (α, β, γ).

• For all m > 0 there exists s > 0 such that ‖Inu− u‖H1(Γ) and ‖Pnu− u‖H1(Γ) tend
to zero faster than n−m as n→ ∞ for all u ∈ Hs(Γ).

• In is bounded from C(Γ) to L2(Γ), uniformly in n.

Remark 5.1.5. We assume spectral convergence of the projections. This assumption can
be relaxed but one has to spend considerable effort to ensure α, β and γ are sufficiently
small. The absence of an infinite number of bounded derivatives does not mean the method
will not converge, but that a proof of convergence is more difficult.

Next, we prove the generalized convergence theorem.

Theorem 5.1.6. Assume that (In,Pn) produces an admissible numerical method. If [G; Γ]
is 1-regular and C[G; Γ] is invertible on L2(Γ), we have

‖u− un‖L2(Γ) ≤ (1 + cnα+β)‖Pnu− u‖H1(Γ) with (5.1.2)

c = C‖C[G; Γ]−1‖L(L2(Γ))(1 + ‖G− I‖L∞(Γ)‖C−
Γ ‖L(L2(Γ))). (5.1.3)

Proof. First, for notational simplicity, define Kn = Cn[G; Γ], K = C[G; Γ] and f = G − I.
Then un = K−1

n Inf = K−1
n InKu. Further, since u ∈ H1

z (Γ),

u− un =u− Pnu+ Pnu− un

=u− Pnu+ Pnu−K−1
n InKu

=u− Pnu+K−1
n KnPnu−K−1

n InKu
=u− Pnu+K−1

n (KnPnu− InKu)
=u− Pnu+K−1

n InK(Pnu− u).

We used KnPnu = InKPnu for u ∈ H1
z (Γ) in the last line. Taking an L2(Γ) norm, we have

‖u− un‖L2(Γ) ≤ ‖(I +K−1
n InK)(u− Pnu)‖L2(Γ) ≤ (1 + cnα+β)‖u− Pnu‖H1(Γ).

Remark 5.1.7. In the case mentioned above where In and Pn can be defined directly on
L2(Γ) we obtain a purely L2(Γ)-based bound

‖u− un‖L2(Γ) ≤ (1 + cnα+β)‖u− Pnu‖L2(Γ).
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Corollary 5.1.8. Under the assumptions of Theorem 5.1.6 and assuming that [G; Γ] is
k-regular for large k (large is determined by Definition 5.1.4) we have that Φn = I + CΓun
is an approximation of Φ, the solution of [G; Γ], in the following sense.

• Φ±
n − Φ± → 0 in L2(Γ) and

• ‖Φn − Φ‖W j,∞(S) → 0 for all j ≥ 0, whenever S is bounded away from Γ.

Proof. The first claim follows from the boundedness of the Cauchy operator on L2(Γ) and,
as before, the Cauchy–Schwarz inequality gives the second.

Below we always assume the numerical method considered is admissible. The ideas pre-
sented thus far are general. In specific cases the contour Γ consists of disjoint components.
We take a different approach to solving the RHP in this case.

Example 5.1.9. Consider the RHP [G; Γ] with Γ = Γ1 ∪Γ2 where Γ1 and Γ2 are disjoint.
To solve the full RHP, we first solve for Φ1 — the solution of [G|Γ1 ; Γ1] — assuming that
this sub-problem has a unique solution. The jump on Γ2 is modified through conjugation
by Φ1. Define

G̃2 = Φ1G|Γ2Φ
−1
1 .

Next, the solution Φ2 of [G̃2; Γ2] is found. A simple calculation shows that Φ = Φ2Φ1 solves
the original RHP [G; Γ]. This process parallels the method used in Theorem 3.8.14.

This idea allows us to treat each disjoint contour separately, solving in an iterative
way. When using this algorithm numerically, the dimension of the linear system solved at
each step is a fraction of that of the full discretized problem. This produces significant
computational savings. We now generalize these ideas.

Consider a RHP [G; Γ] where Γ = Γ1∪· · ·∪Γℓ. Here each Γi is disjoint and Γi = αiΛi+βi
for some contour Λi. We define Gi(z) = G(z)|Γi and Hi(k) = Gi(αik+βi). As a notational
remark, in this chapter we always associate Hi and G in this way.

Remark 5.1.10. The motivation for introducing the representation of the contours in this
fashion is made clear below. Mainly, this formulation is important when αi and/or βi
depend on a parameter but Λi does not.

We now describe the general iterative solver.

Algorithm 5.1.11. (Scaled and Shifted RH Solver)

1. Solve the RHP [H1; Λ1] to obtain Φ̃1. We denote the solution of the associated SIE

as U1 with domain Λ1. Define Φ1(z) = Φ̃1

(

z−β1

α1

)

.

2. For each j = 2, . . . , ℓ define Φi,j(z) = Φi(αjz + βj) and solve the RHP [H̃j ; Λj ] with

H̃j = Φj−1,j · · ·Φ1,jHjΦ
−1
1,j · · ·Φ−1

j−1,j,

to obtain Φ̃j. Again, the solution of the integral equation is denoted by Uj with

domain Λj . Define Φj(z) = Φ̃j

(

z−βj

αj

)

.



5.1. THE NUMERICAL SOLUTION OF RIEMANN–HILBERT PROBLEMS 117

3. Construct Φ = Φℓ · · ·Φ1, which satisfies the original problem.

When this algorithm is implemented numerically, the jump matrix corresponding to
H̃j is not exact. It depends on the approximations of each of the Φi for i < j and more
specifically, it depends on the order of approximation of the RHP on Λi for i < j. We
use the notation ni = (n1, . . . , ni) where each ni is the order of approximation on Λi.
Further, we use n > m whenever the vectors are of the same length and nj > mj for all
j. The statement n → ∞ means that each component of n tends to ∞. Let Φi,j,ni be the
approximation of Φi,j and define

H̃j,nj = Φj−1,j,nj−1 · · ·Φ1,j,n1HjΦ
−1
1,j,n1

· · ·Φ−1
j−1,j,nj−1

.

If the method converges then H̃j,nj → H̃j uniformly as nj → ∞.
A significant question remains: “how do we know solutions exist at each stage of this

algorithm?” In general, solutions may not exist. C[G; Γ] can be expressed in the form
K − T where K is the block-diagonal operator with blocks C[Gi; Γi] and T is a compact
operator. Here T represents the effect of one contour on another and if the operator norm
of T is sufficiently small, solutions exist at each iteration of Algorithm 5.1.11. This is
true if the arclength of each Γi is sufficiently small. A thorough discussion of this was
presented in Example 3.10.6. An implicit assumption in our numerical framework is that
such equations are uniquely solvable.

Additionally, it is worth nothing that if each of the scale factors αi = αi(ξ) are param-
eter dependent such that αi(ξ) → 0 as ξ → 0 then the norms of the inverse operators are
related. When each of the αi(ξ) are sufficiently small, there exists C > 1 such that

1

C
‖C[G; Γ]−1‖L(L2(Γ)) ≤ max

i
‖C[Gi; Γi]

−1‖L(L2(Γi)) ≤ C‖C[G; Γ]−1‖L(L2(Γ)). (5.1.4)

Due to the simplicity of the scalings we allow the norms of the operators C[Gi; Γi] and
C[Gi; Γi]

−1 are equal to that of their scaled counterparts C[Hi; Λi] and C[Hi; Λi]
−1.

The final question is one of convergence. For a single fixed contour we know that if
(In,Pn) produces an admissible numerical method and the RHP is sufficiently regular,
the numerical method converges. This means that the solution of this RHP converges
uniformly, away from the contour it is defined on. This is the basis for proving that Algo-
rithm 5.1.11 converges. Theorem 3.9.4 aids us when considering the infinite-dimensional
operator for which the jump matrix is uniformly close, but we need an additional result
for the finite-dimensional case.

Lemma 5.1.12. Consider a family of RHPs {[Gξ ; Γ]}ξ≥0 on the fixed contour Γ which are
k-regular. Assume Gξ → G in L∞(Γ) ∩ L2(Γ) as ξ → ∞ and [G; Γ] is k-regular, then

• If Cn[G; Γ] is invertible, then there exists T (n) > 0 such that Cn[Gξ; Γ] is also invert-
ible for ξ > T (n).

• If Φn,ξ is the approximate solution of [Gξ ; Γ] and Φn is the approximate solution of
[G; Γ], then Φn,ξ − Φn → 0 in L2(Γ) as ξ → ∞ for fixed n.

• ‖Φn,ξ −Φn‖W j,∞(S) → 0, as ξ → ∞, for all j ≥ 1, whenever S is bounded away from
Γ for fixed n.
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Proof. We consider the two equations

Cn[Gξ ; Γ]un,ξ = In(Gξ − I),

Cn[G; Γ]un = In(G− I).

Since the method is of type (α, β, γ), we have (see Definition 5.1.2),

‖Cn[Gξ; Γ]− Cn[G; Γ]‖L(Xn,Yn) ≤ C3n
γ‖C−

Γ ‖L(L2(Γ))‖Gξ −G‖L∞(Γ) = E(ξ)nγ .

For fixed n, by increasing ξ, we can make E(ξ) small, so that

‖Cn[Gξ; Γ]− Cn[G; Γ]‖L(Xn,Yn) ≤
1

C2

1

‖C[G; Γ]−1‖L(L2(Γ))
n−β ≤ 1

‖Cn[G; Γ]−1‖L(Yn,Xn)
.

Specifically, we choose ξ small enough so that

E(ξ) ≤ 1

2

1

C2C3

1

‖C[G; Γ]−1‖L(L2(Γ))
n−γ−β.

Using Theorem 1.5.7 Cn[Gξ ; Γ] is invertible, and we bound

‖Cn[Gξ; Γ]
−1 − Cn[G; Γ]−1‖L(Yn,Xn) ≤ 2C2n

2β+γ‖C[G; Γ]−1‖2L(L2(Γ))E(ξ). (5.1.5)

Importantly, the quantity on the left tends to zero as ξ → ∞. We use a triangle inequality:

‖un − un,ξ‖L2(Γ) ≤ ‖(Cn[Gξ; Γ]
−1 − Cn[G; Γ]−1)In(G− I)‖L2(Γ)

+ ‖Cn[G; Γ]−1In(G−Gξ)‖L2(Γ).

Since we have assumed that Γ is bounded and that the norm of In : C(Γ) → L2(Γ) is
uniformly bounded in n, we obtain L2 convergence of un to un,ξ as ξ → ∞:

‖un − un,ξ‖L2(Γ) ≤ C3n
2β+γE(ξ)‖G − I‖L∞(Γ) + C4n

β‖G−Gξ‖L∞(Γ) ≤ C5n
2β+γE(ξ).

(5.1.6)

This proves the three required properties.

Remark 5.1.13. A good way to interpret this result is to see E(ξ) as the difference in norm
between the associated infinite-dimensional operator which is proportional to the uniform
difference in the jump matrices. Then (5.1.5) gives the resulting error between the finite-
dimensional operators. It is worthwhile to note that if α = β = γ = 0 then T can be chosen
independent of n.

Now we have the tools needed to address the convergence of the solver. We introduce
some notation to simplify matters. At stage j in the solver we solve a SIE on Λj . On this
domain we need to compare two RHPs:

[H̃j ; Λj ] and [H̃j,nj ; Λj ].

Let Uj be the exact solution of this SIE which is obtained from [H̃j; Λj ]. As an intermediate
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step we need to consider the numerical solution of [H̃j; Λj ]. We use Uj,nj to denote the
numerical approximation of Uj of order nj. Also, Uj,nj is used to denote the numerical

approximation of the solution of the SIE associated with [H̃j,nj ; Λj ].

Theorem 5.1.14. Assume that each problem in Algorithm 5.1.11 is solvable and k-regular
for sufficiently large k. Then the algorithm converges to the true solution of the RHP. More
precisely, there exists N i such that for ni >N i we have

‖Ui,ni − Ui‖L2(Λi) ≤ Ck

[

(maxni)
α+β + (maxni)

2α+γ
]i
max
j≤i

‖InUj − Uj‖H1(Λj),

where In is the appropriate projection for Λj .

Proof. We prove this by induction. Since U1,n1 = U1,n1 the claim follows from Theorem
5.1.6 for i = 1. Now assume the claim is true for all j < i. We use Lemma 5.1.12 to show
it is true for i. Using the triangle inequality we have

‖Ui,ni − Ui‖L2(Λi) ≤ ‖Ui,ni − Ui,ni‖L2(Λi) + ‖Ui − Ui,ni‖L2(Λi).

Using Theorem 5.1.6, we bound the second term:

‖Ui − Ui,ni‖L2(Λi) ≤ Cnα+β
i ‖InUi − Ui‖H1(Λi).

To bound the first term we use (5.1.6),

‖Ui,ni − Ui,ni‖L2(Λi) ≤ Cn2β+γ
i E(ni−1). (5.1.7)

E(ni−1) is proportional to the uniform difference of H̃i and its approximation obtained
through the numerical method, H̃i,ni−1 . By the induction hypothesis, if k is sufficiently
large, Lemma 5.1.12, tells us that this difference tends to zero as ni−1 → ∞, and the use
of (5.1.6) is justified. More precisely, the Cauchy–Schwarz Inequality for each Λj , j < i
and repeated triangle inequalities results in

‖H̃i − H̃i,ni−1‖L∞(Λi) ≤ C

i−1
∑

j=1

‖Uj − Uj,nj‖L2(Λj). (5.1.8)

Combining (5.1.7) and (5.1.8) we complete the proof.

Remark 5.1.15. The requirement that k is large can be made more precise using Definition
5.1.4 with m = max{l(2α+ γ), l(α+β)} where l is the number of disjoint contours Γi that
make up the full contour Γ. There is little restriction if (α, β, γ) = (0, 0, 0).

5.2 Uniform approximation

We describe briefly how to obtain an explicit asymptotic approximation. Second, we use
the ideas presented above to explain how numerics can be used to provide asymptotic
approximations. The idea we continue to exploit is that the set of invertible operators
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between Banach spaces is open. Before we proceed, we define two types of uniform ap-
proximation. Let {U ξ

n}ξ≥0 be a sequence, depending on the parameter ξ, in a Banach space

such that for each ξ, ‖U ξ
n − U ξ‖ → 0 as n→ ∞ for some U ξ.

Definition 5.2.1. We say the sequence {U ξ
n}ξ≥0 is weakly uniform if for every ǫ > 0 there

exists a function N(ξ) : R+ → N taking finitely many values such that

‖U ξ
N(ξ) − U ξ‖ < ǫ.

Definition 5.2.2. We say the sequence {U ξ
n}ξ≥0 is strongly uniform (or just uniform) if

for every ǫ > 0 there exists N ∈ N such that for n ≥ N

‖U ξ
n − U ξ‖ < ǫ.

The necessity for the definition of a weakly uniform sequence is mostly a technical
detail, as we do not see it arise in practice. To illustrate how it can arise we give an
example.

Example 5.2.3. Consider the sequence

{U ξ
n}n,ξ≥0 =

{

sin ξ + e−n2
+ e−(ξ−n)2

}

n,ξ≥0
.

For fixed ξ, U ξ
n → sin ξ. We want, for ǫ > 0, while keeping n bounded,

|U ξ
n − sin ξ| = |e−n2

+ e−(ξ−n)2 | < ǫ.

We choose n > ξ or if ξ is large enough we choose 0 < n < ξ. To maintain error that
is uniformly less then ǫ we cannot choose a fixed n; it must vary with respect to ξ. When
relating to RHPs the switch from n > ξ to 0 < n < ξ is related to transitioning into the
asymptotic regime.

5.2.1 Direct estimates

As before, we are assuming we have a RHP [Gξ ; Γξ] that depends on a parameter ξ and
Γξ is bounded. Here we use a priori bounds on the solution of the associated SIE which
are uniform in ξ to prove the uniform approximation. In general, when this is possible, it
is the simplest way to proceed.

Our main tool is Corollary 3.9.2. We can easily estimate the regularity of the solution
of each problem [Hi; Λi] provided we have some information about ‖C[Gξ

i ; Γ
ξ
i ]
−1‖L(L2(Γi)) or

equivalently ‖C[Hξ
i ; Λi]

−1‖L(L2(Λi)). We address how to estimate this later in this section.
First, we need a statement about how regularity is preserved throughout Algorithm 5.1.11.
Specifically, we use information from the scaled jumps Hi and the local inverses C[Hi; Λi]

−1

to estimate global regularity. The following theorem uses this to prove strong uniformity
of the numerical method.

Theorem 5.2.4. Assume

• {[Gξ ,Γξ]}ξ≥0 is a sequence of k-regular RHPs,
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• the norm of C[Hξ
i ,Λi]

−1 is uniformly bounded in ξ,

• ‖Hξ
i ‖W k,∞(Λi) ≤ C, and

• αi(ξ) → 0 as ξ → ∞.

Then if k and ξ are sufficiently large

• Algorithm 5.1.11 applied to {[Gξ ,Γξ]}ξ≥0 has solutions at each stage,

• ‖U ξ
j ‖Hk(Λi) ≤ Pk where Pk depends on ‖Hξ

i ‖Hk(Λi)∩W k,∞(Λi), ‖C[H
ξ
i ; Λi]

−1‖L(L2(Λi))

and ‖U ξ
j ‖L2(Λj) for j < i and

• the approximation U ξ
i,ni

of U ξ
i (the solution of the SIE) at each step in Algorithm

5.1.11 converges uniformly in ξ as ni → ∞. In other words, the convergence is
strongly uniform.

Proof. First, we note that since αi(ξ) → 0, (3.10.5) shows that jumpmatrix H̃ξ
i for the RHP

solved at stage i in Algorithm 5.1.11 tends uniformly to Hξ
i . This implies the solvability

of the RHPs at each stage in Algorithm 5.1.11, as well as the bound

‖C[H̃ξ
i ; Λi]

−1‖L(L2(Γ)) ≤ C‖C[Hξ
i ; Λi]

−1‖L(L2(Γ)),

for sufficiently large ξ. As before, C can be taken to be independent of ξ. We claim
that ‖U ξ

i ‖Hk(Λi) is uniformly bounded. We prove this by induction. When i = 1, U ξ
1 =

C[Hξ
i ,Λi]

−1(Hξ
i − I) and the claim follows from Corollary 3.9.2. Now assume the claim is

true for j < i. All derivatives of the jump matrix H̃ξ
i depend on the Cauchy integral of U ξ

j

evaluated away from Λj and Hξ
i . The former is bounded by the induction hypothesis and

the later is bounded by assumption. Again, using Corollary 3.9.2 we obtain the uniform
boundedness of ‖U ξ

i ‖Hk(Λi). Theorem 5.1.14 implies that convergence is uniform in ξ.

The most difficult part about verifying the hypotheses of this theorem is establishing
an estimate of ‖C[Hξ

i ; Λ
ξ
i ]
−1‖L(L2(Λi)) as a function of ξ. A very useful fact is that once the

solution Ψξ of the RHP [Gξ; Γξ] is known then the inverse of the operator is also known
(see Lemma 3.8.18):

C[Gξ ; Γξ]−1u = C+
Γξ [u[(Ψ

ξ)−1]+](Ψξ)+ − C−
Γξ [u[(Ψ

ξ)−1]+](Ψξ)−. (5.2.1)

When Ψξ is known approximately, i.e., when a parametrix is known, then estimates on the
boundedness of the inverse can be reduced to studying the L∞ norm of the parametrix.
Then (5.1.4) can be used to relate this to each C[Gξ

i ; Γ
ξ
i ]
−1 which gives an estimate on

the norm of C[Hξ
i ; Λi]

−1. We study this further in the chapters that follow (see Sec-
tions 7.6 and 8.3.2).

5.2.2 Failure of direct estimates

We study a toy RHP to motivate where the direct estimates can fail. Let φ(x) be a smooth
function with compact support in (−1, 1) satisfying max[−1,1] |φ(x)| = 1/2. Consider the



122 CHAPTER 5. THE NUMERICAL SOLUTION OF RHPS

following scalar RHP for a function µ:

µ+(x) = µ−(x)(1 + φ(x)(1 + ξ−1/2eiξx)), (5.2.2)

µ(∞) = 1, x ∈ [−1, 1], ξ > 0. (5.2.3)

This problem can be solved explicitly but we study it from the linear operator per-
spective instead. From the boundedness assumption on φ, a Neumann series argument
gives the invertibility of the singular integral operator and uniform boundedness of the L2

inverse in ξ. Using the estimates in Corollary 3.9.2 we obtain useless bounds, that all grow
with ξ. Intuitively, the solution to (5.2.2) is close, in L2 to the solution to

ν+(x) = ν−(x)(1 + φ(x)), (5.2.4)

ν(∞) = 1, x ∈ [−1, 1], ξ > 0, (5.2.5)

which trivially has uniform bounds on its Sobolev norms. In the next section we introduce
the idea of a numerical parametrix which resolves this complication.

5.2.3 Extension to indirect estimates

In this section we assume minimal hypotheses for dependence of the sequence {[Gξ ; Γξ]}ξ≥0

on ξ. Specifically we require only that the map ξ 7→ Hξ
i is continuous from R+ to L∞(Λi)

for each i. We do not want to hypothesize more as that would alter the connection to the
method of nonlinear steepest descent which only requires uniform convergence of the jump
matrix. In specific cases, stronger results can be obtained by requiring the map ξ 7→ Hξ

i

to be continuous from R+ to W k,∞(Λi).
The fundamental result we need to prove a uniform approximation theorem is the

continuity of Algorithm 5.1.11 with respect to uniform perturbations in the jump matrix.
With the jump matrix G we associated Hj, the scaled restriction of G to Γj. With G we
also associated Uj, the solution of the SIE obtained from [H̃j; Λj ]. In what follows we have
another jump matrix J and analogously we use Kj to denote the scaled restriction of J
and Pj to denote the solution of the SIE obtained from [K̃j ,Λj ].

Lemma 5.2.5. Assume {[Gξ ,Γξ]}ξ≥0 is a sequence of 1-regular RHPs such that ξ 7→ Hξ
i

is continuous from R+ to L∞(Λi) for each i. Then for sufficiently large but fixed ni, the

map ξ 7→ U ξ
i,ni

is continuous from R+ to L2(Λi) for each i.

Proof. We prove this by induction on i. For i = 1 the claim follows from Lemma 5.1.12.
Now assume the claim is true for j < i. We prove it holds for i. We show the map is
continuous at η for η ≥ 0. First, from Lemma 5.1.12

‖Uη
i,ni

− U ξ
i,ni

‖L2(Λ) ≤ Cn2α+γ
i E(ξ, η),

where E(ξ, η) is proportional to ‖H̃η
i,ni−1

− H̃ξ
i,ni−1

‖L∞(Λi). A similar argument as in
Theorem 5.1.14 gives

‖H̃η
i,ni−1

− H̃ξ
i,ni−1

‖L∞(Λi) ≤ C(η,ni)
i−1
∑

j=1

‖Uη
j,nj

− U ξ
j,nj

‖L2(Λj),
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for |ξ − η| sufficiently small. By assumption, the right-hand side tends to zero as ξ → η,
which proves the lemma.

It is worthwhile noting that the arguments in Lemma 5.2.5 show the same continuity for
the infinite-dimensional, non-discretized problem. Now we show weak uniform convergence
of the numerical scheme on compact sets. It is clear that the arguments can be generalized
to ξ being an element of a general metric space.

Lemma 5.2.6. Assume {[Gξ ,Γξ]}ξ≥0 is a sequence of k-regular RHPs such that all the
operators in Algorithm 5.1.11 are invertible for every ξ. Assume that k is sufficiently large
so that the approximations from Algorithm 5.1.11 converge for every ξ ≥ 0. Then there
exists a vector-valued function N (i, ξ) that takes finitely many values such that

‖U ξ

i,N (i,ξ)
− U ξ

i ‖L2(Λi) < ǫ.

Moreover if the numerical method is of type (0, 0, 0) then convergence is strongly uniform.

Proof. Let S ⊂ R+ be compact. It follows from Lemma 5.2.5 that the function E(ξ,n, i) =

‖U ξ
i,n − U ξ

i ‖L2(Γi) is a continuous function of ξ for fixed n. For ǫ > 0 find nξ such that
E(ξ,nξ, i) < ǫ/2. By continuity, define δξ(nξ) > 0 so that E(s,nξ, i) < ǫ for |s − ξ| < δξ.
The open sets {B(ξ, δξ)}ξ∈S cover S and we can select a finite subcover {B(ξj , δξj )}Nj=1.
We have E(s,nξj , i) < ǫ whenever s ∈ B(ξj, δξj ). To prove the claim for a method of type
(0, 0, 0), we use the fact that δξ can be taken independent of nξ and that E(s,n, i) < ǫ for
every n > nξ.

Definition 5.2.7. Given a sequence of k-regular RHPs {[Gξ ,Γξ]}ξ≥0 such that

• Γξ = Γξ
1 ∪ · · · ∪ Γξ

ℓ , and

• Γξ
i = αi(ξ)Λi + βi,

another sequence of k-regular RHPs {[Jξ ,Σξ]}ξ≥0 is said to be a numerical parametrix if

• Σξ = Σξ
1 ∪ · · · ∪ Σξ

ℓ,

• Σξ
i = γi(ξ)Λi + σi,

• For all i

Jξ(γi(ξ)k + σi)−Gξ(αi(ξ)k + βi) → 0, (5.2.6)

uniformly on Λi as ξ → ∞,

• the norms of the operators and inverse operators at each step in Algorithm 5.1.11
are uniformly bounded in ξ, implying uniform boundedness of Jξ in ξ, and

• the approximation P ξ
i,ni

of P ξ
i (the solution of the SIE) at each step in Algorithm

5.1.11 converges uniformly as minni → ∞.
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This definition hypothesizes desirable conditions on a nearby limit problem for the
sequence {[Gξ ,Γξ]}ξ≥0. Under the assumption of this nearby limit problem we are able to
obtain a uniform approximation for the solution of the original RHP.

Lemma 5.2.8. Assume there exists a numerical parametrix {Jξ,Σξ}ξ>0 for a sequence of
RHPs {[Gξ ,Γξ]}ξ≥0. Then for every ǫ > 0 there exists N i and T > 0 such that, at each
stage in Algorithm 5.1.11,

‖U ξ

i,N i
− U ξ

i ‖L2(Λi) < ǫ for ξ > T. (5.2.7)

Furthermore, if the numerical method is of type (0, 0, 0), then (5.2.7) is true with N i

replaced by any M i >N i.

Proof. At each stage in Algorithm 5.1.11 we have

‖U ξ
i,ni

− U ξ
i ‖L2(Λi) ≤ ‖U ξ

i,ni
− P ξ

i,ni
‖L2(Λi) + ‖P ξ

i,ni
− P ξ

i ‖L2(Λi) + ‖P ξ
i − U ξ

i ‖L2(Λ).

(5.2.8)

Since P ξ
i,ni

originates from a numerical parametrix we know that ‖P ξ
i,ni

− P ξ
i ‖L2(Λi) → 0

uniformly in ξ as ni is increased. Furthermore, ‖P ξ
i − U ξ

i ‖L2(Λ) depends only on ξ and
tends to zero as ξ → ∞. The main complication comes from the fact that a bound on
‖U ξ

i,ni
−P ξ

i,ni
‖L2(Λi) from (5.1.5) depends on both ni−1 and ξ if the method is not of type

(0, 0, 0). The same arguments as in Lemma 5.2.5 show this tends to zero. Therefore we
choose ni large enough so that the second term in (5.2.8) is less than ǫ/3. Next, we choose
ξ large enough so that the sum of the remaining terms is less than 2/3ǫ. If the method
is of type (0, 0, 0) this sum remains less than ǫ if ni is replaced with n for n > ni. This
proves the claims.

Now we prove the uniform approximation theorem.

Theorem 5.2.9. Assume {[Gξ,Γξ]}ξ≥0 is a sequence of k-regular RHPs for k sufficiently
large so that Algorithm 5.1.11 converges for each ξ. Assume there exists a numerical
parametrix as ξ → ∞. Then Algorithm 5.1.11 produces a weakly uniform approximation
to the solution of {[Gξ ,Γξ]}ξ≥0. Moreover, convergence is strongly uniform if the method
is of type (0, 0, 0).

Proof. Lemma 5.2.8 provides an M > 0 and N1(i) such that if ξ > M then

‖U ξ

i,N 1(i)
− U ξ

i ‖L2(Λi) < ǫ, for every i.

According to Theorem 5.2.6 there is N 2(ξ, i) such that

‖U ξ

i,N 2(ξ,i)
− U ξ

i ‖L2(Λi) < ǫ, for every i.

The function

N(ξ, i) =

{

N1(i), if ξ > M,
N2(ξ, i), if ξ ≤ M ,
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satisfies the required properties for weak uniformity. Strong uniformity follows in a similar
way from Lemma 5.2.8 and Theorem 5.2.6.

Remark 5.2.10. This proves weak uniform convergence of the numerical method for
the toy problem introduced in Section 5.2.2: we can take the RHP for ν as a numeri-
cal parametrix.

The seemingly odd restrictions for the general theorem are a consequence of poorer
operator convergence rates when n is large. A well-conditioned numerical method does
not suffer from this issue. It is worth noting that using direct estimates is equivalent to
requiring that the RHP itself satisfies the properties of a numerical parametrix.

In what follows, we want to show a given sequence of RHPs is a numerical parametrix.
The reasoning for the following result is two-fold. First, we hypothesize only conditions
which are easily checked in practice. Second, we want to connect the stability of numerical
approximation with the use of local, model problems in nonlinear steepest descent.

Proposition 5.2.11. Assume

• {[Jξ ,Σξ]}ξ≥0 is a sequence of k-regular RHPs,

• the norm of C[Kξ
i ,Λi]

−1 is uniformly bounded in ξ,

• ‖Kξ
i ‖W k,∞(Λi) ≤ C, and

• γi(ξ) → 0 as ξ → ∞.

Then, if k and ξ are sufficiently large,

• Algorithm 5.1.11 applied to {[Jξ,Σξ]}ξ≥0 has solutions at each stage and

• {[Jξ ,Σξ]}ξ≥0 satisfies the last two properties of a numerical parametrix (Definition
5.2.7).

Proof. The proof is essentially the same as Theorem 5.2.4

Remark 5.2.12. Due to the decay of γi, the invertibility of each of C[Kξ
i ; Λi] is equivalent

to that of C[Gξ; Γξ].

This proposition states that a numerical parametrix only needs to be locally reliable; we
can consider each shrinking contour as a separate RHP as far as the analysis is concerned.

Remark 5.2.13. The basic philosophy of this work is that to apply the numerical method
described in Section 5.3, we must transform the RH problem for Φ into a form suitable
for numerical solution. To accomplish this, we transform Φ by representing it explicitly in
terms of new functions which satisfy the following properties:

• Φ 7→ Ψ so that Ψ ∼ I at infinity: This is a prerequisite to apply the numerical method
of Section 5.3. Most RHPs satisfy this condition but the RHPin Problem 10.3.1 does
not satisfy this condition.
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• Ψ 7→ ∆ so that the oscillatory jumps of Ψ become exponential decaying jumps of ∆:
This is the first step in the process to guarantee that the solution of the corresponding
SIE has bounded Sobolev norms.

• ∆ 7→ Σ so that the jumps of Σ are localized and scaled: This is the step that produces
a method that is asymptotically stable.

5.3 A numerical realization

In [89], S. Olver constructed a numerical framework for computing solutions to RHPs,
based on a method used in [87] for computing solutions to the undeformed Painlevé II
RHP. This framework is based on Chebyshev interpolants. Consider the RHP [G; Γ],
Γ = Γ1 ∪ · · · ∪ Γℓ, where each Γi is bounded and is a Möbius transformation of the unit
interval:

Mi([−1, 1]) = Γi.

Definition 5.3.1. The Chebyshev points of the second kind are

x[−1,1],n =







x
[−1,1],n
1
...

x
[−1,1],n
n






=

















−1

cos π
(

1− 1
n−1

)

...
cos π

n−1

1

















.

The mapped Chebyshev points are denoted

xi,n =Mi(x
[−1,1],n).

Given a continuous function fi defined on Γi we find a unique interpolant at xi,n using
mapped Chebyshev polynomials of the first kind. Given a function, f defined on the whole
of Γ, we define In to be this interpolation projection applied to the restriction of f on each
Γi. Clearly,

In : H1(Γ) → H1(Γ)

and because xj,n contains all junction points,

In : H1
z (Γ) → H1

z (Γ).

5.3.1 Computing Cauchy integrals

The framework in [89] is given by the pair (In,In) and the matrix Cn[G; Γ] is equal to
InC[G; Γ]In with some unbounded components subtracted; obeying the requirement that
the two operators agree on H1

z (Γ). The construction of Cn[G; Γ] is now discussed.

Define T to be the unit circle with typical counter-clockwise orientation and I = [−1, 1]
with left-to-right orientation. The numerical method relies on a matrix representation of
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the action of these operators on the Laurent monomials, Lk(z) = zk, in the case of T

and the Chebyshev polynomials of the first kind, Tk(z), in the case of I. The following
representations are derived in [89, 87]. For Γ = T the action is given by

C+
ULk(s) =

{

Lk(s), if k ≥ 0,
0, otherwise,

C−
ULk(s) =

{

−Lk(s), if k < 0,
0, otherwise.

If Γ = I, the expressions are much more complicated. The idea used is similar to com-
puting the discrete cosine transform. First T is mapped to I using the map z 7→ T (z) =
1
2

(

z + z−1
)

. This allows us to map functions on I to functions on T. Furthermore, if we
map a polynomial on I we obtain a Laurent polynomial on T and we know how the Cauchy
operator acts there. Using the correct inverses of the map T we obtain C±

I . The inverses
needed are

T−1
+ (x) = x−

√
x− 1

√
1 + x,

T−1
− (x) = x+

√
x− 1

√
1 + x,

T−1
↓ (x) = x− i

√
1− x

√
1 + x,

T−1
↑ (x) = x+ i

√
1− x

√
1 + x.

Denoting the floor function by ⌊·⌋, we define the auxiliary functions

µm(z) =

⌊m+1
2

⌋
∑

j=1

z2j−1

2j − 1
, ψ0(z) =

2

iπ
arctanh z,

ψm(z) = zm
(

ψ0(z)−
2

iπ

{

µ−m−1(z) if m < 0
µm(1/z) if m > 0

)

.

Then

CITk(x) = −1

2

(

ψk(T
−1
+ )) + ψ−k(T

−1
+ (x))

)

, (5.3.1)

and taking limits,

C+
I Tk(x) = −1

2

(

ψk(T
−1
↓ (x)) + ψ−k(T

−1
↓ (x))

)

= − 2

iπ
Tk(x) arctanh T

−1
↓ (x) +

1

iπ

⌊k+1
2

⌋
∑

j=1

Tk−2j+1(x)

2j − 1

{

1, if k − 2j + 1 = 0,
2, otherwise,

C−
I Tk(x) = −1

2

(

ψk(T
−1
↑ (x)) + ψ−k(T

−1
↑ (x))

)

= − 2

iπ
Tk(x) arctanh T

−1
↑ (x) +

1

iπ

⌊k+1
2

⌋
∑

j=1

Tk−2j+1(x)

2j − 1

{

1, if k − 2j + 1 = 0,
2, otherwise.

(5.3.2)
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Remark 5.3.2. In practice ψm is computed stably using the 2F1 hypergeometric function.
See [89] for details.

Remark 5.3.3. Notice that if f(±1) 6= 0 then we expect a logarithmic singularity of CIf
at the end points.

We need to deal with more complicated contours. Assume Γ is a contour for which
there exists a conformal mapping M : I → Γ which maps infinity to infinity. Assume
f vanishes at the endpoints of Γ and is smooth. C±

Γ f is the unique function, analytic
off Γ, which satisfies F+(k) − F−(k) = f(k) for k ∈ Γ with F (∞) = 0. Then we have
F+(M(z)) − F−(M(z)) = f(M(z)) for z ∈ I and F (M(∞)) = 0. From the Plemelj
formulae

F (M(z)) = CI(f ◦M)(z),

⇒ F (k) = CI(f ◦M)(M−1(k)).

Remark 5.3.4. If M does not map infinity to infinity we modify the result by subtracting
the behavior at infinity

F (k) = CI(f ◦M)(M−1(k))− CI(f ◦M)(M−1(∞)).

The last task is to deal with contours that have corners and self-intersections. We need
the behavior of CIf at ±1 in the case that f does not vanish at the end points. In terms
of the auxiliary functions above we have [89] (see also Lemma 3.1.13),

CITk(x) ∽ − 1

2iπ
(−1)k[log(−x− 1)− log 2] +

1

πi
(−1)k[µk−1(−1) + µk(−1)], as x→ −1,

CITk(x) ∽
1

2iπ
[log(x− 1)− log 2] +

1

πi
[µk−1(1) + µk(1)], as x→ 1.

Assume Γ1 and Γ2 are as in Figure 5.3.1. Let f ∈ H1
z (Γ1 ∪ Γ2) and let fi = f |Γi be its

restriction. For each Γi we have a conformal map Mi : I → Γi with a fixed point at ∞.
We expand in a Chebyshev series

f1(M1(x)) =

∞
∑

n=0

f̂1nTn(x),

f2(M2(x)) =

∞
∑

n=0

f̂2nTn(x).

Then, taking orientation into account,

CΓ1∪Γ2f(z) =

∞
∑

k=0

f̂1kCITk(M−1
1 (z))−

∞
∑

k=0

f̂2kCITk(M−1
2 (z)).

It is not clear, due to the singularities, how to define C±
Γ1∪Γ2

. We assume that a =Mi(−1)
corresponds to the intersection point and we examine the behavior of this formula at this
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Figure 5.3.1: Intersecting contours

intersection point. As z → a,

CΓ1∪Γ2f(z) ∽

∞
∑

k=0

f̂1k

(

− 1

2iπ
(−1)k[log(−M−1

1 (z)− 1)− log 2] +
1

πi
(−1)k[µk−1(−1) + µk(−1)]

)

−
∞
∑

k=0

f̂2k

(

− 1

2iπ
(−1)k[log(−M−1

2 (z)− 1)− log 2] +
1

πi
(−1)k[µk−1(−1) + µk(−1)]

)

,

=

∞
∑

k=0

(f̂1k − f̂2k )
(−1)k

2ik
log 2 +

∞
∑

k=0

(f̂1k − f̂2k )
1

πi
[µk−1(−1) + µk(−1)]

−
∞
∑

k=0

(−1)k

2πi

(

f̂1k log(−M−1
1 (z)− 1)− f̂2k log(−M−1

2 (z)− 1)
)

.

(5.3.3)

Expanding we see

−M−1
1 (z) − 1 = −∂zM−1

1 (a)(z − a) + . . . ,

−M−1
2 (z) − 1 = −∂zM−1

2 (a)(z − a) + . . . .

Equating z = a+ ǫeiγ we obtain

arg(−M−1
1 (z) − 1) ∽ arg(−|∂zM−1

1 (a)|eiγ), as ǫ→ 0,

arg(−M−1
2 (z) − 1) ∽ arg(−|∂zM−1

2 (a)|eiγ), as ǫ→ 0.

We choose arg z ∈ (−π, π]. Defining θ and φ by the angles in Figure 5.3.1,

arg(−M−1
1 (z)− 1) ∽

{

γ − φ+ π, if φ− 2π < γ ≤ φ,
γ − φ− π, if φ < γ ≤ π,

arg(−M−1
2 (z)− 1) ∽

{

γ − φ− θ + π, if φ+ θ − 2π < γ ≤ φ+ θ,
γ − φ− θ − π, if φ+ θ < γ ≤ π.
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Combining all of this,

− arg(−M−1
1 (z)− 1) + arg(−M−1

2 (z)− 1) ∽

{

2π − θ, if φ < γ < φ+ θ,
−θ, otherwise.

We use that
∑∞

n=0 f̂
i
k(−1)k = f |Γi(a) = f(a) and examine the last term in (5.3.3) more

closely:

− 1

2πi

∞
∑

k=0

(−1)k(f̂1k log(−M−1
1 (z)− 1)− f̂2k log(−M−1

2 (z)− 1))

= −f(a)
2πi

(log(−M−1
1 (z)− 1)− log(−M−1

2 (z)− 1))

∽ i
f(a)

2πi
(− arg(−M−1

1 (z)− 1) + arg(−M−1
2 (z)− 1))

=
1

2πi

{

f(a)(2πi− θ) if φ < arg(z) < φ+ θ,
−f(a)θ otherwise,

.

This is consistent with Lemma 3.1.9. We alter M2 so that M2(1) = a and derive the
following result.

Lemma 5.3.5. Let Γ1,Γ2 be smooth contours. Let Γ1 be oriented from z = a to z = b with
M1 : I → Γ1, M1(−1) = a and M1(1) = b. Furthermore, let Γ2 be oriented from z = c to
z = a with M2 : I → Γ2, M2(−1) = c and M2(1) = a. Define θi ∈ (−π, π] to be the angle
of the tangent line to Γi at z = a makes with the line {a+ s : s ∈ R+}.

• For smooth function f1 : Γ1 → C,

CΓ1f1(z) =
f1(a)

2πi
log(z − c) +HL(f1), as z → a, z 6∈ Γ1,

=
f1(a)

2πi
log |z − c|+ θ2

2π
f1(a) +HL(f1), as z → a, z ∈ Γ2,

and

HL(f1) =

∞
∑

k=0

f̂1k

(

1

2iπ
(−1)k log 2 +

1

πi
(−1)k[µk−1(−1) + µk(−1)]

)

,

where f̂1k are the Chebyshev coefficients of f1 ◦M1.

• For smooth function f2 : Γ2 → C,

CΓ2f2(z) = −f2(a)
2πi

log(z − c) +HR(f2), as z → a, z 6∈ Γ2,

= −f2(a)
2πi

log |z − c| − θ1
2π
f(a) +HR(f2), as z → a, z ∈ Γ1,
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and

HR(f2) =

∞
∑

k=0

f̂2k

(−1

2iπ
log 2 +

1

πi
[µk−1(1) + µk(1)]

)

,

where f̂2k are the Chebyshev coefficients of f2 ◦M2.

Remark 5.3.6. If we choose the conformal maps Mi so that they preserve orientation
from I to Γi then Lemma 5.3.5 describes the limiting values at either endpoint.

Define the finite Cauchy operator for Γi oriented from a to b:

Ĉ±
Γi
[θ1, θ2]f(z) =























C±
Γi
f(z), if z ∈ Γi \ {a, b},

limr→0+

(

C±
Γi
f(a+ reiθ1)− f(a)

2πi log |r|
)

, if z = a,

limr→0+

(

C±
Γi
f(b+ reiθ2) + f(b)

2πi log |r|
)

, if z = b,

CΓf(z), z 6∈ Γi,

where the values are dependent on the direction of approach for z = a, b. This function is
clearly computable for any z in the complex plane.

We generalize the method so that we may deal with an arbitrary number of intersecting
contours. With a ∈ γ0, the set of self-intersections of Γ, let Γ1, . . . ,Γp be a counter-
clockwise ordering of the components of Γ that have z = a as an endpoint. For f ∈ H1

z (Γ)
it is clear how to define C±

Γ f(z
∗) if z∗ ∈ xi,n when z∗ is not an endpoint. Note that for

each i = 1, . . . , p, Mi(1) = a or Mi(−1) = a. Thus, z = a appears in xi,n for i = 1, . . . , p.
An important complication is that in general

lim
z→a,z∈Γi

C±
Γ f(z) 6= lim

z→a,z∈Γj

C±
Γ f(z), i 6= j,

and C±
Γ (a) for z ∈ xi,n is different from C±

Γ (a) for z ∈ xj,n if i 6= j. Lemma 5.3.5 informs us
as to what these values are and we construct a well-defined method for computing limits
of boundary values. Recall that Γ = Γ1 ∪ · · · ∪ Γl.

Theorem 5.3.7. Let the tangent to Γi at z = ai make an angle θai ∈ (−π, π] with the
horizontal and let the tangent at z = b make an angle θbi ∈ (−π, π] with the horizontal.
Then if f ∈ H1

z (Γ),

l
∑

i=1

Ĉ±
Γi
[θai , θai ]f(z) =

l
∑

i=1

Ĉ±
Γi
[θbi , θbi ]f(z) = C±

Γ f(z), z 6∈ γ0,

l
∑

i=1

Ĉ±
Γi
[θai , θai ]f(z) = lim

z→a, z∈Γ1

C±
Γ f(z),

l
∑

i=1

Ĉ±
Γi
[θbi , θbi ]f(z) = lim

z→b, z∈Γ1

C±
Γ f(z).

Proof. Note that the same angle is used twice since it is not specified if Mj(±) = ai when
ai is an endpoint. The zero-sum condition ensures that the log |r| term in the definition of
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the finite Cauchy operator drops out.

