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Applied Mathematics

Integrable systems play an important role in many research areas in Mathematics and

Physics. For such systems, the Inverse Scattering Transform provides an alternate way

to solve the initial-value problem in terms of Riemann-Hilbert problems. The Riemann-

Hilbert approach allows not only a new way for the analysis but also a new way for numerical

methods. On the other hand, as an extension of the Inverse Scattering Transform, the Unified

Transform Method provides an alternate way to solve initial-boundary-value problems for

integrable systems in terms of Riemann-Hilbert problems. In this dissertation, I develop the

Numerical Unified Transform Method as a generalization of the Numerical Inverse Scattering

Transform. Compared with traditional numerical methods for evolution partial differential

equations, methods based on the Riemann-Hilbert approach can give the solution at a given

point in the physical domain without time-stepping and can compute the solution with fixed

computational costs to reach a given accuracy.
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NOTATION AND ABBREVIATIONS

C: the set of all complex numbers

Cm×n: the set of all m by n complex matrices

CΓ: the Cauchy transform over the contour Γ

Cmδ : functions that decays exponentially with continuous m-th order derivative on the
half-line

Cm
δ =

{
f ∈ Cm([0,∞)), ∃δ′ > δ > 0, such that sup

x∈[0,∞)

eδ
′x |f(x)| <∞

}

FCM: fixed contour method

I: the identity matrix

IST: Inverse Scattering Transform

IBVP: initial-boundary-value problem

IVP: initial-value problem

KdV: Korteweg-de Vries

mKdV: modified Korteweg-de Vries

LS: linear Schrödinger

NLS: Nonlinear Schrödinger

NIST: Numerical Inverse Scattering Transform

NUTM: Numerical Unified Transform Method
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ODE: ordinary differential equation

PDE: partial differential equation

p.v.: principal value

R: the set of all real numbers

RHP: Riemann-Hilbert problem

S: the scattering data

S(R): Schwartz-class functions on the whole line

S(R+): Schwartz-class functions on the whole line restricted to the half-line

Sδ(R): Schwartz-class functions on the whole line with exponential decay

Sδ(R) =
{
f ∈ S(R) : ∃δ′ > δ > 0, such that |f(x)| eδ′|x| → 0, as |x| → ∞

}
Sδ(R+): Schwartz-class functions on the whole line with exponential decay restricted on

the half-line

SIE: singular integral equation

SG: sine-Gordon

UTM: Unified Transform Method

Z+: all positive integers
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Chapter 1

INTRODUCTION

1.1 Integrability and solitons

For a finite-dimensional autonomous system of dimension N , integrability means that the

system has N −1 independent conservation laws. A famous example of an integrable system

is the two-body problem: two point of masses moving in three-dimensional space under

Newton’s law of gravitation. On the other hand, the three-body problem does not have a

sufficient number of conservation laws and it is not integrable [28].

What we are interested in are infinite-dimensional integrable systems. For an infinite-

dimensional system to be integrable, it will need “many” (local) conservation laws. In this

dissertation, we consider the following definition of integrability.

Definition 1 (Lax pair and (local complete) integrability [21]). Let X,T be a pair of linear

operators that depend on a function u(x, t) and its derivatives as well as on a parameter

z ∈ C. Assume that u(x, t) solves a partial differential equation (PDE) of the form

F (u, ut, utt, ux, uxx, uxxx) = 0, (1.1)

where F is a (possibly) nonlinear function. The operators X,T give rise to the linear ordinary

differential equations (ODEs),

φx = Xφ, (1.2a)

φt = Tφ. (1.2b)

If the compatibility condition of the solution, φxt = φtx, is equivalent to (1.1), then the

operators X,T are called a Lax pair associated with the PDE (1.1) and the PDE (1.1) is
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(locally and completely) integrable. Alternatively, It is sufficient to have the compatibility

condition expressed in terms of the operators X,T by

Xt − Tx +XT − TX = 0.

This definition covers the examples discussed in this dissertation, including:

• the sine-Gordon (SG) equation in laboratory coordinates: utt − uxx + sin(u) = 0,

• the Nonlinear Schrödinger (NLS) equation: iut + uxx + 2λ |u|2 u = 0, and

• linear evolution equations such as: ut = ux + uxxx.

With appropriate modifications, the definition of integrability extends to many other

infinite-dimensional systems [1], for instance:

• PDEs with mixed derivatives: the SG equation in light cone coordinates,

uxt − sin(u) = 0,

• nonlocal PDEs: the Benjamin-Ono equation,

ut + 2uux +
1

π
p.v.

∫ ∞
−∞

uxx(τ)

x− τ
dτ = 0,

• PDEs of dimension 2× 1: the Kadomtsev-Petviashvili equation,

(ut + 6uux + uxxx)x ± 3uyy = 0,

• and lattice models: the Toda lattice [12],
d
dt
an(t) = an(t) (bn+1(t)− bn(t)) ,

d
dt
bn(t) = 2 (an(t)2 − an−1(t)2) .
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A consequence of a nonlinear PDE being integrable is that the PDE possesses infinitely

many local conservation laws [1]. Nonlinear integrable equations may also have soliton

solutions. Loosely speaking, a soliton solution is a localized solution of an integrable equation

that is robust with respect to all kinds of disturbances [21]. The study of solitons goes back

to the observation and experimental studies by Russell in 1834 [63]. After Zabusky and

Kruskal numerically solved the Korteweg-de Vries (KdV) equation and observed interactions

between solitons [78] in 1965, the modern study of integrable systems and solitons blossomed.

It still draws a lot of interests nowadays.

1.2 Riemann-Hilbert problems

The history of Riemann-Hilbert problems (RHPs) goes back to the 21st problem of the

famous Hilbert 23 problems at the International Congress of Mathematicians in 1901 [15].

After a century of development, RHPs are wildly used in many areas of mathematics and

physics, for instance, in the fields of orthogonal polynomials and special functions. A

comprehensive introduction to RHPs can be found in [73]. The following definitions are

used in this dissertation.

Definition 2 (complete and admissible contours). A union of curves Γ in C is said to be a

complete and admissible contour if:

• Γ consists of a finite number of straight line segments and circles,

• Γ does not have tangential self-intersections,

• Either Γ can be oriented in a way that C\Γ can be decomposed into left and right

components, i.e., C\Γ = Ω+ ∪Ω−, Ω+ ∩Ω− = ∅ and Ω+,Ω− lie to the left and right of

Γ respectively, or Γ can be augmented so that does, see Augmentation in [73].

An example of a complete and admissible contour is shown in Figure 1.1.

Definition 3 (Riemann-Hilbert problems). Given
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Figure 1.1: Left panel: a complete and admissible contour Γ, Right panel: the associated
orientation. The solid curves denote Γ. The dashed curves are auxiliary curves introduced
so that the shaded region Ω+ lies to the left of the augmented contour and the unshaded
region Ω− lies to the right of the augmented contour.

• an oriented, complete and admissible contour Γ,

• a multiplicative jump matrix G(k) ∈ Cm×m and an additive jump matrix F (k) ∈ Cm×m

defined on the contour Γ,

• a finite set of points {κj}sj=1 in C\Γ and matrices Kj ∈ Cm×m, j = 1, . . . , s,

a RHP is the problem of finding a sectionally meromorphic function Φ : C\Γ→ Cm×m which

is discontinuous across the contour Γ with the jump condition

Φ+(k) = Φ−(k)G(k) + F (k), for k ∈ Γ, (1.3)

where Φ+(k),Φ−(k) are the non-tangential limit of Φ(k) from the left (Ω+) and right (Ω−)

of Γ, respectively. At the points {κj}s1, Φ has simple poles with residue conditions

Resk=κjΦ(k) = lim
k→κj

Φ(k)Kj, j = 1, . . . , s.

Moreover, Φ(k) = I +O(1/k) as k →∞ uniformly where I is the m×m identity matrix.
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(a) (b)

Figure 1.2: A comparison of the schematics of the IST and the UTM for the problems we
consider. Panel (a) is the diagram of the solution process for the IST for solving an integrable
PDE on the whole line. Panel (b) is the diagram of the solution process for the UTM for
solving a linear or nonlinear integrable PDE on the half-line. The inverse problems in both
the IST and the UTM are formulated as Riemann-Hilbert problems. Dashed lines denote
the evolution via the integrable PDEs under consideration. Solid lines denote the steps of
the IST and the UTM that can be accomplished by solving a linear problem.

The RHP is additive if G = I, otherwise the RHP is multiplicative. The RHP is called

an analytic RHP if there are no residue conditions. The RHP is homogeneous if F = 0.

An analytic homogeneous RHP is denoted by the pair [G; Γ]. There is a subtle question: in

what sense is (1.3) satisfied? In this dissertation, most examples have jump matrix G that

is analytic in a neighborhood of the contour Γ, is square-integrable on Γ and is well-behaved

(see [73] for conditions on the well-posedness of RHPs) near the intersections and endpoints

of Γ. As a result, classical theory applies and we do not need to worry much about the

well-posedness of the problem.

1.3 The Inverse Scattering Transform

One major reason for the extensive studies on integrable equations is that they are exactly

solvable by the Inverse Scattering Transform (IST) [1], as stated in [21]: “The inverse

scattering method to solve the initial-value problem (IVP) for a given integrable equation
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is undoubtedly the pinnacle of the theory of integrable systems, and one of the major

achievements in nonlinear science.” Figure 1.2a illustrates the schematics of the IST. Instead

of solving the nonlinear integrable PDE directly, the IST uses the linear Lax pair (1.2a,1.2b).

There are three mains steps in the IST:

1. Forward transform: Using (1.2a) with the specified initial values at t = 0, a set

of spectral functions (scattering data) {a(k), b(k)} is constructed. These spectral

functions are nonlinear versions of the Fourier transforms of the initial values [5].

2. Time evolution and construction of the RHP: The benefit of using the spectral

functions is that, similar to using the Fourier transform to solve linear constant-

coefficient PDEs, the time evolution of the spectral functions can be explicitly deter-

mined. With some extra work on the regions of analyticity of the spectral functions, a

RHP is constructed with the jump matrix defined in terms of the time-evolved spectral

functions. The jump matrix depends on x and t explicitly.

3. Inverse transform: The solution to the nonlinear integrable equation is obtained by

solving the RHP and considering large k asymptotics. The inverse transform can also

be formulated in terms of the Gel’fand-Levitan-Marchenko (GLM) equation [21] but

the Riemann-Hilbert approach is more suitable for asymptotics and numerics.

1.4 The Unified Transform Method

In 1997, Fokas developed the Unified Transform Method (UTM) (also known as the Method

of Fokas) for nonlinear integrable PDEs on the half-line [31]. The UTM is a generalization of

the IST to initial-boundary-value problems (IBVPs). It was immediately observed that the

UTM provides a new way to analyze IBVPs of linear PDEs [23, 33]. Figure 1.2b illustrates

the schematics of the UTM. The UTM simultaneously performs the spectral analysis of both

the x part of the Lax pair (1.2a) and the t part of the Lax pair (1.2b). For linear PDEs, this
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is a synthesis as opposed to a separation of variables [40]. There are four mains steps in the

UTM:

1. Forward transform: Using (1.2a) with the specified initial values at t = 0, a set of

spectral functions {a(k), b(k)} is constructed. Using (1.2b) with the boundary values

involved at x = 0 , a set of spectral functions {A(k), B(k)} is constructed. However,

the well-posedness of the equation requires only a subset of the boundary values that

are required in (1.2b). Computing {A(k), B(k)} thus depends on unknown boundary

values.

2. Global relation: An extra equation, called the global relation, is derived and exten-

sively used in the construction of the RHP in the next step. With some special choice of

the boundary conditions, the unknown boundary values can be eliminated by using the

global relation. These boundary conditions are called linearizable boundary conditions.

All classical boundary conditions for linear (integrable) equations are linearizable.

3. Construction of the RHP: With some work on the region of analyticity of the

spectral functions, a RHP is constructed where the jump matrix is defined in terms of

the spectral functions. The jump matrix depends on x and t explicitly.

4. Inverse transform: The solution to the nonlinear integrable equation is obtained by

solving the RHP and considering large k asymptotics of the solution of the RHP.

1.5 The development of the Numerical Inverse Scattering Transform and the
Numerical Unified transform Method

Many numerical methods have been proposed for integrable evolution equations including

finite-difference methods [76], finite-element methods [7], spectral methods [41, 43] and many

others (see [77]), but the property of integrability is not heavily used in these methods, if at

all. These types of methods are referred to as traditional methods. In general, traditional

methods work well and are efficient for small t. As t grows, the increasingly oscillatory nature
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of the solution, due to dispersion and multi-scale structures in the solution, accumulation

of errors and possible interaction between the solution and artificial boundaries make the

problem much more expensive to solve accurately (see Figure 2.2 for a highly-oscillatory

solution to the SG equation).

There are other computational approaches that rely on integrability including the Ablowitz-

Ladik scheme [65] which is an integrable finite-difference scheme of the original equation,

numerical computations of scattering data [14] and numerical computations of the solution

to the GLM equation [45].

In 2012, Deconinck, Trogdon and Olver developed a systematic method to make the

IST numerically effective for the IVPs of the KdV equation and the modified KdV (mKdV)

equation [74]. This method is referred to as the Numerical Inverse Scattering Transform

(NIST). The NIST has been successfully applied to integrable systems including the focus-

ing/defocusing NLS equation [72], the Toda lattice [12] and the SG equation [25].

As a hybrid analytical-numerical method, the NIST differs in many aspects from tradi-

tional methods and other methods that use integrability. In summary, the NIST has the

following features:

1. The method gives the solution at a given (x, t) without time-stepping or spatial

discretization.

2. The method is spectrally accurate in the sense that the error ENIST at fixed (x, t) in

the domain satisfies ENIST(N, x, t) = o(1/N l) for any integer l, where N is the number

of arithmetic operations.

3. The method is uniformly accurate in the sense that the computational cost to

compute the solution at a point (x, t) with given accuracy remains bounded for large

x, t. Moreover, the accuracy is improved in the long-time regime.

4. The method only requires some decay and regularity assumptions on the initial and

boundary data. No closed-form expressions for the scattering data are required.
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5. The method does not artificially truncate the infinite physical domain.

6. The computations require only the numerical solution of linear problems.

However, the NIST has the following limitations

• The NIST can only be applied to IVPs of integrable PDEs.

• The NIST requires an understanding of the IST and adaptations are required for a

particular integrable system.

• It is not efficient to use the NIST if the solution needs to be evaluated at many points

(x, t) especially when t is small. But the independence between the evaluation at

different points allows for trivial modification for parallel computing to account for

this.

Since the UTM generalizes the IST to IBVPs, a natural question to ask is whether we can

develop the Numerical Unified Transform Method (NUTM) for IBVPs with all the features

that the NIST has. This is our ultimate goal. Before we get to the fully nonlinear scenario,

we want to first understand if the NUTM for linear evolution PDEs maintains all the features.

In fact, the related studies for linear evolution PDEs started in 2008 [30] before the NIST

appeared. The answer for linear problems is positive. We develop a systematic way to

apply the NUTM to linear evolution PDEs with all of the above features [26]. On the other

hand, extra difficulties appear when the NUTM is applied to nonlinear integrable equations,

both in the analysis of the UTM itself and in the associated numerics. As a result, we

show that in the example of the focusing/defocusing NLS equation, with a certain type of

boundary conditions (the linearizable boundary conditions), the NUTM applied to the half-

line problem has all the features [24]. We also show that the NUTM works in additional

situations with extra information provided. For instance, the inverse part of the NUTM can

be systematically solved once the forward part has been worked out. Finally, we point out
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that as the NIST and the NUTM perform well in the regime where traditional methods fail,

they provide a benchmark for other, general purpose, numerical methods.

1.6 Organization of the dissertation

In Chapter 2, we apply the NIST to the SG equation on the whole line. In Chapter 3, we

apply the NUTM to the heat equation on the half-line, the linear Schrödinger (LS) equation

on the half-line and a linearized KdV equation on the half-line. In Chapter 4, we apply the

NUTM to the NLS equation on the half-line. In Chapter 5, we summarize our results and

discuss related topics for future work.
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Chapter 2

THE NUMERICAL INVERSE SCATTERING TRANSFORM
FOR THE SINE-GORDON EQUATION

In this chapter, we present the NIST applied to the SG equation in laboratory coordinates

on the real line using the method developed by Trogdon, Olver and Deconinck [74].

2.1 The sine-Gordon equation

We consider the SG equation in laboratory coordinates on the real line,

utt − uxx + sin(u) = 0, x ∈ R, t ≥ 0. (2.1)

The SG equation is a nonlinear partial differential equation which appears in differential

geometry and various applications such as superconductivity and Josephson junctions [8].

Many numerical methods have been developed to solve the SG equation [44, 51, 64]. Using

these methods, or other more traditional but less specialized methods, it is hard to obtain the

solution accurately, especially for long time [3, 4], as shown in Figures 2.1, 2.3 and 2.18. In

addition, working on an unbounded domain requires special treatment since most traditional

methods require domain truncation [79].

Ablowitz, Kaup, Newell and Segur [5] were the first to show that the Cauchy problem

for the SG equation written in light-cone coordinates,

uxt = sin(u),

is integrable and can be solved by the IST. Kaup [53] demonstrated that (2.1) is solvable

by the IST. This is important as (2.1) is the relevant form of the SG equation for most

applications.
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The NIST makes no domain approximation, does not require time-stepping and is uni-

formly accurate. As such, it provides a benchmark for other numerical methods [11]. We

want to solve (2.1) for x, t ∈ R, t ≥ 0 using the NIST. We assume that the initial values

u(x, 0), ut(x, 0) are continuous and sin(u(x, 0)), ut(x, 0) are in Sδ(R), i.e., Schwartz-class

functions on the real line S(R) with exponential decay: For δ > 0,

Sδ(R) =
{
f ∈ S(R) : ∃δ′ > δ > 0, such that |f(x)| eδ′|x| → 0, as |x| → ∞

}
. (2.2)

The decay and regularity requirements are mainly for numerical convenience. The global

well-posedness theory of the SG equation only assumes initial values in Lp(R) [17].

We illustrate the complex structure and highly oscillatory behaviour of the solution. Let

k1 =
√

3/5, k2 = 1 and define one-soliton solutions:

u1(x, t) := 4 arctan(exp((k1 + 1/k1)× x/2 + (k1 − 1/k1)× t/2)), (2.3a)

u2(x, t) := 4 arctan(exp((k2 + 1/k2)× x/2 + (k2 − 1/k2)× t/2)). (2.3b)

Using the auto-Bäcklund transformation discussed in Section 2.5.5, we obtain a two-soliton

solution v(x, t),

v(x, t) = u12(x, t) = 4 arctan((k2 + k1)/(k2 − k1)× tan((u2(x, t)− u1(x, t))/4)). (2.4)

Figure 2.1 shows the numerical solution of (2.1) at t = 10 and at t = 2000 using the

NIST with the initial values in Figure 2.1(a) given by a perturbed two-soliton solution. In

Figure 2.1(b), at t = 10, the dispersive wave is apparent with an approximate amplitude 0.05

near x = −10. At t = 2000, the amplitude of the dispersive wave decays to 0.005 and is more

oscillatory. Near x = ±2000 at t = 2000, the solution decays exponentially fast to 0, see

Figure 2.1(c,d). The uniform accuracy of the NIST guarantees that the numerical solution

does not lose accuracy for larger time and in Figure 2.1(e,f) we see that the profiles of the

two solitons are preserved. In Figures 2.1 and 2.3, both sin(u) and u are shown respectively

to demonstrate that the oscillations of sin(u) are not due to large growth of |u|.
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Remark 1 (nonlinear superposition). The 1-solitons (2.3a) and (2.3b) are moving with

speed 1/4 and 0, respectively. These speeds are preserved in the 2-soliton solution obtained by

the auto-Bäcklund transformation. On the other hand, as expected for nonlinear equations,

after the perturbation is added, the speeds of the two solitons changes to 0.33 and −0.09,

respectively. A quantitative discuss of the interaction of the solitons and dispersion is in

Section 4.3.2 using the NLS equation as an example.

2.2 The Inverse Scattering Transform for the sine-Gordon equation

Before we construct the NIST for (2.1), we work on the details of the IST for (2.1). Most

of the theoretical results are from [17, 19, 53]. For consistency, we present the method using

the style and notation of [73]. The SG equation is completely integrable with Lax pair [53]:

ψx = X(z, u, ux, ut)ψ, (2.5a)

ψt = T (z, u, ux, ut)ψ, (2.5b)

where

X(z, u, ux, ut) =

 −iz4 0

0
iz

4

+


i cos(u)

4z

i sin(u)

4z

i sin(u)

4z
−i cos(u)

4z

+

 0 −ux + ut
4

ux + ut
4

0

 ,

and

T (z, u, ux, ut) =

 −iz4 0

0
iz

4

−


i cos(u)

4z

i sin(u)

4z

i sin(u)

4z
−i cos(u)

4z

+

 0 −ux + ut
4

ux + ut
4

0

 .

The existence of a joint matrix solution ψ satisfying both equations (2.5a,b) requires the

compatibility condition ψxt = ψtx, which is an equivalent representation of the SG equation

(2.1) [53]. In this new representation, the solution to the SG equation (2.1) can be obtained

by solving linear equations. In the IST method, (2.5a) determines the scattering data defined

in the following section and (2.5b) determines the time evolution of this scattering data.
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(a) The initial value sin(u(x, 0)) is a two-

soliton solution with a sech2 perturbation.

The error is on the order of 10−10.
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sin(u(x,10))

(b) Numerical solution sin(u(x, 10)). Two

solitons separate from each other. Disper-

sive effects starts to appear near x = −10.
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(c) The exponentially growing oscillatory

solution near x = −2000 at t = 2000.
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(d) The exponentially decaying oscillatory solu-

tion near x = 2000 at t = 2000.
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(e) The soliton near x = −190 at t =

2000. (Dots) numerical solution, and

(Solid) shifted unperturbed exact solution.
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(f) The soliton near x = 670 at t =

2000. (Dots) numerical solution, and

(Solid) shifted unperturbed exact solution.

Figure 2.1: The numerical solution sin(u(x, t)) of (2.1). The initial value is u(x, 0) = v(x, 0)+
0.5sech2(x), ut(x, 0) = vt(x, 0). The two-soliton solution v(x, t) defined by Equation (2.4)
is generated by the consistency condition (2.31) using two one-soliton solutions (2.32) with
k1 =

√
3/5, k2 = 1 and a zero solution.
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-2000 -1000 1000 2000
x

-0.02

-0.01

0.01

0.02
sin(u(x, 2000))

Figure 2.2: The numerical solution sin(u(x, 2000)) for x from −2000 to 2000. The two spikes
are the solitons with amplitude 1 while the amplitude of the dispersive waves is about 0.005.

2.2.1 Forward scattering

The process of finding the scattering data from (2.5a) is called forward scattering. Because

of the compatibility condition, (2.5a) can be solved at any value of the parameter t. To

obtain the scattering data, we define two matrix solutions to (2.5a) by their corresponding

asymptotic behavior.

ψ−(x, t, z) ∼

 e−ix(z−1/z)/4 0

0 −eix(z−1/z)/4

 , as x→ −∞,

ψ+(x, t, z) ∼

 e−ix(z−1/z)/4 0

0 eix(z−1/z)/4

 , as x→∞.

Since these two solutions are linearly dependent, there exists a scattering matrix S(z, t),

independent of x, relating ψ−(x, t, z) and ψ+(x, t, z):

ψ+(x, t, z) = ψ−(x, t, z)S(z, t). (2.6)

The matrix S(z, t) plays the role of the Fourier transform in linear problems [5, 53] and can

be used to recover the function u(x, t) by inverse scattering. In practice, different forms of
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(a) The initial value u(x, 0) is a two-soliton

solution with a sech2 perturbation. The error

is on the order of 10−10.
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(b) The numerical solution u(x, 10). Two

solitons separate from each other. Dispersive

effects starts to appear near x = −10.
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(c) The numerical solution u(x, 2000) for x

from −2000 to 2000. The amplitude of the

dispersive waves is on the order of 0.005.
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(d) The dispersive waves between the two

solitons.
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(e) The dispersive waves in x ∈ (−2000,−1000)

at t = 2000.
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(f) The dispersive waves in x ∈ (1000, 2000) at

t = 2000.

Figure 2.3: The numerical solution u(x, t) of (2.1). The initial values are the same as in
Figure 2.1. This demonstrates that the high oscillations are not due to a rapidly growing
argument of sine but are inherent to the solution itself.
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the scattering matrix are used. Let

S(z, t) =

 a(z, t) B(z, t)

b(z, t) A(z, t)

 ,

which for real initial values has the symmetry [53],

a(z, t) = −A(z̄, t), b(z, t) = B(z̄, t), (2.7)

and

a(z, t) = −A(−z, t), b(z, t) = B(−z, t). (2.8)

Moreover, with the Schwartz-class initial values, a(z, t) is analytic in the upper-half z-

plane and a(z, t), b(z, t) are bounded on the real z-axis [53]. For sufficiently large |z|,

a(z, t) is bounded away from zero [73]. The exponential decay of the initial values in

Sδ(R) allows a(z, t) and b(z, t) to be analytically extended to regions defined by Dδ :=

{|Re(i(z − 1/z)/4)| < δ/2} which looks like a strip pinched at the origin. The boundary of

Dδ in the first quadrant of the complex z−plane is a level set of |Re(i(z − 1/z)/4)| shown in

Figure 2.5 and is symmetric with respect to the real and imaginary axes. For some u(x, 0)

and ut(x, 0), there may exists values z = κj, Im(κj) > 0 such that a(κj, 0) = 0. These

correspond to bound states. The number of bound states is finite for initial values in Sδ.

