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THE ORBITAL STABILITY OF ELLIPTIC SOLUTIONS OF THE
FOCUSING NONLINEAR SCHRÖDINGER EQUATION∗
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Abstract. We examine the stability of the elliptic solutions of the focusing nonlinear Schrödinger
equation (NLS) with respect to subharmonic perturbations. Using the integrability of NLS, we
discuss the spectral stability of the elliptic solutions, establishing that solutions of smaller amplitude
are stable with respect to larger classes of perturbations. We show that spectrally stable solutions
are orbitally stable by constructing a Lyapunov functional using higher-order conserved quantities
of NLS.
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1. Introduction. The focusing, one-dimensional, cubic nonlinear Schrödinger
equation (NLS),

iΨt +
1

2
Ψxx + Ψ |Ψ|2 = 0,(1)

is a universal model for a variety of physical phenomena [10, 23, 29, 36, 39, 44]. In
1972, Zakharov and Shabat [45] found its Lax pair and the explicit expression for
the one-soliton solution. The orbital stability of the soliton was first proved in 1982
by Cazenave and Lions [9] and later by Weinstein [41] using Lyapunov techniques,
as used here. Even with such a rich history, a full stability analysis in the periodic
setting has not been completed. The simplest periodic solutions are the genus-one or
elliptic solutions (section 2). Rowlands [37] was the first to study their stability using
perturbation methods. Since then, Gallay and Hǎrǎgu̧s have examined the stabil-
ity of small-amplitude elliptic solutions [18] and proven orbital stability with respect
to perturbations of the same period as the underlying solution [19] (i.e., coperiodic
perturbations). Gustafson, Le Coz, and Tsai [24] establish instability for the elliptic
solutions with respect to sufficiently large perturbations. The analysis of spectral
instability with respect to perturbations of an integer multiple of the period (i.e., sub-
harmonic perturbations) was completed in [16].

In this work we build upon the results in [16] to examine the stability of elliptic
solutions of arbitrary amplitude. Only classical solutions of (1) and classical pertur-
bations of those solutions are considered in this paper. An outline of the steps follows
and the conclusions obtained are given below.

1. Spectral stability is considered in section 3. This is motivated by considering
the simpler case of the well-known Stokes waves in section 3.2. For these so-
lutions, all operators involved have constant coefficients, and all calculations
are explicit. We get to the spectrum of the operator obtained by linearizing
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about a solution through its connection with the Lax spectrum. To this end,
we introduce the Lax pair and its spectrum in section 3.3. The results in
section 3.3.1 are from [16], while the results in section 3.3.2 and all subse-
quent sections are new. Section 3.4 contains our main spectral stability result:
solutions are spectrally stable with respect to subharmonic perturbations if
the solution parameters meet a given sufficiency condition (Theorem 4). This
condition is shown to be necessary in most cases and is discussed in Appendix
C. In essence, Theorem 4 establishes that solutions of “smaller amplitude”
are spectrally stable with respect to a larger class of subharmonic perturba-
tions, i.e., subharmonic perturbations of larger period. The notion of “smaller
amplitude” is made more precise in section 3.4.

2. In section 4, we examine how instabilities depend on the parameters of the
solution. The orbital stability results of section 5 rely crucialy on under-
standing the spectrum for stable compared to unstable solutions. Thus we
carefully examine the transition from stable to unstable dynamics as solution
parameters are changed.

3. Finally, in section 5 we use a Lyapunov method [22, 27, 34] to prove (non-
linear) orbital stability in the cases where spectral stability holds. Our main
result is found at the end of the section: we establish the orbital stability of
almost all solutions that are spectrally stable. The only solutions for which
such a result eludes us are those whose solution parameters are on the bound-
ary of the parameter regions specifying with respect to which subharmonic
perturbations the solutions are spectrally stable.

This paper is part of an ongoing research program of analyzing the stability of
periodic solutions of integrable equations [5, 6, 12, 14, 15, 16, 35]. The present work is
the first in the program to establish a nonlinear stability result for periodic solutions
for which the underlying Lax pair is not self-adjoint.

2. Elliptic solutions of focusing NLS. In this paper we study solutions of
(1) whose only change in time is through a constant phase-change. Such solutions are
stationary solutions of

iψt + ωψ +
1

2
ψxx + ψ |ψ|2 = 0,(2)

found by defining Ψ(x, t) = e−iωtψ(x, t). Time-independent solutions to (2) satisfy

ωφ+
1

2
φxx + φ |φ|2 = 0(3)

and are expressed in terms of elliptic functions as

Ψ = e−iωtφ(x) = R(x)eiθ(x)e−iωt(4)

with

R2(x) = b− k2 sn2(x, k), ω =
1

2

(
1 + k2 − 3b

)
,(5a)

θ(x) = c

∫ x

0

1

R2(y)
dy, c2 = b(1− b)(b− k2),(5b)

where sn(x, k) is the Jacobi elliptic sn function with elliptic modulus k [1, Chapter
22]. The parameters b and k are constrained by

0 ≤ k < 1, k2 ≤ b ≤ 1;(6)
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Fig. 1. The parameter space for the elliptic solutions (4) with solution regions labeled. The
first four Stokes wave stability bounds are plotted in green dots on the line k = 0, at which b = 1/P 2

for P ∈ {1, 2, 3, 4} (28).

see Figure 1. The solutions formally limit to the soliton as k → 1, which is omitted
from our studies. When k = 0 and b 6= 0, (4) reduces to a so-called Stokes wave
(section 3.2). The boundary values, b = k2 and b = 1, are special cases. In both cases
c = 0 so θ = 0 and the solutions are said to have trivial phase. When c 6= 0, the
solutions have nontrivial phase (NTP). We call φ(x) = k cn(x, k) and φ(x) = dn(x, k)
the cn and dn solutions corresponding to b = k2 and b = 1, respectively. Here cn(x, k)
and dn(x, k) are the Jacobi elliptic cn and dn functions with elliptic modulus k [1,
Chapter 22]. The trivial-phase solutions are periodic, with periods 4K(k) and 2K(k)
for the cn and dn solutions, respectively, where

K(k) :=

∫ π/2

0

dy√
1− k2 sin2(y)

,(7)

the complete elliptic integral of the first kind [1, Chapter 19].

Remark 1. The NTP solutions are typically quasi-periodic but only the x-periodic
amplitude R2(x) appears in our analysis. Therefore, unless otherwise stated, any
mention of the periodicity of the solutions is in reference to the period of the amplitude
which is T (k) = 2K(k) for all solutions.

The elliptic solutions can be written in terms of Weierstrass elliptic functions via

℘(z + ω3; g2, g3)− e3 =

(
K(k)k

ω1

)2

sn2

(
K(k)z

ω1

)
,(8)

where ℘(z; g2, g3) is the Weierstrass elliptic ℘ function [1, Chapter 23] with lattice
invariants g2, g3 and ω1 and ω3 are the half-periods of the Weierstrass lattice. Last,
e1, e2, and e3 are the zeros of the polynomial 4t3 − g2t− g3, and
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e1 =
1

3
(2− k2), e2 =

1

3
(2k2 − 1), e3 = −1

3
(1 + k2),

(9a)

g2 =
4

3
(1− k2 + k4), g3 =

4

27
(2− 3k2 − 3k4 + 2k6),

(9b)

ω1 =

∫ ∞
e1

dz√
4z3 − g2z − g3

= K(k), ω3 =

∫ ∞
−e3

dz√
4z3 − g2z − g3

= iK
(√

1− k2
)
.

(9c)

The Weierstrass form of the elliptic solutions is explained in more detail in [11, section
3.1.3].

3. Spectral stability. Spectral stability of elliptic solutions is examined by
considering

Ψ(x, t) = e−iωteiθ(x) (R(x) + εu(x, t) + εiv(x, t)) +O
(
ε2
)
,(10)

where ε is a small parameter and u and v are real-valued functions of x and t. Substi-
tuting this into (1) and keeping only first-order in ε terms gives an autonomous ODE
in t. Separating variables (u(x, t), v(x, t)) = eλt(U(x), V (x)) results in the spectral
problem

λ

(
U
V

)
=

(
−S L−
−L+ −S

)(
U
V

)
= J

(
L+ S
−S L−

)(
U
V

)
= JL

(
U
V

)
= L

(
U
V

)
,(11)

where

L = JL ,(12)

and

L− = −1

2
∂2
x −R2(x)− ω +

c2

2R4(x)
,

L+ = −1

2
∂2
x − 3R2(x)− ω +

c2

2R4(x)
,

S =
c

R2(x)
∂x −

cR′(x)

R3(x)
.

(13)

The stability spectrum is defined as

σL =
{
λ ∈ C : U, V ∈ C0

b (R)
}
,(14)

where C0
b (R) is the space of real-valued continuous functions, bounded on the closed

real line. Due to the Hamiltonian symmetry of the spectrum [25], an elliptic solution
is spectrally stable to perturbations in C0

b (R) if σL ⊂ iR.

3.1. Stability with respect to subharmonic perturbations. The elliptic
solutions are not stable with respect to general bounded perturbations [16]. There-
fore, we restrict to subharmonic perturbations. Subharmonic perturbations are those
periodic perturbations whose period is an integer multiple of the fundamental period
of a given elliptic solution. Since the operator L has periodic coefficients (13), the
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eigenfunctions of the spectral problem (11) may be decomposed using a Floquet–Bloch
decomposition [13], (

U(x)
V (x)

)
= eiµx

(
Ûµ(x)

V̂µ(x)

)
,(15)

where Ûµ, V̂µ are T (k) periodic and µ ∈ [0, 2π/T (k)).

Definition. A P-subharmonic perturbation of a solution is a perturbation of
integer multiple P times the period of the solution. A 1-subharmonic perturbation is
called a coperiodic perturbation.

For P -subharmonic perturbations,

µ = m
2π

PT (k)
, m = 0, . . . , P − 1.(16)

Note that µ may be defined in any interval of length 2π/T (k) so the m = 1 and
m = P − 1 cases are connected via

µ = − 2π

PT (k)
= (P − 1)

2π

PT (k)
mod 2π/T (k).(17)

Using the Floquet–Bloch decomposition, L 7→ Lµ with ∂x 7→ ∂x + iµ in (11). We
define the subharmonic stability spectrum with parameter µ,

σµ =
{
λ ∈ C : Ûµ, V̂µ ∈ L2

per ([−T (k)/2, T (k)/2])
}
,(18)

where L2
per ([−L/2, L/2]) is the space of square-integrable functions with period L.

The spectrum σµ consists of isolated eigenvalues of finite multiplicity.

3.2. Spectral stability of Stokes waves. We begin with the simplest case of
(4). When k = 0, the solution is a Stokes wave solution of (1). The spectral stability
of these solutions is straightforward to analyze, but the analysis is informative for
understanding the general features of the stability of other solutions. We choose to
work with the Stokes waves in this form to link them with the general elliptic solutions
(4). The Stokes waves are given by

Ψ(x, t) =
√
b eix

√
1− b e−i(1− 3b)t/2(19)

with parameter b ∈ (0, 1]. The spectral problem (11) becomes

λ

(
U
V

)
=

(
−
√

1− b ∂x − 1
2∂

2
x

1
2∂

2
x + 2b −

√
1− b ∂x

)(
U
V

)
= LS

(
U
V

)
.(20)

We consider the constant coefficients of LS as π-periodic to match results below
for the more general solutions of section 2, but the results for the Stokes waves are
independent of this choice of period. Thus the eigenfunctions (U, V )T of (20) may be
decomposed via a Floquet–Bloch decomposition (15)(

U(x)
V (x)

)
= eiµx

(
Û(x)

V̂ (x)

)
,(21)
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where Û , V̂ have period π and µ ∈ [0, 2). Since (20) has constant coefficients, it
suffices to consider each Fourier mode (Ûn, V̂n)T individually:

λ

(
Ûn
V̂n

)
=

(
−i
√

1− b (µ+ 2n) 1
2 (µ+ 2n)2

2b− 1
2 (µ+ 2n)2 −i

√
1− b (µ+ 2n)

)(
Ûn
V̂n

)
= L̂(n,µ)

S

(
Ûn
V̂n

)
,(22)

where n ∈ Z. The eigenvalues of L̂(n,µ)
S are

λ
(n,µ)
± =

µ+ 2n

2

(
−2i
√

1− b±
√

4b− (µ+ 2n)2
)
.(23)

These eigenvalues are imaginary if

µ+ 2n = 0 or b ≤ (µ+ 2n)2/4.(24)

The Stokes wave with amplitude b is spectrally stable with respect to bounded per-
turbations if (24) holds for all n ∈ Z and µ ∈ [0, 2). For a given b, there exist µ and n
such that (24) is not satisfied. Consequently, the Stokes waves are not spectrally sta-
ble with respect to general bounded perturbations. To examine stability with respect
to special classes of perturbations, we consider special values of µ.