Using this definition we effectively compute C±
Γ u, u ∈ H1

z (Γ) at every point xi,n, com-
puting the limiting values at the endpoints of Γi. Therefore we compute the operator

C[G; Γ]Inu,

exactly for every interpolation point in xi,n, i = 1, . . . , l implying that InC[G; Γ]Inu is
computable. This defines an operator that acts on sums of mapped Chebyshev polynomials
un and returns C[G; Γ]un at each point of xi,n, i = 1, . . . , l that is not an endpoint of Γi.
Furthermore, this operator returns

un(z)−
n
∑

i=1

Ĉ±
Γi
[θ, θ]un(z) · (G(z) − I),

at each endpoint of Γi with θ appropriately chosen as in Theorem 5.3.7. This is guaranteed
to return finite values ui

n at every point in xi,n, i = 1, . . . , l. We output the interpolant
of the values ui

n using mapped Chebyshev polynomials. This is the definition of operator
Cn[G; Γ] and as promised it agrees with C[G; Γ] if un ∈ H1

z (Γ). From a computational
standpoint, a linear system is set up to solve for f i by enforcing that

Cn[G; Γ]un(x) = G(x)− I, for all x ∈ xi,n, i = 1, . . . , l. (5.3.4)

The following theorem is found in [89], and finalizes the theoretical development of the
numerical method.

Theorem 5.3.8 ([89]). If the linear system (5.3.4) is nonsingular, then the calculated
un(x) satisfies the zero-sum condition.

In conclusion, the fact that the linear system is nonsingular implies that the numerically
constructed solution of the Riemann–Hilbert problem Φn = I + CΓun satisfies the correct
jumps at the collocation points.

Remark 5.3.9. A Mathematica implementation of the framework in [89] is available
online [85]. This method is discussed deeper in [89] with all implementational details .

5.3.2 Properties of Cn[G; Γ]

We address the properties required in Definition 5.1.4.

Lemma 5.3.10. When G ∈W 1,∞(Γ), the numerical method in [89] satisfies:

• In is uniformly bounded in n from C(Γ) to L2(Γ) when Γ is bounded.

• ‖Cn[G; Γ]‖L(H1
z (Γ),Yn) ≤ C(1 + ‖G− I‖L∞(Γ)‖C−

Γ ‖L(L2(Γ))).

• ‖Tn[G; Γ]‖L(Xn,Yn) ≤ Cn2‖G− I‖L∞(Γ)‖C−
Γ ‖L(L2(Γ)).

• ‖Inu− u‖H1(Γ) ≤ Csn
2−s‖u‖Hs(Γ).
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Proof. First, note that these constants depend on Γ. Using the Dirichlet kernel one proves
that In is uniformly bounded from C(Γ) to an L2 space with the Chebyshev weight [7].
The norm on this weighted space dominates the usual L2(Γ) norm, proving the first result.
For the second statement we take u ∈ H1

z (Γ) and consider

‖In − In(G− I)C−
Γ u‖L2(Γ)

≤ ‖In‖L(C(Γ),L2(Γ))(1 + ‖G− I‖L∞(Γ)‖C−
Γ ‖L(H1

z (Γ),H
1(Γ))‖u‖H1(Γ)).

Since Yn is equipped with the L2(Γ) norm and ‖C−
Γ ‖L(H1

z (Γ),H
1(Γ)) = ‖C−

Γ ‖L(L2(Γ)) we obtain
the second property. We then use for u ∈ Xn (see Section 5.1) that ‖u‖H1(Γ) ≤ Cn2‖u‖L2(Γ)

to obtain

‖Tn[G; Γ]‖L(Xn,Yn) ≤ Cn2‖G− I‖L∞(Γ)‖C−
Γ ‖L(L2(Γ)).

The last statement follows from estimates in [98] for the pseudo-spectral derivative.

The final property we need to obtain an admissible numerical method, the boundedness
of the inverse, is a very difficult problem. We can verify, a posteriori, that the norm of the
inverse does not grow too much. In general, for this method, we see at most logarithmic
growth. We make the following assumption.

Assumption 5.3.11. For the framework in [89] we assume that whenever [G; Γ] is 1-
regular and C[G; Γ]−1 exists on L2(Γ) as a bounded operator, we have for n > N

‖Cn[G; Γ]−1‖L(Yn,Xn) ≤ Cnβ‖C[G; Γ]−1‖L(L2(Γ)), β > 0. (5.3.5)

Remark 5.3.12. This assumption is known to hold for a similar collocation method on
the unit circle using Laurent monomials [97].

With this assumption the numerical method associated with (In,In) is of type (0, β, 2).
In light of Theorem 5.1.6, we expect spectral convergence and the bound in Assumption
5.3.11 does not prevent convergence. We combine Assumption 5.3.11, Theorem 5.1.6 and
Theorem 3.9.1 to obtain

‖u− un‖L2(Γ) ≤ C(‖C[G; Γ]−1‖L(L2(Γ))(1 + ‖G− I‖L∞(Γ)‖C−
Γ ‖L(L2(Γ)))n

2+β−k‖u‖Hk(Γ).

(5.3.6)

Therefore, we realize L2 convergence of our approximations to the function u. Since
Φ = I + CΓu, we find (see Lemma 3.6.9)

Φ ∼ I +
Φ1

z
+O(z−2), Φ1 = −

∫

Γ
ud̄z ∼ −

∫

Γ
und̄z. (5.3.7)

Here L2 convergence implies L1 convergence since Γ is bounded. An approximation of Φ1

is critical in inverse scattering, see (2.5.8). To efficiently and accurately compute
∫

Γ undz
we note that the values un takes at mapped Chebyshev nodes is known and therefore
Clenshaw-Curtis quadrature computes this integral effectively .

Note that if Algorithm 5.1.11 is used then an approximation of u such that Φ = I+CΓu
is not directly returned from the algorithm since SIEs are solved on each disjoint contour at
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each stage, not on all of Γ. But since an approximation Φn = φℓ · · · φ1 (with φj = I+CΓuj)
to the solution Φ is known we find, in the notation of Algorithm 5.1.11:

Φ1 ∼ −
ℓ
∑

j=1

∫

ΓJ

uj d̄z. (5.3.8)



Chapter 6

The Korteweg-de Vries and

Modified Korteweg-de Vries

Equations

We consider the initial-value problem on the whole line for the Korteweg–de Vries equation
(KdV)

qt + 6qqx + qxxx = 0, (6.0.1)

q(x, 0) = q0(x) ∈ Sδ(R).

We also consider the defocusing modified KdV equation, given by

qt − 6q2qx + qxxx = 0, (6.0.2)

q(x, 0) = q0(x) ∈ Sδ(R).

The KdV equation describes the propagation of long waves in dispersive media, e.g. long
surface water waves [69]. Historically, the KdV equation is the first known case of a
PDE that is solvable by the inverse scattering transform [56]. The KdV equation and the
modified KdV equation can also be thought of as dispersive regularizations of the Burgers
and modified Burgers equations, respectively.

The presence of dispersion makes the quantitative approximation of solutions of the
KdV equation and the modified KdV equation through numerical methods especially dif-
ficult, see Section 6.5 for a detailed discussion. Section 6.5 demonstrates that while the
oscillatory nature of the solution is reproduced in many numerical methods a high degree
of accuracy for moderate times is elusive. To see this heuristically, in Figure 6.0.1 we
approximate the solution of the KdV equation with q(x, 0) = A sech2(x) where A = 3.2
using the numerical scheme presented in this chapter. With A = 3 the solution would be
a two-soliton solution without any dispersive tail [42]. Notice that a significant dispersive
tail forms even though the solution is close to a soliton solution. The issue becomes worse
when we consider solutions that are farther from a soliton solution, see Figure 6.0.2.

To combat this dispersive complication, we exploit the integrability of the KdV equation
and the modified KdV equation and evaluate the inverse scattering transform numerically.

135
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Figure 6.0.1: Numerical solution of the KdV equation with initial data that is close to a
two-soliton solution. (a) Initial condition, (b) Solution at t = 1.5. The two largest peaks
each correspond to a soliton. (c) Dispersive tail at t = 1.5.

Computing the inverse scattering transform involves developing techniques to compute the
forward transform (direct scattering) and the inverse transform (inverse scattering). Our
approach to direct scattering employs collocation methods for ODEs (see Appendix B and
existing spectrum approximation techniques. For inverse scattering we use the numerical
method for RHPs presented in [89]. After deforming the RHP in the spirit of Deift and
Zhou [34, 39, 60], the numerical method becomes asymptotically stable: the work required
to compute the solution at a point to a desired accuracy is bounded for all x and t. In
this method the roles of x and t are reduced to that of parameters. No time-stepping or
spatial discretization is needed and the code can trivially be run in parallel.

The numerical direct and inverse scattering for the defocusing modified KdV equation
is presented along with numerical results. The RHP for the modified KdV equation has a
simple form and the deformations are straightforward. All RHPs we solve are well-posed:

Definition 6.0.13. A RHP is well-posed if it has a unique solution of the form

Φ(k) = I + CΓu (6.0.3)

for some function u ∈ L2(Γ).

This is demonstrated using Theorem 3.8.21 and Theorem 3.8.29
Next, the KdV equation is considered. Now one has to deal with the addition of solitons

to the problem. After deformation, the RHP for the KdV equation has a singularity and
this requires two additional deformations. We introduce a new deformation that is not
present, to our knowledge, in the existing literature. This new transition region allows for
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Figure 6.0.2: Numerical solution of the KdV equation for an initial condition which is far
from a pure soliton initial condition. (a) Initial condition obtained by adding a soliton to
the RHP associated with q(x, 0) = −2.3 sech2(x), (b) Solution at t = 1.5, (c) A contour
plot showing the birth of the dispersive tail, (d) Solution at t = 30. It is not practical to
use conventional methods to capture this solution quantitatively for longer times.

stable asymptotic computation of the solution in a region where the classical deformations
break down numerically. Numerical results for the KdV equation are presented. Finally,
the numerical solutions of the modified KdV equation and the KdV equation are compared
using the Miura transformation.

We solve the modified KdV equation because the complexity associated with its solution
is what should be expected when solving other integrable equations with this method.
We solve the KdV equation because it is a more difficult problem, and demonstrates
that the method is general enough to handle the added difficulties, though it requires the
introduction of significantly more machinery.

Through the comparison of our results with existing asymptotic expressions we can
guarantee the accuracy of the method. It is accurate for small-time and for long-time.
Traditionally, numerical analysts favor integrable equations because of the large class of
explicit solutions available for comparison. All of these explicit cases do not exhibit a dis-
persive tail. This method expands the class of solutions which we can compute accurately
and, importantly, it provides a benchmark test to guide the development of new numerical
methods designed to capture dispersion.
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6.0.3 Integrability and Lax pairs

The mKdV and the KdV equation and are both completely integrable [1]. We take this to
mean that for each equation there exist two linear systems of ordinary differential equations
depending on a parameter k

µx = L(k, q)µ,

µt =M(k, q)µ,

such that µxt = µtx if and only if q satisfies the PDE in question. Systems of this form are
called Lax pairs. Note that we use a slightly different form than that in Chapter 2. The
Lax pair is also known as the scattering problem for the PDE. We introduce the modified
Zakharov–Shabat scattering problem given by

µx =

[

−ik q
r ik

]

µ,

µt =

[

A B
C D

]

µ,

where r,A,B,C and D are scalar functions to be determined [1]. If we make the choice

A = −4ik3 + 2ikqr − (rxq − qxr),

B = 4qk2 + 2ikqx − 2q2r − qxx,

C = 4rk2 − 2ikrx + 2qr2 − rxx,

D = −A,

(6.0.4)

we can obtain Lax pairs for both the modified KdV equation and the KdV equation.

The modified Korteweg–de Vries equation

To obtain a Lax pair for the (defocusing) modified KdV equation (6.0.2), let r = q, so that
the x equation of the Lax pair takes the form

µx =

[

−ik q
q ik

]

µ. (6.0.5)

In what follows we do not need the explicit form of the equation for µt.

Remark 6.0.14. As above, we perform scattering in a more restricted space of functions.
We assume q(x, 0) ∈ Sδ(R). This simplifies some technical details as is noted below.
This assumption is relaxed on a case-by-case basis. The decay rate is needed for analyticity
properties and the smoothness is needed to numerically compute the scattering data, defined
below.

1. Definition of the Scattering Data. Consider the problem (6.0.5). Assume q ∈ Sδ(R),
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it follows that there are two matrix-valued eigenfunctions

φ(x; k) ∽

[

e−ikx 0
0 −eikx

]

as x→ −∞, ψ(x; k) ∽

[

e−ikx 0
0 eikx

]

as x→ ∞.

(6.0.6)

From Abel’s formula, the determinants of these solutions are constant in x; evaluating
at ±∞ we see that the columns do indeed form a linearly independent solution set
and hence span the solution space. There exists a transition matrix

T (k) =

[

a(k) B(k)
b(k) A(k)

]

,

such that

φ(x; k) = ψ(x; k)T (k).

Define ρ(k) = b(k)/a(k) to be the reflection coefficient. For the defocusing modified
KdV equation we define the scattering data to be only the reflection coefficient [1].
The conventions for the reflection coefficient in [1] and [34] differ. The reflection
coefficient used by Ablowitz and Segur [1] is i times that used by Deift and Zhou
[34].

2. The Inverse Problem.We phrase the inverse problem in terms of a RHP. We seek a
2× 2 matrix-valued function Φ that satisfies

Φ+(k) = Φ−(k)G(k), k ∈ R,

Φ(∞) = I,

G(k) =

[

1− ρ(k)ρ(−k) −ρ(−k)e−θ(k)

ρ(k)eθ(k) 1

]

,

θ(k) = 2ikx+ 8ik3t.

The solution to the modified KdV equation is given by

q(x, t) = −2i lim
k→∞

kΦ(k)21, (6.0.7)

where the subscript denotes the 2-1 component [34]. We suppress the x and t depen-
dence for notational simplicity.

Remark 6.0.15. The well-posedness of this RHP can be established by considering
a specific singular integral equation and showing it is of the form (I−K)u = f where
‖K‖ < 1. This fact relies on supk∈R |ρ(k)| < 1, see [34] for details. Additionally,
the well-posedness follows from Theorems 3.8.21 and 3.8.29 because detG = 1 and
G+G† is positive definite.
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The Korteweg–de Vries equation

To obtain the KdV equation (6.0.1) from (6.0.4) we set r = −1 and the x portion of the
Lax pair takes the form

µx =

[

−ik q
−1 ik

]

µ.

This can be simplified to the time-independent Schrödinger equation

µxx + (k2 − q)µ = 0. (6.0.8)

As before, we do not need the explicit form of the equation for µt.

1. Definition of the Scattering Data. We consider the problem (6.0.8) and assume
q ∈ Sδ(R). There are two vector-valued eigenfunctions

φ ∽

[

e−ikx eikx
]

as x→ −∞, ψ ∽

[

e−ikx eikx
]

as x→ ∞.

It follows from Abel’s formula that the Wronskian of these solutions is constant in
x and evaluating at ±∞ we see the two entries form a linearly independent solution
set which spans the solution space. There is a transition matrix

T (k) =

[

a(k) b(k)
B(k) A(k)

]

,

such that φ(x, t; k) = ψ(x, t; k)T (k). Define ρ(k) = b(k)/a(k) to be the reflection
coefficient. It is known that a(k) has simple zeros in the upper-half plane, on the
imaginary axis. We denote the set of these n zeros by {κj}nj=1 and we assume
that ρ(k) can be analytically extended above these poles. In this case let Cj =
Res{ρ(k), k = κj} and form the set {Cj}nj=1. Define the set

{ρ(k), {κj}nj=1, {Cj}nj=1}, (6.0.9)

to be the scattering data for the KdV equation.

2. The Inverse Problem.We can pose the meromorphic RHP for the solution of the KdV
equation. We seek a function Φ : R → C1×2 that is meromorphic off R with simple
poles at ±κj such that

Φ+(k) = Φ−(k)G(k), k ∈ R,

Res{Φ(k), k = κj} = lim
k→κj

[

0 0

Cje
θ(κj) 0

]

Φ(k),

Res{Φ(k), k = −κj} = lim
k→−κj

[

0 −Cje
θ(κj)

0 0

]

Φ(k),

Φ(∞) =
[

1 1
]

.
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The solution to the KdV equation is given by the reconstruction formula [3],

q(x, t) = 2i lim
k→∞

kΦx(k)1.

Remark 6.0.16. This meromorphic problem can be turned into an analytic problem
by introducing small circles around each pole and using the appropriate jump on this
new contour [60]. Fix 0 < ǫ < mink 6=j |κj − κk|/2, with ǫ < minj |κj |. This ǫ is
chosen so that the circles A±

j = {k ∈ C : |k − ±κj | < ǫ} do not intersect each other

or the real axis. We define Φ̂ by

Φ̂(k) =







































Φ(k)

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, if |k − κj| < ǫ, j = 1, . . . , n,

Φ(k)

[

1 0

Cje
θ(κj)/(k + κj) 1

]

, if |k + κj| < ǫ, j = 1, . . . , n,

Φ(k), otherwise.

It is straightforward to show that Φ̂ solves the RHP

Φ̂+(k) =







































Φ̂−(k)G(k), if k ∈ R,

Φ̂−(k)

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, if k ∈ A+
j ,

Φ̂−(k)

[

1 −Cje
θ(κj)/(k + κj)

0 1

]

, if k ∈ A−
j ,

Φ̂(∞) =
[

1 1
]

,

where A−
j (A

+
j ) has (counter-)clockwise orientation.

Remark 6.0.17. Due to the fact that generically ρ(0) = −1 for the KdV equation, the
well-posedness of this RHP is in principle more difficult to establish. One must appeal to
Theorems 3.8.21 and 3.8.29. In the language of the vanishing lemma, Theorem 3.8.29,
(A+

j )
† = A−

j . Furthermore, the jump matrices share the correct Schwartz invariance.

Furthermore, detG = 1 and G + G† is positive definite on R \ 0. This proves the unique
solvability of the RHP.

6.0.4 Asymptotic regions

In this section we present the classical results on the long-time asymptotics of the solution
of the modified KdV equation and the KdV equation. We introduce constants, ci, to divide
regions. While any valid choice of these will work, the numerical method can be improved
by adjusting them on a case-by-case basis.
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Transition
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Figure 6.0.3: (a) Regions for the asymptotic analysis for the modified KdV equation, (b)
Regions for the asymptotic analysis for the KdV equation.
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The modified Korteweg–de Vries equation

The results presented here are found in [34]. In the (x, t)-plane, the long-time evolution
of the modified KdV equation is described in three fundamentally different ways. For a
diagram of these regions see Figure 6.3(a).

1. The Soliton Region. This region is defined for x ≥ c1t
1/3, c1 > 0. The name “soliton

region” is a misnomer because there are no solitons present in the defocusing modified
KdV equation [1] but for the sake of uniformity with the KdV equation we retain
the name. Here the solution q(x, t) decays beyond all orders, i.e.,

q(x, t) = O((x+ t)−j), for all j > 0. (6.0.10)

2. The Painlevé Region. This region is defined for |x| ≤ c1t
1/3. More general results

can be found in [34]. Along a trajectory x = −Ct1/3, C > 0, the solution satisfies

q(x, t)− U(x, t) = O(t−2/3), (6.0.11)

where

U(x, t) = (3t)−1/3v(x/(3t)1/3), (6.0.12)

and v is the Ablowitz–Segur solution to Painlevé II with Stokes’ constants {s1, s2, s3} =
{−iρ(0), 0, iρ(0)}. See Chapter 8 for a numerical method to compute this solution.

3. The Dispersive Region. Historically, this region is defined for −x > c2t > 0, c2 > 0.
For our purposes, we use −x > c1t

1/3 for the definition of this region. The reasoning
for this will become clear below. Along a trajectory −x = Ct, C > 0, the solution
satisfies

q(x, t)−R(x, t) = O(log(t)t−1), (6.0.13)

where

R(x, t) =

√

ν(k0)

3tk0
cos
(

16tk30 − ν(k0) log(192tk
3
0) + δ(k0)

)

,

and

k0 =
√

−x/(12t),

ν(k0) = − 1

2π
log(1− ρ(k0)ρ(k0)),

δ(k0) =
π

4
− arg(ρ(k0)) + arg(Γ(iν(k0)))

− 1

π

∫ k0

−k0

log

(

1− ρ(η)ρ(η)

1− ρ(k0)ρ(k0)

)

1

η − k0
dη.
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The Korteweg–de Vries equation

The results presented here are found in [39, 60]. See Figure 6.3(b) for a diagram of these
regions.

1. The Soliton Region. This region is defined for x ≥ c1t
1/3, c1 > 0. For x > Ct, C > 0,

the solution of the KdV equation in this region satisfies

q(x, t)− S(x, t) = O((x+ t)−j),

where

S(x, t) =

n
∑

j=1

2κ2j sech
2(κjx− 4κ3j t− pj),

pj =
1

2
log





C2
j

2κj

n
∏

l=j+1

(

κl − κj
κl + κj

)2


 .

The constants κj and Cj are defined in (6.0.9).

2. The Painlevé Region. This region is defined for |x| < c2t
1/3, c2 > 0. Along a

trajectory x = ±Ct1/3, C > 0, the solution to the KdV equation satisfies

q(x, t)− U(x, t) = O(t−1), (6.0.14)

where

U(x, t) =
1

(3t)2/3

(

v2
(

x

(3t)1/3

)

+ v′
(

x

(3t)1/3

))

,

and v is the Hastings–McLeod solution to Painlevé II with Stokes’ constants {s1, s2, s3} =
{i, 0,−i} [63] (see also Chapter 8). The error bound is not present in [39] but we
infer it from (6.0.11) through the Miura transformation, Section 6.2.4.

3. Transition Region. This region is, to our knowledge, not present in the literature. It
is defined by the relation c3t

1/3(log t)2/3 ≤ −x ≤ c4t
1/3, c3, c4 > 0. Asymptotics are

not known in this region.

4. The Collisionless Shock Region. This region is defined by c5t ≤ −x ≤ c6t
1/3(log t)2/3,

0 < c5 ≤ 12 and c6 > 0. This is the region in the (x, t)-plane where our de-
formations are valid. The asymptotic formula in [39] is given with the constraint
1/C ≤ −x/(t1/3(log t)2/3) ≤ C for C > 1. With this constraint the RHP limits to a
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RHP on (−b(s), b(s)) of the form [39]

ζ+(k) =























































ζ−(k)

[

0 e−24iτ
∫ a(s)
0 f(p)dp

−e24iτ
∫ a(s)
0

f(p)dp 0

]

, if a(s) < k < b(s),

ζ−(k)

[

2νk2 0
0 (2νk2)−1

]

, if − a(s) < k < a(s),

ζ−(k)

[

0 e−24iτ
∫−a(s)
0

f(p)dp

−e24iτ
∫ −a(s)
0 f(p)dp 0

]

, if − b(s) < k < −a(s),

ζ(∞) =
[

1 1
]

,

f(p) =
√

(a2 − p2)(b2 − p2).

(6.0.15)

The definitions of a, b, s and τ can be found in Section 6.4. See Section 6.2.2 for the
definition of ν. Note that the only x and t dependence enters through a, b and τ .
The approximation W of the solution of the KdV equation is obtained by

W (x, t) = 2i
√

−x/(12t) lim
k→∞

∂xζ(k).

We remark that no bound is present in [39]. See (6.2.6) for a numerical conjecture
of this error bound.

Remark 6.0.18. By adjusting c2 and c6, the collisionless shock region can be made
to overlap with the Painlevé region up to a finite time. In the absence of the transition
region, this will always leave a gap in the (x, t)-plane that is not contained in any
region. From a numerical point of view, we introduce the transition region precisely
to compute the solution of the KdV equation in this gap. This region seems to be
not needed in the asymptotic analysis because the solution in the collisionless shock
region can be asymptotically matched with the solution in the Painlevé region [5].

5. The Dispersive Region. This region is defined by −x > c7t > 0, c7 > 0. Along a
trajectory x = −Ct, C > 0, the solution to the KdV equation satisfies

q(x, t)−R(x, t) = O(t−1), (6.0.16)

where

R(x, t) = −
√

4ν(k0)k0
3t

sin
(

16tk30 − ν(k0) log(192tk
3
0) + δ(k0)

)

,



146 CHAPTER 6. THE KDV AND MKDV EQUATIONS

and

k0 =
√

−x/(12t),

ν(k0) = − 1

2π
log(1− ρ(k0)ρ(k0)),

δ(k0) =
π

4
− arg(ρ(k0)) + arg(Γ(iν(k0))) +

n
∑

j=1

arctan

(

κj
k0

)

− 1

π

∫ k0

−k0

log

(

1− ρ(η)ρ(η)

1− ρ(k0)ρ(k0)

)

1

η − k0
dη.

6.1 The modified Korteweg–de Vries equation

6.1.1 Numerical computation of the scattering data

We look for solutions of the form (6.0.6) to (6.0.5). Define

σ3 =

[

1 0
0 −1

]

, σ1 =

[

0 1
1 0

]

,

and two new functions

J(k) = φ(k)σ3e
ikxσ3 − I,

K(k) = ψ(k)eikxσ3 − I.
(6.1.1)

Therefore J → 0 as x→ −∞ and K → 0 as x→ ∞. Rewriting (6.0.6),

µx = qσ1µ− ikσ3µ,

and we find that K and J both solve

Mx − ik[M,σ3]− qσ1M = qσ1.

For each k, this can be solved with a Chebyshev collocation method on (−L, 0] for J and
on [0, L) for K using the appropriate boundary condition at ±L. See Appendix B for
a discussion of the method. If we use n collocation points, this gives two approximate
solutions Jn and Kn for J and K, respectively. From Jn and Kn we obtain φn and ψn,
approximations of φ and ψ, respectively, by inverting (6.1.1). Furthermore, φn and ψn

share the point x = 0 in their domain of definition. Define

Tn(k) = ψ−1
n (0; k)φn(0; k).

This is an approximation of the transition matrix, from which we extract an approximation
of the reflection coefficient.

6.1.2 Numerical solution of the inverse problem

The RHPs considered here have the key feature that the jump matrices are highly oscil-
latory. Deift and Zhou adapted ideas from the asymptotic evaluation of integrals to this
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problem to obtain asymptotic formulae with rigorous error bounds [34, 33, 39]. The main
idea of this method is to deform the contours of the RHP so that it limits (in some sense)
to a simple problem that can be solved explicitly. In general, these same ideas translate
to the numerics. The exponential decay that is sought in the analytic method also enables
the fast convergence of the numerical approximation, as the smoothness of the resulting
asymptotic expansions ensure that the solution to the RHP can be well represented by
mapped Chebyshev polynomials. In what follows we deform the RHP for the modified
KdV equation. The deformations are guided by the desire to remove oscillations from the
jump contours. This is generally accomplished by factoring the jump matrix and deform-
ing the contours so that each factor is isolated near saddle points, away from which they
approach the identity exponentially fast.

To remove oscillations from the jump matrix, we need to examine the exponential that
appears in these expressions, which we represent as exp θ(k), where θ(k) = 2ikx + 8ik3t.
For x < 0, in analogy with the method of steepest descent for integrals, we deform the RHP
through the saddle points of θ. We find that θ′(k) = 2ix+24ik2t, and solving for θ′(k) = 0
gives the saddle points k = ±k0, with k0 =

√

−x/(12t). The directions of steepest descent,
at ±k0 — along which the oscillations of the jump matrix become exponential decay —
are given by

θ+s = 3π/4 ± π/2,

θ−s = π/4± π/2.

The dispersive region

We present the full deformation from the initial RHP on the real line. We introduce two
factorizations of the original jump matrix G(k):

G(k) =M(k)P (k),

M(k) =

[

1 −ρ(−k)e−θ(k)

0 1

]

, P (k) =

[

1 0

ρ(k)eθ(k) 1

]

,

G(k) = L(k)D(k)U(k), L(k) =

[

1 0

ρ(k)eθ(k)/(1 − ρ(k)ρ(−k)) 1

]

,

D(k) =

[

1− ρ(k)ρ(−k) 0
0 1/(1 − ρ(k)ρ(−k))

]

,

U(k) =

[

1 −ρ(−k)e−θ(k)/(1− ρ(k)ρ(−k))
0 1

]

.

In what follows, we often suppress x and t dependence for notational simplicity. The
factorizations are suggestively defined. M (for ‘minus’) will be deformed into the lower-half
plane and P (for ‘plus’) will be deformed into the upper-half plane. L is lower triangular
and will be deformed into the lower-half plane, D is diagonal and will not be deformed.
Finally, U is upper triangular and will be deformed into the upper-half plane. Throughout
our deformations we use the notation Φn,α for the solution of the deformed problem.
The number n indicates how many deformations have been performed, with n = 1 being
the original RHP. The characters α are used to denote the region (e.g. α = cs for the
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collisionless shock region).

Since q ∈ Sδ(R) for some δ > 0, ρ has an analytic continuation off the real line so that
all the deformations are justified [1, 3]. These factorizations are used so that only one of
exp θ(k) or exp(−θ(k)) is present in each matrix. This makes it possible to deform the
contours to new contours which have angles θ±s with the real axis, along which the jump
matrices approach the identity exponentially fast. The ‘ghost’ contours introduced in
Figure 6.1(a) all satisfy this desired property, and hence we define a new matrix function
Φ2,d based on these regions. Notice that the new definitions still satisfy the condition
at infinity. We compute the jumps that Φ2,d satisfies to phrase a RHP for Φ2,d, see
Figure 6.1(b). This process is referred to as lensing and is presented in more detail in
Section 3.10.3.

In order to achieve asymptotic stability (see Section 2) in the sense of Section 5.2 we
need the jump matrix to approach the identity away from ±k0, i.e., we need to remove the
contour on (−k0, k0). Indeed, numerical results show that the solution on this contour is
increasingly oscillatory as |x| + |t| becomes large. We introduce the unique 2 × 2 matrix-
valued function ∆ that satisfies the diagonal RHP

∆+(k; k0) = ∆−(k; k0)D(k), k ∈ (−k0, k0), ∆(∞; k0) = I. (6.1.2)

See Section 3.4.1 for the exact form of ∆. Notice that in general ∆ has singularities at ±k0.
To combat this issue we introduce circles around both ±k0, see Figure 6.1(c). We define
Φ3,d by the definitions in Figure 6.2(a) where Φ3,d = Φ2,d when no definition is specified.
Computing the jumps we see that Φ3,d satisfies the RHP in Figure 6.2(b). We apply the
same procedure at −k0 and obtain the problem shown graphically in Figure 6.3(a). Finally,
we define Φ4,d = Φ3,d∆

−1 and Φ4,d satisfies the RHP shown in Figure 6.3(b). We solve
this resulting RHP numerically.

Remark 6.1.1. To obtain a RHP valid for t = 0 and x < 0 one can take the limit of the
above RHP as t→ 0+. In this limit k0 → ∞ and ∆ has a jump on all of R.

The Painlevé region

For x > 0 this region intersects with the soliton region defined below, and we use that
deformation. For x < 0, the saddle points are coalescing and this allows for a new defor-
mation. In this region we reduce the number of contours present, in order to reduce the
overall computational cost. Indeed, consider the interval between the two saddle points
[−k0, k0], where

|k| ≤
√

C

12
t−1/3 ⇒ |2kx+ 8k3t| ≤ 2Ct1/3k + 8k3t ≤ 2√

12
C +

8

12
√
12
C3/2.

This implies that the oscillations are controlled between the two saddle points and the
LDU factorization is not needed. See Figure 6.4(a) for the RHP in this region.

Remark 6.1.2. The deformations for the dispersive region and the Painlevé regions are
valid in overlapping regions of the (x, t)-plane. As x → 0, x < 0, the deformation for the
dispersive region can be used until the Painlevé region is reached. Using these deformations
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Figure 6.1.1: (a) The jump contours and matrices of the initial RHP with ‘ghost’ contours,
(b) Graphical representation of the jump contours and matrices of the RHP satisfied by
Φ2,d, (c) Ghost circles in preparation for the singularities of ∆.
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Figure 6.1.2: (a) Definition of Φ3,d near k0, (b) The jump contours and matrices of the
RHP satisfied by Φ3,d near k0.

in tandem allows the method to retain accuracy in the region x < 0, t ≥ 0 for |x| and t
large. Note that for the deformation for the dispersive region to be valid as k0 → 0 it is
necessary that ‖ρ‖∞ < 1 because of the form of D.

The Soliton region

Choose a function α(x, t) so that 0 ≤ α(x, t) <
√
3|k0|, then the deformation used in this

region is given in Figure 6.4(b). Note that the angle of the contours is chosen so that
Re θ(k) ≤ 0 on all contours with Im k > 0, whereas Re θ(k) > 0 on all contours with
Im k ≤ 0.

Remark 6.1.3. There is a lot of freedom in choosing α. For simplicity, we assume the
reflection coefficient is analytic and decays in the strip {s + ti : s ∈ R, t ∈ (−T, T ), T >
0.5}, and therefore we use α(x, t) = min{.5,

√
3k0}.

6.1.3 Numerical results

There are additional issues that have to be addressed before these RHPs can be efficiently
solved numerically. First, in Section 6.1.2 we opened up circles around two singularities
at ±k0. This deformation is valid provided the radius of the circles is sufficiently small.
In addition, we need to shrink the radius of these circles if |x| or t is large. We use
the following rule of thumb. Assume the saddle point is at zero and a parametrix has
introduced a singularity at zero. Further assume the oscillator is exp(wkr), r > 1, where
w is a parameter. We scale the radius of the circle following Assumption 5.0.1. Second, we
truncate contours when the jump matrices are to machine precision, the identity matrix.
This allows us to have only finite contours present in the problem. Furthermore, it allows
the contours to shrink as x and t increase since the exponential decay is more drastic. The
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Figure 6.1.3: (a) The jump contours and matrices of the RHP satisfied by Φ3,d, (b) The
jump contours and matrices of the RHP satisfied by Φ4,d. Note that the contours with
jumps ∆U∆−1 and ∆L∆−1 connect.
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Figure 6.1.4: (a) The jump contours and matrices of the RHP for the modified KdV
equation in the Painlevé region with x < 0. (b) The jump contours and matrices of the
RHP for the modified KdV equation in the soliton region.

scaling on these contours is the same as for the circles around the saddle points. Note that
if all jump contours are decaying to the identity as x and t becomes large, it is possible
that we truncate all contours and approximate the solution by zero.

Finally, we define q(n, x, t) as the approximation to the solution of the modified KdV
equation with n collocation points on each contour where the initial condition is implied
from context.

Direct scattering

For an initial condition where the reflection coefficient is not known explicitly we can
verify our direct, and in the process, inverse scattering computations by evaluating the
solution to the inverse problem at t = 0. As an example we start with the initial condition
q(x, 0) = −1.3 sech2(x). In Figure 6.5(a) we plot the error, |q(x, 0) − q(80, x, 0)|, while
varying the number of collocation points. Define ρ(m,k) to be the approximation of the
reflection coefficient obtained usingm collocation points. In Figure 6.5(b) we show spectral
convergence of the computation of the reflection coefficient when k = 1.

Inverse scattering

Throughout this section we proceed as if the reflection coefficient is obtained to machine
precision. This is often not the case since we do not have an explicit formula for the
reflection coefficient. This does limit the accuracy obtained in the plots below.

1. Convergence. To analyze the error, we introduce some notation. Define

Qm
n (x, t) = |q(n, x, t)− q(m,x, t)|.

Using this notation, Figure 6.2.12 demonstrates the spectral (Cauchy) convergence
with each of the deformations.
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Figure 6.1.5: (a) Error in performing the full inverse scattering transformation at t = 0
while varying the number of collocation pointsm for the direct scattering. (m = 20: dotted
line, m = 40: dashed line, m = 80: solid line.) Note that for moderate |x| we approximate
q(x, 0) by zero after the truncating contours and obtain very small absolute error. (b) The
Cauchy error, |ρ(200, 1) − ρ(n, 1)|, plotted for n = 2 to n = 100 on a log scale to show the
spectral convergence of the reflection coefficient.
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Figure 6.1.6: Demonstration of spectral convergence for the modified KdV equation with
q(x, 0) = −1.3 sech2(x). All plots have Qn

2m(x, t) plotted as a function of n as n ranges
from 2 to m. (a) Dispersive Region: m = 70 at the point (x, t) = (−8.8, 0.6), (b) Painlevé
Region: m = 50 at the point (x, t) = (−0.8, 0.6), (c) Soliton/Painlevé Region: m = 140 at
the point (x, t) = (0.2, 2.6). This deformation requires more collocation points because it
only has four contours, so that each contour contains more information about the solution.
Machine precision is not achieved since some errors are present in the computation of the
reflection coefficient.
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2. Asymptotic Stability. For the method to be asymptotically stable we require that,
for a given n and m, Qm

n (x, t) remains bounded (and small) as |x| + |t| becomes
large. In fact, what we numerically demonstrate is that Qm

n (x, t) tends to zero in all
regions. See Figure 6.1.7 for the demonstration of this. Note that we expect Qm

n (x, t)
to approach zero only when the solution approaches zero as well.
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Figure 6.1.7: Demonstration of asymptotic stability for the modified KdV equation with
q(x, 0) = −1.3 sech2(x). All plots have Qn

m(x, t) plotted as a function of |t| + |x|. (a)
The Dispersive Region: m = 10, n = 5 along the trajectory x = −20t, (b) The Painlevé
Region: m = 10, n = 5 along the trajectory x = −(3t)1/3, (c) The Painlevé Region:
m = 20, n = 10 along the trajectory x = (3t)1/3, (d) The Soliton Region: m = 10, n = 5
along the trajectory x = 20t.

Comparison with asymptotic formulae

In Section 6.0.4 asymptotic formulae in various regions for the modified KdV equation
were presented. In this section we compare numerical results with these formulae. We
skip the soliton region because the asymptotic formula approximates the solution by zero,
which is uninteresting. Taking into account the verifiable convergence and the fact that
convergence of the numerical method has no long-time requirements, it seems reasonable
to assume that the computed solutions in the plots below approximate the true solution
better than the asymptotic formulae.

1. The Dispersive Region. In Figure 6.1.8 we present a numerical verification of the error
bound (6.0.13) along with a plot of both approximations in the dispersive region.

2. The Painlevé Region. In Figure 6.1.8 we present a numerical verification of the error
bound (6.0.11) along with a plot of both approximations in the Painlevé region.
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Figure 6.1.8: Comparison of numerical results with the asymptotic formulae in the dis-
persive and Painlevé regions for the modified KdV equation. (a) The Dispersive Region:
q(10, x, t) and R(x, t) plotted as a function of t with x = −20t. The computed solution is
shown by the solid line and the asymptotic formula by the dots, (b) The Dispersive Region:
|q(10, x, t) − R(x, t)| plotted as a function of t with x = −20t. A least-squares fit gives
|q(10, x, t) − R(x, t)| = O(t−1.2), in agreement with the error formula, (c) The Painlevé
Region: q(10, x, t) and U(x, t) plotted as a function of t with x = −t1/3. The computed
solution is shown by the solid line and the asymptotic formula by dots, (d) The Painlevé
Region: |q(10, x, t) − U(x, t)| plotted as a function of t with x = −t1/3. A least-squares fit
gives |q(10, x, t) − U(x, t)| = O(t−0.65), in agreement with the error formula.
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With minimal deformations we obtain a numerical method for the defocusing modified
KdV equation that is not only asymptotically accurate but also converges spectrally fast.
The roles of x and t are reduced to that of parameters and we have no need for spatial
grids or time-stepping. The dispersive nature of the modified KdV equation is captured
exactly. The amount of effort required to solve the modified KdV equation should be
typical when considering other integrable equations with Riemann–Hilbert formulations.
Below we solve the KdV equation and in the process expand the scope of the numerical
method to deal with RHPs that have singularities. This complication is not typical but
we proceed to show that it can be dealt with.

6.2 The Korteweg–de Vries equation

We discuss numerical inverse scattering for the KdV equation. We can adjust the constants
c2 and c7 in Section 6.0.4 to make the dispersive region overlap with the Painlevé region
up to some finite t. This essentially allows one to use only the deformations needed
for the modified KdV equation for small time, eliminating the collisionless shock and
transition regions. For practical purposes this is sufficient. However, the regions never
overlap for sufficiently large time and since we are interested in the development of an
asymptotically stable method, we need to construct the deformations in the collisionless
shock and transition regions. These deformations are more complicated.

The RHP for the KdV equation is generally a meromorphic problem which alters the
deformations for x > 0. Additionally, ρ(0) = −1, generically, which complicates the
deformations for x < 0. The deformation for the dispersive region is only stable in its
original region of definition, −x > αt, α > 0; it cannot be extended into the Painlevé
region for large t. For concreteness we use −x > 12t > 0. As a consequence, the three
regions defined in the case of the modified KdV equation do not overlap for the KdV
equation. To overcome this issue Deift, Zhou and Venakides used a new deformation of the
RHP for the collisionless shock region [39] (see [5] for the first appearance of this region).
This deformation is valid into the dispersive region but does not extend to the Painlevé
region. Below we present the deformations for the RHP associated with the KdV equation
in these four classical regions. To fill the final gap we introduce a new deformation to
transition from the collisionless shock region into the Painlevé region.

6.2.1 Numerical computation of the scattering data for the KdV equa-

tion

Calculating the scattering data numerically relies on two spectral methods: a Chebyshev
collocation method for ODEs and Hill’s method [22] for computing the spectrum of a linear
operator.

• Computing ρ.

For k ∈ R we are looking for solutions of µxx + q0(x)µ = −k2µ which behave like
exp(±ikx) as x→ ±∞. If q0(x) ∈ Sγ(R) the eigenfunctions limit to this asymptotic
behavior exponentially fast. For illustration purposes we concentrate on the eigen-
functions at −∞. We set u(x) = µ(x)e±ikx−1 where the ± is chosen when µ ∽ e∓ikx.
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Then u(x) satisfies the ODE

uxx ∓ 2ikux + q0(u+ 1) = 0, u(±∞) = u′(±∞) = 0.

The Chebyshev collocation method in Appendix B is used to solve this equation
on (−L, 0] for each choice of ±. The same ideas apply to the eigenfunctions whose
behavior is specified at +∞. We solve for these on [0, L). We enforce the boundary
condition at ±L. As in the case of the modified KdV equation, matching the solutions
at the origin produces an approximation of the reflection coefficient.

• Computing {κ1, . . . , κn}.
Calculating these values is equivalent to calculating the L2(R) eigenvalues of the
operator ∂2x + q0(x) [3]. Through the transformation x = 2 tan(y/2) we map the
original ODE to the interval [−π, π]. This is well defined because of the decay of q0.
If m(y) = µ(2 tan(y/2)) and Q(y) = q0(2 tan(y/2)), then m satisfies the problem

cos2(y/2)
(

cos2(y/2)my

)

y
+Q(y)m = λm, λ = −k2, m(x) = m(x+ π). (6.2.1)

Define Ck
p ([a, b]) = {f ∈ Ck([a, b]) : f (j)(a) = f (j)(b), 0 ≤ j ≤ k}. To show the

equivalence of this problem with solving the original scattering problem we have the
following lemma.

Lemma 6.2.1. Assume q0(x) ∈ S(R) and m ∈ C2
p([−π, π]) solves (6.2.1) with λ > 0

then µ(x) = m(2 arctan(x/2)) is an L2 eigenfunction of ∂2x + q0(x). Furthermore, all
L2 eigenfunctions for ∂2x + q0(x) can be found this way.

Proof. The behavior of the coefficients of (6.2.1) at ±π forces m(±π) = 0. Also, m
is Lipschitz with constant C = supy∈[−π,π] |m′(y)|. Therefore

|m(y)−m(±π)| ≤ C|y ∓ π| ⇒ |m(y)| ≤ C|y ∓ π|.

Using the asymptotic expansion of 2 arctan(x/2) we see that

|µ(x)| ≤ min{C|2 arctan(x/2)− π|, C|2 arctan(x/2) + π|} ≤ C ′/(1 + |x|),

for a new constant C ′. This shows µ is an L2 eigenfunction. Now assume that µ
is an L2 eigenfunction of the operator ∂2x + q0(x). We know that λ > 0 and µ ∽

exp(−
√
λ|x|) as |x| → ∞ [3]. Since q is smooth µ must be smooth and µ(2 tan(y/2))

is a C2
p([−π, π]) solution of (6.2.1). Therefore these eigenvalues and eigenfunctions

are in direct correspondence.

Applying the spectrum approximation techniques in [22] to (6.2.1) allows us to obtain
{κ1, . . . , κn} with spectral accuracy.

• Computing {C1, . . . , Cn}.
As mentioned above, all poles of ρ(k) = b(k)/a(k) are simple. Since the above method
for calculating ρ(k) gives a method for computing b(k) we reduce the problem to
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computing a′(κj). We use the relationship [3]

a′(κj) =
1

ib(κj)

∫

R

µ(x;κj)
2dx,

where µ is the eigenfunction of the operator ∂x + q0(x) with eigenvalue λ = κ2j
such that µ ∽ exp(−|λx|) as |x| → ∞. This is evaluated using Clenshaw–Curtis
quadrature.

