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Abstract. We analyze the spectral stability of small-amplitude, periodic, traveling-wave solu-
tions of the Kawahara equation. These solutions exhibit high-frequency instabilities when subject

to bounded perturbations on the whole real line. We introduce a formal perturbation method
to determine the asymptotic growth rates of these instabilities, among other properties. Explicit
numerical computations are used to verify our asymptotic results.

1. Introduction

We investigate small-amplitude, L-periodic, traveling-wave solutions of the Kawahara equation

ut = αuxxx + βu5x + σ(u2)x, (1.1)

where α, β, and σ are nonzero, real parameters [20]. Similar to Stokes waves of the Euler water wave
problem [26, 29], these solutions are obtained order by order as power series in a small parameter
that scales with the amplitude of the solutions; see [14] and Section 2 below for more details. We
refer to these solutions as the Stokes waves of the Kawahara equation.

The Kawahara equation is dispersive with linear dispersion relation

ω(k) = αk3 − βk5. (1.2)

The equation is Hamiltonian,

ut = ∂x
δH

δu
, (1.3)

with

H =

∫ L

0

(
−
α

2
u2
x +

β

2
u2
xx +

σ

3
u3

)
dx. (1.4)

In an appropriate traveling frame, the Stokes waves of (1.1) are critical points of the Hamiltonian,
prompting an investigation of the flow generated by (1.4) about the Stokes wave solutions.

Perturbing the Stokes waves by functions bounded in space and exponential in time yields a spectral
problem whose spectral elements characterize the temporal growth rates of the perturbations; see
Section 3 for more details. We refer to this collection of spectral elements as the stability spectrum
of the Stokes waves.

A standard argument [18] shows that the stability spectrum is purely continuous, but Floquet
theory can decompose the spectrum into an uncountably infinite collection of point spectra. Each
point spectra is indexed by a real number, called the Floquet exponent, that is contained within a
compact interval of the real line [15, 17].

For the Euler water wave problem, these point spectra depend analytically on the amplitude of
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Figure 1. (Left) A stability spectrum of Stokes wave solutions of (1.1) with α = 1,
β = 0.7, σ = 1, and small-amplitude parameter ε = 10−3, computed using the FFH
method. A uniform grid of 103 Floquet exponents between [−1/2, 1/2] approximates
purely imaginary point spectra but misses the high-frequency isolas. A uniform grid
of 4×103 Floquet exponents in the interval described by (4.13), obtained in Section
4, captures these isolas. (Right) Zoom-in of the high-frequency isola boxed in the
left plot (with fewer point spectra shown for ease of visibility). The red curve is
obtained in Section 5 and approximates the isola.

the Stokes waves [2, 3]. Based on numerical experiments [28], similar results appear to hold for the
Kawahara equation. The spectrum also exhibits quadrafold symmetry due to the underlying Hamil-
tonian nature of (1.1) [15],[23]. Therefore, for a Stokes wave with given amplitude to be spectrally
stable, all point spectra must be on the imaginary axis. Otherwise, there exist perturbations to the
Stokes waves that grow exponentially in time, and the Stokes waves are spectrally unstable.

In contrast with the completely integrable KdV equation (β = 0) [8, 24, 25], considerably less
is known about the stability spectrum of Stokes waves to (1.1). Haragus, Lombardi, and Scheel
[14] prove that this spectrum lies on the imaginary axis for small-amplitude Stokes waves in a
particular scaling regime. Such solutions are, therefore, spectrally stable. Work by Trichtchenko,
Deconinck, and Kollár [28] develops necessary criteria for the stability spectrum of a broader class
of small-amplitude Stokes waves to leave the imaginary axis and provide numerical evidence for the
high-frequency instabilities that result.

High-frequency instabilities arise from pairwise collisions of nonzero, imaginary elements of the
stability spectrum. Upon colliding, these elements may symmetrically bifurcate from the imaginary
axis as the amplitude of the Stokes wave grows, resulting in instability [11],[23]. An example of a
high-frequency instability for a small-amplitude Stokes wave of (1.1) is seen in Figure 1. We refer
to the locus of spectral elements off the imaginary axis and bounded away from the origin as high-
frequency isolas. The isolas of Figure 1, as well as the rest of the stability spectrum, are obtained
numerically using the Floquet-Fourier-Hill (FFH) method; see [9] for a detailed description of this
method.