Equating µ = 0 corresponds to perturbations with the same period as the solution.
The spectral stability criterion (24) becomes n = 0 or b ≤ n2 which is satisfied for all
n, independent of b, consistent with [16, 19]. For µ 6= 0, the tightest bound on b from
(24) is given by

b ≤
{
µ2/4, µ ∈ (0, 1],

(µ− 2)2/4, µ ∈ [1, 2).
(25)

With

µ =
2m

P
, P ∈ Z+, m ∈ {0, . . . , P − 1},(26)

the perturbation (10) has P times the period of the Stokes wave. The spectral stability
criterion (25) becomes

b ≤
{
m2/P 2, m ∈ Z ∩ (0, P/2],

(m/P − 1)2, m ∈ Z ∩ [P/2, P ).
(27)

When P = 1, µ = 0 for which the spectral stability criterion is always satisfied. When
P > 1, the bounds on b are tightest when m = 1 and when m = P − 1, respectively.
We call the eigenvalues with µ(m = 1) = µ1 and µ(m = P − 1) = µP−1 the critical
eigenvalues. In either case we must have

b ≤ 1/P 2(28)

for spectral stability of Stokes waves with respect to P -subharmonic perturbations
(see Figure 1). This result agrees with [16, Theorem 9.1] but is found in a more direct
manner.
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Fig. 2. The upper half complex λ plane, depicting part of the spectrum for Stokes waves using
(23) with b = 0.22, b = 0.25, b = 0.28 from left to right. Red dots represent eigenvalues with P = 2
and n = 0 (using (26)). The green star at the intersection of the curve and the imaginary axis
represent λc (29) where the eigenvalues collide.

Next we examine the process by which solutions transition from a spectrally
stable state to a spectrally unstable state with respect to a fixed µ as b increases
(see Figure 2). For a fixed P = Pc, consider a value of b such that (28) is satisfied
with b < 1/P 2

c , i.e., the solution is spectrally stable with respect to Pc-subharmonic
perturbations. We know from the above that the instability with respect to Pc-
subharmonic perturbations first arises when bc = 1/P 2

c from the critical eigenvalues
with µ1 = 2/Pc and with µPc−1 = 2(1− 1/Pc). Defining

λc(b) := i
2

Pc

√
1− b = 2i

√
bc(1− b),(29)

we find

Im
(
λ

(0,µ1)
+ (b)

)
< Im(λc(b)) < Im

(
λ

(0,µ1)
− (b)

)
, Im

(
λ

(−1,µPc−1)
+ (b)

)
> Im (λ∗c(b))

(30)

> Im
(
λ

(−1,µPc−1)
− (b)

)
:

the critical eigenvalues for n = 0 and for n = −1 are ordered on the imaginary axis
and straddle λc(b) or λ∗c(b). Increasing b leads to b = bc = 1/P 2

c , where

λ
(0,µ1)
+ = λ

(0,µ1)
− = λc = −λ(−1,µPc−1)

+ = −λ(−1,µPc−1)
− ∈ iR,(31)

and the critical eigenvalues collide at λc and λ∗c = −λc in the upper and lower half
planes, respectively. At the collision,

λc(bc) = 2i
√
bc(1− bc).(32)

This is the intersection of the top of the figure 8 spectrum and the imaginary axis in
the complex λ plane [16, equation (92)]. Instability occurs when two critical imagi-
nary eigenvalues collide along the imaginary axis in a Hamiltonian Hopf bifurcation
and enter the right and left half planes along the figure 8; see Figure 2. Other such
collisions of eigenvalues occur at the top and bottom of the figure 8, leading to un-
stable modes as b varies, but the classification of spectral stability versus instability
is governed by the first unstable modes.
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In the rest of section 3, we generalize these Stokes waves results to the elliptic
solutions of (1). Doing so is far more technical, but the main idea remains the same:
solutions that are spectrally stable with respect to a given subharmonic perturbation
become unstable with respect to that subharmonic perturbation when two imaginary
eigenvalues collide at the top of the figure 8 spectrum.

3.3. The Lax spectrum and the squared-eigenfunction connection. The
stability of the elliptic solutions is more difficult to analyze than that of the Stokes
waves since L (11) does not have constant coefficients. To determine the spectrum
σL, we use the integrability of NLS (see Appendix A). In particular, we use that (2)
is obtained by requiring that χxt = χtx hold, where

χx =

(
−iζ ψ
−ψ∗ iζ

)
χ, χt =

(
A B
C −A

)
χ,(33a)

A = −iζ2 +
i

2
|ψ|2 +

i

2
ω, B = ζψ +

i

2
ψx, C = −ζψ∗ +

i

2
ψ∗x.(33b)

Equations (33) are known as the Lax pair of the focusing NLS equation.

3.3.1. Finding the Lax spectrum and the squared eigenfunction
connection. We say that ζ ∈ σL (the Lax spectrum) if ζ gives rise to a bounded
(for x ∈ R) eigenfunction of (33). To determine these eigenfunctions, we restrict the
Lax pair (33) to the elliptic solutions (4) by letting ψ(x, t) = φ(x). Since now (33)
are autonomous in t, let χ(x, t) = eΩtϕ(x). In order for ϕ to be nontrivial,

Ω2 = A2 +BC = −ζ4 + ωζ2 + cζ − 1

16

(
4ωb+ 3b2 + (1− k2)2

)
.(34)

For χ(x, t) to be a simultaneous solution of (33), we require

χ(x, t) =

(
χ1

χ2

)
= eΩtγ(x)

(
−B(x; ζ)
A(x; ζ)− Ω

)
,

γ(x) = γ0 exp

(
−
∫
I dx

)
,

(35)

whenever 〈Re(I)〉 = 0, i.e., Re(I) has zero average over one spatial period T (k), and
γ0 is a constant. The integrand I is defined by

I =
iζB(x; ζ) + (A(x; ζ)− Ω)φ(x) +Bx(x; ζ)

B(x; ζ)

=
Ax(x; ζ)− φ(x)∗B(x; ζ)− iζ(A(x; ζ)− Ω)

A(x; ζ)− Ω
.

(36)

Two seemingly different definitions for I are given in (36). The two definitions arise
from the fact that (33) defines two linearly dependent differential equations for γ(x).
The two equivalent definitions for I follow from χ1 and χ2, respectively. The average
of I is computed in [16] using the second representation:

I(ζ)=−
∫ T (k)

0

I dx = −2iζω1 +
4i(−c+ 4ζ3 − 2ζω − 4iζΩ(ζ))

℘′(α)
(ζw(α)ω1−ζw(ω1)α) ,

(37)
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where ζw is the Weierstrass Zeta function [1, Chapter 23], and α is any solution of

℘(α) = 2i(Ω(ζ) + iζ2 − iω/6).(38)

Note that (37) has the opposite sign of [16, equation (69)] in which it is defined
inconsistently. Using

(℘′(α))
2

= −4
(
−c+ 4ζ3 − 2ζω − 4iζΩ(ζ)

)2
,(39)

(37) is given by the simpler form

I(ζ) = −2iζω1 + 2(ζw(α)ω1 − ζw(ω1)α)Γ,(40)

where

Γ =
2i
(
−c+ 4ζ3 − 2ζω − 4iζΩ(ζ)

)
℘′(α)

.(41)

From (39), |Γ| = 1. The condition for ζ ∈ σL is

ζ ∈ σL ⇔ Re(I(ζ)) = 0.(42)

The derivative

dI

dζ
=

2E(k)− (1 + b− k2 + 4ζ2)K(k)

2Ω(ζ)
,(43)

where

E(k) :=

∫ π/2

0

√
1− k2 sin2(y) dy,(44)

the complete elliptic integral of the second kind [1, Chapter 19], is used for examining
σL. Tangent vectors to the curves constituting σL are given by the vector(

Im

(
dI

dζ

)
,Re

(
dI

dζ

))T
(45)

in the complex ζ plane.
When ζ ∈ σL, the squared-eigenfunction connection [2, 16] gives the spectrum

λ = 2Ω(ζ) and the corresponding eigenfunctions of L (11),(
U
V

)
=

(
e−iθ(x)ϕ2

1 − eiθ(x)ϕ2
2

−ie−iθ(x)ϕ2
1 − ieiθ(x)ϕ2

2

)
,(46)

where (ϕ1, ϕ2)T = e−Ωtχ. The following theorem establishes that the squared-
eigenfunction connection can be used to obtain almost every eigenvalue of L.

Theorem 1. All but six solutions of (11) are obtained through the squared-
eigenfunction connection (46). Specifically, all solutions of (11) bounded on the whole
real line are obtained through the squared-eigenfunction connection, except at λ = 0.

Proof. The proof is similar to the proof of [6, Theorem 2]. For a complete proof,
see Appendix C.4.

Therefore the condition for spectral stability is that Ω(σL) ⊂ iR.
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Remark 2. The explicit eigenfunction representation (46) can be used to construct
an explicit representation for the Floquet discriminant which is a commonly used tool
for computing σL [4, 8, 17, 32]. The Floquet discriminant for NLS and other integrable
equations is constructed and analyzed in [40].

To examine the stability with respect to subharmonic perturbations, we need λ
in terms of µ. Except for the Stokes waves (section 3.2), we cannot express λ in terms
of µ explicitly. Instead, we use an explicit expression for µ = µ(ζ) and the connection
between ζ and λ to say something about λ(µ). Equation (112) in [16] gives

eiT (k)µ(ζ) = exp

(
−2

∫ T (k)

0

(A(x)− Ω)φ(x) +Bx(x) + iζB(x)

B(x)
dx

)
eiθ(T (k))

= e2I(ζ)+iθ(T (k)).

(47)

It follows that

M(ζ) := T (k)µ(ζ) = −2iI(ζ) + θ(T (k)) + 2πn, n ∈ Z.(48)

Here, θ(T (k)) is defined to be continuous at b = k2 by

θ(T (k)) :=

{∫ T (k)

0
c

R2(x) dx, b > k2,

π, b = k2.
(49)

For NTP solutions, the Weierstrass integral formula [7, equation 1037.06] gives

θ(T (k)) =

∫ 2ω1

0

c

e0 − ℘(x; g2, g3)
dx =

4c

℘′(α0)
(α0ζw(ω1)− ω1ζw(α0))

= −2i (α0ζw(ω1)− ω1ζw(α0)) ,

(50)

where

℘(α0) = e0 = −2ω

3
= b+ e3,(51)

and ℘′(℘−1(e0)) = 2ic is obtained from [11, equation (3.51)].

3.3.2. A description of the Lax spectrum. Since the Lax spectrum is used
to determine the stability spectrum, a complete description of the Lax spectrum is
required for our stability analysis. In what follows, we use the notation

ζ1 =
1

2

(√
1− b+ i

(√
b−

√
b− k2

))
, ζ2 =

1

2

(
−
√

1− b+ i
(√

b+
√
b− k2

))
,

(52a)

ζ3 =
1

2

(
−
√

1− b− i
(√

b+
√
b− k2

))
, ζ4 =

1

2

(√
1− b− i

(√
b−

√
b− k2

))
,

(52b)

for the roots of Ω2 in the first, second, third, and fourth quadrants of the complex ζ
plane, respectively (for cn and NTP solutions). We refer to the roots collectively as
ζj . We rely heavily on [16, Lemma 9.2], which states that M(ζ) (48) must increase in
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absolute value along σL until a turning point is reached, where dI/dζ = 0. The only
turning points occur at ζ = ±ζc, where

ζ2
c :=

2E(k)− (1 + b− k2)K(k)

4K(k)
.(53)

Since ζ2
c ∈ R, ζc is real or imaginary depending on the solution parameters (k, b). We

refer to ζc as the solution to (53) with Re(ζc) ≥ 0 and Im(ζc) ≥ 0. We primarily use
−ζc in the analysis to follow since the branch of spectrum in the left half plane maps
to the outer figure 8 (see Figure 6), which corresponds to the dominant instabilities.
Further, ζc = 0 when b = B(k), where

B(k) :=
2E(k)− (1− k2)K(k)

K(k)
.(54)

For b > B(k), ζc ∈ iR \ {0}, and for b < B(k), ζc ∈ R \ {0}. The following lemmas
concern the shape of the Lax spectrum and are important in our analysis of the
stability of solutions.

Lemma 1. The Lax spectrum σL is symmetric about Im ζ = 0. Further, if µ(ζ)
increases (decreases) in the upper half plane, then µ(ζ) decreases (increases) at the
same rate in the lower half plane along σL.

Proof. Though the proof for the symmetry of σL comes more directly from the
spectral problem, we prove it by other means here to set up the proof for the second
part of the lemma.

The tangent line to the curve Re(I) = 0 is given by (45), where

Re

(
dI

dζ

)
=

2E(k)Ωr −K(k)
(
8ζiζrΩi + (1 + b− k2 + 4(ζ2

r − ζ2
i ))Ωr

)
2(Ω2

i + Ω2
r)

,(55a)

Im

(
dI

dζ

)
=
−2E(k)Ωi +K(k)

(
−8ζiζrΩr + (1 + b− k2 + 4(ζ2

r − ζ2
i ))Ωi

)
2(Ω2

i + Ω2
r)

,(55b)

and Ωr (Ωi) and ζr (ζi) are the real (imaginary) parts of Ω and ζ, respectively. Since

Re
(
Ω2
)

= − 1

16

(
1+3b2−2k2+k4−16cζr + 4bω + 16(ζ4

i + ζ4
r − ζ2

rω + ζ2
i (ω − 6ζ2

r ))
)
,

Im
(
Ω2
)

= ζi
(
−4ζ3

r + 2ωζr + c+ 4ζ2
i ζr
)
,

(56)

only Im
(
Ω2
)

changes sign as ζi → −ζi. It follows that Ωi → −Ωi and Ωr → Ωr as
ζi → −ζi. From (45) and (55),(

Im

(
dI

dζ

)
,Re

(
dI

dζ

))
→
(
− Im

(
dI

dζ

)
,Re

(
dI

dζ

))
as ζi → −ζi.(57)

Therefore, σL looks qualitatively the same from ζj to −ζc as it does from ζ∗j to −ζc.
We calculate the directional derivative of µ(ζ) along σL:

(
dµ(ζ)

dζr
,

dµ(ζ)

dζi

)
·
(

Im
dI

dζ
,Re

dI

dζ

)
= 2

(
d Im(I)

dζr
,

d Im(I)

dζi

)
·
(

Im
dI

dζ
,Re

dI

dζ

)
= 2

((
Im

dI

dζ

)2

+

(
Re

dI

dζ

)2
)
,

(58)

which is symmetric about Im ζ = 0.
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Lemma 2. When b ≤ B(k), given in (54), the branch of the Lax spectrum in the
left half plane (right half plane) intersects the real axis at ζ = −ζc (ζ = ζc).

