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Spectral Stability of Stationary Solutions of a Boussinesq System Describing
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Abstract. We study the spectral (in)stability of one-dimensional solitary and cnoidal waves of various Boussi-
nesq systems. These systems model three-dimensional water waves (i.e., the surface is two-dimen-
sional) with or without surface tension. We present the results of numerous computations examining
the spectra related to the linear stability problem for both stationary solitary and cnoidal waves with
various amplitudes, as well as multipulse solutions. The one-dimensional nature of the wave forms
allows us to separate the dependence of the perturbations on the spatial variables by transverse wave
number. The compilation of these results gives a full view of the two-dimensional stability problem
of these one-dimensional solutions. We demonstrate that line solitary waves with elevated profiles
are spectrally stable with respect to one-dimensional perturbations and long transverse perturba-
tions. We show that depression solitary waves are spectrally stable with respect to one-dimensional
perturbations, but unstable with respect to transverse perturbations. We also discuss the instability
of multipulse solitary waves and cnoidal-wave solutions of the Boussinesq system.
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1. Introduction. In [3, 4] Bona, Chen, and Saut derive a three-parameter family of Boussi-
nesq equations to describe the dynamics of small-amplitude long waves on the surface of an
ideal fluid as governed by the inviscid Euler equations. In [3] the different model equations
are derived and their well-posedness around the rest state is examined in a variety of function
spaces. In [4] various results extend the linear analysis of [3] to the nonlinear regime. The
three-dimensional versions of the equations derived by Bona, Chen, and Saut are presented
explicitly and analyzed in [5]. These systems of equations describe a two-dimensional water
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wave surface; see (1.1) below. In [8] Chen, and in a subsequent paper [10] Chen, Chen, and
Nguyen, were able to provide an explicit description for different branches of exact solutions of
the various Boussinesq equations. All the solutions that they constructed are one-dimensional
solutions, in the sense that in a suitably rotated frame the solutions depend only on the first
spatial variable, x, and not on the second one, y. We refer to such solutions as line solutions.
Chen, Chen, and Nguyen were able to construct both periodic and solitary wave solutions.
The periodic solutions are referred to as cnoidal wave solutions, since their explicit description
may be given in terms of the Jacobi elliptic functions. However, a more transparent descrip-
tion may be given as well, using Weierstrass elliptic functions. That description is given in
Appendix B.

In this paper we return to the result of [10] in order to examine the spectral stability of the
different line solutions constructed there. We investigate the stability both with respect to one-
dimensional perturbations (depending only on x) and with respect to fully two-dimensional
perturbations (characterized by a wave length in the y direction). Due to the complicated
nature of the equations, we restrict ourselves to numerical investigations for now, using Hill’s
method [14] or an extension of it to the whole line using Hermite functions. This method is
described in Appendix A.

The three-parameter family of Boussinesq equations whose solutions we will examine is
given by

ηt +∇ · v +∇ · (ηv) + a∇ ·Δv− bΔηt = 0,

vt +∇η +
1

2
∇v2 + c∇(Δη)− dΔvt = 0.

(1.1)

Here∇ = (∂x, ∂y)
T , with x and y the spatial independent variables. The temporal independent

variable is denoted by t. The dependent variables are denoted by η, the scaled wave height,
and v, a scaling of the fluid velocity. Further, a, b, c, and d are parameters, related by [3]

(1.2) a+ b =
1

2

(
θ2 − 1

3

)
, c+ d =

1

2
(1− θ2),

where θ ∈ [0, 1] is a fixed constant. Since a+ b+ c+ d = 1/3, none of the situations that we
consider in this paper take surface tension into account [3].

In order to study the linear stability of traveling line solitary waves and line cnoidal wave
solutions under the influence of two-dimensional small perturbations, we move to a frame
translating with velocity W in the x direction,

(1.3) x̂ = x−Wt, ŷ = y, t̂ = t,

so that

(1.4) ∂x = ∂x̂, ∂y = ∂ŷ, ∂t = ∂t̂ −W∂x̂.

In what follows, we omit the ˆ to simplify the notation. In this translating frame, equations
(1.1) become

ηt −Wηx +∇ · v +∇ · (ηv) + a∇ ·Δv − bΔηt + bWΔηx = 0,

vt −Wvx +∇η +
1

2
∇v2 + c∇(Δη)− dΔvt + dWΔvx = 0.

(1.5)
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In lieu of nonlinear or orbital stability, we limit our considerations to those of spectral
stability. To this end, we linearize the above equations around the stationary line solution
(η∗, u∗, 0) (where η∗ and u∗ are independent of y) of (1.5), i.e.,

η∗(x, y, t) = η(x), u∗(x, y, t) = u(x),

where one should recall that we earlier transformed to a translating frame of reference. In
order to linearize, we assume solutions of the form

η(x, y, t) = η∗ + εη̄(x, y, t) +O(ε2),

u(x, y, t) = u∗ + εū(x, y, t) +O(ε2),

v(x, y, t) = 0 + εv̄(x, y, t) +O(ε2).

