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Euler’s equations describe the evolution of waves on the surface of an ideal incompressible
fluid. In this dissertation, I discuss some boundary-value problems associated with Euler’s
equations. My approach is motivated by the ideas generated by Fokas and collaborators,
particularly the notion of a global relation for boundary-value problems for partial differ-
ential equations. I introduce a new method to compute the evolution of the free surface of
a water wave based on a reinterpretation of the relevant global relation. Next I consider
the bathymetry reconstruction problem i.e., the reconstruction of the bottom boundary of
a fluid from measurements of the free-surface elevation alone. By analyzing the global rela-
tion for the water-wave problem, I derive an exact, fully nonlinear equation which is solved
for the bottom boundary. Finally, I present a method of reconstructing the free surface
of a water wave using measurements of the pressure at the bottom boundary. Using this
reconstruction, I obtain several new asymptotic approximations of the surface elevation in
terms of the pressure at the bottom. Comparisons with numerical and experimental data
show excellent agreement with my predicted reconstructions.
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Chapter 1

INTRODUCTION

Mathematics has always benefited from an honest-to-goodness hard problem. Through-
out history, mathematicians’ struggles with difficult problems have led to some of the most
crucial advances in the subject. Even the most cursory attempt at compiling a list of signif-
icant developments, instantly brings to mind examples such as Calculus, Fourier Analysis
and Linear Algebra amongst others, all of which were created to solve the most relevant
and challenging problems of the day. The mathematical investigation of fluid motion has
been a particularly difficult quest and consequently one of the most productive endeav-
ors. Luminaries from every generation of mathematicians including Newton, Euler, Stokes,
Kolmogorov and Leray have made their mark on this most regarded of subjects. Yet, as
unimaginable as it may seem, there still are many unanswered questions and much progress
is still being made today. Indeed this is the hallmark of a good problem: to provide an
endless source of inspiration for the creation of new mathematical tools and ideas.

Surface water waves, the topic of this thesis, have provided a veritable playground for
ideas. From perturbation methods to bifurcation theory; from complex analysis to Hamil-
tonian dynamics, almost every conceivable branch of modern mathematics has played some
role in their investigation. Occasionally, these ideas were developed for the exclusive pur-
pose of being applied to the theory of water waves [14]. Other times, water waves are the
prototypical example, as in the case of free-boundary value problems.

The theory of integrable systems and in particular integrable partial-differential equa-
tions (PDEs) owes a great deal to the study of water waves. Many of the classical equations
from the theory of solitons, such as the Korteweg-deVries (KdV) and Boussinesq equations,
arose originally within the context of water waves, typically as reductions of the full system
of equations describing water-wave motion. The usual domain for such integrable PDEs is
either the periodic interval or the whole real line. The investigation of such equations on
these domains revealed their remarkable and unique status among differential equations.
These equations are the closest nonlinear relatives of linear PDEs and can in fact be solved
by techniques which are an appropriate nonlinearization of Fourier transform methods [4, 8].

Over the last few decades, substantial progress has been made by researchers with regards
to the relation between linear PDEs and their integrable nonlinear cousins. Building upon
the pioneering work of Fokas [38], significant progress has been achieved regarding boundary-
value problems for linear and integrable PDEs. Of particular relevance for this thesis, is
the idea of a global relation and its symmetries. The global relations for a PDE are
conditions that the values of the solution to the PDE (and its derivatives) must satisfy
on the boundary of the domain in question. In the context of Laplace’s equation, the
global relation has sometimes been known as the adjoint relation. By analyzing the global
relations one can characterize the unknown boundary conditions using those that are given.
In the case of linear PDEs, it is also possible to explicitly solve the PDE i.e., to obtain an
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Figure 1.1: Fluid domain for the water-wave problem.

expression with explicit dependence on the independent variables. In a sense, the purpose
of this thesis is to feed back the ideas of integrable systems to their source: the original
water-wave problem. Our aim is to pose and answer several boundary-value problems for
water waves. Some of these problems are as old as the water-wave equations themselves.
Others are motivated by more modern but nonetheless pertinent applications.

1.1 The water-wave equations

Without further delay, let us acquaint ourselves with the equations governing surface water
waves, also known as Euler’s Equations:

φxx + φyy + φzz = 0, −ζ < z < η, (1a)

φz − φxηx − φyηy = ηt, z = η(x, y, t), (1b)

φt +
1

2

(
φ2
x + φ2

y + φ2
z

)
+ gη = 0, z = η(x, y, t), (1c)

φz + φxζx + φyζy = 0 z = −ζ(x, y). (1d)

These equations were derived first by Leonard Euler in the 17th century [26]. They govern
the behavior of an inviscid, irrotational, incompressible fluid with zero surface tension [15].
Here φ is the velocity potential of the fluid i.e., the fluid velocity at a point is given by
the gradient of φ. Hereafter, subscripts indicate partial derivatives with respect to the
independent variables. The free surface of the fluid is described by the function η(x, y, t)
whereas the solid boundary on which the fluid rests is given by the equation z = −ζ(x, y).
Thus the fluid domain extends between −ζ and η in the z-direction (which we shall take
to be the vertical direction). The boundary z = −ζ is also known as the bottom surface or
the bathymetry. Figure 1.1 is a cartoon of a two-dimensional fluid.
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The fluid surface moves under the influence of two forces: the pressure gradient across
the free surface and gravity. The acceleration due to gravity is given by g in equation (1c).
According to equation (1a), the velocity potential is a harmonic function while the other
equations describe boundary conditions at the free and bottom surfaces. In the horizontal
directions (i.e, along x and y), one may impose a variety of boundary conditions including
but not limited to decay at infinity and periodicity (of period L, say). The reader may
notice that two boundary conditions have been imposed at the same boundary, namely at
z = η(x, y, t). However, the problem is not overdetermined as the surface η itself is one
of the unknowns in the water-wave problem. Indeed, one might be inclined to say that
the free surface itself is the object of our investigation and the velocity potential is merely
a mathematical device that allows us to model the surface. This, however, would be a
controversial statement.

The standard problem in the theory of water waves is that of the evolution in time of the
fluid. The above set of equations are supplemented with initial conditions for the velocity
potential φ and surface η at some t = t0. The goal is to describe the temporal evolution
of the surface. I shall refer to this boundary-value problem as the Forward Problem. The
water-wave equations are a unique mixture of linear and nonlinear PDEs. Indeed one of
the unknowns, φ, satisfies a linear PDE in the bulk of the fluid whereas the free surface
satisfies nonlinear evolution equations at the boundary. At every instant of time, with a
given boundary η and potential φ at z = η(x, y, t), we solve Laplace’s equation which in
turn governs the evolution of the surface and the potential through equations (1b) and (1c).
It may not come as a surprise that general explicit solutions in closed form to this nonlinear,
free-boundary value problem do not exist. However, equations (1a-1d) are known to possess
unique solutions depending continuously on initial data [49, 69].

For the particular case of a two-dimensional fluid (no y dependence), considerable
progress is made using the theory of functions of a complex variable, specifically with tech-
niques involving conformal maps. This thesis will not discuss such techniques as they cannot
be extended to the full three-dimensional problem. Although this thesis will not present de-
tails for the general three-dimensional water-wave problem, the methods discussed here are
based only on Laplace’s equation and hence extend to three dimensions in a straightforward
manner.

In a sense, all the “action” is at the free surface i.e., the temporal evolution is stated in
terms of quantities defined on the boundary. This intuition is fully rewarded, for the system
of equations (1a-1d) may be rewritten as a Hamiltonian system of differential equations
in variables defined at the free surface: η(x, y, t) and q(x, y, t) = φ(x, y, η, t) [71]. The
Hamiltonian for this system is

H =
1

2

∫
R

∫ η

−ζ

(
φ2
x + φ2

y + φ2
z

)
dzdydx+

1

2

∫
R
gη2 dydx.

Here R represents the horizontal extent of the fluid domain. Thus for the problem with
periodic boundary conditions in x and y, R represents a period lattice in R2 and for the
problem on the infinite plane R = R2. Thus Euler’s equations for water waves have the
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following compact representation:

∂η

∂t
=
δH

δq
, (2a)

∂q

∂t
= −δH

δη
, (2b)

where the right-hand sides are variational derivatives of the functional H. Evidently, the
surface variables η(x, y, t) and q(x, y, t) are the canonical variables for the Hamiltonian
system. The Hamiltonian nature of the water-wave problem will not be of central importance
to the discussion in this dissertation. However, any numerical simulation should maintain
this integral of motion. Indeed the water-wave problem has several constants of motion
[56]. Craig & Sulem [25] presented one of the first numerical solutions of the water-wave
problem to directly employ the Hamiltonian equations. An application of Green’s Identity
allows one to express the Hamiltonian in terms of canonical variables alone:

H =
1

2

∫
R

[
gη2 + q G(η, ζ)q

]
dydx,

where G(η, ζ) is the Dirichlet→Neumann operator. It was this form of the Hamiltonian
that Craig & Sulem [25] employed.

The Dirichlet→Neumann operator is defined as follows. Consider a function ψ(x, y, z),
harmonic in R× [−ζ, η] with

ψ(x, y, η) = q(x, y),

ψz(x, y,−ζ) + ζxψx(x, y,−ζ) + ζyψy(x, y,−ζ) = 0.

For definiteness, assume R = [0, L1] × [0, L2] with L1, L2 representing periods in the hori-
zontal directions. Hence φ is a periodic function of the horizontal variables. This boundary-
value problem is well posed with a unique solution. The operator G is given in terms of the
solution to the boundary-value problem by

G(η, ζ)q = ψz(x, y, η)− ηxψx(x, y, η)− ηyψy(x, y, η).

Thus G maps the Dirichlet data of a harmonic function along a surface to the associated
normal derivative at that location.

With the Dirichlet→Neumann operator defined, the water-wave equations take the fol-
lowing form suggested by Craig & Sulem [25]

∂η

∂t
= G(η, ζ)q, (3a)

∂q

∂t
= −gη − 1

2
|∇q|2 +

(∇q · ∇η +G(η, ζ)q)2

2(1 + |∇η|2)
. (3b)

The first equation above may be derived from the Hamiltonian itself or more simply by not-
ing that the left-hand side of equation (1b) is just the definition of the Dirichlet→Neumann
operator. The equation for the evolution of q may be obtained from (1c) and the relations

qx = φx + ηxφz, qy = φy + ηyφz,
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which are consequences of the definition of q and the chain rule. But for the rather ab-
stract definition of the Dirichlet→Neumann operator, (3a-3b) would seem to be a simple
set of equations for the evolution of the surface quantities. However, it is known that the
Dirichlet→Neumann operator is analytic in η [16, 54, 45]. Indeed Craig & Sulem [25] (in
their original work on the numerical simulation of water waves) present an alternate char-
acterization of G, as a Taylor series expansion in powers of η. Thus truncating the Taylor
series of the Dirichlet→Neumann operator in powers of η, one obtains an approximation
to the overall operator which can be efficiently computed using fast Fourier transforms for
problems posed on periodic domains [25, 53, 44].

It is worth noting that the equations of motion for water waves are unusual in at least one
respect: the order of the nonlinearity is essentially infinite. Indeed, almost all the complexity
of these equations (computationally and otherwise) arises from the Dirichlet→Neumann
operator. Though the operator is analytic in η with exponentially decaying terms, the
explicit form of these terms in the Taylor series of the operator is known to be poorly
conditioned for higher-order Taylor approximations. At higher orders, these expressions
possess high-frequency oscillations resulting in errors in the Neumann value [53, 44, 70].

Our final reformulation of the water-wave problem, perhaps the one most relevant
to the material presented in this dissertation, is that of Ablowitz, Fokas & Musslimani
(AFM) [2]. The AFM reformulation is essentially an alternate characterization of the
Dirichlet→Neumann operator. This characterization is based on the global relations for
Laplace’s equation. Here the global relation connects the various boundary values of
Laplace’s equation in the context of the water-wave problem. For the case ζ = h (a fluid
bounded by a flat bottom surface), the AFM formulation is∫

R
e−ikxx−ikyy

{
ηt cosh(k(η + h)) +

i sinh(k(η + h))

k
(kxqx + kyqy)

}
dxdy = 0, (4a)

qt =− gη − 1

2

(
q2
x + q2

y

)
+

(qxηx + qyηy + ηt)
2

2(1 + η2
x + η2

y)
, (4b)

where k =
√
k2
x + k2

y and kx, ky are real numbers for the problem with decay at infin-

ity, and are discrete wave numbers based on the period lattice for problems with periodic
boundary conditions. Equation (4a) is the global relation for Laplace’s equation. It re-
lates the Dirichlet value q to the Neumann value ηt and is an implicit representation of the
Dirichlet→Neumann operator. This form of the water-wave equations is wholly equivalent
to the other formulations. Indeed one may also obtain the Taylor series representation of the
Dirichlet→Neumann operator from equation (4a) as shown in [3]. The AFM formulation
may also be extended to generic ζ, see below for details. Finally, it is noted that equations
(3b) and (4b) are effectively the same.

1.2 Overview of the dissertation

This thesis presents the solution of certain boundary-value problems for Laplace’e equation
in non-convex domains, particularly in the context of the water-wave problem. As the
water-wave problem is a free-boundary problem, it is important that no a priori assumptions
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about the free surface, such as convexity, are made. The solutions to these boundary-value
problems are obtained by analyzing the global relation. The global relation for Laplace’s
equation is derived below. It should be noted that this is not the only global relation for
the PDE [59, 60], however other such relations do not extend to three-dimensions unlike
the version presented here. The discussion of the global relation presented below is adapted
from [2].

Let φ satisfy the Laplace equation in the domain −ζ < z < η. In the horizontal
directions, assume the gradient of φ vanishes for large x2 + y2. Define

E± = e−ikxx−ikyy±kz,

where k =
√
k2
x + k2

y and kx, ky are real numbers. Clearly, E± satisfies Laplace’s equation

and hence
φz
(
E±xx + E±yy + E±zz

)
+ E±z (φxx + φyy + φzz) = 0, k 6= 0.

This equation can be rewritten in the form(
E± (−ikxφz ± kφx)

)
x

+
(
E± (−ikyφy ± kφx)

)
y

+
(
E± (±kφz + ikxφx + ikyφy)

)
z

= 0.

Integrating this equation over the domain −ζ < z < η and applying the Divergence Theorem
we obtain, after some rearrangement,∫ ∞
−∞

∫ ∞
−∞

e−ikxx−ikyy∓kζ {−ikx(φx + ζxφz)− iky(φy + ζyφz)± k(ζxφx + ζyφy + φz)} dxdy

=

∫ ∞
−∞

∫ ∞
−∞
e−ikxx−ikyy±kη{−ikx(φx + ηxφz)− iky(φy + ηyφz)± k(ηxφx + ηyφy + φz)} dxdy.

Let Φ = φ(x, y,−ζ) and q = φ(x, y, η). Using (1b) and (1d), we obtain∫ ∞
−∞

∫ ∞
−∞

ie−ikxx−ikyy−kζ(kxΦx + kyΦy)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

e−ikxx−ikyy+kη{i(kxqx + kyqy) + kηt}dxdy, (5)

and ∫ ∞
−∞

∫ ∞
−∞

ie−ikxx−ikyy+kζ(kxΦx + kyΦy)dxdy

=

∫ ∞
−∞

∫ ∞
−∞

e−ikxx−ikyy−kη{i(kxqx + kyqy)− kηt}dxdy. (6)

The above two equations may be used to characterize the boundary data if, say for instance,
q is known. Thus given q, we may use the above equations to obtain a representation for
the Dirichlet→Neumann operator. For generic ζ, we see that we must solve for Φ as well.
However, for the simpler case when ζ = h we may eliminate Φ algebraically. In this case,
we multiply the first equation by ekh and the second equation by e−kh. Subtracting one
equation from the other we obtain (4a). The global relations for the problem on the periodic
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interval can be similarly obtained when kx, ky are limited to a discrete set of wave-numbers
obtained from the period lattice [28].

The bulk of this thesis is concerned with the application of the global relation to different
boundary-value problems. These boundary-value problems differ only in the data that is
assumed given. I hope to convince the reader that global relations are a useful technique to
approach boundary-value problems, particularly with respect to the water-wave problem.
Of course, global relations exist for many PDEs and are equally helpful in problems other
than the water-wave problem. For more details about global relations for linear constant
coefficient PDEs and how they may be used to solve such equations see Chapter 2. The
main goal there is to obtain expressions for solutions to linear diffusive and dispersive PDEs
that depend explicitly on the independent variables. This chapter introduces the notion of
global relations as well as their derivation. Although some of the techniques in this chapter
will not translate to the water-wave problem, the ideas involved will form the basis of our
intuition in later chapters. Specifically, we develop the notion that the global relations
define maps from given boundary data to the unknown boundary data.

One of the primary advantages of Fokas’ method is the ability to algorithmically deduce
which boundary-value problems are well posed. A novel extension of Fokas’ method to
PDEs with mixed partial derivatives is provided in Appendix A, where we discuss the well-
posedness of the linear Benjamin-Bona-Mahony equation. Using the global relations, we see
that PDEs with mixed partial derivatives display a peculiar behavior for special boundary
conditions. For these special boundary conditions, the initial and boundary data must
satisfy a constraint and hence they are not independent of one another.

It is a common feature of global relations that they connect transforms of boundary data.
For instance, equation (4a) is a relation between a transform of the Dirichlet and Neumann
values on the boundary. Thus to explicitly obtain the Dirichlet→Neumann operator the
transforms present in the global relation need to be inverted. One possibility is to linearize
the equation in η and apply Fourier transforms. This leads to the recursion relation of
Craig & Sulem [25]. Using ideas from [3], in Chapter 3 I reinterpret the global relation in a
distributional sense which leads to an alternate representation of the Dirichlet→Neumann
operator that is not perturbative. We shall see how this alternate representation is used to
numerically solve the water-wave equations for the time-dependent motion of the surface.

In Chapter 4 I discuss a particular inverse problem associated with the water-wave
equations, namely, the reconstruction of the shape of the solid bottom boundary of the fluid
ζ from measurements of the free surface η alone. The overall idea consists of two steps:

1. Translate the inverse problem to a suitable boundary-value problem.

2. Employ the global relation to derive a nonlinear function whose zero is the bottom
surface.

Using the data obtained from the forward simulation of the time-dependent motion of the
surface, the bottom surface is reconstructed for several test cases. The bottom surface is
accurately reconstructed using measurements of the surface elevation at several instances.
Next, I examine various numerical issues pertaining to accurate reconstruction such as the
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effect of deep water, near zero surface deviations, etc. The method is readily extended to
two-dimensional surfaces and is most accurate for shallow water.

The next inverse problem (Chapter 5) is concerned with how one can reconstruct the
shape of the free surface η given the pressure at the bottom boundary z = −h. Upon
limiting ourselves to traveling water waves, I employ the Bernoulli condition (1c) to relate
the surface η and the pressure at the bottom, to boundary data for the velocity potential
φ at the free and bottom surfaces respectively. Once again, I use the global relation to
relate these boundary values leading to a single nonlinear expression involving the pressure
and surface. Next, I derive several approximations to the nonlinear equation by suitably
expanding and truncating the expression at various orders. I evaluate these approximations
and the exact nonlinear expression for accuracy in reconstructing the free surface using
numerically generated data as well as data from physical experiments.

1.3 A note on the physics of water waves

Water waves in nature exhibit a tremendous variety of length and time scales. At one end
of the spectrum are capillary waves not larger than a centimeter, while at the other extreme
we have tsunamis and rogue waves capable of wrecking coastlines and large oil tankers.
Waves in the oceans quite often possess non-negligible vorticity which has a significant im-
pact on the wave dynamics. Of course, real water waves suffer from viscous effects, breaking
and overturning, and most dreaded of all, turbulence. It may be impossible to treat water
waves in all their generality and so I limit myself to inviscid, irrotational water waves with
no overturning. Further, the water-wave problems addressed in this thesis do not consider
the effect of currents. This is a mathematical idealization and the reader may well assume
I refer to such a mathematical object when I use the term “water wave”. For the most
part, this thesis discusses the mathematical idealization and how one may solve associated
problems. Indeed the analysis presented here is largely a statement of Laplace’s equation.
Also, this thesis does not contain a derivation of the water wave equations from first princi-
ples. Reference [15] discusses the physics and derivation of the water wave equations from
fundamental laws of nature.

The extent to which the results presented here, transfer to real water waves depend
on the assumptions used in deriving the water-wave equations. In Chapter 5 I provide
some evidence in favor of the present model. There I compare theoretical predictions with
experimental data and observe good agreement. This agreement upholds the applicability
of the equations (1a-1d) to real flows.
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Chapter 2

THE METHOD OF FOKAS AND GLOBAL RELATIONS

In this chapter, I introduce a method for solving boundary-value problems for linear
constant coefficient partial differential equations. The method is relatively new. It was
discovered by A. S. Fokas in his quest to generalize the method of inverse scattering, which
solves the IVP for x ∈ R for so-called soliton equations (e.g. Korteweg-deVries, Nonlinear
Schrödinger, etc.), to BVPs posed either on the half line x ≥ 0 or on the finite interval
x ∈ [0, L] [35, 36, 38]. It was observed immediately [37, 40] that the method produces
interesting results for linear equations as well. Just like the classical method of separation
of variables, the method of Fokas produces an explicit solution for the dependent vari-
able u(x, t). Although the method of Fokas is more general, in this chapter I restrict the
discussion to scalar problems with one spatial independent variable x and one temporal
independent variable t. An initial- or boundary-value problem (IVP or BVP) is considered
solved if an expression for u(x, t) is constructed as a function of the independent variables
(x, t) and of the given initial and boundary conditions. Such an expression should have
explicit dependence on x and t. The solution formula obtained through the method of
Fokas is in terms of one or more integrals along paths in the complex plane of an auxiliary
variable k. The goal here is to give the reader some understanding of Fokas’s method and of
global relations. For a short introduction with several examples see [29]. See [38] for a more
detailed discussion and connections to boundary-value problems for nonlinear integrable
PDEs. The new method has several advantages over the standard tools for solving constant
coefficient problems.

• The method of Fokas encompasses the standard methods. For those cases where
a standard method produces an explicit solution, the method of Fokas does so as
well. In fact, as shown in several examples below, the resulting solution formulas are
equivalent, as one would expect.

• It is more general than the standard methods: one can obtain solution formulas for
many problems where the classical methods are not applicable. This is particularly
clear for problems containing higher than second-order derivatives.

• Where the standard methods are a collection of situation-specific approaches, tailored
to specific equations and boundary conditions, the method of Fokas produces a solution
using the same ideas for all these different problems, with the differences appearing
only in the calculational details.

• In addition to producing an explicit formula for the solution, the method allows one
to determine in a straight-forward way how many and which boundary conditions
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result in a well-posed problem. Especially for BVPs for equations with more than
second-order derivatives, this is a nontrivial issue.

• The background required for the method is limited to the knowledge of the Fourier
and inverse Fourier transform pair, the Residue Theorem and Jordan’s Lemma, see
[1] or [6], for instance.

We start by revisiting the IVP on the whole line in the framework of the new method,
see Section 2.1. This merely results in the construction of the familiar Fourier transform
expression for the solution, but it does allow us to generalize the approach to the half-line
and finite interval problems more naturally. Section 2.2 discusses the problem on the half-
line. For details on the finite-interval problem see [29, 38] and for problems with periodic
boundary conditions see [64]. Appendix A to this thesis presents a non-trivial extension
of Fokas’s method to PDEs with mixed partial derivatives considered on the half-line as
well as the finite interval. In particular, certain boundary conditions for PDEs with mixed
partial derivatives are ill-posed in the sense that initial and boundary conditions cannot be
imposed independently of one another.

In the following discussion the reader will find examples of problems that can be solved
using the standard methods, in which case I demonstrate the equivalence of the classical
results with those obtained using Fokas’s method. Other examples illustrate the use of
the method in situations where the standard methods fail or are unable to proceed. The
emphasis is not on rigor and no comments are made about function spaces. I assume
whatever conditions are necessary for the calculations to proceed: for instance, functions
are at least as differentiable as dictated by the equation, and boundary and initial conditions
are compatible at (x, t) = (0, 0). The aim is to generate formal expressions for the solution
which may be verified or studied rigorously.

2.1 The initial-value problem on the whole line

In contrast to a traditional introduction to PDEs we begin by considering the IVP for linear
constant coefficient equations on the entire real line. Fokas’s method is the appropriate
generalization of Fourier transform methods to boundary-value problems. As such, it will
be informative to review the problem on the whole-line. Consider the IVP for the heat
equation:

qt = qxx, x ∈ R, t ∈ (0, T ], (1a)

q(x, 0) = q0(x), x ∈ R, (1b)

where subscripts denote partial differentiation. Here T is a positive real number, and q0(x)
is a function on R, decaying sufficiently fast as |x| → ∞. The solution to this problem is
given by

q(x, t) =
1

2π

∫ ∞
−∞

q̂0(k)eikx−ω(k)tdk, (2)
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where ω(k) = k2 is the dispersion relation1 for the heat equation, and q̂0(k) is the Fourier
transform of the initial condition:

q̂0(k) =

∫ ∞
−∞

q0(x)e−ikxdx. (3)

Further, letting T → ∞ does not affect the validity of the solution. In a traditional text,
this result is obtained by taking the Fourier transform of the original PDE (1a). This
results in a one-parameter family of ordinary differential equations (ODEs) with parameter
k. Solving this ODE gives the Fourier transform of the solution at any time t. Using the
inverse transform, the above result is obtained.

In the new approach, we start by rewriting the heat equation as a one-parameter family
of PDEs in divergence form

∂tρ(x, t, k) + ∂xj(x, t, k) = 0, (4)

where
ρ(x, t, k) = e−ikx+ω(k)tq,

with k ∈ C. Equation (4) is known as the local relation. The explicit form of j is easily
obtained using integration by parts:(
e−ikx+ω(k)tq

)
t

= ω(k)e−ikx+ω(k)tq + e−ikx+ω(k)tqt

= ω(k)e−ikx+ω(k)tq + e−ikx+ω(k)tqxx

= ω(k)e−ikx+ω(k)tq +
(
e−ikx+ω(k)tqx

)
x

+ ike−ikx+ω(k)tqx

= ω(k)e−ikx+ω(k)tq +
(
e−ikx+ω(k)tqx

)
x
+
(
ike−ikx+ω(k)tq

)
x
−k2e−ikx+ω(k)tq

=
(
e−ikx+ω(k)t(qx + ikq)

)
x
, (5)

so that j = −e−ikx+ω(k)t(qx + ikq). Note that this calculation also determines ω(k).
We are now in a position to apply Green’s Theorem in the (x, t) plane. Consider (5) on

an infinite horizontal strip D of height T (see Figure 2.1). Using the decay properties of the
solution where necessary, we have∫∫

D

([
e−ikx+ω(k)sq(x, s)

]
s
−
[
e−ikx+ω(k)s(qx(x, s) + ikq(x, s))

]
x

)
dsdx = 0

⇒
∫
∂D

(
e−ikx+ω(k)sq(x, s)dx+ e−ikx+ω(k)s(qx(x, s) + ikq(x, s))ds

)
= 0

⇒
∫ ∞
−∞

e−ikxq0(x)dx−
∫ ∞
−∞

e−ikx+ω(k)T q(x, T )dx = 0

⇒
∫ ∞
−∞

e−ikxq(x, T )dx = e−ω(k)T

∫ ∞
−∞

e−ikxq0(x)dx. (6)

1For consistency with the literature on Fokas’s method [38], I adopt the convention that the dispersion
relation ω(k) is found by substitution of exp(ikx− ω(k)t) in the PDE.
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Figure 2.1: The region of integration in the (x, t) plane for problems posed on the whole-line.