Proof. Let ζr ∈ R and ε > 0. Since the vector field (45) is continuous across the
real ζ axis, and since σL is vertical at the intersection with the real ζ axis by virtue
of (57), we must have

Im

(
dI

dζ

∣∣∣∣
ζ=ζr+iε

)
= Im

(
dI

dζ

∣∣∣∣
ζ=ζr−iε

)
as ε→ 0.(59)

We notice that

Ω2(ζr ± iε) = Ω2(ζr)± iε
(
c− 4ζ3

r + 2ζrω
)

+O
(
ε2
)
,(60)

so that

Ω(ζr ± iε) = Ω(ζr)±
iε

2Ω(ζr)
(c− 4ζ3

r + 2ζrω) +O
(
ε2
)

= iΩi + Ωr +O
(
ε2
)
,(61)

where Ωr = O (ε) since Ω(ζr) ∈ iR. By (55b), equation (59) is only satisfied as ε→ 0
if

ζr = ±
√

2E(k)− (1 + b− k2)K(k)

2
√
K(k)

= ±ζc.(62)

The next lemma details the topology of the Lax spectrum. To our surprise, there
exist few rigorous results describing the Lax spectrum in the literature even though
it has been used in various contexts (see, e.g., [4, 17, 32, 33]). Some representative
plots of the Lax spectrum are shown in Figure 3.

Lemma 3. The Lax spectrum for the elliptic solutions consists only of the real
line and two bands, each connecting two of the roots of Ω.

0.2 0.4 0.6 0.8 1.0
k

0.2

0.4

0.6

0.8

1.0

b
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-00.5

0.50.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

(i) (ii)

(iii) (iv)

Fig. 3. Plots of the Lax spectrum. Re ζ versus Im ζ for ζ ∈ σL. Plots (i) and (ii) are for the
cn and dn solutions, respectively. Plots (iii) and (iv) are for NTP solutions, where the symmetry
in all quadrants is broken. Red dots indicate NTP solutions, which are plotted in the lower panels.
Parameters are chosen close together to contrast nearby solutions of trivial and nontrivial phase.
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Proof. The fact that the entire real line is part of the Lax spectrum is proven in
[16] but we present a different, simpler proof that does not rely on integrating I (37).
If ζ ∈ R, the only possibility for a real contribution to the integral of I over a period
T (k) is through

E :=
φ∗B

A− Ω
,(63)

since A(x) is T (k)-periodic. Using the definitions for A, B, and φ,

Re E =
1

2

d

dx
log(R2 − 2ζ2 + ω + 2iΩ),(64)

which has zero average since R2 is T (k)-periodic. It follows that R ⊂ σL. That
the roots of Ω(ζ) are in the Lax spectrum follows from the fact that M(ζj) ∈ R
(Lemma 11). Because the coefficients of L are periodic, there can exist no isolated
eigenvalues of σL. It follows that the Lax spectrum can be continued away from the
roots of Ω. In what follows, we explain the shape of the spectrum emanating from
the roots of Ω and show that these branches and R constitute the Lax spectrum.

The operator (33) is a second-order differential operator, so it has two linearly
independent solutions. The solutions obey

χ1(x; ζ) ∼
(
e−iζx

0

)
, χ2(x; ζ) ∼

(
0
eiζx

)
as |ζ| → ∞.(65)

As |x| → ∞, the above two solutions are bounded if and only if ζ ∈ R. Therefore,
R is the only unbounded component of σL. We examine all possibilities for the finite
components of σL in the next two paragraphs.

Finite components of the spectrum can terminate only when dI/dζ →∞ by the
implicit function theorem. This occurs only at the roots of Ω. A component of the
spectrum can cross another component only when dI/dζ = 0. This occurs only at ζc,
which is real if the conditions of Lemma 2 are satisfied and imaginary otherwise. It
follows that the spectral bands emanating from the roots of Ω must intersect either the
real or the imaginary axis. For the dn solutions, this band lies entirely on the imag-
inary axis (see section 3.4.1.1). Since there are no other points at which dI/dζ = 0,
there can be no other nonclosed curves in the spectrum. However, we must still rule
out closed curves along which it is not necessary that dI/dζ = 0 anywhere.

Since I is an analytic function away from the roots of Ω and ζ = ∞, Re I is
a harmonic function of ζ away from the roots of Ω, which we will deal with next.
Therefore, if the spectrum contained a closed curve, we would have Re I = 0 on the
interior of that closed curve by the maximum principle for harmonic functions. If this
were true, then it must also be that the directional derivative of I(ζ) vanishes on the
interior of the region bounded by the closed curve. However, dI/dζ = 0 only at two
points which are either on the real or the imaginary axis (53). It follows that there
are no closed curves in σL disjoint from the roots of Ω. If there were a closed curve
which was tangent to the roots of Ω, the above argument would not hold since Re I
is not analytic at the root. However, such a curve would imply that the origin of σL
has multiplicity greater than 4 (the origin has multiplicity 4 since the four roots of Ω
map to the origin). This is not possible since L is a fourth-order differential operator,
and such a tangent curve cannot exist.

Remark 3. The above result may also be proven by examining the large-period
limit of (4) which is the soliton solution of (1). The spectrum of the soliton is well
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known [28]. Using the results of [21, 38, 43], the spectrum of the periodic solutions with
large period can be understood. Once the spectrum for solutions with large period
is understood, the analysis presented in this paper applies and can be extended to
solutions with smaller period by continuity.

Lemma 4. 0 ≤ M(ζ) < 2π for ζ ∈ σL \ R with equality only at the end of the
bands, when Ω(ζ) = 0.

Proof. See Appendix C.3.

Remark 4. We note that Lemma 4 can be rephrased in the language of the Floquet
discriminant approach [4, 8, 17, 32] as the nonexistence of periodic eigenvalues (those
with M(ζ) = 0 mod 2π) on the interior of the complex bands of spectra for the
elliptic solutions. Before this result, three things were known about the existence of
periodic eigenvalues on the complex bands: (i) The number of periodic eigenvalues on
the complex bands was known to have an explicit bound [32]; (ii) for the symmetric
solutions (our cn and dn solutions), the number of periodic eigenvalues is zero [8]; and
(iii) the nonexistence of periodic eigenvalues on the complex band had been verified
numerically [8, 31]. Lemma 4 settles this question: there are no periodic eigenvalues
on the complex bands of the Lax spectrum for the elliptic NLS solutions.

3.4. Spectral stability of the elliptic solutions. Results about spectral
stability with respect to subharmonic perturbations are found in [16, section 9]. There,
sufficient conditions for stability with respect to subharmonic perturbations are found
in Theorems 9.1, 9.3, 9.4, 9.5, and 9.6 for spectra with different topology. In this sec-
tion we present these known sufficient conditions for spectral stability while providing
more detailed proofs. For some choices of parameters we show that the sufficient
condition is necessary and we comment on progress made toward showing that this
condition is necessary for the entire parameter space in Appendix C.

We begin by showing that Ω : R ∩ σL 7→ σL ∩ iR, and therefore the real line of
the Lax spectrum always maps to stable modes. Showing that these (and the roots of
Ω) are the only parts of the Lax spectrum mapping to stable modes is an important
challenge (see Appendix C).

Lemma 5. If ζ ∈ R, then Ω(ζ) ∈ iR.

Proof. If ζ ∈ R, then the matrix defining the t-evolution in (33) is skew-adjoint,
and separation of variables yields imaginary Ω.

Remark 5. The above result is proven in [16]. We present the proof above because
it is significantly simpler and is extendable to other stationary solutions of the AKNS
hierarchy. Work is currently in progress to extend this and other arguments in this
paper to other equations, both in the AKNS hierarchy and not [40].

3.4.1. Trivial-phase solutions, b = 1 (dn solutions) or b = k2 (cn solu-
tions). The trivial-phase solutions have c = 0 so that

Ω2(ζ) = −ζ4 + ωζ2 − 1

16

(
4ωb+ 3b2 + (1− k2)2

)
,(66)

and Ω2(ζ) = Ω2(−ζ). Since Ω2(iR) ⊂ R, λ(ζ) is real or imaginary for ζ ∈ iR. Along
with Lemmas 1 and 3, this implies that trivial-phase solutions have symmetric Lax
spectrum across both the real and imaginary axes (see Figure 3).

3.4.1.1. Solutions of dn-type, b = 1. When b = 1, ζj ∈ iR (52) and

Im(ζ2) > Im(ζ1) > 0 > Im(ζ4) > Im(ζ3),(67)
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with ζ2 = −ζ3 and ζ1 = −ζ4. The following lemmas are needed. The proofs are found
in Appendix B.

Lemma 6. M(ζj) = T (k)µ(ζj) = 0 mod 2π for the dn solutions.

Lemma 7. Let ζ ∈ iR with either |Im(ζ)| ≥ Im(ζ2) or |Im(ζ)| ≤ Im(ζ1). Then
Ω(ζ) ∈ iR.

The above lemmas allow us to find necessary and sufficient conditions on the spectral
stability of dn solutions.

Theorem 2. The dn solutions (b = 1) are spectrally stable with respect to per-
turbations of the same period as the underlying solution and no other subharmonic
perturbations.

Proof. Lemmas 3, 7, and the tangent vectors (45) show that the complex bands
of the Lax spectrum are confined to the imaginary axis between the roots of Ω. Using
Lemmas 4 and 6 and the fact that M(ζ) must increase in absolute value between the
roots of Ω(ζ), M(ζ) ∈ [0, 2π] on the bands of the Lax spectrum. Equality is attained
only at the roots ζj . By Lemma 7, Ω(ζ) ∈ R on the interior of the bands, so the
eigenvalues are unstable. Since ζ ∈ R only maps to stable modes (Lemma 5), spectral
stability only exists for T (k)µ = 0, which is what we wished to show.

3.4.1.2. Solutions of cn-type, b = k2. When b = k2, the inequality

Ω2(iξ) = −ξ4 +
1

2
(2k2 − 1)ξ2 − 1/16 < 0(68)

is satisfied for all ξ ∈ R. We need the following lemmas, whose proofs can be found
in Appendix B.

Lemma 8. For cn solutions, when ζ ∈ iR, M(ζ) = π mod 2π.

Lemma 9. M(ζj) = T (k)µ(ζj) = 0 mod 2π for the cn solutions.

Lemma 10. For b = k2 and ζ ∈ σL \ ({ζ1, ζ2, ζ3, ζ4} ∪ R ∪ iR), we have that
Ω(ζ) /∈ iR.

The above lemmas allow us to find necessary and sufficient conditions on the
spectral stability of cn solutions.

Theorem 3. If k > k∗ ≈ 0.9089 where k∗ is the unique root of 2E(k) − K(k)
for k ∈ [0, 1), then solutions of cn-type (b = k2) are spectrally stable with respect to
coperiodic and 2-subharmonic perturbations, but no other subharmonic perturbations.
If instead k ≤ k∗, then solutions are spectrally stable with respect to perturbations of
period QT (k) for all Q ∈ N with Q ≤ P ∈ N if and only if

M(−ζc) ≤
2π

P
,(69)

defined in the 2π-interval in which M(ζj) = 0.

Proof. First choose a solution by fixing k. Then choose a P -subharmonic pertur-
bation. If k > k∗, then 2E(k) −K(k) < 0 so that b > B(k) and ζc ∈ iR ((54) when
b = k2). If k ≤ k∗, ζc ∈ R. Consider the band of the spectrum with endpoint ζ2 at
which M(ζ2) = 0 (Lemma 9). If ζc ∈ iR, this band intersects the imaginary axis at

ζ̂ ∈ iR; otherwise it intersects the real axis at −ζc ∈ R.
Let S represent the band connecting ζ2 to ζ̂ when ζc ∈ iR. When ζc ∈ iR,

|Re(λ)| > 0 on S (Lemma 10) so every T (k)µ value on S corresponds to an unstable
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eigenvalue. Since µ 6= 0 mod 2π on S (Lemma 4), M(ζ) is increasing from ζ2 to ζ̂
[16, Lemma 9.2], and ∂S = {0, π} (Lemmas 8 and 9), M(ζ) ∈ (0, π) on the interior
of S. Therefore every T (k)µ ∈ (0, π) corresponds to an unstable eigenvalue. By the
symmetry of the Lax spectrum in each quadrant, the analysis beginning at any of the
roots ζj gives the same result, except perhaps with (0, π) replaced with (π, 2π), which
yields the same stability results. Since Re(λ(ζ)) = 0 only at T (k)µ = 0, or T (k)µ = π,
if 2E(k)−K(k) < 0, the cn solutions are spectrally stable with respect to coperiodic
and 2-subharmonic perturbations, but no other subharmonic perturbations.

