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ABsTrRACT. We analyze the spectral stability of small-amplitude, periodic, traveling-wave solu-
tions of the Kawahara equation. These solutions exhibit high-frequency instabilities when subject
to bounded perturbations on the whole real line. We introduce a formal perturbation method
to determine the asymptotic growth rates of these instabilities, among other properties. Explicit
numerical computations are used to verify our asymptotic results.

1. INTRODUCTION
We investigate small-amplitude, L-periodic, traveling-wave solutions of the Kawahara equation
Ug = QUgey + Puse + o(u?)g, (1.1)

where «, 8, and o are nonzero, real parameters [20]. Similar to Stokes waves of the Euler water wave
problem [26] [29], these solutions are obtained order by order as power series in a small parameter
that scales with the amplitude of the solutions; see [I4] and Section 2 below for more details. We
refer to these solutions as the Stokes waves of the Kawahara equation.

The Kawahara equation is dispersive with linear dispersion relation

w(k) = ak® — BE°. (1.2)
The equation is Hamiltonian,
oH
= 0p—, 1.3
g Su ( )
with
L « 153 o

In an appropriate traveling frame, the Stokes waves of ([ILI]) are critical points of the Hamiltonian,
prompting an investigation of the flow generated by (L4]) about the Stokes wave solutions.

Perturbing the Stokes waves by functions bounded in space and exponential in time yields a spectral
problem whose spectral elements characterize the temporal growth rates of the perturbations; see
Section 3 for more details. We refer to this collection of spectral elements as the stability spectrum
of the Stokes waves.

A standard argument [I8] shows that the stability spectrum is purely continuous, but Floquet
theory can decompose the spectrum into an uncountably infinite collection of point spectra. Each
point spectra is indexed by a real number, called the Floquet exponent, that is contained within a
compact interval of the real line [I5] [I7].

For the Euler water wave problem, these point spectra depend analytically on the amplitude of
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FIGURE 1. (Left) A stability spectrum of Stokes wave solutions of (1) with o = 1,
B =0.7, 0 =1, and small-amplitude parameter £ = 10~3, computed using the FFH
method. A uniform grid of 10® Floquet exponents between [—1/2, 1/2] approximates
purely imaginary point spectra but misses the high-frequency isolas. A uniform grid
of 4 x 10® Floquet exponents in the interval described by ([I3]), obtained in Section
4, captures these isolas. (Right) Zoom-in of the high-frequency isola boxed in the
left plot (with fewer point spectra shown for ease of visibility). The red curve is
obtained in Section 5 and approximates the isola.

the Stokes waves [2] [3]. Based on numerical experiments [28], similar results appear to hold for the
Kawahara equation. The spectrum also exhibits quadrafold symmetry due to the underlying Hamil-
tonian nature of (L)) [I5],[23]. Therefore, for a Stokes wave with given amplitude to be spectrally
stable, all point spectra must be on the imaginary axis. Otherwise, there exist perturbations to the
Stokes waves that grow exponentially in time, and the Stokes waves are spectrally unstable.

In contrast with the completely integrable KdV equation (8 = 0) [8, 24, 25], considerably less
is known about the stability spectrum of Stokes waves to ([LI). Haragus, Lombardi, and Scheel
[14] prove that this spectrum lies on the imaginary axis for small-amplitude Stokes waves in a
particular scaling regime. Such solutions are, therefore, spectrally stable. Work by Trichtchenko,
Deconinck, and Kollar [28] develops necessary criteria for the stability spectrum of a broader class
of small-amplitude Stokes waves to leave the imaginary axis and provide numerical evidence for the
high-frequency instabilities that result.

High-frequency instabilities arise from pairwise collisions of nonzero, imaginary elements of the
stability spectrum. Upon colliding, these elements may symmetrically bifurcate from the imaginary
axis as the amplitude of the Stokes wave grows, resulting in instability [I1],[23]. An example of a
high-frequency instability for a small-amplitude Stokes wave of (L)) is seen in We refer
to the locus of spectral elements off the imaginary axis and bounded away from the origin as high-
frequency isolas. The isolas of as well as the rest of the stability spectrum, are obtained
numerically using the Floquet-Fourier-Hill (FFH) method; see [9] for a detailed description of this
method.

High-frequency instabilities are not as well-studied as the modulational (or Benjamin-Feir) instabil-
ity that arises from collisions of spectral elements at the origin of the complex spectral plane [5],[7].
Current understanding of high-frequency instabilities is limited mostly to numerical experiments.
Exceptions include the works of Akers [4] and Trichtchenko, Deconinck, and Kollar [28], which ob-
tain asymptotic information about the high-frequency isolas for the Euler problem in infinitely deep
water and for the Kawahara equation, respectively.
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The purpose of our present work is to build on these results. In particular, for sufficiently small-
amplitude solutions, we seek the following:

(i) the asymptotic range of Floquet exponents that parameterize the high-frequency isolas ob-
served in numerical computations of the stability spectrum,
(ii) asymptotic estimates of the most unstable spectral elements of the high-frequency isolas,
and
(iii) expressions for curves asymptotic to these isolas, as seen in

To obtain these quantities, we develop a perturbation method inspired by [4] that readily extends
to higher-order calculations. Asymptotic results obtained by this method are then compared with
numerical results from the FFH method.

2. SMALL-AMPLITUDE STOKES WAVES

We move to a frame traveling with velocity ¢ so that © — x — c¢t. Equation (I.I]) becomes
U = ClUy + QUggy + Puse + o(u?),. (2.1)

We seek L-periodic, steady-state solutions of (Z1]). Equating time derivatives to zero and integrating
in x, we arrive at

cu+ gy + Buag +ou? =C, (2.2)

where C is a constant of integration. Using the Galilean symmetry of (LI]), there exists a boost £
such that, with ¢ = ¢+ & and u — u + &, C can be omitted from ([Z2)):

cu + gy + Py + ou? = 0. (2.3)
Scaling  — 2mx/L and u — 27u/(aL) allows us to consider 2m-periodic solutions of
cu + Ugy + Buay + ou® =0, (2.4)

without loss of generality, provided ¢, 3, and o are appropriately redefined.