As in [19, 53], we assume that the zeros are simple and not real. This is guaranteed in the

case of compactly supported initial values, is true in many other cases [17, 47] and in all

the numerical examples we have computed. (For instance, we get non-simple or real zeros of

a(z) if (γ(µ)− 1)/2ε ∈ Z+ in (2.20) [17]).

Define the reflection coefficient

ρ(z, t) :=
b(z, t)

a(z, t)
.

For z ∈ R, and fixed t, ρ(z, t) ∈ S(R) is a Schwartz-class function and therefore |ρ(z, t)| → 0

faster than any power of z as |z| → 0 [19]. It is important to note that b(z, t) is only

defined on the real line and may or may not have an analytic continuation off the real axis.
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However, b(κj, t) is defined at the zeros of a(z, t) in the upper-half z-plane as a proportionality

coefficient determined by solving (2.6) directly [73]. For instance, we can have b(z, t) = 0

for real z but b(κj, t) 6= 0 which is the corresponding scattering data for a pure soliton

solution. With exponentially decaying initial values, ρ(z, t) is guaranteed to have an analytic

continuation near the real z-axis except at z = 0 and z =∞. Moreover, if the initial values

are compactly supported, a(z, t) and b(z, t) are analytic everywhere except at z = 0 and

z = ∞ [53]. At the zeros of a(z, t), b(κj, t) is the proportionality constant between two

fundamental solutions that are exponentially decaying in different directions,

ψ+
2 (x, t, κj) = ψ−1 (x, t, κj)b(κj, t), (2.9)

where subscripts refer to columns. This implies that ψ+
2 (x, t, κj), ψ

−
1 (x, t, κj) are eigenfunc-

tions of the Lax operator in (2.5a). For these values of z, considering only simple zeros, the

norming constants are defined as

Cj(t) =
b(κj, t)

a′(κj, t)
.

The collection

S = {ρ(z, t), {(κj, Cj(t))}nj=1},

defines the scattering data.

2.2.2 Time evolution of the scattering data

The scattering data S has simple time dynamics. It is independent of x and its t dependence

is explicit. If we choose x→∞, (2.5b) is diagonalized with constant coefficients depending

only on z. Therefore we can write down the time evolution of the scattering data by plugging

(2.5b) into (2.6), leading to

a(z, t) = a(z, 0), (2.10a)

b(z, t) = exp

(
it

2

(
z +

1

z

))
b(z, 0). (2.10b)
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It follows that {κj}, the zeros of a(z, t), are fixed as time evolves which is an essential

component of IST theory. For convenience we suppress the time dependence in a, b and ρ if

t = 0.

2.2.3 Inverse scattering

The process of recovering the solution to the SG equation (2.1) from the scattering data

S is called inverse scattering. We shall perform inverse scattering using Riemann-Hilbert

problems (RHPs) [73]. Let

m(x, t, z) = ψ(x, t, z)

 eix(z−1/z)/4 0

0 e−ix(z−1/z)/4

 .

Then m(x, t, z) satisfies the ordinary differential equation

mx(x, t, z) = [J(z),m(x, t, z)] +Q(x, t, z)m(x, t, z), (2.11)

where

J(z) = − i
4

(
z − 1

z

) 1 0

0 −1

 , (2.12)

Q(x, t, z) =

 i

4z
(cos(u(x, t))− 1)

i

4z
sin(u(x, t))− 1

4
(ux(x, t) + ut(x, t))

i

4z
sin(u(x, t)) +

1

4
(ux(x, t) + ut(x, t)) − i

4z
(cos(u(x, t))− 1)

 ,

(2.13)

and [·, ·] is the matrix commutator. Let m+ = (m+
1 ,m

+
2 ) and m− = (m−1 ,m

−
2 ) be the

solutions corresponding to ψ+ and ψ−. They satisfy the asymptotic conditions

lim
x→∞

m+(x, t, z) =

 1 0

0 1

 , lim
x→−∞

m−(x, t, z) =

 1 0

0 −1

 .

Two new matrices Φ̂+ and Φ̂− are defined by rearranging columns of m+ and m−,

Φ̂+(z, x, t) = (m−1 (x, t, z),m+
2 (x, t, z)),
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Φ̂−(z, x, t) = (m+
1 (x, t, z),m−2 (x, t, z)).

Let

Φ+(z, x, t) = Φ̂+(z, x, t)

 1/a(z, t) 0

0 1

 ,

Φ−(z, x, t) = Φ̂−(z, x, t)

 1 0

0 −1/a(z̄, t)

 .

It has been shown that Φ+ can be analytically continued to the upper-half z-plane, while Φ−

can be analytically continued to the lower-half z- plane if ux, ut and sin(u/2) are integrable

[53], which is true if sin(u(x, 0)) and ut(x, 0) are continuous and in Sδ(R). Therefore for

z ∈ R, there is a jump condition,

Φ+(z, x, t) = Φ−(z, x, t)G(z, x, t).

Given the jump function G(z, x, t) on the contour (the real line), the problem of finding Φ+

analytic in the upper-half z-plane and Φ− analytic in the lower-half z-plane is an (analytic)

RHP. The contour is assigned orientation and we use Φ+ to denote the non-tangential

pointwise limit from the left of the contour and Φ− for the limit from the right of the

contour. After incorporating the zeros of a(z), we arrive at the following (meromorphic)

RHP [19].

Theorem 1. With the previous definitions of variables, assume that sine of the initial values

of (2.1), sin(u(x, 0)) and sin(ut(x, 0)), are in the space Sδ(R). Assume that a(z) has only

simple zeros in the open upper-half z-plane. Then there exists a unique function Φ(z, x, t),

x, t ∈ R, z ∈ C\R continuous up to the real axis satisfying the jump condition:

Φ+(z, x, t) = Φ−(z, x, t)G(z, x, t), z ∈ R. (2.14)

The jump matrix G(z, x, t) is defined by

G(z, x, t) :=

 1 + ρ(z)ρ(z̄) ρ(z̄)e−θ(z,x,t)

ρ(z)eθ(z,x,t) 1

 , (2.15)
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where ρ(z) is the reflection coefficient and

θ(z, x, t) =
i

2

[(
z − 1

z

)
x+

(
z +

1

z

)
t

]
.

Moreover, Φ satisfies the asymptotic condition,

lim
z→∞

Φ(z, x, t) =

 1 0

0 1

 ,

and the residue conditions at the zeros κ1, κ2, . . . , κN of a(z) in the upper-half z−plane,

Res{Φ(z, x, t), z = κj} = lim
z→kj

Φ(z, x, t)

 0 0

Cje
θ(κj ,x,t) 0

 ,

Res{Φ(z, x, t), z = κj} = lim
z→kj

Φ(z, x, t)

 0 −Cje−θ(κj ,x,t)

0 0

 .

The solution Φ is meromorphic in the upper-half and lower-half z-plane with its pointwise

limit functions on the real line Φ+ from above and Φ− from below that are both continuous.

The corresponding solution to (2.1) is given by cos(u(x, t)) sin(u(x, t))

sin(u(x, t)) − cos(u(x, t))

 = Φ(0, x, t)

 1 0

0 −1

Φ(0, x, t)−1. (2.16)

For the proof of Theorem 1, the reader is referred to Theorem 2,3 in [19] and [10, 80]. It

should be mentioned that (2.16) is well defined because the reflection coefficient vanishes at

z = 0 implying Φ+(0) = Φ−(0). In practice (see the next section), the residue conditions are

replaced by jump conditions on small circles centered at each pole κj [74, 72].

2.3 Numerical forward scattering

2.3.1 Computing the reflection coefficient

In order to obtain the scattering data from the initial values, we need to solve (2.11) for

given values of z. Let

I =

 1 0

0 1

 , σ3 =

 1 0

0 −1

 .
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Define

N+(x, z) = m+(x, z)− I,

and

N−(x, z) = m−(x, z)− σ3.

Then (2.11) becomes

N+
x − [J,N+]−QN+ = Q, (2.17)

on [0,∞) with N+(∞) = 0 and

N−x − [J,N−]−QN− = Qσ3, (2.18)

on (−∞, 0] with N−(−∞) = 0. The two equations (2.17-2.18) are solved column by column

using a Chebyshev collocation method [9]. Equation (2.17) is solved on [0, L] with a vanishing

boundary condition at x = L for sufficiently large L such that the initial values of (2.1) are

smaller than the given tolerance. Similarly, (2.18) is solved on [−L, 0] with a vanishing

boundary condition at x = −L. With the computed solution, the scattering matrix is given

by (2.6):

S(z) = (N+(0, z) + I)(N−(0, z) + σ3)−1.

To verify the spectral accuracy of the method, we test it with a known closed-form expression

for the reflection coefficient [17]. Consider the initial values

u(x, 0) = 2 arccos(tanh(εx)), ut(x, 0) = 2µ sech(εx), (2.19)

where ε, µ are real parameters. With proper scaling, these initial values generate solutions

to the SG equation in the semiclassical limit as ε→ 0. The reflection coefficient ρ(z) is

ρ(z) = −z + (γ + µ)i

z − (γ + µ)i

Γ

(
1

2
+
iE

ε

)
Γ

(
1− γ

2ε
− iE

ε

)
Γ

(
γ

2ε
− iE

ε

)
Γ

(
1

2
− γ

2ε

)
Γ

(
1

2
+
γ

2ε

)
Γ

(
1

2
− iE

ε

) , (2.20)
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Figure 2.4: (Left) The exact reflection coefficient ρ(z), z ∈ [−10, 10] given by Equation (2.20)
with µ = 0, n = 0, ε = 2. Solid: real part. Dashed: imaginary part. (Right) The plot of log
of the absolute error for z ∈ [−10, 10]. Dotted: 20 collocation points. Dashed: 70 collocation
points. Solid: 120 collocation points.

where E = (z − 1/z)/4, γ =
√

1 + µ2. Γ(z) is the Gamma function. If ε = γ/(2n + 1)

where n is a non-negative integer, then ρ(z) ≡ 0. We choose µ = 0, n = 0, ε = 2 to have

γ/(2n+ 1) = 1 6= ε so that ρ(z) does not vanish. Figure 2.4 shows the numerically computed

reflection coefficient on the interval [−10, 10] and the spectral decay of the absolute error with

respect to the number of collocation points used. The evaluation of the reflection coefficient

off the real line is more difficult since b(z, t) is only guaranteed to have analytic extension

in Dδ. Figure 2.5 shows the condition number K when the linear system is solved using a

Chebyshev collocation method in the region 0 ≤ Re(z), Im(z) ≤ 1. The condition number

grows quickly when z moves away from the real axis to the boundary of Dδ. Since the

coefficient of the linear term contains i(z− 1/z)/4 in (2.17,2.18), the condition number K is

also related to |Re(i(z − 1/z)/4)|. On the other hand, with finitely many collocation points,

there exists a narrow band near the origin where the condition number is moderate. The

region with high condition number needs to be avoided and this determines the deformation

of the contour near the origin, to be discussed in Section 4. The computation of the reflection

coefficient near the origin can be improved by introducing a new system for w(x, z), called
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Im(z)
Im(z)

f

Figure 2.5: The condition number K (in log10 scale) for the linear system computing ρ(z)
given by Equation (2.20) with µ = 0, n = 0, ε = 2 using a Chebyshev collocation method
with 120 collocation points for 0 ≤ Re(z), Im(z) ≤ 1 (left) and for 0 ≤ Re(z), Im(z) ≤ 0.3
(right). The contour lines are the level sets of |Re(i(z − 1/z)/4)|. These level sets match
the condition number except in a small neighbourhood of the origin where the condition
number is moderate, i.e., the dark colors extend to the origin in the right panel. In this
small neighbourhood we can use straight lines with nonzero slope for the deformations in
Section 2.4.
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the zero gauge system [17, 53], with the transformation

w(x, t, z) = i

 cos (u/2) sin (u/2)

− sin (u/2) cos (u/2)

m(x, t, z).

The name zero gauge system comes from the fact that under this transformation the 1/z

term in (2.13) becomes order z, and the original system is referred to as infinite gauge. We

use the zero gauge to solve for the reflection coefficient for |z| ≤ 1 and the infinite gauge

otherwise. On the other hand, since the reflection coefficient ρ(z) has symmetry (2.7) and

(2.8), we only need to compute the values of ρ(z) in the upper-half z−plane.

2.3.2 Computing the zeros of a(z)

The zeros of a(z) correspond to the bound states, which are square integrable solutions

of (2.5a). In the KdV equation and the NLS equation, the bound states are obtained by

analyzing the discrete spectrum of the Lax operator X. Finding the bound states for the SG

equation, however, leads to a quadratic eigenvalue problem. It can be written as a standard

eigenvalue problem by considering a system of twice the dimension [66],
4i∂x i(ux + ut) cosu sinu

i(ux + ut) −4i∂x − sinu cosu

1 0 0 0

0 1 0 0


 Ω1

Ω2

 = z

 Ω1

Ω2

 . (2.21)

In this case, Ω2 = ψ and Ω1 = zΩ2 are two vectors of size 2 × 1. After a change of

variable x 7→ tan(s/2), Floquet-Fourier-Hill method is applied to compute the eigenvalues

of the operator with spectral accuracy [22]. We test the accuracy with the initial values in

(2.19). For general initial values where the eigenvalues are not known, we can check if all

the eigenvalues are captured by comparing the reconstructed solution from inverse scattering

with the given initial values. Let n = 4, µ = 1, γ =
√

1 + µ2 =
√

2, ε = γ/(2n+1) =
√

2/9 in

(2.19). With this form of the initial values, the eigenvalues in the upper half of the complex
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u(x,t)

x

u(x,t)

Figure 2.6: Examples of the three types of soliton solutions u(x, t): (Left) An antikink
solution. (Middle) A kink-antikink pair solution. (Right) A sitting breather solution
oscillating from upward to downward with profiles in grayscale. The location of the
corresponding eigenvalues in the complex z−plane is shown in the upper-right corner of
each plot.

z-plane are classified into three types by the shape of the soliton solutions shown in Figure

2.6:

1. Antikink: z = ± (γ(µ)− µ) i, a single eigenvalue on the positive imaginary axis with

its symmetric counterpart on the negative imaginary axis.

2. Kink-antikink pair: z = ±i exp (±arccosh (γ(µ)− 2pε)) with p ∈ Z+ such that 1 ≤

p ≤ (γ(µ)− 1)/2ε, a pair of eigenvalues on the positive imaginary axis with one inside

and the other outside the unit circle. Two symmetric eigenvalues are on the negative

imaginary axis.

3. Breather: z = ± exp(i(π/2 ± (π/2 − arcsin(γ(µ − 2pε)))) with p ∈ Z+ such that

(γ(µ) − 1)/2ε < n ≤ γ(µ)/2ε, four points on the unit circle that are symmetric with

respect to both the real and imaginary axis.

Figure 2.7 shows the distribution of the eigenvalues in the upper-half z-plane and the spectral

convergence of the difference between the numerical results using Hill’s method and the zeros

of the known formula (2.20).
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Figure 2.7: (Left) Location of the eigenvalues in the upper-half z-plane. The set consists of
1 antikink, 1 kink-antikink pair and 3 breathers. (Right) The maximum error y versus the
number of collocation points x. The dashed line is a reference straight line. Initial values are
given by Equation (2.19) with n = 4, µ = 1, γ =

√
1 + µ2 =

√
2, ε = γ/(2n+ 1) =

√
2/9.

2.4 Numerical inverse scattering

We solve the RHP (2.14) with complex variable z numerically with x, t as parameters. Once

the jump matrix can be computed, the packages RHPackage [58] by Olver and ISTPackage

[68] by Trogdon are used to solve (2.14). The idea of the methodology in the packages is

that for an RHP denoted by [G; Γ], where G is the jump matrix, Φ+ = Φ−G, defined on the

contour Γ, we seek a representation of the solution Φ as

Φ = I + CΓq(z), (2.22)

for q ∈ L2(Γ). Here

CΓq(z) =
1

2πi

∫
Γ

q(s)

z − s
ds,

is the Cauchy transform of q(z). The Plemelj formula states that Φ+−Φ− = q [2]. Therefore

we obtain the singular integral equation (SIE),

q(s)− C−Γ q(s)(G(s)− I) = G(s)− I, s ∈ Γ,

where C−Γ q(s) denotes the non-tangential pointwise limit from the right of the contour Γ.

We solve the RHP by solving the SIE using the Chebyshev collocation method of Olver [59].
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However, many modifications are required in order to obtain a feasible implementation.

As one can see, for general x and t, the jump matrix can be highly oscillatory due to the

exponential factor in the jump matrix of the RHP (2.14), θ(z, x, t) = i
2
[(z−1/z)x+(z+1/z)t].

Therefore a large number of collocation points is required to resolve the solution of the RHP.

The method of nonlinear steepest descent by Deift and Zhou [27] provides a solution to

this problem by deforming the contour in such a way that the oscillations are turned into

exponential decay near the saddle points θ′(z0) = 0. The deformations are different for

different regions of the (x, t)-plane. For the SG equation, there are four asymptotic regions

showing in Figure 2.8:

1. Region 1: Outside the light cone, characterized by x ≥ t,

2. Region 2: Outside the light cone, characterized by x ≤ −t,

3. Region 3: Inside the light cone, characterized by |x| < t,

4. Region 4: Transition, inside region 3 characterized by t(t− x) ≤ 1.

After proper deformation of the contours, the jump matrices are exponentially decaying away

from the saddle points. Therefore we can truncate the contour if the jump matrix is suffi-

ciently close to the identity matrix, within a given tolerance. In the case of large-parameter

asymptotics, the contour becomes localized and the truncation makes the computations more

efficient as the parameter increases.

Remark 2. One may expect the deformations in Figure 2.8 to be symmetric with respect

to x = 0 since the SG equation (2.1) is invariant under the transformation x → −x. The

asymmetry can be explained in two ways. One reason is that the Lax pair (2.5a) is not

symmetric under x → −x. The other reason is that the scattering matrix (2.6) can be

interpreted as outputs from sending waves in from x = −∞. If one chooses to define the

scattering matrix S̃ by

ψ+(x, t, z)S̃(z, t) = ψ−(x, t, z), (2.23)
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Region 4 contour

Figure 2.8: Asymptotic regions of the (x, t)-plane for the SG equation and the corresponding
contour deformation for the IST. Away from the origin, the deformations are restricted
in the interior of Dδ. Near the origin, the jump matrix converges to the identity matrix
exponentially which allows us to use straight lines for the jump contour other than curves
tangent to the real axis.
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then the sign in the exponent in the jump matrix changes. As a result, the deformations in

Region 1 and Region 2 are swapped and the deformations in Region 3 and Region 4 will be

changed owing to the matrix factorization (2.24) and (2.26). We can improve the efficiency

of the NIST by eliminating the Region 2 deformation, as discussed in Section 2.4.3. The

machinery of the NIST does not require symmetry in the integrable equation, see the case of

the KdV equation [74].

2.4.1 Region 1: Outside the light cone, characterized by x ≥ t

This is the region where the solution u(x, t) to the SG equation (2.1) decays to zero faster

than any algebraic degree [19, 47]. In this region, we introduce the matrix factorization

G(z, x, t) = M(z, x, t)P (z, x, t), (2.24)

where

M(z, x, t) =

 1 ρ(z) exp(−θ(z, x, t))

0 1

 ,

P (z, x, t) =

 1 0

ρ(z) exp(θ(z, x, t)) 1

 .

Since

Re(θ(z, x, t)) = −Im(z)(x+ t)

2
− Im(z)(x− t)

2 |z|2

 < 0, Im z > 0,

> 0, Im z < 0,
(2.25)

the exponentials in M and P are bounded and decaying if P is defined in the upper-half

z-plane and M is defined in the lower-half z-plane, respectively for |z| → 0, ∞ along rays

from the origin. Therefore, by a deformation using the lensing [73] from the real line to the

contour in Figure 4.4, we get a new RHP,

Φ+ =

 Φ−P, z ∈ l1, l2, l3, l4,

Φ−M, z ∈ l5, l6, l7, l8.
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Figure 2.9: The jump contour in the complex plane in the region x ≥ t with the G = MP
decomposition. The jump contour forms an X shape at the origin. Away from the origin,
deformations are inside the dashed lines which are the boundary of Dδ. Near the origin,
the straight lines can still be used since the jump matrix is near identity. See the end of
Section 2.4.1 for how to pick the four end points of the line segments.

The new contour consists of straight-line segments l1-l8. Since ρ(z) is not entire, we are

limited in where we can deform to get better decay from the exponential. Away from z = 0,

the width of the strip of analyticity of ρ(z) along the real axis is given by δ defined in (2.2).

The condition number of the collocation method matrix near z = 0 for (2.11) is shown in

Figure 2.5, the level sets are used to determine the deformation. In practice, first we pick the

height Im(z) = ν < δ/2 to determine the y−coordinate of the horizontal segments l1, l4, l5, l8.

Then |Re(i(z − 1/z)/4)| = 2ν determines the circle centered at z = i/8ν with radius 1/8ν.

The points on the circle give approximately the same condition number. Therefore, we can

solve for the intersections of the circle with the horizontal line Im(z) = ν. For convenience,

the arc from z = 0 to the line Im(z) = ν is replaced by a straight line in our experiments

since ν < 0.4 is small. The deformations near z = 0 in other asymptotic regions, with the

exception of the transition region, are determined using the same method.

2.4.2 Region 2: Outside the light cone, characterized by x ≤ −t

This is the other region where u(x, t) decays to zero faster than any algebraic degree [19, 47].

In this region, the sign of the real part of θ is the opposite of (2.25). A different matrix

factorization is needed:

G = LDU, (2.26)
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Figure 2.10: The jump contour in the complex plane in the region x ≤ −t with the G = LDU
decomposition. Away from the origin, deformations are inside the dashed lines which are the
boundary of Dδ. Near the origin, the straight lines can still be used since the jump matrix
is nearly identity. The jump on the real line introduces large oscillations in the solution and
needs to be removed to obtain uniform accuracy. After the removal of the jump on the real
line, the contour is of the same shape as in Figure 4.4.

where

L(z, x, t) =

 1 0

ρ(z)
τ(z)

exp(θ(z, x, t)) 1

 ,

U(z, x, t) =

 1 ρ(z)
τ(z)

exp(−θ(z, x, t))

0 1

 ,

D(z) =

 τ(z) 0

0 1
τ(z)

 ,

and τ(z) = 1+ρ(z)ρ(z). The jump function L contains a decaying exponential if it is defined

in the lower-half z-plane while the jump function U has decaying exponential if it is defined

in the upper-half plane, respectively for |z| → 0, ∞ along rays from the origin. We get an

RHP as shown in Figure 2.10:

Φ+ =


Φ−U, z ∈ l1, l2, l3, l4,

Φ−D, z ∈ R,

Φ−L, z ∈ l5, l6, l7, l8.

Similar to the discussion in region 1, straight lines are used since the jump matrix converges

to the identity matrix exponentially. To obtain uniform accuracy, all the jump matrices need

to approach the identity matrix away from the saddle points [73]. For the diagonal jump
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matrix D, we can write down the exact solution ∆(z) to the RHP,

∆+ = ∆−D, z ∈ R, lim
z→∞

∆(z) = I,

where

∆(z) =

 δ(z) 0

0 1/δ(z)

 ,

and

δ(z) = exp

(
1

2πi

∫ ∞
−∞

log(τ(s))

s− z
ds

)
.

Hence, using the mapping Φ+ 7→ Φ+∆−1 and Φ− 7→ Φ−∆−1 we can remove the jump D on

R and the contour becomes the same as in Figure 4.4 with

Φ+ =

 Φ−∆U∆−1, z ∈ l1, l2, l3, l4,

Φ−∆L∆−1, z ∈ l5, l6, l7, l8.

2.4.3 Region 3: Inside the light cone, characterized by |x| < t

The deformation in Region 3 is more complicated. Deformations similar to those for the

previous two regions are used and new deformations near the saddle points are also required.

For convenience, we denote the jump matrices on the contours in Figures 2.11, 2.12 and 2.13.

For instance, a jump matrix G next to the oriented contour means that the solution to the

RHP Φ satisfies Φ+ = Φ−G. When (x, t) is inside the light cone, we have two real saddle

points at ±z0 = ±
√

(t− x)/(t+ x) satisfying θ′(z0, x, t) = 0. The two saddle points are

moving away from the origin and are unbounded when x → −t. They approach the origin

when x→ t. Note that in Region 1 and Region 2, |x| ≥ t, the two saddle points are purely

imaginary. Near the two real saddle points,

θ(z, x, t) =
i(t− x)√

t−x
t+x

+
i(t+ x)

(
z −

√
t−x
t+x

)2

2
√

t−x
t+x

+O

(z −√t− x
t+ x

)3
 . (2.27)

To get decay from the quadratic term, for Re(z) > z0 and Re(z) < −z0, we need the G = MP

factorization and for −z0 < Re(z) < z0 we need the G = LDU factorization. Figure 2.11
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shows the deformation with saddle points at ±z0 ≈ ±1.1. Furthermore, to get uniform

accuracy, we need to remove the jump D(z) on (−z0, z0) by introducing the RHP,

∆+ = ∆−D, z ∈ (−z0, z0), lim
z→∞

∆(z) = I,

with exact solution

∆(z; z0) =

 δ(z; z0) 0

0 1/δ(z; z0),

 ,

and

δ(z; z0) = exp

(
1

2πi

∫ z0

−z0

log(τ(s))

s− z
ds

)
.

In this case, δ(z; z0) has singularities at ±z0. To avoid using contours passing through the

singularity, we introduce a new square contour centered at the singularity as in Figure 2.12.