If 2E(k) − K(k) ≥ 0, the band emanating from ζ2 intersects the real axis at
−ζc (Lemma 2). Then M(ζ) ∈ (0, T (k)µ(−ζc)) along the interior of this band and
M(ζ) = 0 and M(ζ) = T (k)µ(−ζc) at the respective endpoints (Lemma 9). Since
|Re(λ)| > 0 on the interior of this band (Lemma 10), every T (k)µ value along this
band corresponds to an unstable eigenvalue. By Lemma 4, M(−ζc) < 2π. Therefore,
in order to have spectral stability with respect to P -subharmonic perturbations, it
must be that M(−ζc) is at least as small as the smallest nonzero µ value obtained in
(26) for our P . The smallest nonzero µ value corresponds to m = 1 or m = P − 1,
so if

M(−ζc) ≤
2π

P
,(70)

then solutions are spectrally stable with respect to perturbations of period PT (k).
Since the Lax spectrum is symmetric about the real and imaginary axes for the cn
solutions (see Figure 3(i)), the same bound is found by starting the analysis at each
ζj . Since the preimage of all eigenvalues with Re(Ω(ζ)) > 0 is the interior of the
bands (Lemma 10), (70) is also a necessary condition for spectral stability. Since the
bound holds for each Q ≤ P, Q ∈ N, spectral stability with respect to P -subharmonic
perturbations also implies spectral stability with respect to Q-subharmonic perturba-
tions.

Remark 6. The calculations throughout this paper use the period of the modulus
of the solution, T (k) = 2K(k). However, the cn solution itself (not its modulus) is
periodic with period 4K(k). When taking this into account, I(ζ) gets replaced by
2I(ζ), and

T (k)µ(ζ) = 4iI(ζ) + 2πn.(71)

Using (71) for M(ζ), Theorem 3 can be updated to cover subharmonic perturbations
with respect to the period 4K(k) of the cn solutions. We find that when 2E(k) −
K(k) < 0, the solutions are spectrally stable with respect to perturbations of period
4K(k). The bound (70) may also be updated using (71) and upon letting T (k) =
4K(k). In particular, we recover the cn solution stability results found in [24, 26].

3.4.2. NTP solutions. For the NTP solutions, c 6= 0 and Ω is defined by (34).
The statement for the stability of NTP solutions is very similar to that for the stability
of cn solutions. We begin with a lemma whose proof can be found in Appendix B.

Lemma 11. Mj := M(ζj) = T (k)µ(ζj) = 0 mod 2π for each root {ζj}4j=1 of
Ω(ζ).

With this lemma, the following sufficient condition for spectral stability of NTP
solutions holds.
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Theorem 4. Consider a solution with parameters k and b ≤ B(k) (54). The
solution is spectrally stable with respect to perturbations of period QT (k) for all Q ∈ N,
Q ≤ P ∈ N if

M(−ζc) ≤
2π

P
,(72)

defined in the 2π interval in which M(ζj) = 0.

Proof. The proof here, much like the statement of the theorem, is similar to the
proof of Theorem 3.

Choose a solution by fixing k and b ≤ B(k) so that ζc is real. Choose a
P -subharmonic perturbation. Consider the band of the spectrum with endpoint
ζ2 (see Figure 3(iii), (iv)), at which M(ζ2) = 0 (Lemma 11), and which intersects
the real line at −ζc (Lemmas 3 and 5). Since M(ζ) is increasing along the band
(Lemma 1), 0 < M(ζ) < T (k)µ(−ζc) along the interior of the band with M(ζ) = 0
and M(ζ) = T (k)µ(−ζc) < 2π (Lemma 4) at the respective endpoints.

Since the tangent lines of σL are nonvertical at the origin for b < B(k) and
|Re(λ(−ζc ± iε))| > 0 [16], there exist ζ on the bands in a neighborhood of −ζc and
a neighborhood of ζ2 which correspond to eigenvalues λ with λr > 0, i.e., unstable
eigenvalues. Since there exist unstable eigenvalues on this band, in order to have spec-
tral stability with respect to P -subharmonic perturbations, it must be that M(−ζc)
is at least as small as the smallest nonzero µ obtained in (26) for our P . The smallest
nonzero µ value corresponds to m = 1 or m = P − 1, so if

M(−ζc) ≤
2π

P
,(73)

then solutions are spectrally stable with respect to perturbations of period PT (k).
By Lemma 1, the same bound is found for the starting point ζ3. Starting at ζ1

or ζ4 gives the bound

M(ζc) ≤
2π

P
.(74)

However, since

M(−ζc) > M(ζc),(75)

as shown in [16], the tighter bound is found with M(−ζc). This is the sufficient
condition for spectral stability. As for the cn case, if the bound is satisfied for P , then
it is also satisfied for all Q ≤ P .

Remark 7. Determining whether or not the bound (72) is also a necessary condi-
tion for spectral stability is a significant challenge. Work in this direction is presented
in Appendix C.1.

Remark 8. We note that Lemma 1 implies that near −ζc ∈ R, two eigenvalues
with the same |T (k)µ| value are found equidistant from −ζc along the band above
and below the real axis. Since two eigenvalues with the same |T (k)µ| mod 2π value
represent the same perturbation of period PT (k), the eigenvalues associated with a
perturbation of period PT (k) straddle −ζc on either of the arcs and come together
or separate as the solution parameters vary; see Figure 4.

Theorem 5. If b > B(k) (54), solutions are spectrally stable with respect to
coperiodic perturbations. Additionally, they can be spectrally stable with respect to
perturbations of twice the period, but they are not stable with respect to any other
subharmonic perturbations.
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Fig. 4. The Lax spectrum for (k, b) = (0.65, 0.48). Green circles map to eigenvalues of Lπ
(elements of σπ (18)) through Ω(ζ) (34). In other words, P = 2 and T (k)µ = π. Red squares map
to eigenvalues of L2π/3: P = 3 and T (k)µ = 2π/3. See Remark 8.

Proof. See Appendix C.2.

Remark 9. Numerical evidence suggests that when b > B(k), NTP solutions are
spectrally stable with respect to coperiodic perturbations and no other subharmonic
perturbations. However, there are some parameter values for which the stability
spectrum intersects the imaginary axis at a point. We cannot rule out the possibility
of this point corresponding to 2-subharmonic perturbations. For the cn solutions,
this intersection point corresponds to M(ζ) = π, which gives rise to spectral stability
with respect to 2-subharmonic perturbations. Because of this, a cn solution and an
NTP solution with b > B(k) can be arbitrarily close to each other but have different
stability properties. One way to rule out this spurious stability for NTP solutions
with b > B(k) is to show that the point M(ζ) = π, which we know occurs exactly
once on the band of Lax spectrum in the upper half plane, remains in the left half
plane (see Lemma 15) for all parameter values.

Having put the subharmonic stability results from [16] on a rigorous footing, we
summarize the findings in Figure 5. Equality in condition (72) defines a family of
“stability curves,” for P ∈ N, in the parameter space which split up the parameter
space into regions bounded by these different curves. The dashed curve shows where
ζc = 0. Below (above) the dashed curve, ζc is real (imaginary). The lightest shading
represents spectral stability with respect to coperiodic perturbations: all solutions are
spectrally stable with respect to such perturbations [19]. Darker shaded regions rep-
resent where solutions additionally are spectrally stable with respect to perturbations
of higher multiples of the fundamental period. The P labels inside of the parameter
space indicate which solutions are spectrally stable with respect to P-subharmonic
perturbations in the given region.

4. The advent of instability. Many results on the spectral stability of the
elliptic solutions with respect to subharmonic perturbations were shown in [16]. How-
ever, no explanation is given there as to how a solution which is spectrally stable with
respect to subharmonic perturbations loses stability as its parameters are varied. We
show here that as the amplitude increases, the instabilities of elliptic solutions arise in
the same manner as was demonstrated for the Stokes waves (section 3.2). We begin
by using the Floquet–Fourier–Hill method [13] to compute the point spectrum for
a single subharmonic perturbation (18) (Figure 6). We show that two eigenvalues
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Fig. 5. The parameter space split up into different regions of subharmonic spectral stability.
Each solid curve separating regions of different color corresponds to equality in (72) for different
values of P . Curves end at b = 1/P 2 (green), the stability bound (28) for Stokes waves. The
magenta dots, along the curve b = k2, show where the stability curves, which are the boundary of
different stability regions, intersect the cn solution regime. The dashed line corresponds to (54).
Below it, ζc ∈ R \ {0} and above it ζc ∈ iR \ {0}.

k = 0.6,  b = 0.4240 k = 0.6,  b = 0.4296 k = 0.6,  b = 0.4400

Fig. 6. For k = 0.6 and P = 2 (perturbations of twice the period) we vary b to go from spectrally
stable to unstable solutions. Top: The top half of the continuous spectrum of L (black, Reλ versus
Imλ, plotted using the analytic expression (42) and (34)) and two eigenvalues with P = 2 highlighted
with red dots computed using the FFHM. Bottom: Location in parameter space (k versus b).

collide on the imaginary axis and leave it at the intersection of the figure 8 spectrum
and the imaginary axis.

Consider a point (kQ, bQ) in the parameter space lying below a stability curve
labeled P = Q (Q = 1, 2, 3, . . .), i.e., M(−ζc(kQ, bQ)) < 2π/Q (see Figure 5). This so-
lution is spectrally stable with respect to perturbations of period QT (k) and the Lax
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eigenvalues corresponding to Q-periodic perturbations lie on the real axis. Two Lax
eigenvalues, ζ̂R and ζ̃R = ζ̂∗R, corresponding to R > Q perturbations lie equidistant
from −ζc(kQ, bQ) ∈ R on the bands connecting to −ζc(kQ, bQ) (see Remark 8 and

Figure 5). The value −ζc(kQ, bQ) lies at the intersection of σL \ R and σL ∩ R which
maps to the intersection of the figure 8 and the imaginary axis in the σL plane [16].

The stability spectrum eigenvalues, λ̂R = 2Ω(ζ̂R) and λ̃R = 2Ω(ζ̃R), corresponding
to R-subharmonic perturbations, are on the figure 8 to the left and right of the in-
tersection with the imaginary axis. As the solution parameters are monotonically
varied approaching the stability curve which is the boundary of the stability region
for R-subharmonic perturbations, where M(−ζc(kR, bR)) = 2π/R, ζ̃R and ζ̂R move to

−ζc(kR, bR), and λ̂R and λ̃R converge to the top of the figure 8. When this happens,
the solution gains spectral stability with respect to perturbations of period RT (k).
Spectral stability is gained through a Hamiltonian Hopf bifurcation in which two
complex conjugate pairs of eigenvalues come together onto the imaginary axis in the
upper and lower half planes.

We are interested in the transition from spectrally stable to unstable solutions.
For fixed µ, consider two eigenvalues λ̂ = 2Ω(ζ̂) ∈ iR and λ̃ = 2Ω(ζ̃) ∈ iR spectrally
stable). Stability is lost as the solution parameters are varied to cross a stability

curve, ζ̂ → −ζc and ζ̃ → −ζc, entering a new stability region. The Krein signature
[30] gives a necessary condition for two colliding eigenvalues to leave the imaginary
axis, leading to instability. For a given eigenvalue λ of the operator Lµ associated
with a perturbation of period PT (k) and eigenfunction W = (W1,W2), the Krein
signature is the sign of

K2(ζ) := 〈W,L2W 〉 =
〈
W, Ĥ ′′(r̃, ˜̀)W

〉
=

∫ PT (k)/2

−PT (k)/2

W ∗Ĥ ′′(r̃, ˜̀)W dx,(76)

where L2 = Ĥ ′′(r̃, ˜̀) is the Hessian of Ĥ(r, `), defined in Appendix A, evaluated at
the elliptic solution.

To relate the eigenfunctions of JL2 to those of L, we use (118) in Appendix A.
Linearizing (118) about the elliptic solution,(

r(x, t)
`(x, t)

)
=

(
r̃(x)
˜̀(x)

)
+ ε

(
w1(x, t)
w2(x, t)

)
+O

(
ε2
)
,(77)

we obtain

∂

∂t

(
w1

w2

)
=

(
−r̃ ˜̀ − 1

2∂
2
x − 1

2 (r̃2 + 3˜̀2)− ω
1
2∂

2
x + 1

2 (3r̃2 + ˜̀2) + ω r̃ ˜̀

)(
w1

w2

)
(78)

= JĤ ′′(r̃, ˜̀)

(
w1

w2

)
= JL2

(
w1

w2

)
.