(1.6)

By substituting (1.6) into (1.5) and dropping terms of order ε2, a system of linear equations
governing the dynamics of (η̄, ū, v̄) is obtained. Dropping the bars for simplicity of notation,
we have

−ηt + bΔηt = −Wηx + bWΔηx +∇ · v+ a∇ ·Δv+∇ · (η∗v + v∗η),
−vt + dΔvt = −Wvx + dWΔvx +∇η + c∇(Δη) +∇(v · v∗),

(1.7)

where v∗ = (u∗, 0)T .
Since these linear equations are autonomous in both y and t, we separate the dependence

on the independent variables as follows:

η(x, y, t) = N(x, ρ,Ω)eiρy+Ωt + complex conjugate,

v(x, y, t) = V(x, ρ,Ω)eiρy+Ωt + complex conjugate.
(1.8)

We have decomposed the y-dependence as exp(iρy), since the perturbations should be
bounded as a function of y. Thus we consider all real values of ρ. Analogously, values of Ω
with positive real part lead to unbounded behavior in t. If values of Ω with positive real part
are found for a real value of ρ and for bounded (to be made specific below) functions N(x, ρ,Ω)
and V(x, ρ,Ω), the corresponding line solution (η∗, u∗, 0) is called spectrally unstable. If no
such Ω exist, the line solution is spectrally stable. Note that the special case of ρ = 0
corresponds to longitudinal or one-dimensional perturbations, whereas ρ �= 0 corresponds to
transverse perturbations.

Substituting the decomposition (1.8) into the linear equations (1.7) and denoting V =
(U, V )T , one obtains a system of ordinary differential equations of the form⎛⎝WL∂x + u∗x + u∗∂x M2∂x + η∗x iρM2

M1∂x WK∂x + u∗x + u∗∂x 0
iρM1 iρu∗ WK∂x

⎞⎠⎛⎝N
U
V

⎞⎠
= Ω

⎛⎝L 0 0
0 K 0
0 0 K

⎞⎠⎛⎝N
U
V

⎞⎠ ,(1.9)
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where the operators K, L, M1, and M2 are defined as

K = d(∂2
x − ρ2)− 1, L = b(∂2

x − ρ2)− 1,

M1 = c(∂2
x − ρ2) + 1, M2 = a(∂2

x − ρ2) + 1 + η.
(1.10)

System (1.9) is a generalized (due to the presence of the diagonal matrix diag(L,K,K) on
the right-hand side) spectral problem for the eigenfunction vector (N,U, V )T . Note that for
b > 0, d > 0 the generalized spectral problem is nonsingular, and it may be converted without
obstruction to a standard spectral problem. All examples considered below will always fall
into this category. Our goal is to determine the spectrum of (1.9) for given (η∗, u∗, 0). If
we do so only for ρ = 0, we obtain statements about the spectral (in)stability of our line
solution with respect to longitudinal perturbations, whereas otherwise we are also considering
transverse perturbations. Summarizing, we use the following definitions.

Definition 1.1. A line solution is longitudinally spectrally stable if for ρ = 0 the spectrum
of (1.9) does not intersect the right-half Ω plane.

Definition 1.2. The line solution is spectrally stable (longitudinally and transversally) if
for all ρ the spectrum of (1.9) does not intersect the right-half Ω plane.

A line solution is unstable with respect to the mode (N,U, V ) if the corresponding Ω has
a positive real part. The instability is transversal if ρ �= 0; otherwise it is longitudinal.

The study of (1.9) for a given η∗ and u∗ is the central topic of this paper. Clearly, the
spectrum mentioned above depends on the boundary conditions imposed on the eigenfunction
components (N,U, V ). These will be elaborated upon for each example given below.

2. Two numerical methods. Due to the complicated nature of the spectral stability
problem (1.9), our investigations in this paper are strictly numerical. We begin by briefly
discussing the two numerical methods employed.

2.1. Numerical method for studying cnoidal waves. If the coefficients in (1.9) are pe-
riodic, we use Hill’s method [14]. It should be noted that (1.9), being a generalized spectral
problem, is outside the realm of problems for which the convergence properties of Hill’s method
were analyzed in [12]. As remarked above, since the diagonal matrix diag(L,K,K) is nonsin-
gular for b > 0, d > 0, the problem may be rewritten as a standard spectral problem, to which
the techniques of [12] may be applied. It follows that our results are trustworthy, provided a
sufficient number of Fourier modes are used in Hill’s method.

Using Hill’s method, we investigate perturbations of the periodic solutions that are bound-
ed on the whole line. Our perturbations are not necessarily periodic and definitely do not
need to share the same minimal period of the periodic solutions. In practice, a discrete set of
Floquet exponents (see [14]) is used, resulting in perturbations that are periodic with period
equal to an integer multiple of the period of the cnoidal wave solutions. In what follows, when
a number of Fourier modes is listed as N , this implies that 2N + 1 terms are present in the
complex form of the Fourier series.