Let u = ug(x;e) be a one-parameter family of 27-periodic solutions of ([24]) with corresponding
velocity ¢ = ¢(g). The existence of such a family is rigorously justified by Lyapunov-Schmidt re-
duction; see [I4]. In what follows, we define the parameter ¢ as twice the first Fourier coefficient of
ug(z;e):

— 1

2m
€ :=2ug(z;e), = ;/ ug(x;€)ede, (2.5)
0

where 7 is the Fourier transform on the interval (0,27). Because the L?(0,27) norm of ug(z;¢)
scales like £ when |¢] < 1, we call € the small-amplitude parameter.

From [14], expansions for ug(z; ) and c(e) take the form

us(zie) =y uk(w)ek, (2.6a)
k=1

c(e) = iczks%, (2.6b)

k=0

where ug () is analytic and 27-periodic for each k. Exploiting the invariance of (24]) under z — —x
and z — x + ¢, we require ug(zr) = up(—x) so that ug(x;e) is even in x without loss of generality.
Substituting these expansions into (24) and following a Poincaré-Lindstedt perturbation method
[29], one finds corrections to ug(x;e) and ¢(e) order by order.

One difficulty occurs at leading order of the Poincaré-Lindstedt method. Substituting expansions
Z8) into (Z4) and collecting terms of O(e), we find

[co + 02 + BI3| ui(x) = 0. (2.7)



HIGH-FREQUENCY INSTABILITIES OF THE KAWAHARA EQUATION: A PERTURBATIVE APPROACH 4

—

From ([Z3), ui(x); = 1/2. Taking the Fourier transform of (7)) and evaluating at the first mode,
we find

leo — 14 8l wa(a), = glco—1+58) =0, (2.8)
which implies that
co=1-p. (2.9)
By inspection,
up(z) = cos(x) (2.10)

—

is a solution to (Z7) that is analytic, 2m-periodic, even in z, and satisfies the normalization u,(z); =
1/2. If B =1/(1 + N?) for any integer N > 1, then

uy(x) = cos(x) + Cn cos(Nx), (2.11)
where Cp is an arbitrary real constant, is an equally valid solution to (2 with the requisite

properties. In this case, the Stokes waves are said to be resonant and exhibit Wilton ripples [30].
Expansions (2:6) must be modified as a result; see [11 [16], for instance.

In this manuscript, we restrict to nonresonant Stokes waves:
1
B e TNT
for N stated above, and (2.9) and (ZI0) are the unique leading-order behaviors of ¢(e) and ug(z;e),

respectively. The remainder of the Poincaré-Lindstedt method follows as usual. We terminate the
method after third-order corrections, as this is sufficient for our calculations that follow. We find

(2.12)

ug(z;€) = eup () + 2uz(z) + Suz(x) + O(e?) (2.13a)
= ecos(x) + 52% (% + 9(22) cos(2x)) + 53% cos(3z) + O(e?),
c(e) = co + c2e? + O(e*) (2.13b)
=1- 3+ 0> (% — ﬁ) e2 + 0(e"),

where (+) is the linear dispersion relation of the Kawahara equation (LI (with o = 1) in a frame
traveling at velocity c(e):

Q(k) = —cok + k* — BE°. (2.14)
3. NECESSARY CONDITIONS FOR HIGH-FREQUENCY INSTABILITY
3.1. The Stability Spectrum

We consider a perturbation to ug(z;¢) of the form
ul,t) = us(w;€) + po(a,t) + O(P), (3.1)

where |p| < 1 is a small parameter independent of & and v(z,t) is a sufficiently smooth, bounded
function of # on the whole real line for each ¢t > 0. Substituting (II]) (with ov = 1) and collecting
terms of O(p), we find by formally separating variables

v(z,t) = MW (x) + c.c., (3.2)
where c.c. denotes complex conjugation of what precedes and W (z) satisfies the spectral problem
AW (z) = L(us(z;€), c(e), B, 0)W (), (3-3)
with
L(us(z;e),c(e), B,0) = c(e)dy + 0 + SO + 20us (w5 €)0, + 20uls(z;€), (3.4)
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where primes denote differentiation with respect to z. From Floquet theory [I5], all solutions of
B3) that are bounded over R take the form

W(z) = e w(z), (3.5)

where p € [—1/2,1/2] is the Floquet exponent and w(x) is 27-periodic in an appropriately chosen
function space.

Remark. The conjugate of W (x) is a solution of (B3] with spectral parameter X. Since the
spectrum of £ is invariant under conjugation according to [I5], one can restrict p to the interval
[0,1/2] without loss of generality.

Substituting (BE) into ([B3), our spectral problem becomes a one-parameter family of spectral
problems:

Nw(x) = L (us(z;€), ¢(e), B, o)w(®), (3.6)

(0,27) so that £L* is a
closed operator densely defined on the separable Hilbert space Lf,er(O, 27) for a given p. Then, L
has a discrete spectrum of eigenvalues A\* for each p and the union of A* over all u € [0,1/2] yields
the purely continuous spectrum of £, which is the stability spectrum of Stokes waves. See [15] for

more details.

where £* is £ with 9, — i+ 9,. In light of B8), we require w(z) € H>

per

As stated in the introduction, if there exists A* with Re (M) > 0, then there exists a perturbation
to the Stokes wave that grows exponentially in time, and we say that the Stokes wave is spectrally
unstable. Otherwise, the wave is spectrally stable. Since ([B.6]) is obtained from a linearization of a
Hamiltonian system (L)), the stability spectrum is invariant under conjugation and negation. As a
result, spectral stability implies that all eigenvalues of £L* are purely imaginary.

3.2. The Necessary Conditions for High-Frequency Instability

For fixed pu, the operator L£# depends implicitly on the small parameter £ through its depen-
dence on ug(x;¢e) and ¢(e). If e = 0, L* reduces to

Ly = colip+ 0z) + (ip + 02)° + Blip + 8,)°, (3.7)
a constant-coefficient operator, and its eigenvalues \jj are explicitly given by

where n € Z. For all 4 and n, these eigenvalues are purely imaginary, implying that the zero-
amplitude solution of the Kawahara equation is spectrally stable.