Separation of variables, (w1, w2)T = eλt(W1,W2)T , and the squared-eigenfunction
give λ = 2Ω(ζ) and

W =

(
W1

W2

)
=

(
ϕ2

1 + ϕ2
2

−iϕ2
1 + iϕ2

2

)
.(79)

From the expressions for the eigenfunctions (46) and (79) it is clear that if an eigen-
function (U, V )T of L corresponds to a spectral element λ, then there is a correspond-
ing eigenfunction (W1,W2)T of JL2 with the same spectral element λ = 2Ω(ζ).
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Since 2ΩW = JL2W and since J is invertible, we find from (79) that

W ∗L2W = 2ΩW ∗J−1W = 2Ω(W1W
∗
2 −W2W

∗
1 ) = 4iΩ(|ϕ1|4 − |ϕ2|4),(80)

with ϕ1 = −γ(x)B(x), and ϕ2 = γ(x)(A(x)− Ω). For a fixed µ and a corresponding
spectrally stable solution, Ω(ζ) ∈ iR for ζ ∈ R. When ζ ∈ R, the preimage of
λ(ζ) ∈ iR is only one point (56) so that by Theorem 1, λ(ζ) is a simple eigenvalue.
Therefore, we compute the Krein signature only for ζ ∈ R. From (35),

γ(x) =
γ0

B
exp(imag) exp

(
−
∫

(A− Ω)φ

B
dx

)
,(81)

where “imag” represents imaginary terms which are not important for the magnitude
of γ(x). The magnitude of γ(x) depends critically on

− (A− Ω)φ

B
=

Cφ

(A+ Ω)
=
−iζ|φ|2 − (r̃r̃x + ˜̀̀̃

x + i ˜̀̃rx − ir̃ ˜̀
x)/2

ζ2 − |φ|2/2− ω/2 + iΩ

= imag +
1

2

d

dx
ln |i(A(x) + Ω)| ,

(82)

where φ = r̃ + i˜̀ is the elliptic solution whose stability is being investigated. Since
A(x)− Ω ∈ iR, it follows that

γ(x) =
γ0

B
exp (imag) |i(A(x) + Ω)|1/2 .(83)

Equating |γ0| = 1,

|γ(x)|2 =
|A+ Ω|
|B|2 =

1

|A− Ω| ,(84)

so that

|ϕ1|4 = |γ|4|B|4 = |A+ Ω|2, |ϕ2|4 = |γ|4|A− Ω|4 = |A− Ω|2.(85)

Further,

W ∗L2W = 4iΩ
(
|A+ Ω|2 − |A− Ω|2

)
= −16Ω2iA,(86)

implies

K2(ζ) = −16Ω2(ζ)

∫ PT (k)/2

−PT (k)/2

(
ζ2 − 1

2
|φ|2 − ω

2

)
dx,(87)

which is the same K2 found in [6] with appropriate modifications for the focusing case.
This integral can be computed directly using elliptic functions [7, equation (310.01)]:

K2(ζ) = −32Ω2(ζ)PT (k)

(
ζ2 +

b

4
+

1

4

(
1− k2−2

E(k)

K(k)

))
= −32Ω(ζ)2PT (k)(ζ2−ζ2

c ).

(88)

Note that since Ω2 < 0 for stable eigenvalues, K2(ζ) < 0 for ζ ∈ (−ζc, ζc) changing
sign at ζ = ±ζc. Therefore the two eigenvalues which collide at −ζc have opposite
Krein signatures, a necessary condition for instability.

For the trivial-phase solution, Ω(ζ) = Ω(−ζ), so the Krein signature calculation

here might not be sufficient, since the colliding eigenvalues, λ̂ and λ̃, might not be
simple. Our remaining stability results do not rely on this fact. Computing the Krein
signature for Stokes waves (section 3.2) is simpler than the calculation here, but it is
omitted for brevity.
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5. Orbital stability. The results on spectral stability may be strengthened to
orbital stability by constructing a Lyapunov functional in conjunction with the results
of [22, 34]. In Theorem 4, we have established spectral stability for solutions below
the curve (72) (see Figure 5). In this section we show that those solutions are also
orbitally stable. To this end, we use the higher-order conserved quantities of NLS (see
Appendix A).

Definition. A stationary solution Ψ̃ of (1) is orbitally stable with respect to the
norm ||·|| if for any given ε > 0 there exists a δ > 0 such that

||Ψ(x, 0)− Ψ̃(x, 0)|| < δ(89)

implies that for all t > 0,

inf
g∈G
||Ψ(x, t)− T (g)Ψ̃(x, t)|| < ε,(90)

where T (g) is the action of an element g of the group of symmetries G.

To prove nonlinear stability, we construct a Lyapunov function, i.e., a constant
of the motion K(r, `) for which the solution (r̃, ˜̀) is an unconstrained minimizer:

K′(r̃, ˜̀) = 0,
d

dt
K(r̃, ˜̀) = 0,

〈
v,K′′(r̃, ˜̀)v

〉
> 0, ∀v ∈ V, v 6= 0.(91)

In section 4 it is shown that the energy Ĥ satisfies the first two conditions in (91) but
not the third since K2 is not of definite sign. When evaluated at stationary solutions,
each equation defined in (116) satisfies the first and second conditions. Following the
work of [6, 15, 34, 35] we choose one member of (116) to satisfy the third condition
by choosing the constants cn,j in a particular manner. A different approach to finding
a Lyapunov function is used in [20] for defocusing NLS.

Linearizing the nth NLS equation about the elliptic solution results in

wtn = JLnw, Ln = Ĥ ′′n(r̃, ˜̀).

The squared-eigenfunction connection and separation of variables give

2ΩnW (x) = JLnW (x),(92)

where Ωn is defined by

w(x, tn) = eΩntn

(
W1(x)
W2(x)

)
= eΩntnW (x)(93)

and where W (x) is any eigenfunction of L2. The relation

Ω2
n(ζ) = p2

n(ζ)Ω2(ζ), n ≥ 2,(94)
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where pn is a polynomial of degree n − 2, is found in [6] and applies in the focusing
case as well. When n = 2, p2 = 1 so that Ω2 = Ω and (92) implies

2J−1W =
1

Ω
L2W =

1

Ω
LW,(95)

for any eigenfunction W of L2. The definition of K2, (76), and (94) imply

Kn(ζ) := 〈W,LnW 〉 =
〈
W, Ĥ ′′n(r̃, ˜̀)W

〉
=

Ωn
Ω

∫ PT (k)/2

−PT (k)/2

W ∗L2W dx = pn(ζ)K2(ζ).

(96)

K2(ζ) takes the sign +,−,+ for ζ ∈ (−∞,−ζc), ζ ∈ (−ζc, ζc), and ζ ∈ (ζc,∞),
respectively. Since p4(ζ) is quadratic, we use K4(ζ) = p4(ζ)K2(ζ), where p4(ζ) is
defined by (94). Adjusting the constants of p4 so that it has the same sign as K2 with
zeros at ζ = ±ζc makes K4 nonnegative. In order to calculate Ω4(ζ), we need

T̂4 = T4 + c4,3T3 + c4,2T2 + c4,1T1 + c4,0T0,(97)

since Ω4 is defined by T̂4χ = Ω4χ by separation of variables in (113e). The c4,k are
not entirely arbitrary. They are determined by requiring that the stationary elliptic
solutions are stationary with respect to t4, or

∂

∂t4

(
r
`

)
= JĤ ′4 = J (H ′4 + c4,3H

′
3 + c4,2H

′
2 + c4,1H

′
1 + c4,0H

′
0) = 0.(98)

Since J is invertible,

Ĥ ′4 = H ′4 + c4,3H
′
3 + c4,2H

′
2 + c4,1H

′
1 + c4,0H

′
0 = 0,(99)

when evaluated at the stationary solution. Equating

0 = Ψτ4 + c4,3Ψτ3 + c4,2Ψτ2 + c4,1Ψτ1 + c4,0Ψτ0 ,(100)

and using (113) with Ψ defined in (4), we find

c4,0 = ωc4,2 − cc4,3 +
1

8

(
1 + 15b2 + 4k2 + k4 + 10b+ 10bk2

)
,(101a)

c4,1 =
1

2
c− 1

2
ωc4,3,(101b)

with c4,2 and c4,3 arbitrary. Then

Ω2
4 =

1

16

(
2ω + 4ζ2 + 4c4,2 + 4ζc4,3

)2
Ω2

2,(102)

so that

p4(ζ) = ζ2 + ζc4,3 +
1

2
ω + c4,2.(103)

The constants c4,2 and c4,3 are chosen so that K4(ζ) = p4(ζ)K2(ζ) ≥ 0. Setting

c4,3 = 0,(104a)

c4,2 = −ω
2

+
b

4
+

1

4

(
1− k2 − 2

E(k)

K(k)

)
,(104b)
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we have

K4(ζ) = −32Ω2(ζ)PT (k)
(
ζ2 − ζ2

c

)2 ≥ 0(105)

for ζ ∈ R and equality only at ζ = ±ζc and the roots of Ω. The result (105) has
only been proven for eigenfunctions of L2. However, since the eigenfunctions of
L2 are complete in L2

per([−T (k)/2, T (k)/2]) [25] the results apply to all functions
in L2

per([−T (k)/2, T (k)/2]). This result implies that H4, with the constants chosen
above, acts as a Lyapunov functional for the spectrally stable elliptic solutions with
respect to the t4 dynamics. However, since all flows of the NLS hierarchy commute,
H4 is a conserved quantity with respect to the t dynamics as well. Therefore whenever
solutions are spectrally stable with respect to a given subharmonic perturbation, they
are also formally stable [34].

To go from formal to orbital stability, the conditions of [22] must be satisfied.
The kernel of the functional Ĥ ′′4 (r̃, ˜̀) must consist only of the infinitesimal generators
of the symmetries of the solution (r̃, ˜̀). The infinitesimal generators of the Lie point
symmetries correspond to the values of ζ for which Ω(ζ) = 0, so the kernel of Ĥ ′′4 (r̃, ˜̀)
contains the infinitesimal generators of the Lie point symmetries. In order for the
kernel to consist only of this set, we need strict inequality in (72). This comes from
the following lemma.

Lemma 12. Let b, k, and P be such that (72) holds with a strict inequality. Then
the set

S := {ζ ∈ σL : M(ζ) = m2π/P, m = 0, . . . , P − 1}(106)

does not contain ±ζc.
Proof. Since M(−ζc) < 2π/P , the only possibility for −ζc to be in S is that

M(−ζc) = 0 mod 2π. But since −ζc represents the intersection of the branch of
spectra and the real line, Lemma 4 applies and M(−ζc) 6= 0 mod 2π. Since M(ζc) <
M(−ζc), it is also the case that ζc is not in S

The above lemma implies that if M(−ζc) < 2π/P , the kernel of Ĥ ′′4 (r̃, ˜̀) consists
only of the roots of Ω(ζ). It follows that, for a fixed perturbation with period PT (k),
all solutions which are spectrally stable with respect to that perturbation and whose
parameters do not lie on stability curves (the boundary of subharmonic stability
regions, at which M(−ζc) = 2π/P ) are also orbitally stable.

Conclusion. We have proven the orbital stability with respect to subharmonic
perturbations for the elliptic solutions of the focusing nonlinear Schrödinger equation.
The necessary condition for stability (72) is shown to also be a sufficient condition with
the help of a numerical check. We see three main remaining tasks to be completed
for this problem: (i) remove the numerical check for sufficiency of Theorem 4; (ii)
determine whether or not solutions lying on stability curves, M(−ζc) = 2π/P , are
orbitally stable; and (iii) prove that the solutions satisfying b > B(k) in Theorem 5
are not stable with respect to 2-subharmonic perturbations.

The main difficulty in establishing the results presented in this paper is that the
Lax pair does not define a self-adjoint spectral problem. Work toward establishing
similar nonlinear stability results for the sine-Gordon equation [14], for which the Lax
spectral problem is both not self-adjoint and is a quadratic eigenvalue problem, is
currently underway. This is generalized in [40] by computing the Floquet discriminant
for all equations in the AKNS hierarchy and other integrable equations.
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Appendix A. Integrability background. The results presented in this sec-
tion are found in more detail in classic sources such as [2, 3]. NLS (1) is a Hamiltonian
system with canonical variables Ψ and iΨ∗, i.e., it can be written as an evolution equa-
tion

∂

∂t

(
Ψ
iΨ∗

)
= JH ′(Ψ, iΨ∗) = J

(
δH/δΨ

δH/δ(iΨ∗)

)
(107)

for a functional H and where

J =

(
0 1
−1 0

)
.(108)

We define the variational gradient [3] of a function F (u, v) by

F ′(u, v) =

(
δF

δu
,
δF

δv

)T
=

 N∑
j=0

(−1)j∂jx
∂F

∂ujx
,

N∑
j=0

(−1)j∂jx
∂F

∂vjx

T

,(109)

where ujx = ∂jxu, and N is the highest-order x-derivative of u or v in F . The quantity
H(Ψ, iΨ∗) is conserved under (1) and is the Hamiltonian of (1). The Hamiltonian is
one of an infinite number of conserved quantities of NLS. We label these quantities
{Hj}∞j=0. We need the first five conserved quantities:

H0 = 2

∫
|Ψ|2 dx,(110a)

H1 = i

∫
ΨxΨ∗ dx,(110b)

H2 =
1

2

∫ (
|Ψx|2 − |Ψ|4

)
dx,(110c)

H3 =
i

4

∫ (
Ψ∗xΨxx − 3 |Ψ|2 Ψ∗Ψx

)
dx,(110d)

H4 =
1

8

∫ (
|Ψxx|2 −Ψ2Ψ∗2x − 6 |Ψ|2 |Ψx|2 + |Ψ|2 Ψ∗Ψxx + 2 |Ψ|6

)
dx.(110e)

The above equations can be written in terms of Ψ and iΨ∗ by using |Ψjx|2 = ΨjxΨ∗jx.
The above integrals are evaluated over one period T (k), for periodic or quasi-periodic
solutions. Each Hn defines an evolution equation with respect to a time variable τn
by

∂

∂τn

(
Ψ
iΨ∗

)
= JH ′n(Ψ, iΨ∗) = J

(
δHn/δΨ

δHn/δ(iΨ
∗)

)
.(111)

When n = 2 and τ2 = t, H2 = H is the NLS Hamiltonian: (111) is equivalent to
(1). Letting Ψ = (r+ i`)/

√
2 and iΨ∗ = i(r− i`)/

√
2, where r and ` are the real and

imaginary parts of Ψ, respectively, (111) becomes

∂

∂τn

(
r
`

)
= JH ′n(r, `) = J

(
δHn/δr
δHn/δ`

)
.(112)

We use (111) and (112) interchangeably and refer to Hn(r, `) and Hn(Ψ, iΨ∗) as Hn

when the context is clear. The collection of equations (111) is the NLS hierarchy
[3, section 1.2]. The first five members of the hierarchy are
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Ψτ0 = −2iΨ,(113a)

Ψτ1 = Ψx,(113b)

Ψτ2 = i |Ψ|2 Ψ +
i

2
Ψxx,(113c)

Ψτ3 = −3

2
|Ψ|2 Ψx −

1

4
Ψxxx,(113d)

Ψτ4 = −3

4
i|Ψ|4Ψ− 3

4
iΨ∗Ψ2

x −
i

2
Ψ|Ψx|2 − i|Ψ|2Ψxx −

i

4
Ψ2Ψ∗xx −

i

8
Ψxxxx.(113e)

Each equation obtained in this manner is integrable and shares the conserved quan-
tities {Hj}∞j=0.