2.2. Numerical method for studying solitary waves. Hill’s method is not intended for
linear operators with coefficients that are localized on the whole line. As discussed in Ap-
pendix A, there are two ways to stretch the method to use it in this case: we may truncate
(chop) the coefficient functions and periodically extend them, while considering increasingly
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larger periods. Alternatively, we approximate the localized function by an elliptic one which
converges to it as the elliptic modulus approaches 1. In essence, the two methods use the
same principle of periodic approximations. The periodic approximation is smooth for the sec-
ond approach which appears superior for this problem. For both approaches, the number of
Fourier modes needs to be increased as the period increases, to ensure that Hill’s method itself
is providing an accurate approximation to the periodic problem. In all cases below where re-
sults using Hill’s method are given, the second approach was used. The elliptic approximation
function will be specified for each case given.

Alternatively, we use Hill’s method using Hermite functions. This method is new, and it
is outlined in detail in Appendix A.

3. Spectral stability of line solitary waves. In this section, we study the stability of line
solitary waves.

3.1. Elevation solitary waves. Our first example examines a system which models surface
waves where the system is globally well-posed and is known to be Hamiltonian [3, 4]. The
system has a one-parameter family of explicit solitary wave solutions resembling KdV solitons:
the solution consists of a single localized disturbance with η∗ positive with a single maximum.
Further, η∗ approaches 0 as x → ±∞.

Although it is natural to believe from results from the theory of the KdV and KP
(Kadomtsev–Petviashvili) equations that these solitary waves are stable, this is by no means
a given: system (1.1) differs from the KdV and KP equations in many fundamental aspects.
Perhaps the major difference is that system (1.1) is derived without the assumption that the
waves travel in one direction and that they are nearly one-dimensional. It follows that energy
can flow equally in all directions. Given the fundamental importance of solitary waves, these
solutions seem a natural starting place for our stability investigations of (1.1).

Specifically, in (1.1) we use the parameter values

(3.1) a = −1

9
, b =

1

3
, c = −1

9
, d =

2

9
.

The line solution that we study is given by [8]:

η∗ = η0 sech
2(λx),

u∗ = η0

√
3

η0 + 3
sech2(λx),

(3.2)

where

(3.3) λ =
1

2

√
2η0

3(a− b) + 2b(η0 + 3)

and

(3.4) W =
3 + 2η0√
3(3 + η0)

.

Here η0 > 0 is a free parameter.
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Table 1
The apparent convergence of the eigenvalue with the largest real part of (1.9) with ρ = 0 for increasing

elliptic modulus k, approximating the elevation soliton (3.2) with η0 = 0.1.

Elliptic modulus k Period Number of Fourier modes Largest real part

0.8 < 20 20 2.97× 10−3

0.9 20 20 2.14× 10−3

0.99 28 20 6.87× 10−4

0.999 37 30 2.18× 10−4

0.999999 62 70 7.09× 10−6

Using the Hermite method, no conclusive results are obtained: increasing the number of
modes does not result in any apparent Cauchy convergence of the numerical results. It seems
that for this case the difficulties presented by the essential spectrum are too much for the
method to handle. We were able to do better using Hill’s method, replacing the sech2(λx)
by cn(λx, k), where cn is the Jacobi elliptic cosine function [7] with elliptic modulus k. For
fixed λ, cn(λx, k) → sech(λx) as k → 1. The period of cn2(λx, k) is given by 2K(k)/λ, where
K(k) is the complete elliptic integral of the first kind [7],

(3.5) K(k) =

∫ π/2

0

dz√
1− k2 sin2 z

.

For η0 = 0.1 and ρ = 0 (one-dimensional perturbations) the results are given in Table 1.
It appears safe to conclude from these numerical results that the elevation solitary wave (3.2)
is spectrally stable with respect to one-dimensional perturbations. Indeed, it seems that
the solution (3.2) is spectrally stable with respect to one-dimensional perturbations for all
amplitudes. Figure 1 compiles the results from several numerical experiments, displaying the
positive real part of the spectrum of (1.9) with ρ = 0 and η0 varying from 0.1 to 1 in increments
of 0.1. The top panel shows the results obtained with k = 0.99, whereas the bottom panel
displays the same for k = 0.999, with the number of Fourier modes increased accordingly. It
is obvious from the figure that the spectrum corresponding to higher-amplitude solutions is
harder to approximate numerically (requiring a higher elliptic modulus, i.e., a longer period),
but increasing the elliptic modulus decreases all real parts consistently, allowing us to claim
one-dimensional spectral stability for the elevation solitary wave (3.2). To show the further
decrease in the value of the real parts, we computed the spectrum for η0 = 1 with k = 0.999999,
resulting in a maximal real part of 1.31 × 10−4. In contrast, the bottom panel of Figure 1
shows a corresponding value of 4.02 × 10−3, showing a decrease by a factor of 30 using this
more accurate (and time-consuming) computation.