6.2.2 Numerical solution of the inverse problem

The dispersive region

We proceed as in the case of the modified KdV equation. Assume we performed the
deformation in Remark 6.0.16 to introduce small circles around each pole. Examining the
exponent, exp(2iκjx+8iκ3j t), and further recalling that κj ∈ iR+, we see that the exponent
is unbounded in this region. Following the approach in [60] we define

Φ1,d(k) =











































Φ(k)

[

1 −(k − κj)/(Cje
θ(k0))

Cje
θ(k0)/(k − κj) 0

]

Q(k), if |k − κj | < ǫ,

Φ(k)

[

0 −Cje
θ(k0)/(k + κj)

(k + κj)/(Cje
θ(k0)) 1

]

Q(k), if |k + κj | < ǫ,

Φ(k)Q(k), otherwise,

for

Q(k) =

[ ∏n
j=0(k − κj)/(k + κj) 0

0
∏n

j=0(k + κj)/(k − κj)

]

.

Note that the matrix
[

1 −(k − κj)/(Cje
θ(k0))

Cje
θ(k0)/(k − κj) 0

]

Q(k)

has a removable pole at κj and Φ1,d still tends to the identity at infinity. Recall A±
j = {k ∈

C : |k∓ κj | = ǫ} where Aj+ has counter-clockwise orientation, and A−
j clockwise. Further

ǫ is chosen small enough so that the A±
j do not intersect any other contour. We compute



6.2. THE KORTEWEG–DE VRIES EQUATION 159

the jumps of Φ1,d:

Φ+
1,d(k) =











































Φ−
1,d(k)Q

−1(k)G(k)Q(k), if k ∈ R,

Φ−
1,d(k)Q

−1(k)

[

1 −(k − κj)/(Cje
θ(k0))

0 1

]

Q(k), if k ∈ A+
j ,

Φ−
1,d(k)Q

−1(k)

[

1 0

−(k + κj)/(Cje
θ(k0)) 1

]

Q(k), if k ∈ A−
j ,

Φ1,d(∞) =
[

1 1
]

.

This effectively inverts the exponent and turns exponential blowup into decay to the iden-
tity. This demonstrates that the solitons exhibit exponential decay. To simplify the nota-
tion, define

T+(k, j;x, t) =

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, T−(k, j;x, t) =

[

1 −Cje
θ(κj)/(k + κj)

0 1

]

,

S+(k, j;x, t) =

[

1 −(k − κj)/(Cje
θ(κj))

0 1

]

, S−(k, j;x, t) =

[

1 0

−(k + κj)/(Cje
θ(κj)) 1

]

.

As before, the ‘ghost’ contours introduced in Figure 6.1(a) pass along the directions of
steepest descent. We define a new matrix function Φ2,d based on these regions. Notice
that the new definitions still satisfy the normalization condition at infinity. We compute
the jumps that Φ2,d satisfies to phrase a RHP for Φ2,d, see Figure 6.1(b). Throughout the
figures in this section, the dot inside the circles with jumps T± or S± represent ±κj .

We decompose G into its LDU and MP factorizations and deform the jump contour
off R as we did in Section 6.1.2. However, there is a significant difference: if we examine
the matrix D, we see that there is a singularity at the origin, since generically ρ(0) = −1
[3]. We need to remove this singularity in order to represent the solution by Chebyshev
polynomials. Additionally, we need to remove the contour on (−k0, k0) to attain asymptotic
stability as mentioned in Section 6.1.2 using ∆ in Section 3.4.1. We proceed in the same way
and arrive at the RHP in Figure 6.2.2, noting that the circles (corresponding to solitons)
and presence of the matrix Q are the only aspects that are different.

Remark 6.2.2. We assumed that ρ(0) = −1. If it happens that |ρ(0)| < 1 then the
deformations reduce to those done for the modified KdV equation but now in the (possible)
presence of solitons. Numerical results show that this can happen when an initial condition
for the KdV equation is obtained through the Miura transformation, see Section 6.2.4.
In this case, the deformations for the dispersive, Painlevé and soliton regions cover the
(x, t)-plane.

The Painlevé region

As in the case of the modified KdV equation, for x > 0 we have an intersection with the
soliton region defined below. We use that deformation. The final deformation for the KdV
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Figure 6.2.1: (a) Jump contours and matrices for the initial RHP with ‘ghost’ contours,
(b) Jump contours and matrices for the RHP satisfied by Φ2,d.
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Figure 6.2.2: A zoomed view of the jump contours and matrices for the RHP in the
dispersive region of the KdV equation. Note that the contours with jumps ∆Q−1UQ∆1

and ∆Q−1LQ∆1 connect.
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Figure 6.2.3: The jump contours and matrices for the RHP in the Painlevé Region with
x < 0.

equation when x < 0 is nearly the same as in the case of the modified KdV equation, see
Figure 6.2.3.

The collisionless shock region

The singularity at k = 0 in the matrix D(k) destroys the boundedness of ∆(k; k0) which
poses problems that do not occur for the modified KdV equation. As k → 0 the matrices
∆Q−1PQ∆−1 and ∆Q−1MQ∆−1 are unbounded and we cannot link up the dispersive
region with the Painlevé region, as we did for the modified KdV equation. By choosing
C large we can make the dispersive and Painlevé regions overlap up to some finite t. We
wish to obtain a method which is stable for large t. We need to introduce additional
deformations to bridge the dispersive and Painlevé regions. The first region we address is
the collisionless shock region. Ablowitz and Segur [5] introduced this region, and Deift,
Zhou and Venakides derived the needed deformations [39].

The results presented below for this region are from [39]. As x increases in the dispersive
region, the saddle points of exp θ, ±k0, approach the singularity (k = 0) of the parametrix
∆. To prevent this, we replace θ by a so-called g-function [32], whose saddle points, after
scaling, do not approach a singularity. For b > a > 0, we determine constants D1, D2

so that there exists a function g(k) which is bounded in the finite plane and satisfies the
following properties:

g−(k) + g−(k) =

{

D1 if k ∈ (−b,−a),
−D1 if k ∈ (a, b),

g+(k)− g−(k) = D2, k ∈ (−a, a),
g(k) analytic in k off [−b, b],
g(k) has saddle points at ±(a, b),

g(k) ∽ 4k3 − 12k as k → ∞.

The constants D1 and D2 depend on a and b and have desired properties to scale away
singularities. These will be determined below. Also, once all these constants are fixed, g
is uniquely determined.
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Remark 6.2.3. For the KdV equation, g can be determined explicitly (Section 6.4) but it
is more instructive to introduce it as above. It is more convenient to compute it numerically
from this formulation since the method in [88] is easily adapted to ensure spectral accuracy.

Define the function γ(k) = −iτ [4k3 − 12k − g(k)], τ = tk30 and construct

φ(k) =

[

eγ(k) 0

0 e−γ(k)

]

→ I as k → ∞.

It is advantageous to introduce a scaling operator, ∽, defined by f̃(·;x, t) = f(k0·;x, t)
and solve for Φ̃(k). For k ∈ R the jump satisfied by Φ̃(k)φ(k) is φ−1

− (k)G̃(k)φ+(k). This
assumes the absence of solitons, otherwise we replace G by Q−1GQ. Explicitly

φ−1
− (k)G̃(k)φ+(k) =

[

[1− ρ(k0k)ρ(−k0k)]eγ
+(k)−γ−(k) −ρ(−k0k)e−θ(k0k)−γ+(k)−γ−(k)

ρ(k0k)e
θ(k0k)+γ+(k)+γ−(k) e−γ+(k)+γ−(k)

]

.

Note that θ(k0k) = 2ik0kx+ 8ik30k
3t = 2iτ(−12k + 4k3), and γ satisfies

γ+(k)− γ−(k) = iτ(g+(k)− g−(k)) = 0 for k 6∈ [−b, b],
γ+(k) + γ−(k) = iτ(g+(k) + g−(k))− θ(k0k) → 0 as k → ∞.

We write

φ−1
− (k)G̃(k)φ(k)+ =























































































































































[

1− ρ(k0k)ρ(−k0k) −ρ(−k0k)e2iτg(k)
ρ(k0k)e

2iτg(k) 1

]

,

if k ∈ (−∞,−b),
[

[1− ρ(k0k)ρ(−k0k)]eiτ(g
+(k)−g−(k)) −ρ(−k0k)e−C1

ρ(k0k)e
C1 eiτ(−g+(k)+g−(k))

]

,

if k ∈ (−b,−a),
[

[1− ρ(k0k)ρ(−k0k)]eC2 −ρ(−k0k)eiτ(−g+(k)−g−(k))

ρ(k0k)e
iτ(g+(k)+g−(k)) e−C2

]

,

if k ∈ [−a, a],
[

[1− ρ(k0k)ρ(−k0k)]eiτ(g
+(k)−g−(k)) −ρ(−k0k)eC1

ρ(k0k)e
C1 eiτ(−g+(k)+g−(k))

]

,

if k ∈ (a, b),

[

1− ρ(k0k)ρ(−k0k) −ρ(−k0k)e−2iτg(k)

ρ(k0k)e
2iτg(k) 1

]

,

if k ∈ [b,∞),

(6.2.2)

where C1/iτ = g+(k) + g−(k) for k ∈ [a, b] and C2/iτ = g+(k) − g−(k) for k ∈ [−a, a].
This successfully removes θ from the problem. As in the dispersive region, we proceed to
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factor G̃ = L̃D̃Ũ on [−a, a]. Again, D̃ has a singularity at the origin that we must remove.
Before we remove this singularity let us analyze the system in the limit as k0 → 0 as this
will guide the choice of the parametrix and the constants C1 and C2. On the interval
[−a, a] we have

φ−1
− (k)D̃(k)φ+(k) =

[

[1− ρ(k0k)ρ(−k0k)]eC2 0

0
(

[1− ρ(k0k)ρ(−k0k)]eC2
)−1

]

.

Using ρ(0) = −1 and the analyticity of ρ(k) neighborhood of the origin, we obtain that
1 − ρ(k0k)ρ(−k0k) = 2νk2k20 + O((kk0)

4) near k = 0 for some constant ν. We left
b > a > 0 mostly arbitrary above. It follows (Section 6.4) that the boundedness con-
dition along with the prescribed asymptotic behavior requires a2 + b2 = 2, leaving a single
degree of freedom. We use this degree of freedom to enforce k20 exp(C2) = 1, so that
(1 − ρ(k0k)ρ(−k0k)) exp(C2) ∽ 2νk2 + O(k20k

4). Removing, to second order, the depen-
dence on k0. To see that there does exist an a that satisfies this condition, we refer to the
explicit construction of g in Section 6.4. As k, k0 → 0 there is a constant C > 1 so that

1

C
≤ 1− ρ(k0k)ρ(−k0k)

k2
eC2 ≤ C, for k ∈ [−a, a].

Thus, to obtain a local parametrix, we should solve the RHP

ψ+(k) = ψ−(k)φ
−1
− (k)D̃(k)φ+(k), k ∈ (−a, a), ψ(∞) = I.

This diagonal RHP can be solved explicitly using the method in Section 3.4.1. We conjugate
the problem by ψ in the same way as was done with ∆ in Section 6.2.2.

The full deformation for this region now follows. We lens the scaled problem into the
form shown in Figure 6.4(a). Near a, b the jumps on the contours are also given there.
Define Φ2,cs = Φ1,csφ. Near a, b, Φ2,cs satisfies the problem shown in Figure 6.2.5. We
conjugate by the local parametrix , defining Φ3,cs = Φ2,csψ

−1. See Figure 6.2.5 for the
RHP near a, b for Φ3,cs. By symmetry, what happens at −a,−b is clear. More work is
necessary. Define the two functions βm and βp via diagonal RHPs

β+m(k) = β−m(k)(φ−1
− D̃φ+)

−1, k ∈ (−b,−a), βm(∞) = I,

β+p (k) = β−p (k)(φ
−1
− D̃φ+)

−1, k ∈ (a, b), βm(∞) = I.

For the final deformation define

Φ4,cs =























Φ3,csφ
−1 inside the circle centered at −b,

Φ3,csβm inside the circle centered at −a,
Φ3,csβp inside the circle centered at a,
Φ3,csφ

−1 inside the circle centered at b,
Φ3,cs otherwise.

It follows that Φ4,cs solves the RHP shown in Figure 6.2.6.

Remark 6.2.4. Note that s = 0 when k0 = 1 or x = −12t and we switch to the dispersive
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Figure 6.2.4: (a) The initial deformation of the RHP in the collisionless shock region for a
function Φ1,cs. (b) The initial jump contours and matrices near a, b.
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Figure 6.2.5: (a) The jump contours and matrices for the RHP for Φ2,cs near a, b, (b) The
jump contours and matrices for the RHP for Φ3,cs near a, b.
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Figure 6.2.6: A zoomed view of the jump contours and matrices of the final deformation
of the RHP in the collisionless shock region.

region. This switch is continuous in the sense that s = 0 ⇒ a = b = 1 and φ is the identity.
The deformation automatically reduces to the deformation in the dispersive region. On the
other side of the region, the curve defined by 82/3 = − log k20/τ lies to the right of the curve
defined by x = −(3t)1/3 log(t)2/3. In the next section we address what happens as the curve
defined by 82/3 = − log k20/τ is approached.

The transition region

While the collisionless shock region has extended the values of (x, t) for which there exists
a well-behaved RHP past that of the dispersive region, it is not asymptotically reliable as
we approach the Painlevé region: as |x| decreases, a approaches the singularity of the local
parametrix at zero. To avoid this issue, we collapse the lensing. To maintain numerical
accuracy, we choose a to ensure that the oscillations are controlled on [−b, b]. For simplicity
let x = −t1/3R(t), where

lim
t→∞

R(t)

log(t)2/3
= 0, and lim

t→∞
R(t) = ∞.

Given a positive bounded function f(x, t), we choose a so that

iτ(g+(k) + g−(k)) = if(x, t), k ∈ [a, b], (6.2.3)

which implies

iτ(g+(k) + g−(k)) = −if(x, t), k ∈ [−b,−a].
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In light of (6.4.3) this is equivalent to solving

f(x, t)/τ = 24

∫ a

0

√

(a2 − p2)(b2 − p2)dp, (6.2.4)

for a and b. By adjusting f this can be solved since the right-hand side is a monotone
function of a, under the constraint a2 + b2 = 2, which increases from 0 to 16 as a increases
from 0 to 1. Furthermore, τ → ∞ in this region.

The RHP, after conjugation by φ, is of the form (6.2.2) and we claim that all entries of
the matrices in (6.2.2) are bounded and the oscillations are controlled. In choosing (6.2.3)
we have that |iτ(g+(k)+g−(k))| ≤ f(x, t) on [−b, b] which implies that the (1, 2) and (2, 1)
components of the matrix have controlled oscillations and are bounded. Next, consider
iτ(g+(k)− g−(k)). The choice (6.2.3) implies

h(x, t)/τ = 24

∫ b

a

√

(p2 − a2)(b2 − p2)dp, (6.2.5)

for a positive function h such that 1/C < h(x, t)/τ+f(x, t)/τ < C, C > 1. This comes from
the fact that both (6.2.5) and (6.2.4) cannot vanish simultaneously. Since f is chosen to be
bounded, h = O(τ) and τ = O(R3/2(t)). Using these facts along with k20 = O(R(t)/t2/3)
we obtain

lim
t→∞

e−h(x,t) = 0, lim
t→∞

k20e
h(x,t) → 0.

This shows that the (1, 1) and (2, 2) components of the matrices in (6.2.2) are bounded.
These matrices are stable asymptotically for numerics without any lensing on [−b, b]. After
lensing on (−∞,−b) ∪ (b,∞) we obtain a RHP for Φ1,t, see Figure 6.7(a). Define Φ2,t =
Φ1,tφ and refer to Figure 6.2.8 for the jump contours and jump matrices of the RHP for
Φ2,t near a, b. Finally, define

Φ3,t =

{

Φ2,tφ
−1 inside the circles centered at ±b,±a,

Φ2,t otherwise.

Refer to Figure 6.2.9 for the jump contours and jump matrices of the final RHP in the
transition region.

The soliton region

This is the region where x > 0, x = O(t). We present a deformation that is very similar
to that used for the modified KdV equation. We use the G = MP factorization, and the
only complication arises from dealing with the jumps on A±

j . As |k0| increases, the line

Im k =
√
3|k0| eventually overtakes the circles, corresponding to solitons, or to the poles

in the RHP. This means that we need to invert the exponentials on some of these circles
but not on others. We illustrate this process. Define

Qk0 =

[

∏

|κj |<
√
3|k0|(k + κj)/(k − κj) 0

0
∏

|κj |<
√
3|k0|(k − κj)/(k + κj)

]

.
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Figure 6.2.7: (a) The jump contours and matrices of the RHP for Φ1,t. (b) The jump
contours and matrices of the RHP for Φ1,t near a, b.
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Figure 6.2.8: The jump contours and matrices of the RHP for Φ2,t near a, b.
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Figure 6.2.9: A zoomed view of the jump contours and matrices of the final deformation
of the RHP in the transition region.

This matrix allows us to change the matrix T± to S± as we did in Section 6.2.2 for just
those of the A±

j such that |κj | <
√
3|k0|. Again we use a function 0 ≤ α(x, t) <

√
3|k0|.

The reader is referred to Figure 6.2.10 for the final deformation.
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Figure 6.2.10: The final deformation of the RHP in the soliton region for the KdV equation.
The solution to this problem contains two solitons to illustrate when T± needs to be
replaced with S±.

6.2.3 Numerical results

As in Section 6.1.3 we scale and truncate the contours appropriately and q(n, x, t) is defined
to be the solution obtained with n collocation points on each contour.
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Direct scattering

As a test case to verify the computed reflection coefficient we use an exact form given in
[42]. If q(x, 0) = A sech2(x) then

ρ(k) =
a(k)Γ(c̃(k))Γ(c̃(k)− ã(k)− b̃(k))

Γ(c̃(k)− ã(k))Γ(c̃(k) − b̃(k))
, a(k) =

Γ(ã(k))Γ(b̃(k))

Γ(c̃(k))Γ(ã(k) + b̃(k)− c̃(k))
,

ã(k) = 1/2− ik + (A+ 1/4)1/2, b̃(k) = 1/2 − ik − (A+ 1/4)1/2, c̃(k) = 1− ik,

where Γ is the Gamma function [84]. If A > 0 the set of poles is not empty. The poles are
located at

κj = i((A + 1/4)1/2 − (j + 1/4)), j = 1, . . . while ((A+ 1/4)1/2 − (j + 1/4)) > 0,

and the corresponding residues Cj are computed from the expression for ρ. Figure 6.11(a)
shows the error between this relation and the computed reflection coefficient when A = 2.4
for a varying number of collocation points.
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Figure 6.2.11: Numerical computation of the reflection coefficient ρ(k) with q(x, 0) =
2.4 sech2(x). (a) Absolute error between computed and actual reflection coefficient plotted
vs. k when the number of collocation points is 25 (dotted), 50 (dashed) and 100 (solid),
(b) Plot of the computed reflection coefficient with 100 collocation points. The real part
is shown as a curve and the imaginary part as a dashed graph.

Inverse scattering

As before, throughout this section we assume the reflection coefficient is obtained to ma-
chine precision.

1. Convergence. To analyze error we again use

Qm
n (x, t) = |q(n, x, t)− q(m,x, t)|.

See Figure 6.2.12 for a demonstration of spectral convergence with all deformations.
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Figure 6.2.12: Demonstration of spectral convergence for the KdV equation with q(x, 0)
shown in Figure 6.2(a). All plots have Qn

2m(x, t) plotted as a function of n as n ranges
from 2 to m. (a) The Dispersive Region: m = 50 at the point (x, t) = (−10, 1/2), (b) The
Collisionless Shock Region: m = 30 at the point (−9.86, 2.8), (c) The Transition Region:
m = 40 at the point (−3.12, 7.), (d) The Painlevé Region: m = 50 at the point (−2.76, 7),
(e) The Painlevé Region: m = 80 at the point (2.76, 7), (f) The Soliton Region: m = 90
at the point (1.2, .1). The smallest errors achieved in (b) and (c) are greater than in the
other plots due to errors accumulating from the larger number of functions computed to
setup the corresponding RHP.
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2. Asymptotic Stability. As mentioned before, for the method to be stable we need that
for a given n and m, Qm

n (x, t) should remain bounded (and small) as |x|+ |t| becomes
large. Again, what we numerically demonstrate is that Qm

n (x, t) tends to zero in all
regions. See Figure 6.2.13 for the demonstration of this. As mentioned before, we
expect Qm

n (x, t) to approach zero only when the solution approaches zero.
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Figure 6.2.13: Demonstration of asymptotic stability for the KdV equation with q(x, 0)
shown in Figure 6.2(a). All plots have Qn

m(x, t) plotted as a function of |x| + |t|. (a) The
Dispersive Region: m = 16, n = 8 along the trajectory x = −20t, (b) The Collisionless
Shock Region: m = 20, n = 20 along the trajectory x = −4(3t)1/3 log(t)2/3. (c) The
Transition Region: m = 16, n = 8 along the trajectory x = −(3t)1/3 log(t)1/6, (d) The
Painlevé Region: m = 16, n = 8 along the trajectory x = −t1/3, (e) The Painlevé Region:
m = 32, n = 16 along the trajectory x = t1/3, (f) The Soliton Region: m = 32, n = 16
along the trajectory x = 4t− 2.3, in order to track the soliton. We do not expect the error
to decay to zero when the solution does not.

Comparison with asymptotic formulae

In this section we compare our numerics with the asymptotic formulae for the KdV equa-
tion. We skip the soliton region because the numerics limit to the linear system related
to the soliton solutions exponentially fast. We also skip the transition region because, as
mentioned before, no asymptotic results are known. As before, we emphasize that in view
of the verified convergence, the numerical results are believed to be more accurate than
the asymptotic results.

1. The Dispersive Region. Numerical results are compared with the asymptotic formula
(6.0.16) in Figure 6.2.14. The difference between the numerical approximation and
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the asymptotic approximation is of the correct order.
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Figure 6.2.14: Numerical asymptotics in the dispersive and Painlevé regions for the KdV
equation. (a) The Dispersive Region: q(10, x, t) and R(x, t) plotted as a function of t with
x = −20t. R(x, t) is defined in (6.0.16). Solid: Computed solution, Dots: Asymptotic
formula, (b) The Dispersive Region: |q(10, x, t) − R(x, t)| plotted as function of t with
x = −20t. A least-squares fit gives |q(10, x, t) − R(x, t)| = O(t−1.1), (c) The Painlevé
Region: q(10, x, t) and U(x, t) plotted as a function of t with x = −t1/3. U(x, t) is defined
in (6.0.14). Solid: Computed solution, Dots: Asymptotic formula, (d) The Painlevé Region:
|q(10, x, t) − U(x, t)| plotted as a function of t with x = −t1/3. A least-squares fit gives
|q(10, x, t) − U(x, t)| = O(t−0.99) which is in agreement with the error bound.

2. The Painlevé Region. Numerical results are compared with the asymptotic formula
in (6.0.14) in Figure 6.2.14. As before, we use the Riemann–Hilbert based techniques
in Chapter 8 to compute v.

3. The Collisionless Shock Region. Numerical results are compared with the W from
(6.0.15) in Figure 6.2.15. From Figure 6.15(b) we estimate the amplitude of the
solution to be on the order of |x|/t. This allows us to estimate relative error, Fig-
ure 6.15(c). We see the relative error is on the order of (log t)−2/3 along the trajectory
x = 4(3t)1/3(log t)2/3. Numerically, in absolute error

q(x, t)−W (x, t) = O
( |x|
t
(log t)−2/3

)

.
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Since there is not an error bound present in [39] we conjecture

q(x, t)−W (x, t) = O(t−2/3) as t→ ∞, x = C(3t)1/3(log t)2/3, C > 0. (6.2.6)

200 400 600 800 1000

-0.05

0.00

0.05

t

q

(a)

100 1000 104 105 106 107
10-6

10-5

10-4

0.001

0.01

t

q

(b)

100 1000 104 105 106 107

0.010

0.100

0.050

0.020

0.200

0.030

0.015

0.150

0.070

t

R
el

at
iv

eE
rr

or

(c)

Figure 6.2.15: Numerical asymptotics in the collisionless shock region for the KdV equa-
tion. (a) q(10, x, t) andW (x, t) plotted as a function or t with x = 4(3t)1/3(log t)2/3. Solid:
Computed solution, Dots: Computed solution to (6.0.15), (b) Confirmation that the ampli-
tude is on the order of |x|/t along the same trajectory. Dots: Computed solution, Dashed:
t 7→ −x/(12t), (c) Confirmation that the relative error is on the order of (log t)−2/3. Solid:
t 7→ |q(10, x, t) −W (x, t)|/(|x|/t), Dashed: t 7→ (log t)−2/3, along the same trajectory.

Remark 6.2.5. In the collisionless shock region we compute the asymptotic expres-
sion by directly solving the limiting RHP numerically, instead of using the formula
given in [39]. In our numerical experiments, this formula did not agree with Fig-
ure 6.15(a). This discrepancy will be explored further in a future paper.

6.2.4 Miura transformation

Assume q satisfies the defocusing version of the modified KdV equation (6.0.2) then u =
−q2 − qx satisfies the KdV equation (6.0.1). This is the well-known Miura transformation
[80]. The numerical approach used here allows for qx to be computed in a straightforward
way, by essentially differentiating the linear system resulting from the collocation method
for RHPs [87]. In Figure 6.2.16 we use the Miura transformation to check the consistency of
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our numerics for q(x, 0) = −1.3 sech2(x). As expected, the evolution of the KdV equation
and the Miura transformation of the modified KdV equation coincide. The error in Figure
6.16(f) could be made much smaller, as the above convergence results indicate. The figure
is not meant to estimate the rate of convergence but to just demonstrate that the absolute
difference between two solutions does decrease as we increase the number of collocation
points.

6.3 Uniform approximation of solutions of the modified KdV

equation

In this section we prove asymptotic stability for the numerical solution of the modified
KdV equation (6.0.2) for x < 0. The analysis presented below demonstrates the ease at
which the ideas in Chapter 5 can be applied in certain situations.

Recall, the RHP for the modified KdV equation is

Φ+(s) = Φ−(s)G(s), s ∈ R, Φ(∞) = I,

G(k) =

[

1− ρ(k)ρ(−k) −ρ(−k)e−θ(k)

ρ(k)eθ(k) 1

]

,

θ(k) = 2ikx+ 8ik3t.

In the cases we consider ρ is analytic in a strip that contains R. If x ≪ −ct1/3 the
deformation is similar to the case considered in the following chapter for Painlevé II and
asymptotic stability follows by the same arguments. We assume x = −12c2t1/3 for some
positive constant c. This deformation is found in [110]. We rewrite θ:

θ(k) = −24ic2(kt1/3) + 8i(kt1/3)3.

We note that θ′(k0) = 0 for k0 = ±
√

−x/(12t) = ±ct−1/3. We introduce a new variable
z = kt1/3/c so that

θ(zct−1/3) = −24ic3z + 8ic3z3 = 8ic3(z3 − 3z).

For a function of f(k) we use the scaling f̃(z) = f(zct−1/3). The functions θ̃, G̃ and ρ̃ are
identified similarly. After deformation and scaling, we obtain the following RHP for Φ̃(z):

Φ̃+(s) = Φ̃−(s)J(s), s ∈ Σ = [−1, 1] ∪ Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

J(z) =



























G̃(z), if z ∈ [−1, 1],
[

1 0

ρ̃(z)eθ̃(z) 1

]

, if z ∈ Γ1 ∪ Γ2,
[

1 −ρ̃(−z)e−θ̃(z)

0 1

]

, if z ∈ Γ3 ∪ Γ4,

where Γi, i = 1, 2, 3, 4, shown in Figure 6.3.1, are locally deformed along the path of
steepest descent. To reconstruct the solution to the modified KdV equation we use the
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Figure 6.2.16: Numerical demonstration of the consistency of the numerical methods for
the KdV equation and the modified KdV equation through the Miura transformation.
(a) Initial condition for the modified KdV equation, q(x, 0) = q0(x) = −1.3 sech2(x), (b)
Initial condition for the KdV equation, q(x, 0) = −q20(x) − d

dxq0(x), (c) Evolution using
the modified KdV equation at t = .75, (d) Evolution using the KdV equation at t = .75,
(e) Solid: Evolution using the KdV equation at t = .75, Dots: Miura transformation of
the evolution using the modified KdV equation at t = .75. (f) Absolute difference between
the Miura transformed the modified KdV equation and the KdV equation. We vary the
number of collocation points per contour, m. Dotted: m = 5, Dashed: m = 10, Solid:
m = 40. The jumps in the error are caused by switching deformations.



178 CHAPTER 6. THE KDV AND MKDV EQUATIONS

formula

u(x, t) = 2ik0 lim
z→∞

zΦ̃12(z). (6.3.1)

Remark 6.3.1. We assume ρ decays rapidly at ∞ and is analytic in a strip that contains
the real line. This allows us to perform the initial deformation which requires modification
of the contours at ∞. As t increases, the analyticity requirements on ρ are reduced; the
width of the strip can be taken to be smaller if needed. We only require that each Γi lies
in the domain of analyticity for ρ̃. More specifically, we assume t is large enough so that
when we truncate the contours for numerical purposes using Proposition 3.10.4, they lie
within the strip of analyticity for ρ̃.

Figure 6.3.1: Jump contours for the RHP for the modified KdV equation.

The parametrix derived in [34] is used to show that C[J,Σ] has an inverse that is
uniformly bounded by using (5.2.1) as was done in the previous section. We use the
analyticity and decay of ρ at ∞ along with the fact that the contours pass along the paths
of steepest descent.

The contour is fixed (i.e., independent of x, t and c), and this situation is more straight-
forward to analyze than the previous example. Repeated differentiation of J(k) proves
that this deformation yields a uniform numerical approximation. Furthermore, replacing
c by any smaller value yields the same conclusion. This proves the uniform approximation
of the modified KdV equation in the Painlevé region

{(x, t) : t ≥ ǫ, x ≤ −ǫ, x ≥ −12c2t1/3}, ǫ > 0.

where ǫ is determined by the analyticity of ρ.

6.3.1 Numerical results

In Figure 6.3.2 we show the solution with initial data u(x, 0) = −2e−x2
with c =

√

9/4.
The reflection coefficient is obtained using the method described in [110]. We use the
notation u(n, x, t) to denote the approximate solution obtained with n collocation points
per contour. We see that the absolute error tends to zero rapidly. More importantly,
the relative error remains small. We approximate the solution uniformly on the fixed,
scaled contour. When we compute the solution using (6.3.1) we multiply by z0 which is
decaying to zero along this trajectory. This is how the method maintains accuracy even
when comparing relative error.
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Figure 6.3.2: (a) Plot of the solution along x = −(3t)1/3 for small time. (b) Absolute error,
|u(5, x, t) − u(10, x, t)|, for long time (c) Relative error |u(5, x, t) − u(10, x, t)|/|u(10, x, t)|
for long time.

6.4 The collisionless shock g-function

We give the explicit form of g from Section 6.2.2. Restricting to a2+b2 = 2, the expression

s = 24

∫ b

a

√

(p2 − a2)(b2 − p2)dp, τ = tk30, s = − log k20/τ ∈ [0, 82/3],

defines both a(s) and b(s) since it is a monotone function of a. Define the g-function to be

g(k) = 12

∫ k

b(s)

√

(p2 − a2(s))(p2 − b2(s))dp + 12

∫ a(s)

0

√

(p2 − a2(s))(p2 − b2(s))dp,

(6.4.1)

we choose the branch cuts for
√

(p2 − a2(s))(p2 − b2(s)) to be the straight line segments
along [−b(s),−a(s)] and [a(s), b(s)]. In order for g to be single-valued it is necessary to
add a branch cut on [−a(s), a(s)].

Lemma 6.4.1. The g-function given by (6.4.1) satisfies:

1. g is bounded in the finite plane,

2.

g+(k) − g−(k) =























24
∫ k
b(s)

√

(p2 − a2(s))(p2 − b2(s))dp, if k ∈ [a(s), b(s)],

24
∫ a(s)
b(s)

√

(p2 − a2(s))(p2 − b2(s))dp, if k ∈ (−a(s), a(s)),
24
∫ k
−b(s)

√

(p2 − a2(s))(p2 − b2(s))dp, if k ∈ [−b(s),−a(s)],
0, otherwise,

(6.4.2)
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3.

g+(k) + g−(k) =



















24
∫ a(s)
0

√

(p2 − a2(s))(p2 − b2(s))dp, if k ∈ [a(s), b(s)],

24
∫ k
0

√

(p2 − a2(s))(p2 − b2(s))dp, if k ∈ (−a(s), a(s)),
24
∫ −a(s)
0

√

(p2 − a2(s))(p2 − b2(s))dp, if k ∈ [−b(s),−a(s)],
2g(k), otherwise,

(6.4.3)

4.

g(k) = 4k3 − 12k +O(k−1) as k → ∞,

5.

k20e
iτ(g+(k)+g−(k)) = 1, for k ∈ (−a(s), a(s)).

Proof. (1) is clear from (6.4.1). (2) and (3) follow from contour integration and the fact
that the integrand is invariant under p 7→ −p. To prove (4) we look at the expansion of
the integrand

12
√

(p2 − a2(s))(p2 − b2(s)) = 12p2
√

(1− (a(s)/p)2 − (b(s)/p)2 − (a(s)/p)2(b(s)/p)2).

We use

√

1− y = 1− 1

2
y − 1

8
y2 + . . . ,

to obtain (for large p)

12
√

(p2 − a2(s))(p2 − b2(s)) = 12p2(1− (a(s)/p)2 − (b(s)/p)2) +O(p−2).

After integrating this we find

f(k) =

∫ k

a(s)

√

(p2 − a2(s))(p2 − b2(s))dp = 4k3 − 6(a2(s) + b2(s))k + C +O(k−1),

for some complex constant C. To find C notice that f(k) is the sum of a constant and odd
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powers of k,

f(k) + f(−k) = 2C,

=

∫ k

a(s)

√

(p2 − a2(s))(p2 − b2(s))dp+

∫ −k

a(s)

√

(p2 − a2(s))(p2 − b2(s))dp

=

∫ k

a(s)

√

(p2 − a2(s))(p2 − b2(s))dp+

∫ −a(s)

k

√

(p2 − a2(s))(p2 − b2(s))dp

= −
∫ a(s)

−a(s)

√

(p2 − a2(s))(p2 − b2(s))dp

= −2

∫ a(s)

0

√

(p2 − a2(s))(p2 − b2(s))dp.

Therefore g(k) ∽ 4k3 − 12k + O(k−1), where we used a2(s) + b2(s) = 2. Finally, for (5)
assume k ∈ (−a(s), a(s)),

− log k20/τ = 24

∫ b(s)

a(s)

√

(p2 − a2(s))(b2(s)− p2)dp,

log k20/τ = 24i

∫ b(s)

a(s)

√

(p2 − a2(s))(p2 − b2(s))dp = i(g+(k)− g−(k)),

k20e
iτ(g+(k)−g−(k)) = 1.

These are all the properties mentioned in Section 6.2.2.

6.5 Comparison with existing numerical methods

We close this chapter with a comparison between the method described above and methods
that exist in the literature. The numerical aspects of dispersion are studied in great detail
in [55, 58]. In these studies the authors invoke fourth-order time-stepping and the Fast
Fourier Transform (FFT) in space. This type of method is very efficient for approximating
the solution of the Cauchy problem for small time and, when only a small time solution is
needed, the method in [58] is surely the method of choice. Approximation for larger time
is complicated by the large velocity and increasingly oscillatory nature of the dispersive
tail. If the dispersive tail reaches the boundary, errors are immediately introduced into the
approximation of the Cauchy problem.

For a quantitative analysis we consider the asymptotic formula for the dispersive tail
of KdV ([39], see also (6.0.16)), which we write as

q(x, t) = t−1/2

√

ν(k0)

3k0
cos(−4/3k0x+ · · · ) +O(t−1),

where ν is a function depending on q0 which decays to zero, at a rate depending on the
regularity of q0. To find the leading edge of the propagating tail, we choose the largest
k′ such that

√

ν(k′)/(3k′) > 10−10. Since k0 depends only on the ratio x/t, we know
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the solution will be greater than machine precision for t < 108 in the neighborhood of
the values of (x, t) such that k′ = k0. We estimate the number of operations required
to compute the solution accurately. Assume the spatial computational domain is [−L,L]
with N equally spaced grid points. We solve from t = 0 to t = T with a time step ∆t.
Since the solution behaves roughly like cos(−4/3k′x) with non-zero amplitude, we need to
use a sufficient number of grid points to at least resolve this frequency, i.e., πN/L ≥ 4/3k′

must be satisfied. Furthermore, using k′ = k0 =
√

−x/(12t) we obtain that the point
(−12tk′2, t) should be in our computational domain if t ≤ T , requiring that L > 12Tk′2.
From these inequalities we obtain

N >
16

π
k′3T. (6.5.1)

To ensure CFL stability of the method we require ∆t = c/N , c ≤ 1 [58]. Since the FFT
costs, on the order of, N logN operations, the number of operations required to evaluate the
spatial derivatives via an FFT is larger than 4N logN . The number of operations required
for the fourth order time–stepper to evolve a point up to time T is greater than 4NTc−1.
This combines to give a total number of operations larger than 16c−1N2T logN which is
O(T 3 log T ). For the initial condition used in Figure 6.0.2 we estimate k′ = 8, which means
that to evolve the solution to T = 30 requires more than 1013 flops, even with c = 1. This
is manageable. However, it become prohibitively expensive very quickly with increasing
T , or for less regular initial conditions so that ν decays slower. The above calculation
is optimistic, since convergence considerations and the presence of the nonlinearity can
further increase the numerical effort required.

Next, we briefly discuss other computational approaches which, just like our own, rely
on the integrability of the equation being solved. Osborne and Boffetta [93, 12] compute
the scattering data using an algorithm in the spirit of the FFT for which they expect
second-order convergence. Our use of spectral methods achieves higher rates of conver-
gence. Additionally, Hald [61] used a trapezoidal method to solve the Gel’fand–Levitan–
Marchenko formulation of the inverse problem. This method lacked spectral accuracy and
the flexibility to deform contours. Bornemann has also computed the solution of the in-
verse problem through the use of Fredholm determinants [14] for t = 0 but this method
suffers from ill-conditioning for t > 0.



Chapter 7

The Focusing and Defocusing

Nonlinear Schrödinger Equations

We consider the initial-value problem on the whole line for the Nonlinear Schrödinger
(NLS) equations

iqt + qxx + 2λ|q|2q = 0, λ = ±1,

q(x, 0) = q0(x) ∈ Sδ(R).
(7.0.1)

When λ = 1 we obtain the focusing NLS equation and for λ = −1, the defocusing NLS
equation. The NLS equations describe physical phenomena in optics [71], Bose–Einstein
condensates [59, 94], as well as water waves [114]. Together with the KdV equation, these
equations are the canonical examples of (1 + 1)-dimensional integrable partial differential
equations. In this chapter we solve the NLS equation, both focusing and defocusing,
numerically via the inverse scattering transform. These results initially appeared in [109].

The presence of an oscillatory dispersive tail is seen for both the focusing and defocusing
NLS equations. Examination of the linear dispersion relationship for the PDEs indicates
that small amplitude waves will travel at a speed proportional to their wave number.
Unlike the KdV equation, solitons do no separate from dispersion asymptotically. These
factors make traditional numerics inefficient to capture the solution for large time. The
computational cost to compute the solution using time-stepping methods grows rapidly in
time. The methods in [55, 58] are well suited for solving dispersive problems for small time.
When a periodic approximation to the whole-line problem is used, one has to resolve the
dispersive oscillations and increase the domain size as time increases. A thorough discussion
of this can be found in Section 6.5 for the case of the KdV equation. In particular, it is
shown that the computational costs grows at least like t3 log t.

The main benefit of the method presented here is that the computational cost to com-
pute the solution at a given x and t value is seen to be independent of x and t. In Chapter 6
this claim is verified with numerical tests for the KdV and modified KdV equations. In
this chapter we prove this fact using results from Section 5.1.

In addition to solving the problem on the whole line, we use symmetries to solve specific
boundary-value problems on R+. To our knowledge this is the first time the solution of

183
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a boundary-value problem has been computed effectively through the inverse scattering
transform . We compute unbounded solutions to the defocusing NLS equation which
have poles. Lastly, we prove that our approximation, under a specific assumption on
the underlying numerical scheme, approximates solutions of (7.0.1) uniformly away from
possible poles in the entire (x, t) plane. It should also be noted that the scattering problem
(see Section 7.1) for the focusing NLS equation is a non-self adjoint spectral problem
and this complicates the asymptotic analysis of the problem [25]. The numerical method
outlined in Chapter 5 is not adversely affected by this additional complication.

7.1 Integrability and Riemann–Hilbert problems

The focusing and defocusing NLS equations are both completely integrable [3, p. 110]. We
look for Lax pairs of the form

µx = L(k, q)µ,

µt =M(k, q)µ,

through the modified Zakharov–Shabat scattering problem (see Section 6.0.3) given by

µx =

[

−ik q
r ik

]

µ, (7.1.1)

µt =

[

A B
C D

]

µ. (7.1.2)

In this case, choosing

A = −4ik2 + iqr, B = 2qk + iqx, C = −2rk + irx, D = −A, (7.1.3)

and r = −λq, we obtain Lax pairs for both the focusing and defocusing NLS equations.

We briefly describe the inverse scattering transform. Some conventions used here differ
from that in Chapter 2 but the unification is easily seen. We retain these conventions for
historical comparisons. The analyticity properties in k of the solutions of (7.1.1) are stud-
ied. For simplicity, we assume q ∈ Sδ(R). Piecewise-smooth initial data with exponential
decay can also be treated but this is beyond the scope of this paper. We define two matrix
solutions of (7.1.1) by their corresponding asymptotic behaviour:

µ−(x; k) ∽

[

e−ikx 0
0 −eikx

]

as x→ −∞, µ+(x; k) ∽

[

e−ikx 0
0 eikx

]

as x→ ∞.

(7.1.4)

Liouville’s Formula implies that the determinants of these solutions are constant in x. Since
the determinants are non-zero at ±∞ these matrix solutions define a linearly independent
set which spans the solution space. There must exist a transition matrix

T (k) =

[

a(k) B(k)
b(k) A(k)

]

,



7.1. INTEGRABILITY AND RIEMANN–HILBERT PROBLEMS 185

such that µ+(x; k) = µ−(x; k)T (k). Define ρ(k) = b(k)/a(k) to be the reflection coefficient.
Some symmetry properties of T follow [3]:

a(k) = −A(k̄), b(k) = −λB(k̄). (7.1.5)

For the focusing NLS equation (λ = 1) there may exist values κj 6∈ R and Imκj > 0 such
that

µ−1 (x;κj) = T (κj)µ
+
2 (x;κj), a(κj) = 0,

where the subscripts refer to columns. This implies that µ−1 (x;κj) decays at both ±∞,
exponentially. Thus, µ−1 (x;κj) is an L

2(R) eigenfunction of (7.1.1). From the symmetries
(7.1.5) κ̄j is also an L2(R) eigenvalue. For these values of k we define the norming constants

Cj =
b(κj)

a′(κj)
.

For the defocusing NLS equation (λ = −1) it is known there are no such eigenfunctions [3].
This implies there are no smooth soliton solutions with spatial decay for the defocusing
NLS equation. We define the set

{

ρ(k), {κj}nj=1, {Cj}nj=1

}

, (7.1.6)

to be the scattering data, noting that the sets of eigenvalues and norming constants could
be empty. As in Chapter 6, the process of finding the scattering data is called direct
scattering.

Remark 7.1.1. We assume q0 ∈ Sδ(R) for δ > 0. This allows T (k) to be analytically
extended to a neighbourhood of the real line. But it may happen that T (k) (in particular
b(k)) cannot be extended above κj . Thus b(κj) is really an abuse of notation and should be
replaced with a constant, bj.

The solutions µ± can be grouped and transformed in such a way that they satisfy a
RHP[3].

The RHP associated with the NLS equations is

Φ+(k) = Φ−(k)

[

1 + λρ(k)ρ(k̄) λρ(k̄)e−θ(k)

ρ(k)eθ(k) 1

]

, k ∈ R

Φ(∞) = I, θ(k) = 2i(xk + 2tk2),

(7.1.7)

with the residue conditions (when λ = 1),

Res{Φ(k), k = κj} = lim
k→κj

Φ(k)

[

0 0

Cje
θ(κj) 0

]

,

Res{Φ(k), k = κj} = lim
k→κj

Φ(k)

[

0 −C̄je
−θ(κ̄j)

0 0

]

.

Once the solution of the RHP is known the solution to the corresponding NLS equations
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is given by the expression

q(x, t) = 2i lim
|k|→∞

kΦ(k)12,

where the subscript denotes the (1, 2) component of the matrix. The process of solving the
RHP and reconstructing the solution is called inverse scattering.

We follow the standard procedure (see e.g.. Chapter 6) to turn the residue conditions
into jump conditions. Fix 0 < ǫ so that the circles A+

j = {k ∈ C : |k − κj | = ǫ} and

A−
j = {k ∈ C : |k − κ̄j | = ǫ} do not intersect each other or the real axis. We define Φ̂ by

Φ̂(k;x, t) =







































Φ(k;x, t)

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, if |k − κj | < ǫ, j = 1, . . . , n,

Φ(k;x, t)

[

1 0

C̄je
−θ(κ̄j)/(k − κ̄j) 1

]

, if |k − κ̄j | < ǫ, j = 1, . . . , n,

Φ(k;x, t), otherwise.