The length of the side is on the order of
√

(t+ x)3/
√
t− x determined by the coefficient of the

quadratic term in (2.27). When x→ −t, since ρ(z0) decays to zero quickly, the contour near

the saddle points may be truncated and therefore the contour degenerates to the contour in

region 2. From the expansion of θ(z, x, t) (2.27), we can see that the localization depends on

the absolute value of the coefficient of the quadratic term. When t+x ≈ 0, the jump matrix

may still be very oscillatory due to the insufficient decay in z. However, since the constant

term in (2.27) determines the overall amplitude of the jump matrix which will be truncated

if it gets too small, the oscillation cannot become arbitrarily large. Two techniques are used

to deal with the intermediate oscillatory case. A technique to compute the solution for x < 0

is to use a reflected initial values v(x, 0) = u(−x, 0) which gives a new set of scattering data

but only requires the deformation of the contour in the x > 0 case for v(x, t) = u(−x, t).

The other technique is to precompute the reflection coefficient along the contour on a coarser

grid and use the interpolants to construct the jump matrix. This is effective because the

oscillation is mostly introduced by θ(z, x, t) but the refection coefficient itself is smooth as

in Figure 2.4. On the other hand, when x → t, the collision of the two saddle points ±z0

at the origin results in a contour in region 1, and the G = LDU factorization is indeed not

necessary in the transition region, as we now demonstrate.
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Figure 2.11: The jump contour in the complex plane in the region |x| < t with the jump
functions labeled to each segment. Away from the origin deformations are inside the dashed
lines which are the boundary of Dδ. Near the origin, the straight lines can still be used since
the jump matrix is nearly identity. The center of the squares are the saddle points z0 and
−z0.
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Figure 2.12: A zoom-in of the contour in Figure 2.11 at the right saddle point. The four
oriented contours pointed at/from the square are along the direction of steepest descent (π/4
from real axis). The center of the square is the saddle point z0.)
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Figure 2.13: The jump contour in the complex plane in the transition region. When the
saddle points are near the origin, the G = LDU decomposition is collapsed to the real line.
Away from the origin, deformations are inside the dashed lines which are the boundary of Dδ.
Near the origin, the straight lines can still be used since the jump matrix is nearly identity.

2.4.4 Region 4: Transition, inside region 3 characterized by t(t− x) ≤ 1

When t − x = ε > 0 is small, the saddle points approach the origin. This is classified as a

transition region in [47]. Consider z0 < 1/t and −z0 < z < z0, then

|θ(z, x, t)| = |zt|+ 1

2
|(z − 1/z)(t− x)| ≤ 1 +

1

2
|(z − 1/z)| ε.

The oscillation is indeed controlled between the two saddle points when their distance is

sufficiently close. In this case, from Theorem 2.74 and Corollary 2.75 in [73], the Sobolev

norm of the solution q to the SIE (2.22) can be bounded uniformly in x and t since θ(z, x, t)

is bounded independent of x and t. Therefore there is no need to use the G = LDU

factorization and we can collapse the contour back to the real line as in Figure 2.13.

2.5 Numerical results

We present some numerical examples and tests of the NIST for the SG equation on the whole

line.

2.5.1 Propagation of dispersive waves

Let

us(x, t) = 4arctan (ex) ,



37

0 50 100 150 200

x

6.0

6.2

6.4

6.6

6.8

u

0 50 100 150 200

x

6.0

6.2

6.4

6.6

6.8

u

0 50 100 150 200

x

6.0

6.2

6.4

6.6

6.8

u

0 50 100 150 200

x

6.0

6.2

6.4

6.6

6.8

u

Figure 2.14: The propagation of dispersive waves to the right from a perturbed stationary
kink located at x = 0 when t = 2.5, 60, 120, 180. The initial values are given by Equation
(2.28).

be a one-soliton stationary kink solution. We choose the initial values to be a (not small)

perturbation of us(x, 0),

u(x, 0) = us(x, 0) + 5 sech2(x), ut(x, 0) = 0. (2.28)

The magnitude of the perturbation is chosen to introduce large dispersion while the number

of eigenvalues in the scattering problem does not change. Figure 2.14 shows dispersive waves

generated by the perturbation from the kink at t = 2.5, 60, 120, 180. Due to the oscillations

and the different scales, the solution is difficult to obtain with traditional numerical methods

while maintaining high accuracy for long time.
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Figure 2.15: (Left) Solid: The exact initial values sin(u(x, 0)), Dots: The computed solution.
(Right) The absolute error. The initial values are given by Equation (2.19) and µ = 0, n = 0,
ε = 2.

2.5.2 Recovery of the initial values

As mentioned in Section 2.3.2, we can solve the RHP at t = 0 and compare it with the

known initial values to verify that all eigenvalues have been computed. This is one way to

check the accuracy when the exact solution is not known. Figure 2.15 shows the computed

initial values using the NIST on the left at t = 0 with initial values (2.19) and µ = 0, n = 0,

ε = 2. The absolute error is shown on the right and is on the order of 10−10. Although it

is a triviality for numerical methods like finite differences to check the initial values, in the

NIST, computing u(x, 0) requires going through the entire procedure of forward scattering

and inverse scattering. Computing short time solutions costs more compared with computing

the solutions for long time since the contour becomes more localized when t is large [60]. With

the same initial value, the spectral convergence at x = 1.5, t = 1 is verified in Figure 2.16.

The error is measured by the difference of two numerical solutions with a different number

of collocation points, eNi =
∣∣uNi+1

− uNi
∣∣. Linear behavior in the log plot indicates spectral

convergence.
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Figure 2.16: The log-linear plot of the error vs. number of collocation points for u(1.5, 1).
The dashed line is a reference straight line. The initial values are given by Equation (2.19)
and µ = 0, n = 0, ε = 2.

2.5.3 Evolution of multi-soliton solutions with perturbations

In [17], the initial values (2.19) with ε = γ/(2n + 1) are used so that one can compute

pure soliton solutions by solving an algebraic system in the semiclassical limit ε → 0. If

the condition ε = γ/(2n + 1) is not satisfied, an RHP has to be solved due to the non-

zero reflection coefficient, and the algebraic method does not apply. One expects that the

non-zero reflection coefficient perturbs the solution only by a small amount, and the pure

soliton solution approximates the general solution as ε → 0. In Figure 2.17, we show the

pure soliton solution with µ = 0, n = 2, ε = 0.2 in the left panel. The perturbed solution

with µ = 0, n = 2, ε = 0.17 is in the right panel using the NIST. In both cases the reflection

coefficient has five poles on the unit circle in the upper-half plane. In the study of the

semiclassical limit ε→ 0, the scaling X = εx and T = εt is relevant. This transforms the SG

equation to

ε2UTT − ε2UXX + sin(U) = 0.

Therefore the domain εx ∈ [−2.5, 2.5], εt ∈ [0, 5] remains the same in Figure 2.17. The two

plots are similar with a small difference of contour lines near the center of the plots. We

remark that computing a 2D contour plot is not efficient using the NIST since the advantage
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of the NIST is that the solution is computed at specified (x, t) without time-stepping. All

points in the evolution are required in a 2D plot. However, it is competitive to use the

NIST in this case if one wants accurate solutions containing dispersive waves for large time.

In Figure 2.18, we compare the numerical solution by the NIST with a standard centered-

difference method along the line x = 4.5. To prevent introducing error due to domain

truncation, we choose the domain from [−7.5/ε, 7.5/ε]. The left plot shows the oscillatory

evolution of the solution mostly due to the existence of breathers with the error on the

order of 10−8. The dispersive waves are not large enough to be observed in the plot. In the

right panel of Figure 2.18, three grid sizes ∆x = 0.05, 0.1, 0.2 are used with the time step

∆t = ∆x/2 to satisfy the stability condition. These step sizes are sufficient to resolve the

oscillations in the plot but the error is on the order of 0.01 for small time and seems to grow

to order 1 linearly. As a result, an extremely dense grid is required to get the solution with

error smaller than 10−8.

2.5.4 Uniform convergence for large t and x

Cheng, Venakides and Zhou [19] studied the long-time asymptotics for solitonless initial

values. Outside the light cone, the solution decays to zero spectrally. Inside the light cone,

let

z0 =

√
t− x
t+ x

, τ =
tz0

1 + z2
0

,

then as τ →∞,

cos(u)− 1 = −4 |ν(z0)|
τ

cos2(2τ + ν(z0) log(8τ) + β(z0)) +O

(
C(z0)

log(τ)

τ 3/2

)
, (2.29a)

sin(u) =

√
8 |ν(z0)|

τ
cos(2τ + ν(z0) log(8τ) + β(z0)) +O

(
C(z0)

log(τ)

τ

)
, (2.29b)

where

ν(z0) = − 1

2π
log(1 + |ρ(z0)|2),

β(z0) = − arg(Γ(ν(z0)i))− arg(ρ(z0)) +
π

4
− 1

π

∫ z0

−z0
log(z0 − s)d log(1 + |ρ(s)|2).
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Figure 2.17: (Left) The numerical solution cos(u) with initial values (2.19), µ = 0, n = 2
and ε = 0.2. In this case the reflection coefficient vanishes. ρ(z) ≡ 0. The solution consists
of several solitons as discussed in Section 2.3.2. (Right) The numerical solution with initial
values (2.19), µ = 0, n = 2 and ε = 0.17. In this case, the solitons are perturbed and small
dispersive waves exists since ρ(z) 6≡ 0 but dispersive waves are hardly seen due to the small
amplitude. The domain is the same in the two plots with scaling εx ∈ [−2.5, 2.5], εt ∈ [0, 5].
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Figure 2.18: (Left) The numerical solution by the NIST u(4.5, t). (Right) The absolute error
(assuming the true solution is from the NIST) of second-order finite-difference method with
various grid sizes at x = 4.5, t ∈ [0, 120]. The initial values are given by Equation (2.19)
with µ = 0, n = 2 and ε = 0.17.
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Figure 2.19: Comparison of the numerical solution sin(u(τ)) (Solid) to the asymptotic
formula given by (2.29b) (Dots) for τ ∈ [0, 20], z0 =

√
1/2. The initial values are

u(x, 0) = sech2(x) and ut(x, 0) = 0.

Here, Γ(·) denotes the Gamma function and C(z0) decays faster than any power of z0 as

z0 → ∞. In Figures 2.19, 2.20, 2.21, we compare the numerical solution with asymptotic

formula inside the light cone region z0 =
√

1/2 with initial values u(x, 0) = sech2(x) and

ut(x, 0) = 0. The observed orders of the correction terms are one half order smaller than

the order given by the asymptotic formula. This is true for all initial values we have tested,

which indicates a possible refinement of the estimates of the correction terms in [19].

2.5.5 Comparison with the auto-Bäcklund transformation

An important property of integrable systems is that they have a Bäcklund transformation.

Two solutions u(x, t) and v(x, t) to (2.1) satisfy the auto-Bäcklund transformation if they

satisfy the following equations [29],

ux + ut =vx + vt + 2k sin

(
u+ v

2

)
, (2.30a)

ux − ut =− (vx − vt) +
2

k
sin

(
u− v

2

)
. (2.30b)
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Figure 2.20: The absolute error between the numerical solution cos(u(τ)) and the asymptotic
formula. (Dot) The error/log(τ). (Dashed) Auxiliary lines with slope−1,−1.5,−2. The least
square fit of the error/log(τ) has slope −1.95, as opposed to −1.5, predicted by [19]. The
initial values are u(x, 0) = sech2(x) and ut(x, 0) = 0.
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Figure 2.21: The absolute error between the numerical solution sin(u(τ)) and the asymptotic
formula. (Dot) The error/log(τ). (Dashed) Auxiliary lines with slope −1,−1.5,−2. The
least square fit of the error/log(τ) has slope −1.53, as opposed to −1, predicted by [19]. The
initial values are u(x, 0) = sech2(x) and ut(x, 0) = 0.
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Figure 2.22: Left: The exact three-soliton solution at t = 10. Right: The error compared
with the exact solution (solid) and the residual of (2.31) (dashed). The initial values are
determined by computing a 3-soliton solution using Equation (2.31) and (2.32).

By choosing the parameter k, we can find a new solution u from a known solution v using

the transformation. The effect of the transformation is the addition or removal of one zero

of a(z) in the upper-half plane. By cancellation of the derivative terms in the transformation

(2.30a, 2.30b) using parameters k1, k2 in different order, we get an algebraic consistency

condition among four solutions r, u, v, w to (2.1),

tan

(
w − r

4

)
=
k2 + k1

k2 − k1

tan

(
u− v

4

)
, (2.31)

where v is obtained using (2.31) with r, k1 and u is obtained using (2.30a, 2.30b) with r, k2.

Since the trivial solution v = 0 satisfies (2.1), we obtain three one-soliton solutions uj from

(2.30a, 2.30b),

uj = 4 arctan

(
exp

(
kjx+

1

kj
t

))
, kj = j, j = 1, 2, 3. (2.32)

and construct a three-soliton solution by using (2.31) repeatedly. Figure 2.22 shows the

three-soliton solution at t = 10 on the left. The error comparing with the exact solution

is shown in a solid line in the right plot. The residual of (2.31) is examined by computing

all the soliton solutions from their initial values to t = 10 independently. Both the absolute

error and the residual stay small uniformly in both t and x in the computation.
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Chapter 3

THE NUMERICAL UNIFIED TRANSFORM METHOD FOR
LINEAR PDES ON THE HALF-LINE

In this chapter, we implement the UTM as a numerical method to solve several linear

evolution PDEs on the half-line. With the help of contour deformations and oscillatory

integration techniques, the method’s complexity does not increase for large x, t and the

method is more accurate as x, t increase (absolute errors are smaller, relative errors are

bounded).

3.1 The Unified Transform Method for linear PDEs

Standard methods for solving linear evolution PDEs, including separation of variables and

classical integral transforms, are often limited by the order of the PDE and the type of

boundary conditions. The UTM is a relatively new method for analyzing a large family of

PDEs with general initial and boundary conditions [33]. When applied to IBVPs for linear,

constant coefficient PDEs, the UTM provides the solutions in terms of contour integrals

involving the given initial and boundary conditions [23]. This does not only give rise to

new analysis but it also provides a new direction for numerical methods. With this integral

representation of the solution, it is possible to compute the solution at any x, t directly.

The NUTM is a numerical method built upon the solution formula from the UTM with

the addition of systematic contour deformations. In stark contrast to classical numerical

PDE methods such as finite-difference methods, most spectral methods and finite-element

methods, the NUTM can solve equations in unbounded domains and it does not experience

accumulation of errors or stability issues. These issues that appear in standard numerical

methods for evolution PDEs do not appear in the NUTM because spatial discretization
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and time stepping are not required. As a hybrid analytical-numerical method, the NUTM

operates in a complementary direction to the traditional numerical methods. In practice, if

one is interested in the solution on a dense spacial and temporal grid and is satisfied with

lower accuracy, traditional methods are better choices, whereas if one is interested in the

solution along some curve with high accuracy for a long time, the NUTM is likely better.

On the other hand, the NUTM can act as a benchmark tool for other numerical methods.

Since the first paper on the NUTM in 2008 [30], the method has been applied to the heat

equation qt = qxx on the half-line [30, 36] and on finite intervals [61], to the Stokes equations

qt ± qxxx = 0 on the half-line [30] and on finite intervals [54], and the advection-diffusion

equation qt+qx = qxx on the half-line [20]. These applications of the NUTM use fixed contours

that do not depend on (x, t) and most of them1 rely on knowing closed-form expressions for

the transforms of initial and boundary data. We refer to such implementations of the NUTM

as fixed contour methods (FCMs). As we will see in Section 3.3.3, FCMs become less accurate

for large x, t. In contrast to those FCMs, we propose a new implementation of the NUTM

that uses contours depending dynamically on x, t and that does not severely restrict the

initial or boundary conditions. Our goal is to make no assumptions on the functional form

of the initial or boundary functions, other than to restrict them to be in certain function

spaces (i.e., impose specific decay). Our NUTM maintains high accuracy in a large region

of the (x, t) plane. Similar to the discuss in Section 1.5, we build up the NUTM to include

the following features:

1. The method gives the solution at given (x, t) without time-stepping or spatial

discretization.

2. The method is spectrally accurate in that the error at fixed (x, t), ENUTM(N, x, t) =

O(1/N l) for any integer l, where N is the number of arithmetic operations. For certain

equations such as the heat equation, it is possible to achieve spectral accuracy uniformly

1In [20], one numerical example without closed-form expressions for the transforms is considered, but
the idea is not applied to non-dissipative problems.
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as long as (x, t) are bounded away from x = 0 and t = 0.

3. The method is uniformly accurate in the sense that the computational cost to

compute the solution at a point (x, t) with given accuracy remains bounded for large

x, t. In addition, we observe bounded relative errors in our numerical experiments.

4. The assumptions on the initial and boundary conditions are significantly weakened

compared to the FCM. Decay and regularity conditions are necessary for the purpose

of achieving high accuracy. We emphasize that closed-form expressions for the

transforms of initial or boundary conditions are not required.

5. The method does not artificially truncate the infinite physical domain.

In this chapter, we consider linear, constant coefficient, one-dimensional scalar evolution

equations on the half-line x ≥ 0. This chapter is organized as follows: Section 3.2 gives a

brief overview of the UTM and the methods for oscillatory integrals that are required in what

follows. In Section 3.3, we discuss the NUTM for the heat equation where the deformation

is based on the method of steepest descent. In Section 3.4, we discuss the NUTM applied to

the linear Schrödinger equation where methods other than the method of steepest descent

are needed. In Section 3.5, we show how to apply the NUTM to a third-order PDE with an

advection term giving rise to integrands with branch points. We believe that the best way

to explain the NUTM, similar to introducing the UTM, is to use a case-by-case study. In

Section 6, we summarize the steps of the NUTM.

Numerical examples are provided throughout. In many examples the initial and boundary

conditions are chosen to have closed-form transforms for the purpose of computing the true

solution for comparison. An example with the boundary condition which does not have a

known expression for the transform is shown at the end of Section 5.2. The proof of the

uniform convergence of the NUTM applied to the heat equation is given in the Appendix.
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3.2 Methods for computing oscillatory integrals

3.2.1 The unified transform method on the half-line

Consider a linear PDE written as

qt + ω(−i∂x)q = 0, (3.1)

for x, t > 0. We assume ω(k) to be a polynomial of degree p. Note that q(x, t) = eikx−ω(k)t

satisfies (3.1). This definition of the dispersion relation ω typically used in the UTM differs

from the common convention by a factor of i. The UTM solves IBVPs for (3.1) using

transforms of the initial and boundary values,

q̂0(k) =

∫ ∞
0

e−ikxq0(x, 0)dx, (3.2a)

g̃0(ω(k), t) =

∫ t

0

eω(k)sq(0, s)ds, (3.2b)

...

g̃p−1(ω(k), t) =

∫ t

0

eω(k)s ∂
p−1q

∂xp−1
(0, s)ds. (3.2c)

The number of boundary conditions required for a well-posed problem is determined by

the UTM. It is based on the order of the highest spatial derivative as well as the leading

coefficient of ω [30]. The solution formula from the UTM depends on contour integrals of

the type

Im =

∫
CIm
eikx−w(k)tq̂0(νm(k))dk, m = 1, 2, . . . , p,

Bm =

∫
CBm
eikx−w(k)tfm(k)ĝm(ω(k), t)dk, m = 0, 1, . . . , n,

where p is the degree of ω(k) and νm(k) is its mth symmetry2, and fm(k) is a function

explicitly determined by ω(k), independent of the initial and boundary data. Thus, the

2A symmetry ν(k) of ω(k) satisfies ω(ν(k)) = ω(k). The symmetries play an important role in the UTM.
The n symmetries {νm(k) : m = 1, 2, . . . , n} exist by the fundamental theorem of algebra, and can be
chosen to be analytic outside a compact set [35].
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solution to (3.1) can be computed by quadrature. However, the integrands on the contours

CIm and CBm obtained by the UTM are often highly oscillatory, and suitable methods must be

applied for an accurate solution.

3.2.2 Methods for oscillatory integrals

The exponential factor eikx−w(k)t in the integrand is the main cause of oscillations. Deforma-

tions based on the method of steepest descent [57] change the oscillations into exponential

decay. Define the phase function θ(k;x, t) = ikx− w(k)t. Saddle points k0 satisfy

dθ(k;x, t)

dk

∣∣∣
k=k0

= 0.

Near k = k0,

θ(k;x, t) = ik0x− w(k0)t− w′′(k0)t

2
(k − k0)2 +O(k − k0)3.

The integrand is (locally) exponentially decaying if k follows a path such that −w′′(k0)(k −

k0)2 is negative and decreasing. Since the integrals along the deformed paths are expo-

nentially localized near the saddle point, they can be computed with high accuracy with

standard quadrature methods after appropriate truncation.

For improved accuracy, Gauss-Hermite or Gauss-Laguerre quadratures are suitable, de-

pending on the form of the exponentials and the paths [42, 48, 75]. We choose Clenshaw-

Curtis quadrature for the deformed contour integrals for convenience, as it is spectrally

accurate and efficient in most cases [67]. We note that there are situations where the defor-

mations are restricted and the method of steepest descent is not applicable, see Sections 3.4

and 3.5.

The region in the complex k-plane where the contour can be deformed depends on the

analyticity of the transform data q̂0(k) and ĝm(ω(k), t) which is related to the decay rate of

the initial and boundary data. For instance, when q(x, 0) and q(0, t) are integrable, q̂0 is

analytic and bounded in the lower-half plane {k ∈ C : Im (k) < 0} and ĝ0(ω(k), t) is analytic

and bounded in {k ∈ C : Re (ω(k)) < 0}. Data with faster decay gives more freedom to
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deform the contour. We consider data with exponential decay rate δ > 0, defined by

Cm
δ =

{
f ∈ Cm([0,∞)), ∃δ′ > δ, such that sup

x∈[0,∞)

eδ
′x |f(x)| <∞

}
.

Remark 3. For f ∈ Cm
δ , we have

∫∞
0
eδ
′′x |f(x)| dx < ∞ with δ′′ = δ′+δ

2
> δ. The

boundedness is introduced for convenience in the proofs in the appendix and the implied

integrability is used to allow deformation of contours not just in the interior of regions but

also to their boundaries.

If the initial condition q0 ∈ Cm
δ , then q̂0 is analytic and bounded in a open set containing

{k ∈ C : Im (k) ≤ δ}. Therefore contour integrals of q̂0(k) can be deformed inside a

larger region. When the contours get close to the boundary of regions in which they can be

deformed, highly oscillatory integrals of the form

S(x, t) =

∫ ∞
k0

f(k)eθ(k;x,t)dk, (3.3)

appear. Here f(k) is, in general, not analytically extendable off the real axis, k = k0 is

the critical point of θ(k;x, t) and ω(k) ∈ iR. This integral is highly oscillatory when the

parameters x, t are large, and therefore with traditional numerical quadrature methods the

cost to achieve a desired accuracy increases as x, t increase. Fortunately, there are methods

specific to highly oscillatory integrals, such as Filon-type and Levin-type methods, that are

more accurate as oscillations increase, with a fixed number of evaluations of the integrand.

Hence it is still possible to attain uniform accuracy without increasing computational cost.

Readers can check Section 3.3 in [49] which has a nice and concise description of how Levin’s

method works. On the other hand, unlike in the method of steepest descent, the global

error over all x, t does not, in general, decay spectrally. While we do compute solutions

at arbitrarily large x, t with increasing accuracy as x, t increase, improvements over our

methodology in the computation of integrals of the type given in (3.3) will improve the overall

efficiency of our method. Some possible directions for the improved evaluation of (3.3) are:

1. Better computational methods for oscillatory integrals that can achieve higher order

of accuracy, and
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2. Faster solvers that can handle more nodes/modes in Levin-type methods like the

ultraspherical polynomial spectral method [59].

We emphasize that our work focuses on the integrals from the UTM and therefore we focus

on analyticity and decay of the integrands and possible contour deformations. A complete

discussion of the treatment of (3.3) is beyond the scope of this project as any improvement

is not only relevant to the NUTM but is also worth studying for its own sake.

In order to make use of the path of steepest descent to obtain exponential localization,

we avoid computing the solution with arbitrarily small x or t. Hence in discussion about

uniform accuracy, we assume x, t ≥ c for some constant c > 0. We choose c = 0.1 in most

examples for convenience.

Remark 4. The NUTM is less efficient for small x or t. We can use extrapolation and

Taylor expansions to get q(x, t) with small x or t [71]. Traditional time-stepping methods

can be powerful and convenient if the number of time steps is small.

Methods for oscillatory integrals are also needed for computing the transforms q̂, g̃.

These transformed data are Fourier-type integrals that can be handled efficiently by Levin’s

method. In Figure 3.1, the absolute errors for q̂0(x + i) for q0(x) = e−2x are plotted. The

number of collocation points N = 40 is the same for Levin’s method and for Clenshaw-Curtis

quadrature. The values start to diverge for large x for Clenshaw-Curtis quadrature when

the oscillations are under resolved but Levin’s method provides reliable approximations with

decreasing errors.

3.3 The heat equation on the half-line

We consider the heat equation on the half-line,

qt = qxx, t > 0, x > 0, (3.4)

with Dirichlet boundary data q(0, t) = g0(t) and initial data q(x, 0) = q0(x). The dispersion

relation for the heat equation is ω(k) = k2. The initial data q0 is assumed to be in C∞δ
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Figure 3.1: The absolute errors for the computation of q̂0(x + i) for x ∈ [1, 8]. The curves
are computed using Clenshaw-Curtis quadrature (dashed) and Levin’s method (solid). Both
methods use a fixed number of nodes N = 40. The initial data is q0(x) = e−2x.

for some δ > 0 and the boundary data g0 is assumed to be in C∞γ for some γ > 0. The

smoothness of q0, g0 allows us to compute the transformed data q̂, g̃ accurately. The rate of

decay affects the regions where the deformation of the integration path is allowed. The same

methodology can still be applied, with less efficiency and accuracy, when weaker conditions

are satisfied.