High-frequency instabilities are not as well-studied as the modulational (or Benjamin-Feir) instabil-
ity that arises from collisions of spectral elements at the origin of the complex spectral plane [5],[7].
Current understanding of high-frequency instabilities is limited mostly to numerical experiments.
Exceptions include the works of Akers [4] and Trichtchenko, Deconinck, and Kollár [28], which ob-
tain asymptotic information about the high-frequency isolas for the Euler problem in infinitely deep
water and for the Kawahara equation, respectively.
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The purpose of our present work is to build on these results. In particular, for sufficiently small-
amplitude solutions, we seek the following:

(i) the asymptotic range of Floquet exponents that parameterize the high-frequency isolas ob-
served in numerical computations of the stability spectrum,

(ii) asymptotic estimates of the most unstable spectral elements of the high-frequency isolas,
and

(iii) expressions for curves asymptotic to these isolas, as seen in Figure 1.

To obtain these quantities, we develop a perturbation method inspired by [4] that readily extends
to higher-order calculations. Asymptotic results obtained by this method are then compared with
numerical results from the FFH method.

2. Small-Amplitude Stokes Waves

We move to a frame traveling with velocity c so that x → x− ct. Equation (1.1) becomes

ut = cux + αuxxx + βu5x + σ(u2)x. (2.1)

We seek L-periodic, steady-state solutions of (2.1). Equating time derivatives to zero and integrating
in x, we arrive at

cu+ αuxx + βu4x + σu2 = C, (2.2)

where C is a constant of integration. Using the Galilean symmetry of (1.1), there exists a boost ξ
such that, with c → c+ ξ and u → u+ ξ, C can be omitted from (2.2):

cu+ αuxx + βu4x + σu2 = 0. (2.3)

Scaling x → 2πx/L and u → 2πu/(αL) allows us to consider 2π-periodic solutions of

cu+ uxx + βu4x + σu2 = 0, (2.4)

without loss of generality, provided c, β, and σ are appropriately redefined.

Let u = uS(x; ε) be a one-parameter family of 2π-periodic solutions of (2.4) with corresponding
velocity c = c(ε). The existence of such a family is rigorously justified by Lyapunov-Schmidt re-
duction; see [14]. In what follows, we define the parameter ε as twice the first Fourier coefficient of
uS(x; ε):

ε := 2 ̂uS(x; ε)1 =
1

π

∫ 2π

0

uS(x; ε)e
ixdx, (2.5)

where ·̂ is the Fourier transform on the interval (0, 2π). Because the L2(0, 2π) norm of uS(x; ε)
scales like ε when |ε| ≪ 1, we call ε the small-amplitude parameter.

From [14], expansions for uS(x; ε) and c(ε) take the form

uS(x; ε) =

∞∑

k=1

uk(x)ε
k, (2.6a)

c(ε) =
∞∑

k=0

c2kε
2k, (2.6b)

where uk(x) is analytic and 2π-periodic for each k. Exploiting the invariance of (2.4) under x → −x
and x → x + φ, we require uk(x) = uk(−x) so that uS(x; ε) is even in x without loss of generality.
Substituting these expansions into (2.4) and following a Poincaré-Lindstedt perturbation method
[29], one finds corrections to uS(x; ε) and c(ε) order by order.

One difficulty occurs at leading order of the Poincaré-Lindstedt method. Substituting expansions
(2.6) into (2.4) and collecting terms of O(ε), we find

[
c0 + ∂2

x + β∂4
x

]
u1(x) = 0. (2.7)
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From (2.5), û1(x)1 = 1/2. Taking the Fourier transform of (2.7) and evaluating at the first mode,
we find

[c0 − 1 + β] û1(x)1 =
1

2
(c0 − 1 + β) = 0, (2.8)

which implies that

c0 = 1− β. (2.9)

By inspection,

u1(x) = cos(x) (2.10)

is a solution to (2.7) that is analytic, 2π-periodic, even in x, and satisfies the normalization û1(x)1 =
1/2. If β = 1/(1 +N2) for any integer N > 1, then

u1(x) = cos(x) + CN cos(Nx), (2.11)

where CN is an arbitrary real constant, is an equally valid solution to (2.7) with the requisite
properties. In this case, the Stokes waves are said to be resonant and exhibit Wilton ripples [30].
Expansions (2.6) must be modified as a result; see [1, 16], for instance.