Next, we examine the effect of ρ �= 0; i.e., we investigate transverse perturbations. First,
we fix the amplitude of the solution, letting η0 = 0.1 and varying ρ from 0 to 1. Gradually
increasing the elliptic modulus to obtain increasingly better approximations, we found no
discernible real parts to the spectrum. Specifically, all real parts computed seemed to converge
to zero as the elliptic modulus was increased. In other words, transverse perturbations do not
change the stability results from the one-dimensional case. A similar statement is true for
large-amplitude solutions: letting η0 = 0.9, no change in the stability behavior from the one-
dimensional case is found as ρ is increased away from zero. As expected, this calculation



STABILITY OF A BOUSSINESQ SYSTEM 1005

Figure 1. The positive real part of the spectrum of (1.9) with ρ = 0 for amplitudes η0 ∈ [0.1, 1]. For the
top panel, k = 0.99, whereas for the bottom panel, k = 0.999. Roughly, the bottom panel equals the top panel,
with all plotted y values multiplied by three.

requires even higher elliptic moduli and a correspondingly larger number of Fourier modes to
obtain results with real parts equally small as in the η0 = 0.1 solution case.

3.2. Depression solitary waves. For a wide range of values of a, b, c, and d, we may con-
sider the above solution with a negative value of η0, with the range of η0 limited by requiring
reality of the solution. This gives rise to a depression solitary wave: a solitary wave approach-
ing zero at infinity, with η∗ negative throughout, attaining a single minimum. In water wave
tank experiments, any attempt to create a wave of depression results in an oscillatory wave
train [16]. For certain parameter values a, b, c, and d, the Boussinesq system has explicit
traveling depression solitary waves, even when no surface tension effects are included. In this
section, we explore their stability or instability.

We use the parameter values

(3.6) a = −8

9
, c = −8

9
, b =

10

9
, d = 1.
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Figure 2. The real part of the spectrum of (1.9) as a function of ρ, for the depression soliton with
η0 = −1/2. The computation of the top panel used 40 Hermite modes. For the bottom panel 59 modes were
used.

Using the unscaled Hermite method (see Appendix A) with either 40 or 59 modes, we obtain
Figure 2. These results indicate the spectral stability of the depression solitary wave with
respect to one-dimensional (ρ = 0) perturbations, but they also demonstrate the presence of
transverse instabilities. The most unstable transverse mode for our parameter values exists
around ρ = 0.2. It is unclear why the essential spectrum does not present the same difficulties
for the Hermite method as it does for the elevation solitary wave case. Although not conclusive,
the results of Figure 2 also indicate stability with respect to transverse perturbations of
sufficiently short wave length (i.e., sufficiently large ρ). These results agree with our numerical
experiments using Hill’s method. The results for ρ = 0 are shown in Table 2. Note that, due
to the different parameters, the periods used for equal values of k are smaller, reaching 22
for k = 0.999999. Using Hill’s method for ρ = 0.2 with 70 modes for k = 0.99999999, we
determine the growth rate of the most unstable mode to be 0.0376.

Similar results hold for η0 = −1, as seen in Table 3. In this case, the most unstable mode
occurs for ρ near 0.3. We find its growth rate to be 0.0718.
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Table 2
The apparent spectral stability with respect to one-dimensional perturbations for the depression solitary

wave with η0 = −1/2.

Elliptic modulus k Number of Fourier modes Largest real part

0.8 10 0.03
0.9 15 0.0224
0.99 20 7.58 × 10−3

0.999 30 2.42 × 10−3

0.999999 70 7.88 × 10−5

Table 3
The apparent spectral stability with respect to one-dimensional perturbations for the depression solitary

wave with η0 = −1.

Elliptic modulus k Number of Fourier modes Largest real part

0.99 20 6.36 × 10−2

0.999 30 4.61 × 10−3

0.999999 70 1.5× 10−4

3.3. Multipulse solutions. For some values of the parameters a, b, c, and d, the Boussinesq
system (1.1) was shown in [8] to possess multipulse solutions: solutions with more than one
maximum but still localized on the whole line. Actually, it was shown in [9] that such systems
have multipulse solutions with any number of pulses. In this section we numerically investigate
the spectral stability of some such solutions.

If we let a = c = 0 and b = d = 1/6, then one easily checks that

η∗ =
15

4

(
−2 + cosh

(√
18

5
x

))
sech4

(
3x√
10

)
= −45

4
sech4

(
3x√
10

)
+

15

2
sech2

(
3x√
10

)
,

u∗ =
6

5
sech2

(
3x√
10

)(3.7)

is a (two-pulse) solution. Using the unscaled Hermite method with 40 and 59 modes, re-
spectively, we find the results displayed in Figure 3. These numerical results clearly indicate
both the one-dimensional and transverse instability of the multipulse solution (3.7). For the
case of one-dimensional perturbations, we also employed Hill’s method, by using cn(·, k) to
approximate sech(·) in (3.7). The results of these computations are given in Table 4. They
show perfect agreement with those of Figure 3.