Importantly, not all eigenvalues given by (B.8) are simple. Using the theory outlined in [2I] and
[28], one has

Theorem 1. For each An € N, there exists a unique Floquet exponent pg € [0,1/2] and unique
integers m and n such that m —n = An and

Ao = Moom # 0, (3.9)
provided that the parameter g is nonresonant (2I12)) and that § satisfies the inequalityﬂ:
3 1 6 1
i A 3 3.10
mes (S T ) < 8 < <5<An>2’ (32 + 1) Lo 1000
1 1
<pf<—m5, An>3. (3.10b)
2 An\2’
1+ (An) 1+ (42)

The proof is found in the Appendix.

LA similar statement holds for An < 0. This yields the complex conjugate eigenvalues that satisfy (33]).
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The eigenfunctions of these nonsimple eigenvalues take the form
wo(x) = Yo' ™" + e, (3.11)

where 79,1 are arbitrary, complex constants. We assume the eigenvalues that satisfy ([B.9) are
semi-simple with geometric and algebraic multiplicity two. Then, these eigenvalues represent the
collision of two simple eigenvalues at ¢ = 0, and (B) is referred to as the collision condition.

Collision of eigenvalues away from the origin is a necessary condition for the development of high-
frequency instabilities. Inequality (B.10) guarantees that there are a finitd] number of such collisions
for a given (: this is in contrast to the water wave problem, where a countably infinite number of
collisions occur [II]. Each collision site can be enumerated by An. The largest high-frequency isola
occurs from the An = 1 collision, which we study in Section 4.1.

A second condition for high-frequency instabilities necessitates that the Krein signatures [22] of
the two collided eigenvalues have opposite signs [23]. It is shown in [I1] 211 [28] that this condition
is equivalent to

(o +n)(po +m) <0, (3.12)

where pg, m, and n are obtained from the collision condition ([F3)). For any f that satisfies condi-
tions (Z12)) and BI0) and any o, m, and n that satisfies the condition (39), (312) is automatically
satisfied; see [2I] and [28] for the proof.

As |e] increases in magnitude, a neighborhood of spectral elements around the collided eigenval-
ues of L£{° ([B) can leave the imaginary axis, generating high-frequency instabilities. This is seen
explicitly in for the parameter choice 8 = 0.7, where a An = 1 collision occurs at € = 0.

4. ASYMPTOTICS OF HIGH-FREQUENCY INSTABILITIES
We obtain spectral data of £* as a power series expansion in £ about the collided eigenvalues of
L}°. First, we apply our method to the largest high-frequency instability corresponding to An = 1.
Then, we consider An > 2.
4.1. High-Frequency Instabilities: An =1
Let m and n be the unique integers that satisfy the collision condition 3) with m —n = 1,

and let o be the corresponding unique Floquet exponent in [0,1/2]. Then, the spectral data of £{°
that gives rise to a An = 1 high-frequency instability is

Ao = NS, = —iQ(uo +n) = AgS, = —i2(no +m) # 0, (4.1a)
wo () 1= e + y1em?. (4.1b)
As |e| increases, we assume these data depend analytically on e:
Ae) = Ao + e\ + O(?), (4.2a)
w(z;e) = wo(x) + ews (z) + O(e?), (4.2b)

where A(¢) and w(z;€) solve the spectral problem (B.0)).

If \o is a semi-simple and isolated eigenvalue of £5°, [@2a) and (£2D) may be justified using
results of analytic perturbation theory, provided pg is fixed [19]. Fixing the Floquet exponent in
this way, however, gives at most two elements on the high-frequency isola (provided |e| is sufficiently
small) and these elements do not, in general, correspond to the spectral elements of largest real part
on the isola. For these reasons, we expand the Floquet exponent about its resonant value as well:

p=p(e) = po+ e + O(?). (4.3)

2For An sufficiently large, 3 fails to satisfy inequality (ZI0), and no high-frequency instabilities occur.
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As we shall see, pp is constrained to an interval of values that parameterizes an ellipse asymptotic
to the high-frequency isola.

Like Akers [4], we impose the following normalization condition on our eigenfunction w(x;e) for
uniqueness:

w(x;e), = 1. (4.4)
Substituting (£.2D)) into this normalization condition, we find wo(z), = 1 and w;(z), = 0 for j € N,
meaning wo () fully supports the n'® Fourier mode of the eigenfunction w(x;e). As a consequence,

(@I) becomes
wo () = ™ 4 ype'™*. (4.5)
Although wy(x) does not appear unique at this order, we find an expression for 7o at the next order.

The O(g) Problem

Substituting ([E2al), (£2h), and (@3)) into (3.6) and collecting terms of O(e) yields
(£5" = Ao)wi(z) = Mwo(z) — Liwo(z), (4.6)
where
L1 = icopy + 3ipr (ipo + 0x)? + 5ifp1 (ipo + 0.)* + 20uy (x) (imo + 0,) + 200 (). (4.7)
Using (ZI3) to replace uy(x), (EH) to replace wg(x), and m —n =1, ([@8) becomes

(L£5° = Xo)wi(x) = [M1 +ipneg(po +n) —ioyo(po +n)] e™* (4.8)
+ o (M1 + ipacy(po +m)) —io (o +m)] €™

i(n—1)x i(m-l—l)z’

—io(po +n—1e —ioyo(po +m + 1)e

where ¢4 (k) = (k) is the group velocity of (2.

If (£]) can be solved for w;(x) € ngr (0,27), the Fredholm alternative necessitates that the

inhomogeneous terms on the RHS of (&) must be orthogonal] to the nullspace of (L — Xo)T,
the hermitian adjoint of £§° — A\g. A quick computation shows that £§° — X\g is skew-Hermitian,
and so its nullspace coincides with that of its Hermitian adjoint. The nullspace of Lf° — X is, by
construction,

Null(£§° — Xg) = Span (", ") (4.9)
Thus, the solvability conditions for (48] are

: (4.10a)
: (4.10D)

(€™, M+ ipacy(po + n) — iovo(po +n)] ) =
(™, [vo (A1 +ipreg(po +m)) —io(po +m)] ™) =

where (-, ) is the standard inner product on Lier(O, 27).

Remark. Both solvability conditions can be reinterpreted as removing secular terms from (LS.