Under the assumption that the solution decays uniformly in t for large |x|, the contribution
of the second integrand on the second line vanishes. In the next section, we will observe how
such terms lead to contributions from the boundary data. The last line relates the Fourier
transform of the solution at time T to the Fourier transform of the initial value q0(x), as
expected. Inverting the transform we obtain the solution (2).

Although it appears we have obtained the traditional result in a roundabout way, I
claim progress has been made. The procedure used here is particularly suited for solving
problems other than those posed on the whole line. By working with different domains
(as those used below) for the application of Green’s Theorem to the local relation we shall
obtain the integral expressions for solutions to the corresponding BVP.

Remark 2.1.1 The procedure above works equally well for equations other than the heat
equation. In fact, the solution formula (2) stands as is, as long as the appropriate dispersion
relation is filled in, see the Appendix of [4] for details. For problems on the half-line, more
detail is found below.

Remark 2.1.2 The conversion of the PDE to the local relation (4) is always possible for
linear constant coefficient PDEs [38]. The explicit form of j(x, t, k) in terms of ω(k), avoid-
ing integration by parts, is given in (42).

2.2 The problem on the half line

2.2.1 The heat equation with Dirichlet boundary conditions

In section 2.1 the heat equation on the whole real line was solved. The success of this
method was due to the properties of the Fourier transform which incorporates the “boundary
condition” of decay at infinity. In this section we solve the heat equation on the half line
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Figure 2.2: The region of integration in the (x, t) plane for boundary-value problems posed
on the positive half-line.

with Dirichlet boundary data:

qt = qxx, x > 0, t ∈ (0, T ], (7a)

q(x, 0) = q0(x), x ≥ 0, (7b)

q(0, t) = g0(t), t ∈ [0, T ]. (7c)

Let us begin by considering the local relation of the heat equation (5), which holds indepen-
dent of the solution domain and the boundary conditions, as it is a local statement. Applying
Green’s Theorem to this equation with the domain of integration R = {x ≥ 0, 0 < t ≤ T}
(see Figure 2.2) we obtain∫

∂R

(
e−ikx+ω(k)sq(x, s)dx+ e−ikx+ω(k)s(qx(x, s) + ikq(x, s))ds

)
= 0

⇒
∫ ∞

0
e−ikxq0(x)dx−

∫ ∞
0

e−ikx+ω(k)T q(x, T )dx−
∫ T

0
eω(k)s(qx(0, s) + ikq(0, s))ds = 0

⇒
∫ ∞

0
e−ikxq0(x)dx−

∫ T

0
eω(k)s(qx(0, s) + ikq(0, s))ds = eω(k)T

∫ ∞
0

e−ikxq(x, T )dx

⇒ q̂0(k)− [g̃1(ω(k), T ) + ikg̃0(ω(k), T )] = eω(k)T q̂(k, T ),
(8)

where ∂R denotes the boundary of the domain R, oriented so that R is on the left when
the boundary is traversed. Further, q̂0, q̂ are the Fourier transforms of the initial condition
and the solution at time T respectively. Similarly, g̃0 and g̃1 are defined in terms of the
boundary data as

g̃0(ω, T ) =

∫ T

0
eωsq(0, s)ds, g̃1(ω, T ) =

∫ T

0
eωsqx(0, s)ds.

Equation (8) is the global relation for the heat equation on the half line. The time transforms
g̃0, g̃1 arise because of the presence of the boundary at x = 0. For the problem under
consideration, the Dirichlet data are given, so g̃0 is determined, whereas g̃1 is not.
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Figure 2.3: The domain D for the heat equation is indicated in gray. The contour C, shown
in red, is used to justify the deformation of the line-integral along the real line up to the
boundary of D+.

The spectral parameter k associated with the Fourier transform is typically real. How-
ever, the terms in the global relation (8) are analytic for Im(k) < 0. Indeed, the Fourier
transforms may be analytically continued into the lower-half of the complex k plane, as-
suming sufficient decay of q(x, t) for large x and all t. Further, the time transforms (g̃0, g̃1)
are entire functions (analytic and bounded for all finite k).

Remark 2.2.1 The continuation of the global relation into the lower half plane, for the
equation on the half line, should be contrasted with the “global relation” for the whole-line
case (6) where such an extension to complex k is not possible.

The global relation (8) is equally valid for any t ∈ (0, T ]. Replacing T by t in the
global relation (8) and inverting the Fourier transform we arrive at an integral expression
for q(x, t):

q̂0(k)− [g̃1(ω(k), t) + ikg̃0(ω(k), t)] = eω(k)tq̂(k, t)

⇒ q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx−ω(k)t[g̃1(ω(k), t) + ikg̃0(ω(k), t)]dk.

(9)

Let D = {k ∈ C : Re(ω(k)) < 0}. Further, let D+ = D ∩ C+ where C+ = {k ∈ C :
Im(k) > 0}. The integrand of the second integral in (9) is entire and decays as k →∞ for
k ∈ C+\D+. Consider a contour C = [−R,R] ∪ CR2 ∪ C∂D+ ∪ CR1 as shown in red in Figure
2.3. Let C∂D+ be the part of C on the boundary of D+ and CR1 , CR2 be circular arcs of
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radius R. Using the analyticity of the integrand∫
C
eikx−ω(k)tg̃(ω(k), t)dk =

(∫ R

−R
+

∫
CR2

+

∫
C∂D+

+

∫
CR1

)
eikx−ω(k)tg̃(ω(k), t)dk = 0, (10)

where g̃(ω(k), t) = g̃1(ω(k), t) + ikg̃0(ω(k), t). Taking the limit R → ∞ of the above ex-
pression, contour C∂D+ becomes the contour −∂D+. The negative sign arises from the
convention that the positive orientation of a boundary is defined so that the region is to
the left as the boundary is traversed. Further, an application of Jordan’s Lemma in the
wedge-like regions shows that for large R, the contribution of the integrals along CR1 and
CR2 vanishes. Thus the integral of exp(ikx − ω(k)t)g̃(ω(k), t) along the real line may be
replaced by one along ∂D+. Thus

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [g̃1(ω(k), t) + ikg̃0(ω(k), t)] dk.

(11)
Summarizing the argument, the contour C may be replaced by ∂(C+\D+) as R→∞. The
integral of exp(ikx − ω(k)t)g̃(ω(k), t) along ∂(C+\D+) is zero due to the analyticity and
decay properties of the integrand. Adding this integral to the right-hand side of (9) we
obtain (11).

Although (11) is an expression for q(x, t), it does not present a solution since it depends
on boundary data we have not prescribed through g̃1, the transform of the Neumann data.
To resolve this problem, we could solve the global relation (8) for g̃1. This results in an
expression for g̃1 valid in C− = {k : Im(k) < 0}, whereas (11) requires an expression for g̃1

valid along ∂D+. To this end we seek a transform that maps the contour ∂D+ to a contour
in the lower-half plane C− but leaves g̃1(ω(k), t) invariant. Thus we turn to the discrete
symmetries of ω(k) = k2. The dispersion relation ω(k) is invariant under the transform
k → −k. Applying this transformation to the global relation (8) (and replacing T by t) we
have

q̂(−k, t) = e−ω(k)tq̂0(−k)− e−ω(k)t[g̃1(ω(k), t)− ikg̃0(ω(k), t)], Im(k) ≥ 0. (12)

Solving this version of the global relation yields an expression for g̃1(ω(k), t) which is valid
along ∂D+. The integral expression for q(x, t) becomes

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [2ikg̃0(ω(k), t) + q̂0(−k)] dk

+
1

2π

∫
∂D+

eikxq̂(−k, t)dk. (13)

The above expression does not depend on the unknown boundary data. However, the
function we wish to solve for, q(x, t), also appears in the third integral on the right-hand
side. Using analyticity, this problem is resolved as follows. The function q̂(−k, t) is bounded
and analytic in C+ with q̂(−k, t) → 0 uniformly as k → ∞. This implies that the integral
of exp(ikx)q(−k, t) along a closed, bounded curve in C+ vanishes. In particular, consider
the closed curve L = L∂D+ ∪ LR where L∂D+ = ∂D+ ∩ {k : |k| < R} and LR = {k ∈ D+ :
|k| = R} (see Figure 2.4). We have
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Figure 2.4: The contour L is shown in red. Application of Cauchy’s Integral Theorem using
this contour allows one to eliminate the contribution of q̂(−k, t) from the integral expression
(13).

∫
L
eikxq̂(−k, t)dk =

∫
L∂D+

eikxq̂(−k, t)dk +

∫
LR
eikxq̂(−k, t)dk = 0. (14)

If it can be shown that the integral along LR vanishes for large R, then the third integral
on the right-hand side of (13) must also vanish since the contour L∂D+ becomes ∂D+ as
R → ∞. From Jordan’s Lemma, the uniform decay of q̂(−k, t) for large k is precisely the
condition required for the integral to vanish. Thus

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [q̂0(−k) + 2ikg̃0(ω(k), t)] dk (15)

is the solution to the Dirichlet problem for the heat equation on the half line.

The above calculation indicates that in solving equation (12) for g̃1, the contribution of
q̂(−k, t) vanishes from the final expression for the solution. In effect we have found a map
from the given initial condition and Dirichlet data to the unknown Neumann condition.
Consider (12) with t replaced by T , multiply by ike−ω(k)t and integrate along the contour
∂D+ to obtain∫

∂D+

ikeω(k)(T−t)q̂(−k, T )dk =

∫
∂D+

ike−ω(k)tq̂0(−k)dk −
∫
∂D+

ike−ω(k)tg̃1(ω(k), T )dk

−
∫
∂D+

k2e−ω(k)tg̃0(ω(k), T )dk. (16)

The left-hand side is zero, whereas the second term on the right-hand side equals πqx(0, t)
using the change of variables k2 = il and the classical Fourier transform. The term involving
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g̃0 requires more attention. Since ω(k) = k2, we have

−
∫
∂D+

k2e−ω(k)tg̃0(ω(k), T )dk = −
∫
∂D+

k2

∫ T

0
eω(k)(s−t)q(0, T ) dsdk,

=

∫
∂D+

(
q(0, 0)e−k

2t − ek2(T−t)q(0, T ) +

∫ T

0
ek

2(s−t)q̇(0, s)ds

)
dk,

after integration by parts. The dot denotes differentiation with respect to the s variable.
The compatibility of initial and boundary condition at the corner (x, t) = (0, 0) implies
q(0, 0) = g(0). The first integral on the right-hand side can be deformed back to the real
line to obtain ∫

∂D+

e−k
2tg(0)dk =

∫ ∞
−∞

e−k
2tg(0)dk =

√
πg(0).

The integrand of the second term on the right-hand side is analytic, bounded and decaying
in D+. Hence it yields a zero contribution. The final integral on the right-hand side is split
as follows ∫

∂D+

∫ T

0
ek

2(s−t)q̇(0, s)dsdk =

∫
∂D+

(∫ t

0
+

∫ T

t

)
ek

2(s−t)q̇(0, s)dsdk

=

∫
∂D+

∫ t

0
ek

2(s−t)q̇(0, s)dsdk,

since Cauchy’s Theorem implies the second integral vanishes. Deforming this integral back
to the real line and switching orders of integration, the k-integral can be computed directly
to obtain ∫

∂D+

∫ T

0
ek

2(s−t)q̇(0, s)dsdk =
√
π

∫ t

0

q̇(0, s)√
t− s

ds.

Combining these results, we have

qx(0, t) = −
∫
∂D+

ike−ω(k)tq̂0(−k)dk − g(0)√
π
− 1√

π

∫ t

0

ġ(s)√
t− s

ds, t > 0.

Hence we obtain an explicit map from the given initial and boundary conditions to the
unknown Neumann boundary value. Although, we did not require this explicit form in our
solution (15), the respective integrals may be rearranged to see that the above expression
is indeed present in the final solution. Thus, solving the global relation for the transform of
the unknown boundary condition is equivalent to obtaining the Dirichlet→Neumann map.
In other words, the global relation defines the map from the known to unknown boundary
conditions.

Let us summarize the steps involved in solving boundary value problems on the half-line.

1. Using the dispersion relation ω(k) define the regions D = {k : Re(ω(k)) < 0}, D+ =
D ∩ C+ and D− = D ∩ C−.
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2. The PDE is rewritten as a one-parameter family of equations in divergence form.
Applying Green’s Theorem in the (x, t) plane, we obtain the global relation. By con-
sidering complex values for the spectral parameter k, extend the domain of definition
of the global relation. For problems posed on the half line, the global relation is valid
in Im(k) ≤ 0.

3. The global relation is solved for q̂(k, t). The integral expression for q(x, t) is con-
structed by inverting the Fourier transform. The integral involving the boundary
terms is deformed off the real line. For problems on the half line, we deform up to
∂D+.

4. The discrete symmetries ν(k) of ω(k), ω(k) = ω(ν(k)), are used to obtain additional
versions of the global relation valid for k in certain regions of C+. These additional
global relations are solved simultaneously for the transforms of the unknown boundary
data. The expressions thus obtained are substituted into the integral expression for
q(x, t).

5. The integral expression for q(x, t) now depends on q̂(ν(k), t). Analyticity considera-
tions are used to evaluate the contribution of q̂(ν(k), t). Typically this contribution
vanishes. The functions q̂(ν(k), t) and exp(ikx) are bounded and analytic in the
upper-half plane. If the coefficient of exp(ikx)q̂(ν(k), t) in the integral expression is
also analytic in D+, then the contribution of this term is zero. For instance, this
happens for the Dirichlet problem for the heat equation posed on the half line where
this coefficient is a constant. Let us now consider the case when this coefficient has
a simple pole at some point k = k0 in D+. An application of the Residue Theorem
shows that we need the value of q̂(ν(k0), t). At this point, the global relation is used
once more. The global relation connects the transform of the solution at time t to the
transforms of both the known initial-boundary conditions and the unknown boundary
conditions. Evaluating the global relation at k = ν(k0), we obtain an expression for
q̂(ν(k0), t). If this expression depends only on known initial-boundary conditions (i.e.
the coefficients of the unknown terms add up to zero) we have solved the problem. The
presence of unknown boundary conditions hints at an ill-posed problem. Note that
we select only those transformations ν(k) whose image lies in the lower-half plane.
Consequently q̂(ν(k0), t) is defined.

Remark 2.2.2 For the Neumann problem, when qx(0, t) is supplied as the boundary con-
dition, we can just as easily solve the global relation for g̃0. The integral involving q̂(−k, t)
vanishes for the same reason as for the Dirichlet problem [38]. Further, one may define the
Neumann→Dirichlet map in an analogous manner to that described above for the Dirichlet
problem.

Remark 2.2.3 The classical solution in terms of the sine transform may be recovered from
the solution to the heat equation (15). Note that q̂0(−k) is analytic and bounded in the
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upper-half plane and exp(−ω(k)t)kg̃0(ω(k), t) is bounded and analytic in the region between
D+ and the real line. Thus the contour ∂D+ may be deformed back to the real line:

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx−ω(k)t(q̂0(−k) + 2ikg̃0(ω(k), t))dk.

By splitting the integral along the real line into integrals from −∞ to 0 and from 0 to ∞,
and using the definition of sine in terms of exponentials, we obtain

q(x, t) =
2

π

∫ ∞
0

e−ω(k)t sin(kx)

[∫ ∞
0

sin(ky)q(y, 0)dy − kg̃0(ω(k), t)

]
dk.

This deformation back to the real line is not possible for all PDEs. In particular the defor-
mation is possible only when a classical transform exists. Also note, that unlike the integral
representation (15), the sine transform solution is not uniformly convergent at x = 0. Fur-
ther, using methods like steepest descent or stationary phase, the contribution due to the
boundary can be evaluated much more efficiently in (15) than in the classical sine transform
solution, see [33].

Remark 2.2.4 An alternative to the new method is the use of Laplace transforms in t.
This results in multivalued integral kernels due to the presence of radicals. Consequently,
the inversion of the Laplace transform involves contour integrals along branch cuts, e.g see
example on pg. 358 of [68]. For spatial derivatives of order greater than two, this procedure
quickly becomes far more involved. Further, the Laplace transform involves an integration
over all time t ≥ 0. This seems to contradict causality for evolution problems. For evolution
equations we do not expect the solution at time t = T to depend on times greater than T .

2.2.2 A third-order PDE with Dirichlet boundary conditions

As a second example consider the following problem, posed again on the half line:

qt + qxxx = 0, x ≥ 0, t ∈ (0, T ], (17a)

q(x, 0) = q0(x), x ≥ 0, (17b)

q(0, t) = g0(t), t ∈ (0, T ]. (17c)

We follow the steps outlined in the previous section.

1. Dispersion relation. The dispersion relation for the PDE is ω(k) = −ik3. Using

ω(k) = −i|k|3[cos(3 arg k) + i sin(3 arg k)],

we define the region D (where Re(ω(k)) < 0) as

D =

{
k : arg k ∈

(
π

3
,
2π

3

)
∪
(
π,

4π

3

)
∪
(

5π

3
, 2π

)}
,
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Figure 2.5: Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (17a).

so that

D+ =

{
k : arg k ∈

(
π

3
,
2π

3

)}
,

and

D− = D−1 ∪D
−
2 ,

where

D−1 =

{
k : arg k ∈

(
π,

4π

3

)}
, D−2 =

{
k : arg k ∈

(
5π

3
, 2π

)}
.

See Figure 2.5 for a depiction of these regions.

2. Global relation. Using the same method as before, we find the local relation

(
e−ikx+ω(k)tq

)
t
+
(
e−ikx+ω(k)t(qxx + ikqx + (ik)2q)

)
x

= 0,

which is easily verified. Integrating the above equation over the domain

R = {0 ≤ x <∞, 0 < t ≤ T}
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and applying Green’s Theorem, we obtain∫∫
R

([
e−ikx+ω(k)sq(x, s)

]
s
−
[
e−ikx+ω(k)t(−qxx − ikqx − (ik)2q)

]
x

)
dsdx = 0

⇒
∫
∂R

(
e−ikx+ω(k)sq(x, s)dx+ e−ikx+ω(k)s(−qxx(x, s)− ikqx(x, s)− (ik)2q(x, s))dt

)
= 0 (18)

⇒
∫ ∞

0
e−ikxq(x, 0)dx−

∫ T

0
eω(k)s(−qxx(0, s)− ikqx(0, s)− (ik)2q(0, s))ds

=

∫ ∞
0

e−ikx+ω(k)T q(x, T )dx

⇒q̂0(k)− [k2g̃0(ω(k), T )− ikg̃1(ω(k), T )− g̃2(ω(k), T )] = eω(k)T q̂(k, T ), (19)

where, as before, q̂0(k) and q̂(k, T ) represent the Fourier transform of the solution at
time t = 0 and time t = T . The time transforms of the boundary data are given by

g̃i(ω, T ) =

∫ T

0
eωs∂ixq(0, s)ds, i = 0, 1, 2.

Equation (19) is the global relation for the third-order PDE (17a) posed on the positive
half-line . Note that it is valid for Im(k) ≤ 0.

3. Integral expression. Let

g̃(k, t) = k2g̃0(ω(k), t)− ikg̃1(ω(k), t)− g̃2(ω(k), t).

Replacing T by t in the global relation (19) and applying the inverse Fourier transform,
we obtain

eω(k)tq̂(k, t) = q̂0(k)− g̃(k, t)

⇒ q̂(k, t) = e−ω(k)tq̂0(k)− e−ω(k)tg̃(k, t)

⇒ q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞
−∞

eikx−ω(k)tg̃(k, t)dk

⇒ q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)tg̃(k, t)dk,

where the second integral on the last line has been deformed into the upper-half
complex plane up to the boundary of D+.

4. Solving for the unknown boundary data. As for the heat equation, the integral expres-
sion for q(x, t) does not represent a solution due to presence of unknown boundary
terms, here g̃1, g̃2. As before we use the discrete symmetries of ω(k). In this case,

these are ν1(k) = e
2πi
3 k and ν2(k) = e

4πi
3 k.
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Observe that for k ∈ D+, ν1(k) ∈ D−1 and ν2(k) ∈ D−2 . Applying these transforma-

tions to the global relation, for k ∈ D+ with α = e
2πi
3 we find

q̂0(αk)− α2k2g̃0(ω(k), t) + iαkg̃1(ω(k), t) + g̃2(ω(k), t) = eω(k)tq̂(αk, t),

q̂0(α2k)− αk2g̃0(ω(k), t) + iα2kg̃1(ω(k), t) + g̃2(ω(k), t) = eω(k)tq̂(α2k, t).

Given q(x, 0) and q(0, t) (or q̂0(k) and g̃0(ω, t)) we may solve the above two equations
for the two unknowns g̃1 and g̃2, for k in D+ to obtain

ikg̃1(ω(k), t) = −k2g̃0(ω(k), t) +
1

α(1− α)

[
q̂0(α2k)− q̂0(αk)

]
+

eω(k)t

α(1− α)

[
q̂(αk, t)− q̂(α2k, t)

]
,

g̃2(ω(k), t) = −k2g̃0(ω(k), t) +
1

α(1− α)

[
α2q̂0(αk)− αq̂0(α2k)

]
+

eω(k)t

α(1− α)

[
−α2q̂(αk, t) + αq̂(α2k, t)

]
.

These expressions are substituted into the integral expression for q(x, t), resulting in

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

H(k, x, t)dk, (20)

H(k, x, t) =eikx−ω(k)t
[
3k2g̃0(ω(k), t)− αq̂0(αk)− α2q̂0(α2k)

]
+ eikx

[
−αq̂(αk, t)− α2q̂(α2k, t)

]
.

Since α is the cube root of unity note that α3 = 1 and 1 + α+ α2 = 0.

5. Contribution of q̂(ν(k), t). The functions q̂(αk, t) and q̂(α2k, t) are bounded and an-
alytic in D+ and decay to zero uniformly as k → ∞. Once again Jordan’s Lemma
implies that these terms do not contribute to the final solution, which is given by

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

3k2eikx−ω(k)tg̃0(ω(k), t)dk

+
1

2π

∫
∂D+

eikx−ω(k)t
[
αq̂0(αk) + α2q̂0(α2k)

]
dk. (21)

The classical method of images approach, by which one obtains the sine transform so-
lution to the heat equation, cannot be applied to this third-order PDE (or for any PDE
which involves odd order derivatives in x). For the third-order problem considered here,
since q̂(αk) is not bounded in the region {arg(k) ∈ [0, π/3]}, Jordan’s Lemma may not be
applied in order to justify the deformation of the contour integral back to the real line. This
would seem to imply that an integral transform pair using integrals along the real line does
not exist for this third-order PDE.
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Figure 2.6: Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (22).

2.2.3 A (slightly) different third-order PDE

The two problems considered so far are well posed when only q(0, t) is specified at the left
boundary. Using a slight modification of the previous example I will illustrate what changes
when more boundary conditions are required. Consider the following third-order PDE on
the positive half-line:

qt − qxxx = 0. (22)

Assume that an initial condition q(x, 0) has been given. The analysis of the global relation
indicates the number and type of the boundary conditions that need to be prescribed in
order for the problem to be well posed. The dispersion relation is

ω(k) = ik3, (23)

and

D =

{
k : arg k ∈

(
0,
π

3

)
∪
(

2π

3
, π

)
∪
(

4π

3
,
5π

3

)}
. (24)

Let D+ = D+
1 ∪D

+
2 , where

D+
1 =

{
k : arg k ∈

(
π,
π

3

)}
, D+

2 =

{
k : arg k ∈

(
2π

3
, π

)}
, (25)

and

D− =

{
k : arg k ∈

(
4π

3
,
5π

3

)}
,

see Figure 2.6.
The local relation is given by

(e−ikx+ω(k)tq)t −
(
e−ikx+ω(k)t(qxx + ikqx − k2q)

)
x

= 0, (26)
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leading to the global relation (by integrating over the region R = {x ≥ 0, 0 < t ≤ T} and
applying Green’s theorem)

q̂0(k)− [−k2g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t)] = eω(k)tq̂(k, t), Im(k) ≤ 0. (27)

The integral expression for the solution is

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

1

eikx−ω(k)tg̃(k, t)dk (28)

− 1

2π

∫
∂D+

2

eikx−ω(k)tg̃(k, t)dk,

where
g̃(k, t) = −k2g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t).

The symmetries of the global relation are as for the previous example. Hence if k ∈
D+

1 , l ∈ D
+
2 then αk, α2l ∈ D−, where α = e

2πi
3 . We obtain the following versions of the

global relation

q̂0(αk) + α2k2g̃0(ω(k), t)− iαkg̃1(ω(k), t)− g̃2(ω(k), t) =eω(k)tq̂(αk, t), k ∈ D+
1 , (29)

q̂0(α2k) + αk2g̃0(ω(k), t)− iα2kg̃1(ω(k), t)− g̃2(ω(k), t) =eω(k)tq̂(α2k, t), k ∈ D+
2 . (30)

Hence in each region, D+
1 and D+

2 , there is one relation between the three quantities
g̃i(ω(k), t), i = 0, 1, 2. Thus two boundary conditions are required at the left boundary
in order to be able to solve the global relation for the unspecified boundary condition.
For instance, given q(0, t) and qx(0, t) we can calculate g̃0(ω(k)) and g̃1(ω(k)). The above
relations can be used to obtain two expressions for g̃2(ω(k)), one valid for k ∈ D+

1 and the
other for k ∈ D+

2 . Substituting the resulting expressions into the integral expression for
q(x, t) we find the solution to (22) posed on the positive half-line.

2.2.4 A multi-term third-order PDE

For the problems above, the symmetries of the dispersion relation are easily found. With
the present example I illustrate the use of Fokas’s method if the symmetries are somewhat
more complicated and the introduction of a branch cut is necessary. This method illustrates
how to proceed in general, even if the symmetries cannot be written out explicitly. Consider

qt = qx + qxxx = 0, x > 0, (31)

where an initial condition q(x, 0) is given. The previous example indicates that two boundary
conditions are required on the left boundary, which we will verify in the process of solving
the equation. As in the previous example, I shall skip some calculation details, which are
similar to previous examples.

The dispersion relation is
ω(k) = −ik + ik3, (32)

and
D =

{
k : kI(1 + k2

I − 3k2
R) < 0

}
, (33)
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Figure 2.7: Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (left), and its
deformation D̃ (right), for the third-order PDE (31). The branch cut [−2/

√
3, 2/
√

3] is
indicated by the jagged line.

where kR and kI denote the real and imaginary parts of k, respectively. The region D is
shown on the left in Figure 2.7. The boundaries of the region consist of a hyperbola with
asymptotes kI = ±

√
3kR and the real line. As above, define D+ (D−) to be the intersection

of D with the upper (lower) half plane, and D+ = D+
1 ∪D

+
2 , where

D+
1 =

{
k : D+ ∩ second quadrant

}
, D+

2 =
{
k : D+ ∩ first quadrant

}
, (34)

as indicated in Figure 2.7.
The local relation is given by

(e−ikx+ω(k)tq)t −
(
e−ikx+ω(k)t(qxx + ikqx + (1− k2)q)

)
x

= 0, (35)

integrating over the region R = {x ≥ 0, 0 < t ≤ T} and using Green’s theorem gives the
global relation

q̂0(k)− g̃(k, t) = eω(k)tq̂(k, t), Im(k) ≤ 0. (36)

where g̃(k, t) = (1 − k2)g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t). At this point, we might
write an integral expression for q(x, t) involving a contour integral over the boundary of D+.
Before doing so, we examine the symmetries of the dispersion relation, as their functional
form will influence what follows.

The discrete symmetries of ω(k) are found by solving −ik + ik3 = −iν(k) + iν3(k) for
ν(k). Eliminating the solution ν(k) = k, we find

ν = −k
2
±
√

1− 3k2

4
.