In this manuscript, we restrict to nonresonant Stokes waves:

β 6=
1

1 +N2
, (2.12)

for N stated above, and (2.9) and (2.10) are the unique leading-order behaviors of c(ε) and uS(x; ε),
respectively. The remainder of the Poincaré-Lindstedt method follows as usual. We terminate the
method after third-order corrections, as this is sufficient for our calculations that follow. We find

uS(x; ε) = εu1(x) + ε2u2(x) + ε3u3(x) +O(ε4) (2.13a)

= ε cos(x) + ε2
σ

2

(
−

1

c0
+

2

Ω(2)
cos(2x)

)
+ ε3

3σ2

Ω(2)Ω(3)
cos(3x) +O(ε4),

c(ε) = c0 + c2ε
2 +O(ε4) (2.13b)

= 1− β + σ2

(
1

c0
−

1

Ω(2)

)
ε2 +O(ε4),

where Ω(·) is the linear dispersion relation of the Kawahara equation (1.1) (with α = 1) in a frame
traveling at velocity c(ε):

Ω(k) = −c0k + k3 − βk5. (2.14)

3. Necessary Conditions for High-Frequency Instability

3.1. The Stability Spectrum

We consider a perturbation to uS(x; ε) of the form

u(x, t) = uS(x; ε) + ρv(x, t) +O(ρ2), (3.1)

where |ρ| ≪ 1 is a small parameter independent of ε and v(x, t) is a sufficiently smooth, bounded
function of x on the whole real line for each t ≥ 0. Substituting (1.1) (with α = 1) and collecting
terms of O(ρ), we find by formally separating variables

v(x, t) = eλtW (x) + c.c., (3.2)

where c.c. denotes complex conjugation of what precedes and W (x) satisfies the spectral problem

λW (x) = L(uS(x; ε), c(ε), β, σ)W (x), (3.3)

with

L(uS(x; ε), c(ε), β, σ) = c(ε)∂x + ∂3
x + β∂5

x + 2σuS(x; ε)∂x + 2σu′
S(x; ε), (3.4)
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where primes denote differentiation with respect to x. From Floquet theory [15], all solutions of
(3.3) that are bounded over R take the form

W (x) = eiµxw(x), (3.5)

where µ ∈ [−1/2, 1/2] is the Floquet exponent and w(x) is 2π-periodic in an appropriately chosen
function space.

Remark. The conjugate of W (x) is a solution of (3.3) with spectral parameter λ. Since the
spectrum of L is invariant under conjugation according to [15], one can restrict µ to the interval
[0, 1/2] without loss of generality.

Substituting (3.5) into (3.3), our spectral problem becomes a one-parameter family of spectral
problems:

λµw(x) = Lµ(uS(x; ε), c(ε), β, σ)w(x), (3.6)

where Lµ is L with ∂x → iµ + ∂x. In light of (3.6), we require w(x) ∈ H5
per(0, 2π) so that Lµ is a

closed operator densely defined on the separable Hilbert space L2
per(0, 2π) for a given µ. Then, Lµ

has a discrete spectrum of eigenvalues λµ for each µ and the union of λµ over all µ ∈ [0, 1/2] yields
the purely continuous spectrum of L, which is the stability spectrum of Stokes waves. See [15] for
more details.

As stated in the introduction, if there exists λµ with Re (λµ) > 0, then there exists a perturbation
to the Stokes wave that grows exponentially in time, and we say that the Stokes wave is spectrally
unstable. Otherwise, the wave is spectrally stable. Since (3.6) is obtained from a linearization of a
Hamiltonian system (1.1), the stability spectrum is invariant under conjugation and negation. As a
result, spectral stability implies that all eigenvalues of Lµ are purely imaginary.