Remark 5. It is possible to deal with non-decaying boundary data when the asymptotics of

the data is known and can be handled by some other method. The UTM for linear PDEs with

piecewise-constant data is studied in [71]. Since the equation is linear, if the data is given as

a superposition of data, it may then be beneficial to obtain the solution of the full problem as

a superposition of solutions corresponding to individual pieces of data. For instance, suppose

g0(t) = h1 + h2(t) where h1 is a constant and h2 ∈ C∞δ . The transform ĥ1(k,∞) = −1/k2

is a meromorphic function in C and there is no restriction about where the integral contour

for ĥ1(k,∞) can be deformed if the residue is collected correctly. The full solution is easily

obtained by superimposing the NUTM solutions for the problems corresponding to h1 and h2

separately.
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(a) (b)

Figure 3.2: Regions for the heat equation. Panel (a) shows the region D+ = {Re (k2) <
0} ∩ C+. Panel (b) shows different integral paths for B0: (i) ∂D+: the undeformed contour
(dashed), (ii) CB0 : the deformed contour across the saddle point k0 (solid), and (iii) C̃B0 : the
deformed contour used in [30] (dotted).

3.3.1 The solution formula from the unified transform method

The solution to the heat equations on the half-line with Dirichlet boundary condition is given

by [35]

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [q̂0(−k) + 2ikg̃0(ω(k), t)] dk, (3.5)

where the contour ∂D+ = {reiπ/4 : r ∈ [0,∞)}∪{re3iπ/4 : r ∈ [0,∞)} is the boundary of the

region D+ = {(reiu) : r ∈ (0,∞), u ∈ (π/4, 3π/4)}, shown in Figure 3.2a. The transformed

data q̂0(k) and g̃0(ω(k), t) are defined by (3.2b) and (3.2c) respectively.

Using the classical sine transform [23], a different representation of the solution is

q(x, t) =
2

π

∫ ∞
0

e−ω(k)t sin(kx) [sin(ky)q(y, 0)dy − kg̃0(ω(k), t)] dk. (3.6)

The equivalence of the expressions is shown by deforming the contour of (3.5) back to the

real line. The reason we do not work with (3.6) is twofold:

1. Deforming the contour back to the real axis is possible only when classical transforms

exist. Generally speaking, classical transforms do not exist for dispersive equations.
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x

t

Figure 3.3: Deformed contours for the heat equation. Depending on the values of (x, t), the
deformed contour for B0 can be inside or outside of ∂D+. Solid lines represent the deformed
contours. Dashed lines give ∂D+, where D+ is the shaded region. See Section 3.3.2 for a
detailed description of these deformations.
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2. It is more straightforward to apply the method of steepest descent numerically to (3.5)

than it is to (3.6).

3.3.2 Deformations of contours based on the method of steepest descent

We write the solution (3.5) as

q(x, t) = I1 + I2 +B0, (3.7)

where

I1 =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk,

I2 = − 1

2π

∫
∂D+

eikx−ω(k)tq̂0(−k)dk,

B0 = − 1

2π

∫
∂D+

eikx−ω(k)t2ikg̃0(ω(k), t)dk.

The associated deformed contours for I1, I2 and B0 will be defined by CI1 , CI2 and CB0 respec-

tively in the following sections. In [30], for the FCM, the deformed contour C̃B0 is independent

of (x, t), and is the same for all three integrals I1, I2 and B0. The contour C̃B0 is a hyperbola

parameterized by s ∈ R, shown in Figure 3.2,

k(s) = i sin(π/8− is). (3.8)

This contour C̃B0 is also used in [20, 36, 61] for different types of advection-diffusion equations.

There are two major drawbacks of using C̃B0 : (i) the integrands of I1, B0 are not defined on all

of C̃B0 , and (ii) the evaluation of the integral along C̃B0 quickly loses accuracy when t increases

as it does not follow the direction of steepest descent and large oscillations and potential

growth destroy accuracy. To fix these issues with FCMs, we use different deformations of

the contours for I0, I1 and B0 that depend on (x, t) and the contours are deformed to follow

the direction of steepest descent as much as possible, see Figure 3.3.
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I1: The integral involving q̂0(k)

The phase function in the integrand is

θ(k;x, t) = ikx− ω(k)t = ikx− k2t. (3.9)

There is one saddle point k0 = ix/2t where θ′(k0;x, t) = 0 on the imaginary axis. The phase

function θ(k;x, t) can be rewritten as

θ(k;x, t) = ikx− k2t = −t(k − ix/2t)2 − x2/4t.

The direction of steepest descent, along which the magnitude of eθ(k;x,t) decays exponentially,

is horizontal. If Im(k0) = x/2t > δ, the contour cannot be deformed to pass through the

saddle point k0 because the transform of the initial data q ∈ C∞δ is only guaranteed to be

defined for Im(k) ≤ δ. However, there is exponential decay in the integrand when the path

is along the horizontal line Im(k) = δ since t > 0, x > 0. Hence the deformed path that we

choose is a horizontal line CI1 = {k ∈ C : Im (k) = h}, with h = min(δ, x/2t).

I1 = − 1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk = − 1

2π

∫
CI1
eikx−k

2tq̂0(k)dk.

The uniform convergence of Clenshaw-Curtis quadrature applied to I1 for x, t ≥ c is estab-

lished in Theorem 4 (Appendix), after proper truncation and rescaling.

I2: The integral involving q̂0(−k)

Similar analysis can be applied to I2 in (3.5). Here

I2 = − 1

2π

∫
∂D+

eikx−ω(k)tq̂0(−k)dk.

Because q̂0(−k) is analytic and bounded for Im(k) > −δ, we can deform the contour ∂D+

to the horizontal line passing through k0 = ix/2t defined by CI2 = {k ∈ C : Im (k) = x/2t},

I2 = − 1

2π

∫
CI2
eikx−ω(k)tq̂0(−k)dk.

The uniform convergence of Clenshaw-Curtis quadrature applied to I2 for x, t ≥ c is estab-

lished in Theorem 4 (Appendix), after proper truncation and rescaling.
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Figure 3.4: The deformed horizontal contour CI1 (solid) passing through i with δ = 1, x =
4, t = 1, k0 = 2i. The undeformed contour (dashed). The background contour plot shows
the level sets of Re(θ(k, x, t)). The integrand of I1 is analytic for Im (k) < 1 when q0 ∈ C∞1 .

Figure 3.5: The deformed horizontal contour for I2 (solid) through k0 = 2i with δ = 1,
x = 4, t = 1. The undeformed contour (dashed). The background contour plot shows the
level sets of Re(θ(k, x, t)). The integrand of I2 is analytic for Im (k) > −1. The dashed line
is the undeformed contour ∂D+.
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B0: The integral of the transform of boundary data g̃0(ω(k), t)

The integral B0 in (3.5) containing the boundary data is more complicated compared to the

integrals I1, I2. There are two important factors that require special treatment:

1. The parameter t appears both in the exponential and in the transformed boundary

data g̃(ω(k), t) and therefore the phase θ(k, x, t) alone does not describe the decay of

the integrand in B0.

2. The evaluation of e−k
2tg̃(ω(k), t) is ill-conditioned due to the oscillations and growth

in g̃(ω(k), t) canceling those from the exponential.

Example 1. To get a more concrete understanding, consider g0(t) = e−t. The transform is

g̃0(ω(k), t) =

∫ t

0

ek
2se−sds =

1

k2 − 1

(
e(k2−1)t − 1

)
.

Since g0(s) = e−s is bounded on the finite interval 0 ≤ s ≤ t, the transformed data g̃0(ω(k), t)

is an entire function of k with removable poles at k = ±1. The integrand of B0 contains two

terms,

eikx−ω(k)t2ikg̃0(ω(k), t) =
ikeikx−t

π(k2 − 1)
− ikeikx−k

2t

π(k2 − 1)
. (3.10)

The second term follows the horizontal direction of steepest descent but the first term is not

exponentially localized on horizontal lines in the complex k-plane. Although the integral of

the first term on the ∂D+ is zero, it is not possible to separate the two terms, in general, for

all k.

General case. We write the transform g̃0(k, t) as

g̃0(ω(k), t) =

∫ t

0

ek
2sg0(s)ds = −

∫ ∞
t

ek
2sg0(s)ds+

∫ ∞
0

ek
2sg0(s)ds,

for k ∈ D+. Therefore the integrand in B0 is

eikx−k
2tg̃0(ω(k), t) = −eikx

∫ ∞
0

ek
2sg0(s+ t)ds+ eikx−k

2tg̃0(ω(k),∞). (3.11)
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The two terms on the right-hand side of (3.11) behave the same as the two terms in (3.10).

Because g̃0(ω(k),∞) is in general not defined outside D+, a separation only exists inside

D+. Without splitting the two terms, to get exponential decay for both terms, the contour

∂D+ is deformed to CI0 passing through the saddle point horizontally and turns up when the

second term in the integrand is negligible, see Figure 3.6. The corner point k1 = ±L+ ix/2t

is determined by L = max(L1,
√
γ) with specified tolerance ε where

∣∣∣e−L2
1t
∣∣∣ = ε characterizes

the exponential decay and
√
γ allows the oblique segment to be away from k = 0. With

this choice of contour, the exponential part in the second term decays exponentially along

the horizontal segment and keeps the same magnitude along the oblique segment while the

exponential part in the first term keeps the same magnitude along the horizontal segment and

decays exponentially along the oblique segment. Uniform accuracy is shown in Theorem 5

(Appendix) after proper truncation and rescaling.

Remark 6. For boundary data that are not exponentially decaying, the transforms g̃0(ω(k),∞)

are only defined in D+ in Figure 2. As a result, g̃0(ω(k), t) for large t is highly ill-conditioned

when k leaves D+. However, staying inside D+ requires retaining more oscillations. In the

limit t → ∞, the saddle point x/(2t) approaches the corner of D+, which further restricts

contour deformations and makes achieving uniform accuracy more difficult.

3.3.3 A numerical example

With these deformed contours, we can numerically evaluate the integrals efficiently for

arbitrarily large values of the parameters x, t. Figure 3.7 shows the solution to the heat

equation with initial and boundary data q0(x) = e−x, g0(t) = e−t. Although exact transforms

can be obtained for these choices of data, in the rest of the chapter, they are only used for

computing the errors and our NUTM does not make use of the formulas.

To demonstrate the uniform accuracy for large x, t, we plot the absolute errors ENUTM

and EFCM along 3 different curves (a) t = 0.1, (b) x = 0.1, and (c) t = x2 in Figure 3.8.

The error ENUTM is obtained using the contours CI1 , CI2 and CB0 . The error EFCM is obtained
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Figure 3.6: The undeformed contour ∂D+. The solid line gives the deformed contour CI0 of
I0 that goes through k0 = 2i and turns to rays parallel to ∂D+ with x = 20, t = 5. The
integrand of I0 is entire. The background contour plot shows the level sets of Re(θ(k, x, t)).

using the contour C̃B0 in (3.8) [30]. The initial and boundary conditions are q0(x) = e−10x,

g0(t) = e−10t to allow deformation in a larger region. The number of collocation points

N = 120 is the same for both methods. This is a coarse grid for the integrals with the errors

approximately 10−3 when s = 0.1 is small but it shows the efficiency of the NUTM as s grows.

The true solution is computed using Mathematica’s built-in numerical integration routine

NIntegrate along the undeformed contour ∂D+ with sufficient recursions and precision. This

is time consuming if the transforms of the initial and boundary data need to be computed.

The truncation tolerance is set to 10−13 for determining the truncation of the deformed path.

This value of the truncation tolerance is chosen so that it is small enough to show the trend

of the errors when x, t vary and the truncation is not affected by the rounding errors. These

settings are the same for other examples in the chapter unless stated otherwise.

The absolute error ENUTM decreases in all cases as x, t grow while EFCM grows when t

increases. This can be explained simply by the fact that the contour used in the FCM does

not follow the steepest descent path. Furthermore, even when t is fixed in Figure 3.8(a),
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Figure 3.7: The solution to the heat equation (3.4) with exponential decay initial and
boundary data q(x, 0) = e−x, q(0, t) = e−t. The bold curves are the initial and boundary
conditions.

EFCM decreases slower than ENUTM. On the other hand, ENUTM increases relative to the true

solution. This is mainly due to the fact that the magnitude of the solution is smaller than the

truncation tolerance for x > 5 at which point the numerical solution has almost all contours

truncated. In Figure 3.8(b-c), ENUTM maintains good relative accuracy. In Figure 3.8(c),

ENUTM starts with a larger error because t = s2 = 0.01 is very small and close to the initial

condition which requires more nodes to produce the same order of errors compared with the

other two starting from t = 0.1. As both the FCM and the NUTM are implemented with

spectral methods, for fixed x and t, both methods are spectrally accurate.

Remark 7. As can be seen in (3.10) and (3.11), there is large cancellation in the exponen-

tials. To avoid potential overflow/underflow problems, we use ĝ0(ω(k), T ) defined by

ĝ0(ω(k), T ) = e−ω(k)T g̃0(ω(k), T ) =

∫ T

0

eω(k)(s−T )g0(s)ds. (3.12)
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Figure 3.8: The absolute errors of the numerical solution to the heat equation with initial
condition q0(x) = e−10x and boundary condition g0(t) = e−10t along (a) x = s, t = 0.1, (b)
x = 0.1, t = s, (c) x = s, t = s2 for s ∈ [0.1, 105]. The error ENUTM is obtained using the
contours CI1 , CI2 and CB0 . The error EFCM is obtained using the contour C̃B0 in Figure 3.6. The
absolute value of the solution |q(x, t)| is also plotted with dashed lines for reference. The
FCM loses accuracy as t grows while ENUTM decreases in all cases as parameters increase.

3.4 The linear Schrödinger equation on the half-line

Next, we consider a dispersive example, the linear Schrödinger (LS) equation:

iqt = −qxx, x > 0, t > 0, (3.13)

with Dirichlet boundary data g0 ∈ C∞γ and initial data q0 ∈ C∞δ .

3.4.1 The solution formula from the unified transform method

The dispersion relation for (3.13) is ω(k) = ik2. Define the transform of the initial data

q̂0 and the transform of the Dirichlet boundary data g̃0 by (3.2b) and (3.2c). The UTM

provides the solution in terms of the following contour integrals [23],

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [q̂0(−k)− 2kg̃0(ω(k), t)] dk, (3.14)

where the contour ∂D+ is the positively oriented boundary of the first quadrant D+ = {k ∈

C : Re (k) ≥ 0, Im (k) ≥ 0}. With the assumption of the decay of g0(t), the contour can be

deformed to the lower-half plane inside D̃ = {k ∈ C : Re (k2) < γ} as in Figure 3.9. But
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(a) (b)

Figure 3.9: Regions for the LS equation. Panel (a) shows the region D+ = {k ∈ C+ :
Re (k2) < 0}. Panel (b) shows D̃ = {k ∈ C : Re (k2) < γ} and a schematic of the deformed
contour from ∂D+ to CB0 for B0 in (3.15), see Section 3.4.2 for details of the deformation.

this is not enough to completely eliminate the oscillations. In general, other methods for

oscillatory integrals are required when t is not sufficiently large or the saddle point k0 has

large modulus.

3.4.2 Deformations of the contours based on the method of steepest descent

We separate the different integrals in the solution formula (3.14),

q(x, t) = I0 + I1 +B0, (3.15)

where

I0 =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk,

I1 = − 1

2π

∫
∂D+

eikx−ω(k)tq̂0(−k)dk,

B0 =
1

2π

∫
∂D+

eikx−ω(k)t2kg̃0(ω(k), t)dk.
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I1: integral with the transform of the initial data

The phase function in I1 is

θ(k;x, t) = ikx− ω(k)t = ikx− ik2t. (3.16)

There is one saddle point k0 = x/2t on the positive real axis satisfying θ′(k0;x, t) = 0. Near

the saddle point k0,

θ(k;x, t) = ikx− ik2t = −it(k − x/2t)2 + ix2/4t.

The directions of steepest descent are −π/4 and 3π/4. Similar to the case of the heat

equation, the transformed initial data q̂0(k) is bounded and analytic in Im (k) < δ when

q0 ∈ C∞δ . Hence we choose the deformed contour CI1 = {a + k0 + ib : a ∈ (−∞,−δ), b =

δ} ∪ {a+ k0− ia : a ∈ [−δ,∞)} to be a horizontal ray with height Im(k) = δ and a straight-

line segment with slope −1 passing through the saddle point as shown in Figure 3.10. The

integral I1 becomes

I1 =
1

2π

∫
CI1
eikx−ik

2tq̂0(k)dk.

I2: integral with the transform of the initial data q̂0(−k)

Similar analysis can be applied to I2 with q̂0(−k) in (3.14). Since the transform q̂0(−k) is

analytic and bounded for Im (k) > −δ, we can deform the contour ∂D+ to

CI2 = {a+ k0 − ia : a ∈ (−∞, δ)} ∪ {a+ k0 − ib : a ∈ [δ,∞), b = δ},

see Figure 3.11. Therefore, I2 becomes

I2 = − 1

2π

∫
CI2
eikx−ik

2tq̂0(−k)dk.
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Figure 3.10: The undeformed contour (dashed). The deformed horizontal contour CI
1 (solid)

going through k0 = 1, δ = 1, x = 2, t = 1. The background contour plot shows the level sets
of Re(θ(k, x, t)). The integrand of I1 is analytic for Im (k) < 1.

Figure 3.11: The undeformed contour (dashed). The deformed contour for I2 (solid) going
through k0 = 1, δ = 1, x = 2, t = 1. The background contour plot shows the level sets of
Re(θ(k, x, t)). The integrand of I2 is analytic for Im (k) > −1.
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B0: integral of the transform of boundary data g̃0(ω(k), t)

The issues discussed in Section 3.3.2 also appear in the case of the LS equation. However,

now the region where we can deform the contour is restricted. The same decomposition as

in (3.11) gives

eikx−k
2tg̃0(ω(k), t) = −eikx

∫ ∞
0

ek
2sg0(s+ t)ds+ eikx−k

2tg̃0(ω(k),∞). (3.17)

For generic g0(t), if the contour of B0 is along the −π/4 direction at the saddle point k0 =

x/2t, the first term in (3.17) grows exponentially as x→∞ since Re (ikx) > 0. On the other

hand, g̃0(ω(k),∞) may not be extendable outside D+. With the assumption that g0 ∈ C∞γ ,

it becomes possible to deform the path to the lower-half plane to obtain some exponential

decay. The steps of the deformation are:

1. The region D+ is extended to D̃. The transformed data g̃0(ω(k),∞) is analytic in D̃,

and continuous up to ∂D̃.

2. The contour ∂D+ is deformed to CB0,a ∪ CB0,b ∪ CB0,c as shown in Figure 3.12 where CB0,b is

the straight-line segment passing through the saddle point along the steepest-descent

direction up to ∂D̃ and CB0,a, CB0,c are the unbounded curved segments along ∂D̃.

3. Using that eikx−ω(k)t
∫∞
t
eω(k)sg0(s)ds is bounded and analytic in D̃, we can replace

g̃0(ω(k), t) with g̃0(ω(k),∞) using Jordan’s lemma,

B0 =
1

2π

∫
∂D+

eikx−ω(k)t2kg̃0(ω(k), t)dk =
1

2π

∫
CB0,a∪CB0,b∪C

B
0,c

eikx−ω(k)t2kg̃0(ω(k),∞)dk.

(3.18)

4. The integral along CB0,a is decomposed into two parts to maximize decay along the

steepest descent direction:∫
CB0,a

eikx−ω(k)t2kg̃0(ω(k),∞)dk =

∫
CB0,d

eikx−ω(k)t2kg̃0(ω(k), t)dk +

∫
CB0,a

eikx−ω(k)t2kg̃c0(ω(k), t)dk,
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where

g̃c0(ω(k), t) =

∫ ∞
t

eωksg0(s)ds,

is the complementary transform of g0.

5. The integral along CB0,c is decomposed into two parts:∫
CB0,c

eikx−ω(k)t2kg̃0(ω(k),∞)dk =

∫
CB0,c

eikx−ω(k)t2 (kg̃0(ω(k),∞)− k0g̃0(ω(k0),∞)) dk

+

∫
CB0,e

eikx−ω(k)t2k0g̃0(ω(k0),∞)dk.

The second integral on the right-hand side is deformed to follow the direction of steepest

descent.

6. With the above steps, we obtain

B0 =
1

2π

∫
CB0,a

eikx−ω(k)t2kg̃c0(ω(k), t)dk +
1

2π

∫
CB0,d

eikx−ω(k)t2kg̃0(ω(k), tdk

+
1

2π

∫
CB0,b

eikx−ω(k)t2kg̃0(ω(k),∞)dk

+
1

2π

∫
CB0,c

eikx−ω(k)t [2kg̃0(ω(k),∞)− 2k0g̃0(ω(k0),∞)] dk

+
1

2π

∫
CB0,e

eikx−ω(k)t2k0g̃0(ω(k0),∞)dk.

Using the deformed contour, for large x, t , the integral is exponentially localized near the

saddle point on CB0,b. When the integrand is not sufficiently small near the endpoints of CB0,b,

the oscillations in the integrand along CB0,c and CB0,d become important. Most of the potential

error comes from the integral along CB0,c as the integrand along CB0,d has exponential decay

from the eikx factor. The contour CB0,c asymptotically approaches the real axis. We use the

Levin collocation method [49] for the integrals along CB0,c and CB0,d to maintain accuracy for

large x, t. The rest of the integrals in B0, as well as those making up I1 and I2, are computed

using Clenshaw-Curtis quadrature.
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Figure 3.12: The undeformed contour (dashed). The deformed contour for B0 (solid) through
k0 = 1 with x = 2, t = 1,γ = 1, see Section 3.4.2 for details of the deformation. The
background contour plot shows the level sets of Re(θ(k, x, t)).

3.4.3 A numerical example

Consider the initial condition q0(x) = 0, and the Dirichlet boundary condition g0(t) = te−t.

The real part of the solution to (3.13) with this choice of data is shown in Figure 3.13.

Dispersive waves quickly emerge from the boundary, becoming more oscillatory for large x.

The absolute error and the magnitude of the solution evaluated along (a) t = 0.1, (b) x = 0.1,

(c) t = x2 are shown in Figure 3.14. The errors shown in dotted curves are computed with

N = 20 collocation points for each part of the contour in B0 while the errors shown in solid

curves are computed with N = 40 collocation points. The absolute errors decrease as x, t

increase. In Figure 3.14(a), we see that although the initial condition is zero, at t = 0.1 the

solution q(x, t) only decreases algebraically. This makes traditional time-stepping method

inefficient even if we ignore issues related to the highly oscillatory nature of the solution.
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Figure 3.13: The plot of the real part of the solution of the LS equation with q0(x) = 0,
g0(t) = te−t. The bold solid curve shows the initial and boundary conditions.
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Figure 3.14: The absolute errors ENUTM of the numerical solution to the LS equation (3.13)
along three curves: (a) x = s, t = 0.1, (b) x = 0.1, t = s, (c) x = s, t = s2 for s ∈ [0.1, 105].
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Figure 3.15: The region D+ for (3.19). The shaded region in the top left is D+
1 . The shaded

region in the top right is D+
2 . The branch cut is shown as a jagged line.

3.5 A multi-term third-order PDE on the half-line

The deformations for higher-order equations are more involved and the integrands may have

branch points that are fixed by the equation and not by the initial or boundary data. The

NUTM is implemented in a systematic way as long as one can solve the PDE using the UTM

with additional care for the branch points. Consider a multi-term third-order PDE,

qt = qx + qxxx, x > 0, t > 0, (3.19)

with Dirichlet boundary data g0 ∈ C∞γ , Neumann boundary data g1 ∈ C∞γ and initial data

q0 ∈ C∞δ . The dispersion relation is ω(k) = −ik+ ik3 and D+ = {k ∈ C+ : Re (ω(k)) < 0} =

D+
1 ∪D+

2 as shown in Figure 3.15.

Using the UTM, it is known that the problem requires two boundary conditions at x =
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Figure 3.16: The region D̃ and the deformation for B0 across the saddle points k1 and k2.
The branch cut is shown as a jagged line.
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0 [23]. By solving ω(ν(k)) = ω(k), we find two symmetries of the dispersion relation,

ν1(k) = (−k −
√

4− 3k2)/2,

ν2(k) = (−k +
√

4− 3k2)/2,

with branch cut [−2/
√

3, 2/
√

3]. Here, ν1 is the branch of ν that tends to (−1/2+i
√

3/2)k =

k exp(2πi/3) as k →∞ and ν2 is the other branch. The solution formula is given by3

q(x, t) = I1 + I2 + I3 +B0 +B1, (3.20)

with

I1 =
1

2π

∫ ∞
−∞

eikx−ω(k)tq̂0(k)dk,

I2 = − 1

2π

∫
∂D+

1

eikx−ω(k)tq̂0(ν1(k))dk,

I3 = − 1

2π

∫
∂D+

2

eikx−ω(k)tq̂0(ν2(k))dk,

B0 = − 1

2π

∫
∂D+

1

eikx−ω(k)t(ν2
1(k)− k2)g̃0(ω(k), t)dk − 1

2π

∫
∂D+

2

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k), t)dk,

B1 = − 1

2π

∫
∂D+

1

eikx−ω(k)t(ik − iν1(k))g̃1(ω(k), t)dk − 1

2π

∫
∂D+

2

eikx−ω(k)t(ik − iν2(k))g̃1(ω(k), t)dk.