This is a two-sheeted expression with branch points at ±
√

3/2, leading to a choice of branch
cut along [−

√
3/2,
√

3/2]. Define ν1 to be the branch of ν which limits to (−1/2+i
√

3/2)k =
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k exp(2πi/3), and let ν2 be the other branch, limiting to k exp(4πi/3). Our standard pro-
cedure would be to deform the integration over the real k axis to one along ∂D+, leading
to the expression

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

1

eikx−ω(k)tg̃(k, t)dk (37)

− 1

2π

∫
∂D+

2

eikx−ω(k)tg̃(k, t)dk,

where

g̃(k, t) = (1− k2)g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t).

This is problematic, since the integration paths ∂D+
1 and ∂D−2 contain the branch points

and part of the branch cut. Instead, deform D to D̃ with its constituent parts D̃+
1 , D̃+

2 and
D̃−, so that the boundary of these domains is separated from the branch cut. Although the
integrands are growing as k → ∞ in D, they are analytic in any bounded region, and this
deformation has no overall effect, due to Cauchy’s Theorem. The deformation from D to D̃
can be chosen in many ways, as long as D̃ has the same asymptotic form as D. Specifically,
we may deform D+

1 to D̃+
1 and induce deformations on D+

2 and D− using D̃+
2 = ν2(D̃+

1 ),
D− = ν1(D̃+

1 ), respectively. This leads to the solution formula

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D̃+

1

eikx−ω(k)tg̃(k, t)dk (38)

− 1

2π

∫
∂D̃+

2

eikx−ω(k)tg̃(k, t)dk.

Next, we eliminate the dependence on unnecessary boundary conditions. In addition to
(36), we have the following versions of the global relation:

q̂0(ν1(k))− (1− ν1(k)2)g̃0(ω(k), t)− iν1(k)g̃1(ω(k), t)− g̃2(ω(k), t)

= eω(k)tq̂(ν1(k), t), k ∈ D̃+
1 , (39)

q̂0(ν2(k))− (1− ν2(k)2)g̃0(ω(k), t)− iν2(k)g̃1(ω(k), t)− g̃2(ω(k), t)

= eω(k)tq̂(ν2(k), t), k ∈ D̃+
2 . (40)

As for the previous example, in each region, D̃+
1 and D̃+

2 , there is one relation between
the three quantities g̃i(ω(k), t), i = 0, 1, 2. Thus two boundary conditions are required at
the left boundary in order to be able to solve the global relation for whichever boundary
condition is unspecified.

2.2.5 A general evolution PDE

Fokas’s method is also applicable to the general constant coefficient linear evolution PDE

qt + ω(−i∂x)q = 0, x ≥ 0, t ∈ (0, T ]. (41)
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Here ω(k) is a polynomial of degree n. To ensure that solutions do not grow in time, let us
impose that Re(ω(k)) ≥ 0 for real k. Let

ω(k) = αnk
n + αn−1k

n−1 + . . .+ α0.

The large k limit of the condition Re(ω(k)) ≥ 0, k ∈ R implies that if n is odd then αn = ±i.
For n even, Re(αn) ≥ 0. Using the dispersion relation, define the following regions in the
complex k plane

D = {k : Re(ω(k)) < 0},

and
D+ = D ∩ C+, D− = D ∩ C−.

The local relation is given by

∂t

(
e−ikx+ω(k)tq(x, t)

)
− ∂x

e−ikx+ω(k)t
n−1∑
j=0

cj(k)∂jxq(x, t)

 = 0,

where

n−1∑
j=0

cj(k)∂jxq(x, t) = i

(
ω(k)− ω(l)

k − l

)∣∣∣∣
l=−i∂x

q(x, t). (42)

The proof is straightforward [38]. Equation (42) implies the global relation

eω(k)T q̂(k, T ) = q̂0(k)−
n−1∑
j=0

cj(k)g̃j(ω(k), T ), Im(k) ≤ 0,

where

g̃j(ω, T ) =

∫ T

0
eωs∂jxq(0, s)ds.

Applying the inverse Fourier transform to the global relation we obtain the integral expres-
sion for the solution

q(x, t) =
1

2π

∫ ∞
−∞

e−ikx+ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

e−ikx+ω(k)t
n−1∑
j=0

cj(k)g̃j(ω(k), t)

 dk. (43)

In order to obtain a solution, we require expressions for the time transforms of the
unknown boundary data valid for k ∈ ∂D+. As with the previous examples, we use the
discrete symmetries of the equation

ω(k) = ω0.

This relation is a polynomial or order n and thus has n roots in the complex plane. The
mappings from one root to another are precisely the transformations k → ν(k) which
leave ω(k) invariant. We employ the induced versions of the global relation to solve for
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the transforms of the unknown boundary data. The solution proceeds as before. Having
eliminated the unknown boundary data, we obtain an expression that depends on q̂(ν(k), t).
The transformation ν is such that q̂(ν(k), t) is analytic and bounded in the region D+. Hence
we may use the Cauchy Integral Theorem to eliminate the contribution of the term involving
q̂(ν(k), t) to the integral along ∂D+.

It is possible to predict how many boundary conditions are required for a well-posed
problem by considering the large k behavior of ω(k). For large values of k, ω(k) ∼ αnk

n

and the region D approaches

DR =

{
k : argαn + n arg k ∈

(
π

2
,
3π

2

)
+ 2mπ, m = 0, . . . , n− 1

}
.

Indeed for large k, Re(ω(k)) ∼ |k|n cos(argαn +n arg k) which is negative for k in DR. The
region DR consists of n unbounded equal-angled sectors in the complex-k plane. Let N
represent the number of unbounded sectors of DR in the upper-half plane. It is easily seen
that

N =


n/2 n even;

(n+ 1)/2 n odd and αn = −i;
(n− 1)/2 n odd and αn = i.

(44)

The reader is encouraged to verify the formulas for DR and N for the examples presented
above. Indeed Figures 2.3, 2.5 and 2.6 are examples of the three possible cases for N . In
these examples, the regions DR and D coincide.

In the integral expression for q(x, t), the contour ∂D+ may be deformed to ∂D+
R =

∂DR ∩ C+, since the integrands are entire functions. Thus we require expressions for the
time transform of the n boundary data, valid in the unbounded sectors of DR in the upper-
half plane.

Assume we are given p boundary conditions at the boundary at x = 0. This implies
we require, for each of the N sectors in C+, expressions for the transforms of the n − p
unknown boundary data. For each of the N sectors in C+, the discrete symmetries of ω(k)
allow us to choose n−N transformations νi(k), i = 0, 1 . . . n−N − 1 which map that sector
to the n−N remaining sectors. Hence, by substituting νi(k) for k, there are n−N versions
of the global relation valid in each of the N sectors in C+. Thus we have n − p unknowns
with n−N equations in each sector. Thus we need N boundary conditions at x = 0 for a
well-posed problem or in other words a well-posed problem on the positive half-line requires
as many boundary conditions as there are sectors of DR in the upper-half plane.

Remark 2.2.5 A canonical problem is one for which q(0, t) and its first N − 1 deriva-
tives are provided as boundary conditions. An example of a non-canonical problem is the
Neumann problem for the heat equation. Providing N linear combinations with constant
coefficients of a subset of the boundary values is another example (Robin problem). In this
case, versions of the global relation valid in D+

R and the N linear combinations form a sys-
tem of equations which can be solved for the boundary data, provided a certain determinant
is not identically zero. If the determinant has zeros in D+

R , then the contribution of these
zeros to the final solution is computed via the Residue Theorem.
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2.3 Remarks

I have introduced Fokas’s method for BVPs for linear evolution PDEs with constant coeffi-
cients on the half line. The main ideas behind the method are the use (i) of the analyticity
properties of various functions, inherited from the global relation, and (ii) of the discrete
symmetries of the dispersion relation. The method is more general than the standard meth-
ods used in the sense that it reproduces the results they provide, while being applicable to
situations where the standard methods fail or are not applicable. The extension to problems
on the finite interval is straightforward [29, 38].

The method of Fokas was inspired by techniques obtained from inverse scattering theory.
Of particular relevance is the fact that a linear PDE with constant coefficients can be
written as the compatibility condition of two first-order ordinary differential equations for
an auxiliary function ψ(x, t): one of these equations dictates how ψ(x, t) changes as a
function of x, with t as a parameter. The other equation has the roles of x and t reversed.
Both equations may depend on u(x, t) and its derivatives, thus they are not autonomous.
In other words, one can associate Lax pairs to linear PDEs. As shown in [38], this approach
leads to the solution of the PDE via a scalar Riemann-Hilbert problem, which may be solved
explicitly using the Plemelj formula [1]. Using this route, it is not necessary to introduce
even the Fourier transform!

The method of Fokas is far more general than I have discussed. For instance, it can be
extended to apply to evolution equations with periodic boundary conditions [64], to evolu-
tion equations with more than one spatial dimension, or to systems of evolution equations.
It is applicable also to some linear PDEs with nonconstant coefficients, and, as already
stated, to so-called integrable nonlinear equations. These topics are beyond the scope of
this short introduction, but the reader can find more details and additional references in
[38]. The method continues to be extended. Recently, I applied the method of Fokas to
PDEs with mixed partial derivatives, see Appendix A.



30

Chapter 3

THE FORWARD PROBLEM

The forward problem describes the evolution of an inviscid, irrotational, incompressible
fluid with a free surface under the influence of gravity. The study of water waves has
been the object of numerous theoretical and numerical investigations and is particularly
relevant in understanding near-shore ocean dynamics. In this chapter, I present a method
to numerically solve the water-wave equations that is inspired by the global relation for
the water-wave equations. Existing methods to solve the forward problem include methods
based on finite-element methods [51], Taylor expansions of the Dirichlet→Neumann operator
[25, 44, 70], boundary integral methods as well as conformal mapping techniques [51, 52].
Amongst these methods, only Taylor expansions and finite-element methods extend in a
straightforward manner to the three-dimensional problem. The boundary-integral methods
do apply to three-dimensional problems, however, they involve inverting singular integral
operators which is computationally challenging.

The numerical procedure to solve the Forward Problem presented in this chapter includes
the Taylor expansion techniques of [25, 44] as a special case. I present sample simulations
to justify the use of this method. Although, the forward problem is of considerable im-
portance in its own right, our interest in the forward problem is motivated by our desire
to solve a certain inverse problem in Chapter 4. In Section 3.1 I derive the equations of
motion for water waves. Section 3.2 presents a rederivation of the results in [3]. I obtain a
dual formulation of the Dirichlet→Neumann operator and highlight the connection of this
formulation to the Taylor expansion method of [25] and the nonlocal equation of Ablowitz
et al. [2]. Next, in Section 3.3 I present example simulations to test our new method for
the forward problem. Finally, in Section 3.4 I review the method presented and discuss an
example due to Jon Wilkening which hints at the range of validity of the present method.

3.1 The water-wave equations

The equations governing the motion of the free surface of a fluid, such as water, are simply
a restatement of conservation of mass and momentum with suitable boundary conditions to
define the free surface [15]. Consider an inviscid incompressible fluid with constant density
ρ. The two conservation laws lead to

ut + (u · ∇)u = −∇p
ρ

+ g, (1)

∇ · u = 0, (2)

where u is the fluid velocity vector field, p is the local pressure of the fluid and g = −gẑ is
the force due to gravity per unit mass in the vertical direction (taken as the z−coordinate).
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Aside from these equations we are also given the following boundary conditions

ηt + u · [∇η,−1] = 0, z = η(x, y, t) (3)

p = p0, z = η(x, y, t), (4)

u · [∇H, 1] = 0, z = −h−H(x, y), (5)

where η is the free surface of the fluid, p0 is the constant pressure at the surface z = η(x, y, t)
and z = −h−H(x, y) gives the profile of the solid surface bounding the fluid. The notation
[∇η,−1] and [∇H, 1] refers to the normal vectors at the free surface z = η(x, y, t) and solid
boundary z = −h−H(x, y) respectively. Condition (3) expresses the fact that fluid particles
on the surface remain on the surface. An alternate interpretation is that the fluid surface
z = η moves in accordance to the velocity in the direction of the local normal. The second
condition (4) is required as the surface η is itself an unknown. Thus two conditions are
imposed at the unknown boundary. The final condition (5) is used to impose that the solid
boundary z = −h−H(x, y) is impermeable and rigid. Thus the velocity of the fluid in the
normal direction is set to zero. In this chapter, I consider only flows which are periodic
in the horizontal directions (x, y) with periods (L1, L2) respectively. Overall there are five
unknowns: u, p and η.

Water waves are often modeled by irrotational flows, i.e. ∇ × u = 0. For such flows
there exists a scalar real-valued function Φ such that u = ∇Φ. The incompressibility of the
fluid is expressed by the zero divergence condition. This implies Φ is a harmonic function
since

∆Φ = ∇ · ∇u = 0.

The nonlinear term in (1) can be rewritten as

(u · ∇)u = ∇
(
|u|2

2

)
− u× (∇× u) .

The above vector identity reduces for irrotational flows to

(u · ∇)u = ∇
(
|u|2

2

)
= ∇

(
|∇Φ|2

2

)
.

Substituting this into equation (1) and integrating over all space we obtain

Φt +
|∇Φ|2

2
= −p

ρ
− gz + c(t), (6)

where c(t) is an arbitrary function of time.
As mentioned above, we assume the fluid velocity (i.e. the gradient of Φ) is periodic in

the horizontal directions. Hence the velocity potential is of the form

Φ = A(t)x+B(t)y + φ(x, y, z, t), (7)

where φ is a periodic function in (x, y) with periods (L1, L2) respectively. As the fluid
velocity u = ∇Φ, we may add any constant function of space to Φ without changing the
fluid velocities. Let us impose

1

L1L2

∫ L1

0

∫ L2

0
φ(x, y, η, t)dxdy = 0.
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Of course this assumes the existence and uniqueness of solutions to the water-wave problem.
Happily the results of [49, 69] justify (7).

Combining (4) and (6) we have at z = η

Φt +
|∇Φ|2

2
= −p0

ρ
− gη + c(t).

Substituting for Φ from (7) we obtain

A′(t)x+B′(t)y + φt +
|∇Φ|2

2
= −p0

ρ
− gη + c(t), z = η.

Define q = φ(x, y, η, t). Hence qt = φt + ηtφz and

A′(t)x+B′(t)y + qt − ηtφz +
|∇Φ|2

2
= −p0

ρ
− gη + c(t), z = η.

We integrate over x, y and choose c(t) such that

c(t) =
p0

ρ
+

1

L1L2

∫ L1

0

∫ L2

0

(
|∇Φ|2

2
+ gη − ηtφz

)
dxdy,

which implies
A′(t)L1

2
+
B′(t)L2

2
= 0.

In other words

A(t) = −B(t)
L2

L1
+ α,

where α is a constant. Substituting this in (7) we obtain

Φ = −B(t)
L2

L1
x+ αx+B(t)y + φ.

If we take the average of the Dirichlet potential Φ(x, y, η, t) at t = 0 to be zero, we obtain
α = 0. Thus when we limit ourselves to one-dimensional fluid surfaces (i.e. B(t) ≡ 0) we
observe that we can eliminate the drift term entirely and we may consider an equivalent
problem for a periodic potential φ. In the more general case for a two-dimensional surface, we
see that the drift is limited to one direction. Repeating the previous calculations assuming
only a term proportional to x (say) in (7) we obtain the same conclusion as for the one-
dimensional surface, namely that the zero average for the Dirichlet value at the free surface
initially will be maintained throughout the time evolution. In general, the period lattice
need not be rectangular for the two-dimensional surface as assumed above, but the results
remain true. For the remainder of this chapter I shall assume the drift term has been
eliminated and enforce periodicity of the velocity potential φ as the boundary condition in
the horizontal directions. Summarizing, the velocity potential φ satisfies the following free
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boundary-value problem:

∆φ = 0, −h−H(x, z) < z < η(x, y, t), (8a)

φ(x, y, η, t) = q, (8b)

qt = P
[
−gη − 1

2

(
φ2
x + φ2

y + φ2
z

)
+ ηtφz

]
, z = η(x, y, t), (8c)

ηt = φz − ηxφx − ηyφy, z = η(x, y, t), (8d)

φz +Hxφz +Hyφy = 0, z = −h−H(x, y), (8e)

where P is the projection on to the space of functions with zero average. Further, φ, η
and H are functions periodic in the horizontal directions.

3.2 A weak formulation of Laplace’s equation

In the previous section we derived the equations governing the motion of a water wave. To
obtain the time evolution of the surface η, we require the solution to Laplace’s equation in
the fluid domain. In this section I present one possible method of obtaining the solution to
Laplace’s equation. For simplicity I shall assume no y dependence below. Further I suppress
the dependence on t since the discussion below pertains only to Laplace’s equation. The
method described below provides an alternate derivation of the global relation for Laplace’s
equation we saw in the Introduction. Further, this alternate derivation provides a means
to compute the Dirichlet→Neumann operator. The presentation below largely follows that
of Ablowitz & Haut [3] with minor changes to emphasize the connections to the Ablowitz-
Fokas-Musslimani (AFM) approach in particular and global relations in general.

Consider Laplace’s equation
φxx + φzz = 0,

posed on the domain D = {(x, z) ∈ R2 : 0 < x < L,−h < z < η(x)}, where η is a smooth
periodic function with period L. Further assume that φ is periodic in the horizontal variable
x with period L, and

φz(x,−h) = 0, z = −h.

Thus we are restricting ourselves to a flat bottom boundary. Later we shall see how to
generalize the arguments presented here to varying bottom boundaries. Let D(x) and
N (x) be the Dirichlet and Neumann values of the function φ at z = η(x). If either D(x) or
N (x) is provided to us, the problem is well posed in the Hadamard sense for D(x), N (x)
in appropriate function spaces.

Following [3], consider a smooth function ψ which also satisfies Laplace’s equation in D
and the boundary condition at z = −h. Thus

ψxx + ψzz = 0, in D,

and ψz(x,−h) = 0. Formally, ψ can be expressed as

ψ(x, z) =
1

2π

∑
kn

eiknx cosh(kn(z + h))Ψ̂kn , kn =
2πn

L
, n = 0,±1,±2 . . . (9)



34

Indeed, if Ψ̂k decays sufficiently fast as a function of k (at some exponential order), then ψ is
defined for z > η(x). The function Ψ̂kn has a natural interpretation as the Fourier transform
of ψ(x,−h). That it decays exponentially implies the function ψ(x,−h) is holomorphic in a
strip around the real x axis. Note that the function ψ has a harmonic extension to z < −h
through a reflection. Consequently, ψ(x,−h) is an evaluation of the function in the interior
of the domain of harmonicity, therefore it is real analytic in x.

Using Green’s Identity, we have

0 =

∫
D

(ψ(φxx + φzz)− φ(ψxx + ψzz)) dxdz,

=

∫
∂D

(
ψ
∂φ

∂n
− φ∂ψ

∂n

)
dS,

=

∫ L

0
ψ(x, η) [φz(x, η)− ηxφx(x, η)] dx−

∫ L

0
φ(x, η) [ψz(x, η)− ηxψx(x, η)] dx,

=

∫ L

0
ψ(x, η)N (x)dx−

∫ L

0
D(x) [ψz(x, η)− ηxψx(x, η)] dx, (10)

where ∂/∂n is the normal derivative to the surface. Hence φ may be regarded as a weak
solution to Laplace’s equation. Using the representation (9) for ψ and noting that

eiknx (ikn sinh(kn(η + h)) + knηx cosh(kn(η + h))) = ∂x

(
eiknx sinh(kn(η + h))

)
,

we obtain after an integration by parts∑
kn

Ψ̂kn

(∫ L

0
eiknx

[
cosh(kn(η + h))N (x)− i sinh(kn(η + h))D ′(x)

]
dx

)
= 0. (11)

Since this relation is valid for arbitrary Ψ̂kn , we obtain∫ L

0
eiknx

[
cosh(kn(η + h))N (x)− i sinh(kn(η + h))D ′(x)

]
dx = 0, ∀kn =

2πn

L
,

with n = ±1,±2, . . ., which is the Ablowitz-Fokas-Musslimani (AFM) global relation [2] for
Laplace’s equation. In light of this derivation, we arrive at an alternative interpretation:
the global relation holds as a distribution. Further, note that the global relation as obtained
through the AFM approach (see equation (4a) in the Introduction) is but a rephrasing of
Green’s Identity. That this is the case is not unexpected. Indeed the global relation extends
the notion of Green’s Identity to other PDEs besides Laplace’s equation, as described in
Chapter 2.

The insight that the global relation holds as a distribution, provides a way to compute
the Dirichlet→Neumann operator. Notice that expressions such as∫ L

0
eikx cosh(k(η + h))N (x)dx,

∫ L

0
eikx sinh(k(η + h))D ′(x)dx,

define a functional over a suitable space of functions, namely those that decay at least like
e−M |k| where M = max(|η+h|) as is easily seen by applying the Cauchy-Schwarz inequality.
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As Ablowitz & Haut [3] point out, the expressions above are themselves linear operators
that map the Dirichlet and Neumann values on the boundary to distributions. The authors
take an inverse Fourier transform of the AFM global relation to obtain a dual formulation
for the water-wave problem. The Fourier transform is defined through duality using the
inner-product (11), as the distributions involved are certainly not classical ones. However,
progress can be made by rewriting equation (11) as∫ L

0
N (x)

∑
kn

Ψ̂kne
iknx cosh(kn(η + h))

 dx

+ i

∫ L

0
D(x)∂x

∑
kn

Ψ̂kne
iknx sinh(kn(η + h))

 dx = 0. (12)

The above relation is an equality between two inner-products. Since the Dirichlet problem
for the Laplace equation is well posed for all suitable D(x), the above equation implies∑

kn

Ψ̂kne
iknx cosh(kn(η + h)) = D(x), (13)

and

− i∂x

∑
kn

Ψ̂kne
iknx sinh(kn(η + h))

 = N (x). (14)

This is equivalent to choosing ψ = φ in (10). Note that the normal derivative to (9) is indeed
given by the expression (14). The above pair of equations defines the Dirichlet→Neumann
operator in terms of the “parameter” Ψ̂kn . This same pair appears in [3] in the dual
formulation of the water-wave problem. The Fourier transform of (13-14) leads to∑

kn

Ψ̂knAnl = D̂l,
∑
kn

Ψ̂knBnl = N̂l,

with

Anl =

∫ L

0
eiknx−iklx cosh(kn(η + h))dx, Bnl = l

∫ L

0
eiknx−iklx sinh(kn(η + h))dx.

As noted by Craig et al. [24], the operator Anl is invertible. Hence equations (13-14)
define the Dirichlet→Neumann operator. It should be noted that this is not a perturbative
or small amplitude in η representation for the operator. Indeed, one can simulate large
amplitude water waves using this form of the operator. In section (3.4) I discuss further
details about the range of validity of this formulation. Lastly, note the Taylor series for
the operator derived by Craig & Sulem [25] may be obtained from the above definition in a
straightforward manner by expanding terms in powers of η.

The Dirichlet→Neumann operator for Laplace’s equation with a varying bottom bound-
ary is obtained as follows. At the bottom boundary, now we have the Neumann condition

φz +Hxφx +Hyφy = 0, z = −h−H(x),
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where H is a continuously differentiable periodic function of x with period L. Starting with
Green’s Identity as before we obtain the appropriate generalization of the previous dual
formulation. Alternately, we may start with the following global relations, see [2]:∫ L

0
eiknx

(
cosh(kn(η + h))N (x)− i sinh(kn(η + h))D ′(x)− i sinh(knH)Qx

)
dx = 0, (15)∫ L

0
eiknx

(
i sinh(kn(η + h))N (x) + cosh(kn(η + h))D ′(x)− cosh(knH)Qx

)
dx = 0, (16)

where Q(x) = φ(x,−h −H). Taking the inner product of the first equation with Ψ̂1
kn

, the

second with Ψ̂2
kn

and adding the resulting equations, we obtain after an integration by parts∫ L

0

∑
kn

eiknx
(

Ψ̂1
kn cosh(kn(η + h)) + iΨ̂2

kn sinh(kn(η + h))
)

N (x)dx

+

∫ L

0
∂x
∑
kn

eiknx
(
iΨ̂1

kn sinh(kn(η + h))− Ψ̂2
kn cosh(kn(η + h))

)
D(x)dx

+

∫ L

0
∂x
∑
kn

eiknx
(
iΨ̂1

kn sinh(knH) + Ψ̂2
kn cosh(knH)

)
Q(x)dx = 0.

The above equation can be obtained from Green’s Identity (10) with the choice

ψ =
∑
kn

eiknx
(

Ψ̂1
kn cosh(kn(z + h)) + iΨ̂2

kn sinh(kn(z + h))
)
.

Imposing the boundary conditions, we obtain the following system of equations for Ψ̂1
kn

and

Ψ̂2
kn ∑

kn

eiknx
(

Ψ̂1
kn cosh(kn(η + h)) + iΨ̂2

kn sinh(kn(η + h))
)

= D(x), (17)

∂x
∑
kn

eiknx
(
iΨ̂1

kn sinh(knH) + Ψ̂2
kn cosh(knH)

)
= 0. (18)

On taking the Fourier transform of these equations, we arrive at a linear system of equations
for Ψ̂1

kn
and Ψ̂2

kn
. Finally the Neumann condition at the surface z = η is given by

N (x) = −i∂x
∑
kn

eiknx
(

Ψ̂1
kn sinh(kn(η + h)) + iΨ̂2

kn cosh(kn(η + h))
)
.

The arguments in this section may be generalized to two-dimensional free surfaces in
the obvious way. Indeed Ablowitz & Haut [3] obtain this alternate formulation of the
Dirichlet→Neumann operator in three-dimensions in their original derivation. In this chap-
ter, I employ this alternate formulation to compute the Dirichlet→Neumann operator.
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3.3 The numerical method

In this section I describe the numerical method adopted to simulate the time-dependent
motion of the free surface of a water wave. The equations of motion for a one-dimensional
free surface are given below. The fluid is assumed to be periodic in the x−direction and I
assume the bottom solid boundary to be flat, i.e. z = −h represents the bottom boundary
of the fluid. Thus we have

φxx + φzz = 0, (x, z) ∈ D, (19a)

φz = 0, z = −h̃, (19b)

φ = q, z = η(x, t), (19c)

ηt = φz − ηxφx, z = η(x, t), (19d)

qt = P
[
−1

2

(
φ2
x + φ2

z

)
− gη + ηtφz

]
, z = η(x, t), (19e)

φ(x, z) = φ(x+ L, z), (x, z) ∈ D,L = mlπ, (19f)

where D = {(x, z) ∈ R2 : −h̃ < z < η(x, t), 0 < x < L} represents the fluid domain, L is
the period of the flow, m is a positive integer, g is the acceleration due to gravity, l is the
length-scale in the x direction and P is the projection on to the space of functions with zero
average. The above equations may be rewritten in non-dimensional form using the scaling
relations

φ = l
√
glφ∗, η = lη∗, z = lz∗, x = lx∗, t =

√
l

g
t∗, (20)

where stars indicate non-dimensional quantities. The equations of motion are now given
as

φxx + φzz = 0, (x, z) ∈ D, (21a)

φz = 0, z = −h, (21b)

φ = q, z = η(x, t), (21c)

ηt = φz − ηxφx, z = η(x, t), (21d)

qt = P
[
−1

2

(
φ2
x + φ2

z

)
− η + ηtφz

]
, z = η(x, t), (21e)

φ(x, z) = φ(x+mπ, z), (x, z) ∈ D, (21f)

where D = {(x, z) ∈ R2 : −h < z < η(x, t), 0 < x < mπ} and the stars are dropped. The
relevant non-dimensional parameters for the given problem are the shallowness parameter
µ = h/(mπ) and the smallness parameter ε = max |η|/h. The above set of equations are
seen as a system of evolution equations for the surface quantities η and q. Evidently, to
integrate these equations in time, we require expressions for the gradient of φ at z = η.
We use the alternate formulation of the Dirichlet→Neumann operator established in the
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previous section to rewrite the equations of motion as∑
kn

eiknx cosh(kn(η + h))Ψ̂kn = q, kn =
2n

m
, n = 0,±1,±2 (22a)

ηt = φz − ηxφx, (22b)

qt = P
[
−1

2

(
φ2
x + φ2

z

)
− η + (φz − ηxφx)φz

]
, (22c)

where

φx =
∑
kn

ikne
iknx cosh(kn(η + h))Ψ̂kn , φz =

∑
kn

kne
iknx sinh(kn(η + h))Ψ̂kn .