3.2. The Necessary Conditions for High-Frequency Instability

For fixed µ, the operator Lµ depends implicitly on the small parameter ε through its depen-
dence on uS(x; ε) and c(ε). If ε = 0, Lµ reduces to

Lµ
0 = c0(iµ+ ∂x) + (iµ+ ∂x)

3 + β(iµ+ ∂x)
5, (3.7)

a constant-coefficient operator, and its eigenvalues λµ
0 are explicitly given by

λµ
0,n = −iΩ(µ+ n), (3.8)

where n ∈ Z. For all µ and n, these eigenvalues are purely imaginary, implying that the zero-
amplitude solution of the Kawahara equation is spectrally stable.

Importantly, not all eigenvalues given by (3.8) are simple. Using the theory outlined in [21] and
[28], one has

Theorem 1. For each ∆n ∈ N, there exists a unique Floquet exponent µ0 ∈ [0, 1/2] and unique
integers m and n such that m− n = ∆n and

λµ0

0,n = λµ0

0,m 6= 0, (3.9)

provided that the parameter β is nonresonant (2.12) and that β satisfies the inequality1:

max

(
3

5(∆n)2
,

1

1 + (∆n)2

)
< β < min

(
6

5(∆n)2
,

1
(
∆n
2

)2
+ 1

)
, ∆n < 3, (3.10a)

1

1 + (∆n)2
< β <

1

1 +
(
∆n
2

)2 , ∆n ≥ 3. (3.10b)

The proof is found in the Appendix.

1A similar statement holds for ∆n < 0. This yields the complex conjugate eigenvalues that satisfy (3.9).
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The eigenfunctions of these nonsimple eigenvalues take the form

w0(x) = γ0e
imx + γ1e

inx, (3.11)

where γ0, γ1 are arbitrary, complex constants. We assume the eigenvalues that satisfy (3.9) are
semi-simple with geometric and algebraic multiplicity two. Then, these eigenvalues represent the
collision of two simple eigenvalues at ε = 0, and (3.9) is referred to as the collision condition.

Collision of eigenvalues away from the origin is a necessary condition for the development of high-
frequency instabilities. Inequality (3.10) guarantees that there are a finite2 number of such collisions
for a given β: this is in contrast to the water wave problem, where a countably infinite number of
collisions occur [11]. Each collision site can be enumerated by ∆n. The largest high-frequency isola
occurs from the ∆n = 1 collision, which we study in Section 4.1.

A second condition for high-frequency instabilities necessitates that the Krein signatures [22] of
the two collided eigenvalues have opposite signs [23]. It is shown in [11, 21, 28] that this condition
is equivalent to

(µ0 + n)(µ0 +m) < 0, (3.12)

where µ0, m, and n are obtained from the collision condition (3.9). For any β that satisfies condi-
tions (2.12) and (3.10) and any µ0, m, and n that satisfies the condition (3.9), (3.12) is automatically
satisfied; see [21] and [28] for the proof.

As |ε| increases in magnitude, a neighborhood of spectral elements around the collided eigenval-
ues of Lµ0

0 (3.7) can leave the imaginary axis, generating high-frequency instabilities. This is seen
explicitly in Figure 1 for the parameter choice β = 0.7, where a ∆n = 1 collision occurs at ε = 0.

4. Asymptotics of High-Frequency Instabilities

We obtain spectral data of Lµ as a power series expansion in ε about the collided eigenvalues of
Lµ0

0 . First, we apply our method to the largest high-frequency instability corresponding to ∆n = 1.
Then, we consider ∆n ≥ 2.

4.1. High-Frequency Instabilities: ∆n = 1

Let m and n be the unique integers that satisfy the collision condition (3.9) with m − n = 1,
and let µ0 be the corresponding unique Floquet exponent in [0, 1/2]. Then, the spectral data of Lµ0

0

that gives rise to a ∆n = 1 high-frequency instability is

λ0 := λµ0

0,n = −iΩ(µ0 + n) = λµ0

0,m = −iΩ(µ0 +m) 6= 0, (4.1a)

w0(x) := γ0e
imx + γ1e

inx. (4.1b)

As |ε| increases, we assume these data depend analytically on ε:

λ(ε) = λ0 + ελ1 +O(ε2), (4.2a)

w(x; ε) = w0(x) + εw1(x) +O(ε2), (4.2b)

where λ(ε) and w(x; ε) solve the spectral problem (3.6).