For convenience, we impose the following initial and boundary conditions to focus on the

deformation of B0,

q(x, 0) = 0, q(0, t) = g0(t), g0 ∈ C∞γ , qx(0, t) = 0.

For inhomogeneous initial and Neumann data, the deformation of B1 follows the same steps

as the deformation of B0 and the deformations of I1, I2, I3 follow the same steps as in I1, I2

in the heat equation or the LS equation case.

3Although some parts of the contours lie on the branch cut, the integrands are well-defined if the values
are taken as limits from the interior of D+.
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3.5.1 Deformations of the contour of B0 based on the method of steepest descent

With homogeneous initial and Neumann boundary conditions, the solution reduces to

q(x, t) = B0 = B0|D+
1

+B0|D+
2
,

where

B0|D+
1

= − 1

2π

∫
∂D+

1

eikx−ω(k)t(ν2
1(k)− k2)g̃0(ω(k), t)dk,

B0|D+
2

= − 1

2π

∫
∂D+

2

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k), t)dk.

The phase function in B0 is

θ(k;x, t) = ikx− ω(k)t = ikx− (−ik + ik3)t.

There are two saddle points k1,2 = ±
√
x/(3t) + 1/3 on the real axis satisfying θ′(k;x, t) = 0,

k1 ∈ D+
1 and k2 ∈ D+

2 . Since the saddle points and contours are symmetric with respect

to the imaginary axis, we only need to analyze the deformation for D+
2 and use the mirror

image about the imaginary axis for D+
1 . Near the saddle point k2, θ has the expansion

θ(k;x, t) =
2

9
i

(
t

√
3(t+ x)

t
+ x

√
3(t+ x)

t

)
− it

√
3(t+ x)

t
(k − k2)2 +O(k − k2)3.

The direction of steepest descent is along the angles −π/4 and 3π/4. The integrands need

to be extended to the lower half plane similar to the steps in Section 3.4.2.

Deformations of the contour of B0 for x ≥ 3t

In this case the saddle points k1,k2 lie outside branch cut [−2/
√

3, 2
√

3]. We proceed as

follows.

1. The region D+ = {k ∈ C+ : Re (ω(k)) < 0} is extended to D̃ = {k ∈ C : Re (ω(k)) <

γ}. The transformed data g̃0(ω(k),∞) is analytic in D̃, and continuous up to ∂D̃.
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2. The contour ∂D+ is deformed to CB0,a ∪ CB0,b ∪ CB0,c as shown in Figure 3.17. CB0,b is the

curve passing through the saddle point up to ∂D̃, keeping Im (θ(k;x, t)) constant along

the steepest-descent direction and CB0,a, CB0,c are the unbounded curve segments along

∂D̃.

3. Using that eikx−ω(k)t
∫∞
t
eω(k)sg0(s)ds is bounded and analytic in D̃, we can replace

g̃0(ω(k), t) with g̃0(ω(k),∞),

B0|D+
2

=
1

2π

∫
∂D+

2

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k), t)dk

=
1

2π

∫
CB0,a∪CB0,b∪C

B
0,c

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k),∞)dk.

4. The integral along CB0,a is decomposed into two parts to maximize decay along the

steepest-descent direction,∫
CB0,a

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k),∞)dk =∫

CB0,a
eikx−ω(k)t(ν2

2(k)− k2)g̃c0(ω(k), t)dk +

∫
CB0,d

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k), t)dk,

where

g̃c0(ω(k), t) =

∫ ∞
t

eω(k)sg0(s)ds,

is the complement of the transform g̃0(ω(k), t) and CB0,d is extended from CB0,b keeping

Im (θ(k;x, t)) constant along the steepest-descent direction.

5. The integral along CB0,c is decomposed into two parts to separate the leading-order

contribution in the oscillatory integral,∫
CB0,c

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k),∞)dk =

∫
CI0,e

eikx−ω(k)t(ν2
2(k2)− k2

2)g̃0(ω(k2),∞)dk

+

∫
CB0,c

eikx−ω(k)t
[
(ν2

2(k)− k2)g̃0(ω(k),∞)− (ν2
2(k2)− k2

2)g̃0(ω(k2),∞)
]
dk.

The contour CB0,e is extended from CB0,b keeping Im (θ(k;x, t)) constant along the steepest-

descent direction.
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6. Finally, we obtain

B0|D+
2

=
1

2π

∫
CI0,a

eikx−ω(k)t(ν2
2(k)− k2)g̃c0(ω(k), t)dk +

1

2π

∫
CB0,d

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k), t)dk

+
1

2π

∫
CB0,b

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k),∞)dk

+
1

2π

∫
CB0,c

eikx−ω(k)t(ν2
2(k)− k2)g̃0(ω(k),∞)− (ν2

2(k2)− k2
2)g̃0(ω(k2),∞)dk

+
1

2π

∫
CB0,e

eikx−ω(k)t(ν2
2(k2)− k2

2)g̃0(ω(k2),∞)dk.

The integrals along CB0,b, CB0,d and CB0,e are computed using Clenshaw-Curtis quadrature

and the integrals along CB0,a and CB0,c are computed using Levin’s method.

The contour integral B0|D+
1

is deformed in a symmetrical way. For real-valued data, we can

use the symmetry and compute q(x, t) with only the contour integral B0|D+
2

,

q(x, t) = 2Re
(
B0|D+

2

)
.

Deformations of the contour for B0|D+
2

for x < 3t

When x < 3t, the saddle points k1, k2 lie on branch cut [−2/
√

3, 2/
√

3]. To maximize the use

of the steepest-decent direction, we choose a different branch cut for ν, shown in Figure 3.18

in red. The new branch cut starts from the branch point 2/
√

3 and goes along the curve

with Im (θ(k;x, t)) constant in the lower half plane. The corresponding ν̃2(k) is defined as

the analytic continuation of ν2(k) from the interior of D+
2 . We use the following steps.

1. The region D+ = {k ∈ C+ : Re (ω(k)) < 0} is extended to D̃ = {k ∈ C : Re (ω(k)) <

γ}. The transformed data g̃0(ω(k),∞) is analytic in D̃, and continuous up to ∂D̃.

2. The contour ∂D+
2 is deformed to CB0,a ∪ CB0,b ∪ CB0,e ∪ (−CB0,f ) ∪ CB0,f ∪ CB0,c as shown in

Figure 3.18. The contour CB0,b is the curve passing through the saddle point up to ∂D̃
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Figure 3.17: The deformed contour for B0|D2 when x ≥ 3t (solid), the undeformed contour
(dashed). The background contour plot shows the level sets of Re(θ(k, x, t)). The branch
cut is shown as a jagged line.

with Im (θ(k;x, t)) constant along the steepest-descent direction. The contours CB0,a, CB0,e
and CB0,c are along ∂D̃. The contours −CB0,f and CB0,f are the two segments on the new

branch cut with opposite orientations. The contour −CB0,f points towards the branch

point and CB0,f points away from the branch point.

3. Using that eikx−ω(k)t
∫∞
t
eω(k)sg0(s)ds is bounded and analytic in D̃, we can replace

g̃0(ω(k), t) with g̃0(ω(k),∞),

B0|D+
2

=
1

2π

∫
∂D+

2

eikx−ω(k)t(ν̃2
2(k)− k2)g̃0(ω(k), t)dk

=
1

2π

∫
CB0,a∪CB0,b∪C

B
0,e∪CB0,c

eikx−ω(k)t(ν̃2
2(k)− k2)g̃0(ω(k),∞)dk

− 1

2π

∫
CB0,f

eikx−ω(k)tν̃2
2(k−)g̃0(ω(k),∞)dk +

1

2π

∫
CB0,f

eikx−ω(k)tν̃2
2(k+)g̃0(ω(k),∞)dk,

where k+ and k− denote the limit from the left/right of the curve respectively.

4. The integral along CB0,a is decomposed into two parts to maximize decay along the
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steepest-descent direction:∫
CB0,a

eikx−ω(k)t(ν̃2
2(k)− k2)g̃0(ω(k),∞)dk =∫

CB0,a
eikx−ω(k)t(ν̃2

2(k)− k2)g̃c0(ω(k), t)dk +

∫
CB0,d

eikx−ω(k)t(ν̃2
2(k)− k2)g̃0(ω(k), t)dk,

5. We obtain

B0|D+
2

=
1

2π

∫
CB0,a

eikx−ω(k)t(ν̃2
2(k)− k2)g̃c0(ω(k), t)dk

+
1

2π

∫
CB0,d

eikx−ω(k)t(ν̃2
2(k)− k2)g̃0(ω(k), t)dk

+
1

2π

∫
CB0,b

eikx−ω(k)t(ν̃2
2(k)− k2)g̃0(ω(k),∞)dk

+
1

2π

∫
CB0,e∪CB0,c

eikx−ω(k)t(ν̃2
2(k)− k2)g̃0(ω(k),∞)dk

+
1

2π

∫
−CB0,f

eikx−ω(k)tν̃2
2(k+)g̃0(ω(k),∞)dk

+
1

2π

∫
CB0,f

eikx−ω(k)tν̃2
2(k+)g̃0(ω(k),∞)dk.

The integrals along CB0,b, CB0,d,−CB0,f and CB0,f are computed using Clenshaw-Curtis quadra-

ture and the integrals along CB0,a, CB0,c and CB0,e are computed using Levin’s method. The

contour integral B0|D+
1

is deformed symmetrically.

Improving the accuracy near the branch point

Since ν̃2(k) is not differentiable at the branch point k2 = 2/
√

3, Clenshaw-Curtis quadrature

loses spectral accuracy for the integrals along −CB0,f , CB0,f and CB0,b in the critical case x = 3t.

With the change of variables s2 = k − k2, we get

ν̂2(s) := ν2(s2 + k2) = (−2
√

3− 3s2 − i35/4s

√
4 +
√

3s2)/6.

The new symmetry ν̂2(s) is smooth near s = 0. Clenshaw-Curtis quadrature maintains

spectral accuracy for the integrals on CB0,b and CB0,f after this change of variables.
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(a) (b)

Figure 3.18: The deformed contour for B0|D2 when x < 3t (solid). The undeformed contour
(dashed). The background contour plot shows the level sets of Re(θ(k, x, t)). The original
branch cut is shown as a jagged line and the new branch cut is shown in red. A zoomed plot
of the contour near the new branch cut is shown in the right panel.
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Improving the accuracy near the saddle point

Large numerical rounding errors can arise if the parametrization along CB0,b is not smooth. For

instance, the parametrization of CB0,b using Re (k) by mapping the curve to the real line has a

square root singularity at the saddle point. Other than seeking an optimal parametrization,

we use line segments to approximate the curve near the saddle point.

3.5.2 Numerical examples

Consider the Dirichlet boundary condition g0(t) = te−t, the homogeneous initial condition

q0(x) = 0 and the Neumann boundary condition g1(t) = 0. The solution to (3.19) is shown

in Figure 3.19. For small time, the dispersive waves emanate from the boundary and the

solution looks similar to Figure 3.13. As t grows, the advection dominates and the waves turn

back to the boundary. The absolute error and the magnitude of the solution evaluated along

(a) t = 0.1, (b) x = 0.1, (c) x = 3t are shown in Figure 3.20. The errors shown in dotted

curves are computed with N = 20 collocation points for each part of the contour in B0 while

the errors shown in solid curves are computed with N = 40 collocation points. The absolute

errors tend to zero as x, t increase. To demonstrate spectral accuracy, the absolute errors

ENUTM evaluated at x = 1, 3, 5, t = 1 are plotted against the number of collocation points

per segment in Figure 3.21. With the change of variables used in Section 3.5.1, the NUTM

remains spectrally accurate even when the branch point is on the contour of integration.

All our examples use boundary conditions with transforms that can be computed ex-

plicitly. This is to allow us to estimate the error of our method by comparing with the

built-in integration routine in Mathematica. To show the NUTM is not limited to this, in

Figure 3.22, we show a plot of the solution q(x, t) with g0(t) = sin(2t)φ(t/(2π)) where

φ(t) =

exp(−1/(1− t2)) |t| ≤ 1,

0 |t| > 1.

(3.21)

The initial data and the Neumann data are zero. We see a similar wave pattern as in

Figure 3.19 with dispersive waves propagating in the positive x direction, before turning



80

back.

3.6 Summary of the steps in the Numerical Unified Transform Method ap-
plied to linear evolution PDEs.

1. For PDEs of type

qt + ω(−i∂x)q = 0,

we construct the solution formula using the UTM.

2. The solution formula from the UTM requires transforms of the known initial and

boundary data,

q̂0(k) =

∫ ∞
0

e−ikxq0(x, 0)dx,

g̃0(ω(k),∞) =

∫ ∞
0

eω(k)sq(0, s)ds,

...

g̃p−1(ω(k),∞) =

∫ ∞
0

eω(k)s ∂
p−1q

∂xp−1
(0, s)ds.

For most k values used on the deformed contour, these integrals are oscillatory. We

apply Levin’s method to compute these integrals.

3. The solution formula depends on (x, t) explicitly through eikx−ω(k)t. Generally, each

connected component of D+ contains saddle points. The contour ∂D+ is deformed to

pass through the saddle points along the steepest descent directions until it hits the

boundary of D̃ (a slightly enlarged version of D+) where the transforms of the initial

and boundary data are analytic. The size of D̃ is determined by the decay rate of the

initial and boundary data. The path follows ∂D̃ in the same direction as ∂D+. The

contour deformations may be impacted by singularities such as branch cuts, poles.
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Figure 3.19: The numerical solution of equation (3.19) with q0(x) = 0, g0(t) = te−t, g1(t) = 0.
The bold curves are the initial and Dirichlet boundary conditions. For small t, dispersive
waves emanate from the boundary while the waves start to turn back following the advection
as t grows.
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Figure 3.20: The absolute error ENUTM of the numerical solution to (3.19) along (a) x =
s, t = 0.1, (b) x = 0.1, t = s, (c) x = 3s, t = s for s ∈ [0.1, 105]. The computation using
N = 20 points for each segment in the contour (dotted) and using N = 40 points for each
segment in the contour (dashed) are plotted.

Figure 3.21: The absolute error ENUTM against the number of collocation points N per
segment: computed with x = 1, t = 1 (dashed), x = 3, t = 1 (dotted) and x = 5, t = 1
(solid). The truncation tolerance is 10−15 for this example.
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(a) (b)

Figure 3.22: The numerical solution of (3.19) with g0 = sin(2t)φ(t/(2π)) with φ(t) defined
in (3.21). The bold curves are the initial and Dirichlet boundary conditions. For small t,
dispersive waves emanate from the boundary but the waves start to turn back because of
advection as t grows. Panel (a) shows the solution for x ∈ [0, 40], t ∈ [0, 30]. Panel (b)
shows the solution from a different angle in a shorter time interval t ∈ [0, 15].

4. The integrals along the steepest descent direction are non-oscillatory and they are

computed using standard quadrature rules. The integrals along ∂D̃ are oscillatory and

they are computed using Levin’s method.
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Chapter 4

THE NUMERICAL UNIFIED TRANSFORM METHOD FOR
THE NLS EQUATION ON THE HALF-LINE

In this chapter, we implement the NUTM to the NLS equation on the half-line. A

major difference in the UTM for nonlinear integrable IBVPs is that characterization of the

unknown boundary data from the given initial and boundary conditions is difficult. For

general boundary conditions, the unknown boundary data satisfies a system of nonlinear

Volterra equations [62]. We believe that the nonlinear nature of the problem is unavoidable

when solving problems with general boundary conditions. In this chapter, we show that for

linearizable boundary conditions (see Section 4.2 for the definition), the NUTM applies to the

NLS equation on the half-line in the same fashion as on the whole line with all features 1-6.

This is indeed expected as these cases can be treated by appropriate spatial reflection. But

importantly, if the spectral functions are known, the same procedures can still be applied.

We also discuss the asymptotics of the spectral functions.

This chapter is organized as follows: Section 4.2 gives a brief overview of the UTM for

the NLS equation on the half-line. In Section 4.3, we discuss the NUTM applied to the NLS

equation with linearizable boundary conditions. In Section 4.4, we consider the solutions with

prescribed spectral functions. The corresponding boundary conditions are not necessarily

linearizable. In Section 4.5, we discuss the asymptotics of the spectral functions to improve

accuracy for small x, t.

4.1 The Unified Transform Method for the NLS equation on the half-line

In this section we describe the UTM applied to the NLS equation on the half-line. A complete

discussion is given in [34] and [35].
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4.1.1 The Lax pair

The NLS equation

iqt + qxx + 2λ |q|2 q = 0, λ = ±1, (4.1)

is integrable with the associated Lax pair

µx + ik[σ3, µ] = Q(x, t)µ, (4.2a)

µt + 2ik2[σ3, µ] = Q̃(x, t, k)µ, (4.2b)

where σ3 = diag(1,−1), [A,B] = AB −BA and

Q(x, t) =

 0 q(x, t)

−λq(x, t) 0

 , Q̃(x, t, k) = 2kQ− iQxσ3 + iλ |q|2 σ3.

Here λ = ±1 gives the focusing/defocusing NLS equation. (λ in [34] is −λ here.) The

compatibility of (2a) and (2b), µxt = µtx, is equivalent to q(x, t) satisfying (4.1). Using the

Lax pair (4.2a), (4.2b) we define

W (x, t, z) = d(ei(kx+2k2t)σ̂3µ(x, t, k)) = ei(kx+2k2t)σ̂3
(
Qµ(x, t, k)dx+ Q̃µ(x, t, k)dt

)
, (4.3)

where

σ̂3A := [σ3, A], eσ̂3A = eσ3Ae−σ3 .

Requiring that W is closed implies that q(x, t) satisfies (4.1). An integral equation for a

solution of the Lax pair (4.2a),(4.2b) is obtained by integrating the differential form,

µ(x, t, k) = I +

∫ (x,t)

(x∗,t∗)

e−i(kx+2k2t)σ̂3W (ξ, τ, k), (4.4)

where I is the 2×2 identity matrix, x, t ∈ (0,∞) and x∗, t∗ ∈ [0,∞]. Using particular choices

of (x∗, t∗), particular solutions are constructed and used to define the so-called spectral

functions.
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4.1.2 The spectral functions

Assume that q(x, t) solves (4.1) for x, t > 0 with the initial values

q(x, 0) = q0(x), x ≥ 0,

and the boundary values

q(0, t) = g0(t), t ≥ 0,

qx(0, t) = g1(t), t ≥ 0.

In general, we do not know both boundary functions g0(t) and g1(t). The NLS equation

on the half-line is well-posed with either g0(t) or g1(t) specified [16, 18, 46]. We further

assume that the initial condition q0 is in Sα(R+), the Schwartz class functions restricted to

the positive half-line with exponential decay rate α > 0:

Sα(R+) =

{
f ∈ S(R)|R+ , ∃α′ > α > 0 : sup

x∈R+

eα
′x |f(x)| <∞

}
.

Following [34], in this section, the boundary functions g0 and g1 are assumed to be smooth

functions on [0, T ] and when T = ∞, g0 and g1 are assumed to be in S(R)|R+ which is

sufficient to define the spectral functions. For the numerical examples we consider, this

sufficient condition may not be satisfied. Different assumptions on the boundary values are

used for problems discussed in Section 3, 4 and 5 so long as the spectral functions can be

computed.

Using the conventions in [34], µ1, µ2 and µ3 are defined using (x∗, t∗) = (0, T ), (x∗, t∗) =

(0, 0) and (x∗, t∗) = (∞, t) respectively. For T <∞ the spectral functions s(k) and S(k, T )

are defined by

s(k) = µ3(0, 0, k), S(k, T ) = [e2ik2T σ̂3µ2(0, T, k)]−1.

With this choice, s(k) depends only on the initial values q0 and S(k, T ) depends only on the

boundary values g0 and g1 on the interval [0, T ]. There is an alternate definition S(k,∞) =

µ1(0, 0, k), which is more convenient when T =∞.
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4.1.3 Properties of the spectral functions

Using the symmetries of Q and Q̃, the spectral functions have the form

s(k) =

 a(k) b(k)

−λb(k) a(k)

 , S(k, T ) =

 A(k, T ) B(k, T )

−λB(k, T ) A(k, T )

 .
Moreover, since Q and Q̃ are traceless,

det s(k) = det S(k, T ) = 1,

which implies that

a(k)a(k) + λb(k)b(k) = 1, k ∈ R, (4.5a)

A(k, T )A(k, T ) + λB(k, T )B(k, T ) = 1, k ∈ C (k ∈ R ∪ iR if T =∞). (4.5b)

It is convenient to characterize the spectral functions a(k) = φ2(0, k) and b(k) = φ1(0, k)

using linear Volterra integral equations:

φ1(x, k) = −
∫ ∞
x

e−2ik(x−y)q0(y)φ2(y, k)dy, (4.6a)

φ2(x, k) = 1− λ
∫ ∞
x

q̄0(y)φ1(y, k)dy. (4.6b)

If q0 ∈ S(R)|R+ , a(k) and b(k) are analytic for Im (k) > 0. With the additional assumption

on exponential decay q0 ∈ Sα(R+), a(k) and b(k) are analytic in a larger region that contains

Im (k) ≥ −α/2.

For T < ∞, the spectral functions A(k, T ) = Φ2(T, k) and −e−4ik2TB(k, T ) = Φ1(T, k)

are defined using a different set of linear Volterra integral equations:

Φ1(t, k) =

∫ t

0

e−4ik2(t−τ)
(
Q̃11Φ1 + Q̃12Φ2

)
(τ, k)dτ, (4.7a)

Φ2(t, k) = 1 +

∫ t

0

(
Q̃21Φ1 + Q̃22Φ2

)
(τ, k)dτ. (4.7b)

Therefore A(k, T ) and B(k, T ) are entire and bounded in Im (k2) ≥ 0.
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For T =∞, the spectral functions A(k,∞) = Φ2(0, k) and B(k,∞) = Φ1(0, k) are defined

by yet another set of linear Volterra integral equations:

Φ̃1(t, k) = −
∫ ∞
t

e−4ik2(t−τ)
(
Q̃11Φ̃1 + Q̃12Φ̃2

)
(τ, k)dτ, (4.8a)

Φ̃2(t, k) = 1−
∫ ∞
t

(
Q̃21Φ̃1 + Q̃22Φ̃2

)
(τ, k)dτ. (4.8b)

Therefore A(k,∞) and B(k,∞) are analytic for Im (k2) > 0 and bounded for Im (k2) ≥ 0.

Since A(k, T ), B(k, T ) are computed from overdetermined boundary data (Q̃ depends on

both q and qx), the spectral functions a(k), b(k) from the initial values and A(k, T ), B(k, T )

from the boundary values are not independent. This is clear because the Dirichlet to

Neumann map depends on the initial data. The integral of the 1-form (4.3) along the

boundary of the domain (x, t) ∈ (0,∞)× (0, T ) must vanish and we have the global relation

connecting the information from the initial values and the boundary values in terms of the

spectral data,

a(k)B(k, T )− b(k)A(k, T ) = e4ik2T c+(k, T ), Im (k) ≥ 0, (4.9)

where c+(k, T ) is:

• an undetermined function analytic for Im (k) > 0,

• continuous and bounded for Im (k) ≥ 0, and

• c+(k, T ) = O(1/k), as k →∞ for Im (k) > 0.

If T =∞, the global relation reduces to

a(k)B(k,∞)− b(k)A(k,∞) = 0, Im (k) ≥ 0,Re (k) ≥ 0. (4.10)

Definition 4 (an admissible set of functions [34]). Given q0 ∈ S(R+), the pair {g0, g1} of

smooth functions on [0, T ] or [0,∞) (if T =∞) is an admissible set of functions with respect

to q0 if the following conditions are satisfied:
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1. The associated spectral functions {a, b, A,B} satisfy the global relation (4.9) for T <∞

or (4.10) for T =∞.

2. The functions q0, g0 and g1 are compatible at x = t = 0, i.e., g0(0) = q0(0), g1(0) =

q′0(0). More equation-dependent conditions may be imposed if more regularity of the

solution q(x, t) is desired.

Remark 8. The spectral functions s(k), S(k, T ) are nonlinear transforms of the correspond-

ing initial and boundary values. For the LS equation (when λ = 0), µ3(x, 0, k) =

 µ11 µ12

µ21 µ22


satisfies (4.2a), µ11 µ12

µ21 µ22


x

+ 2ik

 0 µ12

−µ21 0

 =

 0 q(x, 0)

0 0

 µ11 µ12

µ21 µ22

 , (4.11)

with µ3(∞, 0, k) = I. Solving (4.11) yields

µ3(x, 0, k) =

 1 −e−2ikx
∫∞
x
e2ikξq(ξ, 0)dξ

0 1

 , and (4.12)

the spectral function s(k) is given by

s(k) = µ3(0, 0, k) =

 1 −
∫∞

0
e2ikξq(ξ, 0)dξ

0 1

 . (4.13)

Therefore b(k) = −
∫∞

0
e2ikξq(ξ, 0)dξ is the Fourier transform of the initial condition on the

half-line. On the other hand, µ2(0, t, k) =

 µ11 µ12

µ21 µ22

 satisfies (4.2b),

 µ11 µ12

µ21 µ22


t

+ 4ik2

 0 µ12

−µ21 0

 =

 0 2kq(0, t) + iqx(0, t)

0 0

 µ11 µ12

µ21 µ22

 ,

(4.14)
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with µ2(0, 0, k) = I. Solving (4.14) yields

µ2(0, T, k) =

 1 e−4ik2T
∫ T

0
e4ik2η (2kq(0, η) + iqx(0, η)) dη

0 1

 , (4.15)

and the spectral function S(k, T ) is given by

S(k, T ) = [e2ik2T σ̂3µ2(0, T, k)]−1 =

 1 −
∫ T

0
e4ik2η (2kq(0, η) + iqx(0, η)) dη

0 1

 . (4.16)

Therefore B(k) = −
∫ T

0
e4ik2η (2kq(0, η) + iqx(0, η)) dη is a sum of Fourier-type transforms of

the boundary data on the interval [0, T ]. The global relation (4.9) becomes∫ ∞
0

e2ikξq(ξ, 0)dξ−
(
i

∫ T

0

e4ik2ηqx(0, η)dη + 2k

∫ T

0

e4ik2ηq(0, η)dη

)
= e4ik2T c+(k, T ), Im (k) ≥ 0,

where

c+(k, T ) =

∫ ∞
0

e2ikξq(ξ, T )dξ.