Due to the spatial periodicity of the flow I use a pseudospectral method for the spatial
discretization. The quantities η and q are approximated by truncating their Fourier se-
ries with the same number of modes Kmax. Derivatives are obtained by applying Fourier
multipliers in Fourier space, while nonlinear products are computed in physical space on a
discrete set of equally spaced grid points. Aliasing errors were removed by the zero-padding
technique [63, 13]. Typically this entailed taking 2Kmax modes if Kmax modes of accuracy
are required. Time integration is carried out in Fourier space. This allows us to readily
implement the projection operator P. I use a fourth-order Runge-Kutta scheme to advance
the surface quantities to the next time step.

I present two example simulations using the method described above. The examples are
those of Craig & Sulem [25]. Our goal is not to present detailed computations, rather it is
establish that the numerical method introduced in this section produces satisfactory results.
The first is a simulation of unsteady flow. For the second example I use an approximate
Stokes wave as the initial condition.

3.3.1 Unsteady flow

Our first simulation is to compute the evolution of the free surface with initial condition

η0(x) = 0.01e−4(x−π)2 cos(4x),

with zero initial velocity potential. The spatial period of the flow is 2π (hence m = 2).
Figure 3.1 shows the evolution of the surface up to t = 11.25. The simulation is stable and
could have continued longer. The computation was performed with 64 collocation points
and full dealiasing was accomplished using zero-padding. Figure 3.2 depicts the time series
for the relative error in the Hamiltonian and the absolute error in the momentum. Evidently,
these quantities are conserved well for the duration of the simulation.

3.3.2 An approximate Stokes wave

Our second simulation uses the following second-order approximation to a Stokes wave as
initial conditions:

η0(x) = a cos(kx) + µ2a
2 cos(2kx),

q0(x) = ν1a cosh(k(η0 + h)) sin(kx) + ν2a
2 cosh(2k(η0 + h)) sin(2kx),
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Figure 3.1: Evolution of an unsteady wave.
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Figure 3.2: Time series of Hamiltonian and momentum for unsteady wave. Relative error
in the Hamiltonian is shown in blue and the absolute error in the momentum is shown in
black.
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Figure 3.3: Evolution of an approximate Stokes wave.

with

µ2 =
1

2
k coth(kh)

(
1 +

3

2 sinh2(kh)

)
,

ν1 =
ω

k sinh(kh)
, ν2 =

3

8

ω

sinh4(kh)
,

where ω2 = k tanh(kh). Figure 3.3 displays the evolution of a 2π-periodic wave with k = 2,
a = 0.065 and h = 1. The wave is near the linear regime and the Stokes expansion above
is seen to be a fairly accurate representation of the full wave. We see in Figure 3.3 the
wave translating over two full periods. The calculation was carried out further in time with
almost no change in the profile. Since the initial condition is only an approximation to
a Stokes wave, the peaks of the wave profile show a small amount of wobble as the wave
translates. Again the Hamiltonian and momentum are conserved (Figure 3.4).

3.4 Discussion and remarks about the method

In this chapter, a new method to solve the Forward Problem is proposed. The method is
valid for both one- and two-dimensional surfaces. The method produces satisfactory results
and captures essential features of the water-wave problem. Further, the method can be
viewed as an extension of Taylor-series expansion methods of [25, 53, 44]. Some theoretical
questions regarding the numerical procedure discussed in this chapter need investigating.
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Figure 3.4: Time series of the Hamiltonian and the momentum for an approximate Stokes
wave. Relative error in the Hamiltonian is shown in blue and in the momentum is shown
in black.

Indeed, one would like to know the function spaces for which expressions such as∑
kn

eiknx cosh(kn(η(x) + h))Ψ̂kn = q(x), (23)

may be solved for Ψ̂kn given η and q. As the linearization of the above expression is involved
in obtaining the Taylor-series formulae of [25, 44, 53], the invertibility of the operator on
the left-hand side above (i.e., the operator Anl in Section 3.2) warrants study. In the next
chapter, I use the data obtained from the Forward Problem to solve a particular inverse
problem. As the inverse problem is solved successfully, the numerical procedure introduced
in this chapter seems, at least in some regimes, to produce an accurate solution of the full
water-wave problem. Thus for the purposes of investigating the problems of relevance to
this thesis, the formulation of this chapter is sufficient.

I shall now present an example due to Jon Wilkening that explicitly shows equation (23)
cannot be solved in general, even for analytic η and q. Consider the function

φ(x, z) =
1

2
Im

{
cot

(
x+ iz − i

2

)
− cot

(
x− iz + i

2

)}
,

= Re

{
sinh(1)

cosh(1)− cos(x+ iz)

}
. (24)

The function φ is harmonic for all x, z except at (x, z) = (0,±1) and is periodic in x with
period 2π. Further, φ(x,−z) = φ(x, z) and hence φz(x, 0) = 0 for all x. Evaluating at
z = 0, we obtain

φ(x, 0) =
sinh(1)

cosh(1)− cos(x)
,
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which has a Fourier series representation

φ(x, 0) =

∞∑
n=−∞

einxe−|n|.

Let η(x) = 1 − cos(x)/2 and q(x) = φ(x, η(x)). The function q(x) is real analytic and
2π-periodic. Consider, the equation

∞∑
n=−∞

einx cosh(nη(x))cn = q(x),

which is the analog of (23) for the example considered here. We wish to solve the above
equation for the coeffients cn. Of course, we know that cn = e−|n| by construction, but the
above equation cannot be solved for cn in any obvious sense as the series on the left diverges
for all π/2 < x < 3π/2. This is due to the fact that the representation

φ(x, y) =

∞∑
n=−∞

einx cosh(nz)e−|n|, (25)

holds only for |z| < 1 (essentially due to the singularity in φ). Thus even when η and q are
analytic functions, it may not be possible to solve equation (23). However, it may still be
the case that there does exist a harmonic function derived from a well posed problem for
Laplace’s equation with q as the Dirichlet condition at the surface η(x)

φxx + φzz = 0,

φ(x, η(x)) = q(x), η(x) = 1− cos(x)/2,

φz(x, 0) = 0,

φ(x, z) = φ(x+ 2π, z), 0 ≤ x < 2π, 0 < z < η(x).

This leads us to conclude that the method to evaluate the Dirichlet→Neumann operator
discussed here is not suitable for generic problems for Laplace’s equation. Figure 3.5 shows
the reconstruction of the Neumann value at η(x) = 1− cos(x)/2 for the example discussed
here which clearly shows the failure of the representation (25).

A key point to note in the above example is that η was chosen independently of q (or
equivalently φ). Indeed, η = 1 − cos(x)/2 was chosen precisely so that representation (25)
fails for some interval in x. However, if one chooses η such that ‖η‖∞ < 1, then represen-
tation (25) is valid and one can compute the Dirichlet→Neumann map accurately. Thus
a necessary condition for the method to compute the Dirichlet→Neumann map presented
here is that η and q be such that there are no obstructions to the harmonic extension of
φ(x, z) to the region −h < z < ‖η‖∞. This is not as artificial an assumption as it may seem,
for the water-wave problem is a free-boundary problem. Thus η and q are not independent
of one another. Of course, the exact relation between η and q for the Forward Problem is
not a simple one and more work is required before we can rigorously establish the numerical
procedure of this chapter.
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Figure 3.5: A comparison of the normal derivative computed using (13-14) and the true
solution (24). True solution is shown in red dots.
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Chapter 4

AN INVERSE PROBLEM

The problem addressed in this chapter is that of recovering the shape of the solid bound-
ary bounding an inviscid, irrotational, incompressible fluid from measurements of the free
surface alone. This problem is an idealization of the ocean bathymetry detection problem
which arises naturally in the study of coastal dynamics [18, 42, 58, 62]. Further, knowl-
edge of the ocean bathymetry is crucial for safe underwater navigation. The current work
considers fluid-mechanical principles to determine the shape and location of the bottom sur-
face. Other approaches to the bathymetry detection problem exist [18, 42, 58, 62]. Perhaps
the most significant and popular ones are based on reflection of acoustic signals from the
bottom surface [18, 62]. Other methods are based on nonlinear properties of ocean waves
such as variations in the dispersion relation of shoaling waves [58] and further corrections
to these formulas [42]. A recent approach that takes into account the entire flow field is
due to Nicholls & Taber [54]. Their method is based on expansions of a nonlinear operator
that accounts for the bottom surface (the Dirichlet→Neumann operator or DNO). However,
Nicholls & Taber [54] restrict their approach to working with standing wave profiles on the
surface. The extension to generic surfaces is not obvious.

The method I propose stands apart from the methods mentioned above in that I make
no assumptions on the nature of the free surface (such as small amplitude waves, standing
waves, etc.). The method allows us to accurately recover the bottom surface from only
measurements of the free-surface deviation from rest at several times. In particular, the
method can recover the average depth of the bottom surface i.e., we do not require this as
input as is required for linear and perturbative theories [18, 42, 58, 62] or by Nicholls &
Taber [54]. I assume the flow is periodic in the horizontal directions without the presence of
a vertically uniform horizontal current. In other words, I assume the velocity potential itself
is periodic (see section 3.1 of Chapter 3 for a related discussion). Although the equations I
derive are valid for one- and two-dimensional surface water-waves, the numerical examples
presented are limited to one-dimensional surfaces, due to the computational effort required
to solve both the forward time-dependent evolution and the inverse bathymetry detection
problem for two-dimensional surfaces.

The principal question I seek to address is that of what minimal input surface data is
required to recover the bottom surface. In theory, to recover the bottom surface the method
of reconstruction requires the surface elevation and its first two derivatives with respect to
time as functions of the horizontal variable at one particular instant of time. In practice, it
suffices to require the surface elevation at several successive instances of time as a function
of the horizontal variable: the time derivatives may be obtained through finite differences.
Although the input requirements made in this work could be considered a challenge in and of
themselves, advances in remote sensing technology suggest these are reasonable assumptions
[58].
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The organization of this chapter is as follows: Section 4.1 contains the derivation of
the exact, nonlinear equations to be solved for the bottom surface. These equations are
a necessary condition of the full set of equations modeling water waves. As a result, it is
possible to reconstruct large amplitude, nonlinear bottom surfaces from large amplitude,
nonlinear free-surface deviations. In Section 4.2 I present several example calculations of
bottom surface recovery assuming the surface elevation and its first two derivatives with
respect to time as functions of the horizontal variable are provided. Following the examples,
in Section 4.3 I discuss in detail several numerical issues involved in the reconstruction of
the bottom surface. Bathymetry detection is a challenging inverse problem and I delineate
features of the method which exhibit the ill-posed character of the problem. In short, many
of the challenges can be explained by the fact that the velocity field decays exponentially
with depth for an inviscid, irrotational fluid. This behavior is manifested mathematically
through the presence of hyperbolic functions in the nonlinear equations to be solved, whose
exponential growth inhibits accurate representation in finite-precision arithmetic. Finally
in Section 4.4, I repeat the examples in Section 4.2 with finite-difference approximations to
the time derivatives of the surface elevation. There I show that the bottom surface may be
recovered from measurements of the surface deviation from rest alone. The error introduced
by the finite-difference approximation is negligible and the bottom surface is recovered
accurately in certain parameter regimes, specifically in the shallow water regime. In this
chapter I obtain the bottom surface from numerically generated free-surface elevations.
Bathymetry recovery from experimental data will not be discussed. The input data for
the inverse problem discussed here is obtained from the numerical solution of the Forward
Problem. See Chapter 3 for details.

4.1 The bathymetry reconstruction equation

Euler’s equations for the dynamics of an inviscid, irrotational periodic flow in a two (N = 1)
or three (N = 2) dimensional domain D = {(x, z) ∈ RN × R : ζ < z < η, 0 < xi < Li, i =
1, . . . , N} are

∆φ+ φzz = 0, (x, z) ∈ D, (1a)

φz −∇ζ · ∇φ = 0, z = ζ(x), (1b)

φz −∇η · ∇φ = ηt, z = η(x, t), (1c)

φt +
1

2

(
|∇φ|2 + φ2

z

)
+ gη = 0, z = η(x, t), (1d)

Here φ is the velocity potential, η is the surface displacement, g is the acceleration due to
gravity and Li is the period in the xi direction. I use the convention that the Laplacian
and gradient refer to those in RN , i.e. they refer to the horizontal Laplacian and horizontal
gradient.

In this section I show how one can reconstruct the bottom topography ζ from only
measurements at the surface. In particular, I state what is meant by surface measurements.
Ideally, this would entail a snapshot of η at some instant of time. However, this is readily
seen to be insufficient since Laplace’s equation has a unique solution for every η and ζ
suitably smooth, with prescribed boundary conditions. On the other hand, if we are given
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the complete solution of the free-boundary value problem (1a-1d) then this is (by definition)
sufficient information. My definition of surface measurements lies in between these two
extremes: I shall require η(x, t0), ηt(x, t0) and ηtt(x, t0), i.e., the surface deviation from the
undisturbed level and its first two t−derivatives as functions of the horizontal variable at
one particular instant t = t0. The following paragraphs indicate why this is the case. The
functions η(x, t0), ηt(x, t0) and ηtt(x, t0) can be considered the first three terms of the Taylor
series of η(x, t) at some time t = t0 and hence represent independent pieces of information.
Note that equation (1c) implies ηt(x, t0) is the normal velocity of the fluid at z = η(x, t).

If we are given the surface quantities η(x, t) and q = φ(x, η), the Hamiltonian formulation
of the water-wave problem due to Zakharov [71] indicates that these surface quantities fully
determine the solution to the water-wave problem (1a-1d). Instead, for now assume that at
some instant of time t0 the velocity potential at the surface q(x, t0), the shape of the surface
η(x, t0) and the normal velocity ηt(x, t0) are given. This is sufficient information to pose the
following initial-value problem for the Laplace equation with periodic boundary conditions
in the horizontal directions.

∆φ+ φzz = 0, z < η, (2a)

φz −∇η · ∇φ = ηt, z = η, (2b)

φ = q, z = η. (2c)

The question of bottom topography reconstruction involves finding a surface ζ such that
(1b) is satisfied by the solution of the above problem. Several issues arise. First, we
want to obtain an exact expression for the solution of (2a-2c) in terms of known quanti-
ties so that (1b) becomes a (nonlinear) equation for the unknown surface. Indeed solving
the initial-value problem for the Laplace equation is numerically challenging. Second, the
general initial-value problem (in z) for the Laplace equation may not have a solution far
from z = η(x, t0). The Cauchy-Kowalevski Theorem [32] only guarantees a solution in the
neighborhood of the initial condition i.e near z = η(x, t0). However, the true bottom surface
ζ may be outside of this neighborhood. Third, measurements of the velocity potential at
the surface q(x, t0) are impractical compared to measurements of the surface elevation itself
and it is desirable to eliminate q(x, t0) from the problem. I proceed to address these issues
below.

The expression

φ =
1

(2π)N

∑
k

eik·x cosh(|k|z)q̂(k) +
1

(2π)N

∑
k

eik·x
sinh(|k|z)
|k|

η̂t(k), (3)

is a formal solution of (2a-2c) when η(x, t0) ≡ 0. Here q̂(k) and η̂t(k) are the Fourier
transforms of q(x, t0) and ηt(x, t0) respectively. Thus

q̂(k) =

∫
R
e−ik·xq(x)dx, η̂t(k) =

∫
R
e−ik·xηt(x)dx,

where

R = {x ∈ RN : 0 < xi < Li, i = 1, . . . , N}
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is the horizontal domain. The summation extends over all k in the lattice dual to the period
lattice i.e., over all possible wavenumbers.

To find ζ, evaluate the left-hand side of equation (1b) using (3) for φ. This results in the
nonlinear function whose zero is the surface ζ. If the given Cauchy data (the Dirichlet data
q(x, t0) and the Neumann data ηt(x, t0)) are consistent with a well-posed boundary-value
problem for Laplace’s equation (for instance a Dirichlet condition at z = 0 and the Neumann
condition (1c) at z = ζ), then the solution exists outside of a small neighborhood of the
surface z = 0. For the specific form of the solution (3) to be valid at z = ζ we require
additional hypotheses. This is related to the issues discussed in section 3.4 of Chapter 3.

The expression (3) for φ may be generalized to η(x, t0) = h0 where h0 is a constant.
Fourier transform methods are cumbersome when initial conditions are given on surfaces,
as in (2a-2c). Therefore we reduce this initial-value problem (IVP) to a problem posed on
z = −h0.

The reformulation of the water-wave problem due to Ablowitz et al. [2] introduces
a global relation for the Laplace equation. The global relation connects the boundary
information on the surface η and on the bottom topography ζ. We limit ourself to applying
the nonlocal relation of Ablowitz et al. [2] on the region −h0 < z < η(x, t0). This allows us
to transfer the data on z = η(x, t0) to equivalent data on z = −h0.

Let φ be a harmonic function in 0 < xi < Li, −h0 < z < η, periodic in the horizontal
variables xi with period Li. Following Ablowitz et al. [2],

∇ ·FH +
∂FV

∂z
= 0,

where

FH = (−ikφz + ω∇φ)E,

FV = (ωφz + ik · ∇φ)E,

with E = exp(−ik · ~x + ωz) and ω = ±|k|. Integrating this divergence form and applying
Green’s Theorem we obtain the global relations∫

R
e−ik·x+|k|η [|k|(−∇φ · ∇η + φz) + ik · (∇φ+ φz∇η)]z=η dx

=

∫
R
e−ik·x−|k|h0 [|k|(−∇φ · ∇η + φz) + ik · (∇φ+ φz∇η)]z=−h0 dx, (4)

and ∫
R
e−ik·x−|k|η [−|k|(−∇φ · ∇η + φz) + ik · (∇φ+ φz∇η)]z=η dx

=

∫
R
e−ik·x+|k|h0 [−|k|(−∇φ · ∇η + φz) + ik · (∇φ+ φz∇η)]z=−h0 dx, (5)

where

R = {x ∈ RN : 0 < xi < Li, i = 1, . . . , N}.
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The relations (4), (5) hold for all k in

Λ =

{[
2πn1

L1
,
2πn2

L2

]T
: nj ∈ Z, n2

1 + n2
2 > 0

}
,

which defines the lattice dual to the physical period lattice and disregards the zero mode,
see [28] for details. Using

[−∇φ · ∇η + φz]z=η = ηt,

and

[∇φ+ φz∇η]z=η = ∇q,

where ηt(x, t0) and q(x, t0) are the Neumann and Dirichlet values imposed at z = η(x, t0),
we may rewrite the global relations (4) and (5) as∫

R
e−ik·x+|k|η [|k|ηt + ik · ∇q] dx =

∫
R
e−ik·x−|k|h0

[
|k|φ̃z + ik · ∇φ̃

]
dx, (6)∫

R
e−ik·x−|k|η [−|k|ηt + ik · ∇q] dx =

∫
R
e−ik·x+|k|h0

[
−|k|φ̃z + ik · ∇φ̃

]
dx. (7)

where φ̃ = φ(x,−h0). Multiplying (6) by e|k|h0 and (7) by e−|k|h0 , we can solve for the terms
on the right-hand side to obtain∫

R
e−ik·xφ̃zdx =

∫
R
e−ik·x

[
cosh(|k|(η + h0))ηt + i

sinh(|k|(η + h0))

|k|
k · ∇q

]
dx, (8)

−
∫
R
e−ik·xφ̃dx =

∫
R
e−ik·x

[
sinh(|k|(η + h0))

|k|
ηt + i

cosh(|k|(η + h0))

|k|2
k · ∇q

]
dx. (9)

In order to obtain the above equations, we impose that φ is periodic. In other words, we
assume there is no mean current. This assumption is made throughout the present work.

Let us take a moment to discuss what we have accomplished. A well-posed problem
for Laplace’s equation is a boundary-value problem, not a Cauchy-problem. Given data at
both z = η(x, t0) and z = −h0, we may employ the above global relations to solve for the
remaining unknown boundary conditions. Green’s integral representation for a harmonic
function in terms of its boundary data provides a solution to Laplace’s equation. This
solution depends continuously on the given boundary information, see [32]. For the problem
of bathymetry reconstruction, we are given information only on the surface z = η(x, t0) and
hence we need to solve the Cauchy problem (an initial-value problem) which is well known
to be ill-posed [32, 43]. However, with the knowledge that our input data comes from a
well-posed boundary-value problem and that the domain of harmonicity extends at least
to z = −h0, the global relation allows us to transfer the given information at z = η to
that at z = −h0. Consequently, we have evaluated the harmonic function in the interior
of the domain. Since harmonic functions are analytic in the interior of their domain of
definition (and hence their Fourier transform decays exponentially as a consequence of a
Paley-Wiener-type theorem [57]), the Cauchy problem can be solved off the line z = −h0.
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The discussion in the previous paragraph suggests that the definition

φ(x, z) =
∑
k

eik·x cosh(|k|(z + h0))
̂̃
φ +

∑
k

eik·x
sinh(|k|(z + h0))

|k|
̂̃
φz, (10)

is reasonable, and further that φ is harmonic in a neighborhood of z = −h0. In particular
we may look for a surface ζ on which φ satisfies a homogeneous Neumann condition using
this definition. Hence we consider

F (ζ) = [φz −∇ζ · ∇φ]z=ζ(x) , (11)

where φ is given by (10). We have obtained a nonlinear function of ζ whose zero implies the
bottom-boundary condition (1b) is satisfied. If we find such a ζ, then existence-uniqueness
results for the Laplace equation (and the water-wave problem in particular [49, 69]) imply
we have recovered the bottom topography. Notice however, that the numerical evaluation
of the above expression for F is a formidable task. Considerable care must be taken in
evaluating the hyperbolic functions. The exponential growth of such terms in (10) can
cause numerical errors leading to errors in the overall solution.

Remark 4.1.1 Under the assumption of the existence of h0 such that

min
x
η > −h0 > max

x
ζ,

equation (10) is an equally effective starting point for a boundary-value problem for Laplace’s
equation. Indeed, enforcing the given boundary conditions at z = η and z = ζ, we have two

equations for the two unknowns
̂̃
φz and

̂̃
φ . The right-hand side of (10) may be interpreted

as a sum of linear operators acting on
̂̃
φz and

̂̃
φ . Solving this system of equations effectively

requires “dividing” by the hyperbolic terms. It is precisely this inversion that leads to the
smoothness of the harmonic function in the interior as well as the well-posedness of the
boundary-value problem. See Chapter 3 for further details regarding boundary-value problems
for Laplace’s equation and the forward problem of the time evolution of a water wave.

The nonlinear function F defined in (11) depends on both the Neumann and Dirichlet
data at the surface z = η(x, t0). We may treat the Dirichlet data as an unknown if we can
supplement the equation (11) with another. Indeed, equation (1b) holds for all time. Hence
we consider the following system of nonlinear equations for ζ and q:

F (ζ, q) = [φz −∇ζ · ∇φ]z=ζ(x) = 0,

d

dt
F (ζ, q) =

d

dt

(
[φz −∇ζ · ∇φ]z=ζ(x)

)
= 0,

(12a)

(12b)

where

∇φ(x, z) =
∑
k∈Λ

ikeik·x
(

cosh(|k|(z + h0))
̂̃
φ +

sinh(|k|(z + h0))

|k|
̂̃
φz

)
,

=
∑
k∈Λ

eik·x
(

cosh(|k|(z + h0))∇̂φ̃+
ik

|k|
sinh(|k|(z + h0))

̂̃
φz

)
, (13)
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and

φz(x, z) =
∑
k∈Λ

eik·x
(
|k| sinh(|k|(z + h0))

̂̃
φ + cosh(|k|(z + h0))

̂̃
φz

)
,

=
∑
k∈Λ

eik·x
(
− ik
|k|

sinh(|k|(z + h0))∇̂φ̃+ cosh(|k|(z + h0))
̂̃
φz

)
. (14)

The fluid velocities at z = −h0 (the tilde variables) are given in terms of surface measure-
ments by

̂̃
φz =

∫
R
e−ik·x

[
cosh(|k|(η + h0))ηt + i

sinh(|k|(η + h0))

|k|
k · ∇q

]
dx, (15)

∇̂φ̃ =

∫
R
e−ik·x

[
−ik
|k|

sinh(|k|(η + h0))ηt + cosh(|k|(η + h0))
k

|k|2
k · ∇q

]
dx. (16)

Finally, we supplement these equations with the time derivative of the surface velocity
potential, namely

∂q

∂t
= −gη − 1

2
|∇q|2 +

(ηt +∇q · ∇η)2

2(1 + |∇η|2)
,

which is the equation of evolution for the surface potential [2]. As the velocity potential at
the surface only appears through its spatial derivatives, we solve equations (12a) and (12b)
for the unknowns ζ and ∇q.

Examining equation (12b), we observe that at some instant of time, we require the sur-
face displacement η(x, t0), the normal velocity ηt(x, t0) and its rate of change ηtt(x, t0) as
functions of the horizontal variable x. Figure 4.1 provides an overview of the algorithm to
reconstruct the bottom boundary. Assume we are given the Dirichlet (rather its gradient
i.e., the tangential derivative of the velocity potential) and Neumann data (the normal
velocity ηt(x, t0)) at the surface z = η(x, t0). We use the AFM global relation to convert
this data to corresponding data at some height z = −h0. Using the information at the
horizontal line z = −h0, we solve the initial-value problem for Laplace’s equation in the
vertical direction (along z). Finally we look for a surface z = ζ such that the normal deriva-
tive of the potential (obtained through solving the initial-value problem) along the surface
vanishes. Thus we have evaluated the nonlinear function F in equation (12a) assuming
we know q(x, t0). However, as the boundary condition (1b) holds for all time, we impose
relation (12b). This allows us to eliminate the Dirichlet data at z = η(x, t0). Although the
presentation above is valid for N = 1, 2, we restrict ourselves to N = 1 for the rest of the
discussion.

Remark 4.1.2 As shown by Lannes [49] and Wu [69], the water-wave problem (1a-1d)
is well posed and has a unique solution. Since the set of nonlinear equations (12a-12b)
are necessary conditions for the full water-wave problem, existence of solutions to these
nonlinear equations is guaranteed. I do not investigate uniqueness of solutions to these
equations.
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Figure 4.1: Algorithm for reconstruction of the bottom surface.

4.2 Examples

In this section I present example reconstructions carried out using the method proposed
in the previous section. In all reconstructions presented here both the surface η and the
normal velocity ηt are assumed to be given at some instant of time. Typically η and ηt are
obtained from a simulation of the time-dependent evolution of the water-wave equations
(see Chapter 3). The general inverse problem requires ηtt to be provided as well. In such
cases, ηtt is computed from ηt using a five-point finite-difference stencil. In all the examples
discussed below, I assume that the input data is obtained from the non-dimensional version
of equations (1a-1d). Assuming the scalings (20) from Section 3.3 of Chapter 3 we have

φxx + φzz = 0, (x, z) ∈ D, (17a)

φz − ζxφx = 0, z = ζ(x), (17b)

ηt + ηxφx = φz, z = η(x, t), (17c)

φt +
1

2

(
φ2
x + φ2

z

)
+ η = 0, z = η(x, t), (17d)

where D = {(x, z) ∈ R2 : ζ < z < η, 0 < x < mπ} and m is a positive integer. To
distinguish the different regimes of the fluid flow (i.e., shallow water, large amplitude, etc.)
we define the quantities

µ =
|ζ|
mπ

, ε = max
x

∣∣∣η
h

∣∣∣ , h =
1

mπ

∫ mπ

0
ζdx.