—

Moreover, solvability condition (@I0al) coincides with the normalization condition wi(x),, = 0.

3In the L2, (0, 27) sense

per
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The solvability conditions (£.I10a) and (4.10D) yield a nonlinear system for A; and vy with solu-
tion

P (Cg(uo +m) ;L Cq(po + n)) (4.11a)
2
C +m)—c +n
+ \/u? [ alio )2 alio )] — 0%(po +m)(po + ),
o = io(po +m) (4.11b)
A+ iprcg(po +m) '
If H1 € (—Ml,Ml) with
2

My = lolv/~ (o + m) (o + 1) (4.12)

feq (o +m) — eyl + )|

it follows that A; has nonzero real part, since (1o + m)(uo + n) < 0 by the choice of 3. Therefore,
to O(e), the An = 1 high-frequency instability is parameterized by

u e (MO—EMl,uo—f—EMl). (413)

This interval is asymptotically close to the numerically observed interval of Floquet exponents that
parameterize the high-frequency isola for |e| < 1; see

Remark. The quantity M; is well-defined since cq4(po0 + m) # c4(po + n). See the Appendix
for the proof. The quantity 7o is also well-defined, as A1 + ip1cg(po + m) is guaranteed to be a
complex number with nonzero real part.

Equating 7 = 0 maximizes the real part of A; in (@I0a). Thus, the Floquet exponent that corre-
sponds to the most unstable spectral element of the high-frequency isola has asymptotic expansion
s = o + O(?). (4.14)

The corresponding real and imaginary components of this spectral element have asymptotic expan-
sions

Mer = €lay/—(po +m) (o +n) + O(?), (4.15a)
Avi = —=Q(po + n) + O(e?), (4.15b)

respectively. The former of these expansions provides an estimate for the growth rate of the An =1
high-frequency instabilities. compares these expansions with numerical results from FFH.
Observe that, while the expansion for the real part is accurate, the expansion for the imaginary part
requires a higher-order calculation; see Section 5.

If X\ is written as a sum of its real and imaginary components, A\, and A;, respectively, then elimi-
nating dependence on p; between these quantities yields

A2 Xi + Qo +1))?
_;+ ( (MO n)) . 2—02(M0+m)(ﬂo+n)+0(5)- (4.16)
€ g2 (Cg(#OJFm)JFCy(#OJF"))

cg(pot+m)—cg(po+n)

Thus, the An = 1 high-frequency isola is an ellipse to O(e) with center at the collision site of

eigenvalues \g), and Ag9, and with semi-major and -minor axes

ay = elo|v/— (o + m) (o + n), (4.17a)

cg(po +m) 4 c4(po + 1)
cg(po +m) — cg(po +n) |’

by = (4.17D)

respectively.

Our asymptotic predictions agree well with numerics, particularly for the real component of the
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FIGURE 2. (Left) Interval of Floquet exponents that parameterize the An = 1
high-frequency isola for parameters o = 1, § = 0.7, and ¢ = 1 as a function of
€. Solid blue curves indicate the asymptotic boundaries of this interval according
to (AI3). Blue circles indicate the numerical boundaries computed using FFH.
The solid red curve gives the Floquet exponent corresponding to the most unstable
spectral element of the isola according to (£I4]). The red circles indicate the same
but computed numerically using FFH. (Right) The real (blue) and imaginary (red)
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F1Gure 3. (Left) An = 1 high-frequency isola for « = 1, 8 = 0.7, 0 = 1, and
e =1073. The solid red curve is ellipse (I8). Blue circles are a subset of spectral
elements from the numerically computed isola using FFH. (Right) Floquet param-
eterization of the real (blue) and imaginary (red) parts of the isola. Solid curves
illustrate asymptotic result (@ITal). Circles indicate results of FFH.

isola. There is some discrepancy between asymptotic and numerical results of the Floquet expo-
nents and imaginary component of the isola, even when ¢ = 1073; see As noted before,
this discrepancy is resolved in Section 5.
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4.2. High-Frequency Instabilities: An =2

Suppose m, n, and po satisfy the collision condition [B3) for An = 2 and appropriately cho-
sen 8 parameter. Then, ([J) gives a semi-simple eigenpair of £{°, and we assume ([£2a)), (4.2L),
and (£3) remain valid expansions for the eigenvalue, eigenfunction, and Floquet exponents in the
vicinity of this semi-simple eigenpair, respectively. We obtain the coefficients of these expansions
order by order in much the same way as for the An = 1 high-frequency instabilities.

The O(g) Problem

Substituting expansions ([&2al), (£2h), and ([£3)) into the spectral problem (B.6) and collecting
O(e) terms gives

(L5° = Ao)wi (z) = —io(po +n — 1)V 4+ [\ +ipcy(po +n)] €™ (4.18)
—io(po +n+ 1)(1470)e" ™7 + 40 [\ + iprcy(po +m)] €™
—io (o +m + 1)’ mFz,

where we have used ([2Z.I3) to replace ui(xz). Though equation ([£I8) shares similar features with
@S), m —n # 1 in this case. Thus, (£I8) cannot be simplified further.

The solvability conditions of (£I])) are

M Fiprcg(po +n) =0, (4.19a)
Yo [A1 + tprcg(po +m)] = 0. (4.19b)

Since ¢q (o +m) # cg(po +n) by the corollary provided in the Appendix and o # (ﬂ, we must have
A =g =0. (4.20)

Solving ([@I8) for wy (z) by the the method of undetermined coefficients, one finds
wi () =T po1€ T o gD gy et DTy et (4.21)

where 7 is a constant to be determined at higher order,

Tin—1= Qnn-1, (4.22a)
Tint1 = (14 7%)@nn+1, (4.22D)
T1,m+1 = Y0@n,m+1, (4.22¢)
and
o(po + M
QN = (o + M) (4.23)

Qpo + M) — Qpo + N)-
Note that w;(z) does not have an n'" Fourier mode, which is a consequence of the normalization

@4).