(7.1.8)

It is straightforward to show that Φ̂ solves the RHP:

Φ̂+(k) =







































Φ̂−(k)G(k), if k ∈ R,

Φ̂−(k)

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, if k ∈ A+
j ,

Φ̂−(k)

[

1 −C̄je
−θ(κ̄j)/(k − κ̄j)

0 1

]

, if k ∈ A−
j ,

, Φ̂(∞) = I,

where A−
j (A

+
j ) has clockwise(counter-clockwise) orientation.

In addition to q0 ∈ Sδ(R), we assume that the set {κj} is bounded away from the real
line. This is sufficient to ensure that all RHPs we address are well posed.

7.2 Numerical direct scattering

We describe a procedure to compute the scattering data (7.1.6). This follows Chapter 6.
We look for solutions of the form (7.1.4) of (7.1.1). Define

σ3 =

[

1 0
0 −1

]

, Q =

[

0 q
λq̄ 0

]

, σ1 =

[

0 1
1 0

]

,

and two functions

J(k;x, t) = µ−(k;x, t)σ3e
ikxσ3 − I, K(k;x, t) = µ+(k;x, t)eikxσ3 − I. (7.2.1)
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Therefore J → 0 as x→ −∞ and K → 0 as x→ ∞. Rewriting (7.1.1),

µx = Qµ− ikσ3µ, (7.2.2)

we find that K and J both solve

Nx − ik[N,σ3]−Qσ1N = Qσ1.

For each k, this can be solved with the Chebyshev collocation method in Appendix B on
(−L, 0] for J and on [0, L) for K using the appropriate boundary condition at ±L. If
we use n collocation points, this gives two approximate solutions Jn and Kn for J and
K, respectively. From Jn and Kn we obtain µ−n and µ+n , approximations of µ− and µ+,
respectively, by inverting the transformations in(7.2.1). Furthermore, µ−n and µ+n share the
point x = 0 in their domain of definition. Define

Tn(k) = (µ−n )
−1(0; k)µ+n (0; k).

This is an approximation of the transition matrix, from which we extract an approximation
of the reflection coefficient.

This procedure works well for k in a neighbourhood of the real line. The solutions which
decay at both ±∞ are all that is needed to obtain b(k) when a(k) = 0. Furthermore, from
the analyticity properties of a we have [3, p. 75]

a(k)− 1 =
1

2πi

∫ ∞

−∞

a(s)− 1

s− k
ds, a′(k) =

1

2πi

∫ ∞

−∞

a′(s)
s− k

ds.

Thus knowing a(k) on the real line and b(k) when a(k) = 0 allows us to compute Cj =
b(κj)/a

′(κj). In practice we use the framework [89] discussed in Section 5.3 to compute
these Cauchy integrals. Also, a′(k) can be obtained accurately using spectral differentiation
by mapping the real line to the unit circle.

The remaining problem is that of computing κj . We consider (7.2.2)

µx −Qµ = −ikσ3µ, ⇒ iσ3µx − iσ3Qµ = kµ. (7.2.3)

Making the change of variables x 7→ tan(s/2), U(s) = µ(tan(s/2)), H(s) = Q(tan(s/2))
we obtain

2i cos2(s/2)σ3Us(s)− iσ3H(s)U(s) = kU(s).

We use Hill’s method [22] to compute the eigenvalues of the operator

2i cos2(s/2)σ3
d

ds
− iσ3H(s), (7.2.4)

in the space L2([−π, π]). Following the arguments in Lemma 6.2.1 and using the conver-
gence of Hill’s method, even for non-self-adjoint operators [20, 68], the only eigenvalues we
obtain off the real line are those associated with (7.2.3). This allows us to compute the
discrete spectrum {κj}nj=1 with spectral accuracy. We may test to make sure all eigenval-
ues are captured by computing the inverse scattering transform at t = 0 and ensuring that
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Figure 7.2.1: (a) Plot of the known analytical formula for the reflection coefficient with
A = 1 and µ = 0.1 (Solid: real part, Dashed: imaginary part). (b) Demonstration of
spectral convergence for the reflection coefficient (Dotted: 40 collocation points, Dashed:
80 collocation points, Solid: 120 collocation points.).

we recover the initial condition. The method has not been developed to deal with singular
limits in which lots of eigenvalues are present. There is in principle no limit on card{κj}
but the computational cost grows with the size of this set.

7.2.1 Numerical results

In this section we present numerical results for direct scattering. First, we compare the
result of our method with a reflection coefficient that is known analytically. Next, we
present numerically computed reflection coefficients, which we use later. For the focusing
NLS equation (λ = 1) the authors in [103] present an explicit reflection coefficient for
initial conditions of the form

q0(x) = −iA sech(x) exp (−iµA log cosh(x)) , µ,A ≥ 0. (7.2.5)

The components of the transition matrix take the form

a(k) =
Γ(w(k))Γ(w(k) − w− − w+)

Γ(w − w+)Γ(w − w−)
, b(k) = iA2−

iµ
2
Γ(w(k))Γ(1 − w(k) + w+ + w−)

Γ(w+)Γ(w−)
,

where

w(k) = −ik −Aµ
i

2
+

1

2
, w+ = −iA

(

T +
µ

2

)

, w− = iA
(

T − µ

2

)

, and T =

√

µ2

4
− 1.

Here Γ is the Gamma function [84]. The set {κj} is non-empty for 0 ≤ µ < 2. Its elements
are

κj = AT − i(j − 1/2), j ∈ N and j < 1/2 +A|T |.

In Figure 7.2.1 we plot the reflection coefficient for A = 1 and µ = 0.1. These plots
demonstrate spectral convergence.

In Figure 7.2.2 we show the computed reflection coefficient for q0(x) = 1.9 exp(−x2+ix)
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for both focusing and defocusing NLS. For focusing NLS we find κ1 = −0.5+1.11151i, see
Figure 7.2(c) for a plot of the spectrum of (7.2.4) found using Hill’s method.

-4 -2 0 2 4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

k

Ρ

(a)

-4 -2 0 2 4
-1.0

-0.5

0.0

0.5

1.0

k

Ρ

(b)

!10 !5 0 5 10
!2

!1

0

1

2

Im k

Re k

(c)

Figure 7.2.2: (a) Plot of the computed reflection coefficient for the focusing NLS equation
(λ = 1) when q0(x) = 1.9e−x2+ix. (Solid: real part, Dashed: imaginary part). (b) Plot
of known reflection coefficient for the defocusing NLS equation (λ = −1) when q0(x) =
1.9e−x2+ix. (Solid: real part, Dashed: imaginary part). (c) The spectrum of (7.2.4) found
using Hill’s method when λ = 1.

7.3 Numerical inverse scattering

As in the case of the KdV equation, numerical inverse scattering has two major components.
The first is the use of a Chebyshev collocation method (Section 5.3) for solving RHPs
and the second is the deformation of contours in the spirit of the method of nonlinear
steepest descent [33]. The use of nonlinear steepest descent is essential since the jump
for the RHP (7.1.7) is oscillatory for large values of x and t. An interesting and desired
consequence of using nonlinear steepest descent is that the resulting numerical method is
provably accurate for large values of x and t. More specifically, the computational cost to
compute the solution at a given point, accurate to within a given tolerance, is shown to
be independent of x and t (see Section 7.6). We use the collocation method described in
Section 5.3. Additionally, we demonstrate the deformation of a the RHP. This proceeds
in much the same way as in Section 4.2 and we include the full details so that this chapter
may be read independently of Chapter 4.



190 CHAPTER 7. THE FOCUSING AND DEFOCUSING NLS EQUATIONS

7.3.1 Small time

When both x and t are small, the RHP needs no deformation. When t is small, but x is
large, the RHP needs to be deformed. We introduce factorizations of the jump matrix.
Define

G(k) =

[

1− λρ(k̄)ρ(k) λρ(k̄)e−θ(k)

ρ(k)eθ(k) 1

]

,M(k) =

[

1 λρ(k̄)e−θ(k)

0 1

]

,

P (k) =

[

1 0

ρ(k)eθ(k) 1

]

,

L(k) =

[

1 0
ρ(k)
τ(k)e

θ(k) 1

]

, D(k) =

[

τ(k) 0
0 1/τ(k)

]

,

U(k) =

[

1 λρ(k̄)
τ(k) e

−θ(k)

0 1

]

, τ(k) = 1− λρ(k)ρ(k̄).

(7.3.1)

Note that G(k) = L(k)D(k)U(k) = M(k)P (k). We assume the sets {κj}nj=1 and {Cj}nj=1

are empty. Later, we make the proper modifications to incorporate the extra contours
required.

We deform contours of (7.1.7) off the real line so that oscillations are turned to expo-
nential decay. The matrix G contains the two factors exp(±θ(k)) and if one decays the
other must grow. This motivates separating these factors using the process of lensing , see
Section 3.10.3.

Since q0 ∈ Sδ(R) we know that (see Section 4.1) ρ is analytic in the strip Sγ = {k ∈
C : | Im k| < γ} for δ/2 > γ > 0. This can be seen by considering the Volterra integral
equations for the eigenfunctions µ±. The factors in (7.3.1) allow lensing but we need to
determine where to lens. We look for saddle points of the oscillator: θ′(k) = 0 when
k = k0 = −x/(4t). We use the LDU factorization for k < k0 and MP for k > k0. See
Figure 7.1(b) for this deformation and note that the contours are locally deformed along
the path of steepest descent, that is, the direction along with the jump matrix tends to
the identity matrix most rapidly. We denote the solution of this lensed RHP by Φ1.

G

(a)

k0L

D

U P

M

γ

π/4

(b)

Figure 7.3.1: (a) Jump contour for the initial RHP for Φ. (b) Jump contours after lensing
for the RHP for Φ1.

This RHP can be solved numerically provided t is not too large. As t increases, the
solution v on the contour (−∞, k0) is increasingly oscillatory and is not well resolved using
Chebyshev polynomials.
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7.3.2 Long time

Next, we provide a deformation that leads to a numerical method that is accurate for
arbitrarily large x and t. In light of the results in Chapter 5, specifically Remark 5.2.13,
we need to remove the contour D from the RHP so that all jumps decay to the identity
matrix away from k0 as x and t become large. The matrix-valued function

∆(k; k0) =

[

δ(k; k0) 0
0 δ−1(k; k0)

]

, δ(k; k0) = exp
(

C(−∞,k0)τ(k)
)

,

satisfies (see Section 3.4.1)

∆+(k; k0) = ∆−(k; k0)D(k), k ∈ (−∞, k0), ∆(∞; k0) = I.

We multiply the solution of the RHP in Figure 7.1(b) by ∆−1 to remove the jump. To
compute the solution to the new RHP we use conjugation

Φ+
1 = Φ−

1 J ⇔ Φ+
1 ∆

−1
+ = Φ−

1 J∆
−1
+ ⇔ Φ+

1 ∆
−1
+ = Φ−

1 ∆
−1
− ∆−J∆

−1
+ .

Indeed, we see that if J = D there is no jump. Define Φ2 = Φ1∆
−1. See Figure 7.3.2 for

a schematic overview of the new jumps. This deformation is not sufficient for a numerical
solution as ∆(k; k0) has a singularity at k = k0. We must perform one last deformation
in a neighbourhood of k = k0 to bound contours away from this singularity. We use a
piecewise definition of a function Φ3, see Figure 7.3(a), and compute the jumps, Figure
7.3(b). This is the final RHP. It is used, after contour truncation and scaling, to compute
solutions of the NLS equations for arbitrarily large time. We discuss the scaling of the
RHP in more detail in Section 7.6.

γ

k0

π/4

∆P∆
−1

∆M∆
−1

∆L∆
−1

∆U∆
−1

Figure 7.3.2: Removal of the jump on (−∞, k0).

We use a combination of the deformation in Figure 7.1(b) for small time and the
deformation in 7.3(b) to obtain an approximation to focusing or defocusing NLS when no
solitons are present in the solution. Lastly, we deal with the addition of solitons for the
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Figure 7.3.3: (a) The piecewise definition of Φ3. (b) Jump contours and jump matrices for
the RHP for Φ3.

case of focusing NLS. There are additional jumps of the form

Φ+(k) =























Φ−(k)

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, if k ∈ A+
j ,

Φ−(k)

[

1 −C̄je
−θ(κ̄j)/(k − κ̄j)

0 1

]

, if k ∈ A−
j ,

.

We assume that Re(κj) > γ.

For small x and t, |eθ(κj)| = |e−θ(κ̄j)| is close to unity and the contours and jumps need
to be added to one of the deformations discussed above. This will not be the case for all
x and t. When |Cje

θ(κj)| > 1 we invert this factor through a deformation. Define the set
Kx,t = {j : |Cje

θ(κj)| > 1}. Note that the x and t dependence enters through θ(κj). Next,
define the functions

v(k) =
∏

j∈Kx,t

k − κj
k − κ̄j

, and V (k) =

[

v(k) 0
0 1/v(k)

]

.

Define the piecewise-analytic matrix-valued function Φ̂:

Φ̂(k) = Φ(k)











































[

1 −(k − κj)/(Cje
θ(κj))

Cje
θ(κj)/(k − κj) 0

]

V (k), if |k − κj | < ǫ,

[

0 −C̄je
−θ(κ̄j)/(k − κ̄j)

(k − κ̄j)/(C̄je
−θ(κ̄j)) 1

]

V (k), if |k − κ̄j | < ǫ,

V (k) otherwise.
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Computing the jumps that Φ̂ satisfies we find, for j ∈ Kx,t,

Φ̂+(k) = Φ̂−(k)















V −1(k)

[

1 −(k − κj)/(Cje
θ(κj))

0 1

]

V (k), if k ∈ A+
j ,

V −1(k)

[

1 0

−(k − κ̄j)/(C̄je
−θ(κ̄j)) 1

]

V (k), if k ∈ A−
j .

This turns growth of the exponential to decay to the identity matrix. To simplify notation
we define

Tj,+(k) =

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, Tj,−(k) =

[

1 −C̄je
−θ(κ̄j)/(k − κ̄j)

0 1

]

,

(7.3.2)

Sj,+(k) =

[

1 −(k − κj)/(Cje
θ(κj))

0 1

]

, Sj,−(k) =

[

1 0

−(k − κ̄j)/(C̄je
−θ(κ̄j)) 1

]

.

(7.3.3)

In Figure 7.3.4 we present the full small-time and long-time RHPs. We use the notation
[J ; Σ] to denote the RHP in Figure 7.4(b).

k0

π/4

κj

κ̄j

V
−1

UV

V
−1

DV

V
−1LV

V
−1

PV

V
−1

MV

κi

κ̄i

V
−1

Tj,+V
V

−1
Sj,+V

V
−1

Si,−VV
−1

Tj,−V

(a)

κj κi

κ̄j κ̄i

V
−1

∆L∆−1
V V

−1
∆M∆

−1
V

V
−1

∆P∆
−1

VV
−1

∆U∆
−1

V

V
−1

∆V

V
−1

∆D
−1

V

V
−1

∆U
−1

D
−1

V

V
−1

∆M
−1

LV

V
−1

∆LV

k0

V
−1

Tj,−V V
−1

Si,−V

V
−1

Tj,+V V
−1

Si,+V

(b)

Figure 7.3.4: (a) The jump contours and jump matrices for the final deformation for small
time. In this schematic |Cje

θ(κj)| ≤ 1 and |Cie
θ(κi)| > 1. (b) The jump contours and jump

matrices for the final deformation for large time. Again, in this schematic |Cje
θ(κj)| ≤ 1

and |Cie
θ(κi)| > 1.
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7.3.3 Numerical results

In Figure 7.3.5 we plot the solution of the focusing NLS equation with q0 given by (7.2.5)
with A = 1 and µ = 0.1. The solution is nearly reflectionless but Figure 7.3.5(d) shows
the important dispersive aspect of the solution. Traditional numerical methods can fail
to resolve this. In Figure 7.3.7 we plot the initial condition q0(x) = 1.9 exp(−x2 + ix).
The solutions of the focusing and defocusing NLS equations with this initial condition are
computed. See Figure 7.3.8 for focusing and Figure 7.3.9 for defocusing. We also note that
when the initial condition is less localized the corresponding reflection coefficient is more
oscillatory. This makes it more difficult to resolve the solution of the corresponding RHP.
We restrict ourselves to initial data with rapid decay for this reason, i.e. in numerical
examples we consider q0 ∈ Sδ(R) with δ large.
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Figure 7.3.5: The solution of the focusing NLS equation with q0 given by (7.2.5) with
A = 1 and µ = .1. (Solid: real part, Dashed: imaginary part) (a) q(x, 0), (b) q(x, 1),
(c) q(x, 10), (d) A scaled plot of q(x, 10) showing the effects of dispersion. Traditional
numerical methods can fail to resolve this.

We show numerical results that demonstrate spectral convergence. Let q0 be given
by (7.2.5) with A = 1 and µ = 0.1 so that we can assume the reflection coefficient is
computed to machine precision i.e., n > 80 in Figure 7.1(b). Define q(n, x, t) to be the
approximate solution such that the number of collocation points per contour is proportional
to n. In practice we set the number of collocation points to be n on shorter contours, like
all contours in Figure 7.4(b). For larger contours, like the horizontal contours in Figure
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7.4(a), we use 5n collocation points. To analyze the error we define

Qn
m(x, t) = |q(n, x, t)− q(m,x, t)|. (7.3.4)

Using this notation, see Figure 7.3.6 for a demonstration of spectral (Cauchy) convergence.
Note that we choose x and t values to demonstrate spectral convergence in both the small
time and large time regimes.
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Figure 7.3.6: The convergence of the numerical approximations of the solution of the
focusing NLS equation with q0 given by (7.2.5) with A = 1 and µ = .1. (a) Q80

n (2, 0.2) as
n ranges from 2 to 40. (b) Q80

n (110, 110) as n ranges from 2 to 40.

-40 -20 0 20 40
-2

-1

0

1

2

x

q

Figure 7.3.7: The initial condition q0(x) = 1.9e−x2+ix. (Solid: real part, Dashed: imaginary
part)

7.4 Extension to homogeneous Robin boundary conditions

on the half line

Thus far, the results have been for the solution of the NLS equation posed on the whole line.
We switch our attention to boundary-value problems on the half line, x ≥ 0. Specifically,
we extend the previous method to solve the following boundary-value problem:

iqt + qxx + 2λ|q|2q = 0, λ = ±1,

αq(0, t) + qx(0, t) = 0, α ∈ R,

q(x, 0) = q0(x) ∈ Sδ(R
+), δ > 0.

(7.4.1)
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Figure 7.3.8: The solution of the focusing NLS equation with q0 shown in Figure 7.3.7.
(Solid: real part, Dashed: imaginary part) (a) q(x, 1) (b) A zoomed plot of q(x, 1) (c)
q(x, 10) (d) A zoomed plot of q(x, 10), illustrating the dispersive effects in the solution.

Here Sδ(R
+) is the space of smooth functions f on [0,∞) such that

lim sup
x→∞

eδx|f(x)| <∞.

If we take α = 0 we obtain a Neumann problem. Similarly, the limit α → ∞ effectively
produces a Dirichlet problem. A method of images approach can be used to solve this
problem. The approach of Biondini and Bui [11], first introduced in [10], takes the given
initial condition on [0,∞) and produces an extension to (−∞, 0) using a Darboux trans-
formation. For Neumann boundary conditions this results in an even extension and for
Dirichlet boundary conditions the transformation produces an odd extension. Consider
the system of ODEs

Y ′
1 = Y2,

Y ′
2 = (4λ|q0|2 + α2)Y1 − λq̄0Y3 − q0Y4,

Y ′
3 = 2q′0Y1,

Y ′
4 = 2λq̄′0Y1,

(7.4.2)
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Figure 7.3.9: The solution of the defocusing NLS equation with q0 shown in Figure 7.3.7.
(Solid: real part, Dashed: imaginary part) (a) q(x, 1), (b) q(x, 2), (c) q(x, 10), (d) A scaled
plot of q(x, 10) showing the dramatic effects of dispersion.

with initial conditions

Y1(0) = 1,

Y2(0) = −α,
Y3(0) = 2q0(0),

Y4(0) = 2λq̄0(0),

and the function

q̃(x) =

{

q0(x), if x ∈ [0,∞),
−q0(−x) + Y3(x)/Y1(x), if x ∈ (−∞, 0).

It was shown in [11] that the solution of the Cauchy problem for NLS equation on R with
initial data q̃, restricted to [0,∞), is the unique solution of (7.4.1). To compute the ex-
tended initial data q̃ we first solve the system (7.4.2) numerically using a combination of
Runge–Kutta 4 and 5. This is implemented in NDSolve in Mathematica. The inverse scat-
tering transform for the extended potential can be used in the previous section’s framework
to numerically solve (7.4.1).
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Remark 7.4.1. The method of Bikbaev and Tarasov [10] was used to derive asymptotics by
Deift and Park in [31]. Another approach would be to use the method of Fokas to compute
solutions [49, 65].

7.4.1 Numerical results

In this section we show numerical results for a Robin problem and a Neumann problem.
As noted above, we could treat the Dirichlet problem by using an odd extension of our
initial condition.

• Robin boundary conditions Here we show results for the case of the focusing NLS
equation (λ = 1) with α = −1 and with initial condition q0(x) = 1.9 exp(−x2 + x).
Note that the initial condition satisfies the boundary condition at t = 0. In Figure
7.1(a), we give the extended initial condition q̃ and in Figure 7.1(b) we show the
corresponding reflection coefficient. For this extended initial condition, we have four
poles on the imaginary axis in the RHP which corresponds to two stationary solitons:

κ1 = 1.84725i, C1 = −14.4092i, κ2 = 1.21265i, C2 = −8.17034i.
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Figure 7.4.1: (a) The extended initial condition q̃ (Solid: real part, Dotted: imaginary
part). (b) The reflection coefficient for the extended initial condition q̃. (Solid: real part,
Dotted: imaginary part)

• Neumann boundary conditions To show the reflection of a soliton off the bound-
ary at x = 0 we solve a Neumann problem (α = 0) with initial condition q0(x) =
1/2x2 exp(−.2x2− ix). The extension q̃ of the initial condition can be seen in Figure
7.3(a). In this case it is just the even extension. The scattering data consists of

κ1 = 0.497613 + 0.371208, C1 = 0.110159 + 5.35099i,

κ2 = −0.497613 + 0.371208, C2 = −0.231104 − 0.0357421i.

This shows that we have a pair of poles in the RHP to the right of the imaginary axis
and two to left. This corresponds to one soliton moving to the left and one soliton
moving to the right. The reflection coefficient is shown in Figure 7.3(b).
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Figure 7.4.2: The solution of the focusing NLS equation with Robin boundary conditions
(α = 1) and with q0 shown in Figure 7.1(a). (Solid: real part, Dashed: imaginary part)
(a) q(x, 0) (b) q(x, 1) (c) q(x, 10) (d) A scaled plot of q(x, 10) showing the extent of the
dispersive tail.

7.5 Singular solutions

As mentioned above the defocusing NLS equation does not have soliton solutions that
decay at infinity. We can insert the contours A±

j (see (7.1.8)) into the RHP anyway. We
introduce λ into (7.3.2) to obtain appropriate jump conditions for the defocusing NLS
equations. Define

Tj,+(k) =

[

1 0

−Cje
θ(κj)/(k − κj) 1

]

, Tj,−(k) =

[

1 −λC̄je
−θ(κ̄j)/(k − κ̄j)

0 1

]

,

Sj,+(k) =

[

1 −(k − κj)/(Cje
θ(κj))

0 1

]

, Sj,−(k) =

[

1 0

−λ(k − κ̄j)/(C̄je
−θ(κ̄j)) 1

]

.

When λ = 1 (focusing) this definition agrees with (7.3.2).

When λ = −1 (defocusing) we investigate how these additional contours will manifest
themselves in the solution. Consider

u1(x, t) = 2ηe−4it(ξ2−η2)−2ixξ sech(2η(4tξ + x− x0)),
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Figure 7.4.3: (a) The extended initial condition q̃ (Solid: real part, Dotted: imaginary
part). (b) The reflection coefficient for the extended initial condition q̃. (Solid: real part,
Dotted: imaginary part)

Figure 7.4.4: The solution of the focusing NLS equation with Neumann boundary (α = −1)
conditions and q0 shown in Figure 7.3(a). The solution is shown up to t = 7.

which is the one soliton solution of the focusing NLS equation [2]. A simple calculation
shows that

u2(x, t) = 2ηe−4it(ξ2−η2)−2ixξcsch(2η(4tξ + x− x0)),

is a solution of defocusing NLS. We are using the term solution loosely since this function
has a pole when 4tξ+x−x0 = 0. We call this a singular solution or singular soliton. These
solutions are also called positons [43]. Reference [43] contains a deeper discussion of these
solutions with applications to rogue waves.

What we obtain when adding the above contours to the RHP associated with the
defocusing NLS equation is a nonlinear combination of these singular solutions in the
presence of dispersion, as in the focusing case where the soliton was nonsingular. See
Figure 7.5.1 for plots of a solution obtained using the reflection coefficient in Figure 7.2.2
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along with

κ1 = 2 + 2i, C1 = 1000, κ2 = −2 + 2i, C2 = 1/1000.

This corresponds to two of these singular solitons moving toward each other, until they
bounce off each other (the poles never cross). They interact in the presence of dispersion.
We choose large and small norming constants to have the solitons away from x = 0 when
t = 0. It is not possible to obtain these types of solutions with traditional numerical
methods. Not surprisingly, the relative accuracy of our numerical approximation breaks
down near the poles. For points bounded away from the poles we still expect uniform
convergence as discussed in the following section.
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Figure 7.5.1: A singular solution of the defocusing NLS equation. Note that the vertical
lines are asymptotes. (Solid: real part, Dashed: imaginary part) (a) q(x, 0) (b) q(x, 0.1)
(c) q(x, 0.2), showing the interaction of the singular solutions. (d) q(x, 1), after the two
poles have bounced off each other and a significant amount of dispersion is present.

7.6 Accuracy uniform in x and t

In this section we use the theory of Chapter 5 to prove the accuracy of the numerical method
for arbitrarily large time when it is applied to [J ; Σ] in Figure 7(b). We assume the contours
of the RHP are truncated according to Proposition 3.10.4. Define Σ1 =

⋃

j(A
+
j ∪A−

j ) and
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Σ2 = Σ \Σ1. Define the restrictions of J :

J1(k) = J(k)|Σ1 ,

J2(k) = J(k)|Σ2 .

We introduce some x- and t-independent domains Ω1 and Ω2:

Σ1 =
Ω1√
t
− x

4t
,

Σ2 = Ω2.

We use the change of variables

k =
z√
t
− x

4t
, (7.6.1)

and the notation J̃1(z) = J1(z/
√
t−x/(4t)). Fix the trajectory in the (x, t) plane: x = c4t.

We wish to use Algorithm 5.1.11. First, we numerically solve [J̃1,Ω1] with n collocation
points to obtain a solution Φ̃1,n. The change of variables (7.6.1) is inverted, defining

Φ1,n(k) = Φ̃1,n

(√
t(k − k0)

)

.

Define J̃2,n(k) = Φ1,n(k)J2(k)Φ
−1
1,n(k). Then [J̃2,n,Ω2] is solved numerically with n collo-

cation points (for simplicity) to obtain a function Φ2,n. Note that there is no change of
variables to invert for this RHP. The function Φn = Φ1,nΦ2,n is an approximation of the
solution to the full RHP [J ; Σ].

Since the arc length of Σ1 tends to zero for large t, the conditions we check are the
hypotheses of Theorem 5.2.4 (or Proposition 5.2.11):

• C[J̃1; Ω1]
−1 exists and is uniformly bounded in t,

• C[J2; Ω2]
−1 exists and is uniformly bounded in t, and

• all derivatives of J̃1(z) and J2(z), in the z variable, are uniformly bounded in t and
z.

It is easy to see that all derivatives of V −1Tj,±V and V −1Sj,±V will be uniformly bounded.
The transformation from Tj,± to Sj,± guarantees this.

The only possible singular behavior of J̃1 will come from either the terms exp(±θ(k))
or from ∆(k; k0). We proceed to show that under the chosen scaling, all derivatives of
these two functions are bounded. From the definition of θ,

θ(k) = 2i(c4tk + 2tk2) = −4ic2t+ 4iz2.

We see that all derivatives exp(θ̃(z)) are bounded as long as z is bounded.

Now we consider ∆(k; k0) in a neighborhood of k0. We need to bound derivatives of
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exp(Y (k)) where

Y (k) =
1

2πi

∫ k0

−∞

f(s)

s− k
ds, f(s) = log(1− λρ(s)ρ(s)),

because it appears in ∆. We first note that exp(Y (k)) is bounded for all k since f(s) is real
valued. Now, since the Cauchy integral is invariant under a conformal change of variables
that leaves infinity fixed, we have

Ỹ (z) =
1

2πi

∫ 0

−∞

f̃(s)

s− z
ds,

f̃(s) = f(s/
√
t− x/(4t)), Ỹ (z) = Y (z/

√
t− x/(4t)).

From [78] (see also [90]) we have

Ỹ (j)(z) =
1

2πi

(

∫ 0

−∞

f̃ (j)(s)

s− z
ds−

j
∑

i=1

f̃ (j−i)(0)

(−z)i+1

)

,

f̃ (j)(0) = f (j)
(

− x

4t

)

t−j/2.

From the assumption that ρ is analytic and decays in a strip containing the real line we
see that all derivatives of Ỹ are uniformly bounded in t.

As stated, the analysis in [90] requires that the singular integral operators on Ωi have
uniformly bounded inverses as t becomes large. We describe how this follows from the
asymptotic analysis of the RHP [38, 36]. A very useful fact is that once the solution Ψ
of the RHP [G; Γ] is known then the inverse of the operator is also known [24] (see also
Lemma 3.8.18):

C[G; Γ]−1u = C+
Γ [u(Ψ

+)−1]Ψ+ − C−
Γ [u(Ψ

+)−1]Ψ−. (7.6.2)

If Ψ ∈ L∞(Γ) then the inverse operator is bounded on L2(Γ). We show that C[J̃1; Ω1] is
close in operator norm (uniformly in t) to an operator with an explicit inverse that can be
bounded uniformly in t using (7.6.2).

To construct the operator with an explicit inverse we follow the construction in Sec-
tion 4.2. We factor off the singular behavior of ∆(k; k0):

∆(k; k0) = ∆s(k; k0)∆r(k; k0),

∆s(k; k0) = diag((k0 − k)f(k0)/(2πi), (k0 − k)−f(k0)/(2πi)),

∆r(k; k0) is Hölder continuous at k = k0.
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Define (compare with (7.3.1))

[M ](k) =

[

1 λρ(k̄0)e
−θ(k)

0 1

]

, [P ](k) =

[

1 0

ρ(k0)e
θ(k) 1

]

,

[L](k) =

[

1 0
ρ(k0)
τ(k0)

eθ(k) 1

]

, [D](k) =

[

τ(k0) 0
0 1/τ(k0)

]

,

[U ](k) =

[

1 λρ(k̄0)
τ(k0)

e−θ(k)

0 1

]

, [∆](k; k0) = ∆s(k; k0)∆r(k0; k0).

(7.6.3)

We define a RHP [[J̃1]; Ω1] by replacing each appearance of M,P,L,D and U in J̃1 with
[M ], [P ], [L], [D] and [U ], respectively. If we assume |k0| ≤ C, C > 0, the analyticity of ρ
along with the Hölder continuity of ∆r imply that ‖J̃1−[J̃1]‖∞ → 0 and therefore C[J̃1; Ω1]−
C[[J̃1]; Ω1] → 0 in operator norm. If we extend Ω1 using augmentation (Section 3.10) so
that the outward rays are infinite then C[[J̃1]; Ω1]

−1 can be constructed explicitly out of
Parabolic Cylinder functions [38] and is uniformly bounded in t. After this extension
C[J̃1; Ω1]− C[[J̃1]; Ω1] → 0 continues to hold so we may ignore extensions/truncations and
C[J̃1; Ω1]

−1 is uniformly bounded in t, for t sufficiently large.

The RHP [J2,Ω2] has rational jump matrices and can be solved explicitly [3, p. 83]. The
uniform boundedness of C[J2,Ω2]

−1 can be established by studying the explicit solution.
If the set {κj} is large then an asymptotic approach like [60] to show the solitons separate
may be more appropriate. Full details of this are beyond the scope of this chapter.

While we made the restriction x = 4ct above, the bounds on derivatives and operators
can be taken to be independent of c for |c| ≤ C. Define W i to be the exact solution of the
SIE on Ωi and W

i
n to be its approximation with n collocation points per contour. From

Theorem 5.2.4 we have proved the following:

Theorem 7.6.1 (Uniform approximation). Fix T > 0 and C > 0. For every ǫ > 0 there
exists N > 0 such that for n > N and t > T

‖W i
n −W i‖L2(Ωi) < ǫ, i = 1, 2 if |k0| ≤ C.

Since the arc length of the contours is bounded we have uniform L1(Γ) convergence
and (5.3.8) demonstrates that q(x, t) is approximated uniformly.

Remark 7.6.2. This theorem relies heavily on Assumption 5.3.11. If Assumption 5.3.11
fails to be true the numerical method may not converge.

Remark 7.6.3. The results of [36, 38, 40] only apply to the defocusing NLS equation. The
difficulty with the focusing NLS equation is the lack of information about {κj} and possible
accumulation points on the real line [25]. We are considering cases where we assume {κj}
are known (again see [25]) and the analysis proceeds in a way similar to the defocusing
NLS equation.

Remark 7.6.4. Despite the fact that the theorem restricts to |k0| < C we still obtain
uniform convergence. If q0(x) ∈ Sδ(R), for every ǫ > 0 there exists C > 0 such that for
|k0| > C, |q(x, t)| < ǫ [38]. Thus we approximate the solution with zero when |k0| > C.
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7.6.1 Numerical results

To demonstrate asymptotic accuracy we use the notation in (7.3.4) and fix n and m. We
let x and t become large along a specific trajectory. For our purposes we use x = 4t. Note
that along this trajectory q is on the order of 1/

√
t [115] (see also [38, 36, 35]). This allows

us to estimate the relative error. See Figure 7.6.1 for a demonstration of the accuracy of
the method for large x and t. We see that the relative error is bounded and small using
relatively few collocation points.

20 40 60 80 100
-0.0010

-0.0005

0.0000

0.0005

0.0010

t

q

(a)

100 1000 104 105 106

0.000052

0.000054

0.000056

0.000058

0.00006

0.000062

0.000064

t

R
el

at
iv

e
C

au
ch

y
E

rr
or

(b)

Figure 7.6.1: Asymptotic computations of solutions of the focusing NLS equation with q0
given by (7.2.5) with A = 1 and µ = .1. (Solid: real part, Dashed: imaginary part) (a)
q(8, 4t, t). (b) Q16

8 (4t, t) · t1/2 for large values of t.
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Chapter 8

The Painlevé II Transcendents

Here we focus on the (homogeneous) Painlevé II ODE:

d2u

dx2
= xu+ 2u3. (8.0.1)

(For brevity we refer to the homogeneous Painlevé II equation simply as Painlevé II.)
There are many important applications of this equation: the Tracy–Widom distribution
(see Chapter 10) from random matrix theory is written in terms of the Hastings–McLeod
solution [63] and, as we have seen, asymptotic solutions to the Korteweg–de Vries and
modified Korteweg–de Vries equations can be written in terms of Ablowitz–Segur solutions
[5]. The aim of this chapter is to demonstrate that the RH formulation can indeed be used
effectively to compute solutions to Painlevé II.

8.1 General comments

Solutions to differential equations such as (8.0.1) are typically defined by initial conditions;
at a point x we are given u(x) and u′(x). In the RH formulation, however, we do not specify
initial conditions. Rather, the solution is specified by the Stokes constants; s1, s2, s3 which
satisfy the following condition:

Assumption 8.1.1.

s1 − s2 + s3 + s1s2s3 = 0. (8.1.1)

We treat the Stokes’ constants as given, as, in applications they arise naturally while
initial conditions do not. Given such constants, we denote the associated solution to (8.0.1)
by

PII(s1, s2, s3;x). (8.1.2)

The solution PII and its derivative can be viewed as the special function which map Stokes’
constants to initial conditions.

In this chapter we develop techniques to accurately and efficiently compute the Ablowitz–
Segur and Hastings–McLeod solutions. For these solutions s2 = 0, and s1 = −s3 ∈ iR.

207
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Thus we are interested in computing

PII(−iα, 0, iα;x), α ∈ R.

Note that these are the solutions that appear in the asymptotic analysis of solutions of the
KdV equation. We will see that for s2 = 0 and x > 0 the method extends to general s1, s3
with no extra work. We break the x < 0 case into two subcases:

1. Case 1: 1− s1s3 > 0 and

2. Case 2: 1− s1s3 = 0.

For Case 1 we perform the deformation for s2 ∈ C, 1 − s1s3 > 0 and Assumption 8.1.1.
Thus we obtain Case 1 with s2 = 0 and s3 ∈ iR as a special case. Case 2 is dealt with by
assuming s2 = 0. Either way, the deformation and computations are more complex when
x < 0.

At first glance, computing the solutions to (8.0.1) appears trivial: given initial con-
ditions, simply use one’s favorite time-stepping algorithm, or better yet, input it into an
ODE toolbox such as Matlab’s ode45 or Mathematica’s NDSolve. Unfortunately, sev-
eral difficulties immediately become apparent. In Figure 8.1.1, we plot several solutions
to (8.0.1) (computed using the RH approach we are advocating): the Hastings–McLeod
solution and perturbations of the Hastings–McLeod solution. Note that the computation
of the solution is inherently unstable, and small perturbations cause oscillations — which
make standard ODE solvers inefficient — and poles — which completely break such ODE
solvers (though this issue can be resolved using the methodology of [54]).
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Figure 8.1.1: Solutions to Painlevé II. (a) Radically different solutions for x < 0. (b)
Radically different solutions for x > 0.

Remark 8.1.2. There are many other methods for computing the Tracy-Widom distribu-
tion itself as well as the Hastings–McLeod solution [13, 14], based on the Fredholm deter-
minant formulation for solving a boundary value problem. Moreover, accurate data values
have been tabulated using high precision arithmetic with a Taylor series method [95, 96].
However, we will see that there is a whole family of solutions to Painlevé II which exhibit
similar sensitivity to initial conditions, and thus a reliable, general numerical method is
needed even for this case.
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We present the RHP for the solution of Painlevé II (8.0.1). Let Γ = Γ1 ∪ · · · ∪ Γ6 with
Γi = {seiπ(i/3−1/6) : s ∈ R+}, i.e., Γ consists of six rays emanating from the origin, see
Figure 8.1.2. The jump matrix is defined by G(λ) = Gi(λ) for λ ∈ Γi, where

Gi(x;λ) = Gi(λ) =















[

1 sie
−i8/3λ3−2ixλ

0 1

]

, if i is even,
[

1 0

sie
i8/3λ3+2ixλ 1

]

, if i is odd.

From the solution Φ of [G; Γ], the Painlevé function is recovered by the formula

u(x) = lim
z→∞

zΦ12(z),

where the subscripts denote the (1, 2) entry. This RHP was solved numerically in [87] for
small |x|.

Figure 8.1.2: The contour and jump matrix for the Painlevé IIRHP.

For large |x|, the jump matrices G are increasingly oscillatory. We combat this issue
by deforming the contour so that these oscillations turn to exponential decay. To simplify
this procedure, and to start to mold the RHP into the abstract form in Section 5.2, we
first rescale the RHP. If we let z =

√

|x|λ, then the jump contour Γ is unchanged, and

Φ+(z) = Φ+(
√

|x|λ) = Φ−(
√

|x|λ)G(
√

|x|λ) = Φ−(z)G(z),
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where G(z) = Gi(z) on Γi with

Gi(z) =















[

1 sie
−ξθ(z)

0 1

]

, if i is even,
[

1 0

sie
ξθ(z) 1

]

, if i is odd,

ξ = |x|3/2 and

θ(z) =
2i

3

(

4z3 + 2ei arg xz
)

.

Then

u(x) = lim
λ→∞

λΦ12(x;λ) =
√
x lim

λ→∞
zΦ12(x; z). (8.1.3)

8.2 Positive x, s2 = 0 and 0 ≤ 1− s1s3 ≤ 1

We deform the RHP for Painlevé II so that numerics are asymptotically stable for posi-
tive x. We will see that the deformation is extremely simple under the following relaxed
assumption:

Assumption 8.2.1. x > 0 and s2 = 0

We remark that, unlike other deformations, the following deformation can be easily
extended to achieve asymptotic stability for x in the complex plane such that −π

3 <
arg x < π

3 .

On the undeformed contour, e±i|x|3/2θ(z) are oscillatory as |x| becomes large. However,
with the right choice of curve h(t), e±iθ(h(t)) has no oscillations; instead, it decays exponen-
tially fast as t→ ∞. But h is precisely the path of steepest descent, which passes through
the saddle points of θ, i.e., the points where the derivative of θ vanishes. We readily find
that

θ′(z) = 2(4z2 + 1),

and the saddle points are precisely z = ±i/2.
We note that, since G2 = I, when we deform Γ1 and Γ3 through i/2 they become

completely disjoint from Γ4 and Γ6, which we deform through −i/2. We point out that
G−1

3 = G1 and G−1
6 = G4; thus we can reverse the orientation of Γ3 and Γ4, resulting in

the jump G1 on the curve Γ↑ and G4 on Γ↓, as seen in Figure 8.2.1.
Recall that

θ

(

± i

2

)

= ± i

3
.

However, we now only have Γ↑ emanating from i/2, with jump matrix

G1 =

[

1 0

s1e
i|x|3/2θ(z) 1

]

.
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Figure 8.2.1: Deforming the RHP for positive x, with Assumption 8.2.1.

This matrix is exponentially decaying to the identity along Γ↑, as isG4 along Γ↓. We employ
the approach of Section 5.2 and Algorithm 5.1.11. We first use Lemma 3.10.4 to truncate
the contours near the saddle point. What remains is to determine what “near” means.
Because θ behaves like O (z ± i/2)2 near the saddle points, Assumption 5.0.1 implies that
we should choose the shifting of β1 = i/2 and β2 = −i/2, the scalings α1 = α2 = r|x|−3/4

and the canonical domains Ω1 = Ω2 = [−1, 1]. Here r is chosen so that what is truncated
is negligible in the sense of Lemma 3.10.4. The treatment G6 is similar. The complete
proof of asymptotic stability of the numerical method proceeds in a similar way as in
Section 10.4.2.

8.3 Negative x, s2 = 0 and 1− s1s3 > 0

As mentioned above we perform this deformation under the relaxed conditions:

Assumption 8.3.1. x < 0, s2 ∈ C and 1− s1s3 > 0

We begin with the deformation of Γ to pass through the saddle points ±1/2, resulting
in the RHP on the left of Figure 8.3.1. The function

G6G1G2 =

[

1− s1s3 s1e
−ξθ

s2e
ξθ 1 + s1s2

]

has terms with exp(±ξθ). It cannot decay to the identity when deformed in the complex
plane. We can resolve this issue by using lensing, see Section 3.10.3.
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G5

G2U
−1
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−1

G5L

G6G1G2 D

Figure 8.3.1: Left: Initial deformation along the paths of steepest descent. Right: The
deformed contour after lensing.

Consider the LDU factorization:

G6G1G2 = LDU =

[

1 0
e−ζθ s1

1−s1s3
1

] [

1− s1s3 0
0 1

1−s1s3

] [

1 eζθ s1
1−s1s3

0 1

]

.

The matrix U decays near i∞, L decays near −i∞, both approach the identity matrix
at infinity and D is constant. Moreover, the oscillators in L and U are precisely those
of the original G matrices. Therefore, we reuse the path of steepest descent, and obtain
the deformation on the right of Figure 8.3.1. The LDU decomposition is valid under the
assumption 1− s1s3 6= 0.

8.3.1 Removing the connected contour

Although the jump matrix D is non-oscillatory (it is, in fact, constant), it is still incom-
patible with the theory presented in Section 5.2: we need the jump matrix to approach
the identity matrix away from the saddle points. Therefore, it is necessary to remove this
connecting contour. Since D = diag(d1, d2) is diagonal, we can solve P+ = P−D with
P (∞) = I on (−1/2, 1/2) in closed form, see Section 3.4.1:

P (z) =







(

2x+1
2x−1

)i log d1/2π
0

0
(

2x+1
2x−1

)i log d2/2π






.

This parametrix solves the desired RHP for any choice of branch of the logarithm.
However, we must choose a branch so that the singularity is locally integrable. This is
accomplished by choosing the standard choice of branch.

We write

Φ = ΨP.