Thus the larger ε (the amplitude parameter) is, the more nonlinear the fluid flow is. Values
of µ near 1 indicate deep water, whereas smaller values indicate shallow water. Notice µ is
a function of the spatial variable x.
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To solve equations (12a-12b) numerically, we approximate both unknowns ζ and qx by
their truncated Fourier series

ζ =

Kζ∑
k=−Kζ

eikxζ̂k, qx =

Kqx∑
k=−Kqx

eikxq̂x.

Here Kζ and Kqx define the resolution of the series for the bottom surface and the tangential
velocity at the free surface η, respectively. The input data to the nonlinear equations (12a-
12b) are η, ηt and ηtt as functions of x at one particular time t0. These are obtained
from a simulation of the time-dependent evolution of water waves with Kη the highest
wavenumber resolved in the horizontal direction. Thus the incoming data has a maximum
resolution corresponding toKη. The expressions in (13) and (14) involve summations over all
wavenumbers. These summations are truncated with highest mode number Kφ during the
computations. The nonlinear functions are evaluated at several points in the physical grid
and the problem is solved as a least-squares problem with the Fourier modes of the bottom
surface and tangential velocity as the parameters. I used MINPACK’s implementation of
the Levenberg-Marquardt algorithm as the least-squares solver.

4.2.1 Flat bottom reconstruction using traveling wave solutions

As a first example, consider the case of a traveling-wave solution of Euler’s equations. The
exact nonlinear traveling-wave solutions corresponding to a particular value of the speed
c are obtained from the work of Deconinck & Oliveras [28]. Given the surface profile
η, computing ηt and ηtt is straightforward once the traveling-wave assumption is made.
However, in this special case we know that the tangential velocity at the surface is related
to the surface profile η through

qx = c−
√

(c2 − 2gη)(1 + η2
x),

as described in [28]. Consequently, the second equation (12b) is not required for the bottom
surface reconstruction. This dramatically reduces the computational effort. Furthermore,
the bottom surface in the case of a traveling wave is known to be flat (for otherwise the
bottom boundary ζ must be time-dependent) and we are in search of a single mode for the
bottom surface. One may attempt to find the zero of the norm of the nonlinear function
(12a). However I minimize the full function evaluated at various grid points in the horizontal
variable. In fact, I do not assume the bottom surface to be flat, i.e., I assume the bottom
surface is parametrized by several modes, as in the general case.

Figure 4.2 depicts a 2π-periodic traveling-wave solution (solid line) with max |η| = 0.001.
The bottom boundary is given by ζ = −0.1 and the speed of the wave c = 0.31641443. Thus
ε = 0.01 and µ = 0.016. The initial guess for the bottom surface is shown as a dashed line.
As mentioned earlier, the bottom surface is not assumed to be uniform. The true bottom
surface is given by the thin solid line whereas the dotted line indicates the reconstructed
bottom surface evaluated at select points. Because of the difference in magnitude of the
free surface and bottom topography, I have used dual axes. The relative error in the
reconstructed solution is O(10−10). Note that all modes except the zero mode are reduced in
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Figure 4.2: Flat bottom reconstruction using traveling wave solutions. Note the dual axes
for this figure. The free surface η is shown with the solid bold line (with axis on the left).
The true bottom surface and the reconstructed surface are shown in solid and dotted lines
respectively, with the axis on the right. The initial guess for the least-squares solver is
shown by the dashed line.

magnitude from their initial value. Indeed, in our method, the solution converges precisely
to the bottom surface without any a priori knowledge of the average depth. This is in
contrast to other methods based on water-wave motion that have been suggested in the
literature, for instance [54].

4.2.2 Flat bottom reconstruction using non-stationary waves

Using non-stationary waves, both equations (12a) and (12b) must be solved simultaneously.
In this section I present the reconstruction of a flat bottom, as in the previous example.
When the surface η and normal velocity ηt are given, we are able to reconstruct the flat
bottom of ζ = −0.1. At times t = 0.5 and t = 1.0 (Figure 4.3), the relative error in the
tangential velocity at the surface is O(10−8) and the relative error in the reconstruction
of the bottom surface is O(10−9). The shallowness parameter µ for these cases is 0.008
and ε = 1.25 based on the initial condition for the forward problem. Thus the input data
corresponds to very nonlinear flow in shallow water. Typically, both tangential velocity
and bottom surface need to be well resolved to obtain a zero for the nonlinear functions
(12a-12b).

Figure 4.4 depicts the reconstruction of the same flat surface, but at a later time. As
seen in (4.4b), the normal velocity and its time rate of change are sharply peaked. This
creates some numerical challenges when the fluid velocities at z = −h0 (15-16) are computed
using the same number of Fourier modes as are used for the surface quantities. To allow
the least-squares solver to converge we need to smooth the data at z = −h0 by reducing Kφ

appropriately. On truncating the modes, the solver converges to the true solution. Without
truncation (Kφ = Kη), the least-squares routine converges, however the nonlinear function
has non-zero norm at the solution. This and other numerical issues are discussed in detail
in Section 4.3.
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Figure 4.3: Reconstructing the flat bottom using non-stationary flow. The blue solid bold
line shows the free surface η, the dashed line is the initial guess and red dots depict the
final solution. The true solution is shown by the thin solid line. The true bottom surface
and the reconstruction are indistinguishable on the scale of the figure.
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(b) ηt (solid) and ηtt (dashed) vs. x at t = 2.

Figure 4.4: Reconstructing a flat bottom from non-stationary flow. Figure 4.4a is the same
as Figure 4.3 but at t = 2. Notice the sharply peaked spatial profiles of ηt and ηtt in Figure
4.4b which poses difficulty in bottom surface reconstruction.
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4.2.3 x−dependent bathymetry

In this section I present the recovery of more complicated bottom surfaces. The first exam-
ple is of a surface that is approximated by a finite number of Fourier modes whereas the
remaining examples properly require an infinite number of modes. However in the latter
cases, the bottom surface is well represented by a sufficiently large number of Fourier modes.
In all cases both equations (12a) and (12b) were solved using a least-squares routine assum-
ing the knowledge of η(x, t0) and ηt(x, t0) (obtained from a simulation of the time-dependent
forward problem).

High-frequency wavy bottom

The following bottom surface

ζ = −0.2− (0.01 sin 2x+ 0.025 sinx cos 2x+ 0.01 sin 12x) , (18)

which is represented by a finite number of Fourier modes, was recovered using data from a
simulation of the forward problem. The shallowness parameter varies between 0.0134 and
0.0183 whereas ε is roughly 0.3 indicating moderate amplitude waves in shallow water. Here
I present results from one instance t0, but it should be noted that the same surface may
be recovered from data at any instance. Figure 4.5 presents the bottom surface recovered
for fixed Kqx and increasing Kζ . As seen from Figures (4.5a-4.5d), the bottom surface is
progressively better approximated with increasing Kζ . As Kζ is increased, the norm of the
nonlinear functions in (12a-12b) decreases, providing a check for convergence to the true
solution. Figures 4.5e-4.5f show the bottom surface and tangential velocity at the free-
surface for a suitably large value of Kqx . The relative error in either ζ or qx was observed
to be O(10−9). Note that the zero mode of the bottom surface was recovered from the
least-squares computation as well.

A Gaussian bump

Our next example is the recovery of a localized feature on an otherwise flat bottom-surface.
The bottom surface is given by

ζ = −0.2 + 0.025e−(x−L/2)2 , (19)

where L is the period in the horizontal direction. A localized feature such as a Gaussian
is well represented in Fourier space by a suitably large number of modes. Consequently,
as seen in Figure 4.6, Kζ = 8 is sufficient to recover the bottom surface accurately. The
reduced amplitude in the surface deviation (as compared to the previous example, here
ε = 0.03) implies that large values of Kqx are not required. Figure 4.6c is a plot of the
relative error in the bottom surface ζ (dots) and the tangential velocity at the free-surface
qx (asterisks) versus Kqx . We see a similar convergence to the true solution as Kqx increases.
Larger values of Kqx do not result in any further reduction in the relative error. Possible
reasons for this are discussed in the next section.
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Figure 4.5: Bottom surface reconstruction with different resolutions. Figures 4.5a-4.5e
depict the reconstructed surface (dots) and the true bottom surface (thin solid line) for
different resolutions. The free surface is depicted by the solid bold line. Figure 4.5f shows
the computed (dots) and true (solid) tangential velocity at the free surface.
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Figure 4.6: Reconstruction for the case of a Gaussian bump on bottom surface (19) with
Kζ = 8, Kqx = 24. Figure 4.6a-4.6b show the true solution (thin solid line) and the
computed solution (dots). The bold solid line in 4.6a indicates the free surface η.
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Figure 4.7: Reconstruction of a sandbar profile. Figure 4.7a compares the true (thin solid)
and computed (dots) bottom surfaces. Figure 4.7b is a mode-by-mode comparison of the
amplitude in Fourier space of the true (solid line) and computed solution (dots). The dashed
line indicates the relative error in the amplitude of each mode.

A sandbar

Consider the bottom surface given by

ζ = −0.1 + 0.015 tanh(3(x− 0.3L)) + 0.015 tanh(3(x− 0.7L)), (20)

which models a sandbar. Figure 4.7a presents recovery of this profile (shown with circle
markers) and the true bottom surface (solid line). The free surface (bold solid line) and
initial guess for the bottom surface (dashed line) are shown for reference. Alongside, in
Figure 4.7b, we see the mode-by-mode relative error (dashes) between the computed bottom
surface (dots) and the true bottom surface (solid line). As expected, the relative error is
largest for modes with smallest amplitude. The overall relative error for the bottom surface
in the infinity-norm is O(10−7) and in the 2-norm is O(10−8).

A multi-feature bottom surface

Our final example consists of recovering a more complex bottom surface consisting of two
distinct isolated features: a smooth step and a ripple patch. The exact surface is given by

ζ =− 0.2 + 0.02 tanh 10(x− L/8)− 0.02 tanh 10(x− L/4)

+ 0.02 cos 6x (tanh 10(x− 7L/8)− tanh 10(x− 3L/4)) . (21)

Figure 4.9 shows results for the bottom surface recovery for increasing Kζ . The step-like
condition properly requires an infinite number of Fourier modes, particularly to resolve
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Figure 4.8: Amplitude of Fourier modes for the multi-feature bottom surface (21).

the flat plateau between the features. Indeed the largest error is observed along the flat
surface. Note the increased relative error in recovery of the bottom surface as compared to
the other examples. The increased error is in part due to the fact that the bottom surface
is not fully resolved in the forward simulation. The amplitudes of the Fourier modes of the
bottom surface used in the forward simulation are shown in Figure 4.8. Ideally, the largest
mode resolved should have amplitude on the order of machine precision (which is 10−15 for
these calculations). As a result, the Hamiltonian for the time-dependent evolution of the
water waves has a relative error of O(10−6) compared to the desired O(10−15) for the other
simulations. In effect, this example illustrates the reconstruction of the bottom surface from
data that is not an accurate solution to the water-wave problem. Of course, there are many
issues to be separated before we can conclusively establish reconstruction from erroneous
data. However, this example indicates some degree of reliability in bathymetry detection.

4.3 Discussion of numerical issues

Not unexpectedly, the majority of the numerical issues stem from the ill posed nature of the
inverse problem, as expressed through the presence of the growing hyperbolic functions in
our formulation. In this section I discuss various consequences of the hyperbolic functions
on the reconstruction of the bottom surface.

4.3.1 Number of modes vs. length scales

Due to the exponential growth of the hyperbolic functions present in the nonlinear equa-
tions (12a) and (12b), numerical overflow is observed if the wavenumbers involved in the
calculation are too large. Even when the overflow is avoided, due to the finite precision
of the floating point representation, the accuracy in evaluating the expressions involved in
the nonlinear functions is easily lost for larger wavenumbers. The inaccuracy in evaluating
the left-hand side of the nonlinear equations results in inaccurate reconstructions. Large
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Figure 4.9: Reconstruction of the multi-feature bottom surface (21) using different resolu-
tions for the bottom surface. The thin solid line indicates the true solution and the dotted
line shows the computed solution. The solid blue line is the free surface η and the dashed
line is the initial guess for the least-squares solver.
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wavenumbers are required to reconstruct bottom surfaces corresponding to large amplitude
waves, as well as to reconstruct fine detail of the bottom surface. To inhibit the size of
the wavenumbers involved, we are forced to consider water waves with small µ values. The
natural interpretation is that long waves enable easier reconstruction of bottom surfaces
than short waves. A useful check on the inaccuracy of the function evaluation is to compare
the relationship between the nonlinear function F and its derivative. If the function and its
derivative are correctly evaluated then

‖F (ζ + ∆ζ)−DF (ζ)∆ζ‖ = O(‖∆ζ‖2). (22)

Typically, with larger values for Kζ , Kqx , Kφ and Kη, this behavior is not observed. As a
result, establishing convergence of the reconstructed bottom surface for larger values of these
wavenumbers is not possible on a machine with finite precision. This is true particularly
in the cases when the bottom surface properly requires an infinite number of modes to be
accurately represented and to avoid the Gibbs phenomenon.

4.3.2 The problem of deep water

The equations describing water waves are such that, for large values of µ (i.e. deep water),
the gradient of the velocity potential rapidly decreases in magnitude. To see why this may
be the case, consider the following boundary-value problem

φxx + φzz = 0,

for φ periodic in x with period 2π and

φ(x, 0) = f(x), φz(x, h) = 0.

The solution to this boundary-value problem is given by

φ(x, z) =

∞∑
n=−∞

einx
cosh(n(z + h))f̂k

cosh(kh)
.

The z−derivative vanishes at z = −h due to the boundary condition. The x−derivative at
z = −h

φx(x,−h) =

∞∑
n=−∞

einx
ikf̂k

cosh(kh)
,

is seen to decay uniformly in x as h → ∞. Thus a consequence of terms such as cosh(kz)
and sinh(kz) in (3) is that the solution decays exponentially in the vertical direction. The
bottom surface we seek to reconstruct is defined as the zero of a function whose coefficients
decay rapidly to zero. Hence on a finite-precision machine, finding the zero of this function
is challenging. For sufficiently large depth, the function itself may evaluate identically to
zero up to machine precision. At this point any function ζ(x) is a viable candidate for the
bottom topography and the least-squares routine may converge to an incorrect solution.
In the example shown in Figure 4.10, we try to reconstruct a flat bottom from a small
(but nonzero) amplitude traveling wave in fairly deep water. Since the wave is a stationary
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Figure 4.10: Reconstructing the bottom surface in “deep water”. Note the dual axes for
the free surface η (on the left) and the bottom surface ζ (on the right). The free surface
is shown by the solid bold line whereas the reconstructed bottom surface is shown by the
dotted line. The true bottom surface is give by the thin solid line and the initial guess for
the least-squares solver is shown by the dashed line (both with axes on the right).

solution, we may use (12a) alone to solve for the bottom surface as in section 4.2.1. The
phrase “deep water” does not reflect the standard use in water-wave stability theory, as
it is unrelated to the Benjamin-Feir instability. I use the word “deep” rather loosely to
signify a regime where the fluid velocities are of the order of machine precision near the
bottom boundary. Hence the phrase “deep water” refers to a purely numerical effect which
is not distinguished by any physical phenomena. On any machine with finite precision, there
are values of the shallowness parameter µ (typically much larger than 1) which imply the
water is deep in our sense of the term and inhibit bottom-surface reconstruction. Certainly,
computing the solution on a machine which supports arbitrary precision overcomes this
issue. This paper does not discuss arbitrary precision computations. It should be remarked
that the surface velocities are nonzero throughout the horizontal interval and they are not
on the order of machine precision at the free surface. However, the velocities of the fluid are
on the order of machine precision near z = −0.9. One possible fix to the situation described
above on a machine with finite precision is to “lose” Fourier modes as we proceed deeper in
the fluid. Instead of maintaining the number of modes for the fluid velocities at z = −h0

(15-16), equal to those used at the surface, I reduce Kφ (in effect smooth the velocities) to
a lower resolution. Figure 4.11 displays such a reconstruction with a relative error for the
bottom surface reconstruction on the order of 10−11. Thus, for deeper water (µ large) we
can reconstruct only the large-scale features of the bottom topography effectively recovering
the features corresponding to shallow water. Of course, for sufficiently deep water, bottom
surface reconstruction is practically impossible.

The effect of deep water remains when considering non-stationary flow as is seen by
considering the same bottom shape as given by equation (20) but at a deeper level. Figure
4.12 depicts this situation for a reduced value of Kφ (about half of Kη). The relative error
in the reconstruction is O(10−2) for both the 2-norm and the infinity norm. In this case, the
situation is further compounded by the fact that the nonlinear function is harder to evaluate
due to the loss of precision as the argument of the hyperbolic functions increases. Indeed,
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Figure 4.11: Reconstruction of the bottom surface in Section 4.3.2 using a lower resolution
at z = −h0 than that of Figure 4.10.

the nonlinear function and its derivative do not obey relationship (22) for this example.

4.3.3 Localized free-surfaces

It is intuitively obvious that still water (no surface deviation and zero surface velocities) can
be bounded by any bottom surface. The difficulty in proving uniqueness of solutions to the
set of equations (12a-12b) is in part due to this fact. Although the expressions are simpler
when the surface deviation is zero, uniqueness of solutions does not hold. In this section I
show this explicitly. Also I provide examples from simulations where this behavior can be
observed.

Given the nature of water-wave motion, if the surface deviation is nonzero, then the
normal velocity ηt at the surface must be nonzero as well. The method of reconstruction
presented in this chapter requires non-zero η, ηt and ηtt. In the case when η = ηt = ηtt = 0
the expressions for the nonlinear equations simplify considerably. They become

−i
∑
kn∈Λ

eiknx sinh(knζ)q̂x − ζx
∑
kn∈Λ

eiknx cosh(knζ)q̂x = 0, (23)

−i
∑
kn∈Λ

eiknx sinh(knζ)q̂xqxx − ζx
∑
kn∈Λ

eiknx cosh(knζ)q̂xqxx = 0. (24)

The periodicity of the function q implies these expressions can be rewritten as

∂x
∑
kn∈Λ

ieiknx sinh(knζ)q̂ = 0, (25)

∂x
∑
kn∈Λ

ieiknx sinh(knζ)
q̂2
x

2
= 0. (26)

These equations possess infinitely many non-trivial solutions as any ζ satisfies these equa-
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Figure 4.12: Reconstruction of the sandbar profile (20) in deep water. Figure 4.12a compares
the true (thin solid) and computed (dots) bottom surfaces. Figure 4.12b is a mode-by-mode
comparison of the amplitude in Fourier space of the true (solid line) and computed solution
(dots). The dashed line indicates the relative error in the amplitude of each mode.

tions for q constant since ∫ L

0
eiknxCdx = C

∫ L

0
eiknxdx,

= Cδkn0,

where δkn0 is the Kronecker delta

δkn0 =

{
1, kn = 0,
0, kn 6= 0.

Following [24], equation (25) is a reformulation of the boundary-value problem

φxx + φzz = 0, 0 < x < L, ζ < z < 0, (27a)

φz = 0, z = 0, (27b)

φz − ζxφx = 0, z = ζ. (27c)

The solution of this boundary-value problem may be written as

φ =
∞∑

k=−∞
eikx cosh(kz)Φ̂k.

The boundary condition at z = ζ may be written in the form (25) with Φ̂ in the place
of q̂. In other words, q is the Dirichlet value at the surface z = 0 for the boundary-value
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problem associated with the first equation (23). The second equation (24) corresponds to
a boundary-value problem with q2

x/2 as the Dirichlet value at the surface z = 0. Further,
nontrivial q that solve (23) imply nontrivial solutions for the above BVP (27a-27c). However,
since the only nontrivial solutions for φ in the above boundary-value problem are constants,
q is at most a constant in (23) and q2

x/2 is at most a constant in (24). Hence q = C for
some constant C. It should be noted that ζ can be any continuously differentiable periodic
function.

As a consequence of the arguments presented above, we do not expect the least-squares
routine to capture the true bottom surface when η = ηt = ηtt = 0. In practice, the least-
squares routine performs poorly when η, ηt and ηtt are near machine epsilon. Consider the
example depicted in Figure 4.13 where I attempt to reconstruct the bottom surface using
a localized free surface. Figure 4.13 shows three different positions of the localized surface
deviation. The left column displays the free surface (bold solid line), reconstructed bottom
surface (dashed line with dots) and true bottom surface (thin solid line). The right column
compares the computed tangential velocity (dots) with the true tangential velocity (solid
line). Of course, the localized free surface implies velocities (and consequently ηt and ηtt)
are negligible far away from the localized disturbance. Clearly, the recovery is much better
at those locations where the free-surface deviation is not negligible and poorer further away.
It should be noted that the tangential velocity at the free surface is well resolved.

4.4 Examples revisited

To finish, I present results for bottom surface recovery using the surface deviation η (but
not its t−derivative) as a function of the horizontal variable x at several times. A five-point
finite-difference stencil is used to compute the time derivatives ηt and ηtt. Figure 4.14 shows
the bottom surface recovered for the examples of Section 4.2.3. All errors reported are in the
L2-norm. In all cases, relation (22) holds for the given input data and choice of parameters
(Kη and Kφ).

As seen in Figure 4.14, the error induced by the finite-difference approximation of ηt
and ηtt does not significantly affect the bathymetry reconstruction. The relative error in
bottom surface reconstruction is certainly greater than that observed earlier in Section 4.2.3
but not by much. As the reconstructions obtained using finite differences to compute time
derivatives are remarkably accurate, I do not pursue more sophisticated methods to compute
t−derivatives. Further, the finite-difference stencil uses the surface elevation η at five points
in time and thus requires minimal input data.

To conclude, I have presented a technique to reconstruct the bottom boundary of an
ideal incompressible irrotational fluid using only measurements of the free-surface elevation
at several instances of time. The method makes no assumption on the magnitude or form
of the surface elevation. It is valid for both one- and two-dimensional surface profiles and
is accurate in the shallow-water regime.
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puted (dots) bottom surface.
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(d) True and computed tangential ve-
locity at surface.
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(e) True (thin solid line) and com-
puted (dots) bottom surface.
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Figure 4.13: Recovering the bottom surface using localized surface deviations. Each row
presents a reconstruction based on a different localized surface elevation profile (bold solid
line in the left column). The left column shows true and computed bottom surfaces and the
right column depicts the computed tangential velocity at the surface.
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Figure 4.14: Bottom surface reconstructions using finite differences to approximate time
derivatives of the surface elevation η. I repeat the examples from Section 4.2.3 (bottom
surfaces given by (18-21)) using only the surface elevation at several times as input data.
A five-point finite-difference stencil is used to approximate the time derivatives. The true
(thin solid line) and computed (dots) bottom surface cannot be distinguished on the scale
of the figure. The free surface η is shown as a solid bold line and the initial condition for
the least-squares solver is given by the dashed line.
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Chapter 5

THE PRESSURE PROBLEM

I would like to acknowledge my collaborators Katie Oliveras and Diane Henderson. Their
efforts are essential to obtain the results of this chapter. This chapter contains material
published in SIAM Journal on Applied Mathematics. The copyright for the material is held
by SIAM.

In field experiments, the elevation of a surface water-wave in shallow water is often
determined by measuring the pressure along the bottom of the fluid, see e.g. [7, 11, 47,
48, 66, 65]. A variety of approaches are used for this. The two most commonly used are
the hydrostatic approximation and the transfer function approach. For the hydrostatic
approximation [15, 27],

η(x, t) =
P (x,−h, t)

ρg
− h, (1)

where g is the acceleration due to gravity, h represents the average depth of the fluid, ρ is the
fluid density, P (x,−h, t) is the pressure as a function of space x and time t evaluated at the
bottom of the fluid z = −h, and η(x, t) is the zero-average surface elevation. Throughout,
we assume that all wave motion is one-dimensional with only one horizontal spatial variable
x. The hydrostatic approximation is used, for instance, in open-ocean buoys employed for
tsunami detection by the National Data Bouy Center.

The transfer function approach uses a linear relationship between the Fourier transforms
F of the dynamical part of the pressure and the elevation of the surface [15, 27, 31, 46]:

F {η(x, t)} (k) = cosh(kh)F {p(x, t)/g} (k), (2)

where p(x, t) = (P (x,−h, t) − ρgh)/ρ is the dynamic (or non-static) part of the pressure
P (x, z, t) evaluated at the bottom of the fluid z = −h, scaled by the fluid density ρ. In this
relationship, η and p are regarded as functions of the spatial coordinate x, with parametric
dependence on time t. It is equally useful to let t vary for fixed x, as would be appropriate
for a time series measurement, which results in extra factors of the wave speed c(k), due to
the presence of a temporal instead of a spatial Fourier transform.

It is well understood that nonlinear effects play a significant role when reconstructing
the surface elevation for shallow-water waves or for waves in the surf zone (see [10, 11, 65],
for instance). Since nonlinear effects are not captured by the linear transfer function (2),
different modifications of (2) have been proposed. One approach is to modify the transfer
function to incorporate extra parameters (e.g., multiplicative factors, width scalings) that
are tuned to fit data [47, 48, 65]. A less empirical approach is followed in [10] and [50] where
corrections to the transfer function are proposed based on higher-order Stokes expansions.
Bishop & Donelan [11] examine the empirical approaches and argue that the inclusion of
the proposed parameters is not necessary as errors from inaccuracy in instrumentation and

http://www.ndbc.noaa.gov/
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analysis are likely to outweigh the benefit of their presence. In this chapter, we do not
include any of the modified transfer function approaches in the comparisons we make in
section 5.4.

Bishop and Donelan [11] acknowledge that the linear response cannot accurately capture
nonlinear effects. While both the hydrostatic model and the transfer function approach are
accurate on some scales, they fail to reconstruct the surface elevation accurately in the case
of large-amplitude waves, as might be expected. Errors of 15% or more are common, as
is shown and discussed below. In order to address the inaccuracies of the linear models,
nonlinear methods are required. With the exception of recent work by Escher & Schlurmann
[31] and Constantin & Strauss [23], few nonlinear results are found in the literature. Escher
& Schlurmann [31] provide a consistent derivation of (2) and offer some thoughts about
the impact of nonlinear effects. Starting from a traveling wave assumption, Constantin
& Strauss [23] obtain different properties and bounds relating the pressure and surface
elevation. However, they do not present a reconstruction method to accurately determine
one function in terms of the other. The paper [22] revisits the mathematical properties
found by these authors, and examines them in an experimental setting. From a theoretical
point of view the qualitative properties of the pressure play a central role in understanding
the properties of irrotational traveling water waves such as in showing that their free surface
is the graph of a function [61, 67], and in discerning the patterns of particle paths beneath
them [19, 21, 20].

One way to obtain an improved pressure-to-surface elevation map is to use perturbation
methods to determine nonlinear correction terms to (2). Several such approaches are given
below, and we include them when comparing the different methods. The main focus, how-
ever, is the presentation of a new nonlocal nonlinear relationship between the pressure at
the bottom of the fluid, and the elevation of a traveling-wave surface that captures the full
nonlinearity of Euler’s Equations. The advantage of this approach is that

1. it allows for the surface to be reconstructed numerically from any given pressure data
for a traveling wave,

2. it provides an environment for the direct analysis of the relationship between all
physically relevant parameters such as depth and wave speed,

3. and it allows for the quick derivation of perturbation expansions such as the ones
mentioned above.

4. Although the approach is formally limited to traveling waves, it can be applied with
great success to more general wave profiles that are not merely traveling. This is
illustrated and discussed below.