The O(e?) Problem

Substituting ([#2al), ({2h), and [3)) into (B.6) and collecting terms of O(e?) yields
(£6° — Ao)wi(z) = Aowo(x) — La|uy—owo(x) — L1]u,—ow1 (), (4.24)
where L1],,—¢ is as before (but evaluated at y; = 0) and

Loy =0 = icopa + c2(ipto + 0x) + 3p2i(ipo + 02)* + 5p2i(ipo + 0z)* + 20u2(x) (ipo + Ox) + 20ub(z).
(4.25)

As in the previous order, we evaluate the RHS of (£24) using [2I3) to replace ui(x) and us(z),
@5) to replace wo(x), (£21) to replace wq(x), and m — n = 2 to combine terms with exponential

4Otherwise, our unperturbed eigenfunction wg(z) is not a superposition of two distinct Fourier modes.
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arguments proportional to m—1 and n+1. After some work, one arrives at the solvability conditiondd:

A2 +iCpp, 0 = 17082 (o + 1), (4.26a)
Yo [A2 +iC)% 0] = iS2(po +m), (4.26b)
where
Cotio = H2Cq (o + N) = Py (4.27)
PR = (10 + N) [0(Quv-1 + Quva1 + 2uz()) + 3] (4.27b)
Sy = 0(Qumsr + 2ua(2),). (4.27¢)

Similar to the An =1 case, ([E26a)) and (£26D) are a nonlinear system for Ay and ~9. The solution
of this system is

cmo+Cn cmo, —Cno 72
do= —i (w) i\/_ {W] — 82(po +m) (o +n), (4.28a)
(,U'O + m)(Qn n+1 + 2U2 72)
4.28b
Ao +1C™ ( 8 )

M2, 1o

Provided Sy # 0, there exists an interval of pg € (M _, Ms 1), where
P =P, L9 So

cg(po +m) — cg(po +1n) cg(po +m) — cg(po +n)

My = V= (o +m) (o +n),  (4.29)

such that Ao has a nonzero real part. It is shown in the Appendix that Sy # 0 for all relevant values

of B. Thus, the interval of Floquet exponents that parameterizes the An = 2 high-frequency isola
to O(g?) is

peE (po+e*Ma_,po+e*Ma ). (4.30)

Unlike when An = 1 [I3]), the center of this interval changes at the same rate as its width, and
this width is an order of magnitude smaller than for the An = 1 instabilities. This explains why
numerical detection of An = 2 instabilities presents a greater challenge than for An = 1 instabilities;

From the results above, we obtain an asymptotic expansion for the Floquet exponent of the most
unstable spectral element of the An = 2 high-frequency isola:

m o __ n
PHO Pﬂo

g2 e3). )
cg(po +m) — cq(po +n) o) (4.31)

Hs = pho +

Asymptotic expansions for the real and imaginary component of this spectral element are

A = €2[Salv/ = (1o + m) (po + ) + O(?), (4.32a)
Pincg(po +n) — Pliicg(po +m)
cg(po +m) — Cg(#o +n)

i = =Q(po + 1) —

)

2+ 0. (4.32b)
These expansions are in excellent agreement with numerical computations from FFH, as is seen in
This is a consequence of resolving quadratic corrections to the real and imaginary com-

ponents of An = 2 high-frequency isolas simultaneously, unlike in the An = 1 case.

Analogous to the derivation of (£I6]), the ellipse given by

o [ Pliicg(potn) =Py cg(pot+m) 2
/\% [/\i + Q(MO + n) +e€ ( ch(qurm)fcg?qurn) ):| 2
5+ i e = =S5 (po +m) (o +n) +O(e). (4.33)
C m Cg n
€ (CZ(qurm)*cg(qurn))

—

5To obtain [@26a) and @26L), one also needs evenness of ug(x) so that 1;(1\)72 = u2(z),.
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FIGURE 4. (Left) Interval of Floquet exponents that parameterize the An = 2
high-frequency isola for parameters a = 1, § = 0.25, and ¢ = 1 as a function of
e. (8 = 0.7 only gives rise to a An = 1 isola: § must be changed to satisfy (3.10)
for a An = 2 isola to arise.) Solid blue curves indicate the asymptotic boundaries
of this interval according to (£30). Blue circles indicate the numerical boundaries
computed using FFH. The solid red curve gives the Floquet exponent corresponding
to the most unstable spectral element of the isola according to (£.31]). The red circles
indicate the same but computed numerically using FFH. (Right) The real (blue)
and imaginary (red) parts of the most unstable spectral element of the isola as a
function of . Solid curves illustrate asymptotic result (£32). Circles illustrate
results of FFH.

is asymptotic to the An = 2 high-frequency isola. This ellipse has center that drifts from the
collision site at a rate comparable to its semi-major and -minor axes,

as = &°|Sa|\/— (1o +m)(uo + n) (4.34a)

by = | Callo ) F oo + 1) (4.34D)

cq(po +m) = cg(po +m) |’

respectively. This behavior contrasts with that seen in the An = 1 case, where the center drifts
slower than the axes grow. Comparison with numerical computations using FFH show that (33
is an excellent approximation for An = 2 high-frequency isolas; see

4.3. High-Frequency Instabilities: An > 3

The approach used to obtain leading-order behavior of the An = 1,2 high-frequency isolas gen-
eralizes to higher-order isolas. The method consists of the following steps, each of which is readily
implemented in a symbolic programming language:

(i) Given An € N, determine the unique g, m, and n to satisfy collision condition (B3,
assuming (3 satisfies (F10).

(ii) Expand about the collided eigenvalues in a formal power series of ¢ and similarly expand
their corresponding eigenfunctions and Floquet exponents. To maintain uniqueness of the
eigenfunctions, choose the normalization (£4]).

(iii) Substitute these expansions into the spectral problem ([B.6]). Collecting like powers of &,
construct a hierarchy of inhomogeneous linear problems to solve.

(iv) Proceed order by order. At each order, impose solvability and normalization conditions.
Invert the linear operator against its range using the method of undetermined coefficients.
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FIGURE 5. (Left) An = 2 high-frequency isola for a« = 1, § = 0.25, ¢ = 1, and
e =1073. The solid red curve is ellipse ([@33)). Blue circles are a subset of spectral
elements from the numerically computed isola using FFH. Blue circles are a subset of
spectral elements from the numerically computed isola using FFH. (Right) Floquet
parameterization of the real (blue) and imaginary (red) parts of the isola. Solid
curves illustrate asymptotic result [@28a)). Circles indicate results of FFH.