Through the AKNS method, the nth member of the NLS hierarchy is obtained
by enforcing the compatibility of a pair of ordinary differential equations, the nth Lax
pair. The first equation of the pair is χτ1 = T1χ and the second is χτn = Tnχ, for
the nth member of the hierarchy. Here, T1 and Tn are 2 × 2 matrices, the first five
of which are defined in (114). The nth member of the NLS hierarchy is recovered
by requiring ∂τnχτ1 = ∂τ1χτn . For example, (1) is recovered from the compatibility
condition of χτ1 and χτ2 with t = τ2. We call the collection of the Lax equations
for the hierarchy the linear NLS hierarchy. The first five members of the linear NLS
hierarchy are

χτ0 = T0χ =

(
−i 0
0 i

)
χ,

(114a)

χτ1 = T1χ =

(
−iζ Ψ
−Ψ∗ iζ

)
χ,

(114b)

χτ2 = T2χ =

(
−iζ2 + i |Ψ|2 /2 ζΨ + iΨx/2

−ζΨ∗ + iΨ∗x/2 iζ2 − i |Ψ|2 /2

)
χ,

(114c)

χτ3 = T3χ
(114d)

=

(
−iζ3+iζ |Ψ|2 /2+i Im (ΨΨ∗x) /2 ζ2Ψ+iζΨx/2− |Ψ|2 Ψ/2−Ψxx/4

−ζ2Ψ∗+iζΨ∗x/2+ |Ψ|2 Ψ∗/2+Ψ∗xx/4 iζ3−iζ |Ψ|2 /2−i Im (ΨΨ∗x) /2

)
χ,

χτ4 = T4χ =

(
N1 N2

N3 −N1

)
χ,

(114e)

where

N1 = −iζ4 + iζ2 |Ψ|2 /2 + iζ Im(ΨΨ∗x)/2− 3i |Ψ|4 /8 + i |Ψx|2 /8− iRe(Ψ∗Ψxx)/4,

(115a)

N2 = ζ3Ψ + iζ2Ψx/2− ζ
(
|Ψ|2 Ψ/2 + Ψxx/4

)
− 3i |Ψ|Ψx/4− iΨxxx/8,

(115b)

N3 = −ζ3Ψ∗ + iζ2Ψ∗x/2 + ζ
(
|Ψ|2 Ψ∗/2 + Ψ∗xx/4

)
− 3i |Ψ|Ψ∗x/4− iΨ∗xxx/8,

(115c)

and ζ is referred to as the Lax parameter.
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Each of the Hn are mutually in involution under the canonical Poisson bracket
(108) [3]. As a result, the flows of all members of the NLS hierarchy commute and
any linear combination of the conserved quantities gives rise to a dynamical equation
whose flow commutes with all equations of the hierarchy. We define a family of
evolution equations in tn by

∂

∂tn

(
r
`

)
= JĤ ′n(r, `) = J

H ′n +

n−1∑
j=0

cn,jH
′
j

 , n ≥ 0,(116)

where the cn,j are constants. We loosely call (116) the “nth NLS equation.” Similarly
we define the nth linear NLS equation to be

χtn = T̂nχ =

Tn +

n−1∑
j=0

cn,jTj

χ.(117)

The nth NLS equation is obtained by enforcing the compatibility of χτ1 with χtn .
The second NLS equation (2) is obtained from (113a) and (113c) and has Hamil-

tonian Ĥ = Ĥ2 = H2 − ωH0/2. With ψ(x, t) = (r(x, t) + i`(x, t))/
√

2, (2) is

∂t

(
r
`

)
=

(
−ω`− `(r2 + `2)/2− `xx/2
ωr + r(`2 + r2)/2 + rxx/2

)
= JĤ ′(r, `).(118)

The associated linear NLS equation is T̂2 = T2 − ωT0/2. Defining τ1 = x and t2 = t,
(118) (or equivalently (2)) is obtained via the compatibility condition of the two
matrix equations

χx = χτ1 = T1χ,(119a)

χt = χτ2 −
ω

2
χτ0 =

(
T2 −

ω

2
T0

)
χ.(119b)

Appendix B. Proofs of some lemmas. In this appendix we present proofs
for lemmas used in section 3.4.

Proof of Lemma 6. Formulae for Weierstrass elliptic functions used here and in
what follows are in [1, Chapter 23], [7, 42]. We use the notation ηk = ζw(ωk),
k = 1, 2, 3.

For the dn solutions, b = 1 and the four roots of Ω(ζ) are

ζ1 =
i

2

(
1−

√
1− k2

)
, ζ2 =

i

2

(
1 +

√
1− k2

)
, ζ3 = −ζ2, ζ4 = −ζ1.(120)

Since c = θ = 0,

M(ζj) = −2iI(ζj) mod 2π.(121)

The quantities α(ζj), ℘
′(α(ζj)), and ζw(α(ζj)) are needed for the computation of

I(ζj). Using (9a) and (38),

α(ζ2) = α(ζ3) = ℘−1
(
e1 +

√
(e1 − e3)(e1 − e2)

)
= σ1

ω1

2
+ 2nω1 + 2mω3,

(122a)

α(ζ1) = α(ζ4) = ℘−1

(
e3 +

(e3 − e1)(e3 − e2)

℘(ω1/2)− e3

)
= σ1

(ω1

2
− ω3

)
+ 2nω1 + 2mω3,

(122b)
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where n,m ∈ Z and σ1 is either ±1. From [7, equation 1033.04] and the addition
formula for ℘′(z),

℘′(ω1/2) = −2
(
(e1 − e3)

√
e1 − e2 + (e1 − e2)

√
e1 − e3

)
= −2

(
1− k2 +

√
1− k2

)
,

(123a)

℘′(ω1/2− ω3) = 2
(
(e1 − e3)

√
e1 − e2 − (e1 − e2)

√
e1 − e3

)
= −2

(
1− k2 −

√
1− k2

)
.

(123b)

Using the addition formula for ζw(z),

ζw(ω1/2) = ζw(−ω1/2 + ω1) = −ζw(ω1/2) + η1 −
1

2

℘′(ω1/2)

℘(ω1/2)− e1
,(124)

so that

ζw(ω1/2) =
1

2

(
η1 −

1

2

℘′(ω1/2)

℘(ω1/2)− e1

)
=

1

2

(
η1 + 1 +

√
1− k2

)
,(125a)

ζw(ω1/2− ω3) = ζw(ω1/2)− η3 +
1

2

℘′(ω1/2)

℘(ω1/2)− e3
=

1

2

(
η1 + 1−

√
1− k2

)
.(125b)

Using the parity and periodicity of ℘′(z), and the quasi-periodicity of ζw(z), we arrive
at

℘′(α(ζ2)) = σ1℘
′(ω1/2),(126a)

℘′(α(ζ1)) = σ1℘
′(ω1/2− ω3),(126b)

ζw(α(ζ2)) = σ1ζw(ω1/2) + 2nη1 + 2mη3,(126c)

ζw(α(ζ1)) = σ1ζw(ω1/2− ω3) + 2nη1 + 2mη3.(126d)

Substituting the above quantities into (37) and using ω3η1 − ω1η3 = iπ/2 results in
I(ζj) = 0 mod 2π for j = 1, 2, 3, 4.

Proof of Lemma 7. Let ζ = iξ with ξ ∈ R. Then

Ω2(ζ) = −ξ4 − 1

2
(k2 − 2)ξ2 − k4

16
∈ R,(127)

so Ω(ζ) is either real or imaginary. Then Ω(ζ) ∈ iR if and only if

ξ2 ≥ 1

4
(2− k2) +

1

2

√
1− k2 or ξ2 ≤ 1

4
(2− k2)− 1

2

√
1− k2,(128)

which is equivalent to

|ξ| ≤ Im(ζ1) or |ξ| ≥ Im(ζ2).(129)

Proof of Lemma 8. First, this holds for ζ = 0, since

α(0) = ℘−1(e3) = ω3 + 2nω1 + 2mω2,(130)

where m,n ∈ Z, so that

I(0) = 2Γ(ω1(η3 + 2nη1 + 2mη3)− η1(ω3 + 2nη1 + 2mη3) = −Γpπi,(131)
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for p ∈ Z [1, Chapter 23]. Then

M(ζ) = −2i(−Γpπi) + π = π mod 2π.(132)

Since the curves for Re(I) = constant, given by (45), and for Im(I) = constant are
orthogonal, the vector field for Im(I) = constant is vertical on the imaginary axis as
Ω(ζ) ∈ iR there (see (45)). Since M(ζ) = π mod 2π at ζ = 0 and is constant on the
imaginary axis, it follows that M(ζ) = π mod 2π on the imaginary axis.

Proof of Lemma 9. For the cn solutions, b = k2 and the four roots of Ω(ζ) are

ζ1 =
1

2

(√
1− k2 + ik

)
, ζ2 =

1

2

(
−
√

1− k2 + ik
)
, ζ3 = −ζ1, ζ4 = −ζ2.

(133)

Here, c = 0 and θ(T (k)) = π give

M(ζj) = −2iI(ζj) + π mod 2π.(134)

The quantities α(ζj), ℘
′(α(ζj)), and ζw(α(ζj)) are needed. Using (9a) and (38),

α(ζ1) = α(ζ3) = ℘−1
(
e2 − i

√
(e1 − e2)(e2 − e3)

)
= σ1

ω2

2
+ 2nω1 + 2mω3,(135a)

α(ζ2) = α(ζ3) = ℘−1

(
e3 +

(e3 − e1)(e3 − e2)

e2 − e3 − i
√

(e1 − e2)(e2 − e3)

)
(135b)

= σ1

(ω2

2
− ω3

)
+ 2nω1 + 2mω3.

From [7, equation 1033.04] and the addition formula for ℘′(z),

℘′(ω2/2) = −℘′(ω1/2 + ω3/2) = −2
(
(e1 − e2)

√
e2 − e3 + i(e2 − e3)

√
e1 − e2

)
= −2k(1− k2 + ik

√
1− k2),

(136a)

℘′(ω2/2− ω3) = −2k(1− k2 − ik
√

1− k2).

(136b)

ζw(ω2/2) is found in a similar manner to ζw(ω1/2) (Lemma 6) to be

ζw(ω2/2) =
1

2

(
ζw(ω2)− k + i

√
1− k2

)
,(137)

from which

ζw(ω2/2− ω3) =
1

2

(
ζw(ω2)− k − i

√
1− k2

)
− η3.(138)

Using the parity and periodicity of ℘′(z), and the quasi-periodicity of ζw(z) we arrive
at

℘′(α(ζ1)) = σ1℘
′(ω2/2),(139a)

℘′(α(ζ2)) = σ1℘
′(ω2/2− ω3),(139b)

ζw(α(ζ1)) = σ1ζw(ω2/2) + 2nη1 + 2mη3,(139c)

ζw(α(ζ2)) = σ1ζw(ω2/2− ω3) + 2nη1 + 2mη3,(139d)
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where σ1 is either ±1. Substituting the above quantities into (37) results in

I(ζ1) = I(ζ3) = σ1
iπ

2
+ 2πm,(140a)

I(ζ2) = I(ζ4) = 3σ1
iπ

2
+ 2πm.(140b)

Therefore

M(ζ1) = M(ζ3) = σ1π + 4πm+ π = 0 mod 2π,(141a)

M(ζ2) = M(ζ4) = 3σ1π + 4πm+ π = 0 mod 2π.(141b)

Proof of Lemma 10. Without loss of generality, let ζ = ζr + iζi with ζr < 0. The
computation is the same for ζr > 0 by symmetry of the Lax spectrum. Consider the
curve in the left half plane defined by Im(Ω2) = 0,Re(Ω2 < 0) (56). For ζi 6= 0, this
curve is defined by

ζ2
i = Q(ζr) = ζ2

r −
1

4
(1− 2k2) for ζr ∈ [−

√
1− k2/2, 0).(142)

The above parameterization is valid only when k ≥ 1/
√

2. For k < 1/
√

2, ζr is
restricted to a smaller range so that ζi ∈ R.