4. Spectral stability of line cnoidal waves. In this section, we study the stability of two
cnoidal wave solutions of the Boussinesq system with a = c = 0, b = d = 1/6. Both solutions
are examples of the cnoidal wave solutions constructed in [10]. As stated in the introduction,
an alternate method for constructing the cnoidal wave solutions is discussed in Appendix B.
Since these solutions are periodic, we rely solely on Hill’s method for numerical results. We
restrict ourselves to a small number of numerical experiments, since these already demonstrate
the spectral instability of the cnoidal wave solutions.
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Figure 3. Real part of the spectrum of (1.9) as a function of the transverse perturbation wave number ρ
for the multipulse solution (3.7), using 40 Hermite modes (top) and 59 Hermite modes (bottom).

Table 4
Approximating the largest real part of the spectrum of (1.9) for ρ = 0 for the two-pulse solution (3.7) using

Hill’s method.

Elliptic modulus k Period Number of Fourier modes Largest real part

0.9 5.4 20 1.28
0.99 7.8 30 1.25
0.999 10.2 30 1.25
0.9999 12.6 50 1.2495363

0.999999 17.4 70 1.2494668

Case 1. Consider the solution

u∗ = −0.7484 + 3.5656 cn2
(
1.9642x, 0.94868

)
,

η∗ = 0.30806u∗ − 1

2
u∗2 − 0.30806

6
3.858u∗xx.

(4.1)

Using Hill’s method with 20 Fourier modes, we find the spectrum shown in Figure 4. It clearly
demonstrates the spectral instability of the solution (4.1). A large variety of instabilities
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Figure 4. The spectrum of (1.9) for the cnoidal-wave solution (4.1), using 20 Fourier modes (top), and a
blow-up of the region around the origin (bottom).

can be seen in Figure 4. The bottom panel clearly shows the presence of a modulational
instability (growth of modes with periods almost equal to that of the cnoidal wave solution):
the eigenvalue at the origin corresponds to eigenfunctions of the same period. Nearby points
have eigenfunctions with slightly different periods, as well as nonzero frequency instabilities
(i.e., Ω has nonzero imaginary part).

Case 2. Next we consider

u∗ = 0.4303 + 7.2355 cn2
(
0.96793x, 0.94868

)
,

η∗ = 0.30806u∗ − 1

2
u∗2 − 0.30806

6
3.858u∗xx.

(4.2)

The spectrum for this case is shown in Figure 5. Both cases are already unstable with respect to
one-dimensional perturbations. We did not investigate the effect of transverse perturbations.



1010 M. CHEN, C. W. CURTIS, B. DECONINCK, C. W. LEE, AND N. NGUYEN

Figure 5. The spectrum of (1.9) for the cnoidal-wave solution (4.2), using 20 Fourier modes.

5. Conclusions. We have investigated the spectral stability of different types of line
(one-dimensional) solutions of the Boussinesq system (1.1). Our results are summarized as
follows:

• Elevation solitary waves. We have demonstrated numerically that elevation solitary
waves are stable with respect to both one-dimensional perturbations and transverse
perturbations.

• Depression solitary waves. Numerical experiments indicate that depression solitary
waves are stable with respect to one-dimensional perturbations, but unstable with
respect to transverse perturbations.

• Multipulse solitary waves. In contrast to one-pulse elevation solitary waves, we found
that multipulse solitary waves are unstable, even with respect to one-dimensional per-
turbations. Adding transverse instabilities increases the growth rates of the unstable
modes.

• Cnoidal waves. Cnoidal waves are found to be unstable with respect to a plethora of
one-dimensional perturbations. No numerical exploration of transverse perturbations
was undertaken.

What is the impact of these results for the validation of the Boussinesq system (1.1)?
Our results for the solitary wave solutions agree, at least qualitatively, with those of other
modeling equations such as the KdV equation. Therefore, we focus on the stability behavior
of periodic solutions. Recent work (see [6, 13]) has established the spectral stability of the
cnoidal wave solutions of the KdV equation with respect to bounded perturbations, and their
orbital stability with respect to perturbations that are periodic with period equal to an integer
multiple of the cnoidal wave period. Thus our results disagree with those in the context of the
KdV equation. For the full Euler water wave problem, different numerical results [15, 18, 19]
demonstrate the instability of periodic waves in shallow water. We conclude that at least this
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aspect of the water wave problem is better described by the Boussinesq system, as opposed
to, for instance, the KdV equation.