If λ0 is a semi-simple and isolated eigenvalue of Lµ0

0 , (4.2a) and (4.2b) may be justified using
results of analytic perturbation theory, provided µ0 is fixed [19]. Fixing the Floquet exponent in
this way, however, gives at most two elements on the high-frequency isola (provided |ε| is sufficiently
small) and these elements do not, in general, correspond to the spectral elements of largest real part
on the isola. For these reasons, we expand the Floquet exponent about its resonant value as well:

µ = µ(ε) = µ0 + εµ1 +O(ε2). (4.3)

2For ∆n sufficiently large, β fails to satisfy inequality (3.10), and no high-frequency instabilities occur.
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As we shall see, µ1 is constrained to an interval of values that parameterizes an ellipse asymptotic
to the high-frequency isola.

Like Akers [4], we impose the following normalization condition on our eigenfunction w(x; ε) for
uniqueness:

ŵ(x; ε)n = 1. (4.4)

Substituting (4.2b) into this normalization condition, we find ŵ0(x)n = 1 and ŵj(x)n = 0 for j ∈ N,

meaning w0(x) fully supports the nth Fourier mode of the eigenfunction w(x; ε). As a consequence,
(4.1) becomes

w0(x) = einx + γ0e
imx. (4.5)

Although w0(x) does not appear unique at this order, we find an expression for γ0 at the next order.

The O(ε) Problem

Substituting (4.2a), (4.2b), and (4.3) into (3.6) and collecting terms of O(ε) yields

(Lµ0

0 − λ0)w1(x) = λ1w0(x) − L1w0(x), (4.6)

where

L1 = ic0µ1 + 3iµ1(iµ0 + ∂x)
2 + 5iβµ1(iµ0 + ∂x)

4 + 2σu1(x)(iµ0 + ∂x) + 2σu′
1(x). (4.7)

Using (2.13) to replace u1(x), (4.5) to replace w0(x), and m− n = 1, (4.6) becomes

(Lµ0

0 − λ0)w1(x) = [λ1 + iµ1cg(µ0 + n)− iσγ0(µ0 + n)] einx (4.8)

+ [γ0 (λ1 + iµ1cg(µ0 +m))− iσ(µ0 +m)] eimx

− iσ(µ0 + n− 1)ei(n−1)x − iσγ0(µ0 +m+ 1)ei(m+1)x,

where cg(k) = Ω′(k) is the group velocity of Ω.

If (4.8) can be solved for w1(x) ∈ H5
per (0, 2π), the Fredholm alternative necessitates that the

inhomogeneous terms on the RHS of (4.8) must be orthogonal3 to the nullspace of (Lµ0

0 − λ0)
†,

the hermitian adjoint of Lµ0

0 − λ0. A quick computation shows that Lµ0

0 − λ0 is skew-Hermitian,
and so its nullspace coincides with that of its Hermitian adjoint. The nullspace of Lµ0

0 − λ0 is, by
construction,

Null(Lµ0

0 − λ0) = Span
(
einx, eimx

)
. (4.9)

Thus, the solvability conditions for (4.8) are

〈
einx, [λ1 + iµ1cg(µ0 + n)− iσγ0(µ0 + n)] einx

〉
= 0, (4.10a)

〈
eimx, [γ0 (λ1 + iµ1cg(µ0 +m))− iσ(µ0 +m)] eimx

〉
= 0, (4.10b)

where 〈·, ·〉 is the standard inner product on L2
per(0, 2π).

Remark. Both solvability conditions can be reinterpreted as removing secular terms from (4.8).

Moreover, solvability condition (4.10a) coincides with the normalization condition ŵ1(x)n = 0.