Since P satisfies the required jump on (−1/2, 1/2), Ψ has no jump there. Moreover, on
each of the remaining curves we have

Ψ+ = Φ+P−1 = Φ−GP−1 = Ψ−1PGP−1,



8.3. NEGATIVE X, S2 = 0 AND 1− S1S3 > 0 213

ΨP
ΨP

ΨP

ΨP

ΨP

ΨP

ΨP

ΨP

Ψ
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Ψ
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Figure 8.3.2: Left: Definition of Φ in terms of Ψ. Right: Jump contour for Ψ.

and our jump matrix becomes PGP−1. Unfortunately, we have introduced singularities at
±1/2 and the theory of Section 5.2 requires smoothness of the jump matrix. This motivates
alternate definitions for Ψ in circles around the saddle points similar to what was done in
Chapters 6 and 7. In particular, we define Φ in terms of Ψ by the left panel of Figure
8.3.2, where Ψ has the jump matrix defined in the right panel of the figure. A quick check
demonstrates that this definition of Φ satisfies the required jump relations.

We are ready to apply Algorithm 5.1.11. Define

Ω = {z : ‖z‖ = 1} ∪ {reiπ/4 : r ∈ (1, 2)} ∪ {re3iπ/4 : r ∈ (1, 2)}
∪ {re−3iπ/4 : r ∈ (1, 2)} ∪ {re−iπ/4 : r ∈ (1, 2)}.

In accordance with Assumption 5.0.1, we have

Γ1 =
1

2
+ ξ−1/2Ω and Γ2 = −1

2
+ ξ−1/2Ω,

with the jump matrices defined according to Figure 8.3.2. Now, paths of steepest descent
are local paths of steepest descent.

8.3.2 Uniform approximation

We have isolated the RHP near the saddle points, and constructed a numerical algorithm
to solve the deformed RHP. We show that this numerical algorithm approximates the true
solution to the RHP. In order to analyze the error, we introduce the local model problem
for this RHP following [51]. The solution of the model problem is the the parametrix used
in asymptotic analysis.

Remark 8.3.2. It is important to note that knowledge of the parametrix is not needed to
solve the RHP numerically.

Let ν = i log d2/(2π) and define the Wronskian matrix of parabolic cylinder functions
Dν(ζ) [84],

Z0(ζ) = 2−σ3/2

[

D−ν−1(iζ) Dν(ζ)
d
dζD−ν−1(iζ)

d
dζDν(ζ)

] [

eiπ/2(ν+1) 0
0 1

]

, (8.3.1)
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along with the constant matrices

Hk+2 = eiπ(ν+1/2)σ3Hke
iπ(ν+1/2)σ3 , H0 =

[

1 0
h0 1

]

, H1 =

[

1 h1
0 1

]

, σ3 =

[

1 0
0 −1

]

,

h0 = −i
√
2π

Γ(ν + 1)
, h1 =

√
2π

Γ(−ν)e
iπν .

In addition, define

Zk+1(ζ) = Zk(ζ)Hk.

The sectionally holomorphic function Z(ζ) is defined as

Z(ζ) =























Z0(ζ), if arg ζ ∈ (−π/4, 0),
Z1(ζ), if arg ζ ∈ (0, π/2),
Z2(ζ), if arg ζ ∈ (π/2, π),
Z3(ζ), if arg ζ ∈ (π, 3π/2),
Z4(ζ), if arg ζ ∈ (3π/2, 7π/4).

This is used to construct the local solutions

Ψ̂r(z) = B(z)(−h1/s3)−σ3/2eitσ3/22−σ3/2

[

ζ(z) 1
1 0

]

Z(ζ(z))(−h1/s3)σ3/2,

Ψ̂l(z) = σ2Ψ̂
r(−z)σ2,

where

σ2 =

[

0 −i
i 0

]

, B(z) =

(

ζ(z)
z + 1/2

z − 1/2

)νσ3

, ζ(z) = 2
√

−tθ(z) + tθ(1/2).

Consider the sectionally holomorphic matrix-valued function Ψ̂(z) defined by

Ψ̂(z) =







P (z), if |z ± 1/2| > R,

Ψ̂r(z), if |z − 1/2| < R,

Ψ̂l(z), if |z + 1/2| < R.

We use [Ĝ; Γ̂] to denote the RHP solved by Ψ̂. See the top panel of Figure 8.3.3 for Γ̂.
In [51], it is shown that Ψr satisfies the RHP for Φ exactly near z = 1/2 and for Ψl near
z = −1/2. Notice that Ψ̂r and Ψ̂l are bounded near z = ±1/2. In the special case where
log d1 ∈ R, P remains bounded at ±1/2. Following the analysis in [51] we write

Φ(z) = χ(z)Ψ̂(z),

where χ→ I as ζ → ∞.

We deform the RHP for Ψ̂ to open up a small circle of radius r near the origin as
in Figure 8.3.2. We use [Ĝ1; Γ̂1] to denote this deformed RHP and solution Ψ̂1. See
Figure 8.3.3 for Γ̂1. It follows that Ψ̂(z)P−1(z) is uniformly bounded in z and ξ. Further,
Ψ̂1 has the same properties. Since Ψ̂1 is uniformly bounded in both z and ξ we use (5.2.1)
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to show that C[Ĝ1; Γ̂1]
−1 has uniformly bounded norm. We wish to use this to show the

uniform boundedness of the inverse C[G; Γ]−1. To do so we extend the jump contours and
jump matrices in the following way. Set Γe = Γ ∪ Γ̂1 and define

Ge(z) =

{

G(z), if z ∈ Γ,
I, otherwise,

Ĝe(z) =

{

Ĝ1(z), if z ∈ Γ̂1,
I, otherwise.

The estimates in [51] show that Ge−Ĝe → 0 uniformly on Γe. It follows that C[Ĝe; Γe]
−1

is uniformly bounded since the extended operator is the identity operator on Γ \ Γ̂1. The-
orem 3.9.4 implies that C[Ge; Γe]

−1 is uniformly bounded for sufficiently large ξ, which
implies that C[G; Γ]−1 is uniformly bounded for ξ sufficiently large, noting that the ex-
tended operator is the identity operator on the added contours. We use this construction
to prove the uniform convergence of the numerical method using both direct and indirect
estimates.

8.3.3 Application of direct estimates

We see that the RHP for Ψ satisfies the properties of a numerical parametrix. This requires
that the jump matrices have uniformly bounded Sobolev norms. The only singularities in
the jump matrices are of the form

s(z) =

(

z − 1/2

z + 1/2

)iv

, v ∈ R.

After transforming to a local coordinate k, z = ξ−1/2k − 1/2, we see that

S(k) = s(ξ−1/2k − 1/2) = ξ−iv/2

(

ξ−1/2k + 1

k

)iv

.

The function S(k) is smooth and has uniformly bounded derivatives provided k is bounded
away from k = 0. The deformations applied thus far guarantee that k is bounded away
from 0. To control the behavior of the solution for large k we look at the exponent which
appears in the jump matrix

θ(z) =
2i

3
− 4i

(

z +
1

2

)2

+
8i

3

(

z +
1

2

)3

,

and define

θ̃(k) = θ(ξ−1/2k − 1/2) =
2i

3
− 4ik2/ξ +

8i

3
k3/ξ3/2.

If we assume that the contours are deformed along the local paths of steepest descent, all
derivatives of eξθ̃(k) are exponentially decaying, uniformly in ξ. After applying the same
procedure at z = 1/2 and after contour truncation, Theorem 3.10.4 implies the RHP for
Ψ satisfies the hypotheses of Theorem 5.2.4, proving uniform convergence.
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G2U
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U

Figure 8.3.3: Top: Jump contours for the model problem with solution Ψ̂. Note that Jr
and Jl are the jumps on the outside of the circles. They tend uniformly to the identity as
ξ → ∞ [51]. Center: The jump contours, Γ̂1, for the function Ψ̂1. The inner circle has
radius r and the outer circle has radius R. Bottom: Contour on which Û is non-zero. This
can be matched up with the right contour in Figure 8.3.2.

8.3.4 Application of indirect estimates

The second approach is to use the solution of the model problem to construct an numerical
parametrix. Since we have already established strong uniform convergence we proceed to
establish a theoretical link with the method of nonlinear steepest descent, demonstrating
that the success of nonlinear steepest descent implies the success of the numerical method,
even though the numerical method does not depend on the details of nonlinear steepest
descent. We start with the RHP [Ĝ1; Γ̂1] and its solution Ψ̂1. As before, see Figure 8.3.3
for Γ̂1. Define û = (Ψ̂1)

+ − (Ψ̂1)
− which is the solution of the associated SIE on Γ̂1. The

issue here is that we cannot scale the deformed RHP in Figure 8.3.2 so that it is posed on
the same contour as [G; Γ]. We need to remove the larger circle.

We define a new function Û = ûφ where φ is a C∞ function with support in (B(−1/2, R)∪
B(1/2, R)) ∩ Γ̂1 such that φ = 1 on (B(1/2, r) ∪ B(−1/2, r)) ∩ Γ̂1 for r < R. Let Γ̂2 be
the support of Û (see bottom contour in Figure 8.3.3). Define Ψ̂2 = I + CΓ̂2

Û . From the
estimates in [51], it follows that

Ψ̂+
2 = Ψ̂−

2 Ĝ2,

where Ĝ2 − G tends uniformly to zero as ξ → ∞. We have to establish the required
smoothness of Û . We do this explicitly from the above expression for Ψ̂P−1 after using
the scalings z = ξ−1/2k± 1/2. The final step is to let ξ be sufficiently large so that we can
truncate both [G; Γ] and [Ĝ2; Γ̂2] to the same contour. We use Proposition 5.2.11 to prove
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that this produces a numerical parametrix. Additionally, this shows how the local solution
of RHPs can be tied to stable numerical computations of solutions.

Remark 8.3.3. This analysis relies heavily on the boundedness of P . These arguments fail
if we let P have unbounded singularities. In this case one approach would be to solve the
RHP for χ. The jump for this RHP tends to the identity. To prove weak uniformity for this
problem one needs to only consider the trivial RHP with the jump being the identity matrix
as a numerical parametrix. Another approach is to remove the growth in the parametrix
through conjugation by constant matrices; see Chapter 10, specifically Section 10.4.2, for
such an approach to rectify an unbounded global parametrix in the orthogonal polynomial
RHP.

8.3.5 Numerical results

In Figure 8.3.4 we plot the solution to Painlevé II with (s1, s2, s3) = (1,−2, 3) and demon-
strate numerically that the computation remains accurate in the asymptotic regime. We
use u(n, x) to denote the approximate solution obtained with n collocation points per con-
tour. Since we are using (8.1.3) we consider the estimated relative error by dividing the
absolute error by

√
x. We see that we retain relative error as x becomes large.

Remark 8.3.4. Solutions to Painlevé II often have poles on the real line, which correspond
to the RHPs not having a solution. In other words, ‖C[Γ,Ω]−1‖ is not uniformly bounded,
which means that the theory of this paper does not apply. However, the theorems can be
adapted to the situation where x is restricted to a subdomain of the real line such that
‖C[Γ,Ω]−1‖ is uniformly bounded. This demonstrates asymptotic stability of the numerical
method for solutions with poles, provided that x is bounded away from the poles, similar to
the restriction of the asymptotic formulae in [51].

8.4 Negative x, s2 = 0 and s1s3 = 1

We develop deformations for the Hastings–McLeod Stokes constants. We realize numerical
asymptotic stability in the aforementioned sense. The imposed conditions reduce to the
following:

Assumption 8.4.1. x < 0, s2 = 0 and s1 = −s3 = ±i
We begin by deforming the RHP (Figure 8.1.2) to the one shown in Figure 8.4.1. The

horizontal contour extends from −α to α for α > 0. We determine α below. Define

G0 = G6G1 =

[

0 s1e
−i|x|3/2θ(z)

s1e
i|x|3/2θ(z) 1

]

.

Note that the assumption s2 = 0 simplifies the form of the RHP substantially, see Fig-
ure 8.1(b). We use an approach similar to that of the equilibrium measure to replace θ
with a function possessing more desirable properties. Define

Θ(z) = ei|x|
3/2 g(z)−θ(z)

2
σ3 , g(z) = (z2 − α2)3/2.
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Figure 8.3.4: Left: Plot of the solution, u, for small x (Solid: real part, Dashed:
imaginary part). Right: Relative error. Solid: |x|−1/2|u(12, x) − u(36, x)|, Dashed:
|u(8, x) − u(36, x)|/

√

|x|, Dotted: |u(4, x) − u(36, x)|/
√

|x|. This plot demonstrates both
uniform approximation and spectral convergence.

The branch cut for g(z) is chosen along [−α,α]. If we equate α = 1/
√
2 the branch of

g can be chosen so that g(z) − θ(z) ∼ O(z−1). Furthermore, g+(z) + g−(z) = 0 and
Im(g−(z)− g+(z)) > 0 on (−α,α). Define Ĝi = Θ−1

− GiΘ+ and note that

Ĝ0(z) =

[

0 s1e
−i|x|3/2 g+(z)+g−(z)

2

s1e
i|x|3/2 g+(z)+g−(z)

2 ei|x|
3/2 g−(z)−g−(z)

2

]

=

[

0 s1

s1 ei|x|
3/2 g−(z)−g−(z)

2

]

.

As x→ −∞, G0 tends to the matrix

J =

[

0 s1
s1 0

]

.

The solution of the RHP

Ψ+(z) = Ψ−(z)J, z ∈ [−α,α], Ψ(∞) = I,
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(a) (b)

Figure 8.4.1: Deforming the RHP for negative x, with Assumption 8.4.1. The black dots
represent ±α. (a) Initial deformation. (b) Simplification stemming from Assumption 8.4.1.

is given by

Ψout
HM(z) =

1

2

[

β(z) + β(z)−1 −is1(β(z) − β(z)−1)
−is1(β(z) − β(z)−1) β(z) + β(z)−1

]

, β(z) =

(

z − α

z + α

)1/4

.

Here β has a branch cut on [−α,α] and satisfies β(z) → 1 as z → ∞. It is clear that
(Ψout

HM)+Ĝ0(Ψ
out
HM)−1

− → I uniformly on every closed subinterval of (−α,α).
We define local parametrices near ±α:

Ψα
HM =







I if − π
3 < arg(z − a) < π

3

Ĝ−1
1 if π

3 < arg(z − a) < π

Ĝ1 if − π < arg(z − a) < −π
3

,

Ψ−α
HM =







I if 2π
3 < arg(z + a) < π or − π < arg(z + a) < −2π

3

Ĝ−1
1 if 0 < arg(z + a) < 2π

3

Ĝ1 if − 2π
3 < arg(z + a) < 2π

3

.

We are ready to define the global parametrix. Given r > 0, define

ΨHM =







Ψα
HM if |z − a| < r

Ψ−α
HM if |z + a| < r

Ψout
HM if |z + a| > r and |z − a| > r

.

It follows that ΨHM satisfies the RHP shown in Figure 8.3(b).

Let Φ be the solution of the RHP shown in Figure 8.3(a). It follows that ∆ = ΦΨ−1
HM

solves the RHP shown in Figure 8.3(b). The RHP for ∆ has jump matrices that decay
to the identity away from ±α. We use Assumption 5.0.1 to determine that we should use
r = |x|−1. We solve the RHP for ∆ numerically. To compute the solution of Painlevé II
used in the asymptotic analysis of the KdV equation ((6.0.14)) we use the formula

PII(±i, 0,∓i;x) = 2i
√

|x| lim
z→∞

z∆(z)12.

See Figure 8.4(a) for a plot of the Hastings–McLeod solution with s1 = i. To verify
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Figure 8.4.2: The jump contours and jump matrices for the RHP solved by ΨHM. The
radius for the two circles is r.

(a) (b)

Figure 8.4.3: The final deformation of the RHP for negative x, with Assumption 8.4.1.
The black dots represent ±α. (a) After conjugation by Θ. (b) Bounding the contours
away from the singularities of g and β using ΨHM.

our computations we may use the asymptotics [51]:

PII(i, 0,−i;x) ∼ −
√

−x
2

+O
(

x−5/2
)

. (8.4.1)

We define

DHM(x) =

∣

∣

∣

∣

∣

∣

PII(i, 0,−i;x)
√

−x
2

+ 1

∣

∣

∣

∣

∣

∣

,

to be the relative error which should tend to a constant for x large and negative. We
demonstrate this in Figure 8.4(b).
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Figure 8.4.4: Plotting and analysis of the numerical approximation of PII(i, 0,−i;x). (a)
PII(i, 0,−i;x) for positive and negative x. For small |x| we solve the undeformed RHP.
(b) A verification of the numerical approximation using the asymptotics 8.4.1 .
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Chapter 9

The Finite-Genus Solutions of the

Korteweg-de Vries Equation

The goal of this chapter is to present a new description for the so-called finite-genus or
finite-gap solutions of the KdV equation

qt + 6qqx + qxxx = 0, (x, t) ∈ R× R, (9.0.1)

and to use this description to compute them. This material originally appeared in [108]
(see [107] for a short summary). The finite-genus solutions arise in the spectral analysis
of the Schrödinger operator with periodic or quasi-periodic potential, where the spectrum
has only a finite number g of finite-length bands separated by g gaps. They are explicitly
described in terms of Riemann theta functions, parametrized by hyperelliptic compact
Riemann surface of genus g. In the context of the periodic problem for (9.0.1), these
solutions play the same role that is played by trigonometric polynomials for the linear KdV
equation qt+ qxxx = 0 of (9.0.1): the general solution to the periodic problem in the space
of square-integrable functions is approximated arbitrarily close by a finite-genus solution
with sufficiently high g. An eloquent overview of the extensive literature on these solutions
is found in McKean’s review [73] of [74]. Of particular importance in the development of
this literature are the pioneering works of Lax [70] and Novikov [83]. Excellent reviews are
also found in Chapter 2 of [82], Dubrovin’s oft-cited review article [45], and [9], parts of
which focus specifically on the computation of these solutions.

The computation of the finite-genus solutions is a nontrivial matter. Although Lax’s
original paper [70] includes an appendix by Hyman, where solutions of genus two were
obtained through a variational principle, the now-standard approach of their computa-
tion goes through their algebro-geometric description in terms of Riemann surfaces, see
[21] or [55], for instance. Another approach is through the numerical solution of the so-
called Dubrovin equations, a set of coupled ordinary differential equations that describe
the dynamics of the zeros and poles of an auxiliary eigenfunction of the spectral problem,
the Baker-Akhiezer function [9, 44]. The finite-genus solution is easily recovered from the
solution of the Dubrovin equations [82, 93]. One advantage of all these approaches over
the variational method employed by Lax and Hyman is that periodic and quasi-periodic
solutions are constructed with equal ease. The same is true for our approach, described
below.

223
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The essence of this paper is the derivation of a Riemann–Hilbert representation of the
Baker–Akhiezer function. We construct a RHP whose solution is used to find the Baker–
Akhiezer function. From this, one extracts the associated solution of the KdV equation.
The x- and t-dependence of the solution appear in an explicit way, so that no time or
space stepping is required to obtain the value of the solution at a specific x and t. This
should be contrasted with, for instance, the numerical solution of the Dubrovin equations
[93]. Furthermore, just like for the method of inverse scattering (Chapters 6 and 7), the
infinite-line counterpart of the problem under investigation, this dependence of the KdV
solution on its independent variables appears linearly in an exponential function in the
RHP.

In order to solve this RHP, we employ a regularization procedure using a g-function
[32]. This simplifies the x- and t-dependence further. The resulting RHP has piecewise-
constant jumps. Straightforward modifications allow the RHP to be numerically solved
efficiently using the techniques in Section 5.3. This results in an approximation of the
Baker–Akhiezer function that is uniformly valid on its associated Riemann surface. This,
in turn, produces a uniform approximation of the associated solution of the KdV equation
in the entire (x, t) plane.

In this chapter, we begin by introducing the required fundamentals from the theory
of Riemann surfaces. Next we use the methods of Chapter 2 of [82] to describe how
hyperelliptic Riemann surfaces are used to solve the KdV equation for a restricted class
of initial conditions. The representation of the Baker–Akhiezer function in terms of a
RHP is derived in the next section. The modification of this RHP is discussed in the two
subsequent sections. The final form of the RHP is presented in Section 9.5. In the final
section the RHP is solved numerically and the numerical convergence of the method is
verified. The method is illustrated there with many numerical examples. As a notational
remark, due to the wealth of defined functions in this chapter we reserve bold-face fonts
for vectors and matrices.

9.1 Riemann surfaces

We use this section to introduce the fundamental ideas from the theory of Riemann surfaces
that are needed below. Most of these fundamental facts can be found in [9, 44]. The
unfinished lecture notes by B. A. Dubrovin [46] provide an especially readable introduction
and most results stated below can also be found there. We include additional classical
results on Riemann surfaces to give the reader some insight into the depth of the subject.

Definition 9.1.1. Let

F (λ, µ) = µ2 − P2g+2(λ), or F (λ) = µ2 − P2g+1(λ).

The algebraic curve associated with this function is the solution set in C2 of the equation
F (λ,w) = 0. The desingularization and compactification of this curve is a Riemann sur-
face, Γ. Note that in this chapter Γ is no longer a contour. For this restricted class of
polynomials the associated Riemann surface Γ is said to be hyperelliptic. We only consider
hyperelliptic surfaces.

Define the a cycles {aj}gj=1 and the b cycles {bj}gj=1 on the Riemann surface as in
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Figure 9.1.1. The set {aj ∪ bj}gj=1 is a basis for the homology of the Riemann surface. It
is well known that the hyperelliptic surfaces in Definition 9.1.1 are of genus g; they can
be identified with a sphere with g handles. It is also well known that a genus g surface
has g linearly independent holomorphic differentials, denoted ω1, . . . ωg. We choose the
normalization

∮

aj

ωk = 2πiδjk, j, k = 1, . . . , g.

The matrix

B = (Bjk)1≤j,k≤g , Bjk =

∮

bj

ωk,

is known as a Riemann matrix. Although this matrix has important properties and is
necessary for computing the theta function representation of the finite-genus solutions we
do not need it directly.

a1
a2

ag

b1
b2

bg

Figure 9.1.1: A cartoon of a hyperelliptic Riemann surfaces with a choice for the a and b
cycles.

Lemma 9.1.2 ([45]). Let ω be a holomorphic differential on a Riemann surfaces of genus
g. If

∮

aj

ω = 0, j = 1, . . . , g,

then ω = 0.

Lemma 9.1.3 ([45]). Every holomorphic differential f on a genus g hyperelliptic Riemann
surface µ2 − P2g+1(λ) = 0 can be expressed locally as

f =
q(λ)

µ
dλ,

where q is a polynomial of degree at most g − 1.

A divisor is a formal sum

D =
k
∑

j=1

njQj, nj ∈ Z,
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of points Qj on the Riemann surface. Given a meromorphic function f on the Riemann
surface with poles at Qj of multiplicity nj and zeros at Rj with multiplicity mj we define
the associated divisor

(f) =
l
∑

j=1

mjRj −
k
∑

j=1

njQj.

The degree of a divisor

degD =
k
∑

j=1

nj so that deg(f) =
k
∑

j=1

nj −
l
∑

j=1

mi.

A divisor is said to be positive if each nj is positive and D > D′ holds if D−D′ is positive.
We use l(D) to denote the dimension of the space of meromorphic functions f such that
(f) ≥ D.

Lemma 9.1.4 (Riemann inequality [45]). For a genus g surface, if degD ≥ g then

l(D) ≥ 1 + degD − g.

A divisor D is said to be nonspecial if the Riemann inequality is an equality. Define
the Abel mapping for points on the Riemann surface by

A(Q) =
[

∫ Q
Q0
ω1 · · ·

∫ Q
Q0
ωg

]

, (9.1.1)

where the path of integration is taken to be the same for all integrals. Note that this is
well-defined for the appropriately normalized differentials. We extend this map to divisors
D =

∑k
j=1 njQj by

A(D) =

k
∑

j=1

njA(Qj).

Theorem 9.1.5 ([45]). The Abel map A maps points on the symmetrized Riemann surface
to the associated Jacobi variety J(Γ) = Cg/{2πM +BN} for M,N ∈ Zg. Furthermore, if
the divisor D = Q1 + · · · + Qg is nonspecial then A has a single-valued inverse from the
Jacobi variety to the symmetrized Riemann surface in a neighborhood of A(D).

We do not make use of this theorem directly but include it for completeness. Next, we
describe properties of Abelian differentials of the second kind that are needed below.

Definition 9.1.6. Given a point Q on the Riemann surface and a positive integer n, an
Abelian differential of the second kind is a meromorphic differential that has a single pole
of order n+ 1, so that its local representation is

νnQ =
(

z−n−1 +O(1)
)

dz,

with respect to a local parameter z, z(Q) = 0.
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When Q is the point at infinity we construct these differentials explicitly. As a local
parameter we take z2 = 1/λ since Q is a branch point. If n is even we set

νn∞ = −1

2
λn/2−1dλ.

When n is odd, there is more to be done. First, compute

λj

w
dλ = −2

z−2j−3

√

P (z−2)
dz.

Then

P (z−2) = z−4g−2(1− z2αg+1)

g
∏

j=1

(1− z2αj)(1− z2βj).

Thus

λj

w
dλ = −2z−2j−2+2g



(1− z2αg+1)

g
∏

j=1

(1− z2αj)(1− z2βj)





−1/2

dz

= (−2z−2j−2+2g +O(1))dz.

We choose j = g + (n− 1)/2 so that

νn∞ = −1

2

λg+(n−1)/2

w
dλ.

Let µn∞ be the differential obtained from νn∞ by adding holomorphic differentials so that it
has zero a cycles. We state a lemma concerning the b-periods of these differentials.

Lemma 9.1.7 ([46]). Define yk(z) through the equality ωk = yk(z)dz and z2 = 1/λ. Then

∮

bk

µn∞ =
1

n!

dn−1

dzn−1
yk(z)

∣

∣

∣

∣

z=0

, k = 1, . . . , g.

9.2 The finite-genus solutions of the KdV equation

We begin by considering the scattering problem associated with the KdV equation. The
time-independent Schrödinger equation

−Ψxx − q0(x)Ψ = λΨ, (9.2.1)

is solved for eigenfunctions Ψ(x, λ) bounded for all x. We define the Bloch spectrum

S(q0) =
{

λ ∈ C : there exists a solution such that sup
x∈R

|Ψ(x, λ)| <∞
}

.
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It is well known that for q0(x) smooth and periodic the Bloch spectrum consists of a
countable collection of real intervals

S(q0) =
∞
⋃

j=1

[αj , βj ],

αj < βj < αj+1 < βj+1.

If there are only n+1 intervals then βn+1 = ∞. We refer to the intervals [αj , βj ] as bands
and the intervals [βj , αj+1] as gaps.

Assumption 9.2.1. S(q0) consists of a finite number of intervals. In this case we say
that q0 is a finite-gap potential.

Define Γ to be the hyperelliptic Riemann surface associated with the function

F (λ, µ) = µ2 − P (λ), P (λ) = (λ− αg+1)

g
∏

j=1

(λ− αj)(λ− βj).

See Figure 9.2.1 for a cartoon. We divide this surface into two sheets. Choose the
branch cuts for the function

√

P (λ) along S(q0). We fix the branch by the requirement
√

P (λ) ∼ (−1)gi|λ|g+1/2 as λ→ −∞. Define
√

P (λ)
+
to be the value limǫ→0+

√

P (λ+ iǫ).
This allows us to define

Γ± = {(λ,±
√

P (λ)
+
) : λ ∈ C}.

When considering a function f defined on Γ we use the notation f± so that f+(f−) denotes
the function restricted to Γ+(Γ−). In this way we can consider f± as a function of only
λ. We need an explicit description of the a cycles since we take a computational approach
below:

ai = {(λ,
√

P (λ)
+
) : λ ∈ (βi, αi+1]} ∪ {(λ,−

√

P (λ)
+
) : λ ∈ [βi, αi+1)}.

The ai component on Γ+(Γ−) is oriented in the direction of decreasing (increasing) λ. This
description is also useful since we will consider poles and zeros lying on the a cycles.

Remark 9.2.2. There is some inconsistency in the notation f± which is also present in
the literature [46]. In what follows, it will be clear from context whether we are referring
to a function defined on the Riemann surface or to f+ and f− separately.

We introduce further notation that will be of use later. Given a point Q = (λ,w) ∈ Γ,
we follow [51] and define the involution ∗ by Q∗ = (λ,−w). This is an isomorphism from
one sheet of the Riemann surface to the other. It is clear the first sheet is isomorphic to
the cut plane

Ĉ = C \







[αg+1,∞) ∪
g
⋃

j=1

[αj , βj ]







,
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through the mapping ˆ : Γ+ → Ĉ defined by Q̂ = λ and its inverse ˇ : Ĉ → Γ+ defined by

λ̌ = (λ,
√

P (λ)
+
).

α1
α2

α3
αg+1

∞β1 β2
βg

Figure 9.2.1: A cartoon of the Riemann surface associated with the finite-gap potential q0.

Lemma 9.2.3. [82] For every x0 ∈ R there exist two solutions Ψ± of (9.2.1) such that

• Ψ±(x, λ) is meromorphic on Γ \ {∞} with g poles at

D =

g
∑

i=1

Qi, Qi ∈ ai,

and g zeros at

D′ =
g
∑

i=1

Ri, Ri ∈ ai.

• Define γi = R̂i then {γj}gj=1 satisfies

γj(x0) ∈ [βj , αj+1], (9.2.2)

γ′j = − 2i
√

P (γj)
∏

k 6=j(γj − γk)
. (9.2.3)

• Ψ±(x, λ) = e±i
√
λ(x−x0)(1 +O(λ−1/2)) as λ→ ∞.

For simplicity we take x0 = 0 below. We will always take the branch cut for λ1/2 to
be along [0,∞) and fix the branch by λ1/2 ∼ i|λ|1/2 as λ → −∞. If the potential q0(x)
is taken as an initial condition for the KdV equation then these zeros have both time and
space dependence γj = γj(x, t). This dependence is given by [44]

γ̇j = −8i(γj + q0/2)
√

P (γj)
∏

k 6=j(γj − γk)
, (9.2.4)

and the solution to the KdV equation can be reconstructed through

q(x, t) = −2

g
∑

j=1

γj(x, t) + αg+1 +

g
∑

j=1

(αj + βj).
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The (now time-dependent) function Ψ±(x, t, λ) is known as a Baker–Akhiezer (BA) func-
tion. From the general theory of Baker–Akhiezer functions [82] it is known that it is
uniquely determined by a nonspecial divisor

D =

g
∑

i=1

Qi,

for the poles and the asymptotic behavior [82]. The following lemma shows that all divisors
we consider are nonspecial.

Lemma 9.2.4. On the hyperelliptic surface µ2 = P (λ) the divisor D =
∑g

i=1Ri, where
Ri ∈ ai is nonspecial.

Proof. Assume f is meromorphic with D ≤ (f). The differential w = df has double poles
with zero residues at the points Ri. We have the following representation

w =

g
∑

i=1

yi + η.

Here yi are Abelian differentials of the second kind normalized so that they have zero
periods along the a cycles and second-order poles at the points Ri. Since f is single valued
on the Riemann surface

∮

ak

w = 0,

∮

bk

w = 0, k = 1, . . . , g.

Since the a periods vanish we conclude that η must be zero. From the b period condition
we obtain

∮

bk

w =

g
∑

j=1

cjψkj(zj(0)) = 0, (9.2.5)

where zj is a local parameter near Rj = zj(0) and ψkj is determined from the equality
ωk = ψkj(zj)dzj near Rj . We know that ωk can be expressed uniquely as the sum of
differentials of the form

ul =
λl−1

µ
dλ, for l = 1, . . . , g,

with coefficients dkl. If Rj = (zj ,±
√

P (zj)) is not a branch point we obtain

ψk,j(zj) =

g
∑

l=1

dkj
zl−1
j

√

P (zj)
.
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If it is a branch point Rj = (zj , 0) we use the local parameter s =
√

λ− zj so that

ψk,j(zj) =

g
∑

l=1

dkl
2zl−1

j
√

P ′(zj)
.

Since the matrix d = (dkl)1≤k,l≤g is invertible the condition (9.2.5) is reduced to the study
of the matrix

Z = (zl−1
j )1≤j,l≤g,

after multiplying rows by suitable constants. This is a Vandermonde matrix, and thus
invertible. This shows that cj = 0 and thus w = 0 and f = C ∈ C. This proves the result.

Remark 9.2.5. We have shown that the Abel map is invertible from the Jacobi variety to
the symmeterized Riemann surface in a neighborhood of A(D) for every divisor we consider.

Being precise, we obtain the following unique characterization of the function Ψ±(x, t, λ)
[82]:

Definition 9.2.6. The BA function for the solution of the KdV with initial condition q0(x)
is the unique function that satisfies

• Ψ± solves (9.2.1).

• Ψ± is meromorphic on Γ \ {∞} with poles at

D =

g
∑

i=1

Qi, Qi ∈ ai, Q̂i = γi(0, 0). (9.2.6)

• Ψ±(x, t, λ) = e±iλ1/2x±4iλ3/2t(1 +O(λ−1/2)) as λ→ ∞.

• q0(x) = −2
∑g

j=1 γj(x, 0) + αg+1 +
∑g

j=1(αj + βj).

Remark 9.2.7. Instead of computing the zeros of the BA function we derive a Riemann–
Hilbert formulation of the BA function to compute the function itself. The main benefit
of this approach is that the roles of x and t in the problem are reduced to that of param-
eters. This gives an approximation to the solution of the KdV equation that is uniformly
convergent in the (x, t) plane. In this sense our method is comparable to the theta func-
tion approach which can also achieve uniform convergence [55]. On the other hand, no
time stepping is required, as for the direct numerical solution of the PDE or the numerical
solution of 9.2.2 and 9.2.4.

In what follows we assume without loss of generality that α1 = 0. If α1 6= 0 we define
τ = λ− α1 and consider a modified scattering problem

−Ψxx − q0(x)Ψ = (τ + α1)Ψ, (9.2.7)

−Ψxx − q̃0(x)Ψ = τΨ, q̃0(x) = q0(x) + α1. (9.2.8)
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Let q(x, t) and q̃(x, t) be the solutions of the KdV equation with q0(x) and q̃0(x) respec-
tively, as initial conditions. If q̃(x, t) satisfies the KdV equation then so does q̃(x−6ct, t)+c.
Therefore, by uniqueness, q(x, t) = q̃(x+ 6α1t, t)− α1.

9.3 From a Riemann surface of genus g to the cut plane

Consider the hyperelliptic Riemann surface Γ from Section 9.2. We represent a function
f± defined on Γ by a vector-valued function f on Ĉ by

f(λ) =
[

f+(λ̌) f−((λ̌)∗)
]

.

Assume the function f± is continuous on all of Γ. Let λ ∈ (αj , βj) and define λ±ǫ = λ± iǫ.
It follows that limǫ→0+ λ̌±ǫ = limǫ→0+(λ̌∓ǫ)

∗. From the continuity of f±

lim
ǫ→0+

f+(λ̌±ǫ) = lim
ǫ→0+

f−((λ̌∓ǫ)
∗).

Let f±(λ) = limǫ→0+ f(λ± iǫ). Then

f+(λ) = f−(λ)

[

0 1
1 0

]

.

We form a planar representation of the BA function

Ψ(λ) =
[

f+(λ̌) f−((λ̌)∗)
]

.

The function Ψ satisfies

Ψ+(x, t, λ) = Ψ−(x, t, λ)

[

0 1
1 0

]

, λ ∈ (αn+1,∞) ∪
g
⋃

j=1

(αj , βj),

Ψ(x, t, λ) =
[

eiλ
1/2x+4iλ3/2

e−iλ1/2x−4iλ3/2
]

(I +O(λ−1/2)).

The next step is to remove the oscillatory nature of Ψ for large λ. This procedure will
affect the jumps, thus some care is in order. Define

R(x, t, λ) =

[

e−ζ(x,t,λ)/2 0

0 eζ(x,t,λ)/2

]

,

ζ(x, t, λ) = 2ixλ1/2 + 8itλ3/2.
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The function Φ(x, t, λ) = Ψ(x, t, λ)R(x, t, λ) satisfies

Φ+(x, t, λ) = Φ−(x, t, λ)

[

0 1
1 0

]

, λ ∈ (αn+1,∞) ∪
g
⋃

j=1

(αj , βj),

Φ+(x, t, λ) = Φ−(x, t, λ)

[

e−ζ(x,t,λ) 0

0 eζ(x,t,λ)

]

, λ ∈
g
⋃

j=1

(βj , αj+1),

Φ(x, t, λ) =
[

1 1
]

(I +O(λ−1/2)).

(9.3.1)

This is a RHP for Φ when the poles at γj(0, 0) coincide with αj or βj . The boundary
values of the solution to the RHP should be at least locally integrable. A pole at a band
end (αj or βj) corresponds to a square-root singularity. In general, we have poles in the
intervals (βj , αj+1) where there are smooth jumps. In Section 9.4.1 we treat the case where
γj(0, 0) = βj , j = 1, . . . , g while enforcing that Φ remains bounded at {αj}gj=1. No such
enforcement is made at {βj}gj=1. The general case of poles on the a cycles is treated in
Section 9.4.2.

9.4 Regularization

We show how the jump conditions in (9.3.1) can be reduced to piecewise constant jumps.
As mentioned above, we first perform the calculations in the simpler case when the poles
are located at (βj , 0) on Γ. In the general case, we use an additional BA function as a
parametrix to move the poles to the band ends thus reducing the problem to the first case.

9.4.1 All poles at the band ends

We assume γj(0, 0) = βj . Define the g-function

G(x, t, λ) =
√

P (λ)

2πi

g
∑

j=1

∫ αj+1

βj

−ζ(x, t, s) + iΩj(x, t)
√

P (s)
+

ds

s− λ
, (9.4.1)

where Ωj(x, t) is constant in λ. It is determined below.

Lemma 9.4.1. The g-function satisfies

• G+(x, t, λ) + G−(x, t, λ) = 0 for λ ∈ (αj , βj),

• G+(x, t, λ)− G−(x, t, λ) = −ζ(x, t, λ) + iΩj(x, t) for λ ∈ (βj , αj+1),

• G(x, t, λ)/
√

P (λ) =
∑g

k=1mk(x, t)λ
−k +O(λ−g−1) as λ→ ∞ where

mk(x, t) = − 1

2πi

g
∑

j=1

∫ αj+1

βj

−ζ(x, t, s) + iΩj(x, t)
√

P (s)
+ sk−1ds.

Proof: The first two properties follow from the branching properties of
√

P (λ) and prop-
erties of Cauchy integrals. The last property follows from Lemma 3.2.2.
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Define the matrix function

G(x, t, λ) =

[

e−G(x,t,λ) 0

0 eG(x,t,λ)

]

,

and consider the function

Σ(x, t, λ) = Φ(x, t, λ)G(x, t, λ).

Using Lemma 9.4.1 we compute the jumps of Σ:

Σ+(x, t, λ) = Σ−(x, t, λ)

[

0 1
1 0

]

, λ ∈ (αg+1,∞) ∪
g
⋃

j=1

(αj , βj), (9.4.2)

Σ+(x, t, λ) = Σ−(x, t, λ)

[

eiΩj(x,t) 0

0 e−iΩj(x,t)

]

, λ ∈
g
⋃

j=1

(βj , αj+1). (9.4.3)

Since
√

P (λ) = O(|λ|g+1/2), G has growth in λ at ∞ unless mk(x, t) = 0 for k = 1, . . . , g.
We wish to determine {Ωj}gj=1 so that Σ has the same asymptotic behavior as Φ as
λ → ∞, see (9.3.1). Thus, we must solve the following problem, which we put in slightly
more abstract terms since we make use of it again below.

Problem 9.4.2. Given continuous functions

fj(λ) : [βj , αj+1] → C, j = 1, . . . , g,

we seek constants Ωj satisfying the moment conditions

0 =

∫ αj+1

βj

−fj(λ) + iΩj
√

P (λ)
+ λi−1dλ, j = 1, . . . , g.

Theorem 9.4.3. Problem 9.4.2 has a unique solution. Further, if each fj takes purely
imaginary values then each Ωj is real valued.

Proof. The second claim follows from the fact that
√

P (λ)
+
takes purely imaginary values

in the gaps, [βj , αj+1]. To establish the first claim, notice that Problem 9.4.2 is equivalent
to the linear system

MΩ = V ,

(M )kj = i

∫ αj+1

βj

λk−1

√

P (λ)
dλ,

(Ω)j = Ωj, (V )i =

g
∑

j=1

∫ αj+1

βj

fj(λ)
√

P (λ)
λk−1dλ.
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Assume the rows of M are linearly dependent. Then there exist constants dk such that

g
∑

k=1

dkMkj = 0, for j = 1, . . . , g.

Explicitly, this implies

g
∑

k=1

∫ αj+1

βj

dk
√

P (λ)
λk−1dλ =

∫ αj+1

βj

(

g
∑

k=1

dkλ
k−1

)

dλ
√

P (λ)
, for j = 1, . . . , g.

We show this implies that the holomorphic differential

f =

g
∑

k=1

dkλ
k−1 dλ
√

P (λ)
=

g
∑

k=1

dkλ
k−1dλ

w
,

has zero a periods. Compute

∫ βj+1

αj

λk−1

w
dλ =

1

2

(

∫ βj+1

αj

λk−1

w
dλ+

∫ αj

βj+1

λk−1

−w dλ

)

=
1

2

∮

aj

λk−1

w
dλ.

Indeed, f integrates to zero around every a cycle implying that f is the zero differential,
see Lemma 9.1.2. But since each of λk−1w−1dλ is linearly independent we conclude that
dk = 0, k = 1, . . . , g and the rows of M are linearly independent.

If we select Ωj to make all mk vanish we use the condition

lim
λ→∞

Σ(x, t, λ) =
[

1 1
]

,

in conjunction with (9.4.2) to obtain a RHP for Σ. It is important that Ω in Problem
9.4.2 is real valued. This implies the piecewise-constant jump matrix in (9.4.2) is bounded
for all x and t.

9.4.2 Poles in the gaps

In this section we show how to use an additional BA function to, in effect, reduce the case
where γj(0, 0) ∈ (βj , αj+1) to that of γj(0, 0) = βj . We assume that not all poles of Ψ±
lie on the band ends {βj}gj=1. Consider the planar representation of a BA function (Ψp)±
which satisfies

Ψ+
p (x, t, λ) = Ψ−

p (x, t, λ)

[

0 1
1 0

]

, λ ∈ (αg+1,∞) ∪
g
⋃

j=1

(αj , βj),

Ψp(x, t, λ) =
[

eκ(λ)/2 e−κ(λ)/2
]

(I +O(λ−1/2)),

κ(λ) =

g
∑

j=1

itjλ
j−1/2, tj ∈ R,
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with poles at βj . The goal is to choose {tj}gj=1 so that (Ψp)± has zeros precisely at the
poles of Ψ±. Define (Ψr)± = Ψ±(Ψp)±. The planar representation Ψr = ΨΨp with
entry-wise multiplication now has poles at βj and zeros at the zeros of Ψ. We find Ψ± by
first finding two functions (Ψp)± and (Ψr)± both of which have poles at {(0, βj)}gj=1 and
dividing. Thus, the general case of poles in gaps is reduced to poles at band ends provided
we find the required {tj}gj=1.

Remark 9.4.4. We are using the term poles loosely. On Ĉ, Ψp has unbounded square-root
singularities while on Γ, (Ψp)± has poles.

We show that we can choose {tj}gj=1 so that the zeros of (Ψp)± will be at an arbitrary
divisor

D′ =
g
∑

j=1

Rj, Rj ∈ aj .

First, we state a lemma about the location of the zeros and poles of a BA function.

Lemma 9.4.5. [9] Let D′ be the divisor of the zeros of the BA function and D be that of
the poles. Assume

Ψ±(λ) = eq(k)(1 +O(k−1)), k → ∞, k2 = λ. (9.4.4)

On the Jacobi variety J(Γ)

A(D′) = A(D)− V , (9.4.5)

where V is the vector of the b-periods of a normalized Abelian differential ν of the second
kind that satisfies

ν(Q) = dq(k) +O(k−2)dk, k = k(Q) → ∞, (9.4.6)
∮

al

ν = 0, V l =

∮

bl

ν, l = 1, . . . , g. (9.4.7)

Conversely, if two divisors satisfy (9.4.5) then they are the divisors of the poles and zeros
of some BA function which satisfies (9.4.4).

To determineΨp we have D andD′. We need to show we can choose ν = dκ+O(k−2)dk
so that (9.4.5) holds. The following lemma provides this result.

Lemma 9.4.6. Assume

D =

g
∑

j=1

Qj , D′ =
g
∑

j=1

Rj, Qj, Rj ∈ aj .

Then there exists real constants {tj}gj=1 so that the differential

ν =

g
∑

j=1

tjνj



9.4. REGULARIZATION 237

satisfies the properties in (9.4.6) with q(k) = κ(k), and νj can be constructed explicitly.