Use previous normalization and solvability conditions as well as the collision condition to
simplify problems if necessary.

We conjecture that this method yields the first nonzero real part correction to the Ant" high-
frequency isola at O(s2™). We have shown that this conjecture holds for An = 1,2. For An = 3,
one can show that the high-frequency isola is asymptotic to the ellipse

P cq(potn) =P cg(potm) T\
cg(po+m)—cg(po+n)

A2 N (Ai+9(uo+”)+€2{

— =-52 +m +n)+ O(e), (4.35
e 56(09(#0+m)+09(#o+n))2 3o+ m) (o + ) + O(), (435)

cg(po+m)—cg(po+n)

where
53 =0 |:Qn,n+1Qn,n+2 + 2“2(1')2(Qn,n+1 + Qn,n+2) + 2“3(1')3 . (436)

The semi-major and -minor axes of ([A35)) scale as O(g?), as the conjecture predicts. If true for all
An, this conjecture explains why higher-order isolas are challenging to detect both in numerical and
perturbation computations of the stability spectrum.

One notices that the center of ([@30) drifts similarly to that of the An = 2 high-frequency iso-
las (@33)). In fact, centers of higher-order isolas (beyond An = 1) all drift at a similar rate, as these
isolas all satisfy the same O(g?) problem and, hence, yield corrections at this order. Consequently,
one can expect to incur corrections to the imaginary component of the high-frequency isola before
reaching O(¢2"), making it more difficult to prove our conjecture about the first occurence of a
nonzero real part correction.

5. An = 1 HIGH-FREQUENCY INSTABILITIES AT HIGHER-ORDER

As we saw in Section 4.1, the asymptotic formulas for the An = 1 high-frequency isola fail to
capture its O(e?) drift along the imaginary axis. This is expected, as we only considered the O(g)
problem. In this section, we go beyond the leading-order behavoir of these instabilities. We expect
similar calculations to arise if one considered the O(eP) problem for a generic An isola, where p > An.
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5.1. The O(¢) Problem Revisited

Finishing our work from Section 4.1, we solve for wq(z) in (£8). We find
+ 'YOQn,erlei(erl)z + ,yleimz7 (51)

where Qn s is defined as in ([@23) and 7 is an undetermined constant at this order.

w1 (1') = Qn,nflei(nil)z

5.2. The O(c?) Problem

At O(e?), we have
(Lo — Xo)wz(x) = Aqwp(x) + AMw1(z) — ico(prwr (z) + powo(x)) — ca(ipo + Op)wo(x) (5.2)
— 3i(ipo + 0x) (pawi (€) + pawo () + 3u3 (ipto + B )wo ()
— 58i(ipo + 9x)* (prwi () + pawo(x)) + 1083 (ipo + 0x) wo ()
—20(ipo + Oz) (ur (z)wr (z) + uz(x)wo () — 20ipyug (x)we(x).

After substituting wo(x), wi(z), u1(z), and us(z) into (B2), solvability conditions of the second-
order problem form the linear system

( 1 7?0—(,“0 + n) > <)‘2> =1 <O—70M1 - @12,:1&}17#0> , (53)
Y0 A1 +ipicg(po +m) ) \m op1 —Cm,
where
C’l]l\gyﬁlitlylto = HQCg(HO + N) - 75;11.\([)7]6 + IU‘%D;]XW (548,)

P;ﬁ’k = (ko + N) [0(Qn,Nn+k + 2v20) + 2], (5.4b)

DY = 3(uo + N) — 108(uo + N)™. (5.4¢)
For py € (—My, My) [@I2), one can show that

1 —io(po + 1)
¢ (70 A1+ ipcg(po +m) L (5.5)

Since A1, # 0 for this interval of yy, it follows that (53) is invertible. Using Cramer’s rule and
(4I0a) and (£I0D), the solvability conditions at O(¢), gives

7

Ay = — (AX + i B) (5.6)
201
where
N’m,l ~n,—1
‘A = C#zyﬂl#o + 6#21#1#0’ (5-7&)
B = cg(to + m)CZ;:}h#O + cg(po + n)C:Z’ithm —0%(2u0 +m +n). (5.7b)

5.3. Determination of us: The Regular Curve Condition

A quick calculation shows that Ay has two branches, Ay 1 and A2 _, and, for any pus € R, Ay 4 =
—K. Consequently, (B.6]) results in a spectrum that is symmetric about the imaginary axis regard-
less of py. We want this spectrum to be a continuous, closed curve about the imaginary axis. As
we shall see, this additional constraint is enough to determine o uniquely. We call this additional
constraint the reqular curve condition.

To motivate the regular curve condition, consider the real and imaginary parts of (G.6):

1
Aoy ==——— (AN + 11 B), (5.8a)
201
Ao = _é_ (5.8b)
2
As |u1| approaches M7, A1, approaches zero. To avoid unwanted blow-up of Az -, we must impose
lim (-A)\l,i + ,U,lB) =0. (59)

[p1|— My
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Since 1 appears in A only as p?, we can rewrite (5.9) with the help of ([@I1a) as

lim (—é(cg(,uo +m) + cg(po +n)) + B) = 0. (5.10)
pu2—M? 2

Equation ([@.I0) is the regular curve condition for second-order corrections to the An = 1 isola.
Unpacking the definitions of A and B above, the regular curve condition implies that

m,1 n,—1
B Pt — P B 202 (2p0 + m +n) 511
H2 = 29 ( . )
cg(po +m) —cg(po +mn)  (cq(po +m) — cg(pio +n))
where
o 40® (po +m)(po + n)
N,k _ BN,k 0 0 N
PR = PN D (5.12)

(cg(po +m) = cqpo +n))>

Therefore, to O(?), the asymptotic interval of Floquet exponents that parameterizes the An = 1
high-frequency isola is

uwe (Ho —eMy + €%po, o + My + €2u2) . (5.13)

5.4. The Most Unstable Eigenvalue

To O(e), the expression for the real part of the An = 1 high-frequency isola is

2
c +m)—c +n
)\51) — EAl,T:iE\/_M% [ q(1o )2 A )] — 02(po + m)(po +n). (5.14)
The most unstable eigenvalue of (5.14)) occurs when pi; = 4,1, where p, 1 is a critical point of )\Sl):
NS
=0. (5.15)
O

Hox,1
Solving (5.15)), one finds w1 = 0, and we conclude that the Floquet exponent that corresponds to
the most unstable eigenvalue is . = po + O(e?), as found in Section 4.1.