Appendix A. The numerical computation of spectra of linear operators with localized
coefficients. In [14] a method was discussed which efficiently and accurately computes spectra
of linear operators with periodic coefficients. The method may be pushed to problems with
coefficients defined on all of R using one of two scenarios:

• The operator may be considered on a finite interval and periodically extended. The
convergence of this truncation process can be judged by consideration of increasingly
longer intervals.

• We may replace the coefficient functions of the operator by periodic ones which limit
to the whole-line ones as their period increases. For instance, hyperbolic functions
may be replaced by elliptic ones.

Both scenarios prove to be useful. The second one turns out to be especially effective for
the computation of our spectra, as is discussed in the examples in the main text. Nevertheless,
it would be convenient to have at our disposal a method which investigates whole-line problems
directly, without the need to investigate the limit from a periodic case. To this end, we present
here a Galerkin method using Hermite functions, the set of which is orthonormal and complete
in L2(R).

Recall that the nth Hermite function is defined as [1]

(A.1) en =
1√

2n
√
πn!

e−x2/2Hn,

where Hn is the nth Hermite polynomial. Considering a generalized N ×N spectral problem

(A.2) Sφ = ΩMφ,

where φ is a vector of complex-valued functions, S is a matrix of differential operators Si
j, as

is M (components M i
j). In addition, we require M to be invertible as a linear operator. The

scalar Ω is the spectral parameter. Using Einstein’s summation convention, we rewrite this
problem as

(A.3) Si
jφ

j = ΩM i
jφ

j .

Denote the expansion in terms of the basis functions en for each φj as

(A.4) φj (x) =
∞∑

m=0

φ̂j,mem.

Taking the L2 inner product of (A.3) with en and expanding each φj , we have

(A.5)

∞∑
m=0

φ̂j,m
〈
Si
jem, en

〉
= Ω

∞∑
m=0

φ̂j,m
〈
M i

jem, en
〉
.

Define

(A.6) M̂ i,n
j,m ≡ 〈M i

jem, en
〉
, Ŝi,n

j,m ≡ 〈Si
jem, en

〉
.
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This allows us to write (A.5) as

(A.7)
∞∑

m=0

Ŝi,n
j,mφ̂

j,m = Ω
∞∑

m=0

M̂ i,n
j,mφ̂j,m.

This equation corresponds to a generalized eigenvalue problem involving two infinite-dimen-
sional matrices. Our numerical method for computing approximations for Ω is obtained by
truncating the infinite sums in (A.7) at a sufficiently large value, say N , which results in

(A.8)
N∑

m=0

Ŝi,n
j,mφ̂

j,m = Ω
N∑

m=0

M̂ i,n
j,mφ̂j,m.

In effect, we are introducing a projection along the first N Hermite functions, demonstrating
that this is indeed a Galerkin method. Last, a standard eigenvalue solver produces the desired
approximation of the spectrum.

A major difficulty in implementing this method is the determination of the coefficients
(A.6), unlike in the periodic case where Fourier modes are used. In general, when using
Hermite functions, it is not possible to find a closed-form expression for these terms due to
the presence of nonconstant function coefficients in the linear operators. We need to find
accurate approximations to expressions like

(A.9) 〈f (x) em, en〉 .
We could attempt to numerically integrate the above expression. However, if we use a trun-
cation value of N in (A.8), the function f(x) is integrated against modes like e2N (x). For
large N , the rapid oscillations of the Hermite functions lead to catastrophic cancellation in
our numerical integration. Thus, we first approximate f(x) so that our choice of N is not
limited by this effect.

We proceed as follows. Assuming

(A.10) f (x) =
∞∑
l=0

f̂l el,

we write

(A.11) 〈f (x) em, en〉 =
∞∑
l=0

f̂l 〈elem, en〉 .

The contributions 〈elem, en〉 can, in principle, be computed analytically. Further, if

(A.12) f (x) = O
(
e−p|x|

)
as |x| → ∞ for some positive constant p, and if f (x) is analytic on the strip |Im (x)| ≤ ω,
then

(A.13) f̂l = O
(
e−ω

√
2l+1

)



STABILITY OF A BOUSSINESQ SYSTEM 1013

as l → ∞. Here ω = min (p, τ), where τ is the magnitude of the imaginary part of the
nearest singularity of f(x) to the real axis [21]. For our purposes, f(x) will always satisfy this
constraint with ω = π/2λ. The terms 〈elem, en〉 decay even faster than f̂l, and therefore the
finite-sum truncation of (A.11) incurs only an exponentially small error. Thus we safely use

(A.14) f̃ =
M∑
l=0

f̂lel.

In most problems that we study, we have (perhaps after some rewriting) f(x) to be
sech2(αx), where α is real. In any case where a derivative of f(x) is needed, we first use
integration by parts on

(A.15)
〈
f ′(x)em, en

〉
and use the identity

(A.16)
den
dx

=

√
n

2
en−1 −

√
n+ 1

2
en+1

to get a new analytic expression involving only f(x). While this makes implementing the
algorithm slightly more complicated, it minimizes the amount of numerical integration needed.
Even so, Maple 12 allows for a reliable and accurate approximation of

〈
sech2(αξ), el

〉
only for

l ≤ 59. Thus we use M ≤ 59 throughout, for all problems where we use the Hermite method
in this paper.