In what follows, we derive these nonlocal relations and demonstrate their practicality.
We compare results from the nonlocal formulation with those from the linear approaches
and different nonlinear perturbative models, using both numerical data for traveling waves
in shallow water, and experimental data obtained at Penn State’s Pritchard Fluid Mechanics
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Figure 5.1: The fluid domain D for the water wave problem. An idealized pressure sensor
is indicated at the bottom. In our calculations the pressure measurement is assumed to be
a point measurement.

Laboratory. We demonstrate the superiority of the nonlocal reconstruction formula for a
large range of amplitudes. In addition, using the Implicit Function Theorem, we analyze
the nonlocal formulation in order to demonstrate its solvability for the surface elevation
given the pressure.

5.1 A nonlocal formula relating pressure and surface elevation

Consider Euler’s equations describing the dynamics of the surface of an ideal irrotational
fluid in two dimensions (with a one-dimensional surface):

φxx + φzz = 0, (x, z) ∈ D, (3)

φz = 0, z = −h, (4)

ηt + ηxφx = φz, z = η(x, t), (5)

φt +
1

2

(
φ2
x + φ2

z

)
+ gη = 0, z = η(x, t), (6)

where φ(x, z, t) represents the velocity potential of the fluid with surface elevation η(x, t).
As posed, the equations require the solution of Laplace’s equation inside the fluid domain D,
see Figure 5.1. If the problem is posed on the whole line x ∈ R, we require that all quantities
approach zero at infinity. If periodic boundary conditions are used then all quantities at
the right end of the fluid domain are equal to those at the left end. Below we work with
the whole line problem, stating only the results for the periodic case.

Following [71], let q(x, t) represent the velocity potential at the surface z = η(x, t), so
that

q(x, t) = φ(x, η(x, t), t). (7)

Combining the above with equation (5), we have

φz = ηt + (qx − φzηx) ηx,
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obtained by taking an x-derivative of (7). This allows us to solve directly for φz in terms
of η and q:

φz =
ηt + ηxqx

1 + η2
x

. (8)

Using (5) again gives an expression for φx, while taking a t-derivative of (7) leads to an
expression for φt:

φx =
qx − ηxηt

1 + η2
x

, φt = qt −
ηt (ηt + ηxqx)

1 + η2
x

. (9)

Note that (8) and (9) are valid on the fluid surface only. Substituting these expressions into
the dynamic boundary condition (6) we find

qt +
1

2
q2
x + gη − 1

2

(ηt + qxηx)2

1 + η2
x

= 0, (10)

after some simplification.

Next, we restrict to the case of a traveling wave moving with velocity c. We introduce
ξ = x − ct, so that x and t-derivatives become ξ-derivatives, the latter multiplied by −c.
The Bernoulli equation (10) becomes a quadratic equation in qξ:

− cqξ +
1

2
q2
ξ + gη − 1

2

η2
ξ (qξ − c)2

1 + η2
ξ

= 0. (11)

Solving this quadratic equation, we find

qξ = c±
√

(c2 − 2gη)(1 + η2
ξ ), (12)

where for c > 0 we choose the − sign, to ensure that the local horizontal velocity is less
than the wave speed [23]. Similarly, for c < 0 the + sign should be chosen.

Substituting this result into (8) and (9), we find

φξ = c−
√
c2 − 2gη

1 + η2
ξ

, φz = −ηξ

√
c2 − 2gη

1 + η2
ξ

, (13)

where we have chosen c > 0, without loss of generality. This simple calculations allows us
to to express the gradient of the velocity potential at the surface directly in terms of the
surface elevation.

Returning to the original coordinate system (x, z, t), letQ(x, t) = φ(x,−h, t), the velocity
potential at the bottom of the fluid. Inside the fluid, we know that the Bernoulli equation
holds:

φt +
1

2

(
φ2
x + φ2

z

)
+ gz +

P (x, z, t)

ρ
= 0, − h ≤ z ≤ η(x, t). (14)

Evaluating this equation at z = −h, we find
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Qt +
1

2
Q2
x − gh+

P (x,−h, t)
ρ

= 0. (15)

Moving to a traveling coordinate frame as before, we obtain a quadratic equation for Qξ.
Solving for Qξ we find

Qξ = c−
√
c2 − 2p, (16)

where p(ξ) represents the non-static part of the pressure at the bottom in the traveling
coordinate frame, scaled by the fluid density: p(ξ) = P (x− ct,−h)/ρ− gh. For consistency
with our previous choice, we work with the − sign again. Next, we connect the information
at the surface with that at the bottom of the fluid.

Within the bulk of the fluid D,

φξξ + φzz = 0, (17)

where the boundary conditions given in (13) and (16) must also be satisfied. We can write
the solution of this equation as

φ(ξ, z) =
1

2π

∫ ∞
−∞

eikξΨ(k) cosh (k (z + h)) dk, (18)

where the boundary condition for φz at z = −h is satisfied. For the boundary condition at
the bottom for φξ we find

1

2π

∫ ∞
−∞

ikeikξΨ(k) dk = c−
√
c2 − 2p, (19)

so that

ikΨ(k) = 2πcδ(k)−F
{√

c2 − 2p
}

(k), (20)

where δ(k) is the Dirac delta function and F denotes the Fourier transform: F{y(ξ)}(k) =∫∞
−∞ y(ξ) exp(−ikξ)dξ. Evaluating φξ(ξ, z) at the surface z = η, we have

φξ(ξ, η) =
1

2π

∫ ∞
−∞

eikξikΨ(k) cosh (k (η + h)) dk

= c− 1

2π

∫ ∞
−∞

eikξ cosh (k (η + h))F
{√

c2 − 2p
}

(k) dk.

Using the boundary conditions given in (13), we find the nonlocal relationship√
c2 − 2gη

1 + η2
ξ

=
1

2π

∫ ∞
−∞

eikξ cosh (k (η + h))F
{√

c2 − 2p
}

(k) dk. (21)

Equation (21) is the main result of this chapter. It provides an implicit relationship
between the surface elevation of a localized traveling wave η(x) and the pressure measured
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at the bottom of the fluid p(ξ). For the remainder of this chapter we investigate how this
relationship may be used to compute η(ξ) if p(ξ) is known, and how different asymptotic
formulas may be derived from it.

Remark 5.1.1 In order to extend the above to periodic boundary conditions, we use the
periodic generalization of the formulation of Ablowitz, Fokas, & Musslimani AFM, see [28].
Following the steps outlined above, this allows for the derivation of a relation between the
surface elevation of a periodic traveling wave and the pressure at the bottom:√

c2 − 2gη

1 + η2
ξ

=
1

2π

∞∑
k=−∞

eikξ cosh (k (η + h)) P̂k, (22)

where P̂k =
∫ 2π

0 e−ikξ
√
c2 − 2p(ξ) dξ. In what follows, we will use either (21) or (22).

Remark 5.1.2 In the above, we have assumed there exists a smooth solution to the water
wave problem (3-6). Given a speed c and a non-hydrostatic pressure profile p as inputs, we
aim to solve (21) for η. However, these inputs cannot be independent of each other: indeed
arbitrary pressure profiles will not lead to surface elevations corresponding to solutions of
(3-6). One expects that for a given speed c, there exists a surface elevations η and associated
pressure profile p. In order to back up this intuition, we require another relation between
η, p and c. Such a relation is found by taking a derivative with respect to z of (18) and
equating the result to the right-hand side of the second equality in (13). Finally, (20) is
used, resulting in

ηx

√
c2 − 2gη

1 + η2
x

=
−i
2π

∫ ∞
−∞

eikx sinh(k(η + h))F
{
c−

√
c2 − 2p

}
(k)dk. (23)

The system of equations (21) and (23) may be solved to obtain both η and p, given c. We
will not pursue this issue further and content ourselves with establishing a map from p to η.

For the purposes of the question considered here, the above is not an issue: we assume
that the given pressure originates from experimental observations and hence corresponds to
a solution of (3-6), to the extent that the Euler equations provide an accurate model for the
water wave problem.

Remark 5.1.3 Obtaining the pressure at the bottom from the surface elevation.
An explicit nonlinear relationship for the pressure at the bottom in terms of the surface
elevation may be obtained directly from the approach of Ablowitz, Fokas and Musslimani.
Consider the relationship (the one-dimensional version of Equation 1.11 in [2])

∫ ∞
−∞

eikx±|k|(η+h) (sgn(k)ηt − i qx) dx = −i
∫ ∞
−∞

eikxφx(x,−h, t)dx, k ∈ R0. (24)

Changing to a moving frame of reference and substituting the expressions (12,16) into this
relation one obtains
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∫ ∞
−∞
eikx±|k|(η+h)

(
∓ic ηx +

(
c−

√
(c2 − 2gη)(1 + η2

x)
))

dx =

∫ ∞
−∞
eikx

(
c−

√
c2 − 2p

)
dx,

(25)
where top and bottom signs are selected consistently, and either choice is allowed. The right-
hand side is essentially the Fourier transform of the quantity c −

√
c2 − 2p. Inverting this

transform, one may solve for the pressure at the bottom in terms of the surface elevation.
Equation (25) provides an alternative to (21) and can be used in its stead. The formula
(25) is advantageous if one wishes to compute the pressure, given the surface elevation. A
key point is that analyzing the global relation, one can formally derive suitable expressions
to map data from one boundary to the other.

Remark 5.1.4 The explicit relation between (21) and (25) requires an understanding of the
operators appearing in these equations. Such considerations are examined in [3] and [24].
Notice that these same operators appear when addressing the Forward Problem (Chapter
3) as well as the Inverse Problem (Chapter 4), emphasizing the relevance of adopting an
approach that involves the global relation. Each of these problems is a different boundary-
value problem for the same PDE (i.e., Laplace’s equation) and each may be handled with
equal ease using the associated global relations. The Pressure Problem is in a sense simpler
than the Inverse Problem since we are given the information at a horizontal line, namely,
the bottom z = −h.

5.2 Existence and uniqueness of solutions to the nonlinear formula

In this section, we analyze (21). Among other results, using the Implicit Function The-
orem, we show that the nonlocal relation (21) gives rise to a well-defined map from the
pressure profile to the surface elevation: given the pressure profile p at the bottom, (21)
defines a unique surface elevation η. In other words, we can expect the asymptotic and
numerical methods employed in the next sections to produce faithful approximations to the
true solution.

Define the operator F , parameterized by c ∈ R, by

F (η, p) = c−

√
c2 − 2gη

1 + η2
x

− 1

2π

∫ ∞
−∞

eikx cosh(k(η + h))F
{
c−

√
c2 − 2p

}
(k)dk. (26)

Note that F (η, p) = 0 is equivalent to (21). Using the Implicit Function Theorem, we wish to
show that the equation F (η, p) = 0 has a solution profile η, given sufficiently small pressure
p. We have that F (0, 0) = 0. In order to apply the Implicit Function Theorem, we need
to define appropriate Banach spaces for which the operator F is defined. First we seek a
suitable space for η. An obvious choice is η ∈ C1[R,R], i.e., η is a continuously differentiable
function which vanishes at infinity. This space is supplied with the usual norm:

‖η‖C1 = sup
x∈R
|η(x)|+ sup

x∈R
|η′(x)|. (27)
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If ‖η‖C1 < c2/2g then c −
√

(c2 − 2gη)/(1 + η2
x) represents a continuous function of x.

Hence we are motivated to define the image of F in C[R,R]. Consequently, we wish for∫ ∞
−∞

eikx cosh(k(η + h))F
{
c−

√
c2 − 2p

}
(k)dk,

to be a continuous function of x. For finite ‖η‖C1 , this nonlocal term is a continuous function
of x if ∫ ∞

−∞
cosh(k(‖η‖C1 + h))

∣∣∣F {c−√c2 − 2p
}
(k)
∣∣∣ dk <∞, (28)

and if the integrand of the nonlocal term is a continuous function of x for every k (see
Theorem 2.27 on pg. 56 of [41]). Let us consider the second condition, namely, the continuity
of the integrand. Since by assumption η is continuous, the continuity in x of the integrand
requires

sup
k

∣∣∣F {c−√c2 − 2p
}
(k)
∣∣∣ <∞. (29)

An application of the Cauchy-Schwarz inequality gives

∣∣∣F {c−√c2 − 2p
}

(k)
∣∣∣ ≤ (∫ ∞

−∞

1

1 + |x|2
dx

) 1
2
(∫ ∞
−∞

(1 + |x|2)
∣∣∣c−√c2 − 2p

∣∣∣2 dx) 1
2

.

Hence, we impose the following condition on the pressure p:∫ ∞
−∞

(1 + |x|2)
∣∣∣c−√c2 − 2p

∣∣∣2 dx <∞. (30)

Next, we return to the first condition (28). Due to the presence of the hyperbolic cosine,
we expect that it is necessary for F{c −

√
c2 − 2p}(k) to have sufficient decay for large

|k|. Let M > h+ ‖η‖C1 . Starting from the integral in (28), we apply the Cauchy-Schwarz
inequality again to find

∫ ∞
−∞

cosh(k(‖η‖C1 + h))e−M |k|eM |k|
∣∣∣F {c−√c2 − 2p

}
(k)
∣∣∣ dk

≤
(∫ ∞
−∞

(
cosh(k(‖η‖C1 + h))e−M |k|

)2
dk

) 1
2
(∫ ∞
−∞

e2M |k|
∣∣∣F {c−√c2 − 2p

}
(k)
∣∣∣2dk) 1

2

≤ C
(∫ ∞
−∞

e2M |k|
∣∣∣F {c−√c2 − 2p

}
(k)
∣∣∣2dk) 1

2

,

for some constant C. Thus, if the conditions

∫ ∞
−∞

e2M |k|
∣∣∣F {c−√c2 − 2p

}
(k)
∣∣∣2 dk <∞ (31)

and

∫ ∞
−∞

(1 + |x|2)
∣∣∣c−√c2 − 2p

∣∣∣2 dx <∞ (32)
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hold, the function F (η, p)(x) is continuous for η ∈ C1.

Having found the conditions (31-32), we now determine an appropriate function space
for p so that they are satisfied. The following theorem due to Paley and Wiener (Theorem 4
pg. 7 of [57]) is helpful.

Theorem 5.2.1 If w(z) (with z = x+ iy) is an analytic function in the strip −λ ≤ y ≤ µ
where λ, µ > 0 and ∫ ∞

−∞
|w(x+ iy)|2dx <∞, −λ ≤ y ≤ µ,

then there exists a measurable function ŵ(k) such that∫ ∞
−∞
|ŵ(k)|2e2µkdk <∞,

∫ ∞
−∞
|ŵ(k)|2e−2λkdk <∞,

and

w(x+ iy) = lim
A→∞

∫ A

−A

1

2π
ŵ(k)eik(x+iy)dk, −λ ≤ y ≤ µ

where the limit is to be understood in the mean-square sense.

In other words, the Fourier transform of w(x) exists and it has decay as specified above.
In particular, for any M < min{λ, µ}

∫ ∞
−∞

e2M |k||ŵ(k)|2dk =

∫ ∞
0

e2Mk|ŵ(k)|2dk +

∫ 0

−∞
e−2Mk|ŵ(k)|2dk,

=

∫ ∞
0

e2Mke−2µke2µk|ŵ(k)|2dk +

∫ 0

−∞
e−2Mke2λke−2λk|ŵ(k)|2dk,

≤
∫ ∞

0
e2µk|ŵ(k)|2dk +

∫ 0

−∞
e−2λk|ŵ(k)|2dk <∞.

The theorem implies that a sufficient condition for (31) to hold is that c−
√
c2 − 2p is

an analytic function of z within a strip of width at least 2M centered around the real axis
and that it is square-integrable along lines parallel to the real axis within this strip. Of
course, the presence of the square root is a hinderance to the analyticity of the function.
Consequently, we require that |p| < c2/2 everywhere in the strip. This condition also implies
the square-integrability of the function if p is square-integrable. Indeed, the function

f(z) = c−
√
c2 − 2z,

is analytic (and hence Lipschitz) in a neighborhood of the origin for which |z| < c2/2.
Hence, for all z1, z2 in such a neighborhood of the origin we have

|f(z1)− f(z2)| ≤ C|z1 − z2|, (33)
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for some constant C. In particular, since f(0) = 0,

|f(z)| ≤ C|z|, (34)

uniformly for all |z| ≤ δ < c2/2, i.e., the constant C is independent of z. Next, consider
the function f(p(z)), where p(z) is a function which is analytic and bounded in the strip of
width 2M . This implies

|f(p(z))| ≤ C|p(z)|. (35)

As above, the constant C is independent of p(z) and thus of z, provided |p(z)| < c2/2.
Thus the square-integrability of p(z) implies the square-integrability of c −

√
c2 − 2p for

|p| ≤ δ < c2/2 for every z in the strip. Thus, if p(z) is an analytic function in the strip of
width at least 2M , square-integrable along lines parallel to the real axis, and bounded in
the strip, the first condition (31) holds.

Another theorem due to Paley and Wiener (Theorem 2 pg 5 of [57]) allows us to bound
|p| in terms of the L2-norm.

Theorem 5.2.2 Let w(z) be analytic in the strip −λ ≤ y ≤ µ with µ, λ > 0 and∫ ∞
−∞
|w(x+ iy)|2dx <∞, −λ ≤ y ≤ µ, (36)

then for any z in the interior of the region

w(z) =
1

2π

∫ ∞
−∞

w(x+ iµ)

x+ iµ− z
dx− 1

2π

∫ ∞
−∞

w(x− iλ)

x− iλ− z
dx. (37)

In particular, an application of the Cauchy-Schwarz inequality shows that for any y ∈ [−λ+
ε, µ− ε] with ε > 0, w(z) is bounded in terms of the L2 norms of w(x+ iµ) and w(x− iλ).

Collecting these ideas, we choose the pressure p to be in the space of analytic functions
in the symmetric strip of width 2M about the real axis such that∫ ∞

−∞
(1 + |x|2)|p(x+ iy)|2dx <∞, −M ≤ y ≤M. (38)

Note that this complex-analytic extension of p to the strip around the real axis is not
necessarily the dynamic pressure. Condition (38) guarantees that the second condition (32)
is also satisfied. Let HM denote the space defined by (38). It is endowed with the norm

‖p‖HM = sup
|y|≤M

[∫ ∞
−∞

(1 + |x|2)|p(x+ iy)|2dx
]1/2

. (39)

We claim that HM is a Banach space. Indeed, with the obvious definitions of addition and
scalar multiplication for elements p ∈ HM , HM is a vector space. It is straightforward to
verify that (39) defines a norm. Thus, it remains to verify completeness. Let {fk} be a
Cauchy sequence in HM . With the norm above, this sequence converges to a complex-valued
function f defined on the strip since for fixed y, {fk} defines a Cauchy sequence in the space
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L2 with weight (1 + |x|2) and has the limit f(·, y) in this space for each y. We define the
function

f(x, y) = lim
k→∞

fk(x+ iy), y fixed. (40)

Since {fk} is a Cauchy sequence, for every ε > 0 there exists an N such that for n, k ≥ N

‖fn − fk‖HM ≤ ε. (41)

This implies ∫ ∞
−∞

(1 + |x|2)|fn(x+ iy)− fk(x+ iy)|2dx ≤ ε, (42)

for every |y| ≤M . Letting k →∞ in the above integral we obtain∫ ∞
−∞

(1 + |x|2)|fn(x+ iy)− f(x, y)|2dx ≤ ε, (43)

for every |y| ≤ M and thus fn → f in the HM norm. Theorem 5.2.2 implies the pointwise
bound

|w(x+ iy)| ≤ C‖w(x+ iy)‖HM , (44)

for x + iy in the interior of the strip. Consequently, convergence in HM implies uniform
convergence on compact subsets of the strip. From Morera’s Theorem, it follows that the
Cauchy sequence of analytic functions fk converges to an analytic function, thus the space
HM is complete.

We now state the theorem for the existence of a map from the pressure beneath a
traveling wave to the surface elevation of the wave.

Theorem 5.2.3 Let p and η be the bottom pressure and surface elevation, respectively,
obtained by solving the Euler equations augmented with (14). Assume that p ∈ HM+ε for
some M > h, ε > 0 and that ‖η‖C1 < min[M − h, c2/2g]. Then for fixed c 6= 0 and
sufficiently small p, the equation

c−

√
c2 − 2gη

1 + η2
x

=
1

2π

∫ ∞
−∞

eikx cosh(k(η + h))F
{
c−

√
c2 − 2p

}
(k)dk,

has a solution η̃. Further, η̃ = η, the surface water-wave profile of the stationary water
wave problem with speed c.

Proof. Let M > h and ε > 0. By Theorem 5.2.2 there is a ball V around the origin in
HM+ε i.e., V = {p ∈ HM+ε : ‖p‖HM+ε

< δ}, such that

sup
|y|≤M+ε/2

|p(x+ iy)| ≤ S < c2

2
.
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By definition, p ∈ V is bounded, analytic and square integrable along lines parallel to the
real axis. Then the function c−

√
c2 − 2p is also analytic and square integrable along lines

parallel to the real axis in a strip of width 2(M + ε/2) symmetric with respect to the real
axis. Using Theorem 5.2.1,∫ ∞

−∞
e2M |k|

∣∣∣F {c−√c2 − 2p
}
(k)
∣∣∣2 dk <∞.

For p ∈ V , following the discussion preceeding Theorem 5.2.1, define the reconstructed
functions φR,x and φR,z as

φR,x(x, z; p) =
1

2π

∫ ∞
−∞

eikx cosh(k(z + h))F
{
c−

√
c2 − 2p

}
(k)dk, (45)

φR,z(x, z; p) =
1

2π

∫ ∞
−∞
−ieikx sinh(k(z + h))F

{
c−

√
c2 − 2p

}
(k)dk. (46)

Then φR,x and φR,z are harmonic (and thus smooth) for all x ∈ R and |z + h| < M .
Let R = min

(
M − h, c2/2g

)
and define the ball U = {η ∈ C1 : ‖η‖C1 < R}. Then

G : U × V → C1[R,R], defined as

G(η, p) = −φR,x(x, η; p) +
1

2c
[φR,x(x, η; p)]2 +

1

2c
[φR,z(x, η; p)]2 +

g

c
η,

is a continuously differentiable function with G(0, 0) = 0, as is readily verified by computing
its second variation evaluated at (η, p) = (0, 0). The Fréchet derivative of G with respect
to η at the origin is

Gη(0, 0)v =
g

c
v, v ∈ C1.

The Fréchet derivative Gη(0, 0) is an isomorphism on C1. Hence the Implicit Function
Theorem applies and there exists a continuously differentiable map ν : p → η such that
G(ν(p), p) = 0 for all sufficiently small p.

Next, we show that if p is the pressure consistent with the traveling water wave problem
with velocity c, then ν(p) is indeed the corresponding water wave surface elevation. This is
achieved by establishing that the reconstructed functions φR,x and φR,z are the horizontal
and vertical fluid velocities φx and φz, respectively.

Let D = {−∞ < x <∞,−h < z < η}, as before, where η represents the solution for the
surface elevation of the traveling water wave problem with velocity potential φ. Hence φ is
harmonic in D. It is possible to harmonically extend φ to D̄ = {−∞ < x <∞,−η − 2h <
z < η} by reflecting the problem across the mirror line z = −h. Thus φx is harmonic in D̄.

If p is the pressure corresponding to the solution (φ, η) of the water wave problem
through (14), then at z = −h, φR,x and its normal derivative take the same values as
φx and its normal derivative, respectively. The Cauchy-Kowalevski Theorem for Laplace’s
equation [32] implies that φx = φR,x in a region near z = −h. But then φx and φR,x and
all their derivatives are equal in this region. This implies that φx = φR,x in D, by analytic
continuation. A similar argument shows that φz = φR,z in D: to determine φzz at z = −h
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we use the fact that due to the extension to D̄, φ is harmonic on z = −h. In addition,
from (45) and (46), φR,x and φR,z harmonically extend up to z = M − h > ‖η‖∞. Since
φx = φR,x and φz = φR,z in D, we can harmonically extend φx and φz up to z = M − h.
This implies that φR,x = φx and φR,z = φz at z = η. Hence, from (6) in the traveling frame
of reference,

−cφx +
1

2
φ2
x +

1

2
φ2
z + gη = 0, z = η

⇒ −cφR,x +
1

2
(φR,x)2 +

1

2
(φR,z)2 + gη = 0, z = η,

⇒ G(η, p) = 0.

From the Implicit Function Theorem, for small p all solutions η to G(η, p) = 0 are of the
form η = ν(p), where ν : p→ η is a C1 map. Hence

φR,x(x, ν(p); p) = φR,x(x, η; p) = φx(x, η) = c−

√
c2 − 2gη

1 + η2
x

= c−

√
c2 − 2gν(p)

1 + ν2
x(p)

,

where we used (13). In other words, there are functions η which depend continuously on
the true pressure p such that (21) is true.

Next, assume there exists a different solution η̃ ∈ U ⊂ C1, η̃ 6= η such that

c−

√
c2 − 2gη̃

1 + η̃2
x

= φR,x(x, η̃; p),

for all x, where the pressure p is the pressure corresponding to the traveling water wave
problem with velocity c. As before, φR,x(x, η̃; p) = φx(x, η̃) and thus

c−

√
c2 − 2gη̃

1 + η̃2
x

= φx(x, η̃),

for all x. However, for a fixed c, the water wave problem has a unique traveling wave
solution, provided the amplitude is small [5]. This is contradicted by the statement that
η 6= η̃. Thus the only solutions η of (21) associated with the pressure p are the traveling
wave solutions of the Euler equations.

5.3 Asymptotic approximations

In this section we derive a variety of asymptotic approximations to the pressure as a function
of the surface elevation. Given the complexity of (21), such approximations are especially
useful. In the sections below, we compare the results for the pressure obtained using (21),
with those obtained from (1) and (2), as well as some asymptotic formulas obtained here.

We introduce the nondimensional quantities ξ∗, z∗, η∗ and k∗:

ξ∗ = ξ/L, z∗ = z/h, η∗ = η/a, k∗ = Lk, c∗ = c/
√
gh, p∗ = p/ga, (47)
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where L is a typical horizontal length scale, and a is the amplitude of the surface wave.
From (3–6), a nondimensional version of (21) is found to be√

c2 − 2εη

1 + (εµηξ)2
=

1

2π

∫ ∞
−∞

eikξF
{√

c2 − 2εp(ξ)
}

(k) cosh (µk (1 + εη)) dk, (48)

where ε = a/h and µ = h/L. The ∗’s have been omitted to simplify the notation. This form
of the nonlocal relation is our starting point to derive various approximate results. The
two parameters ε and µ provide many options for different asymptotic expansions: we may
assume small amplitude waves (ε� µ), or we may assume a long-wave approximation (µ�
ε), or we may balance both effects as in a Korteweg-de Vries (KdV)-type approximation
(see [4], for instance).

5.3.1 The small-amplitude approximation: SAO1 and SAO2

If we expand η in powers of ε � 1, assuming that ε � µ, we recover at leading order the
approximation

η(ξ) = F−1
{

cosh(µk)p̂(k)}
}

+O (ε) , (49)

where p̂(k) = F{p}(k). Ignoring the O (ε) term, (49) is the nondimensional version of (2).
This demonstrates that (21) is consistent with the frequently used (2), and we are able
to recover such formulas in a consistent manner using the single equation (21), instead of
having to work with the full set of equations of motion. We refer to the model (49) (solved
for the pressure) as SAO1 (Small-Amplitude, Order 1).

If we proceed to higher order in ε we find the presumably more accurate approximation

η(ξ) = η0(ξ) + εη1(ξ) +O(ε2), (50)

where

η0(ξ) =F−1
{

cosh(µk)p̂(k)}
}
, (51)

η1(ξ) =− c2µ2

2
η0

2
ξ −

1

2c2
η2

0 + µη0F−1{kp̂(k) sinh(µk)}+
1

2c2
F−1{p̂2(k) cosh(µk)}. (52)

The formula (50) provides a new, explicit, higher-order approximation for the surface
elevation η(ξ) in terms of the pressure p(ξ) and the traveling wave speed c, assuming a
small-amplitude approximation. This order of approximation will henceforth be referred to
as SAO2.