Let G(ζr) = I(ζr + iζi(ζr)), where ζi(ζr) is defined with either sign of the square
root in (142). If we can show that Re(G(ζr)) > 0 for ζr ∈ (−

√
1− k2/2, 0), then we

have shown that Re(I(ζ)) 6= 0 when Ω(ζ) ∈ iR \ {0}. We compute

4Ωi
√
Q(ζr)

d Re(G)

dζr
= ζrP2(ζr),(143)

where

P2(ζr) := −16K(k)ζ2
r + 4(E(k)− k2K(k)),(144)

and

Ωi :=
1

2

√
(4ζ2

r + k2 − 1)(k2 + 4ζ2
r ),(145)

the imaginary part of Ω. Here we take Ωi
√
Q(ζr) > 0 without loss of generality

(Ωi
√
Q(ζr) < 0 corresponds to a different sign for ζi or Ωi or both and is a nontrivial

but straightforward extension of what follows). P2(ζr) and d Re(G)/dζr have opposite
signs since ζr < 0. Since Re(G(−

√
1− k2/2)) = 0 and P2(−

√
1− k2/2) < 0, it

suffices to show that d Re(G)/dζr > 0. Indeed, if this is true, then Re(G) > 0 when
Ω(ζ) ∈ iR \ {0}. There are three cases to consider.

1. Case 1: P2(ζr) has no negative roots or one root at ζr = 0.
If P2(ζr) is always negative, then we are done since Re(G) is increasing on
(−
√

1− k2/2, 0). This is the case if E(k) − k2K(k) ≤ 0, which is true for
k ≥ κ, where κ ≈ 0.799879.

2. Case 2: P2(ζr) has one negative root and Q(ζr) has no negative roots or a
double negative root.
Let ζ̂ be such that P2(ζ̂) = 0. Then Re(G) is increasing on (−

√
1− k2/2, ζ̂)

and decreasing on (ζ̂, 0). This can occur only for 1/
√

2 < k < κ. Since

d Re(I)

dζi
= − Im

(
dI

dζ

)
,(146)
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d Re(I)/dζi > 0 for ζ = iζi. Since Re(G(ζr)) must be minimized in the limit
ζr → 0−, it follows from continuity and the fact that Re(G) > 0 on the
imaginary axis that Re(G) > 0 for ζr ∈ (−

√
1− k2/2, 0).

3. Case 3: P2(ζr) and Q(ζr) both have one negative root.

Let ζ̂ be as above and let ξ̂ be the negative root ofQ. Then Re(G) is increasing

on (−
√

1− k2/2, ζ̂) and decreasing on (ζ̂, ξ̂) at which Re(G(ξ̂)) = 0. Since the

parameterization is not valid on (ξ̂, 0), Re(G) > 0 for ζr ∈ (−
√

1− k2/2, ξ̂),
which are all allowed ζ values for which ζ 6∈ R ∪ iR.

It follows that Re(G) > 0 when Ω(ζ) ∈ iR \ {0}.
Proof of Lemma 11. We establish that Mj = 0 mod 2π on the boundary of the

parameter space by establishing this fact for the Stokes waves (k = 0) and using
Lemmas 6 and 9.

Setting λ = 0 in (23) shows that µ = −2n. Since T (k) = π for Stokes waves,
T (k)µ = 0 mod 2π whenever Ω = 0. Next, we compute directly that ∂bMj = 0 for
the NTP solutions. In what follows we use that

ζj =
1

2

(
σ1

√
1− b+ iσ2

(√
b− σ1

√
b− k2

))
,(147)

so that ζ1, ζ2, ζ3, and ζ4 correspond to (σ1, σ2) = (1, 1), (−1, 1), (−1,−1), (1,−1),
respectively. We define

ep,j = ℘(αj)− e0 = −2ζ2
j + ω,(148)

where e0 is defined in (51), and use

∂ζj
∂b

=
ep,j
4c

,(149a)

∂α0

∂b
=

1

℘′(α0)
= − i

2c
,(149b)

∂αj
∂b

= −c+ 2ζjep,j
2c℘′(αj)

=
4ζ3
j − 2ζjω − c
2c℘′(αj)

.(149c)

From the definition of Γ and (39),

(4ζ3
j − 2ζjω − c)Γ
℘′(αj)

=
2i(4ζ3

j − 2ζjω − c)2

℘′(αj)2
= − i

2
.(150)

Using the above calculations, the expression (40), and (48) with θ(T (k)) defined in
(50), we compute

∂

∂b
Mj = −2i

(
∂I(ζj)

∂b
+

∂

∂b
(α0η1 − ω1ζw(α0))

)
= −2i

(
− i

2c
ep,jω1−

(4ζ3
j−2ζjω − c)Γ
c℘′(αj)

(η1+ω1(ep,j + e0))− i

2c
(η1+ω1e0)

)
= 0

(151)

by direct computation. Since Mj = 0 mod 2π along the boundaries of the parameter
region (Figure 1) and ∂bMj = 0 on the interior of the parameter space, it follows that
Mj is constant (0 mod 2π) in the whole parameter space.
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Appendix C. Necessity of stability condition (72), proof of Lemma 4,
and proof of Theorem 5. In this appendix we present progress made toward
showing that (72) is not only a sufficient but also a necessary condition for spectral
stability. We introduce a theorem which shows that |Re(λ)| > 0 on the complex
bands of the spectrum. For part of the parameter space, the proof of this theorem is
complete. For a different part of parameter space, the proof relies upon a numerical
check over a bounded region of parameter space (see Figure 8(a)). The numerical
check consists of finding a root of a degree-six polynomial and evaluating Weierstrass
elliptic functions at that root. Numerical checks of this kind are not uncommon (see,
e.g., the nondegeneracy condition for focusing NLS in [19]). We use similar arguments
as used in Lemma 13 to prove Theorem 5 and Lemma 4.

Lemma 13. Let c 6= 0 and ζ ∈ (C− ∩ σL) \ (R ∪ iR ∪ {ζ2, ζ3}), where C− is the
left half plane. Then Ω(ζ) /∈ iR.

Proof. Let c 6= 0 and ζ = ζr + iζi with ζr < 0. Consider the curve in the left half
plane defined by Im(Ω2) = 0. For ζi 6= 0, this curve is defined by

ζ2
i = ζ2

r −
ω

2
− c

4ζr
.(152)

The condition Re(Ω2) ≤ 0 implies |ζr| ≤
√

1− b/2 with equality attained at the roots
of Ω2. Let

Q(ζr) := 4ζ3
r − 2ωζr − c.(153)

We have that ζi ∈ R only if Q(ζr) ≤ 0 and Q(ζr) has two roots with negative real
part. If both roots are complex or there is a double root, then the parameterization
(152) is valid for all −

√
1− b/2 ≤ ζr < 0. This is the case if the discriminant of Q is

nonpositive, which is true when

b ≥
{
k2, k > 1/

√
2,

F (k), k ≤ 1/
√

2,
(154)

with

F (k) :=
(1 + k2)3

9(1− k2 + k4)
.(155)

It is interesting to note that the condition b < F (k) is the same condition as [16,
equation (85)], which determines when the imaginary Ω axis is quadruple covered by
the map Ω(ζ).

Define G(ζr) = I(ζr + iζi(ζr)), where ζi(ζr) is defined with either sign of the
square root in (152). The goal is to show that ReG(ζr) = 0 only when ζi = 0 or
ζr = −

√
1− b/2, which corresponds to one of the roots of Ω2. Along the solutions of

(152),

Ωiζr
√
Q(ζr)

d ReG

dζr
= P6(ζr),(156)

where

Ωi = ± 1

4 |ζr|
√

(4ζ2
r + b− 1)(b+ 4ζ2

r )(b− k2 + 4ζ2
r ),(157)
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the imaginary part of Ω (and Ω = Ωi because of the parameterization). The polyno-
mial P6 is given by

P6(x) = −64K(k)x6 + 16(E(k) + (k2 − 2b)K(k))x4 + 8cK(k)x3 + 2c(E(k)(158)

+ (b− 1)K(k))x− c2K(k).

We let Ωi
√
Q(ζr) > 0, without loss of generality (Ωi

√
Q(ζr) < 0 corresponds to

a different sign for ζi or Ωi or both and is a nontrivial but straightforward exten-
sion of what follows). Therefore, P6(ζr) has the opposite sign of d Re(G)/dζr and
Re(G(ζr)) → +∞ as ζr → 0− since Ωiζr

√
Q(ζr) → 0− and P6 → −c2K(k) < 0.

Since ζr = −
√

1− b/2 corresponds to a root of Ω and the roots of Ω are in the Lax
spectrum, ReG(−

√
1− b/2) = 0. We wish to show that d Re(G)/dζr ≥ 0, which

guarantees that Re(G(ζr)) = 0 only when Ω(ζr) = 0.
Consider the polynomial

P̃6(x) = P6(−x) = a6x
6 + a4x

4 + a3x
3 + a1x+ a0.(159)

It is clear that a6 < 0, a3 < 0, a0 < 0 and a4 changes sign depending on b and k. We
have

a1 = −2c (E(k) + (b− 1)K(k)) ≤ −2c
(
E(k) + (k2 − 1)K(k)

)
= −2c

dK(k)

dk
≤ 0.

(160)

By Descartes’ sign rule, an upper bound on the number of negative roots of P6 is
either 2 or 0, depending on the sign of a4. Since P6(ζr) → −∞ as ζr → −∞ and
P6(0) < 0, P6(ζr) has an even number of negative roots, either 2 or 0.

We consider four cases.
1. Case 1: P6(ζr) has no negative roots or a double negative root.

If P6(ζr) has no negative roots or a double negative root, then P6(ζr) ≤ 0
and Re(G(ζr)) > 0 so Re(G(ζr)) is bounded away from 0 (see Figure 7(a)).

2. Case 2: P6(ζr) has two distinct negative roots, Q(ζr) has no negative roots.
Let ξ1 and ξ2 be the two roots of P6 with ξ1 < ξ2 < 0 (see Figure 7(b)). Then
Re(G) is increasing on (−

√
1− b/2, ξ1), decreasing on (ξ1, ξ2), and increasing

again on (ξ2, 0). If Re(G(ξ2)) > 0, then Re(G) is bounded away from 0 and
we are done. We do not know how to verify this condition analytically, so we
check it numerically. It is found to always hold.

3. Case 3: P6(ζr) has two distinct negative roots, Q(ζr) has a double negative
root.
Let ξ1 and ξ2 be as above and let ζ1 be the negative double root of Q (see
Figure 7(c)). It must be the case that ζ1 > ξ1 since Re(G) is initially increas-
ing and we know that Re(G) → 0 as ζ → ζ1. However, since ζ1 is a double
root of Q, it is also a root of Re(G) so it must be that ζ1 = ξ2. This means
that Re(G) is tangent to 0 at ζ = ζ1. This corresponds to ζ ∈ R.

4. Case 4: P6(ζr) and Q(ζr) have two distinct negative roots
Let ξ1 and ξ2 be as before and let ζ1 and ζ2 be the two negative roots of Q
with ζ1 < ζ2. As before, it must be that ξ1 is smaller than each of ξ2, ζ1, and
ζ2. The next largest root may be either ξ2 or ζ1.
• An illustration of this case is found in Figure 7(d). If ξ2 is the next

largest root, then there is a ζ̂ ∈ (ξ1, ξ2) such that Re(G(ζ̂)) = 0. For
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(d) Illustration for Case 4, option 1
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(e) Illustration for Case 4, option 2

Fig. 7. Illustrations of ζr versus Re(G(ζr)) for the four cases in the proof of Lemma 13.

ζr greater than ξ2, Re(G) increases to 0 at ζr = ζ1. For ζ ∈ (ζ1, ζ2),
nothing can be said about Re(G) since the parameterization is not valid.
For ζ ∈ (ζ1, 0), Re(G) > 0 is increasing since P6(ζ) < 0 in this range.

Thus if the ordering is ξ1 < ξ2 < ζ1 < ζ2, there is a ζ̂ ∈ σL such that
Re(G(ζ̂)) = 0 and Ω(ζ̂) ∈ iR.

• An illustration of this case is found in Figure 7(e). If ζ1 is the next
largest root, there are no zeros on (−

√
1− b/2, ζ1). If there were, there

would be another zero of P6 in (ξ1, ζ1) (so that Re(G) can increase
back to zero) but there is not, by assumption. For ζr ∈ (ζ1, ζ2), the
parameterization is not valid. Re(G(ζ2)) = 0 and is increasing if ξ2 < ζ2
and is decreasing if ξ2 > ζ2. If Re(G) is increasing at ζ2, we are done. If
Re(G) is decreasing at ζ2, then since Re(G)→∞ as ζr → 0, there must
be another zero of Re(G) in (ζ2, 0).

In either of the two subcases of Case 4, there can be at most one ζr = ζ̂r with
ReG(ζ̂r) = 0. However, Lemma 14 below shows that there must be an even number
of zeros of Re(G(ζr)) for ζr < 0. It follows that there must be 0 intersections and
Case 4 is eliminated. Since Case 1 and Case 3 also do not pose any problems, we are
left with verifying Case 2 only. This check is done numerically for some parameters,
which completes the proof of Lemma 13.