Remarks.
• The spectrum of differential operators with localized coefficients which decay suffi-

ciently fast at infinity consists of the essential spectrum (easily calculated, as its de-
termination requires one to solve a problem with constant coefficients [20]) and the
discrete spectrum consisting of eigenvalues. Given the ease of determining the essential
spectrum, we are mainly interested in a numerical method which accurately determines
the discrete spectrum. Our choice of the Hermite functions as basis functions imme-
diately indicates that we should expect good approximations to the eigenvalues and
their associated square-integrable eigenfunctions. We investigate this in the examples
below.

• The convergence properties of Hill’s method using Fourier series were examined nu-
merically in [14]. More recently, the analysis of the effect of the truncation to a finite
number of modes was undertaken in [12], where different convergence theorems were
proven. No such analysis has been undertaken for the Hermite method.

• In order to improve the accuracy of the approximation (A.14), we may use a scaled
form of the Hermite functions to take into account the scaling α in sech2(αx). Thus,
instead of en, we use

√
γen(γx), where γ =

√
2α. The effect of using this scaling can be

seen in Figure 6, which shows the absolute value of the difference between sech2(x/2)
and (A.14) using both unscaled and scaled Hermite functions. It is clear that in this
case using the scaling improves the accuracy of the approximation by about two orders
of magnitude.
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Figure 6. Approximation error for sech2(x/2) using unscaled Hermite functions (solid line) and scaled
Hermite functions (dashed line), both with N = 31.

However, while it appears that the above scaling often (but not always) improves the
accuracy of (A.14), this does not necessarily imply that the scaled Hermite functions
yield a better approximation to the spectrum of a given operator. When approximating
a discrete eigenvalue, ideally we would scale the Hermite functions with respect to the
width of the unknown corresponding eigenfunction.
As for the essential spectrum, as remarked above, the Hermite functions, regardless
of scaling, are a poor means of approximating “eigenfunctions” associated with an
element of the essential spectrum, as such functions cannot be localized. Thus we can
only hope to obtain good approximations to the discrete spectrum and the associated
localized eigenfunctions.

• The choice of Hermite functions as an orthonormal basis is not the only avenue for
building a Galerkin method on the whole line. For instance, alternatively we might
have used normalized Hermite functions with Gaussian measure in the norm. The
problem with this approach is that it allows for eigenfunctions that do not decay
at infinity, since the Gaussian measure allows such nonlocalized bounded functions
to have finite norm. This is unfortunate, since we are able to derive closed-form
expressions for (A.9) using the Gaussian measure.

To establish confidence in the method, we present some results on problems for which the
spectrum is analytically known.

Example: The KdV equation. We write the KdV equation as

(A.17) ut + 3uux + uxxx = 0,

which has the soliton solution u(x, t) = U(x − t) = sech2 (x − t) /2. Linearizing around this
solution results in the associated linear problem

(A.18) Lφ = φxxx + 3(U(x)φ)x − φx = λφ.

It is straightforward to show that the essential spectrum σess(L) = iR. It is shown in [17] that
L has no eigenvalues other than at zero due to symmetry. Thus σ(L) = iR. We might wonder
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Table 5
Maximum of the real part of approximation to the spectrum, using a Maple implementation of the Hermite

algorithm for the linear problem (A.18). A stated value of 0. indicates that the result was indistinguishable
from the software-induced precision of 10−15.

Number of Hermite modes maxRe(λ)(unscaled) maxRe(λ)(scaled)

30 .198167349×10−2 0.
40 .613955717×10−3 0.
50 .222354504×10−3 0.
59 .401588484×10−15 0.

Table 6
Approximations to the discrete spectrum of (A.20), using a Maple implementation of the Hermite algorithm.

Number of Hermite modes −λN,1 − 3
2
− λN,2

10 .726725478×10−4 .1334677136×10−1

20 .608876104×10−6 .1108871556×10−2

30 .106195049×10−7 .1575614131×10−3

40 .456898436×10−9 .3004943429×10−4

50 .946901283×10−10 .6932114778×10−5

59 .763100964×10−10 .2372154196×10−5

what results our method will produce, given that we are applying it to something for which it
is ill suited, namely approximating the essential spectrum. Table 5 shows the maximum value
of the real part of the approximated spectrum using unscaled and scaled Hermite functions.

The eigenvector associated with the zero eigenvalue is the derivative of U(x) and thus has
the same scaling as u. Presumably, this explains the dramatic difference between approximat-
ing the spectrum with scaled and unscaled Hermite functions.