This is exactly the same as the global relation in [23] which is obtained using Green’s theorem.

Remark 9 (The nonlinear Volterra integral equation). In [39], it is shown that for the

Dirichlet problem, the unknown Neumann value is given by

g1(t) =
2

πi

∫
∂D3

(kχ1(t, k) + ig0(t))dk +
2g0(t)

π

∫
∂D3

χ2(t, k)dk

− 4

πi

∫
∂D3

ke−4ik2t b(−k)

a(−k)
Φ2(t,−k)dk, (4.17)

for 0 < t < T where ∂D3 is the boundary of the third quadrant in the complex plane with

counterclockwise orientation and

χj(t, k) = Φj(t, k)− Φj(t,−k), j = 1, 2, 0 < t < T, k ∈ C.

For convenience, suppose that a(k) does not have zeros in the upper half-plane. Plugging the

equation of g1(t) back into (4.7a) and (4.7b) yields a nonlinear Volterra integral equation for

Φ1(t, k) and Φ2(t, k) that depend only on known data. However, since Φj(t, k) requires all
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the values of Φ1(s, k), 0 < s < t, k ∈ ∂D3, this is a fundamentally nonlinear problem that

depends on two continuous variables. As discussed in Section 4.3.1, even if one can solve

the nonlinear Volterra integral equation for the unknown g1(t), the slow decay of g1(t) will

affect the overall accuracy when computing the solution to the NLS equation. Perturbative

methods for the nonlinear Volterra integral equation have been studied in [39] and [56] using

related equations.

4.1.4 The Riemann-Hilbert problem

With the spectral functions a(k), b(k) and A(k, T ), B(k, T ) defined in the previous sections,

we obtain q(x, t) by solving the following RHP.

Theorem 2 ([34]). Suppose that q0 and an admissible set of functions {g0, g1} with respect

to q0 are given. The spectral functions a(k), b(k) are defined via (4.6a,4.6b), A(k, T ), B(k, T )

are defined via (4.7a,4.7b) for T < ∞ and A(k,∞), B(k,∞) are defined via (4.8a,4.8b) for

T =∞. Assume that

• If λ = 1, a(k) has at most n simple zeroes {paj}n1 in region C+\iR. Let n1 be the

number of the zeroes in the first quadrant arg paj ∈ (0, π/2), j = 1, . . . , n1, and therefore

arg paj ∈ (π/2, π), j = n1 + 1, . . . , n.

• If λ = 1, for both T <∞ and T =∞, then

d(k, T ) = a(k)A(k, T ) + λb(k)B(k, T ), arg k ∈ [π/2, π], (4.18)

has at most n2 simple zeroes in the second quadrant {pdj}
n2
1 , where arg pdj ∈ (π/2, π),

j = 1, . . . , n2.

For both T < ∞ and T = ∞, the following 2 × 2 matrix RHP for Φ(k;x, t) has a unique

solution:

1. Φ(k;x, t) is sectionally meromorphic for k ∈ C\{R ∪ iR} (sectionally analytic if λ =

−1).
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2. For k ∈ C where C is an oriented contour, define Φ±(k;x, t) to be the limit of Φ(k′;x, t)

as k′ → k nontangentially from the right (+) or the left (−). Φ(k;x, t) satisfies the

jump condition on the cross k ∈ R ∪ iR with orientation as shown in Figure 4.1,

Φ+(k;x, t) = Φ−(k;x, t)J(k;x, t), (4.19)

The jump matrix J(k;x, t) is given by

J(k;x, t) =



J4(k;x, t), arg k = 0,

J1(k;x, t), arg k = π
2
,

J2(k;x, t), arg k = π,

J3(k;x, t), arg k = 3π
2
,

(4.20)

where

J1(k;x, t) =

 1 0

−Γ(k, T )e2iθ(k;x,t) 1

 ,
J3(k;x, t) =

1 −λΓ(k, T )e−2iθ(k;x,t)

0 1

 ,
J4(k;x, t) =

1 + λγ(k)γ(k) γ(k)e−2iθ(k;x,t)

λγ(k)e2iθ(k;x,t) 1

 ,
J2(k;x, t) =J1(k;x, t)J−1

4 (k;x, t)J3(k;x, t)

=

 1 −
(
λΓ(k, T ) + γ(k)

)
e−2iθ(k;x,t)

−
(
λγ(k) + Γ(k, T )

)
e2iθ(k;x,t) 1 +

(
λΓ(k, T ) + γ(k)

)(
λγ(k) + Γ(k, T )

)
 ,

and

θ(k;x, t) = kx+ 2k2t, k ∈ C, (4.21a)

γ(k) =
b(k)

a(k)
, k ∈ R, (4.21b)

Γ(k, T ) = − λB(k, T )

a(k)d(k, T )
, arg k ∈

[π
2
, π
]
. (4.21c)
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3. If λ = 1, the first column of Φ(k;x, t) has simple poles at {paj}
n1
1 and {pdj}

n2
1 . The

second column of Φ(k;x, t) has simple poles at {paj}
n1
1 and {pdj}

n2
1 . The associated

residues satisfy the relations:

Resk=paj
Φ(k;x, t) = lim

k→paj
Φ(k;x, t)

 0 0

1
a′(paj )b(paj )

e2iθ(paj ;x,t) 0

 , j = 1, . . . , n1,

(4.22a)

Resk=paj
Φ(k;x, t) = lim

k→paj
Φ(k;x, t)

 0 −λ
a′(paj )b(paj )

e−2iθ(paj ;x,t)

0 0

 , j = 1, . . . , n1,

(4.22b)

Resk=pdj
Φ(k;x, t) = lim

k→pdj
Φ(k;x, t)

 0 0

− λB(pdj )

a(pdj )d′(pdj )
e2iθ(pdj ;x,t) 0

 , j = 1, . . . , n2,

(4.22c)

Res
k=pdj

Φ(k;x, t) = lim
k→pdj

Φ(k;x, t)

 0
B(pdj )

a(pdj )d′(pdj )
e−2iθ(pdj ;x,t)

0 0

 , j = 1, . . . , n2.

(4.22d)

4. Φ(k;x, t) = I +O(1/k) as k →∞.

Then (as shown in [34])

q(x, t) = 2i lim
k→∞

(kΦ(k;x, t))12 ,

solves the NLS equation with

qx(x, t) = lim
k→∞

{
4
(
k2Φ(k;x, t)

)
12

+ 2iq(x, t) (kΦ(k;x, t))22

}
,

q(x, 0) = q0(x), q(0, t) = g0(t) and qx(0, t) = g0(t).

Figure 4.2 shows a detailed diagram of the UTM applied to nonlinear integrable PDEs.

The steps 1 and 1′ denote the invertible transforms between the initial condition q(x, 0) =
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Figure 4.1: The jump contour of RHPs (4.19) and (4.32). The contour consists of the real
and imaginary axes.

q0(x) and the spectral functions {a(k), b(k)}. The step 2 and 2′ denote the invertible

transforms between the pair of boundary functions {q(0, t) = g0(t), qx(0, t) = g1(t)} and

the spectral functions {A(k, T ), B(k, T )} for T < ∞ or T = ∞. Step 3 denotes obtaining

{A(k, T ), B(k, T )} with a special class of boundary conditions known as linearizable bound-

ary conditions. Step 4 denotes the construction of the associated RHP using the spectral

functions incorporating time dependence. Step 5 denotes the inverse transform to get the

solution q(x, t) by solving the RHP. In following sections, we show examples of the solutions

that can be efficiently computed with different types of given data. In Section 4.2, we give an

example with linearizable boundary conditions following steps 1-5. In Section 4.4.1, we show

an example with an admissible set of functions g0, g1 ∈ Sβ(R+) with respect to q0 ∈ Sα(R+).

This follows steps 1, 2, 4, 5 in Figure 4.2. In Section 4.4.2, we show an example with specified

spectral functions that follows steps 4, 5 in Figure 4.2. This is also known as the dressing

method to construct solution to the NLS equation [35].

Remark 10. The defocusing NLS equation on the half-line does not have soliton solu-

tions [55]. More precisely, a(k) does not have zeroes for Im (k) ≥ 0 and d(k, T ) does not
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Figure 4.2: A diagram describing the use the UTM to solve integrable PDEs on the half-line.
The path along 1, 4, 5 is the same as the IST for IVPs. In this chapter, we focus on three
paths: (a) The path along 1-5 for problems with linearizable boundary conditions. (b) The
path along 1, 2, 4, 5 for problem with overdetermined but compatible initial and boundary
values. (c) The path along 4, 5 for problems with specified spectral functions.

have zeroes for arg(k) ∈ [π/2, π].

Remark 11. When t = 0, the RHP (4.19) reduces to a RHP that depends only on a(k) and

b(k) after deforming J1 and J3 to the negative real line. The global relation is not needed

in the deformation. When x = 0, the RHP (4.19) reduces to a RHP that depends only on

A(k, T ) and B(k, T ) on the cross k ∈ R ∪ iR but the reduction requires the use of the global

relation as well as (4.5b).
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4.1.5 Algorithms for computing the spectral data

The goal of the numerical computation for the forward transform is to obtain: (i) evaluate

the spectral functions along the (deformed) jump contour, (ii) in the focusing case, the zeroes

of a(k) and d(k, T ) as well as the related residues.

(i) Continuous spectral data: For convenience, we describe the algorithm for the com-

putations of the spectral data in the case T = ∞. Assuming q0, as well as an admissible

set of functions g0 and g1, are given, we compute the spectral functions {a(k), b(k)} using

the differential equation form of (4.6a) and (4.6b) and compute A(k,∞), B(k,∞) using the

differential form of (4.8a) and (4.8b). Both sets of equations are in the form of y1(s, k)

y2(s, k)


s

+M1(k)

 y1(s, k)

y2(s, k) + 1

 =M2(s, k)

 y1(s, k)

y2(s, k) + 1

 .

They are solved by a Chebyshev collocation method [9] on [0, L] with vanishing boundary

condition at y1(L, k) = y2(L, k) = 0 for sufficiently large L. The method is the same as in

Chapter 2 when solving the scattering problem for the SG equation. A detailed discuss of

the Chebyshev collocation method solving this type of the equations can be found in [73]

and [74].

(ii) Discrete spectral data: In [55], it is shown that zeroes of a(k) in the upper half-plane

are the L2(R,C2×2) eigenvalues of the operator

L = iσ3∂x − iσ3Qe,

where

qe(x) =

q(x, 0), x ≥ 0,

0, x < 0,

and Qe =

 0 qe

−λqe 0

 .
The eigenvalues are obtained using the Floquet-Fourier-Hill method [22]. Though the Floquet-

Fourier-Hill method does not achieve spectral accuracy due to the possible discontinuity of

the potential qe(x) at x = 0, it provides initial guesses for Newton’s method. Residue
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conditions requires evaluating the norming constants caj := 1
a′(paj )b(paj )

at the zeroes {paj}
n1
1

where a′(paj ) is computed by Cauchy’s integral formula.

Similarly, it is shown in [55] that the zeroes of d(k, T ) satisfy the same eigenvalue problem

except that

qe(x) =

q(x, T ), x ≥ 0,

0, x < 0.

However, the potential qe depends on the unknown solution q(x, T ), root-finding algorithms

are needed to find zeroes of d(k, T ). Once the zeroes {pdj}
n2
1 are obtained, the norming

constants cdj := − λB(pdj )

a(pdj )d′(pdj )
are computed by Cauchy’s integral formula.

4.2 The NLS equation with linearizable boundary conditions

4.2.1 Linearizable boundary conditions

Obtaining A(k, T ) and B(k, T ) is non-trivial since they are defined in terms of the Dirichlet

and Neumann data, both of which cannot be arbitrarily specified, for a the well-posed

problem [16, 18, 46]. In the special case of linearizable boundary conditions, A(k, T ) and

B(k, T ) can be obtained by solving algebraic equations involving a(k) and b(k) without

solving (4.2b) (recall that (4.2b) requires boundary functions g0(t) and g1(t)). The idea is to

use the global relation (4.9) to find extra identities using the symmetries of the dispersion

relation similar to the UTM applied to linear PDEs [23]. For the LS equation, the dispersion

relation is ω(k) = ik2 and this is invariant under the mapping k → −k. Similarly, for the NLS

equation, we want to determine a relation between A(k, T ), B(k, T ) and A(−k, T ), B(−k, T ).

Recall that A(k, T ) and B(k, T ) are defined in terms of e2ik2T σ̂3µ2(0, T, k). Let Φ(t, k) =

µ2(0, t, k)e−2ik2tσ3 , then Φ(t, k) satisfies

Φt + 2ik2σ3Φ = Q̃(t, k)Φ, Φ(0, k) = I.

Suppose there exists a t-independent, nonsingular matrix N(k) such that

Φ(t,−k) = N(k)Φ(t, k)N−1(k). (4.23)
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More explicitly, (4.23) is equivalent to

(2ik2σ3 − Q̃(t,−k))N(k) = N(k)(2ik2σ3 − Q̃(t, k)). (4.24)

A necessary condition for the existence of N(k) is that the determinant of 2ik2σ3 − Q̃(t, k)

is even in k. This implies

q(0, t)qx(0, t)− q(0, t)qx(0, t) = 0.

If this condition is satisfied, (4.24) becomes

(2kq − iqx)N21 = λ(2kq − iqx)N12,

(2kq + iqx)N11 + (2kq − iqx)N22 = −2(2ik2 − iλ |q|2)N12.

In particular, for the homogeneous Robin boundary condition with a real parameter ρ > 0

(this choice of sign is discussed in the end of the section)

qx(0, t)− ρq(0, t) = 0, (4.25)

we choose N12 = N21 = 0 and (2k − iρ)N22 + (2k + iρ)N11 = 0 so that

A(k, T ) = A(−k, T ), B(k, T ) = −2k + iρ

2k − iρ
B(−k, T ), k ∈ C. (4.26)

The results for the homogeneous Dirichlet boundary condition and the homogeneous Neu-

mann boundary condition are obtained by taking ρ → ∞ and ρ → 0 respectively. For

instance, for the homogeneous Dirichlet boundary condition, (4.26) becomes

A(k, T ) = A(−k, T ), B(k, T ) = B(−k, T ), k ∈ C. (4.27)

With this, we can solve for A(k) and B(k) in terms of a(k) and b(k) using only algebraic

equations. Indeed, if T =∞, the global relation (4.10) gives the following equation valid in

the first quadrant,

a(k)B(k,∞)− b(k)A(k,∞) = 0, arg k ∈
[
0,
π

2

]
. (4.28)
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Letting k → −k in the expression for d(k,∞) in (4.18) and using (4.27) we find a second

equation, also valid in the first quadrant:

A(k,∞)a(−k) + λB(k,∞)b(−k) = d(−k,∞), arg k ∈
[
0,
π

2

]
. (4.29)

Solving both (4.28) and (4.29) for A(k,∞) and B(k,∞) yields

A(k,∞) =
a(k)d(−k,∞)

∆0(k)
, B(k,∞) =

b(k)d(−k,∞)

∆0(k)
, arg k ∈

[
0,
π

2

]
, (4.30)

where

∆0(k) = a(k)a(−k) + λb(k)b(−k), arg k ∈ [0, π]. (4.31)

There is no need to solve for d(k,∞) in terms of a(k) and b(k) since the jump condition

in (4.19) depends only on B(k,∞)/A(k,∞).

Example 2 (The RHP associated with homogenous Dirichlet boundary conditions). With

a homogenous Dirichlet boundary condition, we obtain a RHP involving only a(k) and b(k),

which are determined solely by the initial condition. We seek a 2× 2 matrix-valued function

Φ(k;x, t) that satisfies

Φ+(k;x, t) = Φ−(k;x, t)J(k;x, t), (4.32)

with the jump functions defined in (4.20) on the cross k ∈ R ∪ iR shown in Figure 4.1. The

only difference is that (4.21c) becomes

Γ(k) =
−λb(−k)

a(k)∆0(k)
, arg k ∈ [0, π], (4.33)

where ∆0(k) is given by (4.31).

Remark 12. In general, ρ in the homogeneous Robin boundary condition can take any real

value [16]. As shown in [50], when ρ < 0, generically, there are zeroes of a(k) in the positive

imaginary axis. This requires modifications on our assumptions on the RHPs since we do not

allow for poles on the jump contour. Meanwhile, the long time behaviour of such solutions



100

at x = 0 are dominated by oscillatory standing solitons which lead to non-decaying boundary

data. The choice of the sign of ρ is also related to the possibility of extending the half-line

solution to a bounded whole-line solution, see [13, 38] for further details.

4.2.2 Deformation of the contour based on the method of nonlinear steepest descent

We use the numerical approach developed in [59, 73] to solve the RHP (4.32). Uniform

accuracy can be obtained using appropriate deformations of the jump contours. Then, the

deformed RHP is solved using the Mathematica package RHPackage developed by Olver [59]

with spectral accuracy. The deformations are derived in a similar fashion as the deformations

used for the solution of the RHP for the NLS equation on the whole line [72]. The idea is

to deform the contour near the saddle point to the steepest descent direction so that the

oscillations from the exponential factor e2iθ(k;x,t) change to exponential decay. The saddle

point k0 of the phase θ(k;x, t) is determined by

dθ(k;x, t)

dk

∣∣∣
k=k0

= 0⇒ k0 = − x
4t
.

We write the exponent as

2iθ(k;x, t) = −ix
2

4t
+ 4it(k − k0)2.

Thus e2iθ(k;x,t) is exponentially decaying if k follows a path with arg(k − k0) = π/4, 5π/4.

In addition, the deformation of contours requires that the functions γ(k),Γ(k) are analytic

in the neighbourhood of k0. Since q0 ∈ Sα(R+), a(k) and b(k) are analytic and bounded

for Im (k) ≥ −α/2. To ensure that the residue condition is outside the region in which the

contour is deformed, if 0 ≤ min({Im
(
paj
)
}nj=1) ≤ α/2, we redefine α = min({Im

(
paj
)
}nj=1)/4.

Therefore, γ(k) is bounded and analytic in a strip centered around the real axis with −α/2 ≤

Im (k) ≤ α/2, while Γ(k) is bounded and analytic for Im (k) ≥ −α/2. In some cases, if τ(k)

in (4.34) vanishes in the strip, then we need to further shrink the width of the strip. Since

τ(k) ≥ 1 on the real axis, we can always find a valid choice for α > 0. We introduce the

following deformation steps for the contour of the RHP (4.32).
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Step 1: deformations based on steepest descent directions

Define Rk,θ = {k + reiθ : r ≥ 0}. The jump matrix J4(k;x, t) has the factorization

J4(k;x, t) =

1 + λγ(k)γ(k) γ(k)e−2iθ(k;x,t)

λγ(k)e2iθ(k;x,t) 1


=

1 γ(k)e−2iθ(k;x,t)

0 1

 1 0

λγ(k)e2iθ(k;x,t) 1

 = MP.

This factorization provides J4(k;x, t) with decay away from k0 as, by replacing the contour on

the real line with two oblique rays starting from k0. Then M approaches the identity matrix

exponentially fast in the lower half-plane alongRk0,7π/4 and P approaches the identity matrix

exponentially fast in the upper half-plane along Rk0,π/4. However, for Re (k) < Re (k0), the

exponentials in M and P are growing for M along Rk0,5π/4 in the lower half-plane and P

along Rk0,3π/4 in the upper half-plane. Alternatively, J2(k;x, t) has the factorization

J2(k;x, t) =

 1 −
(
λΓ(k) + γ(k)

)
e−2iθ(k;x,t)

−
(
λγ(k) + Γ(k)

)
e2iθ(k;x,t) 1 +

(
λΓ(k) + γ(k)

)(
λγ(k) + Γ(k)

)


=

 1 0

−
(
λγ(k) + Γ(k)

)
e2iθ(k;x,t)

τ(k)
1

 1
τ(k)

0

0 τ(k)

1 −
(
λΓ(k) + γ(k)

)
e−2iθ(k;x,t)

τ(k)

0 1


= LDU,

where

τ(k) = 1 +
(
λγ(k) + Γ(k)

)(
λΓ(k) + γ(k)

)
, Im (k) ≤ α

2
. (4.34)

This factorization provides J2(k;x, t) with decay for increasing t as, for Re (k) < Re (k0), L

approaches the identity matrix exponentially fast along Rk0,5π/4 in the lower half-plane and

U approaches the identity matrix exponentially fast along Rk0,3π/4 in the upper half-plane.

We obtain the RHP

Φ+(k;x, t) = Φ−(k;x, t)H(k;x, t), (4.35)
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with jump functions

H(k;x, t) =



M(k;x, t), {k ∈ Rk0,7π/4 : |Im (k)| ≤ α/2} ∪ {k = k0 + α
2
e−i

π
4 + s, s ≥ 0},

P (k;x, t), {k ∈ Rk0,π/4 : |Im (k)| ≤ α/2} ∪ {k = k0 + α
2
ei
π
4 + s, s ≥ 0},

J1(k;x, t), {k ∈ Rk0,π/4},

L(k;x, t), {k ∈ Rk0,5π/4 : |Im (k)| ≤ α/2} ∪ {k = k0 + α
2
ei

5π
4 − s, s ≥ 0},

D(k;x, t), {k ∈ C : k = k0 − s, s ≥ 0},

U(k;x, t), {k ∈ Rk0,3π/4 : |Im (k)| ≤ α/2} ∪ {: k = k0 + α
2
ei

3π
4 − s, s ≥ 0},

J3(k;x, t), {k ∈ Rk0,7π/4},

(4.36)

and the deformed contour, with orientation, is shown in Figure 4.3.

Step 2: deformations for uniform accuracy

Similar to the RHP for the whole-line problem in [72], the errors for computing the solution

of RHP (4.35) are not uniformly small for large time since not all jumps decay to the identity

matrix away from the saddle point k0. For large t, although the jump matrix D along the

negative real axis does not contain oscillatory exponentials, the solution of the RHP (4.35)

has increasing oscillations along the jump contour for k < k0 as t grows. Therefore we

remove the jump matrix D using conjugation [72]. We introduce the matrix-valued function

∆(k, k0),

∆(k, k0) =

δ(k, k0) 0

0 δ−1(k, k0)

 ,
where

δ(k, k0) = exp

(
1

2πi

∫ k0

−∞

log τ(z)

z − k
dz

)
.
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Figure 4.3: The deformed contour for the RHP (4.35) in the complex k-plane near the saddle
point k0 for the method of nonlinear steepest descent.
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Then, Ψ(k;x, t) = Φ(k;x, t)∆−1(k, k0) is continuous across the real axis for Re (k) 6= Re (k0),

and satisfies

Ψ+(k;x, t) = Ψ−(k;x, t)∆(k, k0)H(k;x, t)∆−1(k, k0) = Ψ−(k;x, t)H̃(k;x, t),

Since δ(k, k0) is singular at k0, lensing is used to avoid the singularity by introducing new

jump conditions on a square around k0, as shown in Figure 4.4. The length of the side of

the square is O(1/
√
t) for large t. See [72] for further details of the scaling. Summarizing all

deformations, we have the RHP

Ψ+(k;x, t) = Ψ−(k;x, t)H̃(k;x, t), (4.37)

where the jump contours are shown in Figure 4.4.

Step 3: Adding residue conditions

For the focusing NLS equation, there is an additional step for the residue conditions (4.22a)-

(4.22d). By introducing small circles centered at the singularities, and modifying the un-

known function Ψ inside the circle, the residue conditions are replaced with jump conditions

on the circles [72]. Let {zj}n1+n2
1=j be the union of the zeroes of a(k) and d(k, T ) defined by

zj = paj , for 1 ≤ j ≤ n1 and zj = pdj−n1
, for n1 + 1 ≤ j ≤ n1 + n2. Let {cj}n1+n2

1=j be the

associated norming constants defined by cj = caj , 1 ≤ j ≤ n1 and cj = cdj−n1
, n1 + 1 ≤ j ≤

n1 + n2. For a residue condition at k = zj in the upper half-plane,

Ψ+(k;x, t) = Ψ−(k;x, t)

 1 0

cje
2iθ(zj ;x,t)/(k − zj) 1

 , (4.38)

is the jump condition on a circle centered at zj with radius ε oriented counterclockwise.