Proof: Define τj to be the Abelian differential of the second kind with principal part (see
Section 9.1)

τj = (2j − 1)
(

k2j−3 +O(k−2)
)

dk, k → ∞,

where 1/k is a parameter in the neighborhood of ∞. For j ≥ 1, we choose a path of
integration that lies on one sheet. We have

∫ λ

λ0

τj = ±λj−1/2(1 +O(λj−3/2)) as λ→ ∞.

Define

ν =

g
∑

j=1

itj(τj + ηj),

where ηj is a holomorphic differential chosen so that τj + ηj has vanishing a periods. We
define νj = i(τj + ηj). Consider the system of equations

∮

bk

ν = (V )k, k = 1, . . . , g.

It follows that (see Lemma 9.1.7)

∮

bk

ν =

g
∑

j=1

itj
1

(2j − 2)!

d2j−2

dz2j−2
rk(z)

∣

∣

∣

∣

z=0

, k = 1, . . . , g.

Here z is a local parameter in the neighborhood of ∞: z(∞) = 0 and ωk = rk(z)dz.
To compute these derivatives we again use a convenient basis, not normalized, for the
holomorphic differentials:

uj =
λj−1

w
dλ, j = 1, . . . , g.

Set λ = 1/z2 and compute

uj = −2z2(g−j)

(

(1− αj+1z)

g
∏

i=1

(1− αiz)(1 − βiz)

)−1/2

dz

= sj(z)dz.

It is clear that the matrix

(A)kj =
d2k−2

dz2k−2
sj(z),

is triangular with non-vanishing diagonal entries. There exists an invertible linear trans-
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formation from {uj}gj=1 to {ωk}gk=1, and since A is invertible, it follows that the system

∮

bk

ν = Vk, for k = 1, . . . , g, (9.4.8)

is uniquely solvable for {tj}gj=1. This proves the existence of a BA function with asymptotic
behavior (9.4.4) and one arbitrary zero on each a cycle.

In summary, the BA function (Ψr)± = (Ψp)±Ψ± has poles located at (βj , 0) and one
zero on each a-cycle corresponding to the zeros of Ψ±. We show below how to compute
such a BA function. We use the approach of Section 9.3 to formulate a RHP for (Ψp)±:

Σ+
p (x, t, λ) = Σ−

p (x, t, λ)

[

0 1
1 0

]

, λ ∈ (αn+1,∞) ∪
g
⋃

j=1

(αj , βj), (9.4.9)

Σ+
p (x, t, λ) = Σ−

p (x, t, λ)

[

eiWj 0
0 e−iWj

]

, λ ∈
g
⋃

j=1

(βj , αj+1), (9.4.10)

where each of the Wj ∈ R is chosen so that the g-function

Gp(λ) =

√

P (λ)

2πi

g
∑

j=1

∫ αj+1

βj

−κ(s) + iWj
√

P (λ)
+

ds

s− λ
, (9.4.11)

satisfies Gp(λ) = O(λ−1/2) as λ → ∞. Theorem 9.4.3 provides a well-defined map from
{tj}gj=1 to {Wj}gj=1. Furthermore each Wj can be taken modulo 2π. The RHP for (Ψr)±
is similar but κ(λ) must be replaced with κ(λ)+2ixλ1/2 +8itλ3/2 to account for the x and
t dependence in Ψ±. In this case we write Wj(x, t). This is elaborated below.

9.5 A Riemann–Hilbert problem with smooth solutions

The numerical method described in [89] requires solutions of the RHP to be smooth. We
need to deform the RHP to take into account the singularities explicitly if we wish to solve
it numerically. In this section, we assume the divisor for the poles of the BA function is

D =

g
∑

i=1

(βj , 0),

and that the Ωj(x, t) are chosen so that the moment conditions for G are satisfied. We
replace Ωj(x, t) withWj andWj(x, t) in the case of (Ψp)± and (Ψr)±, respectively. In light
of the previous section, all other cases can be reduced to this. Define

∆(x, t, λ) =

[

δ(x, t, λ) 0
0 1/δ(x, t, λ)

]

, δ(x, t, λ) =

g
∏

j=1

(

λ− αj+1

λ− βj

)Ωj(x,t)/(2π)

.
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The branch cut for δ to be along the intervals [βj , αj+1] and we assume Ωj(x, t) ∈ [0, 2π).
Note that ∆ satisfies

∆+(x, t, λ) = ∆−(x, t, λ)

[

eiΩj(x,t) 0

0 e−iΩj(x,t)

]

, λ ∈ (βj , αj+1).

Define

H(λ) =
1

2

[

1 1 +
√

λ− αn+1

1 1−
√

λ− αn+1

]

,

where the function
√

λ− αn+1 has its branch cut on [αn+1,∞), and satisfies
√

λ− αn+1 ∼
i|λ|1/2 as λ→ −∞ to fix the branch. The last function we need is the g-function matrix

G(x, t, λ) =

[

e−G(x,t,λ) 0

0 eG(x,t,λ)

]

.

Note that if we were solving for (Ψp)± or (Ψr)± we would replace G with (9.4.11).

We introduce a local parametrix for what follows. Consider the RHP

Y +(λ) = Y −(λ)

[

0 c
1/c 0

]

, λ ∈ (a, b), (9.5.1)

where we do not specify the asymptotic behavior since we wish to obtain multiple solutions.
From Example 3.4.3 we find

Y (λ; a, b, α, β, c) =

[

−i(λ− a)α(λ− b)β/c i(λ− a)α(λ− b)β

1/c 1

]

, α, β = ±1

2
,

is a solution of (9.5.1). We choose the branch cut of (λ − a)α(λ − b)β to be along the
interval [a, b] with (λ − a)α(λ − b)β ∼ λα+β as λ → ∞. To simplify notation we define

α1 β1 β2
α2 α3 ∞

J1J0 J2J0 J0

Figure 9.5.1: The contours and jump matrices of the RHP for Σ.

J j(x, t) = diag(e−iΩj(x,t), eiΩ(x,t)) and

J0 =

[

0 1
1 0

]

.

We need a local parametrix at each point αj or βj . This motivates the definition

A1(x, t, λ) = Y (λ;α1, β1, 1/2,−1/2, 1),

Aj(x, t, λ) = Y (λ;αj , βj , 1/2,−1/2, exp(−iΩj−1(x, t))), j = 2, . . . , g + 1,

Bj(x, t, λ) = Y (λ;αj , βj , 1/2,−1/2, exp(−iΩj(x, t))), j = 1, . . . , g.
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This allows us to enforce boundedness at each αj with a possibly unbounded singularity
at βj . The matrices Aj are used locally at αj and Bj at βj .

Consider the following example. The general case can be inferred from this.

Example 9.5.1 (Genus two). Our initial RHP is (9.4.2) with the condition

lim
λ→∞

Σ(x, t, λ) =
[

1 1
]

,

see Figure 9.5.1. First, we introduce a circle around α3 = αg+1. In addition we place
a large circle around all the gaps, see Figure 9.5.2. Now, we redefine our function Σ in
various regions. Define Σ1 by the piecewise definition in Figure 9.3(a). We compute the
jumps satisfied by Σ1, see Figure 9.3(b). An important calculation is that if Σ1(x, t, λ) =
[

1 1
]

+O(λ−1) then

Σ1(x, t, λ)H(λ) =
1

2

([

1 1
]

+O(λ−1)
)

[

1 1 +
√

λ− αn+1

1 1−
√

λ− αn+1

]

=
[

1 1
]

+O(λ−1/2).

This allows us to obtain functions with the correct asymptotic behavior.

We present the deformation in the interior of the large circle in Figure 9.3(a). See
Figure 9.4(a) for the piecewise definition of Σ2 and Figure 9.4(b) for the jumps and jump
contours for Σ2. While this RHP can be solved numerically, we make a final deformation
to reduce the number of contours present. Define D to be the region inside the large outer
circle but outside each of the smaller circles around αj, βj . Define

Σ3(x, t, λ) =

{

Σ2(x, t, λ),∆
−1(x, t, λ) if λ ∈ D,

Σ2(x, t, λ), otherwise.

See Figure 9.5.5 for the jumps and jump contours of the RHP for Σ3. We refer to this as
the deformed and regularized RHP associated with Ψ±.

α1 β1 β2
α2 α3

∞

Figure 9.5.2: Introducing a large circle around αj and βj .
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β2 α3

ΣH

Σ

Σ

ΣH

ΣJ2A
−1

3

ΣA
−1

3

(a)

β2 α3

H
−1

H
−1

H
−1

A
−1

3

H
−1

J2A
−1

3

A
−1

3

J2A
−1

3

J2

(b)

Figure 9.5.3: (a) The piecewise definition of Σ1. (b) The jump contours and jump matrices
for the RHP for Σ1.

This resulting RHP has smooth solutions by the theory of Chapter 3: the RHP is k-
regular for all k. Furthermore, the uniqueness of the BA function gives us existence and
uniqueness of the solution of this RHP. See Appendix 9.7 for a more detailed discussion of
the solvability of the RHP. This justifies solving for Σ3 numerically.

9.5.1 Reconstruction of the solution to the KdV equation

Once the function Σ3 above is known (at least numerically) we want to extract from it
the solution of the KdV equation. We use that Σ3 is analytic at infinity and that each
component of Ψ satisfies (9.2.1). For large λ we write

Σ3(x, t, λ) = Ψ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ). (9.5.2)
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α1 β1 α2 β2

Σ1

Σ1A
−1

1 Σ1A
−1

2
Σ1B

−1

1 Σ1B
−1

2

Σ1J1B
−1

1 Σ1J1A
−1

2 Σ1J2B
−1

2

(a)

α1 β1 α2 β2

A
−1

1
B

−1

1

J1B
−1

1

A
−1

2

J1A
−1

2
J2B

−1

2

B
−1

2

J0 J1 J0 J2

(b)

Figure 9.5.4: (a) The piecewise definition of Σ2 inside the outer circle. (b) The jump
contours and jump matrices for the RHP for Σ2.

We find a differential equation for Σ3. Differentiating (9.5.2) we find

∂xΣ3(x, t, λ) = ∂xΨ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ)+

Ψ(x, t, λ)∂xR(x, t, λ)G(x, t, λ)H(λ)+

Ψ(x, t, λ)R(x, t, λ)∂xG(x, t, λ)H(λ).

∂xxΣ3(x, t, λ) = ∂xxΨ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ)+

Ψ(x, t, λ)∂xxR(x, t, λ)G(x, t, λ)H(λ)+

Ψ(x, t, λ)R(x, t, λ)∂xxG(x, t, λ)H(λ)+

2Ψ(x, t, λ)∂xR(x, t, λ)∂xG(x, t, λ)H(λ)+

2∂xΨ(x, t, λ)∂xR(x, t, λ)G(x, t, λ)H(λ)+

2∂xΨ(x, t, λ)R(x, t, λ)∂xG(x, t, λ)H(λ).

We seek to simplify this formula. Define r(λ) = diag(2iλ1/2,−2iλ1/2) then

∂xR(x, t, λ) = r(λ)R(x, t, λ),

∂xxR(x, t, λ) = r2(λ)R(x, t, λ).

It follows that each Ωj(x, t) depends linearly on x. Define g(λ) = diag(−∂xg(x, t, λ), ∂xg(x, t, λ)),
therefore

∂xG(x, t, λ) = g(λ)G(x, t, λ),

∂xxG(x, t, λ) = g2(λ)G(x, t, λ).
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α1 β1 β2
α2 α3

∆J0∆
−1

∆J0∆
−1

∆A
−1

1

∆B
−1

1

∆J1B
−1

1 ∆J1A
−1

2

∆A
−1

2
∆B

−1

2

∆J2B
−1

2

∆A
−1

3

∆J2A
−1

3

H
−1

A
−1

3

H
−1

J2A
−1

3

H
−1

∆
−1

H
−1

∆
−1

Figure 9.5.5: The final RHP for Σ3. The same deformation works for RHPs which arise
from arbitrary genus BA functions by adding additional contours.

Also, R,G, r and g are diagonal and mutually commute. We write

∂xΣ3(x, t, λ) = ∂xΨ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ)

+Ψ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ)H−1(λ)[r(λ) + g(λ)]H(λ),

∂xxΣ3(x, t, λ) = ∂xxΨ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ)

+ 2∂xΨ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ)H−1(λ)[r(λ) + g(λ)]H(λ)

+Ψ(x, t, λ)R(x, t, λ)G(x, t, λ)H(λ)H−1(λ)[g2(λ) + 2g(λ)r(λ) + r2(λ)]H(λ).

We proceed to eliminate Ψ. Since ∂xxΨ = −λΨ− q(x, t)Ψ, we obtain

∂xxΣ3(x, t, λ) = [−λ− q(x, t)]Σ3(x, t, λ) + 2∂xΣ3(x, t, λ)H
−1(λ)[g(λ) + r(λ)]H(λ)

−Σ3(x, t, λ)H
−1(λ)[g(λ) + r(λ)]2H(λ).

(9.5.3)

Set Σ3(x, t, λ) =
[

1 1
]

+ c1(x, t)/λ +O(λ−2) and substitute, assuming each derivative
of Σ3 has an induced asymptotic expansion,

∂xxc1(x, t)/λ +O(λ−2) = [−λ− q(x, t)](
[

1 1
]

+ c1(x, t)/λ+O(λ−2))

+ (
[

1 1
]

+ ∂xc1(x, t)/λ +O(λ−2))H−1(λ)[g(λ) + r(λ)]H(λ)

+(
[

1 1
]

+ c1(x, t)/λ +O(λ−2))H−1(λ)[g(λ) + r(λ)]2H(λ).
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It can be shown that the O(λ) terms on each side of this equation cancel. Equating the
O(1) terms we obtain

q(x, t)
[

1 1
]

= − lim
λ→∞

∂xc1(x, t)/λH
−1(λ)[g(λ) + r(λ)]H(λ)

− lim
λ→∞

([

−λ −λ
]

+ (
[

1 1
]

+ c1(x, t)/λ+O(λ−2))

×H−1(λ)[g(λ) + r(λ)]2H(λ)
)

.

Equating ∂xc1(x, t) =
[

s1(x, t) s2(x, t)
]

and working this out explicitly, we find

q(x, t) = 2i(s2(x, t)− s1(x, t)) + 2iE, (9.5.4)

E = − 1

2π

g
∑

n=1

∫ αn+1

βn

∂xΩn(x, t) − 2λ1/2
√

P (λ)
+ λgdλ.

9.5.2 Regularization of the RHP with poles in the gaps

In this section we deal with the case where the divisor for the poles of the BA function is
of the form

D =

g
∑

i=1

Qi, Qi ∈ ai.

We have proved existence of a BA function with one arbitrary zero on each a-cycle. We
consider the BA function (Ψr)± = (Ψp)±Ψ± which has poles located at {(0, βj)}gj=1 and
one zero on each a-cycle. In this section we assume we know t1, t2, . . . which are required
to find (Ψp)±. In the next section we discuss computing {tj}gj=1. It follows that

(Ψr)± ∼ e±Z(x,t,λ)/2, (9.5.5)

where

Z(x, t, λ) = κ(λ) + 2ixλ1/2 + 8itλ3/2 = 2i(x+ t1)λ
1/2 + 2i(4t+ t2)λ

3/2 + 2i

g
∑

j=3

tjλ
(2j−1)/2.

Using the techniques in Section 9.5.1 we see this is all the information that is needed to
set up a solvable RHP for (Ψr)± with smooth solutions. We have to extract the solution
to the KdV equation from (Ψr)±. We solve for a function Σ3, the deformation of Ψr, that
satisfies

Σ3(x, t, λ) = Ψ(x, t, λ)R(x, t, λ)G(x, t, λ)Ψ′
p(λ)H(λ),

Ψ′
p(λ) = diagΨp(λ),

(9.5.6)
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for large λ. If we perform the same calculations which results in (9.5.3). We obtain

∂xxΣ3(x, t, λ) = [−λ− q(x, t)]Σ3(x, t, λ)

+ 2∂xΣ3(x, t, λ)H
−1(λ)(Ψ′

p(λ))
−1[g(λ) + r(λ)]Ψ′

p(λ)H(λ)

−Σ3(x, t, λ)H
−1(λ)(Ψ′

p(λ))
−1[g(λ) + r(λ)]2Ψ′

p(λ)H(λ).

(9.5.7)

But Ψ′
p is diagonal and commutes with g and h. Therefore, all Ψ′

p dependence cancels
out. We see that (9.5.4) is invariant under multiplication by (Ψp)±. Thus, the solution
q(x, t) to the KdV equation is extracted from Σ3 by (9.5.4). We summarize our results in
the following theorem.

Theorem 9.5.2. If Σ3(x, t, λ) is the solution of the deformed and regularized RHP asso-
ciated with (Ψr)± and

Σ3(x, t, λ) =
[

1 1
]

+ c1(x, t)λ
−1 +O(λ−2), c1(x, t) =

[

s1(x, t) s2(x, t)
]

,

then the corresponding solution of the KdV equation is found through

q(x, t) = 2i(s2(x, t) − s1(x, t) + 2iE,

E = − 1

2π

g
∑

j=1

∫ αj+1

βj

∂xWj(x, t)− 2λ1/2
√

P (λ)
+ λgdλ,

where {Wj(x, t)}∞j=1 are defined by the moment conditions for (9.4.11) with κ(λ) replaced
with Z(x, t, λ).

This theorem states that despite the theoretical use of the function (Ψp)±, the compu-
tation of the solution to the KdV equation does not require the computation of (Ψp)±.

9.6 Numerical computation

In this section we discuss the computation of all the components of the theory. These
components are:

1. Evaluating contour integrals used in the Abel map and Problem 9.4.2.

2. Computing the singular integrals used in the representation of the g-function.

3. Solving the deformed and regularized RHP for the Baker–Akhiezer function.

4. Extracting the solution to the KdV equation from the Baker–Akhiezer function.

9.6.1 Computing contour integrals

The developments above require the computation of integrals of the form

Ij(f) =

∫ αj+1

βj

f(λ)
√

P (λ)
+dλ, (9.6.1)
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to determine the g-function and compute Ωj/Wj . Note that in the cases we consider f
is analytic near the contour of integration. Also, we compute the Abel map of divisors
whose points lie in gaps. We always choose Q0 = (α1, 0) in (9.1.1) and integrate along Γ+

across the bands and gaps. Thus computing the Abel map of a point in a gap requires
computation of integrals of the form (9.6.1) along with integrals of the form

Kj(f) =

∫ βj

αj

f(λ)
√

P (λ)
+dλ,

Ij(f, λ) =

∫ λ

βj

f(s)
√

P (s)
+ds.

(9.6.2)

While numerical integration packages can handle such integrals, it is beneficial to use
Chebyshev polynomials. For example, define

s = m(λ) =
2

βj − αj
λ− βj + αj

βj − αj
.

We change (9.6.1) to

Ij(f) =

∫ 1

−1

f(m−1(s))
√

P (m−1(s))
+dm

−1(s).

The function

w(s) =

√
1− s2

√

P (m−1(s))
,

is analytic in a neighborhood of the interval [−1, 1]. We write

Ij(f) =

∫ 1

−1

(

f(m−1(s))
√

P (m−1(s))
+w(s)

d

ds
m−1(s)

)

ds√
1− s2

.

The Chebyshev series approximation of the function in parenthesis converges exponentially
since it is analytic in a neighborhood of [−1, 1]. A discrete cosine transform is used to
approximate the series and the first coefficient in the series gives a very good approximation
to Ij(f). Similar ideas work for Kj(f) but we must modify our approach for Ij(f, λ).
Consider the integral

Fn(λ) =

∫ λ

−1
Tn(x)

dx√
1− x2

, λ ∈ (1, 1).

Here Tn denotes the nth-order Chebyshev polynomial of the first kind. Using the standard
change of variables x = cos θ,

Fn(λ) = −
∫ arccosλ

π
Tn(cos θ)dθ = −

∫ arccos λ

π
cos(nθ)dθ.



9.6. NUMERICAL COMPUTATION 247

Therefore

Fn(λ) =

{

− sin(n arccos λ)
n if n > 0,

π − arccos λ if n = 0.

Using the change of variables m(λ) and the discrete cosine transform we can compute each
Ij(f, λ) with this formula.

We need to compute b periods. The b cycles have a more complicated relationship.
Consider the cycles b̃j in Figure 9.6.1. We compute

∮

b̃j

w = 2

∫ βj

αj

f(λ)dλ.

From Figure 9.6.1, we see that b1 = b̃1 and bi = b̃i + bi−1. This gives a recurrance
relationship for b periods of a differential.

b1
b2

bg

b̃1 b̃2
b̃gb̃3

Figure 9.6.1: The cycles b̃j on a schematic of the Riemann surface.

We must know ωk before computing the Abel map. We describe how to compute the
normalized differentials. Let ω = f(λ)dλ be a holomorphic differential, we showed in the
proof of Theorem 9.4.3 that

∮

aj

w = −2

∫ αj+1

βj

f(λ)dλ.

Given the branch point αj, βj , j = 1, . . . , g + 1 where βg+1 = ∞ we use the basis of
unnormalized differentials

un =
λn−1

µ
dλ, n = 1, . . . , g,

and compute their a and b periods. This allows us to construct the basis ωk of normalized
differentials and gives us access to the Abel map.

Assume Q = (λ, σ
√

P (λ)
+
) ∈ aj for σ = ±1. Then the kth component of the Abel

map is computed by

(A(Q))k =

j−1
∑

l=1

(Il(fk) +Kl(fk)) +Kl(fk) + σIj(fk, λ),
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where fk(λ)/w is the principal part of ωk, the kth normalized holomorphic differential.

9.6.2 Computing the g-function

The g-function is defined by

G(x, t, λ) =
√

P (λ)

2πi

g
∑

j=1

∫ αj+1

βj

−ζ(x, t, s) + iΩj(x, t)
√

P (s)
+

ds

s− λ
, (9.6.3)

see (9.4.1). After mapping each interval of integration in (9.6.3) using a linear change of
variables z = mj(s) (mj : [βj , αj+1] → [−1, 1]) we have the expression

G(x, t, λ) =
√

P (λ)

2πi

g
∑

j=1

∫ 1

−1
Hj(z)

dz

z −mj(λ)
,

where

Hj(z) =
−ζ(x, t,m−1

j (z)) + iΩj(x, t)
√

P (m−1
j (z))

+ .

Note that Fj(z) = Hj(z)
√
1− z2 is analytic in a neighborhood of [−1, 1]. We use

G(x, t, λ) =
√

P (λ)

2πi

g
∑

j=1

∫ 1

−1

Fj(z)

z −mj(λ)

dz√
1− z2

,

This reduces the problem of computing the g-function to that of computing integrals of
the form

C(λ) =
1

2πi

∫ 1

−1

f(s)

(s− λ)

1√
1− s2

ds, λ 6∈ [−1, 1],

where f is a smooth function on [−1, 1]. We use the known expansion of the function
1/(s − λ) in a Chebyshev series [100]

1

s− λ
=

∞
∑

j=0

ej(λ)Tj(s), ej(λ) =











− 1√
λ2−1

, if j = 0,

−2 (λ−
√
λ2−1)j√
λ2−1

, otherwise.

Here Tj is the jth Chebyshev polynomial of the first kind [100]. This formula is technically
valid for λ > 1 but can be extended to C \ [−1, 1] by analytic continuation. We use a
discrete cosine transformation of order n to approximate the Chebyshev series of f :

f(s) ≈
n
∑

j=0

cjTj(s).
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Orthogonality gives

C(λ) ≈ 1

2πi



πc0e0(λ) +
π

2

n
∑

j=0

cjej(λ)



 .

Exponential convergence is guaranteed since in our case f is analytic.

Although it is not important for our purposes, one may wish to compute the limiting
values G± as λ approaches a gap from above or below. We use the formula [84]

lim
ǫ→0+

1

2πi

∫ 1

−1

Tj(s)

s− (λ± iǫ)

ds√
1− s2

= ±1

2

Tj(λ)√
1− λ2

+
1

2i
Uj−1(λ), λ ∈ (−1, 1),

where Uk is the Chebyshev polynomial of the second kind [100].

9.6.3 Computing the Baker-Akhiezer function

This section is concerned with computing (Ψr)±. Let D′ be the divisor for the desired
zeros of the BA function and D be the divisor for the poles. We compute the vector (see
(9.4.5))

V = A(D′ −D),

using the method for computing integrals described above. Next, consider the differentials

νj = i
λg+j−1

µ
dλ, j = 1, . . . , g,

which satisfy

∫ λ

λ0

νj = O(λ−1/2+j), as λ→ ∞.

We accurately compute the a periods of νj. We construct {ν̃j}gj=1 which each have vanish-
ing a periods by adding an appropriate linear combination holomorphic differentials. We
compute the matrix

S =

(∮

bk

ν̃j

)

kj

.

The system SX = V is solved for the real-valued vector X, giving a differential

l =

g
∑

j=1

Xjx̃j ,
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that has b periods equal to the vector V . The final step is to compute the coefficients
{tj}gj=1 in the expansion

∫ λ

λ0

l =

g
∑

n=1

itnλ
n−1/2 +O(λ−1/2) = κ(λ)/2 +O(λ−1/2).

The BA function with asymptotic behavior (Ψp)± ∼ e±κ(λ)/2 as λ → ∞ has zeros at
the points of D′. Theorem 9.5.2 tells us to seek (Ψr)± ∼ e±Z(x,t,λ)/2 as λ → ∞. We
construct the deformed and regularized RHP for (Ψr)±, see Section 9.5. This RHP is
solved numerically.

To test the method we use α1 = 0, β1 = .25, α2 = 1, β2 = 1.5 and α3 = 2. Thus

we have a genus two surface. We choose zeros to be at the points (.5,
√

P (.5)
+
) and

(1.75,
√

P (1.75)
+
). To approximate the BA function we use n collocation points per con-

tour. See Appendix 9.8 for a discussion of the numerical method for RHPs that is used
and its convergence properties. The roots of the approximate BA function are found using
standard Chebyshev root-finding techniques [15]. In Figure 9.6.2 we plot the absolute error
of the roots as n increases. Spectral convergence of the roots is observed. See Figure 9.6.3
for a surface plot showing both the zeros and the poles of the BA function on a single sheet.
See Figures 9.6.4 and 9.6.5 for contour plots of the real part, imaginary part, and modulus
of the BA function on each sheet. Note that producing this plot requires the computation
of the g-function. These plots are all produced in the genus two case but higher genus BA
functions can also be plotted.

0 10 20 30 40

10
!11

10
!9

10
!7

10
!5

0.001

0.1

n

E
rr
o
r

Figure 9.6.2: A demonstration of the spectral convergence of the zeros of the BA function.

9.6.4 Numerical solutions of the KdV equation

Before we move to numerical results for the KdV equation, let us review the solution
process. The constants αj (j = 1, . . . , g + 1) and βj (j = 1, . . . , g) are chosen, all positive.
This determines the polynomial P (λ) and the unnormalized differentials uk. The a periods
of these differentials are computed using Chebyshev polynomials and the normalized basis
ωk is constructed. Next, one point in each a-cycle is chosen to be a pole of the BA function.
These points make up the divisor for the poles of the BA function. The Abel map of this
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|Ψ+|

Re λ

Im λ

Figure 9.6.3: A three-dimensional plot of the modulus of the BA function on one sheet of
the Riemann surface. We see two poles and two zeros are clearly present.

Im λ

Re λ

(a)

Im λ

Re λ

(b)

Im λ

Re λ

(c)

Figure 9.6.4: A genus two Baker–Akhiezer function. Darker shades indicate smaller values.
Two poles and two zeros are clearly present. (a) The real part of Ψ+. (b) The imaginary
part of Ψ+. (c) The modulus of Ψ+.

divisor is computed, along with the Abel map of the divisor

D =

g
∑

j=1

(βj , 0).

Through the process just outlined the constants tj, j = 1, . . . , g are computed. The
Riemann–Hilbert formulation is used to compute the function (Ψr)± by noting that its
asymptotic behavior is (9.5.5). The function Σ3 is found and u(x, t) is computed using
Theorem 9.5.2.

In this section we plot numerical solutions of the KdV equation. In the genus two case
we use numerical tests to demonstrate uniform spectral convergence.

Genus one

For a genus one solution we set α1 = 0, β1 = .25 and α2 = 1 with the zero of the BA

function at (.5,
√

P (.5)
+
) at t = 0. See Figure 9.6.6 for plots of the corresponding solution
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Im λ

Re λ

(a)

Im λ

Re λ

(b)

Im λ

Re λ

(c)

Figure 9.6.5: A genus two Baker–Akhiezer function. Darker shades indicate smaller values.
(a) The real part of Ψ−. (b) The imaginary part of Ψ−. (c) The modulus of Ψ−.

of the KdV equation. This solution is an elliptic function. Explicitly, [23],

q(x, t) = −α2 − β1 + 2cn2(x−K(1− β1) + 1.0768 − (8(1 − β)2 − 4− α2 − β1)t, 1 − β1),

where K(k) is the complete elliptic integral and cn is the Jacobi cn function [84]. The shift
inside the cn function is computed numerically. See Figure 9.6.6 for another solution.

Genus two

For a genus two solution we set α1 = 0, β1 = .25, α2 = 1, β2 = 1.5 and α3 = 2 with the

zeros of the BA function at (.5,
√

P (.5)
+
) and (1.75,

√

P (1.75)
+
) at t = 0. See Figure 9.6.8

for plots of the corresponding solution of the KdV equation.
For this solution we numerically discuss convergence. We use qn(x, t) to denote the

approximate solution of the KdV equation obtained with n collocation points per contour
of the RHP. We define the Cauchy error

En,m(x, t) = |qn(x, t)− qm(x, t)|.

We fix m = 80 and let n vary: n = 10, 20, 40. See Figure 9.6.7 for plots of En,m(x, t) for
various values of x and t. This figure demonstrates uniform spectral Cauchy convergence
of the function qn(x, t) to q(x, t), the solution of the KdV equation.

We plot another genus two solution in Figure 9.6.8. If we shrink the widths of the
bands we can obtain solutions which are closer to the soliton limit. See Figure 9.6.9 for a
solution demonstrating a soliton-like interaction.

Genus three

For a genus three solution we set α1 = 0, β1 = .25, α2 = 1, β2 = 2, α3 = 2.5, β3 = 3

and α4 = 3.5 with the zeros of the BA function at (.5,
√

P (.5)
+
), (1.75,

√

P (1.75)
+
) and

(2.75,
√

P (2.75)
+
) at t = 0. In Figure 9.6.10 we show the jump contours for the RHP

which are used in practice to compute the BA function. See Figure 9.6.12 for plots of
the corresponding solution of the KdV equation and Figure 9.6.11 and Figure 9.6.12 for
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(a) (b)

(c) (d)

Figure 9.6.6: (a) A contour plot of the genus one solution with α1 = 0, β1 = .64 and

α2 = 1 with the zero of the BA function at (.75,
√

P (.75)
+
) at t = 0. Darker shades

represent troughs. (b) A contour plot of the genus one solution with α1 = 0, β1 = .64 and

α2 = 1 with the zero of the BA function at (.75,
√

P (.75)
+
) at t = 0. Again, darker shades

represent troughs. (c) A three-dimensional plot of the solution in (a) showing the time
evolution. (d) A three-dimensional plot of the solution in (b) showing the time evolution.
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Figure 9.6.7: (a) A logarithmically scaled plot of En,80(x, 0) for n = 10 (dotted), n = 20
(dashed) and n = 40 (solid). (b) A logarithmically scaled plot of En,80(x, 25) for n = 10
(dotted), n = 20 (dashed) and n = 40 (solid). This figure demonstrates uniform spectral
convergence.

another genus three solution. We show the dynamics of the zeros of the BA function in
Figure 9.6.11.

Genus five

Just to demonstrate the breadth of the method we compute a genus five solution. We
set α1 = 0, β1 = .25, α2 = 1, β2 = 2, α3 = 2.5, β3 = 3, α4 = 3.3, β4 = 3.5, α5 = 4, β5 =

5.1 and α6 = 6 with the zeros of the BA function at (.5,
√

P (.5)
+
), (2.2,

√

P (2, 2)
+
),

(3.2,
√

P (3.2)
+
), (3.6,

√

P (3.6)
+
) and (5.3,

√

P (5.3)
+
) at t = 0. See Figure 9.6.13 for

a plot of the corresponding solution of the KdV equation. This figure shows the time
evolution.

9.7 Analysis of the deformed and regularized RHP

In general we consider a RHP of the form

Φ+(λ) = Φ−(λ)G(λ), λ ∈ Λ, Φ(∞) = I, (9.7.1)

where Λ is bounded and G depends on {Ωj(x, t)}gj=1, or alternatively {Wj(x, t)}gj=1. We
use many of the results in Chapter 3. It is straightforward to check that G satisfies the first-
order product condition. Analyticity may be used to see that G satisfies the (k−1)th-order
product condition for all k > 0.

We apply Theorem 3.8.21 to the RHP derived in Section 9.5. We use G to denote the
jump matrix. We note that when we augment the contour, G = I on all added pieces and
these do not contribute to the integral. Also, det∆ = 1 away from αj , βj and detJ0 = −1.
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(a) (b)

(c) (d)

Figure 9.6.8: (a) A contour plot of the genus two solution with α1 = 0, β1 = .25, α2 =

1, β2 = 1.5 and α3 = 2 with the zeros of the BA function at (.5,
√

P (.5)
+
) and

(1.75,
√

P (1.75)
+
) at t = 0. Darker shades represent troughs. (b) A contour plot of

the genus two solution with α1 = 0, β1 = .25, α2 = 1, β2 = 2 and α3 = 2.25 with the zeros

of the BA function at (.5,
√

P (.5)
+
) and (2.2,

√

P (2.2)
+
) at t = 0. Again, darker shades

represent toughs. (c) A three-dimensional plot of the solution in (a) showing the time
evolution. (d) A three-dimensional plot of the solution in (b) showing the time evolution.
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Figure 9.6.9: A genus two solution with α1 = 0, β1 = 0.1, α2 = 1, β2 = 1.05 and α3 = 1.75

with the zeros of the BA function at (.5,
√

P (.5)
+
) and (1.2,

√

P (1.2)
+
) at t = 0. This

solution demonstrates a soliton-like interaction.

Both of these do not influence the index. We are left with

ind C[G; Λ] = − 1

πi

g
∑

l=1

(

∫

Cαl

d log detAl(λ) +

∫

cβl

d log detBl(λ)

)

− 1

πi

∫

∂D
d log detH(λ)− 1

πi

∫

Cαg+1

d log detAg+1(λ).

Here Cαj , Cβj
are the circles around αj, βj , and D is again the region inside the large outer

circle but outside each of the smaller circles, as before. Straightforward contour integration
produces

∫

Cαl

d log detAl(λ) = πi,

∫

Cβl

d log detBl(λ) = −πi,
∫

∂D
d log detH(λ) = −πi.

This proves that ind C[G; Λ] = 0. Every element in the kernel of ind C[G; Λ] corresponds
to a solution of the RHP that vanishes at infinity [117]. Given a matrix-valued solution
Φ, we sum the rows to get the vector representation of the BA function. If we have a
vanishing solution we zero out the second row and assume the first is non zero. Call the
new function Ψ. This is still a vanishing solution. Then Φ+ cΨ is a solution of the RHP
for any c. Summing the rows of Φ+ cΨ we obtain a function different from Φ for every c.
This contradicts the uniqueness of the BA function. This shows that ind C[G; Λ] must be
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!1 1 2 ★
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!1

1

2

Re λ

Im λ

Figure 9.6.10: The jump contours for the RHP which are used in practice to compute the
BA function. Here α1 = 0, β1 = .25, α2 = 1, β2 = 2, α3 = 2.5, β3 = 3 and α4 = 3.5.

boundedly invertible by the open mapping theorem. This shows that all RHPs considered
here are uniquely solvable with smooth solutions. This is the justification needed to use
the numerical method for RHPs in [89].

9.8 Uniform approximation

We consider the RHP (9.7.1). We use C to denote a generic constant. In this section
we explain how our approximation of the BA function changes with x and t. We use the
results from Section 5.1. As before, we consider the operator C[G; Λ] defined by

C[G; Λ]U = U − (C−
ΛU)(G− I). (9.8.1)

The operator equation

C[G; Λ]U =
[

1 1
]

(G− I),

is discretized using the method in Section 5.3. We use Cn[G; Λ] to denote this discretization.
Once an approximation Un to U is known, an approximate solution Φn(λ) = CΛUn(λ) +
[

1 1
]

of Φ is obtained. The method is a collocation method and Φn will satisfy the
RHP exactly at each collocation point. The residue of a function at ∞ is computed through

lim
λ→∞

λ(Φ(λ)−
[

1 1
]

) = − 1

2πi

∫

Λ
U(s)ds.

This is what is used to compute s1 and s2 in (9.5.4). We make the fundamental assumption,
Assumption 5.3.11.

We establish two claims:

• ‖C[G; Λ]−1‖L(L2(Λ)) < C and
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Figure 9.6.11: A genus three solution with α1 = 0, β1 = .25, α2 = 1, β2 = 2, α3 = 2.5, β3 = 3

and α4 = 3.5 with the zeros of the BA function at (.5,
√

P (.5)
+
), (2.2,

√

P (2.2)
+
) and

(3.2,
√

P (3.2)
+
) at t = 0. These plots show the dynamics of the zeros of the BA function.

The top plot in each panel gives a schematic of the Riemann surface with the a cycles
labeled. Dots of the same shade across the panels are in correspondence. The + on the
plots represents where the pole of the BA function is located on the Riemann surface.
These points are also the locations of the zeros at t = 0. (a) The solution at t = 0. We
vary x from x = 0 up to x = 0.25 and plot how the zeros {γ1(x, 0), γ2(x, 0), γ3(x, 0)} move
on the Riemann surface. (b) The evolution of the same solution up to t = 0.125. We fix
x = 0 and plot how the zeros {γ1(0, t), γ2(0, t), γ3(0, t)} move on the Riemann surface.



9.8. UNIFORM APPROXIMATION 259

(a) (b)

(c) (d)

Figure 9.6.12: (a) A contour plot of the genus three solution with α1 = 0, β1 = .25, α2 =
1, β2 = 2, α3 = 2.5, β3 = 3 and α4 = 3.5 with the zeros of the BA function at

(.5,
√

P (.5)
+
), (2.2,

√

P (2.2)
+
) and (3.2,

√

P (3.2)
+
) at t = 0. Darker shades represent

troughs. (b) A contour plot of the genus three solution in Figure 9.6.11. Again, darker
shades represent toughs. (c) A three-dimensional plot of the solution in (a) showing the
time evolution. (d) A three-dimensional plot of the solution in Figure 9.6.11 showing the
time evolution.
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(a)

(b)

Figure 9.6.13: (a) A contour plot of the genus five solution with α1 = 0, β1 = .25, α2 =
1, β2 = 2, α3 = 2.5, β3 = 3, α4 = 3.3, β4 = 3.5, α5 = 4, β5 = 5.1 and α6 = 6 with the zeros

of the BA function at (.5,
√

P (.5)
+
), (2.2,

√

P (2, 2)
+
), (3.2,

√

P (3.2)
+
), (3.6,

√

P (3.6)
+
)

and (5.3,
√

P (5.3)
+
) at t = 0. Darker shades represent troughs. (b) A three-dimensional

plot of the solution same solution showing the time evolution.
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• ‖G− I‖W k,∞(Λ) < Dk for each k > 0 for constants Dk.

The operator C[G; Λ]−1 depends on g constants Ωj ∈ [0, 2π], j = 1, . . . , g, in an analytic
way. We add 2π to the interval so that we may appeal to compactness. In the notation of
Section 9.7. It follows that the mapping

Ω = (Ω1, . . . ,Ωj) 7→ ind C[G; Λ],

is continuous from [0, 2π)g to L(L2(Γ)). Since the operator is always invertible the same
statement holds for the inverse operator. This implies

sup
Ω

‖C[G; Λ]−1‖L(L2(Γ)) < C.

The second claim can be established by differentiating the jump matrix G. It is clear
that all derivatives of G are bounded and this bound can be made independent of Ω. This
leads to the following theorem which shows we expect uniform spectral convergence of all
needed functions.

Theorem 9.8.1. If Assumption 5.3.11 holds then Φn = I + CΓUn, the numerical approx-
imation of Φ = I + CΓU , satisfies

sup
Ω

|Φn(λ)−Φ(λ)| < Cαǫ
−1n−α, for every α ≥ 0, inf

s∈Λ
|λ− s| > ǫ,

sup
Ω

‖Un −U‖L2(Λ) < Lαn
−α, for every α ≥ 0.

As a consequence, (see (5.3.8)) the approximate solution qn(x, t) of the KdV equation
satisfies

sup
Ω

|qn(x, t)− q(x, t)| < Sαn
−α, for every α ≥ 0.
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Chapter 10

Orthogonal Polynomials and

Random Matrix Theory

Random matrix theory made a prominent appearance in nuclear physics by Wigner [112].
Random matrices were used to model the spectral lines of a heavy atom. Indeed, the
eigenvalue statistics of the matrices under consideration closely predict the spectral lines
as the size of the matrices become large [75]. Importantly, the statistics of the eigenvalues in
the large-matrix limit are seen to be dependent only on symmetry properties of the matrices
under consideration, not the exact distribution of the entries of the matrix [24, 75]. This
behavior is known as universality.

The Riemann–Hilbert approach to random matrix theory was developed by Deift and
his collaborators. See [24] for a thorough exposition of the results. In this chapter, many of
the results of this manuscript are made computational. Generically, the statistics of random
matrices are known explicitly only in the large-matrix limit. Here we compute random
matrix statistics for a particular classes of finite-dimensional matrices. This demonstrates
both the breadth and ubiquity of RHPs and the wide applicability of the methods developed
in previous chapters. The results from this chapter can also be found in [91].

10.1 Introduction

We consider the problem of calculating random matrix eigenvalue statistics for unitary
random matrix ensembles; i.e., n× n random matrices of the form

M =











M11 MR
12 + iMI

12 · · · MR
1n + iMI

1n

MR
12 − iMI

12 M22 · · · MR
2n + iMI

2n
...

. . .
. . .

...
MR

1n − iMI
1n · · · MR

(n−1)n − iMI
(n−1)n Mnn











when MR,I
ij are real valued and distributed according to the probability distribution

1

Zn
e−nTr V (M)dM,

263
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where Zn is the normalization constant. Furthermore,

dM =

n
∏

i=1

dMii

∏

i<j

(dMR
ij dM

I
ij).

Importantly, the eigenvalue statistics of invariant ensembles are expressible in terms of
the kernel

Kn(x, y) = −γn−1e
−n/2(V (x)+V (y))

2πi

πn(x)πn−1(y)− πn−1(x)πn(y)

x− y
, [24]

where πk is the orthonormal polynomial with respect to the weight

e−nV (x)dx,

and

γn−1 = 2πi

[
∫ 1

−1
πn−1(x)w(x)dx

]−1

is a normalization constant. Particular statistics of interest include the spectral density

dµn = Kn(x, x)dx,

describing the global distribution of eigenvalues, and the gap statistic

det(I −Kn|L2[Ω]),

where det denotes a Fredholm determinant, describing the local distribution of eigenvalues:
the probability that no eigenvalue is inside the set Ω.

Gap statistics for unitary ensembles follow two principles of universality.

1. For x in the bulk — i.e., inside the support of the equilibrium measure — the gap
statistic of a properly scaled neighborhood of x approaches the sine kernel distribu-
tion:

det(I − S|L2(−s,s)) for S(x, y) = sin(x− y)

x− y
.

This was proved rigorously in [24] by expressing the orthogonal polynomials in terms
of a RHP, so that asymptotics of πn were determinable via nonlinear steepest descent.
Our approach follows this treatment.

2. Moreover, the edge statistic — i.e., a properly scaled neighborhood of ∞ — generi-
cally approaches the Tracy–Widom distribution:

det(I −A|L2(s,∞)) for A(x, y) =
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
,

where Ai is the classical Airy function [84].

Underlying these two universality laws are Painlevé transcendents; in the case of the
Tracy–Widom distribution it is the Hastings–McLeod solution to Painlevé II [63], whereas
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the sine kernel distribution is expressible in terms of a solution to Painlevé V [75]. See
Chapter 8 for a discussion of a numerical Riemann–Hilbert approach for computing the
Hastings–McLeod solution of Painlevé II.

The eigenvalue statistics of unitary ensembles differ from universality laws for finite n
and are no longer known to be expressible in terms of Painlevé transcendents. This is in
direct relation with the asymptotic formulae given in Chapters 6 and 7 for the solutions
of the KdV and NLS equations. Our goal is to calculate the finite-dimensional statistics
to explore the manner in which the onset of universality depends on the potential V (x)
present in the probability measure on matrices. To accomplish this, we calculate the as-
sociated orthogonal polynomials numerically, using their Riemann–Hilbert representation,
via the framework presented in Section 5.3. By deforming the RHP, we achieve a numerical
method that is uniformly accurate for large and small n, using and extending the theory
in Section 5.2.

In our numerical experiments, we see that the onset of universality depends strongly
on the magnitude of the equilibrium measure: where eigenvalue density is small, finite n
statistics differ greatly from universality behavior.