To O(g?), the real part of our isola is

AP =X, + 2N, (5.16)
where Ay, is given in (BI4) and Az, is given in (5.8a)). Without loss of generality, we choose the
positive branch of A; ;.
Taking inspiration from (G.I0]), we consider the critical points of (B.10):

NS
O

—0. (5.17)

o, 1

After some tedious calculations, (5.17) yields the following equation for ju. 1:

2
g2, (Cg(uo +m) — cg(po + n)) L€ [Ai o (A*M% O
. 2 A e e
oB +m) — +n)\? '
+ M*,IW + B*) + /1/*71 (-A*)\*,l,i + ,U/*,IB*) (Cg('uo m) 2 Cg('uo n)) :| = 0,
Tl

where it is understood that starred variables are evaluated at y, ;. Unpacking the definitions of A,
B, A1, and Ap; reveals that (B.I8) is a quartic equation for ., ; with the highest degree coefficient
multiplied by the small parameter ¢. Rather than solving for p.; directly, we obtain the roots
perturbatively.

An application of the method of dominant balance to (BI8) shows that all of its roots have leading
order behavior O(e71), except for one. Because we anticipate that lim._,0 p«.1 = 0 to match results
at the previous order, it is this non-singular root that we expect to yield the next order correction
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FIGURE 6. (Left) Interval of Floquet exponents that parameterize the An = 1
high-frequency isola for parameters « = 1, § = 0.7, and ¢ = 1 as a function of ¢.
Solid blue curves indicate the asymptotic boundaries of this interval according to
(E13), while the dotted blue curves give the O(g) result. Blue circles indicate the
numerical boundaries computed using FFH. The solid red curve gives the Floquet
exponent corresponding to the most unstable spectral element of the isola according
to (B:22), while the dotted red gives the O(g) result. The red circles indicate the
same but computed numerically using FFH. (Right) The real (blue) and imaginary
(red) parts of the most unstable spectral element of the isola as a function of . Solid
curves illustrate asymptotic result (5:23)). Dotted curves illustrate the asymptotic
results only to O(e). Circles illustrate results of FFH.

for j1.,1. Therefore, we need not concern ourselves with singular perturbation methods and, instead,
make the following ansatz:

pen =0+ a1 + O(e2). (5.19)

Plugging our ansatz into (B.I8) and keeping terms of lowest power in &, we find the following linear
equation to solve for i, 1,1:

(CQ(MO +m) —cg(po +n)
7,“4*,1,1

2
where Ay and By are A and B evaluated at u; = 0, respectively. Using the definition of A and B
together with the expression for ps in (&I1]) above, one finds that

o D;TZ; _DZU 5.21
fe1,1 = —40" (o + m)(po + n) ((Cg(ﬂo +m) —cg(po +”))3) - 20

It follows that the Floquet exponent corresponding to the most unstable eigenvalue of the An =1
high-frequency isola is

) + % (Bo — Ap) =0, (5.20)

fx = pio + €2 (p2 + pre11) + O(®). (5.22)
The most unstable eigenvalue is then
Av = Ao + €>‘1|#1:0 =+ 52/\2|#1:0,#2:#2+#*,1,1 =+ 0(53)' (523)

[Figure 6| and [Figure 7] show improvements to results in [Figure 2| and [Figure 3| respectively, as a
result of our higher-order calculations.

6. CONCLUSIONS

In this work, we investigate the asymptotic behavior of high-frequency instabilities of small-
amplitude Stokes waves of the Kawahara equation. For the largest of these instabilities (An = 1, 2),
we introduce a perturbation method to compute explicitly
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FIGURE 7. (Left) An = 1 high-frequency isola for « = 1, 8§ = 0.7, 0 = 1, and
e = 1073, The solid red curve is parameterized by (5.6]). This curve is no longer
an ellipse, but a more complicated algebraic curve. For comparison, the dotted red
curve is the ellipse found at O(e). Blue circles are a subset of spectral elements from
the numerically computed isola using FFH. (Right) Floquet parameterization of the
real (blue) and imaginary (red) parts of the isola. Solid curves illustrate asymptotic
result (5.6). Dotted curves illustrate the asymptotic results only to O(g). Circles
indicate results of FFH.

(i) the asymptotic interval of Floquet exponents that parameterize the high-frequency isola,
(ii) the leading-order behavior of its most unstable spectral elements, and
(iii) the leading-order curve asymptotic to the isola.
We outline the procedure to compute these quantities for higher-order isolas. For the first time,
we compare these asymptotic results with numerical results and find excellent agreement between
the two. We also obtain higher-order asymptotic results for the An = 1 high-frequency isolas by
introducing the reqular curve condition.

The perturbation method used throughout our investigation holds only for nonresonant Stokes
waves (ZI2). Resonant waves require a modified Stokes expansion, and as a result of this modifica-
tion, the leading-order behavior of the high-frequency isolas will change. Some numerical work has
been done to investigate this effect [28], but no perturbation methods have been proposed.

7. APPENDIX
Theorem 1. For each An € N, if § satisfies (2.12) and (BI0), there exists a unique pgo € [0,1/2]
and unique m # n € Z such that the collision condition (B3] is satisfied.

Proof. Define
k+ An) — Q(k)

Q
F(k; An) = ( An (7.1)
Using the definition of the dispersion relation 2,
F(k; An) = 56k* + 108Ank® + (103(An)? — 3)k* + (58(An)® — 3An)k
+ B(An)* — (An)?> +1— 8. (7:2)
A direct calculation shows that
F(k; An) = F(—(k 4+ An); An). (7.3)

Hence, the graph of F' is symmetric about k = —An/2. We prove the desired result for the various
cases of An.