5.3.2 The KdV Approximation: SWO1 and SWO3

Alternatively, we can balance the parameters µ and ε so that µ =
√
ε. This is the KdV

approximation, (see [2, 4]). At leading order, we recover the simplest approximation that
the surface elevation equals the pressure:
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η(ξ) = p(ξ) +O(ε). (53)

This equation is exactly the hydrostatic approximation (1) in dimensionless variables; we
will refer to this model as SWO1 (Shallow Water, Order 1). Continuing the aproximations
to higher order (up to order ε3), we find

η(ξ) = p− ε

2

∂2p

∂ξ2
+ ε2

(
1

24

∂4p

∂ξ4
−p∂

2p

∂ξ2
− 1

2

(
∂p

∂ξ

)2(
c2 +

1

c2

))
+O(ε3). (54)

We refer to this approximation as SWO3 (Shallow Water, Order 3).

Remark 5.3.1 For η ∈ C1 and p ∈ HM+δ, it is possible to prove the analyticity of (48)
in ε and µ. Here, as before, M is related to the size of a symmetric strip around the real
ξ axis. This analyticity serves to validate the asymptotic approximations derived above, as
being obtained through a process that gives the first few terms of a convergent series.

Remark 5.3.2 It appears to be a restriction that the nonlocal formula (21) and the approx-
imations derived above require a traveling wave profile. As shown in the next section, good
results are also obtained for waves that are not merely traveling at constant speed. For waves
in shallow water, excellent agreement is often obtained by using c = 1 (or c =

√
gh, return-

ing to the dimensional version), which may be regarded as the zero-order approximation of
an asymptotic series for c in terms of ε.

Remark 5.3.3 Using the procedures outlined in this section, the reader will find it straight-
forward to derive yet different approximations for the surface elevation in terms of the pres-
sure measured at the bottom. For instance, one may consider a shallow-water approximation
without imposing that the waves are of small amplitude, i.e., µ� ε < 1, etc.

5.3.3 A heuristic formula: SAO2h

The transfer function approach (2) is very successful for a variety of reasons: (i) it is quite
accurate, as is illustrated in the next few sections. This statement remains true to a varying
degree for waves of relatively high amplitude; (ii) the most complicated aspect of using
the formula is the computation of two Fourier transforms; and (iii) the formula applies to
waves that are not necessarily traveling with constant speed. This is a consequence of the
linearization that led to (2): each individual linear wave is traveling at constant speed, but
typically their superposition is not.

In this section we derive a different formula for the reconstruction of the surface elevation
from the pressure at the bottom. This formula is obtained somewhat heuristically, and
its justification rests on the fact that it agrees extremely well with both numerical and
experimental data. Furthermore, its use requires the computation of only three Fourier
transforms, and the velocity c does not appear in the final result. As a consequence, even
though the derivation does not justify this, it is straightforward to apply to non-traveling
wave profiles, where it performs very well. As for the other formulas above, the numerical
and experimental results are presented below.
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An equivalent form of the nondimensional nonlocal equation (48) is

1−

√
1− 2εη/c2

1 + (εµηξ/c)2
=

1

2π

∫ ∞
−∞

eikξP̂ (k, ε) cosh (µk (1 + εη)) dk, (55)

where

P̂ (k, ε) = F
{

1−
√

1− 2εp(ξ)/c2
}

(k). (56)

So as to consider a small-amplitude approximation, we expand this equation in powers of ε.
However, we do not expand P̂ (k, ε) at this point. Proceeding this way and retaining only
first-order terms in εη and εηξ, we find

εη

c2
=

1

2π

∫ ∞
−∞

eikξP̂ (k, ε) (cosh(µk) + εµηk sinh(µk)) dk

⇒ εη =
1

2π

∫∞
−∞ e

ikξP̂ (k, ε) cosh(µk) dk

1
c2
− µ

2π

∫∞
−∞ e

ikξP̂ (k, ε)k sinh(µk) dk
. (57)

Next, we expand P̂ (k, ε) in ε, omitting terms of order ε2 and higher. We obtain

P̂ (k, ε) ∼ ε

c2
p̂. (58)

Substitution of (58) in (57) results in

η =
F−1 {p̂(k) cosh(µk)}

1− εµF−1 {p̂(k) k sinh(µk)}
, (59)

or, reintroducing the physical dimensions,

η =
F−1 {p̂(k) cosh(kh)} /g

1−F−1 {p̂(k) k sinh(kh)} /g
. (60)

As stated above, this reconstruction formula does not depend on c, and its application
requires the computation of a mere three Fourier transforms. This can be contrasted, for
instance, with the formula SAO2 which also uses a small-amplitude approximation. That
formula requires the computation of five Fourier transforms and has explicit dependence on
c. In fact, if one were to expand (59) in powers of ε one would find at order ε0 the transfer
function formula (2), and at order ε1 the result SAO2 with all c-dependent terms omitted.
We refer to the results obtained using (59) as SAO2h.

5.4 Comparison of the different approaches

In this section, we present numerical results for the reconstruction of the surface elevation
using the various relationships derived in Section 5.3 for both numerical and experimen-
tal pressure data. For the comparison using numerical data, we use previously computed
periodic traveling waves solutions from [28]. By using the exact pressure underneath the



84

traveling wave, we attempt to reconstruct the surface elevation. The same is done for vari-
ous sets of experimental data obtained from the one-dimensional wave tank at the William
Pritchard Fluids Laboratory at Penn State University.

5.4.1 Comparison of the Different Approaches Using Numerical Data

Using traveling wave solutions with periodic boundary conditions as calculated in [28], we
determine the pressure at the bottom using (21) as follows. Without loss of generality,
we assume that the solutions are 2π periodic. For a given traveling wave solution profile
specified by (ηtrue(ξ), ctrue), the pressure p(ξ) is obtained by equating the k-th Fourier
coefficient of both the right- and left-hand side of (21) for k = −N, . . . , N , using a sufficiently
high value of N . This results in a linear system of algebraic equations for the coefficients of
the Fourier series of

√
c2 − 2p. Using this truncated Fourier series, we may solve directly for

p(ξ) in terms of the given solution set (ηtrue(ξ), ctrue). Note that (25) offers a numerically
equivalent alternative for computing p(ξ).

Our goal is to reconstruct the surface elevation from the thus computed pressure at
the bottom, using the various formulas given above. The asymptotic formulas given in the
previous section do not require anything more complicated than a fast Fourier transform.
The solution of the nonlocal equation (21) is obtained using a pseudo-spectral method with
differentiation carried out in Fourier space, while multiplication is carried out in physical
space. We reconstruct η by using a nonlinear solver such as a Gauss-Newton or Dogleg
method [30, 55] with an error tolerance of 10−14. As an initial guess for our nonlinear
solver, we use the approximation from (50). Of course, the result obtained from the nonlocal
equation should return the original surface elevation profile used to generate the pressure
data, within machine precision. This provides a validation for the various numerical methods
used. Here we compare the results from the asymptotic formulas of the previous section
and evaluate their different errors.

Using the parameter values h = .1, g = 1, ρ = 1 and L = 2π, we reconstruct the
solution for various solution amplitudes and speeds. For solutions of small amplitude (say
ak = .0001), we see that the reconstructions using all methods are in excellent agreement
with the true surface wave elevation, see Figure 5.2a. However, even for waves with am-
plitudes less than 15% of the limiting wave height as given by [17] it becomes clear that
certain approximations yield better results than others, see Figure 5.2b. In particular, while
the nonlocal formula and the higher-order asymptotic formula reconstruct the wave profile
well, the hydrostatic approximation SWO1 reconstruction fails to reproduce an accurate
reconstruction of the peak wave height.

To demonstrate how the error changes as a function of the wave amplitude (or nonlin-
earity), we compute the relative error

error =
||ηtrue − ηr||∞
||ηtrue||∞

, (61)

where ηtrue represents the expected solution and ηr represents the reconstructed solution.
For the same nondimensional parameters as before, we calculate the error as a function of
increasing peak wave height demonstrated in Figure 5.3. As seen there, the error in all
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Figure 5.2: Reconstruction of the surface elevation from pressure data based on numerical
experiments for h = 0.1, g = 1, ρ = 1 and L = 2π. Amplitudes are a = 0.0001 (a) and
a = 0.0056. (b). No legend is included: all approximations including the nonlocal formula
(21) result in indistinguishable curves, except for the hydrostatic approximation SWO1,
which displays a significant discrepancy for the bottom numerical experiment.

approximations grows as the amplitude of the Stokes wave increases. Figure 5.3 includes
only solutions of small amplitude. If solutions of larger amplitude are considered, the
discrepancies between the different approximations grow, as shown in Table 5.1.

This table illustrates the large error generated by the lower-order methods SAO1 and
SW01 for waves which are no more than 55% of the limiting wave height as calculated in
[17]. Even for waves which are 50% of the limiting wave height, the relative error (61) of
the commonly used transfer function reconstruction SAO1 exceeds 15%. In contrast, the
higher-order methods SA02, SWO3, and SA02h consistently yield more accurate results.
It is also clear from the table that even for large amplitude waves, the nonlocal formula
(21) (or more precisely for these numerical data sets, its periodic analogue (22)) provides
a practical means to reconstruct the surface elevation from pressure data measured along
the bottom of a fluid, at least in this numerical data setting. Below we establish the same
using physical experiments.

One limitation of the nonlocal equation (21) and some of its asymptotic counterparts
from the previous section is that they require the knowledge of the traveling wave speed c.
In practice, this can be a difficult or impractical quantity to measure. One such impractical
option is to include additional pressure sensors in order to measure the time it takes for the
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Figure 5.3: Plot of the relative error (61) in the reconstructed surface elevation ηr as a
function of the amplitude of ηtrue using the true value of the wave speed c. The asymptotic
approximation SAO2 is not included in this figure. It is more costly to compute than its
heuristic counterpart SAO2h, which yields better results.

peak of the pressure data to travel from one sensor to another. A simpler option is to use
approximations for the wave speed based on small-amplitude theory. For example, if we
repeat the same error calculation as above, but with c ≈

√
gh, we obtain Figure 5.4. We

might hope that the reconstruction of the surface elevation would not suffer much. In fact, it
appears unchanged. As seen in Figure 5.4, the error in reconstructing the peak wave height
does not suffer at all from using this simple approximate (and amplitude-independent) value
of c. Surprisingly, the error in the nonlocal reconstruction remains consistent with the error
calculated using the true wave speed c. This lack of sensitivity to the precise value of c
yields hope that with experimental data a simple approximation of the wave speed will be
sufficient to accurately reconstruct the surface elevation.

5.4.2 Comparison of the Different Approaches Using Data From Physical Experiments

Here we discuss comparisons of results from the nonlocal formula (21) and the asymp-
totic approaches with results from ten laboratory experiments performed at Penn State’s
Pritchard Fluid Mechanics Laboratory. In these experiments the pressure at the bottom of
the fluid domain and the displacement of the air–water interface were measured simultane-
ously. The experimental facility consisted of the wave channel and water, the wavemaker,
bottom pressure transducers, and a surface displacement measurement system. The wave-
tank is 50 ft long, 10 in wide and 1 ft deep. It is constructed of tempered glass. It was filled
with tap water to a depth of h, as listed in Table 5.2. The pressure gauge was a SENZORS
PL6T submersible level transducer with a range of 0–4 in. It provided a 0–5 V dc output,
which was digitized with an NI PCI-6229 analog-to-digital converter using LabView soft-
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Percentage of
Limiting Wave Height SWO1 SAO1 SWO3 SAO2 SAO2h Nonlocal

35 21.14 9.43 4.01 2.36 1.76 0.00
45 25.67 13.43 6.49 4.27 3.18 0.00
50 27.88 15.49 7.89 5.41 4.04 0.00
53 28.94 16.49 8.67 5.96 4.40 0.00
54 29.65 12.17 9.15 6.36 4.70 0.00
55 30.08 17.58 9.45 6.61 4.88 0.00

Table 5.1: Relative error (61) in percent, calculated comparing peak wave heights using
various reconstruction formulas using numerical data.

ware. We calibrated this transducer by raising and lowering the water level in the channel.
The pressure measurements had a high-frequency noise component, and thus were low-pass
filtered at 20 Hz. The still-water height was measured with a Lory Type C point gauge.
The capacitance-type surface wave gauge consisted of a coated-wire probe connected to an
oscillator. The difference frequency between this oscillator and a fixed oscillator was read
by a Field Programmable Gate Array (FPGA), NI PCI-7833R. Thus, no D/A conversion,
filtering, or A/D conversion was required. The surface capacitance gauge was held in a rack
on wheels that are attached to a programmable belt. We calibrated the capacitance gauge
by traversing the rack at a known speed over a precisely machined, trapezoidally-shaped
“speed bump”. The waves were created with a horizontal, piston-like motion of a paddle
made from a Teflon plate (0.5 in thick) inserted in the channel cross-section. The paddle
was machined to fit the channel precisely with a thin lip around its periphery that served as
a wiper with the channel’s glass perimeter. This wiper prevented any measurable leakage
around the paddle during an experiment. The paddle was connected to the programmable
belt and traveled in one direction. It was programmed with the horizontal velocity of a
KdV soliton, which is given by

u(x, t) = u0 sech2

(
3u0

4h0
2c0

(x− c0t− u0t/2)

)
, (62)

where c0 =
√
gh, a0 is the wave amplitude, and u0 = a0c0/h is the maximum horizontal

velocity. The a0 for the wavemaker displacement was varied between 2 cm and 3 cm. These
values corresponded to large velocities and fluid displacements, outside of the regime of
the KdV equation. The water adjusted to create a leading wave with a radiative tail. We
compare results for the leading wave, where nonlinearity is likely to be important.

To convert the time series of pressure and surface displacement data into spatial data, we
use a combination of the sampling frequency and the estimated wave speed c. Specifically,
let pj represents the measured pressure at time tj = j∆t, where ∆t is the time between
pressure measurements. We assign a corresponding x value xj to pj so that xj = c (j∆t).
From the pressure data measured from the physical experiments, we reconstruct the surface
elevation using the same methods as in the previous section. For all experiments we use
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Figure 5.4: Plot of the error in the reconstructed surface elevation ηr as a function of the
amplitude of ηtrue using an approximation for the wave-speed c. The SAO2 model is not
included for the same reason as in Figure 5.3.

the admittedly simple approximation c ≈
√
gh. We use the measured pressure data to

reconstruct the surface elevation using the nonlocal formula (21), as well as the asymptotic
approximations SWO1 (hydrostatic), SAO1 (transfer function), SAO2, and SWO3.

As seen in Figure 5.5, the higher-order methods capture the peak wave height better
than the lower-order methods, with the nonlocal equation yielding the most accurate repre-
sentation of the peak wave height. The visual comparisons for all experiments is displayed
in Figure 5.6. The nonlocal formula (21) consistently captures the peak wave height better
than any of the approximate models derived in the previous section, and significantly better
than the SWO1 (hydrostatic) and SAO1 (transfer function) models. This is quantified in
Table 5.2, which displays the error (61) for the different approximations and the nonlocal
equation (21). As is seen there, the result from (21) consistently produced the smallest
error among all the reconstruction formulas. It is noteworthy that the heuristic SAO2h
approximation (59) consistently yields the second-lowest peak height error and consistently
outperforms all other models except the nonlocal equation (21). Given the computational
expense of solving the nonlocal equation, the approximation SAO2h apparently yields the
best compromise between efficiency and accuracy.

5.5 Concluding remarks

We have presented a new equation (21) relating the pressure at the bottom of the fluid to the
surface elevation of a traveling wave solution of the one-dimensional Euler equations without
approximation. This equation is analyzed rigorously and the existence of solutions is proven
using the Implicit Function Theorem. Solving the equation numerically is possible, but
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Figure 5.5: Wave tank comparisons of the reconstructed surface elevation with surface height
measurements for h = 5.05 cm. This corresponds to Experiment #1 in Table 5.2.

this is computationally relatively expensive when compared to currently-used approaches
that require the computation of at most a few Fourier transforms. To this end, we derive
various new approximate formulas, starting from the new nonlocal formula. The canonical
approaches (hydrostatic approximation and transfer function approach) are easily obtained
from the nonlocal formula as well.

The different approximations and the nonlocal formula (21) are compared using numer-
ical data, and their performance on physical laboratory data is examined. The nonlocal
formula consistently outperforms its different approximations. For the numerical data this
is by construction, as it was used to generate the numerical pressure data used for the
comparison, starting from computed traveling wave solutions of the Euler equation. The
higher-order approximate formulas result in a better reconstruction of the surface eleva-
tion compared to the hydrostatic or transfer function approaches. In the lab experiments,
both the surface elevation and the bottom pressure are measured, allowing for an indepen-
dent validation of the nonlocal equation (21). As expected, it outperforms the different
approximations, where higher-order models perform better than lower-order ones. A good
compromise between computational cost and obtained accuracy seems to be achieved by
the heuristic approximation SAO2h (59), which requires the computation of three Fourier
transforms.

Our derivation of the nonlocal equation (21) requires the surface elevation profile to be
traveling with constant speed c. Regardless, we show that the results are not sensitive to the
exact value of c and even rough estimates (i.e., c =

√
gh) provide excellent results, both for

the nonlocal equation (21) and its various asymptotic approximations, most notably (59).
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Figure 5.6: Wave tank comparisons of the reconstructed surface elevation with surface height
measurements for various fluid depths. The experiments are ordered from left-to-right and
top-to-bottom, corresponding to the experiment # in Table 5.2.

Experiment # Depth (cm) SWO1 SAO1 SWO3 SAO2 SAO2h Nonlocal

1 5.05 22.29 6.51 2.35 0.84 0.45 0.20
2 5.05 24.66 8.05 3.30 1.13 0.56 0.01
3 5.05 23.56 7.75 2.90 0.95 0.41 0.18
4 5.05 21.98 7.18 2.80 1.29 0.89 0.66
5 5.05 22.00 6.63 2.10 0.48 0.05 0.03
6 3.55 18.11 5.21 1.65 0.65 0.43 0.36
7 3.55 20.81 7.04 3.33 2.22 1.95 1.52
8 4.10 21.59 8.39 3.50 2.18 1.73 0.93
9 4.10 22.13 7.65 2.29 0.33 0.31 0.05
10 4.10 23.32 9.25 4.60 2.91 2.44 2.13

Table 5.2: Relative error (61) in percent, calculated comparing peak wave heights using
various reconstruction formulas using experimental data.
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Appendix A

WELL-POSEDNESS OF THE LINEAR BENJAMIN-BONA-MAHONY
EQUATION

As mentioned in Chapter 2, the method of Fokas (MoF) is applicable to many different
kinds of PDEs. Here we apply the MoF to the linear Benjamin-Bona-Mahony (BBM)
equation [9]:

ut − uxxt + ux = 0. (1)

The BBM equation is a well-known model for long waves in shallow water. Due to the
presence of the mixed derivative, the linear BBM equation has a rational dispersion relation
which tends to zero for large wave numbers. This non-polynomial nature of the dispersion
relation means that a modification of the MoF is required in order to use the method.
Although I do not consider examples other than the linear BBM equation, the procedure
presented applies to problems of the form

M(−i∂x)ut + L(−i∂x)u = 0, (2)

whereM(k) and L(k) are polynomials. Using the MoF, it is possible to find explicit solutions
for various boundary-value problems associated with such PDEs. In fact, such equations
may be analyzed with the same efficiency as those without mixed derivatives. Although,
mixed derivative PDEs do not often appear in the classroom, they are important in many
applications [34]. Indeed, inspired by problems in water-waves, Fokas and Pelloni discuss
boundary-value problems for Boussinesq type systems [39]. However, those mixed-partial
derivative equations do not demonstrate the behavior reported here. Specifically, for par-
ticular cases of the Robin boundary condition, the initial and boundary conditions cannot
be imposed independently of one another. In this chapter, I shall obtain explicit solutions
for Dirichlet, Neumann and Robin boundary conditions for the half-line and for the finite
interval and also elaborate on the special cases of the Robin boundary condition.

As already stated, the non-polynomial nature of the dispersion relation for the linear
BBM equation has a significant impact on the application of the MoF. It is the cause of the
essential singularities that arise in the analysis which obstruct the deformation of contour
integrals. Further, the global relation ceases to be valid at certain points in the finite
complex plane. It is precisely this fact that results in the PDE being ill posed for specific
cases of the Robin boundary condition. As a final remark, the results presented extend to
the forced equation

ut − uxxt + ux = F (x, t).

For small time, we may regard the nonlinear term in the full BBM equation as a forcing.
Since BBM is a semi-linear equation, I conjecture that the ill-posedness results apply to the
nonlinear problem as well.
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A.1 The local relation and Lax pairs

In this section, an algorithmic procedure for deriving one-parameter divergence forms asso-
ciated with linear PDEs is presented. As seen in Chapter 2 the divergence form, referred
to as the local relation, is the starting point for the MoF. Further, this section highlights
the connection of the method with techniques for nonlinear integrable PDEs through the
existence of Lax pairs for linear PDEs.

Consider the linear constant-coefficient differential equation

ut + ω(−i∂x)u = 0. (3)

This PDE has a Lax pair of the form

µx − ikµ = u,

µt + ω(k)µ = Xu,

whereX is a differential operator acting on u(x, t) with coefficients depending on the spectral
parameter k. Imposing the compatibility of these two equations and assuming that u(x, t)
solves (3) one obtains

X = i
ω(l)− ω(k)

l − k

∣∣∣∣
l=−i∂x

.

As an example, for the heat equation with “dispersion relation”1 ω(k) = k2, we obtain
the Lax pair

µx − ikµ = u,

µt + k2µ = ux + iku.

A one-parameter family of equations in divergence form, referred to as the local relation
follows immediately. Indeed the above equations may be written as

(e−ikx+k2tµ)x = e−ikx+k2tu,

(e−ikx+k2tµ)t = e−ikx+k2t(ux + iku),

which implies [
e−ikx+k2tu

]
t
−
[
e−ikx+k2t(ux + iku)

]
x

= 0.

Equation (3) represents the evolution of u(x, t) with dispersion relation ω(k). Similarly,
one may consider (2) to represent the evolution of a quantity u(x, t) with dispersion relation
L(k)/M(k). Consequently, we seek a Lax pair of the form

µx − ikµ = M(−i∂x)u,

µt +
L(k)

M(k)
µ = Xu.

1I follow the notation for the dispersion relation that is typically used in the literature where the MoF is
used. This differs by a factor of i from what is used in the literature on dispersive wave equations.
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Further, it is assumed that M(k) > 0 for k ∈ R and L(k),M(k) do not share any roots. As
before, imposing compatibility of the two ordinary differential equations for µ and imposing
that u(x, t) solves (2), we obtain that the appropriate differential operator is given by

X = i
L(l)M(k)− L(k)M(l)

M(k)(l − k)

∣∣∣∣
l=−i∂x

.

For the specific case of the linear BBM equation with L(k) = ik and M(k) = 1 + k2, we
obtain

X =
−1− ik∂x

1 + k2
,

resulting in the local relation[
e
−ikx+ ik

1+k2
t
(u− uxx)

]
t
−
[
e
−ikx+ ik

1+k2
t
(
−u− ikux

1 + k2

)]
x

= 0. (4)

A.2 Solutions of the linear BBM equation on the half-line

The BBM equation models long waves in shallow water. It is natural to consider the
boundary-value problem for the equation posed on the semi-infinite line:

ut − uxxt + ux = 0, x ≥ 0, t ∈ (0, T ], (5a)

u(x, 0) = u0(x), x ≥ 0, (5b)

αu(0, t) + βux(0, t) = g(t), t ∈ (0, T ), α, β ∈ R. (5c)

In what follows, I start with formal calculations assuming a smooth solution exists which
has sufficiently rapid decay at infinity. These calculations lead us to a solution expression
u(x, t) for most values of α and β. Assuming sufficient regularity of the initial and boundary
condition functions, I claim the solution expression is a classical solution to the above
boundary-value problem. For the particular case when α = β, the arguments below lead
us to conclude the problem is ill posed in the sense that the initial and boundary condition
functions may not be chosen arbitrarily. Instead, as we shall see at the end of this section,
there exists a discontinuous relation between them in order for the problem to be solvable.

Integrating the local relation (4) over the region {(x, s) : x ≥ 0, s ∈ (0, t)}, applying
Green’s Theorem and integrating by parts, we obtain the global relation

U0(k) +
g̃(k, t)

1 + k2
= eωtU(k, t), Im(k) ≤ 0, k 6= −i, (6)

with

U0(k) = (1 + k2)û0(k) + ux(0, 0) + iku(0, 0),

U(k, t) = (1 + k2)û(k, t) + ux(0, t) + iku(0, t),

g̃(k, t) = g̃0(ω, t) + ikg̃1(ω, t),

ω =
ik

1 + k2
,
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where û0(k) and û(k, t) represent the Fourier transform of the initial condition and of the
solution at time t respectively. They are defined by

û0(k) =

∫ ∞
0

e−ikxu0(x)dx, û(k, t) =

∫ ∞
0

e−ikxu(x, t)dx,

with inverses

u0(k) =
1

2π

∫ ∞
−∞

eikxû0(k)dk, u(x, t) =
1

2π

∫ ∞
−∞

eikxû(k, t)dk,

where u0(x) and u(x, t) are defined to be zero for x < 0. Similarly, g̃0(ω, t) and g̃1(ω, t) are
the finite-time transforms of the boundary data given by

g̃0(ω, t) =

∫ t

0
eωsu(0, s)ds, g̃1(ω, t) =

∫ t

0
eωsux(0, s)ds.

Solving the global relation (6) for û(k, t) and applying the inverse Fourier transform, we
obtain the following integral expression for the solution

u(x, t) =
1

2π

∫ ∞
−∞

eikx−ωt
U0(k)

1 + k2
dk +

1

2π

∫ ∞
−∞

eikx−ωt
g̃(k, t)

(1 + k2)2
dk

− 1

2π

∫ ∞
−∞

eikx
ux(0, t) + iku(0, t)

1 + k2
dk,

⇒ u(x, t) =
1

2π

∫ ∞
−∞

eikx−ωtû0(k)dk +
1

2π

∫
C
eikx−ωt

g̃(k, t)

(1 + k2)2
dk

+
1

2π

∫
C
eikx−ωt

ux(0, 0) + iku(0, 0)

1 + k2
dk − 1

2π

∫
C
eikx

ux(0, t) + iku(0, t)

1 + k2
dk, (7)

where the integral on the real line has been deformed to a closed contour C around k = i as
shown in Figure A.1. This is possible since the respective integrands are analytic functions
which decay in the upper-half plane for large k.

The integral expression (7) depends on unprescribed boundary data. As is usual in the
MoF, this is resolved by using the invariances of ω(k). Note that ω(k) is invariant under
the transform k → 1/k. Using this transformation, the global relation becomes

U0(1/k) +
g̃(1/k, t)

1 + 1/k2
= eωtU(1/k, t), Im(k) ≥ 0, k 6= 0, i,

g̃(1/k, t) = g̃0(ω, t) +
i

k
g̃1(ω, t).

The time transform of the boundary condition (5c) is given by

αg̃0(ω, t) + βg̃1(ω, t) = G(ω, t) =

∫ t

0
eωsg(s)ds.
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Figure A.1: The closed contour C and the region D = {k : Re(ω) < 0}, indicated in grey.