This is related to what is observed with the KdV and NLS equation. The equilibrium
measure is calculated from the probability distribution for the matrix entries. This is
analogous to the reflection coefficient in Chapters 6 and 7. In those cases, the magnitude
of the initial condition for the KdV and NLS equations is related to the magnitude of
the reflection coefficient. A smaller amplitude reflection coefficient indicates a quicker
transition into the asymptotic regime, as Section 2.7 indicates.

In this chapter, we start with a demonstration of the numerical results, plotting the
finite-dimensional random matrix statistics (Section 10.2). Importantly, because we do not
require the knowledge of local parametrices, our numerical approach continues to work for
degenerate potentials, such as those that arise in the study of higher-order Tracy–Widom
distributions [16]. We describe the manner in which orthogonal polynomials can be reduced
to solutions of a Riemann–Hilbert problem that is suitable for numerics (Section 10.3).
This RHP is suitable for small n. Through a regularization procedure in Section 10.4.2 we
obtain a method that is provably accurate for all n.

Remark 10.1.1. An alternative to the approach we use in this paper is to calculate the
orthogonal polynomials directly for each n via Gram–Schmidt and numerical quadrature.
For small n, this is likely more efficient, similar to how an FFT time-stepping method is
more efficient for the KdV and NLS equations for small time, see Section 6.5. However, it
is well known to be prone to instability [57]; moreover, the calculation must be restarted for
each n as the weight e−nV changes. On the other hand, the RH approach has computational
cost independent of n, making it more practical for investigating large n behavior.

10.2 Finite-dimensional invariant ensemble statistics

In this section, we compute the finite n statistics of unitary invariant ensembles by using
the numerical method for calculating πn and γn−1πn−1 that we develop in later sections.
It is apparent in the numerical results that the behavior of local statistics is tied strongly
to the global density of eigenvalues; i.e., the magnitude of the density of the equilibrium
measure.
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(a) (b)

(c)

Figure 10.2.1: Calculated spectral densities for the GUE (V (x) = x2) for n = 3, 10 and
100, compared to Monte Carlo simulation.



10.2. FINITE-DIMENSIONAL INVARIANT ENSEMBLE STATISTICS 267

For unitary invariant ensembles, the spectral density is the distribution of the counting
measure. In Figure 10.2.1, we compare the GUE (i.e., V (x) = x2) spectral density (numer-
ically calculated using our approach) for n = 3, 10 and 100 to a histogram, demonstrating
the accuracy of the approximation. (Because the polynomials involved are Hermite poly-
nomials, we verify the accuracy directly as well.) This shows a phenomenon where the
distribution exhibits n “bumps” of increased density, likely corresponding to the posi-
tions of the finite-charge energy minimization equilibrium; i.e., the Fekete points (see [101,
Chapter 3] for definition).
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Figure 10.2.2: Calculated spectral density for V (x) = x2

5 − 4
15x

3 + x4

20 + 8
5x for n = 3, 10

and 100. The dashed line denotes the density of the equilibrium measure (n = ∞).

In Figure 10.2.2, we plot the finite n spectral densities for the potential

V (x) =
x2

5
− 4x3

15
+
x4

20
+

8x

5
,

which is an example of a potential whose equilibrium measure vanishes at an endpoint,
and hence the edge statistics follow a higher-order Tracy–Widom distribution [16]. Inter-
estingly, this change in edge statistic behavior is not just present in the local statistics, but
clearly visible in the decay of the tail of the global statistics.

We turn our attention to local gap statistics, which are described by the Fredholm
determinant

det(I −Kn|L2[Ω]).
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Figure 10.2.3: The calculated probability that there are no eigenvalues in (−s, s) for the
GUE (plain) versus Monte Carlo simulation (dashed), for n = 50 (left) and n = 100 (right).

Using the method of Bornemann [14], we calculate the determinant, provided that the
kernel itself can be evaluated. Thus, we successfully compute finite-gap statistics by cal-
culating orthogonal polynomials using the RH approach. In Figure 10.2.3, we plot the gap
statistics versus a histogram for the GUE1 in the interval (−s, s).

To see universality in the bulk, we scale the interval with n; in particular, we need to
look at the gap probability for

Ω = x+
(−s, s)
Kn(x, x)

.

Alternatively, Kn(x, x) can be replaced by its asymptotic distribution to get

Ω = x+
(−s, s)
nψ(x)

,

where dµ = ψ(x)dx is the equilibrium measure of V . For x inside the support of µ, this
statistic approaches the sine kernel distribution2. We demonstrate this in Figure 10.2.4 for
the degenerate potential, showing that the rate in which the statistics approach universality
depends on the magnitude of the density of the equilibrium measure: convergence is more
rapid when ψ(x) has larger amplitude.

Next, we consider edge statistics. In the generic position (i.e., when the equilibrium
measure has precisely square root decay at its right endpoint b), the gap probability for

Ω =

(

b+
s

cV n2/3
,∞
)

tends to the Tracy–Widom distribution3; here cV is a constant associated with the equilib-
rium measure, see Section 10.3.2 for its precise definition and the numerical method for its

1We are not imposing the bulk scaling introduced below, to demonstrate that the numerical approach
does not depend on choosing the scalings correctly.

2This was demonstrated in [24, Chapter 8] for an equivalent, rescaled kernel acting on (−s, s). Here, we
leave the kernel unmodified, and scale only Ω.

3We found this particular form by specializing [16, (1.15)], though it is equivalent to the rescaled kernel
found in [26, (1.23)].
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Figure 10.2.4: The calculated probability that there are no eigenvalues in the scaled neigh-
borhood x+ (−s,s)

Kn(x,x)
for n = 50, 100, 200 and 250 for x = 1 (left, ψ(1) ≈ .055) and x = 1.5

(right, ψ(1.5) ≈ .0105), for the potential V (x) = x2/5− 4x3/15 + x4/20 + 8x/5.
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Figure 10.2.5: The equilibrium measure for V (x) = ex − x (left) and the scaled gap
statistic for n = 10, 20, 40 and 80 (right). The dashed line is the Tracy–Widom distribution
(n = ∞).
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calculation. In Figure 10.2.5, we plot the computed equilibrium measure for V (x) = ex−x
(computed as described in Section 10.3.2), and its scaled edge statistic for increasing values
of n. While the finite statistics are converging to the Tracy–Widom distribution, the rate
of convergence is much slower than the convergence of bulk statistics where the density of
the equilibrium measure is large.

Remark 10.2.1. There are several methods for calculating universality laws — i.e., n = ∞
statistics — including using their Painlevé transcendent representations, see [13] for an
overview. An additional approach based on RHPs is to represent, say,

∂s log det(I − S|L2(−s,s)),

as a RH problem. This can be solved numerically for multiple choices of s, and the re-
sults are then integrated numerically, see [17] for examples in the degenerate case. This
approach is accurate in the tails, whereas the Fredholm determinant representation that we
use achieves absolute accuracy only. We are not aware of similar RHPs for finite n.

10.3 Orthogonal polynomials

To calculate the kernel Kn, we need to calculate the polynomials πn(x) and γn−1πn−1(x),
where π0(x), π1(x), . . . are monic polynomials orthogonal to the weight e−nV (x)dx, sup-
ported on the real line. These polynomials can be expressed in terms of the solution to a
RHP:

Problem 10.3.1. [52] The function

Y (z) =

[

πn(z) CR[πne−nV ](z)
−2πiγn−1πn−1(z) −2πiγn−1CR[πn−1e

−nV ](z)

]

,

where

γn−1 =

[∫

π2n−1(x)e
−nV (x)dx

]−1

,

solves the RHP on the real line

Y + = Y −
[

1 e−nV (x)

0 1

]

, Y ∼
[

zn 0
0 z−n

]

, z → ∞.

We apply the numerical method described in Section 5.3. This is discussed in detail in
the following sections.

10.3.1 Equilibrium measures

Our first task is to remove the growth in Y at ∞. To accomplish this, we must compute the
g-function, which has logarithmic growth at infinity so that e±ng(z) ∼ z±n, but has special
jump properties so that its incorporation into the RHP allows for uniform approximation.

The g function is associated with the equilibrium measure of V :
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Definition 10.3.2. The equilibrium measure µ is the minimizer of

∫∫

log
1

|x− y|dµ(x)dµ(y) +
∫

V (x)dµ(x).

We review the numerical approach to calculating equilibrium measures in [88], but in
the context of calculating the g-function. For simplicity, we assume that the equilibrium
measure of V is supported on a single interval (a, b); a sufficient condition is that V is
convex [24] 4.

With the correct choice of (a, b), there exists g satisfying the following scalar RHP:

1. g is analytic off (−∞, b) and g′ is bounded at a and b,

2. g+(x) + g−(x) = V (x)− ℓ for a ≤ x ≤ b and some constant ℓ,

3. g(z) ∼ log z +O(1z ) as z → ∞, and

4. g+(x)− g−(x) = 2πi for −∞ < x < a.

To calculate g, first we calculate its derivative φ = g′, which satisfies:

1. φ is analytic off (a, b) and is bounded at a and b,

2. φ+(x) + φ−(x) = V ′(x) for a ≤ x ≤ b,

3. φ(z) ∼ 1
z as z → ∞.

Differentiating the asymptotics at infinity is justified because g − log z has an isolated
singular point at infinity at which it is bounded; therefore it is analytic at infinity. In
typical analysis, φ is defined as a Cauchy integral. For computational purposes, it is
preferable to use the following representation in terms of the Chebyshev expansion of V ′.

Given a candidate (a, b), we describe all functions that have the correct jump on (a, b),
decay at infinity and have weaker than pole singularities at a and b.

Definition 10.3.3. Let χ ∈ C and

f(x) =
∞
∑

k=0

fkTk(x),

where Tk is the kth-order Chebyshev polynomial of the first kind. Define

Pχf(z) =

∞
∑

k=0

fkJ
−1
+ (z)k − f0

2

z√
z − 1

√
z + 1

+
χ√

z − 1
√
z + 1

,

for the inverse Joukowski transform

J−1
+ (z) = z −

√
z − 1

√
z + 1.

4We remark that the below procedure was adapted to the multiple interval case in [88], and adapting
our numerical procedure for computing orthogonal polynomials, and thence invariant ensemble statistics,
to such cases is straightforward.
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Denote the affine map from (a, b) to (−1, 1) as

M(a,b)(z) =
a+ b

2
+
b− a

2
z,

and define
P(a,b),χf(z) = Pχ[f ◦M(a,b)](M

−1
(a,b)(z)).

Theorem 10.3.4 ([86, 88]). Suppose the Chebyshev expansion of f(M(a,b)(x)) converges
absolutely. Then, for all χ ∈ C, P(a,b),χf(z) is a solution to

φ+(x) + φ−(x) = f(x), for x ∈ (a, b) and φ(∞) = 0.

Furthermore, every solution to this scalar RHP that has weaker singularities than poles at
a and b is equal to P(a,b),χf(z) for some χ.

Proof. We sketch the proof for (a, b) = (−1, 1). Using x = cos θ)

Tk(x) =
J−1
↓ (x)k + J−1

↓ (x)−k

2
,

where
J−1
↓ (x) = x− i

√
1− x

√
1 + x = lim

ǫ↓0
J−1
+ (x + iǫ).

This implies that Pχf satisfies the correct jumps, using absolute convergence of the series
to interchange limits.

Suppose φ̃ also satisfies

φ̃+(x) + φ̃−(x) = f(x) for x ∈ (−1, 1) and φ̃(∞) = 0,

with weaker than pole singularities at ±1. Then κ = Pf − φ̃ satisfies

κ+(x) + κ−(x) = 0, for x ∈ (−1, 1).

If we let δ(z) = κ(z)
√
z − 1

√
z + 1, we have δ+ = δ−, i.e., δ is continuous and thus analytic

on (−1, 1). Because κ has weaker than pole singularities at ±1, we have that δ also has
weaker than pole singularities at ±1. Since these singularities are isolated, it follows that
δ is analytic at ±1, and hence analytic everywhere: δ is constant. This shows that κ is a
constant multiple of 1/(

√
z − 1

√
z + 1), completing the proof.

Based on the preceding theorem we want to choose (a, b) and χ so that φ = P(a,b),χ[V
′].

To see that φ has the correct properties, we need to investigate the Chebyshev coefficients
of

V ′(M(a,b)(x)) =
∞
∑

k=0

VkTk(x).

To achieve the desired properties, we want φ to be bounded:

V0 = 0 and χ = 0.
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We also want φ(z) ∼ 1/z:
b− a

8
V1 = 1.

These two conditions give a function

F (a, b) =

[

V0
(b− a)V1 − 8

]

,

of which we want to find a root. We calculate V0 and V1 to high accuracy using the
composite trapezoidal rule applied to

∫ 1

−1

V ′(M(a,b)(x))Tk(x)√
1− x2

dx = −2

∫ π

−π
V ′(M(a,b)(cos θ)) cos kθdθ.

This calculation is trivially differentiable with respect to a and b, hence we easily apply
Newton iteration to find a root of F . Convexity ensures that this root is unique [88].

Once (a, b) is computed, we calculate φ(z) by using the discrete cosine transform to
calculate the Chebyshev coefficients of V ′. We have the equilibrium measure [88]

dµ =
i

2π

[

φ+(x)− φ−(x)
]

dx =

√

1−M−1
(a,b)(x)

2

2π

∞
∑

k=1

VkUk−1(M
−1
(a,b)(x))dx

where Uk are the Chebyshev polynomials of the second kind. This expression comes from
the Plemelj formulae (Lemma 3.1.9) and the fact that φ is the Cauchy transform of dµ:

φ(z) =
1

2πi

∫

dµ(x)

x− z
.

To calculate g, we compute an indefinite integral of φ that has the correct decay at
infinity [88]:

g(z) =

∫ z

φ(s)ds =
b− a

4

[

V1

(

J−1
+ (M−1

(a,b)(z))
2

2
− log J−1

+ (M−1
(a,b)(z))

)

+
∞
∑

k=2

Vk

(

J−1
+ (M−1

(a,b)(z))
k+1

k + 1
−
J−1
+ (M−1

(a,b)(z))
k−1

k − 1

)]

.

This formula was derived by mapping J−1
+ (M−1

(a,b)(z)) back to the unit circle, where it

became a trivially integrable Laurent series. Choosing (arbitrarily) x ∈ (a, b), we calculate

ℓ = V (x)− g+(x)− g−(x).

The numerically calculated g consists of approximating Vk using the discrete Cosine
transform and truncating the sum. Due to the analyticity of V , the errors in these com-
puted coefficients are negligible, and the approximation of g is uniformly accurate in the
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complex plane.

10.3.2 Scaling constant for edge statistics

Associated with the equilibrium measure are the Mhaskar–Rakhmanov–Saff numbers [77,
99] cV — along with the analytically unneeded dV = b − cV — which we need to know
to determine the correct scaling so that the edge statistics tend to the Tracy–Widom
distribution. We re-express the constant cV as stated in [26] in terms of constants that
we have already calculated: the support of the equilibrium measure and its Chebyshev
coefficients. The equilibrium measure for the scaled potential V (M(a,b)(x)) has support
(−1, 1). Its equilibrium measure is

M(a,b)
′(x)ψ(M(a,b)(x))dx =

b− a

2
ψ(M(a,b)(x))dx = (b− a)

√
1− x2

4π

∞
∑

k=1

VkUk−1(x)dx

=

√
1− x2

2π
h(x)dx,

as in [26, (3.3)]. We define the constant

α =

(

h(1)2

2

)1/3

=
1

2

[

(b− a)

∞
∑

k=1

kVk

]2/3

,

as in [26, (3.10)]. The scaling constant is then

cV =
2α

b− a
= (b− a)−1/3

[ ∞
∑

k=1

kVk

]2/3

.

Remark 10.3.5. For the degenerate potential of Figure 10.2.4, cV = 0 and hence the
scaling breaks down. This coincides with the fact that the edge statistics for the associated
ensemble does not follow the standard Tracy–Widom distribution.

10.3.3 Lensing the RHP

We rewrite Y to normalize the behavior at infinity:

Y =

[

e
nℓ
2 0

0 e−
nℓ
2

]

T

[

e−ng 0
0 eng

]

[

e−
nℓ
2 0

0 e
nℓ
2

]

, (10.3.1)



10.3. ORTHOGONAL POLYNOMIALS 275

so that T ∼ I and T has a jump along the real line, on which it satisfies

T+ = T−

[

en(g−−g+) en(g++g−+ℓ−V )

0 en(g+−g−)

]

= T−































[

1 en(g++g−+ℓ−V )

0 1

]

if x < a,
[

en(g−−g+) 1

0 en(g+−g−)

]

if a < x < b,
[

1 en(2g+ℓ−V )

0 1

]

if b < x,

Figure 10.3.1: The jumps of S.

We appeal to properties of equilibrium measures [24, (7.57)] to assert that

g+(x) + g−(x) + ℓ− V < 0,

for x < a and x > b, thus those contributions of the jump matrix are isolated around a
and b. On the other hand, g+ − g− is imaginary between a and b [24, pp. 195], hence
e±n(g+−g−) becomes increasingly oscillatory on (a, b). We wish to deform the RH problem
into the complex plane to convert oscillations into exponential decay. To accomplish this,
we introduce the lensing as in Figure 10.3.1, where we rewrite T as

T (z) = S(z)























[

1 0

en(V−ℓ−2g) 1

]

, if z ∈ Σ+,
[

1 0

en(V−ℓ−2g) 1

]

, if z ∈ Σ−,

I, otherwise.

(10.3.2)

By substituting
g+ = V − g− − ℓ,
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we see that the oscillations have been removed completely from the support of µ:

S+ = T+

[

1 0

−en(V−ℓ−2g+) 1

]

= T+

[

1 0

−en(g−−g+) 1

]

= T−

[

en(g−−g+) 1

0 en(g+−g−)

] [

1 0

−en(g−−g+) 1

]

= T−

[

0 1

−1 en(g+−g−)

]

= S−

[

1 0

−en(V−ℓ−2g−) 1

] [

0 1

−1 en(V−ℓ−2g−)

]

= S−

[

0 1
−1 0

]

.

However, we have introduced new jumps on Γ↑ and Γ↓, on which

S+ = T+ = T− = S−

[

1 0

en(V −ℓ−2g) 1

]

.

10.3.4 Removing the connecting jump

We have successfully converted oscillations to exponential decay. However, to maintain
accuracy of the numerical algorithm for large n, we must isolate the jumps to neighborhoods
of the endpoints a and b. To achieve this, we remove the jump along (a, b). We introduce a
parametrix that solves the RHP exactly on this single contour. In other words, we require
a function which satisfies the following RHP:

N+(x) = N−(x)

[

0 1
−1 0

]

, for a < x < b and N(∞) = I.

The solution is [24]

N(z) =
1

2ν(z)

[

1 i
−i 1

]

+
ν(z)

2

[

1 −i
i 1

]

for ν(z) =

(

z − b

z − a

)1/4

;

i.e., ν(z) is a solution to

ν+(x) = iν−(x) for a < x < b and ν(∞) = 1.

An issue with using N(z) as a parametrix is that it introduces singularities at a and b,
hence we also introduce local parametrices to avoid these singularities. In the event that
the equilibrium measure ψ(x) has exactly square-root decay at the edges, asymptotically
accurate local parametrices are known (see Section 10.4.1). However, if the equilibrium
measure has higher-order decay (e.g. the higher-order Tracy–Widom distributions [16]),
the asymptotically accurate local parametrices are only known in terms of a RH problem.

For numerical purposes, however, we do not need the parametrix to be asymptotically
accurate: we achieve asymptotic accuracy by scaling the contours. Thus we introduce the
trivially constructed local parametrices which satisfy the jumps of S in neighborhoods of a
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and b:

Pa(z) =



























































[

1 0
1 1

]

if π
3 < arg(z − a) < π

[

1 −1
1 0

]

if − π < arg(z − a) < −π
3

[

0 −1
1 0

]

if − π
3 < arg(z − a) < 0

I otherwise





















[

en(V −ℓ−2g) 0

0 e−n(V−ℓ−2g)

]

,

and

Pb(z) =



























































[

1 0
−1 1

]

if 2π
3 < arg(z − b) < π

[

0 −1
1 1

]

if − π < arg(z − b) < −2π
3

[

1 −1
0 1

]

if − 2π
3 < arg(z − b) < 0

I otherwise





















[

en(V−ℓ−2g) 0

0 e−n(V−ℓ−2g)

]

.

Figure 10.3.2: The jumps of Φ. We use a counter-clockwise orientation on the circles about
a and b.

We write

S(z) = Φ(z)







N(z) if |z − a| > r and |z − b| > r,
Pb(z) if |z − b| < r,
Pa(z) if |z − a| < r.

(10.3.3)

The final RHP for Φ satisfies the jumps depicted in Figure 10.3.2. Note that in general r
depends on n. We discuss this in more detail in the next section.

In practice, we do not use infinite contours. We truncate contours when the jumpmatrix
is to machine precision the identity matrix (see Lemma 3.10.4). In all cases we consider
here, after proper deformations the jump matrices are C∞ smooth and are exponentially
decaying to the identity matrix for large z. We deform the remaining contours to be line
segments connecting their endpoints. The resulting jump contour consists only of affine
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transformations of the unit interval.

10.3.5 Contour scalings

Ω
0

Ω
1

θ =
2π

3 θ =
π

7

Figure 10.3.3: The pre-scaled Ω0 used for non-degenerate endpoints and the pre-scaled Ω1

used for first-order degenerate endpoints. These are the contours that are used in practice.

In the case of a non-degenerate equilibrium measure, V (z) − ℓ − 2g(z) ∼ ca(z − a)3/2

as z → a and V (z)− ℓ− 2g ∼ cb(z− b)3/2 as z → b. In accordance with Assumption 5.0.1,
we scale the contours like n−2/3:

Ω1
n = −n−2/3Ω0 + a and dΩ2

n = n−2/3Ω0 + b,

where the Ω0 that is used in practice is depicted in the left graph of Figure 10.3.3, and the
angle of the contours are chosen to match the direction of steepest descent. This implies
that r ∼ n−2/3. In the first-order degenerate case (e.g., V (x) = x2/5 − 4x3/15 + x4/20 +
8x/5), V (z)−ℓ−2g(z) ∼ cb(z−b)7/2 as z → b and we scale like n−7/2 (implying r ∼ n−7/2)
at the degenerate endpoint:

Ω1
n = n−2/3Ω0 + a and Ω2

n = n−7/2Ω1 + b,

where Ω1 is depicted in the right graph of Figure 10.3.3 (the angle is sharper to attach
to the new direction of steepest descent). Higher-order degenerate equilibrium measures
require higher-order scalings, but this can be determined systematically by investigating
the number of vanishing derivatives of the equilibrium measure. This is the final form
of the RHP that is used in the numerical calculations of Section 10.2. A discussion the
accuracy of the numerical solution of this scaled and shifted RHP for large n is presented
below.
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10.4 Achieving uniform approximation

Having described the form of the RHP which we solve numerically, we want to show that the
resulting approximation remains accurate as n becomes large by satisfying the conditions
of Theorem 5.2.4. While we do not use the local parametrix in the numerical algorithm,
we do need it to show that the deformed contour satisfies the uniform approximation
properties. Thus we introduce the local parametrix in Section 10.4.1, noting that it can
also be used in the numerical scheme to achieve uniform approximation (though not for
degenerate potentials). We use this parametrix to show uniform approximation properties
in Section 10.4.2. To achieve this, we must adapt the jump matrix to cancel the effects of
singularities resulting from the parametrix N(z).

10.4.1 The classical Airy parametrix

In this section we present the deformation and asymptotic solution of the RHP, needed for
the asymptotic analysis of orthogonal polynomials, as in [24, Section 7.6]. For brevity of
presentation in this section we only consider potentials of the form V (x) = x2m. For the
asymptotic analysis and deformations in the more polynomial case of V (x) see [27, 28, 29,
30].

The goal of the section is to construct a parametrix Φ̂ that is a sectionally analytic,
matrix-valued function so that SΦ̂−1 → I as n→ ∞ where S is the solution of the deformed
and lensed RHP in Figure 10.3.1. The RHP for the error E = SΦ̂−1 has smooth solutions
and is a near-identity RHP in the sense that the associated singular integral operator is
expressed in the form I −Kn with ‖Kn‖L(L2) → 0 as n → ∞. Thus E can be computed
via a Neumann series for sufficiently large n.

The deformation proceeds much in the same way as in Section 10.3.4, except we have
a = −c, b = c for c > 0 [24]. We replace Pa and Pb with new functions ψ−c and ψc that are
constructed out of the Airy function. It is important to note that due to the near-identity
nature of the problem we do not scale the jump contour (i.e., r ∼ 1). Now we construct
the functions ψ−c and ψc. As an intermediate step, define

Ψ(s) =















































(

Ai(s) Ai(ω2s)
Ai′(s) ω2Ai(ω2s)

)

e−iπ
6
σ3 0 < arg s < 2π

3
(

Ai(s) Ai(ω2s)
Ai′(s) ω2Ai′(ω2s)

)

e−iπ
6

2π
3 < arg s < π

(

Ai(s) Ai(ω2s)
Ai′(s) ω2Ai′(ω2s)

)

e−iπ
6
σ3

(

1 0
−1 1

)

π < arg s < 4π
3

(

Ai(s) −ω2Ai(ωs)
Ai′(s) −Ai′(ωs)

)

e−iπ
6
σ3

(

1 0
1 1

)

4π
3 < arg s < 2π

,

with ω = e
2πi
3 .

The relations

Ai(s) + ωAi(ωs) + ω2Ai(ω2s) = 0,

Ai′(s) + ω2Ai′(ωs) + ωAi′(ω2s) = 0,
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can be used to show that Ψ(s) satisfies the following jump conditions

Ψ+(s) = Ψ−(s)















































(

1 1
0 1

)

s ∈ γ1
(

1 0
1 1

)

s ∈ γ2
(

0 1
−1 0

)

s ∈ γ3
(

1 0
1 1

)

s ∈ γ4

.

See Figure 10.4.1 for γi, i = 1, . . . 4.

Figure 10.4.1: The jump contours for Ψ with jump matrices. We use θ = 2π/3.

Since we only consider V (x) even in this section, the equilibrium measure is supported
on a symmetric interval [−c, c] for c > 0. Define

Λ(z) =
3

2
ϕ(z)(z − c)−3/2, λ(z) = (z − c)(Λ(z))2/3,

ϕ(z) =
1

2
(V (z)− ℓ)− g(z).

It follows from the branching properties of ϕ that Λ and λ are analytic in a neighborhood
of c. Furthermore, since λ(c) = 0 and λ′(c) = (Λ(c))2/3 6= 0 we use it as a conformal
change of variables mapping a neighborhood of z = c into a neighborhood of the origin.
More precisely, fix an ǫ > 0 and define Oc = λ−1({|z| < ǫ}).

Define

ψc(z) = L(z)Ψ(n2/3λ(z))enϕ(z)σ3 ,

L(z) =

(

1 −1
−i −i

)√
πei

π
6 nσ3/6((z + c)Λ2/3(z))σ3/4.
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(a) (b)

Figure 10.4.2: The local parametrices near z = ±c. As above, θ′ > 0 is included for
concreteness but its exact value is not needed. (a) The jump contours for ψ−c with jump
matrices. (b) The jump contours for ψc with jump matrices.

ψc solves the local RHP shown in Figure 10.2(b). The symmetry of V (x) implies that
ψ−c(z) = σ3ψc(−z)σ3 satisfies the jumps shown in Figure 10.2(a). We define the full
parametrix

Φ̂(z) =







ψc(z) z ∈ Oc

ψ−c(z) z ∈ −Oc

N(z) otherwise
. (10.4.1)

We need a result concerning the asymptotics of the Airy function:

Ai(s) =
1

2
√
π
s−1/4e−

2
3
s3/2

(

1 +O
(

1

s3/2

))

,

Ai′(s) = − 1

2
√
π
s3/4e−

2
3
s3/2

(

1 +O
(

1

s3/2

))

,

as s → ∞ and | arg s| < π. These asymptotics, along with the definition of λ(z), can be
used to show

ψc(z)N
−1(z) = I +O(n−1), z ∈ ∂Oc, (10.4.2)

ψ−c(z)N
−1(z) = I +O(n−1), z ∈ ∂O−c, (10.4.3)

as n → ∞ uniformly in z provided Oc ∪ O−c is contained in a sufficiently narrow strip
containing the real line. See [24, Section 7.6] for the details.

We take the RHP for S in Figure 10.3.1 and label ∂Oc and ∂O−c. Note that without
loss of generality we take Oc and O−c to be open balls around c and −c, respectively.
(Analyticity allows us to deform any open, simply connected set containing c or −c to a
ball.)

Since ψc and ψ−c solve the RHP locally in Oc and O−c, respectively, the function
E = SΨ̂−1 is analytic in Oc and O−c. See Figure 10.4.3 for the jump contour Ω and jump
matrix J for the RHP for E. It is shown in [24, Section 7.6] using (10.4.2) that the jump
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matrix for this RHP tends uniformly to the identity matrix as n→ ∞, again provided that
all contours are in sufficiently small neighborhood of the real line. Thus

‖I − C [J ; Ω] ‖L(L2(Ω)) = O(n−1),

and a Neumann series produces the unique solution u of C [J ; Ω] u = J − I. S is found via
the expression

S(z) = (I + CΩu(z))Ψ̂(z).

10.4.2 Obtaining the bounds in Theorem 5.2.4

To prove the uniform approximation of the numerical method we apply Theorem 5.2.4.
First, one has to identify the correct scalings for the contours and second, establish bounds
on the relevant operator norms and function derivatives. We follow this procedure in two
cases below.

The RHP for E

In this case, we consider numerically solving the RHP for E, rather than scaling and shifting
the contours as we do in practice. This simplifies the proof of uniform approximation
considerably though the exact form of the Airy parametrix is needed explicitly in the
numerics. Unfortunately, this local parametrix does not apply to degenerate potentials.
We contrast this with the analysis in the following section where the Airy parametrix is
needed to prove asymptotic accuracy but is in no way needed to perform calculations.

Take Γξ = Ω in Theorem 5.2.4 with ξ = n; that is, we do not scale the contour. The
near-identity nature of the RHP allows us to avoid any scaling of the problem. Using the
asymptotic expansions for the derivatives of Airy functions one can show that

‖J − I‖W k,∞(Ω)∩Hk(Ω) = O(n−1).

Furthermore, the fact that ‖C [J ; Ω]−1 ‖L(L2(Ω)) < C follows easily from the Neumann
series argument already given. Therefore Theorem 5.2.4 shows that the numerical method
uniformly approximates solutions of this RHP for small and arbitrarily large n.

Figure 10.4.3: The jump contours Ω for the error E. The jump matrix J for E which is
taken as the piecewise definition as shown. We use a counter-clockwise orientation for the
circles about ±c. These circles have radius r ∼ 1.
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To demonstrate the convergence properties of the solution for large n we use the fol-
lowing procedure. Let Um denote the approximation of u obtained using the numerical
method for RHPs discussed above with m collocation points per contour. When we break
up Ω into both its non-self-intersecting components and into its components that can be
represented by affine transformations of the unit interval, we end up with 14 contours.
Thus, we use a total of 14m collocation points. We solve the RHP with m = 10 and
then again with m = 20. We sample U10 at each collocation point for U20 and measure
the maximum difference at these collocations points. We define this difference to be the
Cauchy error. Figure 10.4.4 demonstrates that the error decreases as n→ ∞.

1 10 100 1000 10
4

10
5

10
6

10
7

10
5

0.001

0.1

Figure 10.4.4: The Cauchy error between U10 and U20 as n→ ∞. This plot indicates that
it takes fewer collocation points to approximate E as n increases.

The RHP for Φ

While for non-degenerate potentials we can solve the RHP associated with E numerically,
the RHP for Φ that we use in practice is of a fundamentally simpler form. No additional
special functions (e.g Airy functions) are needed and yet the contours are located away
from the stationary points a and b (we return, for now, to allowing general potentials).
All deformations are performed by a reordering and analytic continuation of previously
defined functions. Thus we want to show that our strategy of scaling contours does indeed
satisfy the criterion of uniform approximation of Theorem 5.2.4.

To achieve uniform approximation, we must first alter the jump matrix so that it
remains bounded as n→ ∞. This will be achievable using only properties of N(z) near a
and b, and we prove that the resulting jump matrix is bounded in Lemma 10.4.3. We also
need to show that the inverse of the operator is bounded. Using the local parametrix, we
accomplish this in Lemmas 10.4.1 and 10.4.2.

In this section we assume the non-degenerate case. (While uniform approximation is
indeed achievable for degenerate potentials, proving this is more challenging due to the
lack of explicit local parametrices.) Therefore, we consider the following jump contour (see
Figure 10.4.5 and compare with Algorithm 5.1.11)

Γξ = Γn = Ω1
n ∪Ω2

n,
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for
Ω1
n = n−2/3Ω0 + a and Ω2

n = n−2/3Ω0 + b.

Furthermore, define G to be the jump matrix for Φ, see Figure 10.3.2.

First, we rectify the issue with the jumps on these scaled contours: as n → ∞, they
approach the unbounded singularities of N(z), violating the condition of Theorem 5.2.4
that the jump matrix must be bounded. However, we expand

N(a+ zn−2/3) =
n1/6

2

(

b− a

z

)
1
4
[

1 −i
i 1

]

+
n−1/6

2(b− a)

(

b− a

z

)
3
4
[

1 i
−i 1

]

+O(n−
1
2 ),

N(a+ zn−2/3)−1 =
n1/6

2

(

b− a

z

)
1
4
[

1 i
−i 1

]

+
n−1/6

2(b− a)

(

b− a

z

)
3
4
[

1 −i
i 1

]

+O(n−
1
2 ),

N(b+ zn−2/3) =
n1/6

2

(

b− a

z

)
1
4
[

1 i
−i 1

]

+
n−1/6

2(b− a)

(

b− a

z

)
3
4
[

1 −i
i 1

]

+O(n−
1
2 ),

N(b+ zn−2/3)−1 =
n1/6

2

(

b− a

z

)1
4
[

1 −i
i 1

]

+
n−1/6

2(b− a)

(

b− a

z

) 3
4
[

1 i
−i 1

]

+O(n−
1
2 ).

Define

N̄a,n = n−1/6

[

1 −i
i 1

]

+ n1/6
[

1 i
−i 1

]

,

and

N̄b,n = n−1/6

[

1 i
−i 1

]

+ n1/6
[

1 −i
i 1

]

,

so that

N(a+zn−2/3)N̄a,n, N̄−1
a,nN(a+zn−2/3)−1, N(b+zn−2/3)N̄b,n and N̄−1

b,nN(b+zn−2/3)−1

are uniformly bounded for z restricted to an annulus around zero as n → ∞. These
matrices are used to remove the growth of the jump matrix as n → ∞. We demonstrate
this procedure, which is a modification of the algorithm in Lemma 5.1.11. We truncate the
contours of the RHP for Φ by removing the dashed contours in Figure 10.3.2. For ǫ > 0
and small, this gives us an approximation Φǫ of Φ with jump matrix Gǫ so that Gǫ − I is
supported on Ω1

n ∪ Ω2
n. Additionally, Gǫ satisfies

‖N−1GǫN −N−1GN‖L2∩L∞ = O(ǫ) and Gǫ(z) = G(z) for |z − a| = r or |z − b| = r.
(10.4.4)

Our method of scaling contours ensures that ǫ is independent of n. We separate the RHP
for Φǫ into two problems [G1; Ω

1
n] and [G2; Ω

2
n] with solutions Φ1 and Φ2, respectively. See

Figure 10.4.5 for the piecewise definition of G1 and G2. Formally, our solution procedure
is as follows:

1. Scale G1: Define H1(z) = G1(b+ zn−2/3).
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2. Remove the growth of H1(z): If Φ̂1 = [H1; Ω0] define

Φ̄1(z) =

{

N̄b,nΦ̂1N̄
−1
b,n (z) if z > rn2/3,

N̄b,nΦ̂1 if z < rn2/3.
(10.4.5)

A straightforward calculation shows that Φ̄+
1 (z) = Φ̄−(z)H̄1(z) where

H̄1(z) =

{

N̄b,nH1(z)N̄
−1
b,n if |z| > rn2/3,

H1(z)N̄
−1
b,n , if |z| = rn2/3.

Recall that in this case the contour is scaled according to r ∼ n−2/3.

3. Solve for Φ̄1 = [H̄1; Ω0]. Therefore

Φ1 = [G1; Ω
1
n] = N̄−1

b,n Φ̄1

(

n2/3(z − b)
)

N̄b,n.

4. Modify G2: If Φǫ = [Gǫ; Γn] then ΦǫΦ
−1
1 has the jump G̃2 = Φ1G2Φ

−1
1 on Ω2

n and is
analytic elsewhere.

5. Scale G̃2: Define H̃2(z) = G̃2(a+ zn−2/3).

6. Remove the growth of H̃2(z): As in (10.4.5), define

Φ̄2(z) =

{

N̄a,nΦ̃2N̄
−1
a,n(z), if z > rn2/3,

N̄a,nΦ̃2, if z < rn2/3.

where Φ̃2 = [H̃2; Ω0]. Then Φ̄+
2 (z) = Φ̄−

2 (z)H̄2(z), where

H̄2(z) =

{

N̄a,nH̃2(z)N̄
−1
a,n, if |z| > rn2/3,

H̃2(z)N̄
−1
a,n, if |z| = rn2/3.

7. Solve for Φ̄2 = [H̄2; Ω0] and therefore

Φ2 = [G̃2; Ω
1
n] = N̄−1

a,nΦ̄2

(

n2/3(z − a)
)

N̄a,n.

8. Φ = [G; Γn] = Φ1Φ2.

We solve two RHPs in this procedure. It is seen that the RHPs have jump matrices
that are uniformly bounded in n. This is a necessary (but not sufficient!) condition for
the numerical method to be asymptotically accurate. To analyse the asymptotic behavior
of these RHPs we must bound the inverse of the operators by comparing the solutions
with the Airy parametrix. Again, we assume that V (x) = x2m so that we have a = −c
and b = c, c > 0. We use this restriction for convenience: we have already defined the
parametrix associated with this choice of V (x) above.

We must alter our local parametrices to investigate their behavior both on the fixed
outer contour ∂Oc and the scaled contour of the RHP on which we solve numerically.
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(a) (b)

Figure 10.4.5: The separate RHPs for Φ1 and Φ2. All circles have counter-clockwise
orientation. (a) The jump contour Ω1

n and jump matrices for Φ1. (b) The jump contour
Ω2
n and jump matrices for Φ2.

Therefore, we alter the local parametrices by defining (compare with (10.3.3))

Ψ−c(z) =







ψ−c(z)P
−1
a=−c(z), if |z + c| < r,

ψ−c(z)N
−1, if |z + c| > r and z ∈ O−c,

I, otherwise,

Ψc(z) =







ψc(z)P
−1
b=c(z), if |z − c| < r,

ψc(z)N
−1, if |z − c| > r and z ∈ Oc,

I, otherwise.

The jump contours Ωc
n and Ω−c

n for the RHPs for Ψc and Ψ−c with jump matrices Jc and
J−c are shown in Figure 10.4.6.

The following lemmas present a step toward our final result that proves asymptotic
accuracy: they demonstrate that the local parametrices Ψc and Ψ−c can be used to bound
operator inverses. For the analysis, we extend G1 (G2) to Ωc

n (Ω−c
n ) by defining G1 = I on

Ωc
n \ Ω1

n (G2 = I on Ω−c
n \Ω2

n).

Lemma 10.4.1. There exists a constant C > 0 and functions A1, B1 such that

G1J
−1
c = I +N [A1(n

−1) +B1(ǫ)]N
−1 for |z − c| > r, (10.4.6)

G1J
−1
c = I, for |z − c| = r and,

‖C[H̄1;Ω0]
−1‖L(L2(Ω0)) < C,

where ‖A1(n)‖L2∩L∞ = O(n) and ‖B1(ǫ)‖L2∩L∞ = O(ǫ).

Proof. For (10.4.6) it follows from scaling and truncation that for sufficiently large n, G1−I
is supported inside Oc. Furthermore, on Ωn

c \ ∂Oc, Jc = G by construction so that (10.4.4)
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(a) (b)

Figure 10.4.6: The separate RHPs for Ψc and Ψ−c. The contours give a representation for
Ωc
n and Ω−c

n . All circles have counter-clockwise orientation with r ∼ n−2/3. (a) The jump
contours and jump matrices for Φc. (b) The jump contours and jump matrices for Φ−c.

implies

N−1GǫG
−1N = I +B1(ǫ),

GǫJ
−1
c = I +NB1(ǫ)N

−1.

The analysis in [24, p. 227] implies on ∂Oc

J−1
c = I +A1(n

−1),

Since G1 = I on ∂Oc we obtain (10.4.6). To prove the remainder of the lemma, we use
unscaled jumps

Ĥ1(z) = H̄1(n
2/3(z − c)),

Ĵc(z) =

{

N̄b=c,nJc(z)N̄
−1
b=c,n if |z − c| > r,

Jc(z)N̄
−1
b=c,n if |z − c| = r.

From (10.4.6) we have

‖Ĥ1Ĵ
−1
c − I‖L2∩L∞(Ωc

n)
= O(n−1) +O(ǫ).

It follows that ‖Ĵc‖L∞(Ωc
n)

is uniformly bounded in n so that

‖Ĥ1 − Ĵc‖L2∩L∞(Ωc
n)

= O(n−1) +O(ǫ).

This implies that ‖C[Ĥ1; Ω
c
n] − C[Ĵc; Ωc

n]‖L(L2(Ω0)) = O(n−1) + O(ǫ) since ‖C−
Ωc

n
‖L(L2(Ωc

n))

is uniformly bounded in n. Therefore it suffices to show that ‖C[Ĵc; Ωc
n]

−1‖L(L2(Ωc
n))

is
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uniformly bounded in n. This is clear since the inverse operator can be written in terms of

Ψ̂c(z) =

{

N̄a=c,nΨcN̄
−1
a=c,n(z) if z > r,

N̄a=c,nΨc if z < r.
(10.4.7)

and C−
Ωc

n
as was shown in Lemma 3.8.18. Both of these are uniformly bounded in n on

Ωc
n. It remains to rescale the contours. We use a simple affine scaling and this leaves the

Cauchy operators invariant: it does not affect the norm. In other words:

‖C[H̄1; Ω0]
−1‖L(L2(Ω0)) = C ⇔ ‖C[Ĥ1; c+ n−2/3Ω0]

−1‖L(L2(c+n−2/3Ω0))
= C.

The final step is to notice that C[Ĥ1; Ω
c
n]

−1 is the identity operator on Ωc
n\n2/3(Ω0−c).

We now bound the inverse operator on the second solved RHP.

Lemma 10.4.2. There exists a constant C > 0 and functions A2, B2 such that

G̃2J
−1
−c = I +N [A2(n

−1) +B2(ǫ)]N
−1, for |z + c| > r, (10.4.8)

G̃2J
−1
−c = I + [A2(n

−1) +B2(ǫ)]N
−1, for |z + c| = r, and,

‖C[H̄2; Ω0]
−1‖L(L2(Ω0)) < C,

where ‖A2(n)‖L2∩L∞ = O(n) and ‖B2(ǫ)‖L2∩L∞ = O(ǫ).

Proof. First, for Φ1 we have the representation

Φ1(z) = I + N̄−1
b=c,n

(

CΩ1
n
U(z)

)

N̄b=c,n, U(z) = u(n2/3(z − c)), u = C[H̄1; Ω0]
−1(H̄1 − I).

Lemma 10.4.1 implies that u has uniformly bounded L2 norm on Ω0 so that a change of
variables shows ‖U‖L2(Ω1

n)
= O(n−1/3) . In addition, ‖1/(· − z)k‖L2(Ω1

n)
= O(n−1/3) for z

bounded away from Ω1
n. Therefore |CΩ1

n
U(z)| = O(n−2/3). This estimate can be improved.

Define

Ũ = C[Jc,Ωc
n]

−1(Jc − I).

It can be shown that ‖U − Ũ‖L2(Ωc
n)

= O(ǫ) · O(n−1/3) + O(n−4/3) where we use the

convention that U = 0 on Ωc
n \ Ω1

n. Furthermore, CΩc
n
Ũ = 0 on the compliment of Oc so

that

CΩ1
n
U = CΩ1

n
U − CΩc

n
Ũ on Ω−c

n .

We find that ‖CΩ1
n
U‖L2∩L∞(Ω−c

n ) = O(ǫ) · O(n−2/3) +O(n−5/3). We write

Φ1 = I +N(z)N−1(z)N̄−1
b=c,n

(

CΩ1
n
U(z)

)

N̄b=c,nN
−1(z),

and using that N−1(z)N̄−1
b=c,n = O(n1/3) for z ∈ Ω−c

n we find

Φ1 = I +N [A3(n
−1) +B3(ǫ)]N

−1,

Φ−1
1 = I +N [A4(n

−1) +B4(ǫ)]N
−1.
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where A3, A4 satisfy the property stated above for A2 and B3, B4 satisfy the property
stated for B2. Expand

G̃2J
−1
−c = G2J

−1
−c +G2N [A3(n) +B3(ǫ)]N

−1J−1
−c

+N [A2(n
−1) +B2(ǫ)]N

−1G2J
−1
−c

+N [A2(n
−1) +B2(ǫ)]N

−1G2N [A3(n) +B3(ǫ)]N
−1J−1

−c .