3In the L2
per

(0, 2π) sense
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The solvability conditions (4.10a) and (4.10b) yield a nonlinear system for λ1 and γ0 with solu-
tion

λ1 =− iµ1

(
cg(µ0 +m) + cg(µ0 + n)

2

)
(4.11a)

±

√

−µ2
1

[
cg(µ0 +m)− cg(µ0 + n)

2

]2
− σ2(µ0 +m)(µ0 + n),

γ0 =
iσ(µ0 +m)

λ1 + iµ1cg(µ0 +m)
. (4.11b)

If µ1 ∈ (−M1,M1) with

M1 =
2|σ|

√
−(µ0 +m)(µ0 + n)

|cg(µ0 +m)− cg(µ0 + n)|
, (4.12)

it follows that λ1 has nonzero real part, since (µ0 +m)(µ0 + n) < 0 by the choice of β. Therefore,
to O(ε), the ∆n = 1 high-frequency instability is parameterized by

µ ∈ (µ0 − εM1, µ0 + εM1). (4.13)

This interval is asymptotically close to the numerically observed interval of Floquet exponents that
parameterize the high-frequency isola for |ε| ≪ 1; see Figure 2.

Remark. The quantity M1 is well-defined since cg(µ0 + m) 6= cg(µ0 + n). See the Appendix
for the proof. The quantity γ0 is also well-defined, as λ1 + iµ1cg(µ0 + m) is guaranteed to be a
complex number with nonzero real part.

Equating µ1 = 0 maximizes the real part of λ1 in (4.10a). Thus, the Floquet exponent that corre-
sponds to the most unstable spectral element of the high-frequency isola has asymptotic expansion

µ∗ = µ0 +O(ε2). (4.14)

The corresponding real and imaginary components of this spectral element have asymptotic expan-
sions

λ∗,r = ε|σ|
√

−(µ0 +m)(µ0 + n) +O(ε2), (4.15a)

λ∗,i = −Ω(µ0 + n) +O(ε2), (4.15b)

respectively. The former of these expansions provides an estimate for the growth rate of the ∆n = 1
high-frequency instabilities. Figure 2 compares these expansions with numerical results from FFH.
Observe that, while the expansion for the real part is accurate, the expansion for the imaginary part
requires a higher-order calculation; see Section 5.

If λ is written as a sum of its real and imaginary components, λr and λi, respectively, then elimi-
nating dependence on µ1 between these quantities yields

λ2
r

ε2
+

(λi +Ω(µ0 + n))2

ε2
(

cg(µ0+m)+cg(µ0+n)
cg(µ0+m)−cg(µ0+n)

)2 = −σ2(µ0 +m)(µ0 + n) +O(ε). (4.16)

Thus, the ∆n = 1 high-frequency isola is an ellipse to O(ε) with center at the collision site of
eigenvalues λµ0

0,n and λµ0

0,m and with semi-major and -minor axes

a1 = ε|σ|
√
−(µ0 +m)(µ0 + n), (4.17a)

b1 = a1

∣∣∣∣
cg(µ0 +m) + cg(µ0 + n)

cg(µ0 +m)− cg(µ0 + n)

∣∣∣∣ , (4.17b)

respectively.

Our asymptotic predictions agree well with numerics, particularly for the real component of the
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Figure 2. (Left) Interval of Floquet exponents that parameterize the ∆n = 1
high-frequency isola for parameters α = 1, β = 0.7, and σ = 1 as a function of
ε. Solid blue curves indicate the asymptotic boundaries of this interval according
to (4.13). Blue circles indicate the numerical boundaries computed using FFH.
The solid red curve gives the Floquet exponent corresponding to the most unstable
spectral element of the isola according to (4.14). The red circles indicate the same
but computed numerically using FFH. (Right) The real (blue) and imaginary (red)
parts of the most unstable spectral element of the isola as a function of ε. Solid
curves illustrate asymptotic result (4.15). Circles illustrate results of FFH.
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Figure 3. (Left) ∆n = 1 high-frequency isola for α = 1, β = 0.7, σ = 1, and
ε = 10−3. The solid red curve is ellipse (4.16). Blue circles are a subset of spectral
elements from the numerically computed isola using FFH. (Right) Floquet param-
eterization of the real (blue) and imaginary (red) parts of the isola. Solid curves
illustrate asymptotic result (4.11a). Circles indicate results of FFH.