Solving the above equations for g̃0(ω, t) and g̃1(ω, t), and substituting the result in (7) we
obtain

u(x, t) =S(x, t) +
1

2π

∫
C

eikx

k3

(
αik − β
αi− kβ

)
û(1/k, t)dk

+
1

2π

∫
C

eikx

1 + k2

[
(ux(0, t) +

i

k
u(0, t))

(
αik − β
αik − k2β

)
− (ux(0, t) + iku(0, t))

]
dk

(8)

where

S(x, t) =
1

2π

∫ ∞
−∞

eikx−ωtû0(k)dk +
1

2π

∫
C

ieikx−ωt

(1 + k2)2

(
1− k2

αi− kβ

)
G(ω, t)dk

− 1

2π

∫
C

eikx−ωt

k3

(
αik − β
αi− kβ

)
û0(1/k)dk

+
1

2π

∫
C

eikx−ωt

1 + k2

[
(ux(0, 0) + iku(0, 0))−

(
αik − β
αik − k2β

)
(ux(0, 0) +

i

k
u(0, 0))

]
dk.

The right-hand side of (8) depends on u(x, t) itself, through the presence of û(1/k, t) in
the second term. As such, (8) does not represent an explicit solution formula, and more
work is required. Consider two possible cases.



96

• Case 1. α 6= β. By deforming the contour C as indicated in Figure A.1 before
substitution of the transforms of the unknown boundary terms, we assure that the
only singularity of the integrals in (8) enclosed by C is at k = i. Thus∫

C

eikx

k3

(
αik − β
αi− kβ

)
û(1/k, t)dk = 0,

since the integrand is analytic in a neighborhood of k = i. Further, an application of
the Residue Theorem for the third term in (8) leads to

1

2π

∫
C

eikx

1 + k2

[
(ux(0, t) +

i

k
u(0, t))

(
αik − β
αik − k2β

)
− (ux(0, t) + iku(0, t))

]
dk

=
e−xg(t)

α− β
.

Thus the solution u(x, t) is given by

u(x, t) = S(x, t) +
e−xg(t)

α− β
. (9)

In particular, the Dirichlet (β = 0) and Neumann (α = 0) problems for this PDE
have solutions given by the above expression. Since the term proportional to the
exponential satisfies the boundary condition, it is necessary that

αS(0, t) + βSx(0, t) = 0,

which is assured by taking g(0) = u0(0) = 0. Thus, the existence of a classical solution
requires the compatibility of the boundary and initial conditions at the corner point
(x, t) = (0, 0).

• Case 2. α = β = 1. The solution to the boundary-value problem given above is not
valid when α = β. Without loss of generality, we consider α = β = 1. In this case,
both integrals possess singularities at k = i. The residues are calculated to obtain

u(x, t) = S(x, t) + e−xg(t)

(
x+

1

2

)
+ 2e−xu(0, t)− 2e−xû(−i, t). (10)

This may be interpreted as a linear integral equation for the solution u(x, t) that de-
pends on known initial-boundary data as well as on the unknowns u(0, t) and û(−i, t).
If it is possible to express these unknowns in terms of the known initial- and boundary-
condition functions then the above expression represents the solution to the problem.
However, since by assumption u(x, t) solves the PDE, we may substitute (10) into
(5a) to obtain

g′(t) + û(−i, t) = u(0, t). (11)

If this relation holds for all time, we obtain the following solution to the problem on
the half-line

u(x, t) = S(x, t) + e−xg(t)

(
x+

1

2

)
+ 2e−xg′(t). (12)
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Further, since the terms proportional to e−x satisfy the boundary condition, the ex-
pression S(x, t) has the same interpretation as in the case α 6= β. Consequently we
require g(0) = u0(0) = 0. However, the initial condition is not satisfied unless

g′(0) + û0(−i) = 0, (13)

as is readily seen by letting t = 0 in (12). It is noted that this expression may be
obtained from (11) also.

Given a continuously differentiable function g(t), the constraint (13) requires the initial
condition u0(x) to be of the form

u0(x) = −4xe−xg′(0) + w(x), (14)

where w(x) is a function orthogonal to e−x using the standard inner product on [0,∞),
and w(0) = 0 with sufficient smoothness and decay for large x to justify the contour
deformations in the previous section. Alternatively, given an initial condition u0(x)
with u0(0) = 0 and sufficient decay and smoothness, the above is a constraint on
permissible boundary conditions g(t).

The relation between initial and boundary conditions evidently restricts our freedom
to arbitrarily choose initial and boundary functions for the case α = β. Interestingly,
if g(t) is identically zero, then u0(x) must be identically zero too, as we show below.
Indeed, if g(t) ≡ 0, the solution expression is given by

u(x, t) =
1

2π

∫ ∞
−∞

eikx−ωtû0(k)dk −
∫
C

eikx−ωt

k3

(
ik − 1

i− k

)
û0(1/k)dk. (15)

Substituting this expression into (11), we find∫ ∞
0

e−xu(x, t)dx =u(0, t) ⇒∫ ∞
−∞

e−ωtû0(k)

1− ik
dk +

∫
C

e−ωtû0(1/k)

i− k
dk =

∫ ∞
−∞

e−ωtû0(k)dk

−
∫
C

e−ωt(ik − 1)û0(1/k)

k3(i− k)
dk. (16)

Using the transformation k → 1/k and replacing all contours C to contours C̃ around
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k = −i, we obtain∫ ∞
−∞

e−ωtû0(k)

1− ik
dk +

∫
C̃

e−ωtû0(k)

k(1− ik)
dk =

∫ ∞
−∞

e−ωtû0(k)dk

+

∫
C̃

e−ωtk(i− k)û0(k)

(ik − 1)
dk

⇒ −
∫
C̃

e−ωtû0(k)

1− ik
dk +

∫
C̃

e−ωtû0(k)

k(1− ik)
dk =−

∫
C̃
e−ωtû0(k)dk

+

∫
C̃

e−ωtk(i− k)û0(k)

(ik − 1)
dk

⇒
∫
C̃

e−ωtû0(k)(1− k)(k2 + k + 1)

k(1− ik)
dk = 0. (17)

Since this statement is valid for all t we may expand the exponential in a Taylor series
in t, interchange order of summation and integration and equate the coefficient of
every power of t to zero. This imposes the following set of conditions on the Fourier
transform of the initial condition:

Res

[(
ik

1 + k2

)n (1− k)(k2 + k + 1)

(1− ik)k
û0(k)

]
k=−i

= 0, n = 0, 1, 2 . . . ,

hence
dn

dkn
û0(k)

∣∣∣∣
k=−i

= 0, n = 0, 1, 2 . . . .

However, û0(k) is an analytic function of k in the lower-half plane and is continuous
up to the real line. Consequently, û0(k) ≡ 0 for k real and the initial condition u0(x)
is identically zero. It follows that the initial condition is not a continuous function of
the boundary data g(t), at g(t) ≡ 0, since (14) shows that for g(t) 6≡ 0, u0(x) can be
arbitrarily large by choosing w(x) large.

Finally I shall show that (11) holds for any classical solution to the PDE. Assuming
u(x, t) is a solution to the problem (5a-5c), we have

ut − uxxt + ux = 0.

Multiplying this equation by e−x and integrating over the domain [0,∞) yields after
a few integrations by part

d

dt
(ux(0, t) + u(0, t)) +

∫ ∞
0

e−yu(y, t)dy = u(0, t).

Noting that the first term on the left-hand side is the time derivative of the boundary
condition, we obtain (13).

The identity (13), valid for any solution to the differential equation (11) is a constraint
on the initial and boundary conditions when α = β = 1. Indeed it may be verified
that when α 6= β, (11) is readily satisfied by the solution (9) to the problem.
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A.3 Uniqueness of solutions to linear BBM on the half-line

In the previous section we constructed solutions to the linear BBM equation. The procedure
was algorithmic. Depending on the values of the coefficients α and β, we obtained a solution
expression (case 1) or we concluded additional constraints were required on the initial and
boundary condition functions (case 2). In either case, it is necessary to investigate the
uniqueness of the solution of the equation. If we can prove uniqueness, then in case 1,
we may conclude that (9) is the unique solution to the given boundary-value problem.
In particular, it follows that the Dirichlet and Neumann problems have unique solutions.
Similarly, in case 2, where the initial and boundary conditions are required to satisfy the
constraint (13), we conclude that the problem is ill posed in the sense that we cannot choose
initial and boundary conditions arbitrarily.

It is typical to address uniqueness of solutions to evolution PDEs using energy integral
arguments. The energy integral for the linear BBM equation is found as shown below.

ut − uxxt + ux = 0

⇒ uut − uuxxt + uux = 0

⇒
∫ ∞

0
(uut − uuxxt + uux)dx = 0

⇒ d

dt

∫ ∞
0

u2

2
dx− [uuxxt]

∞
0 +

∫ ∞
0

uxuxtdx+

[
u2

2

]∞
0

= 0

⇒ d

dt

∫ ∞
0

1

2

(
u2 + u2

x

)
dx =

u2(0, t)

2
− u(0, t)uxt(0, t).

In the above expression, consider u(x, t) as the difference of two distinct solutions to
the BVP. Since the given initial and boundary conditions are linear, uniqueness follows
if the right-hand side of the above expression is non-positive for homogeneous boundary
conditions. Clearly this is the case for the Dirichlet problem. However, no direct conclusion
is obtained for the Neumann or the Robin problem. We may consider the right-hand side
of the last line above as a map from known boundary conditions to unknown values at the
boundary. For the Neumann case, if the Neumann→Dirichlet map exists and maps zero
to zero, we may yet conclude uniqueness. Similarly, for the Robin boundary condition. In
what follows we construct explicit Robin→Dirichlet and Neumann→Dirichlet maps which
do indeed map homogeneous data to zero. Consequently, there is a unique solution to the
BVP (5a-5c).

A.3.1 Robin→Dirichlet boundary-value map

The assumption of a classical solution to the BVP (5a-5c) leads to the global relation (6).
In this section we see how the global relation may be used to derive a map from known
initial-boundary data to unknown boundary data. Let us consider the Robin condition

αu(0, t) + βux(0, t) = g(t),
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which upon taking the time transform becomes

αg̃0(ω, t) + βg̃1(ω, t) = G(ω, t).

Solving for ux(0, t) and g̃1(ω, t) (assuming β 6= 0) in the above equations and substituting
in the global relation (6) we obtain

1

(1 + k2)2

[(
β − αik

β

)
g̃0(ω, t) +

ik

β
G(ω, t)

]
+ û0 +

1

(1 + k2)2

[
g(0)− αu(0, 0)

β
+ iku(0, 0)

]
=

eωt

1 + k2

[
g(t)− αu(0, t)

β
+ iku(0, t) + (1 + k2)û(k, t)

]
= eωt

[
û(k, t) +

g(t)

β(1 + k2)
+
ik − α/β

1 + k2
u(0, t)

]
. (18)

Multiplying this expression by e−ωt
1− k2

β − αik
and integrating over a sufficiently small contour

C containing k = −i we obtain the required map. The contribution from g̃0(ω, t) vanishes
since ∮

C
e−ωt

1− k2

(1 + k2)2
g̃0(ω, t)dk =

∮
C̃
e−iltg̃0(il, t)dl,

=

∮
C̃
e−ilt

∫ t

0
eilsu(0, s)dsdl,

= 0.

The first equality is obtained using the change of coordinates l = k/(1 +k2), where C̃ is the
image of C under this map. The second equality uses the definition of the time transform.
Evidently the integrand is an entire function of l, from which the conclusion follows. If
α 6= β the contribution from û(k, t) also vanishes since∮

C

1− k2

β − αik
û(k, t)dk = 0,

due to analyticity of the integrand. An application of the Residue Theorem leads to the
following expression for the Dirichlet data

−2π

β
u(0, t) =

2π

β(β − α)
g(t) +

∮
C

ike−ωt(1− k2)

(1 + k2)2(β − αik)
G(ω, t)dk +

∮
C

e−ωt(1− k2)

β − αik
û0(k)dk

+

∮
C

e−ωt(1− k2)

(1 + k2)2(β − αik)

[
g(0)

β
+

(
ik − α

β

)
u0(0)

]
dk.

This expression is also valid for the Neumann problem (β = 1, α = 0). The expression
above simplifies if we impose the corner condition u0(0) = g(0) = 0, which was required
for existence of smooth solutions in the previous sections. Since the Robin→Dirichlet map
maps the homogeneous problem to zero Dirichlet data, we obtain uniqueness for the case
α 6= β.
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The argument above applies with little modification for the case α = β = 1. We now
obtain a contribution from û(k, t) given by∮

C

1− k2

1− ik
û(k, t)dk = −4πû(−i, t)

= −4πu(0, t) + 4πg′(t),

where we have used the integral relation (11). We obtain the following expression for the
Robin→Dirichlet map

−2πu(0, t) = −4πg′(t)− πg(t) +

∮
C

ike−ωt(1− k2)

(1 + k2)2(1− ik)
G(ω, t)dk +

∮
C

e−ωt(1− k2)

1− ik
û0(k)dk

+

∮
C

e−ωt(1− k2)

(1 + k2)2(1− ik)
[g(0) + (ik − 1)u0(0)] dk,

from which the same conclusion is obtained.

A.4 Linear BBM on the finite interval

Next, consider the finite-interval BVP. The MoF is even more advantageous in this setting.
Classical methods would lead one to consider separation of variables, i.e., we start with
u(x, t) = f(x)s(t). Substituting into the differential equation, we obtain

f(x)s′(t)− f ′′(x)s′(t) + f ′(x)s(t) = 0.

Dividing by f ′(x)s′(t) results in a generalized eigenvalue problem in the spatial variable
requiring significant analysis in order to establish whether or not the eigenfunctions obtained
form a complete set. The MoF not only provides a solution without this additional effort,
but it also indicates which boundary-value problems may be ill posed in the same sense we
observed for the BVP on the half-line. Since the procedure is somewhat similar to what was
done for the BVP on the half line, only the outline of the steps involved will be presented.

By integrating the local relation over the region {(x, s) : 0 ≤ x ≤ L, 0 < s < t} and
applying Green’s Theorem, we obtain the global relation for the finite interval:

U0(k) +
g̃(k, t)

1 + k2
− e−ikL h̃(k, t)

1 + k2
= eωtU(k, t),

where

U0(k) = (1 + k2)û0(k) + ux(0, 0) + iku(0, 0)− e−ikLux(L, 0)− ike−ikLu(L, 0),

U(k, t) = (1 + k2)û(k, t) + ux(0, t) + iku(0, t)− e−ikLux(L, t)− ike−ikLu(L, t),

g̃(k, t) = g̃0(ω, t) + ikg̃1(ω, t),

h̃(k, t) = h̃0(ω, t) + ikh̃1(ω, t),

ω =
ik

1 + k2
,
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and h̃(k, t) is defined similarly to g̃(k, t) but with u(x, t) evaluated at x = L. The Fourier
transform is given by

û0(k) =

∫ L

0
e−ikxu0(x)dx, û(k, t) =

∫ L

0
e−ikxu(x, t)dx.

Applying the inverse Fourier transform, we obtain the integral expression

u(x, t) =
1

2π

∫ ∞
−∞

eikx−ωt
U0(k)

1 + k2
dk +

1

2π

∫ ∞
−∞

eikx−ωt
g̃(k, t)

(1 + k2)2
dk

− e−ikL 1

2π

∫ ∞
−∞

eikx−ωt
h̃(k, t)

(1 + k2)2
dk − 1

2π

∫ ∞
−∞

eikx
ux(0, t) + iku(0, t)

1 + k2
dk

+
1

2π

∫ ∞
−∞

eikx−ikL
ux(L, t) + iku(L, t)

1 + k2
dk.

The integral of the boundary terms may be deformed off the real line to appropriate contours
C1 and C2 which are closed curves around k = i and k = −i respectively.

u(x, t) =
1

2π

∫ ∞
−∞
eikx−ωtû0(k)dk +

1

2π

∫
C1
eikx−ωt

g̃(k, t)

(1 + k2)2
dk − 1

2π

∫
C2
e−ik(L−x)−ωt h̃(k, t)

(1 + k2)2
dk

+
1

2π

∫
C1
eikx−ωt

ux(0, 0) + iku(0, 0)

1 + k2
dk − 1

2π

∫
C1
eikx

ux(0, t) + iku(0, t)

1 + k2
dk

− 1

2π

∫
C2
eikx−ikL−ωt

ux(L, 0) + iku(L, 0)

1 + k2
dk +

1

2π

∫
C2
eikx−ikL

ux(L, t) + iku(L, t)

1 + k2
dk.

(19)

Assume we are given Robin boundary conditions at both x = 0 and x = L.

αu(0, t) + βux(0, t) = g(t), γu(L, t) + δux(L, t) = h(t)

⇒ αg̃0(ω, t) + βg̃1(ω, t) = G(ω, t), γh̃0(ω, t) + δh̃1(ω, t) = H(ω, t), (20)

where α, β, γ, and δ are real. Combining these last equations with the transformed version
of the global relation

U0(1/k) +
g̃(1/k, t)

1 + 1/k2
− e−iL/k h̃(1/k, t)

1 + 1/k2
= eωtU(1/k, t),

as well as with the original global relation, we obtain a system of equations for the unknown
boundary terms. For instance, solving (20) for g̃0 and h̃0, we obtain a system of equations
for the two remaining boundary terms. To solve this system of equations we are required
to invert the matrix (

ik − β/α −e−ikL (ik − δ/γ)

i/k − β/α −e−iL/k (i/k − δ/γ)

)
.

For a given set {α, β, γ, δ}, the zeros in the complex k plane of the determinant of this matrix
are the singularities which appear in the final expression for the solution. Since the entries
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of the matrix are analytic functions of k in C\{0}, the zeros of the determinant are isolated.
Hence, by deforming the contours C1, C2 suitably before substitution of the expressions for
g̃i, h̃i, i = 0, 1, it is possible to ensure the integrals contain at most one singularity, namely
at k = i or at k = −i. Consequently, if there exists a set {α, β, γ, δ} ∈ R4 such that for
k = ±i the determinant is zero, then the problem is presumed to be ill posed in a sense
similar to that observed in the half-line case. Indeed, setting k = ±i the determinant has a
zero only if (α, γ) = ±(β, δ). Hence either one of the following boundary conditions leads
to an ill-posed problem:

u(0, t) + ux(0, t) = g(t), (21a)

u(L, t) + ux(L, t) = h(t), (21b)

or

u(0, t)− ux(0, t) = g(t), (22a)

u(L, t)− ux(L, t) = h(t). (22b)

In all other cases, the solution proceeds in a manner similar to Case 1 (α 6= β) of the
half-line problem. In the following, I present details of the boundary-value problem with
boundary conditions (21a-21b). In this case, the global relation is

(1 + k2)U0(k) + ikG− ike−ikLH + (1− ik)(g̃0 − e−ikLh̃0) = (1 + k2)eωtU(k, t), (23)

where G,H, g̃0, h̃0 are the time transforms of the Robin and Dirichlet data at the left and
right boundaries defined analogously as to the half-line case. Looking ahead, let us suppress
the dependence of these terms on ω and t since the time transforms are invariant under the
symmetries of the dispersion relation unlike the functions U and U0, which are given by

U0(k) = (1 + k2)û0(k) + g(0)− h(0)e−ikL + (ik − 1)(u0(0)− e−ikLu0(L)),

U(k, t) = (1 + k2)û(k, t) + g(t)− h(t)e−ikL + (ik − 1)(u(0, t)− e−ikLu(L, t)).

The global relation (23) is valid for all k ∈ C\{−i, i}. Using the symmetry k → 1/k we
obtain another version of the global relation valid for k ∈ C\{−i, 0, i},

1 + k2

k2
U0

(
1

k

)
+
i

k
G− i

k
e−iL/kH +

k − i
k

(g̃0 − e−iL/kh̃0) =
1 + k2

k2
eωtU

(
1

k
, t

)
. (24)

Hence we obtain a system of equations for the unknown Dirichlet data which may be solved
to obtain (

g̃0

h̃0

)
= ∆−1(P +R), (25)

where

∆−1 =
1

i(1 + k2)δ(k)

−e−iL/k(k − i) e−iLkk(1− ik)

−(k − i) k(1− ik)

 , P =
eωt(1 + k2)

k2

k2U(k, t)

U(1/k, t)

 ,
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R =

−(1 + k2)U0(k)− ikG+ ike−ikLH

−1+k2

k2
U0( 1

k )− i
kG+ i

ke
−ikLH


and

δ(k) = e−iL/k − e−ikL.

The global relation (23) is solved for û(k, t). Taking the inverse Fourier transform of the
resulting expression leads to

u(x, t) =− 1

2π

∫ ∞
−∞

eikx

1 + k2
(g(t)− h(t)e−ikL)dk − 1

2π

∫ ∞
−∞

ieikx

k − i
(u(0, t)− u(L, t)e−ikL)dk

+
1

2π

∫ ∞
−∞

eikx−ωt

1 + k2
U0(k)dk +

1

2π

∫ ∞
−∞

ikeikx−ωt

(1 + k2)2
Gdk − 1

2π

∫ ∞
−∞

ikeikx−ikL−ωt

(1 + k2)2
Hdk

− 1

2π

∫ ∞
−∞

i(k + i)eikx−ωt

(1 + k2)2
g̃0dk +

1

2π

∫ ∞
−∞

i(k + i)eikx−ikL−ωt

(1 + k2)2
h̃0dk.

The integrals in the above expression involving boundary data may be deformed off the real
axis to circular contours around k = ±i denoted by C1 and C2 respectively, leading to

u(x, t) =− e−x

2
g(t) +

ex−L

2
h(t) + e−xu(0, t) +

1

2π

∫ ∞
−∞

eikx−ωt

1 + k2
U0(k)dk

+
1

2π

∫
C1

ikeikx−ωt

(1 + k2)2
Gdk +

1

2π

∫
C2

ikeikx−ikL−ωt

(1 + k2)2
Hdk

− 1

2π

∫
C1

i(k + i)eikx−ωt

(1 + k2)2
g̃0dk −

1

2π

∫
C2

i(k + i)eikx−ikL−ωt

(1 + k2)2
h̃0dk.

Substituting for g̃0 and h̃0 from (25) and taking appropriate residues we obtain

u(x, t) =− e−x

2
g(t) +

ex−L

2
h(t) + e−xu(0, t) +

1

2π

∫ ∞
−∞

eikx−ωt

1 + k2
U0(k)dk

+
1

2π

∫
C1

ikeikx−ωt

(1 + k2)2
Gdk +

1

2π

∫
C2

ikeikx−ikL−ωt

(1 + k2)2
Hdk

− 1

2π

∫
C1

ieikx−ωt(k + i)

(1 + k2)2
(∆−1R)1dk −

1

2π

∫
C2

ieikx−ikL−ωt(k + i)

(1 + k2)2
(∆−1R)2dk

− ex−L g(t)− e−Lh(t)

2(eL − e−L)
+

e−x

eL − e−L
(eL(x+ 1)g(t)− (x+ 1− L)h(t))

− e−x

2(eL − e−L)
(e−Lg(t)− h(t))− 2

e−x+L

eL − e−L
û(−i, t)

+ e−x+Lu(0, t)− u(L, t)e−L

eL − e−L
+ e−x−L

u(0, t)− u(L, t)eL

eL − e−L
, (26)

where (∆−1R)1 and (∆−1R)2 refer to the first and second components of the vector ∆−1R.
As in the half-line case, we notice that the above expression depends on the unknown
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Dirichlet data and the function û(−i, t). Since by assumption u(x, t) is a solution to the
PDE, we may substitute the right-hand side in the BBM equation, which results in the
following necessary condition relating the unknown functions u(0, t), u(L, t) and û(−i, t)

û(−i, t) + g′(t)− e−Lh′(t) = u(0, t)− e−Lu(L, t). (27)

It may be shown that this constraint is satisfied by any solution to the PDE. Indeed it
is the finite interval analogue of (11) and may be derived in a similar manner. We may
obtain two additional equations between the three unknowns from (25) by multiplying by
e−ωt(1− k2)/(1 + k2)2 and integrating along a small contour C around k = i. This leads to∫

C
e−ωt

1− k2

(1 + k2)2
∆−1 (P +R) dk = 0. (28)

Evidently, equations (28) and (27) are three equations for three unknowns. This system of
equations may be solved to obtain the Robin→Dirichlet map as well as a map from known
initial and boundary data to the function û(−i, t). Using these definitions for the unknown
functions, (26) represents the solution to the boundary-value problem on the finite interval.
Indeed it is the unique solution since the Robin→Dirichlet map for the finite interval maps
the homogeneous problem to trivial Dirichlet data, and an energy argument can be used to
imply uniqueness. Note that (25), which was obtained from the global relation (23), and
(27) are obtained from the assumption of existence of a smooth solution.

In order to satisfy the initial-boundary conditions we require additional compatibility
conditions, namely u0(0) = u0(L) = g(0) = h(0) = 0 and that the relation (27) is satisfied
at t = 0. We obtain the following constraint on the allowable initial and boundary data

û0(−i) + g′(0)− e−Lh′(0) = 0.

A calculation similar to that for the half-line case indicates that the only solution with this
particular boundary condition and g(t) = h(t) = 0 is the trivial one.

Conclusions

The MoF has been extended to PDEs with mixed partial derivatives in two independent
variables by discussing BVPs for the linear BBM equation in detail. The application of these
ideas to other mixed-derivative equations is straightforward. For the linear BBM equation,
we have the following two theorems.

Theorem 1. The BVP

ut − uxxt + ux = 0, x ≥ 0, t ∈ (0, T ], (29a)

u(x, 0) = u0(x), x ≥ 0, (29b)

αu(0, t) + βux(0, t) = g(t), t ∈ (0, T ), α, β ∈ R. (29c)

has a unique solution when α 6= β. Further, the existence of a smooth solution requires
u0(0) = g(0) = 0. If α = β the problem is ill posed in the sense that the initial and
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boundary conditions may not be prescribed arbitrarily. If homogeneous boundary conditions
are imposed, the initial condition must be identically zero for a smooth solution to exist.
By uniqueness, this implies the only solution with homogeneous boundary conditions is the
trivial one. If α = β and non-homogeneous boundary conditions are prescribed, then the
constraint between initial and boundary conditions

û0(−i) + g′(0) = 0,

must hold for a solution to exist.

Theorem 2. The BVP

ut − uxxt + ux = 0, x ∈ [0, L] , t ∈ (0, T ], (30a)

u(x, 0) = u0(x), x ∈ [0, L] , (30b)

αu(0, t) + βux(0, t) = g(t), t ∈ (0, T ), α, β ∈ R, (30c)

γu(0, t) + δux(L, t) = h(t), t ∈ (0, T ), γ, δ ∈ R. (30d)

has a unique solution when (α, γ) 6= ±(β, δ). The existence of a smooth solution requires
u0(0) = g(0) = 0 and u0(L) = h(0) = 0. If (α, γ) = ±(β, δ) the problem is ill posed in the
sense that the initial and boundary conditions may not be prescribed arbitrarily. If homo-
geneous boundary conditions are imposed, the initial condition must be identically zero for
a smooth solution to exist. By uniqueness, this implies the only solution with homogeneous
boundary conditions is the trivial one. If (α, γ) = ±(β, δ) and non-homogeneous boundary
conditions are prescribed, then the constraint between initial and boundary conditions

û0(−i) + g′(0)− e−Lh′(0) = 0,

must hold for a solution to exist.
It is possible to anticipate the non-trivial behavior mentioned in these theorems. For

linear BBM, the differential operator acting on the time derivative has the symbol M(k) =
1 + k2, with a null-space spanned by {ex, e−x}. In order to invert this operator, it is
necessary for the null-space of the operator to be empty. This is achieved by selecting the
boundary condition. To see this consider linear BBM on the finite interval as a second-order
forced ordinary differential equation in ut (see [12]). For all boundary conditions except the
cases (α, γ) = ±(β, δ), it is possible to construct a Green’s function uniquely. Further, the
functions ex and e−x are in the null-space of the exceptional boundary conditions. This
is the cause of the ill-posedness. This form of ill-posedness should be a generic feature of
PDEs with mixed partial derivatives.
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