Remark 10. The numerical search required for Lemma 13 need not take place
over the whole parameter space. Case 2 can only occur when (154) holds with strict
inequality (b = F (k) corresponds to Case 3). Thus our search region covers only those
b values satisfying b > max(k2, F (k)). The search space is shrunk further by looking
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Fig. 8. (a) The parameter space with curves indicating when a numerical check to show that the
condition (72) in Theorem 4 is both necessary and sufficient. For more details, see Lemma 13. The
dashed blue region just above the line b = F (k) indicates where P6 has either 1 or 2 negative roots
and hence where the numerical check takes place. (b) Plots of ζr versus Re(G(ζr)) near b = F (k)
for k = 0.4. The curve b = F (k) is shown in solid red, b = F (k) + 0.001 in dashed black, and
b = F (k) + 0.01 in dotted blue. See Cases 2 and 3 in the proof of Lemma 13. The numerical check
in Case 2 is to determine whether Re(G(ζr)) = 0 anywhere for b > F (k).

only for those (b, k) pairs satisfying a4 > 0 in (159). a4 ≤ 0 if and only if b ≥ G(k),
where

G(k) :=
E(k) + k2K(k)

2K(k)
.(161)

The search region is further shrunk by first checking whether or not P6 has two neg-
ative roots, counted with multiplicity. This check needs to be done numerically since
the roots cannot be found analytically. The search region shown in Figure 8(a) indi-
cates where P6 has two negative roots. From our numerical tests, fewer than 4% of the
grid points in the search region give rise to P6 with negative roots, independent of grid
spacing. Therefore, fewer than 4% of the points are checked to satisfy Re(G(ξ2)) > 0.
Representative plots of Re(G(ζr)) near b = F (k) are shown in Figure 8(b). It is
verified that, for a grid spacing of 10−10, the condition Re(G(ξ2)) > 0 is satisfied in
the necessary domain. The numerical check can be removed if it can be shown that
the minimum of Re(G(ζr)) at ξ2 is monotonically increasing as b increases from F (k).
We are not, however, able to prove that at this time.

C.1. ζc ∈ R: An extension of Theorem 4. We first look at cases when
b ≤ B(k) (54) so that ζc ∈ R.

Lemma 14. Let b ≤ B(k) so that ζc ∈ R. Then for ζ ∈ (C− ∩ σL) \ R, Ω(ζ) has
an even number of intersections with the imaginary Ω axis.

Proof. We note that for ζ ∈ (C− ∩ σL) \R, Ω(ζ) has 0, 1, or 2 intersections with
the imaginary axis by Lemma 13. The tangent line to σL at the origin is given by
[16, equation (104)],
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dΩi
dΩr

= ± (2c−
√

1− b(k2 − 2b))E(k)

(
√
b− k2 +

√
b)(1 +

√
b(b− k2)− b)E(k) + (1− k2)K(k)

,(162)

with + corresponding to ζ3 and − corresponding to ζ2. It follows that for ζ near ζ3
on σL, the stability spectrum enters the first quadrant of the λ plane. For ζ ∈ σL \R
near −ζc ∈ R, ζ = −ζc + iδi +O

(
δ2
i

)
, where δi ∈ R is a small perturbation parameter

[16, equation (150)]. A short calculation gives

Ω(−ζc + iδi) = Ω(−ζc) +
i

2

δi
Ω(−ζc)

(4ζ3
c − 2ωζc + c),(163)

where Ω(−ζc) ∈ iR. Then

4ζ3
c − 2ωζc + c =

√
2E(k)− (b− k2 + 1)K(k)

2K3(k)

(
4E(k) +K(k)(b+ k2 − 3)

)
=

√
2E(k)− (b− k2 + 1)K(k)

2K3(k)

(
k(k′)2 dK(k)

dk
+ 2E(k)−K(k)

)
≥ 0,

(164)

since b < B(k). Since σL enters the first quadrant from the origin and enters the
imaginary axis from the first quadrant, it must have an even number of crossings with
the imaginary axis. In particular there must be either 0 or 2 crossings.

Using Theorem 4, Lemmas 13 and 14 imply that the condition (72) is both a
necessary and a sufficient condition for spectral stability when 2E(k) − (1 + b −
k2)K(k) ≥ 0 by following the exact same proof as for Theorem 3.

Theorem 6. The sufficient condition for spectral stability (72) given in Theorem
4 is also necessary.

Proof. Using Lemma 13 we see that Ω(ζ) ∈ iR for ζ ∈ σL ∩ C− if and only
if ζ ∈ R ∪ {ζ1, ζ2}. This means that the bound (72) is a necessary and sufficient
condition for spectral stability. When max(k2, F (k)) < b < G(k), Lemma 13 relies
upon a numerical check.

Remark 11. If one is not pleased working with the numerical check, then the re-
sults in this appendix only change in the following manner. The bound (72) still
determines which solutions are spectrally stable with respect to perturbations of
period PT (k). It still follows that if Q < P and a solution is stable with respect
to perturbations of period PT (k), then this solution is also spectrally stable with re-
spect to perturbations of period QT (k). The results in the appendix are only needed
to rule out spectral stability with respect to other perturbations, e.g., perturbations
with period RT (k) for R > P .

C.2. A proof of Theorem 5, ζc ∈ iR. In this subsection we present the details
needed to establish Theorem 5.

Lemma 15. Let c 6= 0, ζc ∈ iR, and ζ 6= ζ1 be in the open first quadrant. Then
Ω(ζ) ∈ iR for at most one value of ζ ∈ σL.

Proof. The proof is similar to that of Lemma 13 with the following changes. Here
Q(ζr) always has one zero for ζr > 0. Call this zero ζ̂. Then the parameterization

(152) is valid for ζr ∈ [ζ̂,
√

1− b/2]. We find that P6(ζr) has at most two positive
zeros by Descartes’ sign rule. Since P6(ζr) has at most two positive zeros and we know
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that Re(G(ζ̂)) = Re(G(
√

1− b/2)) = 0, it follows that there is at most one other ζr
value at which Re(G) = 0.

Proof of Theorem 5. We note that if 2E(k)− (1 + b− k2)K(k) < 0, then ζc ∈ iR
and it must be that σL intersects iR\{0} (Lemma 3; see Figure 3(iv)). Let ζ̂ ∈ iR\{0}
be the intersection point of σL and iR \ {0}. Since Re(ζ̂) = 0 and Im(ζ̂) 6= 0, (56)

implies that Ω(ζ̂) /∈ iR. By (57), M(ζ) is increasing on (ζ2, ζ1) except perhaps at ζc
if ζc ∈ σL. In any case, since M(ζ2) = M(ζ1) = 0 mod 2π, M(ζ) traces out all of

T (k)µ ∈ (0, 2π). By Lemma 13, Re(λ) > 0 for ζ ∈ (ζ2, ζ̂]. By Lemma 15, Re(λ) = 0
at most at one point in the band connecting ζ2 to ζ1. Since we need Re(λ) = 0 for
P − 1 different µ values different from 0 for stability by (26), it follows that there can
be stability at most for P = 2. Since P = 2 corresponds to perturbations of twice the
period, we have arrived at the desired result.

Finally, we note that the above proof does not rely on the numerical check in
Lemma 13 since the curve b = B(k) (see (54)) always lies above the curve b = G(k)
(see (161)) for k2 < b < 1. To see this, we note that B(k) > G(k) if and only if

3E(k)− 2(k′)2K − k2K(k) > 0.(165)

But

3E(k)− 2(k′)2K(k)− k2K(k) >
πk2

4

2(1− k2)−3/8 − (1− k2/4)−1/2

(1− k2/4)1/2(1− k2)3/8
> 0(166)

for 0 < k < k̃ ≈ 0.941952, where all estimates are found in [1, section 19.4]. It can
be verified that both B(k̃) < k̃2 and G(k̃) < k̃2, so we have B(k) > G(k) everywhere
in the domain k2 < b < 1, hence no numerical check is needed for solutions satisfying
b > B(k).

C.3. A proof of Lemma 4.

Proof of Lemma 4. For the cn solutions and the NTP solutions with b ≤ F (k) (see
(155)) or b ≥ G(k) (see (161)), Lemmas 10 and 13 imply that every ζ ∈ (C−∩σL)\R
gives rise to an unstable eigenvalue λ(ζ). By [19], the elliptic solutions are spectrally
stable with respect to coperiodic perturbations. Since coperiodic perturbations cor-
respond to T (k)µ = 0 mod 2π, we conclude that in the cases above M(ζ) 6= 0 for ζ
on the complex bands of the Lax spectrum in the left half plane. It is left to show
that the same result holds for the NTP solutions with F (k) < b < G(k).

By continuity, an eigenvalue with T (k)µ = 0 mod 2π (hereafter called a periodic
eigenvalue) can only enter a complex band by passing through the intersection of
the complex band with the real axis. Since a periodic eigenvalue has Re(Ω(ζ)) = 0
by [19], it must be the case that the curve (152) intersects the complex band at a
periodic eigenvalue. Since the intersection of (152) and the complex band must occur
immediately upon the periodic eigenvalue entering the band, it must be that the curve
(152) and the complex band intersect the real axis at the same location, ζ = −ζc (see
(53)). The curve (152) intersects the real axis when Q(ζr) = 0 (see (153)). But
Q(ζr) = 0 only at the boundary of the region F (k) < b < G(k), when b = F (k).
Therefore, in order to establish that no periodic eigenvalues enter the complex band,
we must establish that the zero of Q(ζr) mentioned above is not equal to −ζc.

When b = F (k), Q(ζr) has a double zero at ζr = ζ̃1 < 0:

Q(ζr) = 4(ζr − ζ̃1)2(ζr − ζ̃2).(167)
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Comparing the above expression to (153), we find that ζ̃2
1 = ω/6. But

ζ2
c − ζ̃2

1 = 2

(
E(k)− 1

3
(2− k2)K(k)

)
(168)

≥ E(k)− 2

3
K(k) >

√
1− k2K(k)− 2

3
K(k) > 0(169)

for k2 < 5/9 (the inequality used for E(k) comes from [1, section 19.9]). Since
b = F (k) < k2 only when k2 < 1/2 < 5/9, we find that the intersection of Q(ζr) with
the real line is well separated from the intersection of the complex band with the real
line for all allowed k. It follows that no periodic points can enter the complex band in
the left half plane. We finish the proof by noting that since 2π > M(−ζc) > M(ζc),
periodic points also cannot enter the complex band in the right half plane.

C.4. A proof of Theorem 1.

Proof of Theorem 1. The proof is similar to the proof of [6, Theorem 2]. We
provide details omitted there.

For every λ ∈ C, (11) can be written as a four-dimensional first-order system of
ordinary differential equations. For each λ ∈ C, one value of Ω is obtained through
Ω = λ/2. Defining

Q̃4(ζ) := −ζ4 + ωζ2 + cζ − 1

16

(
4ωb+ 3b2 + (1− k2)2

)
(170)

and

Q4(Ω, ζ) := Ω2 − Q̃4(ζ),(171)

we let

B := {λ ∈ C : the discriminant of Q4 with respect to ζ vanishes}.(172)

For λ ∈ C \B, the zeros of Q4(Ω, ζ) give four values of ζ ∈ C. It is not necessary that
each of these four values of ζ is in the Lax spectrum since this counting argument is
independent of the Lax spectrum. The squared-eigenfunction connection (46) gives a
solution to (11) for each of the four ζ ∈ C. Therefore, (46) gives four solutions of the
fourth-order problem (11) for each λ ∈ C \ B. We first show that the four solutions
obtained through (46) are linearly independent for λ ∈ C \ B, then later we will look
at λ ∈ B.

Using the fact that

Bx = 2(−iζB − φA),(173)

the eigenfunctions (35) may be written as

χ(x, t) = eΩt

(
−B
A− Ω

)
γ0 exp

(
−
∫ (

Bx
2B

+
φΩ

B

)
dx

)
= eΩt

(
−B
A− Ω

)
γ0

B1/2
exp

(
−
∫
φΩ

B
dx

)
.

(174)

When λ ∈ C \ (B∪{0}), the above gives four eigenfunctions, one for each ζ. The four
eigenfunctions have singularities at the zeroes of B. Since the zeros of B depend on
ζ, the four eigenfunctions have different singularities in the complex x plane for the
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four different values of ζ. When Ω = 0, there exist two bounded eigenfunctions [19,
Proposition 3.2]. Only one of these is obtained through (35).

We now consider the six values of λ ∈ B. The discriminant can vanish only in
one of the following cases:

1. Q4 = (ζ − ζ̂1)(ζ − ζ̂2)(ζ − ζ̂3)2 = 0,

2. Q4 = (ζ − ζ̂1)2(ζ − ζ̂2)2 = 0,

3. Q4 = (ζ − ζ̂1)(ζ − ζ̂2)3 = 0, or

4. Q4 = (ζ − ζ̂1)4 = 0.
The zeros of Q4 come from level sets of Q̃4(ζ). Case 4 can occur only when the graph
of Q̃4(ζ) has one maximum. However, since we know from (52) that all four roots
of Q̃4(ζ) cannot be equal, case 4 is not possible. Case 3 can also be ruled out since
the four roots (52) of Q̃4(ζ) are real. Case 2 can occur only when two roots of (52)
collide, which can occur only for the cn or dn solutions. The stability of these cases
has been determined [24] so they are not a concern here. Finally, case 1 is possible.
In case 1, only three values of ζ are determined from Ω. In such a case, three linearly
independent solutions of (11) are found. The fourth is obtained using reduction of
order and introduces algebraic growth so it is not an eigenfunction. Therefore in this
case, all eigenfunctions are found using the squared-eigenfunction connection.
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