isola. There is some discrepancy between asymptotic and numerical results of the Floquet expo-
nents and imaginary component of the isola, even when ε = 10−3; see Figure 3. As noted before,
this discrepancy is resolved in Section 5.
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4.2. High-Frequency Instabilities: ∆n = 2

Suppose m, n, and µ0 satisfy the collision condition (3.9) for ∆n = 2 and appropriately cho-
sen β parameter. Then, (4.1) gives a semi-simple eigenpair of Lµ0

0 , and we assume (4.2a), (4.2b),
and (4.3) remain valid expansions for the eigenvalue, eigenfunction, and Floquet exponents in the
vicinity of this semi-simple eigenpair, respectively. We obtain the coefficients of these expansions
order by order in much the same way as for the ∆n = 1 high-frequency instabilities.

The O(ε) Problem

Substituting expansions (4.2a), (4.2b), and (4.3) into the spectral problem (3.6) and collecting
O(ε) terms gives

(Lµ0

0 − λ0)w1(x) =− iσ(µ0 + n− 1)ei(n−1)x + [λ1 + iµ1cg(µ0 + n)] einx (4.18)

− iσ(µ0 + n+ 1)(1 + γ0)e
i(n+1)x + γ0 [λ1 + iµ1cg(µ0 +m)] eimx

− iσ(µ0 +m+ 1)ei(m+1)x,

where we have used (2.13) to replace u1(x). Though equation (4.18) shares similar features with
(4.8), m− n 6= 1 in this case. Thus, (4.18) cannot be simplified further.

The solvability conditions of (4.18) are

λ1 + iµ1cg(µ0 + n) = 0, (4.19a)

γ0 [λ1 + iµ1cg(µ0 +m)] = 0. (4.19b)

Since cg(µ0+m) 6= cg(µ0+n) by the corollary provided in the Appendix and γ0 6= 04, we must have

λ1 = µ1 = 0. (4.20)

Solving (4.18) for w1(x) by the the method of undetermined coefficients, one finds

w1(x) = τ1,n−1e
i(n−1)x + τ1,n+1e

i(n+1)x + τ1,m+1e
i(m+1)x + γ1e

imx, (4.21)

where γ1 is a constant to be determined at higher order,

τ1,n−1 = Qn,n−1, (4.22a)

τ1,n+1 = (1 + γ0)Qn,n+1, (4.22b)

τ1,m+1 = γ0Qn,m+1, (4.22c)

and

QN,M =
σ(µ0 +M)

Ω(µ0 +M)− Ω(µ0 +N)
. (4.23)

Note that w1(x) does not have an nth Fourier mode, which is a consequence of the normalization
(4.4).

The O(ε2) Problem

Substituting (4.2a), (4.2b), and (4.3) into (3.6) and collecting terms of O(ε2) yields

(Lµ0

0 − λ0)w1(x) = λ2w0(x)− L2|µ1=0w0(x)− L1|µ1=0w1(x), (4.24)

where L1|µ1=0 is as before (but evaluated at µ1 = 0) and

L2|µ1=0 = ic0µ2 + c2(iµ0 + ∂x) + 3µ2i(iµ0 + ∂x)
2 + 5µ2i(iµ0 + ∂x)

4 + 2σu2(x)(iµ0 + ∂x) + 2σu′
2(x).

(4.25)

As in the previous order, we evaluate the RHS of (4.24) using (2.13) to replace u1(x) and u2(x),
(4.5) to replace w0(x), (4.21) to replace w1(x), and m − n = 2 to combine terms with exponential

4Otherwise, our unperturbed eigenfunction w0(x) is not a superposition of two distinct Fourier modes.
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arguments proportional to m−1 and n+1. After some work, one arrives at the solvability conditions5:

λ2 + iCn
µ2,µ0

= iγ0S2(µ0 + n), (4.26a)

γ0
[
λ2 + iCm

µ2,µ0

]
= iS2(µ0 +m), (4.26b)

where

CN
µ2,µ0

= µ2cg(µ0 +N)− PN
µ0
, (4.27a)

PN
µ0

= (µ0 +N)
[
σ(Qn,N−1 +Qn,N+1 + 2û2(x)0) + c2

]
, (4.27b)