Note that N−1G2N and N−1J−1
−cN are uniformly bounded on Ωn

−c and G2J
−1
−c satisfies an

estimate analogous to that of G1J
−1
c in Lemma 10.4.1. We write

G̃2J
−1
−c = I +N [A1(n

−1) +B1(ǫ)]N
−1

+NN−1G2N [A3(n
−1) +B3(ǫ)]N

−1J−1
−cNN

−1

+N [A2(n
−1) +B2(ǫ)]N

−1G2J
−1
−cNN

−1

+N [A2(n
−1) +B2(ǫ)]N

−1G2N [A3(n
−1) +B3(ǫ)]N

−1J−1
−cNN

−1.

This proves (10.4.8). The proof of the second statement proceeds in precisely the same
way as in Lemma 10.4.1. This proves the lemma.

We can now bound the jump matrices.

Lemma 10.4.3. There exists constants Ck > 0, independent of n, such that for sufficiently
large n we have

‖H̄i‖W k,∞∩Hk(Ω0) < Ck, i = 1, 2.

Proof. We consider i = 1 first. The only terms that may cause growth in the derivatives
are

κ(z) = e−2nϕ(c+n−2/3z) and N(c+ n−2/3z)N̄b=c,n.

From the analysis of [24, p. 197] it follows that ϕ(z) = d0(z − c)3/2 + d1(z − c)5/2 +
O
(

(z − c)7/2
)

. This asymptotic series can be differentiated as
√
z − cϕ(z) is analytic.

Therefore,

κ(z) = exp
(

−2d0z
3/2 − 2d0n

−2/3z5/3 + · · ·
)

.

and hence differentiating κ(z) or 1/κ(z) with respect to z never causes growth in n. A
similar argument applies to N(c + n−2/3z)N̄b=c,n. From the expansion of N(c + n−2/3z)
we have a series of the form

N(c+ n−2/3z)N̄b=c,n = f0(z) +

∞
∑

j=1

M−(2j−1)/3(n)fj(z),

whereM−(2j+1)/3(n) = O(n−(2j+1)/3). Again, differentiation of N(c+n−2/3z) with respect
to z never causes growth in n. This proves the claim for i = 1. For i = 2, we must bound
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derivatives of Φ1(−c + n−2/3z) and H̃2(z). The boundedness of the derivatives of H̃2(z)
follows from the arguments for i = 1. Recall, for Φ1 we have the representation

Φ1(z) = I + N̄−1
b=c,n

(

CΩ1
n
U(z)

)

N̄b=c,n,

U(z) = u(n2/3(z − c)), u(z) = C[H̄1; Ω0]
−1(H̄1 − I).

Since u has uniformly bounded L2 norm on Ω0, ‖U‖L2(Ω1
n)

= O(n−1/3) . From the fact

that N̄b=c,n = O(n1/6) and N−1
b=c,n = O(n1/6) we have that ∂kz (N̄

−1
b=c,n

(

CΩ1
n
U(z)

)

N̄b=c,n) =

O(n−1/3) on Ω2
n where we used that ‖1/(· − z)k‖L2(Ω1

n)
= O(n−1/3) for z bounded away

from Ω1
n. This proves the lemma for i = 2.

In practice, we approximate Φ1 and we never solve the exact RHP [H̄2; Ω0]. Recall that
this approximation is found by first numerically approximating the solution Φ̄1 of [H̄1; Ω0]
by Φ̄1,m (with m collocation points on each smooth component of Ω0). Theorem 5.2.4
shows that the approximation Φ̄1,m converges uniformly in n with z away from Ω0 as
m→ ∞, subject to Assumption 5.3.11. The size of the difference Φ̄1,m − Φ̄1 can be traced
back to an L2 error on Ω0. In other words,

Φ̄1,m(z) = I + CΩ0um(z) and Φ̄1(z) = I + CΩ0u(z),

where ‖u − um‖L2(Ω0) → 0 is satisfied as m → ∞. It follows from the Cauchy–Schwarz
Inequality that

|Φ̄1,m(n2/3(z − c)) − Φ̄1(n
2/3(z − c))| < ‖1/(· − n2/3(z − c))‖L2(Ω0)‖u− um‖L2(Ω0)n

−2/3.

Therefore from N̄b=c,n = O(n1/6) and N−1
b=c,n = O(n1/6), we bound

‖Φ1,m − Φ1‖L∞(Ω2
n)

≤ C‖u− um‖L2(Ω0)n
−1/3.

Similar arguments show that

‖Φ−1
1,m − Φ−1

1 ‖L∞(Ω2
n)

≤ C‖u− um‖L2(Ω0)n
−1/3 +O(n−2/3).

Define H̄2,m to be H̄2 with Φ1 replaced by Φ1,m. The final lemma we need for the funda-
mental result of this section follows.

Lemma 10.4.4.

‖H̄2,m − H̄2‖L2∩L∞(Ω0) → 0 as m→ ∞,

uniformly in n.

Proof. The case |z + c| > r is treated first. We use the unscaled jump matrices to show
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L∞ convergence. Consider

H̄2,m(n2/3(z + c)) − H̄2(n
2/3(z + c))

= N̄a=−c,nΦ1(z)G2(z)Φ
−1
1 (z)N̄−1

a=−c,n − N̄a=−c,nΦ1,m(z)G2(z)Φ
−1
1,m(z)N̄−1

a=−c,n

= N̄a=−c,n(Φ1(z)− Φ1,m(z))N̄−1
a=−c,nN̄a=−c,nG2(z)N̄

−1
a=−c,nN̄a=−c,nΦ

−1
1 (z)N̄−1

a=−c,n

+ N̄a=−c,nΦ1,m(z)N̄−1
a=−c,nN̄a=−c,nG2(z)N̄

−1
a=−c,nN̄a=−c,n(Φ

−1
1 (z) −Φ−1

1,m)N̄−1
a=−c,n

We have seen that

N̄a=−c,nΦ1,m(z)N̄−1
a=−c,n = O(1),

N̄a=−c,nΦ1(z)N̄
−1
a=−c,n = O(1),

Na=−c,nG2(z)N̄
−1
a=−c,n = O(1),

and finally,

‖N̄a=−c,n(Φ1 − Φ1,m)N̄−1
a=−c,n‖L∞(Ω2

n)
≤ C‖u− um‖L2(Ω0),

‖N̄a=−c,n(Φ
−1
1 − Φ−1

1,m)N̄−1
a=−c,n‖L∞(Ω2

n)
≤ C‖u− um‖L2(Ω0) +O(n−1/3) · O(‖u− um‖2L2(Ω0)

).

for a new constant C. This demonstrates that ‖H̄2,m − H̄2‖L2∩L∞(Ω0) → 0 uniformly in n
since Ω0 is bounded. The case of |z+ c| < r follows from this analysis since fewer N̄a=−c,n

terms are present in that case.

As before, let u = C[H̄1; Ω1]
−1(H̄1 − I) with um being its numerical approximation.

Define v = C[H̄2; Ω2]
−1(H̄2 − I) and vm = C[H̄2,m; Ω2]

−1(H̄2,m − I). Let vm denote the
numerical approximation of vm and define

Φ2,m = N̄−1
a=−c,n(I + CΩ0vm(n2/3(z + c))Na=−c,n,

which is an approximation of Φ2.

We are ready to prove the main extension of the uniform approximation theory of
Chapter 5.

Theorem 10.4.5. The following limits hold, uniformly with respect to n:

‖u− um‖L2(Ω0) → 0 as m→ ∞,

‖v − vm‖L2(Ω0) → 0 as m→ ∞.

Furthermore,

lim
m→∞

sup
z∈S

|Φ(z)− Φ1,m(z)Φ2,m(z)| = O(ǫ)

for S bounded away from Γn. Here ǫ is the error associated with contour truncation, see
(10.4.4).

Proof. The first limit was proved above. Lemma 10.4.4 implies ‖vm − v‖L2(Ω0) → 0 uni-
formly in n. The triangle inequality produces the second limit. Finally, the Cauchy–
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Schwarz Inequality applied to the Cauchy integral implies

lim
m→∞

sup
z∈S

|Φ(z)− Φ1,m(z)Φ2,m(z)| = 0,

uniformly in n. Combining this with (10.4.4) proves the theorem.

Remark 10.4.6. We obtain convergence that is more rapid than Theorem 5.1.14 predicts.
Since Φ1 − I decays rapidly enough with respect to n we avoid the complications that arise
from the use of Lemma 5.1.12 in the general case.



Appendix A

Rational Approximation

We discuss the rational approximation of functions in appropriate Lp-based spaces. The
results in this section are proved for 1 < p < ∞ and we assume 1 < p < ∞ throughout.
It is instructive to see the generality of the methods of proof. We have defined the spaces
Hk

±(Γ) and Hk
z (Γ). The spaces W k,p

± (Γ) and W k,p
z (Γ) are defined in an analogous way,

with the Lp norm. Note that these spaces coincide when Γ is a piecewise-smooth Lipschitz
graph.

Theorem A.0.7 ([47]). If D is a bounded region such that ∂D is a piecewise differentiable,
rectifiable Jordan curve then polynomials in z are dense in Ep(D).

We show that for f ∈W k,p
z (∂D) we can approximate it with a rational functions. First,

for f ∈W k,p
z (∂D) ∩ Ep(D) we approximate Dkf by polynomials pn. We have

∣

∣

∣

∣

∫ s

a
(Dkf(t)− pn(t))|dt|

∣

∣

∣

∣

p

≤ ‖Dkf(t)− pn(t)‖pLp(∂D) · |∂D|p/q, 1/p + 1/q = 1,

where |∂D| is the arclength of ∂D. Integrating both sides over Γ with respect to |ds|
produces

∥

∥

∥

∥

∫ ·

a
(Dkf(t)− pn(t))|dt|

∥

∥

∥

∥

Lp(∂D)

≤ ‖Dkf(t)− pn(t)‖Lp(∂D) · |∂D|.

Since
∫ s
a D

kf(t)dt = Dk−1f + c for some c and
∫ s
a pn(t)dt− c is a polynomial that con-

verges to Dk−1f in L2(∂D). This argument can be used again to construct an polynomial
that converges to Dk−2f in L2(∂D).

Since f = C+
∂Df − C−

∂Df we see that we may approximate C+
∂Df with polynomials. We

must deal with the approximation of C−
∂Df . We bootstrap from Theorem A.0.7. Without

loss of generality, assume 0 ∈ D. Note that F (z) = C−
∂Df(z) ∈ EP (D−1) where D−1 =

{z : 1/z ∈ D}. If f ∈ W k,p
z then the kth derivative G(z) = F (k)(1/z) ∈ Ep(D−1) may be

approximated in Lp(∂D−1) by polynomials pn(z). It follows that G must have a (k+1)th-
order zero at z = 0. Thus
∣

∣

∣

∣

∫

∂D−1

pn(s)

sj
d̄s

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

∂D−1

pn(s)−G(s)

sj
d̄s

∣

∣

∣

∣

≤ Cj‖G− pn‖Lp(∂D−1), j = 1, 2, . . . , k + 1.

293
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Thus the first (k + 1) coefficients in pn have magnitudes that are on the order of ‖G −
pn‖Lp(∂D−1). Define p̃n to be the polynomial obtained by dropping these terms. Since
∂D−1 has finite arc length we find that ‖p̃n − pn‖Lp(∂D−1) ≤ C‖G− pn‖Lp(∂D−1) for some
C > 0, depending only on D and k. Therefore p̃n converges to G in Lp(∂D−1). A simple
change of variables shows that p̃n(1/z) converges to F in Lp(∂D). Integrating p̃n(1/z)

k-times in the same way as for C+
∂Df we obtain a rational approximation of C−

∂Df in W k,p
z .

We conclude the following:

Theorem A.0.8. If D is a bounded region such that ∂D is a piecewise differentiable Jordan
curve then, rational functions of z are dense in W k,p

z (∂D) =W k,p
+ (∂D).

We turn to the density of rational functions in W k,p
z (Γ) when Γ is a piecewise smooth

Lipschitz graph. It will be clear that the piecewise smooth assumption can be removed in
the k = 0 or Lp(Γ) case. We follow the ideas presented in [8] and complete their proof.
We begin with some technical developments. Define the maximal function

M(f)(t) = sup
1≥δ>0

1

|Γ ∩B(t, δ)|

∫

Γ∩B(t,δ)
|f(s)||ds|.

Lemma A.0.9 ([102]). For f ∈ Lp(Γ)

‖M(f)‖Lp(Γ) ≤ cp‖f‖Lp(Γ).

Lemma A.0.10. Let Pǫ(s, t) = Pǫ(t, s) : Γ× Γ → C satisfy

1.

1−
∫

Γ
Pǫ(s, ·)ds → 0 as ǫ→ 0+,

2.
∫

Γ
|Pǫ(s, t)||ds| ≤ C, uniformly in t, and

3. For δ > 0,

∥

∥

∥

∥

∫

Γ
|wδ(s, ·)||Pǫ(s, ·)||ds|

∥

∥

∥

∥

∞
→ 0,

wδ(s, t) =

{

0, if |t− s| < δ,
1, otherwise.

If Γ is a piecewise-differentiable Lipschitz graph, then for f ∈W 1,p
+ (Γ),

∫

Γ
f(t)Pǫ(t, s)dt → f(s)

in Lp(Γ).
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Proof. Consider

∫

Γ
Pǫ(s, t)[f(t)− f(s)]dt =

∫

Γ
Pǫ(s, t)wδ(s, t)f(t)dt−

∫

Γ
Pǫ(s, t)wδ(s, t)f(s)dt

+

∫

Γ
(1− wδ(s, t))Pǫ(s, t)(f(t)− f(s))dt.

We show this function tends to zero in Lp(Γ). Define ∆(t) = {s ∈ Γ : |s − t| < δ} and
consider

I1 =

∫

Γ

∣

∣

∣

∣

∣

∫

∆(t)
Pǫ(s, t)f(t)dt

∣

∣

∣

∣

∣

p

|ds| =
∫

Γ

∣

∣

∣

∣

∫

Γ
(wδ(s, t))Pǫ(s, t)f(t)dt

∣

∣

∣

∣

p

|ds|.

It follows that [53, Theorem 6.18]

I
1/p
1 ≤ K‖f‖p, K = sup

t∈Γ

∫

Γ
|wδ(s, t)||Pǫ(s, t)||ds| → 0

as ǫ → 0 for any δ > 0 by Hypothesis 3. Now consider

I2 =

∫

Γ

∣

∣

∣

∣

∣

∫

∆(t)
Pǫ(s, t)f(s)dt

∣

∣

∣

∣

∣

p

|ds| =
∫

Γ
|f(s)|p

∣

∣

∣

∣

∫

Γ
wδ(s, t))Pǫ(s, t)dt

∣

∣

∣

∣

p

|ds|.

Again, we obtain I
1/p
2 ≤ K‖f‖Lp(Γ). We are left estimating the Lp(Γ) norm of

I3(s) =

∫

Γ
(1− wδ(s, t))Pǫ(s, t)(f(t)− f(s))dt.

A simple estimate gives

∣

∣

∣

∣

∫

Γ
(1− wδ(s, t))Pǫ(s, t)(f(t)− f(s))dt

∣

∣

∣

∣

≤ sup
s∈Γ

|(1− wδ(s, t))(f(t)− f(s))|
∣

∣

∣

∣

∫

Γ
Pǫ(s, t)dt

∣

∣

∣

∣

,

≤ C sup
s∈∆(t)

|f(t)− f(s)|.

We estimate

sup
s∈∆(t)

|f(t)− f(s)| ≤ |Γ ∩B(t, δ)|
|Γ ∩B(t, δ)|

∫

Γ∩B(t,δ)
|Df(x)||dx|

≤ |Γ ∩B(t, δ)|M(Df).

From the Lipschitz nature of Γ, |Γ ∩B(t, δ)| ≤ Cδ thus

‖I3‖p ≤ Cδ‖M(Df)‖p ≤ cpCδ‖Df‖p,
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by Lemma A.0.9. We use all these facts to find

I =

∥

∥

∥

∥

∫

Γ
Pǫ(s, t)f(t)dt− f(s)

∥

∥

∥

∥

p

≤
∥

∥

∥

∥

∫

Γ
Pǫ(s, t)[f(t)− f(s)]dt

∥

∥

∥

∥

p

+

∥

∥

∥

∥

f(s)− f(s)

∫

Γ
Pǫ(s, t)dt

∥

∥

∥

∥

p

.

The second term tends to zero as ǫ→ 0 by Hypothesis 1, 2, and the Dominated Convergence
Theorem. Fix δ > 0. We find

I ≤ cpCδ‖Df‖p +H(ǫ, δ), H(ǫ, δ) → 0 as ǫ → 0.

Letting ǫ→ 0 followed by δ → 0 proves the lemma.

Remark A.0.11. Similar arguments show that if f ∈ W 1,∞ then convergence in
Lemma A.0.10 takes place in L∞(Γ).

Lemma A.0.12. If Γ is a piecewise smooth Lipschitz graph then W 1,p
z (Γ) is dense in

Lp(Γ).

Proof. Let ǫ > 0. On each smooth component of Γi ⊂ Γ we approximate f with a smooth
function f jn so that

∫

Γj
|f(z)−f jn(z)|p|dz| → 0 as n→ ∞. We multiply f jn by C∞ functions

φj that take values in [0, 1] and vanish in a neighborhood of each non-smooth point of Γ
to enforce the zero-sum condition. The functions φj are not equal to one only on a set Ej

of small measure δ/2j . We find

‖f − φjf
j
n‖Lp(Γj) ≤ ‖f − f jn‖Lp(Γj) + ‖f jn − φjf

j
n‖Lp(Γj ).

We estimate the last term

‖f jn − φjf
j
n‖pLp(Γj)

=

∫

Ej

|f jn(z)− φjf
j
n(z)|p|dz| ≤

∫

Ej

|f jn(z)|p|dz|.

Therefore,

lim
n→∞

‖f − φjf
j
n‖pLp(Γj)

≤
∫

Ej

|f(z)|p|dz|.

Define fn = φjf
j
n on Γj and

lim
n→∞

‖f − fn‖pLp(Γ) ≤
∫

∪jEj

|f(z)|p|dz|.

Since
∫

∪jEj
|dz| → 0 as δ → 0, density is proved.

Theorem A.0.13. Let Γ be a piecewise differentiable Lipschitz graph. Then

Kǫf(s) =

∫

Γ
f(t)

ǫ

π

dt

(t− s)2 + ǫ2
, ǫ > 0,
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converges to f in Lp(Γ) as ǫ → 0 provided f ∈ Lp(Γ).

Proof. First, we show this for f ∈ W 1,p(Γ). We must check the three hypotheses in
Lemma A.0.10. First note that

Pǫ(x+ iν(x), y + iν(y)) =
ǫ

π

1

(t− s)2 + ǫ2
=

1

2πi

(

1

t− (s+ iǫ)
− 1

t− (s− iǫ)

)

.

Hypothesis 1 follows by a straightforward residue calculation. As will be seen below,
Hypotheses 2 and 3 follow in a straightforward way when Γ = R. It suffices to show that

|Pǫ(x+ iν(x), y + iν(y)||1 + iν ′(x)| ≤ C|Pǫ(x, y)|, x, y ∈ R. (A.0.1)

Recall Γ = {x+ iν(x) : x ∈ R}. The sufficiency is clear for Hypothesis 2 after a change of
variables. For Hypothesis 3, consider

I =

∫

Γ
|w(s, t)||Pǫ(s, t)||ds| =

∫

Γ\∆(t)
|Pǫ(s, t)||ds|.

The set Γ ∩∆(t) contains the set ∆′(t) = {x + iν(x) : x ∈ (t1 + t, t2 + t)} where t1 + t +
iν(t1 + t), t2 + t+ iν(t2 + t) are the two points on Γ \∆(t) closest to t with respect to arc
length. Thus

I ≤
∫

Γ\∆′(t)
|Pǫ(s, t)||ds| =

∫

R\(t1+t,t2+t)
|Pǫ(x+ iν(x), y + iν(y)||1 + iν ′(x)|dx

≤
∫

R\(t−t∗,t+t∗)
|Pǫ(x+ iν(x), y + iν(y))||1 + iν ′(x)|dx ≤ C

∫

R

|Pǫ(x, y)|dx,

where t∗ = min{−t1, t2}. Thus if Hypothesis 3 holds for Pǫ(x, y) if Γ = R then the
right-hand side tends to zero uniformly.

Now we prove Hypothesis 2 and 3 for Pǫ(x, y) if Γ = R. Since Pǫ(x, y) is positive on
for x, y ∈ R, the L1 norm can be found to be unity by contour integration. For Hypothesis
3 note that Cauchy’s Theorem implies

∫

R\(t−δ,t+δ)
Pǫ(x, y)dx +

∫

Cδ

Pǫ(x, y)dx = 0,

where Cδ is a half-circle in the upper-half plane connecting t− δ and t+ δ. We find that

I2 =

∫

Cδ

Pǫ(x, y)dx =
ǫ

π

∫ π

−π

iδeiθdθ

δ2e2iθ + ǫ2
.

We estimate, for ǫ < δ, δ > 0,

|I2| ≤
ǫ

π

∫ π

−π

δdθ

δ2 − ǫ2
→ 0 as ǫ→ 0.

This establishes Hypothesis 3 in this case.
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Finally, we establish (A.0.1). We consider the ratio

r =
ǫ2 + (x− y)2

ǫ2 + (x− y)2 − (ν(x)− ν(y))2 + 2i(x− y)(ν(x)− ν(y))
.

We rewrite r in terms of X = ǫ2/(x − y)2 and Y = |(ν(x) − ν(y))/(x − y)|. Note that
0 ≤ Y ≤M for a constant M > 0 and 0 ≤ X ≤ ∞. Thus, we are lead to

R(X,Y ) = |r|2 = (X + 1)2

(X + 1− Y 2)2 + 4Y 2
, (X,Y ) ∈ [0,∞] × [0,M ].

For X + 1 > 2M2 we find

R(X,Y ) ≤ 4M4

M4
≤ 4.

Since R(X,Y ) is continuous in [0, 2M2] × [0,M ], and bounded on [2M2,∞] × [0,M ] we
obtain (A.0.1), establishing Lp convergence when f ∈W 1,p

+ (Γ).

To prove the theorem we use the density of W 1,p
+ (Γ) in Lp(Γ) and the fact that Kǫ is a

bounded operator on Lp(Γ), 1 < p <∞, with norm that is independent of ǫ [76]. We have
proved this fact in the case p = 2, see Lemma 3.5.12. Approximating f with a sequence
fn ∈W 1,p

+ (Γ), we obtain

‖f −Kǫf‖p ≤ ‖f − fn‖p + ‖fn −Kǫfn‖p + ‖Kǫ(f − fn)‖p
≤ (1 +C)‖f − fn‖p + ‖fn −Kǫfn‖p (A.0.2)

For δ > 0 find N so that for n > N , (1 + C)‖f − fn‖p < δ. For such an n let ǫ → 0 in
(A.0.2)

lim
ǫ→0

‖f −Kǫf‖p < δ, n > N.

This proves the lemma.

Corollary A.0.14. Define the integral operator

Kj
ǫ f(s) =

∫

Γ
f(t)

(

(−1)j

[t− (s+ iǫ)]j+1
− (−1)j

[t− (s− iǫ)]j+1

)

d̄t

whose kernel is the kth derivative of the Poisson kernel. If Γ is a piecewise smooth Lipschitz
graph and f ∈W k,p

+ (Γ) then ‖Kk
ǫ f −Dkf‖p → 0 as ǫ→ 0.

Proof. Integration by parts and the zero-sum condition imply that Kk
ǫ f = KǫD

kf . The
conclusion follows from Theorem A.0.13.

Theorem A.0.15. If Γ is a piecewise smooth Lipschitz graph then Lp(Γ) rational functions

are dense in W k,p
z (Γ).

Proof. Our proof is constructive. We assume k ≥ 1. For f ∈ W k,p
z we approximate Kk

ǫ f
with a Riemann sum. This is clearly a rational approximation of Dkf , for ǫ small. First, we



299

show this Riemann sum approximation converges toKk
ǫ f in Lp(Γ). Define ΓR = Γ∩B(0, R)

where R is undetermined for now. It suffices to show the convergence of the Riemann sums
on each smooth component of ΓR, so we assume ΓR is smooth.

Let Pn be a partition of Γ ∩B(0, R) with Pn+1 being a refinement of Pn. To simplify
matters, we assume that for xi ∈ Pn, ∆xi = 1/2n is a constant. Define the rational
function,

F (s;Pn) =
∑

xi∈Pn

Pǫ(s, xi)f(xi)2
−n,

which is a Riemann sum approximation of Kk
ǫ f . Here Pǫ is the kernel of Kk

ǫ . We consider
the difference of Riemann sums associated with Pm and Pn with m > n. With xi ∈ Pm,
define x′i ∈ Pn to be the next element of Pn (using the orientation of Γ). Notice that

F (s,Pn) =
∑

xi∈Pn

2m−nPǫ(s, xi)f(xi)2
−m =

∑

xi∈Pm

Pǫ(s, x
′
i)f(x

′
i)2

−m,

because 2m−n elements of Pm map to x′i for each i. We obtain

|F (s;Pn)− F (s;Pm)| ≤ 2−m
∑

xi∈Pm

|Pǫ(s, x
′
i)f(x

′
i)− Pǫ(s, xi)f(xi)|. (A.0.3)

It follows that Pm is the union of 2m−n refinements of Pn and we may bound (A.0.3) using
the total variation. Explicitly,

|F (s;Pn)− F (s;Pm)| ≤ 2−nTV (P (s, ·)f(·)).

We use the well-known fact that for absolutely continuous functions

TV (F ) ≤
∫ b

a
|F ′(x)|dx,

along with the smooth parametrization of ΓR to find

|F (s;Pn)− F (s;Pm)| ≤ C2−n

∫

ΓR

|∂t(Pǫ(s, t)f(t))||dt|

≤ C2−n

(∫

ΓR

|∂tPǫ(s, t)||f(t))||dt| +
∫

ΓR

|∂tPǫ(s, t)||f ′(t))||dt|
)

.

For k > 1, we find that there exists positive constants C1(ǫ) and C2(ǫ) depending only on
ǫ such that

∫

Γ
|Pǫ(s, t)||dt| ≤ C1(ǫ),

∫

Γ
|∂tPǫ(s, t)||dt| ≤ C2(ǫ).
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This implies that (see [53, Theorem 6.18])

∥

∥

∥

∥

∫

ΓR

|Pǫ(s, t)||f ′(t))||dt|
∥

∥

∥

∥

p

≤ C1(ǫ)‖f ′‖p,
∥

∥

∥

∥

∫

ΓR

|∂tPǫ(s, t)||f(t))||dt|
∥

∥

∥

∥

p

≤ C2(ǫ)‖f‖p.

Thus
∥

∥

∥

∥

∫

Γδ

|∂t(Pǫ(·, t)f(t))||dt|
∥

∥

∥

∥

p

≤ C(ǫ)‖f‖W 1,p(Γ).

This proves that our rational approximation is a Cauchy sequence. By standard Riemann
integration results, our rational approximation must converge pointwise to K̃k

ǫ f where K̃k
ǫ

has integral kernel Pǫ(s, t)χΓR
(t). This is the required Lp convergence for k ≥ 1.

Continuing, we find for f ∈W k,p(Γ), f 6= 0,

‖F (·,Pn)−Kk
ǫ f‖p ≤ ‖F (·,Pn)− K̃k

ǫ f‖p + ‖(K̃k
ǫ −Kk

ǫ )f‖p, (A.0.4)

‖F (·,Pn)−Dkf‖p ≤ ‖Kk
ǫ f −Dkf‖p + ‖Kk

ǫ f − F (·,Pn)‖p,
≤ ‖Kk

ǫ f −Dkf‖p + ‖F (·,Pn)− K̃k
ǫ f‖p + ‖(K̃k

ǫ −Kk
ǫ )f‖p.

For δ > 0, fix ǫ > 0 such that ‖Kk
ǫ f −Dkf‖p < δ/3. It follows that for R sufficiently large

sup
s∈Γ

∫

Γ
|Pǫ(s, t)− Pǫ(s, t)χΓR

(t)||dt| < δ

3‖f‖p
.

This implies that ‖K̃k
ǫ f −Kk

ǫ f‖p < δ/3 [53, Theorem 6.18]. For such an R, we let N be
large enough so that ‖F (·,Pn)− K̃k

ǫ f‖p < δ/3 for n > N . We find

‖F (·,Pn)−Dkf‖p ≤ δ, n > N.

Note that F (s,Pn) is a finite sum of rational functions of the form α/(s − β)k+1.
Therefore we may integrate it to obtain another rational function. Since integration is a
bounded operation we find that

‖F (·,Pn)− f‖
W k,p

z (Γ)
≤ Cδ.

This proves the density of rational functions for k ≥ 1. To obtain the claim for Lp(Γ) we
use Lemma A.0.12.

Corollary A.0.16. W l,p
+ (Γ) is dense in W k,p

+ (Γ) for l > k.

We arrive at our main rational approximation theorem. See Definition 3.8.6 for the
definition of R±.

Theorem A.0.17. If Γ is admissible then R±(Γ)∩L2(Γ) is dense in Hk
±(Γ) and L

2(Γ)∩
R±(Γ)⊕ Cn×n is dense in H̃k

±(Γ).



Appendix B

Spectral Collocation Methods

In this appendix we discuss the numerical solution of linear differential equations using a
Chebyshev collocation method. Specifically, we consider the boundary-value problems

µx + Lµ = F, µ(−∞) = 0, (B.0.1)

µx + Lµ = F, µ(∞) = 0, (B.0.2)

where L is a linear operator. We assume F is smooth and rapidly decaying as |x| → ±∞.
Most of the developments presented below can be found in a variety of texts. See [104] for
a introduction to spectral methods including the Chebyshev method discussed below. A
good reference for the rigorous treatment of such methods is [7]. The main contribution
of this appendix is the analysis of the domain truncation error for problems posed on an
infinite domain.

B.1 Numerical implementation

For numerical purposes, we replace (B.0.1) with differential equations posed on a finite
domain

µ̃x + Lµ̃ = F, µ̃(−L) = 0, (B.1.1)

µ̃x + Lµ̃ = F, µ̃(L) = 0. (B.1.2)

For now, we ignore the error introduced in this truncation and we drop the tilde. This is
justified later. The naive way to solve this equation is to use the Chebyshev differentiation
matrix. We approximate µ with a series of mapped Chebyshev polynomials of the first
kind:

µ(x) ∼
∑

n

αnTn(M−L(x)), M−L(x) = 2(x+ L/2)/L. (B.1.3)

301



302 APPENDIX B. SPECTRAL COLLOCATION METHODS

We use the notation M−L because M−L([−L, 0]) = [−1, 1]. Formally differentiating we
find

µx(x) ∼
∑

n

αnT
′
n(M−L(x))M

′
−L(x).

Let xN = (x0, x1, . . . , xN )T , xj = cos(jπ/N) be the Chebyshev points. Note that in this
definition the first element of xN is 1 and the last is −1. Let x−L,N = M−1

−L(x
N ). When

f is a scalar-valued function, we overload it so that f(xN ) is a vector consisting of the
elements f(x), x ∈ xN . Thus

µx(x
−L,N) ∼

∑

n

αnT
′
n(x

N ) ·M ′
−L(x

−L,N).

We have not decided how (B.1.3) approximates µ. If we choose αn so that

µ(x−L,N ) =

N
∑

n=0

αnTn(M−L(x
−L,N )) =

N
∑

n=0

αnTn(x
n),

then it follows that

N
∑

n=0

αnT
′
n(x

N ) = DNµ(x
−L,N ),

where DN is the Chebyshev differentiation matrix. As mentioned above, reference [104]
provides an extremely readable introduction to DN . In particular, it is given by

(DN )0,0 =
2N2 + 1

6
, (DN )N,N = −2N2 + 1

6
,

(DN )jj =
−xj

2(1− x2j)
, j = 1, . . . N − 1,

(DN )ij =
ci
cj

(−1)i+j

xi − xj
, i 6= j, i, j = 0, . . . , N,

where

ci =

{

2, if i = 0 or N,
1, otherwise.

Thus if we can compute Lµ, µ =
∑N

n=0 αnTn(M−L(x)) exactly at x−L,N we form a finite-
dimensional approximation of (B.1.1). We assume this computation exists as a black box.
We obtain

(diag(M ′
−L(x

−L,N )) ·Dn + L(x−L,N )) · µ(x−L,N ) = F (x−L,N). (B.1.4)
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To enforce the boundary condition µ(−L) = 0 we replace the last equation in the linear
system with

(0, . . . , 0, 1)µ(x−L,N ) = 0.

Often, this system is reliably solved for an approximation of µ at the collocation points
x−L,N : µ(x−L,N). The same approach works for (B.1.2) with M−L(x) replaced with
ML(x). Note that the boundary condition is still imposed with the last row since this
transformation reverses the collocation points.

Sometimes, in practice, the matrix in (B.1.4) is ill-conditioned. This depends on L and
F . In these cases, as a preconditioning step, we convert (B.1.1) and (B.1.2) to equivalent
integral equations. Operate on (B.1.1) with I−L =

∫ x
−L and on (B.1.2) with IL:

µ̃+ I−LLµ̃ = I−LF, (B.1.5)

µ̃+ ILLµ̃ = ILF. (B.1.6)

Before we proceed, we must consider what the black box for Lµ will output. If µ is a
finite mapped Chebyshev series µ(x) =

∑N
n=0 αnTn(M−L(x)) we assume we obtain L(x, µ)

exactly at x−L,N . Therefore, to obtain a finite-dimensional version of (B.1.5) and (B.1.6)
we must find how to apply I±L to a function when we know the values at x±L,N .

We consider the −L case first. Assume f is defined on x−L,N . For reasons that will
become clear, we interpolate (f ·M ′

−L) ◦M−1
−L with Chebyshev polynomials:

f(x) ·M ′
−L(x) ∼

N
∑

n=0

αnTn(M−L(x)). (B.1.7)

It is well known that
∫

Tn(x)dx =
1

2

(

Tn+1(x)

n+ 1
− Tn−1(x)

n− 1

)

, n ≥ 2,

∫

T1(x)dx =
T2(x)

4
,

∫

T0(x)dx = T1(x).

Thus using the change of variables s =M−L(t) in the integral
∫ x
−L f(t)dt, we find

∫ x

−L
f(t)dt =

∫ M−L(x)

−1
f(M−1

−L(s))dM
−1
−L(s).
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It is clear that dM−1
−L(s) = 1/M ′

−L(M
−1
−L(s)) and therefore

∫ x

−L
f(t)dt ∼

∫ M−L(x)

−1

N
∑

n=0

αnTn(s)ds,

= α0T1(M−L(x)) + α1
T2(M−L(x))

4

+

N
∑

n=1

αn
1

2

Tn+1(M−L(x))

n+ 1
−

N
∑

n=1

αn
1

2

Tn−1(M−L(x))

n− 1
+ C.

The constant C is chosen so that the integral vanishes when x = −L:

C = −
N
∑

n=1

αn
1

2

Tn+1(−1)

n+ 1
+

N
∑

n=1

αn
1

2

Tn−1(−1)

n− 1

− α0T1(−1)− α1
T2(−1)

4
.

This expression simplifies using Tn(−1) = (−1)n.
Next, we construct a matrix representation of I−L. Let FN be the matrix that maps

values at xN to the coefficients of the unique interpolating polynomial, the discrete cosine
transform matrix. It can be constructed by applying the discrete cosine transform to the
identity matrix, column by column. F−1

n is found in a similarly way using the inverse
discrete cosine transform. Define

IN =





























0 · · · 0
1 0 · · · 0
0 1/4 0 −1/4 0 · · · 0
0 0 1/6 0 −1/6 0 · · · 0

. . .
. . .

...
. . .

. . .
...

1/2(N − 1) 0 −1/2(N − 1)
1/2N 0





























.

Thus

I−Lf(x
−L,N ) ∼ F−1

N (IN + C)FN diag(M ′
L(x

−L,N))f(x−L,N) = I−L,Nf(F−L,N).

Note that in this approximation we have neglected the contribution from TN+1 which
appears after integration of the right-hand side of (B.1.7). We obtain a finite-dimensional
approximation of (B.1.5):

(I + I−L,NL(x−L,N ))µ(x−L,N ) = I−L,NF (x
−L,N ).

This linear system is often better conditioned than (B.1.4). Replacing M−L with ML we
obtain a method for (B.1.6).

Remark B.1.1. We may appeal to the ideas of Theorem 5.1.6 to prove convergence as-
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suming the norm of the linear system does not grow exponentially in N . This is, of course,
assuming that the solution µ̃ is C∞.

B.2 Justification of (B.1.1) and (B.1.2)

We consider (B.1.1) only. FixM > 0. First, we assume that the support suppF ⊂ (−L,M)
and that if f ∈ L2(−∞,M), supp f ⊂ (−L,M) then suppL(x)f ⊂ (−L,M). In this case
we say L preserves support in (−L,M). We deal with the general case by approximation.
We consider (B.1.5). Under our assumptions, we see that if we extend µ̃ to be identically
zero on (−∞,−L] we have

µ̃+ I−LLµ̃ = I−LF on (−L,M), (B.2.1)

µ̃+ I−∞Lµ̃ = I−∞F on (−∞,M). (B.2.2)

Any solution of this equation must be a solution of µx+Lµ = F . The truncation is justified
in this case.

In the general case, we assume L can be approximated, as an operator from
C0((−∞,M)) to L1(R), by operators Ln that preserve support in (−Ln,M). We assume
F ∈ L1((−∞,M) and assume the operator (I + I−∞L) is invertible on C0((−∞,M)).
Then for sufficiently large n, (I + I∞Ln) is invertible. Note that I∞ is bounded from
L1((−∞,M)) to C0((−∞,M)) with an operator norm of unity.

We approximate F in L1((−∞,M)) with smooth functions Fm, each with compact
support and consider the equation

(I + I−∞Ln)µn,m = Fm.

If µn,m solves this equation then so does µn,m·χ−δ,M , −δ < −Ln such that suppFm ⊂ δ. By
uniqueness, µn,m = 0 on (−∞,−δ) for every such δ and we expect the numerical method
above to converge to µn,m, provided µn,m is smooth.

It remains to show that we may choose m,n so that a solution of this equation is close
in C0((−∞,M)) to the solution of (B.2.2). By Theorem 1.5.7

‖µn,m − µ‖C0((−∞,M)) ≤
‖I + I−∞Ln‖L(C0((−∞,M)))‖I−∞(L − Ln)‖L(C0((−∞,M)))‖µ‖C0((−∞,M)))

+ sup
i≥n

‖(I + I−∞Li)
−1‖L(C0((−∞,M)))‖I∞(F − Fm)‖C0((−∞,M)).

For sufficiently large n, supi≥n ‖(I + I−∞Ln)
−1‖L(C0((−∞,M))) <∞ so we may choose n,m

such that ‖µn,m − µ‖C0((−∞,M)) < ǫ for any ǫ > 0. The resulting equation for the chosen
n,m is solved numerically. A similar calculation follows for (B.1.2).

Remark B.2.1. As is seen above, the operator L is often that of multiplication by a smooth
function φ that limits rapidly to a constant and F is smooth and rapidly decaying. In this
case it is straightforward to set up such sequences {Ln} and {Fm}. In practice, we choose
L so that |F (x)| is less than machine precision for x < −L, as is |φ(−∞)− φ(x)|.
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indicator function, 13
integrable, 135, 137, 138, 182, 184
interpolation projection, 126
inverse Fourier transform, 20
inverse scattering transform, 12, 17, 135,

136, 183, 184, 224
invicid fluid flow, 9
involution, 228

Jacobi variety, 226
Jimbo, 10
Jordan curve, 55
jump condition, 11, 33, 199
jump matrix, 147

unbounded, 284

Kaufman, 10
kernel, 14, 80
King’s College Chapel, 7
Korteweg-de Vries equation, 9, 12, 135, 136,

138, 140, 141, 156, 175, 181, 183,
207, 223, 224, 231, 241, 244, 245,
251, 261

modified, 12, 135, 136, 138, 141, 146,
175, 207

Laurent series, 273
Lax pair, 18, 24, 138, 140, 184
Lebesque space, 13
Leibniz, 7
lensing, 88, 148, 168, 190, 211
Levin-type collocation method, 21
linear dispersion relation, 26
Lipschitz

boundary, 57
graph, 57

local integrability, 48

Möbius transformation, 77, 126
matrix

-valued function, 14, 191, 214
commutator, 24
norm, 65
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maximal function, 294
McCoy, 10
meromorphic function, 226
Mhaskar–Rakhmanov–Saff numbers, 274
Miura transformation, 144, 175
Miwa, 10

Neumann
boundary conditions, 198
problem, 196

non-tangential limit, 39
Nonlinear Schrödinger equation, 24, 26, 183

defocusing, 12, 26, 183, 184, 194, 199
focusing, 12, 183–185, 188, 194

nonlinear special function, 8, 10, 11

Onsager, 10
open contour, 47
Open Mapping Theorem, 82
operator, 13

(semi-)Fredholm, 13
approximation, 114, 303
compact, 13, 74, 117
finite-rank, 74
Fredholm, 73

orthogonal polynomials, 12, 112, 217, 264
orthogonality conditions, 49

Painlevé
Ablowitz–Segur solution, 207
Hastings–McLeod solution, 207, 208,

217, 219, 265
II equation, 10, 126, 207, 208
II transcendent, 12
II, Ablowitz–Segur solution, 143
II, Hastings–McLeod solution, 144
III transcendent, 10
Paul, 8
transcendents, 10, 265
V transcendent, 265
VI transcendent, 10

parabolic cylinder function, 106, 213
parametrix, 112, 121, 178, 216, 219, 233, 276

Airy, 279
local, 112, 164, 167, 239, 265
numerical, 122, 125, 216, 217

partial indices, 76, 77, 84

Plemelj formulae, 39, 59, 128
positive definite, 83, 139
positon, 200
principal value integral, 39
product condition, 70, 112, 254

random matrix
ensembles, 13
ensembles, Hermitian, 263
ensembles, invariant, 264
statistics, 263, 265
theory, 11

range, 14
rapid oscillation, 111
rational approximation, 293
reflection coefficient, 25, 139, 140, 146, 150,

152, 157, 171, 187, 188, 265
region

collisionless shock, 144, 156, 162, 174
dispersive, 143, 145, 147, 154, 156, 158,

164, 173
Painlevé, 143, 144, 148, 154, 156, 159,

174
soliton, 143, 144, 150, 156, 168
transition, 144, 156, 167

regulator, 13, 74
residual power, 28
Riemann

matrix, 225
Riemann surface, 12, 223, 224

genus, 225
homology, 225
hyperelliptic, 224
symmetrized, 226

Riemann–Hilbert problem, 11, 12
Lp, 34
continuous, 34
diagonal, 50, 164
matrix, 25, 50, 99
numerical solution, 111, 148
scalar, 44
triangular, 52
well-posed, 136, 139, 141, 186

right-standard factorization, 75, 77
Robin boundary conditions, 12, 195, 198

S. Olver, 126
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saddle point, 147, 148, 190, 210–213
Scaled and shifted RH solver, 91, 113, 116,

117, 119, 120, 122, 202
scattering

data, 138, 140
direct, 136, 152, 171, 185, 188
inverse, 136, 152, 171, 186, 189
problem, 227

scattering problem, 138, 157
Zakharov–Shabat, 138, 184

Schwarz class, 17
sectionally analytic, 25, 33, 77
self-intersections, 33, 128
singular integral, 11

equations, 11, 69, 87, 139
operators, 50, 76, 203

Sobolev space, 45, 64–66, 70, 74
of Zhou, 68

soliton, 135, 192, 198, 199
special function, 7, 8, 10
spectral analysis, 223
spectral collocation method, 21, 136
spectral convergence, 21, 22, 171, 188, 194,

252, 261
spectral density, 264
spectrum approximation, 136, 157, 188
steepest descent

for integrals, 19
nonlinear, 12, 17, 26, 69, 90, 111, 112,

122, 125, 189, 216, 264
path of, 19, 20, 178, 190, 212, 213, 215

Stokes’ constants, 207, 217
strongly uniform, 120, 121, 123, 215

total index, 80
Tracy, 10
Tracy–Widom distribution, 112, 208, 264,

265, 267
transcendental, 7

uniform approximation, 112, 113, 178, 184,
204, 215, 231, 252, 257, 265, 282

universality, 264, 265

Vandermonde matrix, 231
vanishing

lemma, 82, 141

solution, 83
vanishing lemma, 99
vanishing solution, 47
variational principle, 223
Volterra integral equations, 25, 190

Watson’s Lemma, 20
weak differentiation, 65
weakly uniform, 120, 123, 217
Wu, 10

zero-sum condition, 66, 70, 298
Zhou, 68