Example: The Allen–Cahn equation. An example involving a discrete spectrum originates
from the Allen–Cahn equation

(A.19) ut − uxx − u+ u3 = 0,

with solution u(x, t) = U(x) = tanh
(
x/

√
2
)
. This gives rise to the linearization

(A.20) Lφ = φxx − 2φ+ 3 sech2

(
x√
2

)
φ = λφ.

Clearly, the operator L is self-adjoint. It is easy to show that the essential spectrum σess(L) =
(−∞,−2]. We know that zero is an eigenvalue due to the translational symmetry of the Allen–
Cahn equation. Further, using the transformation ξ = tanh

(
x/

√
2
)
, one transforms L into

an associated Legendre equation [2], which immediately gives that −3/2 is the only other
eigenvalue of L. Thus σ(L) = (−∞,−2] ∪ {−3/2} ∪ {0}.

Focusing on the eigenvalues −3/2 and 0, if we take the smallest and next smallest eigen-
values in magnitude of our approximation, which for each N we denote as λN,1 and λN,2,
respectively, we obtain Table 6.

Observe that the method produces a rapidly converging approximation to the true eigen-
values 0 and −3/2. Likewise, Figure 7 shows the output of our method using N = 59, where
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Figure 7. The approximated spectrum in the complex λ plane for the Allen–Cahn problem, using N = 59
Hermite modes. The bottom panel is an enlargement of the region close to the origin of the λ plane of the top
panel.

the bottom figure is a zoom-in near the origin of the top figure. It is clear that our method
produces approximations at −3/2, 0, and values in the interval (−∞,−2]. This illustrates
that using the Hermite algorithm is impractical for computing the essential spectrum, but it
appears well suited for computing the discrete spectrum of an operator. We do not consider
a scaling of the Hermite functions for this problem: the scaling we use for the Allen–Cahn
problem would introduce a scaling on the Hermite functions equal to unity.

Appendix B. A new representation for the cnoidal wave solutions. In [10], an explicit
representation was obtained for a large class of stationary solutions of (1.1). This represen-
tation, which is used in the main body of the present paper, is in terms of Jacobi elliptic
functions [1]. Following the method of Conte and Musette [11], we obtain a different repre-
sentation in terms of Weierstrass elliptic functions [1]. Another advantage of this approach is
that we are able to show that the solutions found comprise all stationary elliptic solutions of
the Boussinesq system (1.1).

The system of equations we are considering is

−Wη + u(1 + η) +
W

6
Λ2η′′ = 0,(B.1)

−Wu+ η +
1

2
u2 +

W

6
Λ2u′′ = 0.(B.2)

Here the prime denotes differentiation with respect to ξ = Λ(x − Wt), and Λ represents a
scaling. It could be omitted and reintroduced after the fact, using the scaling symmetry of the
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equations. The system of equations (B.1)–(B.2) is obtained by using the translating station-
ary profile ansatz, followed by integrating once with respect to ξ. The resulting integration
constants are equated to zero. This is further discussed in [10].

Solving (B.2) for η and substituting into (B.1) result in a single equation to be solved for u.
It is on this equation that we use the method of Conte and Musette [11] to find all elliptic
solutions of the scalar equation. This results in a rather messy description of the solutions,
but with a simple functional form. Having accomplished this, we start directly from the found
functional form with parameters. This ansatz is substituted into the scalar equation, and the
parameters are determined. Our ansatz, determined using Conte and Musette’s method, is

(B.3) u = α+ β℘(δξ + iγ, g2, g3),

where ℘(δξ, g2, g3) denotes the Weierstrass elliptic function with invariants g2 and g3. Thus
far α, β, δ, and γ are undetermined parameters. Substitution into the scalar equation for u
allows us to find that

α = W,(B.4)

β = −10

3
Λ2δ2W,(B.5)

g2 =
9(2 +W 2)

11W 2Λ4δ4
,(B.6)

g3 = − 27

20Λ2δ6W 2
.(B.7)

Note that the parameters δ and γ are free. This was to be expected: δ reflects the scaling
symmetry of the Boussinesq system, as does Λ. This explains why both can be grouped into
a single parameter, Λδ. Last, γ reflects the translational symmetry: the Boussinesq system
is autonomous in x. However, if we wish to consider real and nonsingular solutions, γ is not
entirely arbitrary: its real part should be chosen to be half of the period of the Weierstrass
function in the imaginary direction; see [1].

The class of solutions described in terms of the Weierstrass elliptic functions is identical
to that given in [10]. Two advantages are obtained from our approach:

• Since we have followed the method of Conte and Musette [11], we learn that the
solutions found in [10] are all the elliptic solutions of (B.1). This information could
not be obtained by using an ansatz as in [10].

• To obtain an explicit numerical description of an elliptic solution using the description
of [10] requires the solution of a cubic equation. Our description results in a far simpler
parametrization of the solution branch: all parameters are determined explicitly in
terms of the free parameters.
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