The circles need to avoid intersections with contours already present in the RHP. The

corresponding residue condition at k = zj in the lower half-plane becomes

Ψ+(k;x, t) = Ψ−(k;x, t)

 1 −cje−2iθ(zj ;x,t)/(k − zj)

0 1

 , (4.39)
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Figure 4.4: The deformed contour for the RHP (4.37) in the complex k-plane near the saddle
point k0 after removing the jump on the negative real axis. All jumps away from k0 approach
the identity exponentially fast as t→∞. The length of the side of the square is on the order
of O(1/

√
t) for large t.
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on a circle centered at zj with radius ε. Since
∣∣cje2iθ(zj ;x,t)

∣∣ may be unbounded for large

x, t, we invert this factor through a deformation when
∣∣cje2iθ(zj ;x,t)

∣∣ > 1. We define the

matrix-valued function Ψ̂(k;x, t) by

Ψ̂(k;x, t) = Ψ(k;x, t)



 1
−(k−zj)

cje
2iθ(zj ;x,t)

cje
2iθ(zj ;x,t)

k−zj 0

V (k), if |k − zj| < ε,

 0
−cje−2iθ(zj ;x,t)

k−zj

k−zj
cje
−2iθ(zj ;x,t)

1

V (k), if |k − zj| < ε,

V (k), otherwise,

(4.40)

where

v(z) =
∏

j∈Kx,t

k − zj
k − zj

and V (z) =

 v(z) 0

0 1/v(z)

 ,

for each j in the set Kx,t = {j :
∣∣cje2iθ(zj ;x,t)

∣∣ > 1} that contains the indexes of the zeros

of a(k) and d(k, T ) whose jump matrices need to be inverted. Then Ψ̂(k;x, t) satisfies the

jump conditions

Ψ̂+(k;x, t) = Ψ̂−(k;x, t)V −1(k)H̃(k;x, t)V (k),

on the same contours as (4.37). In addition, Ψ̂(k;x, t) satisfies the jump conditions circles

around {zj}n1+n2
1=j ,

Ψ̂+(k;x, t) =



Ψ̂−(k;x, t)V −1(k)

 1 −(k − zj)/(cje2iθ(zj ;x,t))

0 1

V (k), if |k − zj| = ε,

Ψ̂−(k;x, t)V −1(k)

 1 0

(k − zj)/(cje−2iθ(zj ;x,t)) 1

V (k), if |k − zj| = ε.

With all deformations, the RHP (4.37) is solved using RHPackage [59] after truncating

the contours along which the jump matrices are close to the identity matrix. In practice,

this tolerance is set to 10−9 unless otherwise stated. For convenience, we also truncate the

contours if they are outside a disk centered at the origin with radius 50. In most cases, the
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truncation errors are on the same order of the tolerance since the jump matrix approaches

the identity matrix exponentially fast. When x, t are small, the truncation error dominates.

We discuss how to control the truncation error in Section 4.4.5.

4.2.3 Numerical results

In Figure 4.5, we plot the real part of the solution to the defocusing NLS equation on the

half-line with homogenous Dirichlet boundary condition at x = 0 and the initial condition

q(x, 0) = xe−x
2
. We observe dispersive waves propagating to the right from the localized

initial condition. We plot the solution for 0 ≤ x ≤ 10 and 0.1 ≤ t ≤ 3.5. The domain is

chosen to be bounded away from t = 0 as the NUTM is less efficient there. In addition,

when the UTM is applied to linear PDEs on the half-line, the solution formula requires

principle-value integrals to evaluate at x = t = 0 [26]. This also happens when using the

UTM to the NLS equation at x = t = 0. The UTM is well-defined for any x > 0 or t > 0 but

the numerics suffer from slow convergence when x, t are small. The details are discussed in

Section 4.4.5. In general, traditional time-stepping methods work well for small t. If needed,

a combination of the NUTM and traditional methods works for both small time and large

time.

4.3 The NLS equation with nonlinearizable boundary conditions

4.3.1 Overdetermined boundary conditions

Another possible way to avoid computing the unknown boundary condition is to specify

both boundary functions g0(t) and g1(t), provided and they are admissible with respect to

the given initial condition q0(x). However, there are obstacles to computing the associated

solution efficiently:

1. For a generic whole-line solitonless solution q(x, t) with a nontrivial reflection coefficient

ρ(k) = b(k)/a(k) 6= 0, one has q(0, t) ∼ t−1/2 and qx(0, t) ∼ t−3/2 as t → ∞ [34].

Therefore, in general, for half-line problems the Dirichlet and Neumann data do not
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Figure 4.5: The real part of q(x, t) with homogenous Dirichlet boundary condition q(0, t) = 0
and the initial condition q(x, 0) = xe−x

2
. The thick curves show the initial and boundary

conditions.
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both decay exponentially. This affects the regions where the contours can be deformed.

For instance, in the T = ∞ case, A(k,∞) and B(k,∞) are only guaranteed to be

analytic in the first and third quadrants. Therefore, jump contours , which depend

on τ(k) defined in (4.34) cannot be deformed away from the real axis and the method

of nonlinear steepest descent cannot be applied directly. These undeformed contours

become highly oscillatory as t increases. For linear PDEs, numerical methods such as

Levin’s method can be used to compute the oscillatory integrals with high accuracy [26].

For nonlinear integrable PDEs, efficient numerical methods for oscillatory singular

integral equations from the RHP are not as well developed [69]. A complete discussion

of this is beyond our scope.

2. For pure whole-line soliton solutions that have non-zero velocity, q(0, t) and qx(0, t)

decay exponentially. In this case, the focusing NLS equation allows right-going soliton

solutions whose parameters correspond to zeroes of d(k, T ) in the second quadrant. As

discussed in Section 4.1.5, this step requires root-finding algorithms.

There are solutions, with compatible q0, g0, g1, that do not suffer from (1) and (2). We can

compute these solutions efficiently. Such solutions include left-going singular solutions of the

defocusing NLS equation, known as positons, or left-going soliton solutions of the focusing

NLS equation.

Such solutions have analytical expressions and are used to demonstrate the accuracy of

the NUTM. In fact, unlike the whole line problem, the jump function (4.20) in the half-line

problem is non-trivial even when the solution does not contain dispersion. For instance,

suppose the initial and boundary values are prescribed by the one-positon solution of the

defocusing NLS equation [73]

q(x, t) = 2ηe−4it(ξ2−η2)−2ixξ−iφ0 csch(2η(4tξ + x− x0)),

where ξ, η, x0, φ0 are constants. The positon is left-going if ξ > 0. If x0 < 0 the singularity is

outside the domain for all t ≥ 0, therefore q(x, t) is exponentially localized and smooth
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for x, t ≥ 0. This positon solution corresponds to a simple zero of a(k) at k1 = ξ +

iη tanh(2ηx0) [52]. The assumptions ξ > 0 and x0 < 0 imply that k1 is not in the first

quadrant so no residue conditions are required for formulating the associated RHP. Similarly,

suppose the initial and boundary values are obtained from the one-soliton solution of the

focusing NLS equation [73],

q(x, t) = 2ηe−4it(ξ2−η2)−2ixξ−iφ0 sech(2η(4tξ + x− x0)). (4.41)

This soliton corresponds to a simple zero of a(k) at k1 = ξ + iη tanh(2ηx0). If the initial

position of the center of the soliton lies outside of the domain (i.e., x0 < 0) and it is left-going

(i.e., ξ < 0), the soliton is represented by the continuous part of the spectral data and no

residue conditions are used. On the other hand, for the focusing NLS equation, it is possible

to allow x0 > 0. In this case, k1 is in the first quadrant and residue conditions are required:

Resk=k1 Φ(k;x, t) = lim
k→k1

Φ(k;x, t)

 0 0

c1e
2iθ(k1;x,t) 0

 ,

Resk=k1
Φ(k;x, t) = lim

k→k1
Φ(k;x, t)

 0 −c1e
−2iθ(k1;x,t)

0 0

 ,

where c1 = 1/(a′(k1)b(k1)) is the norming constant. These considerations can be generalized

to n-positon and n-soliton solutions.

Figure 4.6 shows the error plots of the solution using the NUTM with the initial and

boundary values given by (4.41) with ξ = 1, η = 1, x0 = 0.4 along different lines in the x, t

quarter plane. The spectral convergence of the NUTM is demonstrated by the errors with

fixed x, t and varying N , the number of collocation points used in the solution of the RHP.

The absolute errors are uniformly controlled and decreasing for increasing x, t with fixed N .

For increasing t, the NUTM even maintains relative accuracy with N fixed, but sufficiently

large. Although the absolute errors decrease exponentially for fixed t, the exponential decay

rate of the solution is not captured exactly. As a result, the relative error with fixed t

increases as x grows. This is expected and it is due to the fact that the jump matrix after
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deformation decays to the identity exponentially but not exactly at the decay rate of the

solution. Indeed, how far we can deform the contour is restricted by the region of analyticity

of γ(k) and Γ(k). For instance, when q0 ∈ S2α, γ(k) is analytic within −α ≤ Im (k) ≤ α,

along a horizontal segment of the contour k = s+ iα,

e2iθ(k;x,t) = e−8sαt−2αx+i(4(s2−α2)t+2sx).

This is to be compared with the situation for the 1-soliton solution (4.41) which has a

exponential decay rate 2η in the x direction. The zeroes of a(k) are outside the strips

−α ≤ Im (k) ≤ α, since |α| < |η tanh(2ηx0)| < |η|. To capture the same exponential decay

rate, a deformation of the horizontal contours up to the pole of γ(k) at k = ξ+ iη tanh(2ηx0)

is necessary. The restriction is not required if t is sufficiently large, in which case the

jump matrix along the deformed contour approaches the identity and is truncated before

Im(k) = η tanh(2ηx0). For instance, consider the jump functions related to P in Figure 4.4.

When t is sufficiently large, the jump function ∆P∆−1 in the top right corner of Figure 4.4

is close to the identity matrix and is negligible. After the truncation, only the jump function

∆PJ1∆−1 remains.

4.3.2 Boundary conditions implicitly determined by given spectral data A(k, T ) and B(k, T )

A dressing argument

If A(k, T ) and B(k, T ) are given directly, the deformation steps discussed in Section 4.2 can

still be performed provided that the deformations are within the regions where A(k, T ) and

B(k, T ) are analytic. From the idea of the dressing method, as long as the spectral functions

A(k, T ) and B(k, T ) satisfy (4.5b) and (4.9), the RHP (4.19) generates solutions to the NLS

equation.

Proposition 1 (The dressing method [35]). Suppose that the oriented smooth curve L divides

the complex k-plane into the domains D+ and D−. Let M+(k;x, t) satisfy the following 2×2
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Figure 4.6: The absolute value of the exact one-soliton solution (4.41) with ξ = 1, η = 1, x0 =
0.4 (solid lines) and the absolute errors of the numerical solution with different numbers of
collocation points N (dashed lines). Panel (a) shows the evaluations for x ∈ [0.4, 4], t = 0.4.
Panel (b) shows the evaluations for x = 0.4, t ∈ [0.1, 1]. Panel (c) shows the evaluations
for x = 4s, t = s, s ∈ [0.1, 1]. The tolerance of the error from computation of the spectral
functions and contour truncations is set to 10−9.
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matrix RHP in the complex k-plane for all x, t > 0,

M+(k;x, t) = M−(k;x, t)e−i(kx+2k2t)σ̂3J(k), k ∈ L,

where J(k) is a 2× 2 unimodular matrix with J11 = 1 or

J22 = 1

. Assume that the above RHP has a unique solution which is sufficiently smooth for all

x, t > 0. Define Q(x, t) by

Q(x, t) = i lim
k→∞

[σ3, kM(x, t, k)],

then Q(x, t) satisfies the nonlinear equation

iQt −Qxxσ3 + 2Q3σ3 = 0.

To ensure that (4.5b) is satisfied, we specify the ratio h(k) = B(k)/A(k) for k ∈ D3 since

this is the quantity required in (4.19). Then the spectral data A(k) and B(k) are defined

implicitly from (4.5b),

1 + λh(k)h(k) =
1

A(k)A(k)
, k ∈ R ∪ iR.

Remark 13. The global relation (4.10) determines the value of h(k) in the first quadrant.

If T =∞, h(k) = b(k)/a(k) provided that a(k) 6= 0.

Numerical results

We solve the focusing NLS equation on the half-line with initial condition q0(x) = 0 and

B(k)/A(k) = 1000k/ (k − 2(1 + i))5 for arg(k) ∈ [π, 3π/2]. In this case, γ(k) = 0 and

Γ(k) = 1000k/ (k − 2(1− i))5. Furthermore, we impose two residue conditions at k1 = −1+i

and k2 = −2 + i with corresponding norming constants c1 = 100000, c2 = 2. The constant

1000 is chosen so that the dispersion is on the same order of the solitons for small x, t. We

plot the real part and the absolute value of the solution for 0 ≤ x ≤ 20 and 0.1 ≤ t ≤ 3 in
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Figure 4.7. The solution contains two right-going solitons as well as dispersion. Two slices

of the solution at t = 0.1 and t = 2.9 are shown in Figure 4.8. We also observe that the

solution approximates the exact two-soliton with the envelope plotted in dashed lines. Using

the parameters {z1 = −1 + i, z2 = −2 + i, s1 = 2
c1
e−i(π/2−0.3), s2 = 2

c2
ei(π/2+0.5)}, the exact

two-soliton solution [77] is defined by

q2-soliton(x− 0.4, t) = −2i
detF

detM
, (4.42)

where

M =

 (
e−φ(z1)−φ(z1) + s1s1e

φ(z1)+φ(z1)
)
/(z1 − z1)

(
e−φ(z2)−φ(z1) + s1s2e

φ(z2)+φ(z1)
)
/(z1 − z2)(

e−φ(z1)−φ(z2) + s2s1e
φ(z1)+φ(z2)

)
/(z2 − z1)

(
e−φ(z2)−φ(z2) + s2s2e

φ(z2)+φ(z2)
)
/(z2 − z2)

 ,

F =


0 e−φ(z1) e−φ(z2)

s1e
φ(z1) M11 M21

s2e
φ(z2) M12 M22

 ,

φ(z) = −iθ(x, t, z).

In the long time regime, the 2-soliton solution (4.42) separates into two right-going 1-soliton

solutions described by (4.41). The interaction between the solitons and the dispersion affects

the parameters of their initial phases and initial positions. The change in the initial phase

∆φ0|kj of the 1-soliton solution corresponding to the zero of d(kj) = 0, kj = ξj + iηj in the

second quadrant is given by [37]

∆φ0|kj =
1

π

∫ ξj

−∞

log

(
1 + λ

∣∣∣γ(k) + λΓ(k)
∣∣∣2)

(µ− ξj)2 + η2
j

(µ− ξj)dµ,

and in our example, ξ1 + iη1 = −1 + i and ξ2 + iη2 = −2 + i,

∆φ0|k1 ≈ −0.236191, ∆φ0|k2 ≈ −0.107931.
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The change in the initial position ∆x0|kj of the 1-soliton solution corresponding to the zero

of d(kj) = 0, kj = ξj + iηj in the second quadrant is given by [37]

∆x0 |kj = −ηj
π

∫ ξj

−∞

log

(
1 + λ

∣∣∣γ(k) + λΓ(k)
∣∣∣2)

(µ− ξj)2 + η2
j

dµ,

and in our example, ξ1 + iη1 = −1 + i and ξ2 + iη2 = −2 + i,

∆x0|k1 ≈ −0.354645, ∆x0|k2 ≈ −0.180415.

We compare our solution with the large t asymptotics along x/t = 2, 6, 10 in Figure 4.9.

Away from the solitons, the large t asymptotics along x/t = O(1) are described by (see [34])

q(x, t) = t−1/2α
(
− x

4t

)
exp

(
ix2

4t
+ 2iλα2

(
− x

4t

)
log t+ iφ

(
− x

4t

))
+ o

(
t−

1
2

)
, as t→∞,

(4.43)

where the amplitude α and the phase φ are given by

α2(k) =
λ

4π
log

(
1 + λ

∣∣∣γ(k) + λΓ(k)
∣∣∣2) ,

φ(k) =6λα2(k) log 2 +
π(2 + λ)

4
+ arg

(
γ(k) + λΓ(k)

)
+ arg Γ(−2iλα2(k))

+ 4λ

∫ k

−∞
log |µ− k| dα2(µ).

In practice, to avoid computing the integral in the formula for the phase φ, since φ is constant

with fixed x/t, we estimate φ by choosing φ so that the errors in Figure (4.9d) show a trend

of decreasing errors with order O(1/t).

4.4 Large k asymptotics of the spectral functions

In this section we consider the large k asymptotics of the spectral functions a(k), b(k),

A(k,∞), B(k,∞) and A(k, T ), B(k, T ). It is known that the global relation characterizes the

initial and boundary data from a solution to the NLS equation while the large k asymptotics

of the global relation characterizes the compatibility of initial and boundary data at x = 0



116

0 5 10 15 20 25 30
x
0 5 10 15 20 25 30

x

Figure 4.7: The numerical solution q(x, t) on the domain 0 ≤ x ≤ 30 and 0.1 ≤ t ≤ 3 with
spectral functions specified in Section 4.3. The solution contains two right-going solitons as
well as dispersion. Left: The real part of q(x, t). Right: The absolute value of q(x, t).
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Figure 4.8: The real part of q(x, t) (solid curve) with the envelope of the right-going 2-soliton
(dashed curve). Left: q(x, 0.1). Right: q(x, 2.9).
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Figure 4.9: The real part of the numerically computed q(x, t) (solid curve), the real part of the
dispersive wave from the asymptotic formula (4.43) (dashed curves) and its envelope (dotted
curves). Panel (a) shows the evaluations along x = 2t. Panel (b) shows the evaluations along
x = 6t. Panel (c) shows the evaluations along x = 10t. Panel (d) shows the errors compared
with the asymptotic formula (4.43).



118

and t = 0 [47]. Some of these asymptotic results can be found in [39]. We reexamine these

results with more terms, computing them with examples from the LS equation, and using

them to improve the decay of the jump matrix for the RHP (4.19). The initial data q0(x)

and the boundary data g0(t), g1(t) are assumed to have sufficient smoothness and decay at

infinity so that the relevant integrals are well-defined.

4.4.1 Large k asymptotics of a(k), b(k)

Recall that the spectral functions a(k) = φ2(0, k) and b(k) = φ1(0, k) are defined using the

linear Volterra integral equations (4.6a) and (4.6b). We use the following expansions for

large k in the upper half-plane Im (k) ≥ 0,

φ1(x, k) =
f11(x)

k
+
f12(x)

k2
+O

(
1

k3

)
, (4.44a)

φ2(x, k) = 1 +
f21(x)

k
+O

(
1

k2

)
. (4.44b)

Substituting the expansions into (4.6a) and (4.6b) and matching terms with different powers

of k, we obtain the following:

• O(1/k) in (4.6a):

f11(x)

k
= −

∫ ∞
x

e−2ik(x−y)q0(y)

(
1 +

f21(x)

k
+O

(
1

k2

))
dy

= −
∫ ∞
x

e−2ik(x−y)q0(y)dy +O

(
1

k2

)
=
q0(x)

2ik
+

1

2ik

∫ ∞
x

e−2ik(x−y)q′0(y)dy +O

(
1

k2

)
,

⇒ f11(x) =
q0(x)

2i
.

• O(1/k) in (4.6b):

f21(x)

k
= −λ

∫ ∞
x

q̄0(y)φ1(y, k)dy +O

(
1

k2

)
= − λ

2ik

∫ ∞
x

|q0(y)|2 dy +O

(
1

k2

)
,

⇒ f21(x) = − λ
2i

∫ ∞
x

|q0(y)|2 dy.
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• O(1/k2) in (4.6a):

f12(x)

k2
=

1

2ik

∫ ∞
x

e−2ik(x−y)q′0(y)dy −
∫ ∞
x

e−2ik(x−y)q0(y)

(
− λ

2ik

∫ ∞
y

|q0(z)|2 dz
)
dy

+O

(
1

k3

)
= − q′0(x)

(2ik)2
−
λq0(x)

∫∞
x
|q0(z)|2 dz

(2ik)2

+
λ

(2ik)2

∫ ∞
x

e−2ik(x−y)

(
q0(y) |q0(y)|2 − q′0(y)

∫ ∞
y

|q0(z)|2 dz
)
dy +O

(
1

k3

)
= − q′0(x)

(2ik)2
−
λq0(x)

∫∞
x
|q0(y)|2 dy

(2ik)2
+O

(
1

k3

)
,

⇒ f12(x) = −q
′
0(x)

(2i)2
−
λq0(x)

∫∞
x
|q0(y)|2 dy

(2i)2
.

As a result, we obtain expansions for a(k), b(k):

a(k) = φ2(0, k) = 1− λ

2ik

∫ ∞
0

|q0(y)|2 dy +O

(
1

k2

)
,

b(k) = φ1(0, k) =
q0(0)

2ik
−
q′0(0) + λq0(0)

∫∞
0
|q0(y)|2 dy

(2ik)2
+O

(
1

k3

)
.

4.4.2 Large k asymptotics of A(k, T ), B(k, T )

For T < ∞, the spectral functions A(k, T ) = Φ2(T, k) and −e−4ik2TB(k, T ) = Φ1(T, k) are

defined using the linear Volterra integral equations (4.7a) and (4.7b). We use the following

expansions for large k ∈ C,

Φ1(t, k) =
h11(t)

k
+
ĥ11(t)e−4ik2t

k
+
h12(t)

k2
+
ĥ12(t)e−4ik2t

k2
+O

(
1

k3

)
+O

(
e−4ik2t

k3

)
,

(4.45a)

Φ2(t, k) = 1 +
h21(t)

k
+
ĥ22(t)e−4ik2t

k2
+
ĥ23(t)e−4ik2t

k3
+O

(
1

k2

)
+O

(
e−4ik2t

k4

)
, (4.45b)

where the terms depending on e−4ik2t are separated. Substituting the expansions into (4.7a)

and (4.7b) and matching terms with different powers of k, we obtain the following:
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• O(1) +O(e−4ik2t/k2) in (4.7b):

1 +
ĥ22(t)e−4ik2t

k2
=1 +

∫ t

0

2kλg0(τ)

(
h11(τ)

k
+
ĥ11(τ)e−4ik2τ

k

)
+ iλ

∣∣g0(τ)2
∣∣ dτ

+O

(
1

k

)
+O

(
e−4ik2t

k3

)
,

ĥ22(t)e−4ik2t

k2
=λ

∫ t

0

2g0(τ)h11(τ) + i
∣∣g0(τ)2

∣∣ dτ +

∫ t

0

2λg0(τ)ĥ11(τ)e−4ik2τdτ

+O

(
1

k

)
+O

(
e−4ik2t

k3

)
,

=λ

∫ t

0

2g0(τ)h11(τ) + i
∣∣g0(τ)2

∣∣ dτ
+

2iλ

4k2

(
g0(t)ĥ11(t)e−4ik2t − g0(0)ĥ11(0)−

∫ t

0

e−4ik2τd
(
g0(τ)ĥ11(τ)

))
+O

(
1

k

)
+O

(
e−4ik2t

k3

)
.

From this

2g0(τ)h11(τ) + i
∣∣g0(τ)2

∣∣ = 0 ⇒ h11(t) =
g0(t)

2i
,

and

ĥ22(t) =
iλ

2

(
g0(t)ĥ11(t)

)
.
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• O(1/k) +O(e−4ik2t/k) in (4.7a):

h11(t)

k
+
ĥ11(t)e−4ik2t

k
=

∫ t

0

e−4ik2(t−τ)

(
−iλ

∣∣g2
0

∣∣(h11

k
+
ĥ11e

−4ik2τ

k

))
dτ

+

∫ t

0

e−4ik2(t−τ) (2kg0 + ig1)

(
1 +

h21

k
+
ĥ22e

−4ik2τ

k2

)
dτ

+O

(
1

k2

)
+O

(
e−4ik2t

k2

)
,

h11(t)

k
+
ĥ11(t)e−4ik2t

k
=e−4ik2t

∫ t

0

−iλ
∣∣g2

0

∣∣ ĥ11(t)

k
dτ

+

∫ t

0

e−4ik2(t−τ)

(
2kg0

(
1 +

ĥ22e
−4ik2τ

k2

))
dτ

+O

(
1

k2

)
+O

(
e−4ik2t

k2

)
,

h11(t)

k
+
ĥ11(t)e−4ik2t

k
=
g0(t)− g0(0)e−4ik2t

2ik

+ e−4ik2t

∫ t

0

(
−iλ

∣∣g2
0

∣∣ ĥ11(t)

k
+ 2g0

ĥ22

k

)
dτ

+O

(
1

k2

)
+O

(
e−4ik2t

k2

)
,

h11(t)

k
+
ĥ11(t)e−4ik2t

k
=
g0(t)

2ik
+
ig0(0)e−4ik2t

2k
+O

(
1

k2

)
+O

(
e−4ik2t

k2

)
.

It follows that for Φ1(t, k),

h11(t) =
g0(t)

2i
,

ĥ11(t) =
ig0(0)

2
,

h12(t) =
g1(t)

4
− iλg0(t)

4

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ,

ĥ12(t) = −g1(0)

4
− iλg0(0)

4

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ,
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and for Φ2(t, k),

h21(t) =
λ

2

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ,

ĥ22(t) =
λg0(t)g0(0)

4i
,

ĥ23(t) =
iλ

8

(
g1(t)g0(0)− g0(t)g1(0)− iλg0(0)g0(t)

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ

)
.

As a result, we have

A(k, T ) =Φ2(T, k)

=1− λ

2k

∫ T

0

G(t)dt+
iλe4ik2T

4k2
g0(0)g0(T )

+
− iλ

8

(
G(T )− iλg0(T )g0(0)

∫ T
0
G(τ)dτ

)
e4ik2T

k3

+O

(
1

k3

)
+O

(
e−4ik2t

k4

)
,

B(k, T ) =− e4ik2TΦ1(T, k)

=− g0(T )e4ik2T

2ik
− ig0(0)

2k
−

(
g1(T )− iλg0(T )

∫ T
0
G(τ)dτ

)
e4ik2T

4k2

+
g1(0) + iλg0(0)

∫ T
0
G(τ)dτ

4k2

+O

(
1

k3

)
+O

(
e−4ik2t

k3

)
,

where

G(t) = g0(t)g1(t)− g1(t)g0(t).