HIGH-FREQUENCY INSTABILITIES OF THE KAWAHARA EQUATION: A PERTURBATIVE APPROACH 18

Case 1. Suppose An = 1. Then, k&1 = 0 and ky = —1 are roots of F by inspection. The
remaining roots are
-1+,/2-3
B
ks34 = — (7.4)
Because  satisfies ([B.10), one can show that
12
0<-—=_-3<1, 7.5

so that k34 € (ke,k1). Because F is symmetric about £ = —An/2, we have k3 € (—1/2,0) and
ki€ (—1,-1/2).

Each of these wavenumbers k; is mapped to a Floquet exponent p € (—1/2,1/2] according to
(k) = ks — [k, (7.6)

where [-] denotes the nearest integer function]. Both k; and ks map to u = 0. One checks that
w(ks) = —p(ks) # 0 and |u(ks)| = |p(ks)| < 1/2, since ky = —(k3 + 1) and —1/2 < k3 < 0. Thus,
the requisite po € (0,1/2) is u(k;), where j is either 3 or 4 depending on which has the correct sign.
Then, n = [k;] and m = n + An. These are unique by the uniqueness of k;.

Case 2. Suppose An = 2. A calculation of F(—1;2) and Fj(—1;2) shows that k12 = —1is a
double root. The remaining roots are

ksg=—1+ ,/% —2. (7.7)

Clearly, p(k1,2) = 0. Since ky = —(ks + 2), we again have pu(ks) = —u(ks). Also, from the formula
for k3 above, we have that —1 < k3 < 0 by (B.10), so u(ks) is nonzero. Thus, p(k;) is the requisite
po € (0,1/2], where j is either 3 or 4 depending on which has the correct sign. Again, n = [k;] and
m = n + An are uniquely defined.

Remark. Unlike in the first case, we cannot guarantee pug # 1/2. Indeed, this value can be
achieved when 8 = 4/15.

Case 3. Suppose An > 3. The discriminant of F(k; An) with respect to k is

AL[F] = 58 [(An)? — 4] [B((An)% +4) — 4] [58 (B (An)* +4) — 2 ((An)2 +2)) +9]°.  (7.8)

For g satisfying inequality B.I0), we have Ay [F] < 0, implying there are two distinct real roots of F.
These roots must be nonpositive by an application of Descartes’ Rule of Signs on F'. Without loss
of generality, suppose ko < k1. Then, by the symmetry of F' about k = —An/2, ks = —(k1 + An).
It follows that (k1) = —p(k2). Thus, pu(k;) is the requisite value of yo € [0, 3], where j = 1 or 2
depending on which has the correct sign. The integers n and m are uniquely defined as before.

Remark. In [21], 8 = 1/((An/2)? + 1) is included in inequality (3.I0) when An > 3. For this
B, F(k;An) has a double root at k. = —An/2. However, Q(k,) = 0, which corresponds to an
eigenvalue collision at the origin. Eigenvalue collisions at the origin do not satisfy (3:9).

In each of these cases, we have found k; < 0 such that F(k;; An) = 0. Importantly, one must
check that Q(k;) # 0 for such k;. Indeed, suppose Q(k;) = 0. A direct calculation shows that
k;j = £1, 0, or kf = (1 - 0)/B. Clearly k; = 0 or 1 contradict that k; < 0. If k; = —1, then
F(—1;An) = 0 implies 8 = 1/[(An — 1)? + 1], which contradicts (ZI2) when An # 2. If An = 2,
B = 1/2, which contradicts (ZI0).

It remains to be seen if kJJQ = (1 — 8)/8 leads to contradiction. Indeed, a straightforward (although
tedious) calculation shows that, if k2 = (1—3)/8, F(k;; An) = 0 implies 8 = 0, = 1/[1+(An/2)?],

50ur convention is [p/2] = (p — 1)/2 for p odd.
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B=1/[1+ (An—1)%, or B =1/[1+ (An+ 1)?]. All of these lead to contradictions of (ZI2)) or
(3I0). Therefore, we must have Q(k;) = Q(uo +n) = Q(uo +m) # 0 in all cases, as desired.

O

In expressions for the isolas derived in Sections 4 and 5, factors of ¢4(po + m) — cg(po + n) appear
in denominators. A consequence of Theorem 1 is that this factor is never zero:

Corollary 1. Fix An € N and choose § to satisfy 2I2) and BI0). Consider uoy € [0,1/2]
that solves Q(uo +m) = Q(uo + n) for unique integers m,n such that m = n + An. Suppose, in
addition, that p solves cq(po +m) = cq(po + n), where c4(k) = Q'(k). Then, An =2 and po = 0.

Proof. If Q(po +m) = Quo + n) and cy(po + m) = cy(po + n), then kg = po + m is a double
root of F(k; An). From the proof of the theorem above, the only double root is kg = —1 (i.e.
to = 0) when An = 2.

a

The corresponding eigenvalue collision for this An and po happens at the origin in the complex
spectral plane and is not of interest to us. Thus, cg(uo + m) # cq(1o + n).

In Section 4.2, the quantity S; ([@27d) must be nonzero in order for An = 2 high-frequency in-
stabilities to exist at O (52). The following corollary shows Sz # 0 for 3 satisfying inequality (B10).

Corollary 2. For S, defined in [27d) and 8 satisfying inequality (B10) for An =2, Sy # 0.

Proof. Since An = 2, we have from FI0) that 1/5 < 8 < 3/10. In addition, from Theorem 1
and Corollary 1, we know k; 2 = 1 is a double root of F(k; An) for all 8 in this interval, and the

remaining roots of F' are
ksa=—1=%4/ 3 2 (7.9)
3.4 = 5ﬂ . .

These remaining roots correspond to the nonzero eigenvalue collisions that give rise to the An = 2
high-frequency instability.

The quantity Ss can be written in terms of k3 4 as

[ ksa+1 " 1 :|
Qlksa+1) = Qkss)  Q(2)]°
Because k3 4 are symmetric about k = 1 (from the symmetry of F'), the value of S is independent
of the choice of k3 4. Using the definition of the dispersion relation Q (2.14)), (7I0) simplifies to

0.2

T 2(1-58)

Sy = o? (7.10)

S, (7.11)

which is nonzero for 1/5 < § < 3/10.
O
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