4.4.3 Large k asymptotics of A(k,∞), B(k,∞)

We use the alternative set of equations for A(k,∞) = Φ̃2(0, k) and B(k,∞) = Φ̃1(0, k), which

are defined using the linear Volterra integral equations (4.8a) and (4.8b). Following similar
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steps to the calculations for a(k) and b(k), we have the expansions for A(k,∞), B(k,∞),

A(k,∞) = Φ̃2(0, k) = 1− λ

2k

∫ ∞
0

G(t)dt+O

(
1

k2

)
,

B(k,∞) = Φ̃1(0, k) =
g0(0)

2ik
+
g1(0) + iλg0(0)

∫∞
0
G(τ)dτ

4k2
+O

(
1

k3

)
,

where

G(t) = g0(t)g1(t)− g1(t)g0(t).

These expansions are consistent with A(k, T ), B(k, T ) by taking T → ∞ after dropping all

terms containing e4ik2T . For T =∞, the expansions are only valid in Re (ik2) ≤ 0.

4.4.4 Compatibility conditions and the expansions for the global relation

If we expand the global relation at k =∞, the compatibility conditions of the NLS equation

at x = 0, t = 0 are obtained. In the case T =∞, we get

the global relation a(k)B(k,∞)− b(k)A(k,∞) = 0,

O(1/k)
g0(0)

2ik
− q0(0)

2ik
= 0,

O(1/k2)
g1(0)

4k2
− q′0(0)

4k2
= 0.

Though the expansions for a, b, A,B depend both on q0(0), g0(0), g1(0) and on the integrals

of q0, g0, g1, it turns out that the latter cancel in the expansion of the global relation.

Furthermore, if a,A 6= 0, the global relation is rearranged as b/a = B/A

B/A ≈ g0(0)

2ik
+
g1(0)

4k2
+O

(
1

k3

)
, b/a ≈ q0(0)

2ik
+
q′0(0)

4k2
+O

(
1

k3

)
.

The integral of q0, g0 and g1 do not appear in the expansions of B/A and b/a as well. For

the UTM, the global relation is strictly satisfied throughout the calculation, but the solution

does not require infinitely many compatibility conditions at the corner x = t = 0. When the

compatibility condition is violated at certain order of 1/kn, the coefficients of the next order

term is infinite to balance the it. This can be shown by an explicit example in the linear

case.
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Example 3. Using the UTM, the solution formula for the LS equation,

iqt + qxx = 0,

on the half-line with the initial condition q0(x) = e−x and the homogeneous Dirichlet boundary

condition g0(t) = 0 is

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ik
2t

1 + ik
dk − 1

2π

∫
∂D+

eikx−ik
2t

1− ik
dk,

where ∂D+ is the boundary of the first quadrant, positively oriented. The Neumann data is

then computed by,

g1(t) = qx(0, t) =
1− i√

2πt
− 1

π

∫ ∞
−∞

e−ik
2t

1 + k2
dk.

with asymptotics

qx(0, t) ≈ O(t−1/2) as t→ 0,

qx(0, t) ≈ O(t−3/2) as t→∞.

Therefore, g1(t) = qx(0, t) is unbounded near t = 0. On the other hand, the global relation

for T =∞ is

q̂0(k) = ig̃1(k), Re (k) ≤ 0, Im (k) ≤ 0,

with

q̂0(k) =

∫ ∞
0

e−ikxe−xdx =
1

1 + ik
,

ig̃1(k) = i

∫ ∞
0

eik
2tqx(0, t)dt = i

∫ ∞
0

eik
2t

π

∫ ∞
−∞

e−is
2t s2

1 + s2
dsdt =

1

1 + ik
.

The global relation is indeed still satisfied and the leading order expansion of B(k,∞) =

ig̃1(k) + kg̃0(k) is given by

B(k,∞) =

√
2π
(
qx(0, t)

√
t
)
|t=0

(i− 1)k
+O(1/k2).

On the other hand, if limt→0 ∂
n
xq(0, t) is known to be bounded, then the global relation implies

that the initial and boundary values are compatible with respect to the LS equation up to the

n-th order derivative.
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4.4.5 Using large k expansions for computing q(x, t) for small x, t

For problems on the whole line, if the initial condition is in Schwartz class, the reflection

coefficients is also in Schwartz class [10]. Therefore no modification for the associated RHP

is required when x, t are small since the jump matrix there decays rapidly to the identity

matrix when |k| becomes large. However, this is not true for the RHP (4.19) from problems

on the half-line or even for integrals that arise in the linear case.

Example 4. Consider the NLS equation with the homogeneous Neumann boundary condition

g1(t) = 0 and initial condition q0(x) = e−x
2

+ isech2(x). This is a linearizable boundary

condition so that we can solve for the spectral functions B(k,∞), A(k,∞) using symmetries

of the global relation k → −k. The associated RHP (4.47) for Φ(x, t, k) is formulated with

the jump condition on the cross k ∈ R ∪ iR in Figure 4.1,

Φ+(k;x, t) = Φ−(k;x, t)J(k;x, t). (4.46)

The jump matrices are the same as in (4.20) except that (4.21c) is replaced by

Γ(k) =
λb(−k)

a(k)∆1(k)
, arg k ∈ [0, π],

where

∆1(k) = a(k)a(−k)− λb(k)b(−k), arg k ∈ [0, π].

The functions γ(k) and Γ(k) in are O(1/k) as k →∞ as shown in Figure 4.10.

With the large k expansions, we can use them to set up RHPs with jump matrices that

tend to the identity matrix faster. Using the results from the previous sections, we define

γ0(k) =
q0(0)

2i
(
k − k̂

) , Γ0(k) =
λq0(0)

2i
(
k − k̂

) ,
and

γ(k) = γ0(k) + γr(k), Γ(k) = Γ0(k) + Γr(k),
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Figure 4.10: The plots of γ(k),Γ(k) along the jump contour. Left: γ(k) on the real axis.
Middle: Γ(k) on the real axis. Right: Γ(k) on the positive imaginary axis. The real parts
are plotted with solid curves and the imaginary parts are plotted with dashed curves. The
initial condition is q0(x) = e−x

2
+ i sech2(x) and the boundary condition is g1(t) = 0.

so that γ0(k) and Γ0(k) have the same large k behavior as γ(k) and Γ(k) to the leading

order. To avoid introducing unnecessary residue conditions, we choose k̂ = 1 − 2i. After

separating the O(1/k) terms, we get a RHP which has the jump matrix approaches the

identity matrix with O(1/k2) as k → ∞ and the contour is shown in Figure 4.11. The

RHP for Φ(x, t, k) is formulated with a jump condition on the eight rays starting from the

origin {r = ρeis|ρ ∈ [0,+∞), s = 0, π/4, 2π/4, 3π/4, 4π/4, 5π/4, 6π/4, 7π/4}. The contour

is shown in Figure 4.11 and Φ(x, t, k) satisfies

Φ+(k;x, t) = Φ−(k;x, t)V (k;x, t), (4.47)
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Figure 4.11: The contour of RHP (4.47). The jumps on V5, V6, V7, V8 are introduced to
improve the rate at which the jump matrices on V1, V2, V3, V4 approach the identity matrix.

with jump matrices

V (k;x, t) =



V4(k;x, t), arg k = 0,

V1(k;x, t), arg k = π
2
,

V2(k;x, t), arg k = π,

V3(k;x, t), arg k = 3π
2
,

V5(k;x, t), arg k = 3π
4
,

V6(k;x, t), arg k = 5π
4
,

V7(k;x, t), arg k = 7π
4
,

V8(k;x, t), arg k = π
4
,

(4.48)
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where

V1(k;x, t) =

 1 0

−Γr(k)e2iθ(k;x,t) 1

 , V3(k;x, t) =

1 −λΓr(k)e−2iθ(k;x,t)

0 1

 ,
V4(k;x, t) =

1 + λγr(k)γr(k) γr(k)e−2iθ(k;x,t)

λγr(k)e2iθ(k;x,t) 1

 ,
V2(k;x, t) =

 1 −
(
λΓr(k) + γr(k)

)
e−2iθ(k;x,t)

−
(
λγr(k) + Γr(k)

)
e2iθ(k;x,t) 1 +

(
λΓr(k) + γr(k)

)(
λγr(k) + Γr(k)

)
 ,

V5(k;x, t) =

1 −
(
λγ0(k) + Γ0(k)

)
e−2iθ(k;x,t)

0 1

 ,
V6(k;x, t) =

 1 0

−
(
λΓ0(k) + γ0(k)

)
e2iθ(k;x,t) 1

 ,
V7(k;x, t) =

1 −
(
λΓ0(k) + γ0(k)

)
e−2iθ(k;x,t)

0 1

 ,
V8(k;x, t) =

 1 0

−
(

Γ0(k) + λγ0(k)
)
e2iθ(k;x,t) 1

 .
Figure (4.12) shows the log-linear plot of the absolute error computed for computing q(0.5, 0)

with different numbers of collocation points N . The dashed line is computed with the

undeformed RHP (4.19) and the solid line is computed with the RHP (4.47). In the

computation, the segments of contours are truncated when the jump matrix is close to

the identity matrix ‖Vm(k)− I‖2 < 10−8, m = 1, 2, .., 8. or when the contour reaches a large

circle centered at the origin with radius 50. In Figure (4.12), the dashed curve is the error

computed using the undeformed contour and the solid curve is the error computed using the

contour in Figure 4.11. Both curves decay exponentially when N is not too large. Since the

jump matrix of RHP (4.47) has faster decay, the flattening in the solid curve appears later

than the dashed curve. It is possible to perform the asymptotic analysis for higher order

terms in the previous section and remove more terms so that the decay of the jump matrix
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Figure 4.12: The absolute error for computing q(0.5, 0) with different number of collocation
points N . The dashed line is computed using the undeformed contour in Figure 4.1. The
solid line is computed using the contour in Figure 4.11. The flattening in both curves is due
to the truncation error.

is faster than O(1/k2), though the calculation starts to become tedious quickly.

Remark 14. For linearizable boundary conditions that can be mapped to a smooth solution

of the whole-line problem, the original jump matrix J2 in (4.19) actually decays exponentially

to the identity matrix. Therefore there is no need to introduce modifications to V2, V5 and

V6 in (4.47). In this case, Γ(k) is automatically analytically extended to the first quadrant

by the analyticity of b(k) and a(k). Then it is possible to deform the jump contour J1 and

J3 in (4.19) to the positive real line on top of J4 and this new RHP is the same as the RHP

in the whole-line problem with the initial values on the negative real line defined properly

corresponding to the boundary condition using symmetry.
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Chapter 5

CONCLUSION AND FUTURE WORK

In this dissertation, I have introduced a hybrid analytical-numerical method, the NUTM

for integrable IBVPs, as a generalization of the NIST.

• In Chapter 2, the NIST is applied to the SG equation on the whole line.

• In Chapter 3, the NUTM is applied to half-line problems for the heat equation, the LS

equation and a third-order linear PDE.

• In Chapter 4, the NUTM is applied to half-line problems for the NLS equation.

For all linearizable cases and some special nonlinearizable cases, we have demonstrated the

following features of the NUTM.

1. The method gives the solution at a given (x, t) without time-stepping or spatial

discretization. This is achieved by using the integrability of the equation.

2. The method is spectrally accurate by using spectral methods in each of the step.

3. The method is uniformly accurate by using the method of (nonlinear) steepest

descent.

4. The method only requires some decay and regularity assumptions on the initial and

boundary data. No closed-form expressions for the scattering data are required.

5. The method does not artificially truncate the infinite physical domain.

6. The computations require only the numerical solution of linear problems.
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There are many directions for future research including:

1. Numerical methods for highly oscillatory integrals. In Chapter 3, we have

shown that for dispersive problems, the deformation of the contour is often restricted

inside the region where the spectral functions are analytic. As a result, the oscillation

is not completely converted into exponential decay. As this is the crux of the problem,

any improvement on the computation of the oscillatory integral would improve the

overall efficiency dramatically. A counterpart of this in the nonlinear cases is numerical

methods for highly oscillatory SIEs from the RHPs. The decay assumptions on the

initial and boundary functions can also be relaxed if there is no large deformation.

2. Analytical and numerical methods for solving the nonlinear Volterra inte-

gral equations. If the nonlinear Volterra integral equation from (4.17) can be solved

efficiently, then the full set of spectral functions can be computed allowing us to solve

the IBVPs with generic data. However, this is not sufficient to compute the inverse

problem efficiently. In the example of the NLS equation on the half-line, in general

the Dirichlet data and the Neumann data cannot have exponential decay at the same

time. The numerical methods for highly oscillatory SIEs are still required.

3. Generalization and application to other integrable problems. Applying the

NUTM to other integrable systems is nontrivial. Like the NIST for the SG equation,

there are likely to be many details one need to work. Some integrable systems require

the so-called DBAR formulation as a generalization of the RHP [1, 2]. One can apply

the NUTM to problems with different boundary conditions: finite interval problems,

periodic boundary conditions. For linear PDEs, we have only considered constant

coefficients, one can also apply the NUTM to linear PDEs with variable coefficients.

There is a lot of research on solving linear elliptic equations using the UTM that is not

considered here [62].
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Appendix A

THE PROOF OF UNIFORM CONVERGENCE OF THE
NUMERICAL UNIFIED TRANSFORM METHOD APPLIED

TO THE HEAT EQUATION

In this appendix, we prove the uniform convergence for Clenshaw-Curtis quadrature

applied to the contour integrals for the heat equation in Section 3.3.2. We use the following

result to estimate the error of Clenshaw-Curtis quadrature. The constant K for the integrals

I1, I2 and B0 is given in Theorem 4 and Theorem 5.

Theorem 3 (See [70], for example). Let u(k;x, t) be so that for m = 0, 1, . . . ,M ,

∂mk u(k;x, t) are absolutely continuous for fixed x, t and satisfy supk∈[−1,1]

∣∣∂M+1
k u(k;x, t)

∣∣ ≤ K

for all x, t. Define i(u(·;x, t)) =
∫
u(k;x, t)dk and in(u(·;x, t)) to be the approximation

of i(u(·;x, t)) obtained with Clenshaw-Curtis quadrature. Then in(u(·;x, t)) converges to

i(u(·;x, t)) uniformly in x, t. More precisely, there exists N > 0 such that for n > N ,

sup
x,t
|i(u(·;x, t))− in(u(·;x, t))| ≤ 32K

15M(2n+ 1−M)M
.

In Theorem 4 and Theorem 5, we estimate the upper bound K for each part of the

integral in (3.7). The uniform convergence is considered in the domain bounded away from

the t = 0 and x = 0. For c > 0, we define the region,

Ωc = {(x, t) : x ≥ c, t ≥ c}.

Theorem 4 (Uniform convergence of I1 and I2 in (3.7) for the heat equation). For any

δ, ε, c > 0, assume q0 ∈ C∞δ and let Iε1 be the truncation of the integral 1

I1 =
1

2π

∫
CI1
eikx−ω(k)tq̂0(k)dk, (A.1)

1The truncation depends on the prescribed tolerance ε. As q̂0 is bounded on the contour, we can use the
exponential to get a good choice for the trunction. See the proof for how the truncation is done.
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such that

sup
(x,t)∈Ωc

|I1 − Iε1| < C1(q0, δ, c)ε, C1(q0, δ, c) > 0.

Then Clenshaw-Curtis quadrature applied to Iε1 converges uniformly on Ωc. Hence CI1 =

{a + ih : a ∈ R} and h = min(x/2t, δ) is as defined in Section 3.3.2. Similarly, with the

same assumptions, let Iε2 be the truncation of the integral

I2 = − 1

2π

∫
CI2
eikx−k

2tq̂0(−k)dk, (A.2)

such that

sup
(x,t)∈Ωc

|I2 − Iε2| < C2(q0, δ, c)ε, C2(q0, δ, c) > 0.

Then Clenshaw-Curtis quadrature applied to Iε2 converges uniformly on Ωc. Hence CI2 =

{a+ ix/2t : a ∈ R}.

Theorem 5 (Uniform convergence of B0 in (3.7) for the heat equation). For any γ, ε, c > 0,

assume g0 ∈ C∞γ and let Bε
0 be the truncation of the integral 2

B0 =
1

π

∫
CB0,a

eikx−k
2t2ikg̃0(k2, t)dk +

1

2π

∫
CB0,b+C

B
0.c

eikx−k
2t2ikg̃0(k2, t)dk, (A.3)

such that

sup
(x,t)∈Ωc

|B0 −Bε
0| < C(g0, γ, c)ε, C(g0, γ, c) > 0.

Then Clenshaw-Curtis quadrature applied to Bε
0 converges uniformly on Ωc. The contour is

defined in Section 3.3.2 where CB0,a = {La + ix/2t : a ∈ [0, 1], e−L
2t = ε} is the horizontal

segment of the contour and CB0,b = {L + ix/2t + L2e
iπ/4a : a ∈ [0,∞), e−L2x = ε},

CB0,c = {−L + ix/2t + L2e
−iπ/4a : a ∈ (−∞, 0], e−L2x = ε} are the oblique segments of the

contour with given tolerance ε > 0.

Proof of Theorem 4. For given tolerance ε > 0, I1 is truncated to Iε1 of length 2L with

e−L
2t = ε. We introduce the change of variables k = La+ ih. The integral with a > 1 is cut

2As with Theorem 2, the truncation procedure is described in the proof.
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off,

I1 =
Le−hx

2π

∫ ∞
−∞

eiLax−(La+ih)2tq̂0(La+ ih)da

=
Le−hx

2π

∫ 1

−1

eiLax−(La+ih)2tq̂0(La+ ih)da+
Le−hx

2π

∫
|a|>1

eiLax−(La+ih)2tq̂0(La+ ih)da

=Iε1 +
Le−hx

2π

∫
|a|>1

eiLax−(La+ih)2tq̂0(La+ ih)da.

The second integral is dropped and the induced truncation error is bounded by∣∣∣∣Le−hx2π

∫
|a|>1

eiLax−(La+ih)2tq̂0(La+ ih)da

∣∣∣∣ ≤Le−hx2π

∫
|a|>1

∣∣∣eiLax−(La+ih)2tq̂0(La+ ih)
∣∣∣ da

≤Le
−hx

2π

∫
|a|>1

e−L
2ta2+h2t |q̂0(La+ ih)| da

≤‖q̂0(·+ ih)‖∞
Le−h(x−ht)

2π
ε

∫
|a|>1

ae−L
2t(a2−1)da

≤‖q̂0(·+ ih)‖∞
Le−h(x−ht)

2π
ε

∫ ∞
0

e−L
2tsds

≤‖q̂0(·+ ih)‖∞
Le−h

2t

2π

ε

(− ln ε)
.

Since t is bounded from below, L is bounded from above. The truncation error is therefore

O(ε), uniformly in (x, t) ∈ Ωc.

Uniform convergence to Iε1 requires the derivative of the integrand in Iε1 to satisfy

sup
a∈[−1,1]

Le−hx

2π

∣∣∣∂2
a

(
eiLax−(La+ih)2tq̂0(La+ ih)

)∣∣∣ ≤M,

for all x, t. Notice that the derivatives of the exponential only introduce polynomial terms

and q̂0(k) is bounded and analytic in {k : Im (k) ≤ δ} which implies that ∂kq̂0(k) and ∂2
k q̂0(k)

are bounded on the contour. It suffices to show

sup
a∈[−1,1]

∣∣∣∣∂2
a

(
Le−hx

2π
· eiLax−(La+ih)2tq̂0(La+ ih)

)∣∣∣∣ ≤ sup
a∈[−1,1]

∣∣∣∣Le−hx2π
· eiLax−(La+ih)2tP (a, Lx, L2t, Lht)

∣∣∣∣
= sup

a∈[−1,1]

Le−hx

2π
· e−L2ta2+h2t

∣∣P (a, Lx, L2t, Lht)
∣∣ ,

where P is a polynomial with positive coefficients.
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When h = x/2t ≤ δ,

sup
a∈[−1,1]

Le−hx

2π
· e−L2ta2+h2t

∣∣P (a, Lx, L2t, Lht)
∣∣ = sup

a∈[−1,1]

Le−x
2/4t−L2ta2

2π

∣∣P (a, Lx, L2t, Lx/2)
∣∣

≤e
−x2/4t

2π
Q(x2/4t) ≤M1 <∞,

where Q is a polynomial with positive coefficients and we have used that L2t is constant.

When h = δ < x/2t,

sup
a∈[−1,1]

Le−hx

2π
· e−L2ta2+h2t

∣∣P (a, Lx, L2t, Lht)
∣∣ ≤ sup

a∈[−1,1]

e−δx/2−L
2ta2
∣∣P (a, Lx, L2t, Lx/2)

∣∣
≤ sup

a∈[−1,1]

e−δx/2Q2(x) ≤M2 <∞,

where Q2 is a polynomial with positive coeffcients. As a result, the second derivative of the

integrand of (A.1) is uniformly bounded by M = max(M1,M2) independent of x, t. Together

with the smoothness of the integrand, uniform convergence is obtained using Theorem 1. We

skip the calculation for I2 as it follows the calculation for I1.

Proof of Theorem 5. First, we prove the uniform convergence for the integral along CB0,a.

Introduce the change of variables k = La+ ix/2t.

B0|CB0,a =
1

2π

∫
CB0,a

eikx−k
2t2kg̃0(k2, t)dk

=
Le−x

2/2t

2π

∫ 1

−1

eiLax−(La+ix/2t)2t2(La+ ix/2t)g̃0((La+ ix/2t)2, t)da

=
Le−x

2/4t

π

∫ 1

−1

e−L
2ta2(La+ ix/2t)

∫ t

0

e(La+ix/2t)2sg(s)dsda.

Using Theorem 1, uniform convergence requires the boundedness of the second derivative of

the integrand

Ba = sup
a∈[0,1]

Le−x
2/4t

π

∣∣∣∣∂2
ae
−L2ta2(La+ ix/2t)

∫ t

0

e(La+ix/2t)2s−γsg(s)eγsds

∣∣∣∣ ≤M,

for all (x, t) ∈ Ωc. Since ‖geγ(·)‖∞ <∞, after a lengthy computation,

Ba ≤ sup
a∈[0,1]

‖geγ(·)‖∞
|−4a2t2 + 4γt2 − 4iatx+ x2|3

(
e−a

2t−x2/4tP1 + e−γt−x
2/2tP2

)
,
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where P1, P2 are polynomials in x, t and a, with positive coefficients, and the growth for

large x, t is controlled by the exponential and the denominator in front of P1, P2. As a result

Ba ≤M and the integral on CB0,a is computed with uniform accuracy.

Lastly, we show the uniform convergence for the integral along the oblique segment CB0,b.

The proof for the integral along CB0,c follows directly by symmetry. We introduce the change

of variables k = L+ ix/2t+ L2(1 + i)a. The integral with a > 1 is separated,

B0|CB0,b =
L2(1 + i)

π

(∫ 1

0

+

∫ ∞
1

)
eikx−k

2tkg̃0(k2, t)
∣∣∣
k=L+ix/2t+L2(1+i)a

da

=Bε
0|CB0,b +

L2(1 + i)

π

∫ ∞
1

eikx−k
2tkg̃0(k2, t)

∣∣∣
k=L+ix/2t+L2(1+i)a

da.

The second integral is dropped and the induced truncation error is bounded by∣∣∣B0|CB0,b −B
ε
0|CB0,b

∣∣∣ ≤L2e
−L2t−x2/(4t)

π

∫ ∞
1

∣∣∣e−2LL2ta(Lt+ L2ta+
x

2t
)g̃0((L+ ix/2t+ L2(1 + i)a)2, t)

∣∣∣ da
≤L2e

−x2/(4t)‖g0e
γ(·)‖∞

π

∫ ∞
1

∣∣∣∣∣∣
(
Lt+ L2ta+

x

2t

) (
e−L2xa−x2/(4t)−γt − e−L2t−2LL2ta

)
(L− x/(2t))(2aL2 + L+ x/(2t))− γ

∣∣∣∣∣∣ da
≤e−x2/(4t)‖g0e

γ(·)‖∞
(
e−L2x−γtP3 + e−L

2t−2LL2tP4

)
,

where P3, P4 are polynomials of x, t with positive coefficients. Since the decaying exponentials

dominate the growth of the polynomial, the truncation error is O(ε), uniformly in (x, t) ∈

Ωc with e−L2x = ε and e−L
2t = ε. Using Theorem 1, uniform convergence requires the

boundedness of the second derivative of the integrand

Bb = sup
a∈[0,1]

L2e
iπ/4

2π

∣∣∣∣∂2
a

(
eikx−k

2t2kg̃0(k2, t)
∣∣∣
k=L+ix/2t+L2eiπ/4a

)∣∣∣∣ ≤Mb,

for all x, t. After computing the derivatives,

Bb ≤ sup
a∈[0,1]

‖g0e
γ(·)‖∞

|4γt2 − (2Lt+ (2 + 2i)aL2t+ ix)2|3
(
e−L

2t−2aLL2t−x2/(4t)P5 + e−γt−aL2x−x2/(2t)P6

)
,

where P5, P6 are polynomials of x, t, a with positive coefficients. The poles are removable

since the integrand is analytic in k. In this case, the exponentials dominate the growth of the

polynomial. Hence, Bb ≤ M . The second derivative of the integrand of (A.1) is uniformly
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bounded by M , independent of x, t. Together with the smoothness of the integrand, uniform

convergence is obtained using Theorem 1.