S2 = σ(Qn,n+1 + 2û2(x)2). (4.27c)

Similar to the ∆n = 1 case, (4.26a) and (4.26b) are a nonlinear system for λ2 and γ0. The solution
of this system is

λ2 = − i

(
Cm
µ2,µ0

+ Cn
µ2,µ0

2

)
±

√

−

[
Cm
µ2,µ0

− Cn
µ2,µ0

2

]2
− S2

2 (µ0 +m)(µ0 + n), (4.28a)

γ0 =
iσ(µ0 +m)(Qn,n+1 + 2υ2,−2)

λ2 + iCm
µ2,µ0

. (4.28b)

Provided S2 6= 0, there exists an interval of µ2 ∈ (M2,−,M2,+), where

M2,± =
Pm
µ0

− Pn
µ0

cg(µ0 +m)− cg(µ0 + n)
± 2

∣∣∣∣
S2

cg(µ0 +m)− cg(µ0 + n)

∣∣∣∣
√
−(µ0 +m)(µ0 + n), (4.29)

such that λ2 has a nonzero real part. It is shown in the Appendix that S2 6= 0 for all relevant values
of β. Thus, the interval of Floquet exponents that parameterizes the ∆n = 2 high-frequency isola
to O(ε2) is

µ ∈
(
µ0 + ε2M2,−, µ0 + ε2M2,+

)
. (4.30)

Unlike when ∆n = 1 (4.13), the center of this interval changes at the same rate as its width, and
this width is an order of magnitude smaller than for the ∆n = 1 instabilities. This explains why
numerical detection of ∆n = 2 instabilities presents a greater challenge than for ∆n = 1 instabilities;
see Figure 4.

From the results above, we obtain an asymptotic expansion for the Floquet exponent of the most
unstable spectral element of the ∆n = 2 high-frequency isola:

µ∗ = µ0 +
Pm
µ0

− Pn
µ0

cg(µ0 +m)− cg(µ0 + n)
ε2 +O(ε3). (4.31)

Asymptotic expansions for the real and imaginary component of this spectral element are

λ∗,r = ε2|S2|
√
−(µ0 +m)(µ0 + n) +O(ε3), (4.32a)

λ∗,i = −Ω(µ0 + n)−

[
Pm
µ0
cg(µ0 + n)− Pn

µ0
cg(µ0 +m)

cg(µ0 +m)− cg(µ0 + n)

]
ε2 +O(ε3). (4.32b)

These expansions are in excellent agreement with numerical computations from FFH, as is seen in
Figure 4. This is a consequence of resolving quadratic corrections to the real and imaginary com-
ponents of ∆n = 2 high-frequency isolas simultaneously, unlike in the ∆n = 1 case.

Analogous to the derivation of (4.16), the ellipse given by

λ2
r

ε4
+

[
λi +Ω(µ0 + n) + ε2

(
Pm

µ0
cg(µ0+n)−Pn

µ0
cg(µ0+m)

cg(µ0+m)−cg(µ0+n)

)]2

ε4
(

cg(µ0+m)+cg(µ0+n)
cg(µ0+m)−cg(µ0+n)

)2 = −S2
2 (µ0 +m)(µ0 + n) +O(ε). (4.33)

5To obtain (4.26a) and (4.26b), one also needs evenness of u2(x) so that û2(x)
−2

= û2(x)2.



HIGH-FREQUENCY INSTABILITIES OF THE KAWAHARA EQUATION: A PERTURBATIVE APPROACH 12

Figure 4. (Left) Interval of Floquet exponents that parameterize the ∆n = 2
high-frequency isola for parameters α = 1, β = 0.25, and σ = 1 as a function of
ε. (β = 0.7 only gives rise to a ∆n = 1 isola: β must be changed to satisfy (3.10)
for a ∆n = 2 isola to arise.) Solid blue curves indicate the asymptotic boundaries
of this interval according to (4.30). Blue circles indicate the numerical boundaries
computed using FFH. The solid red curve gives the Floquet exponent corresponding
to the most unstable spectral element of the isola according to (4.31). The red circles
indicate the same but computed numerically using FFH. (Right) The real (blue)
and imaginary (red) parts of the most unstable spectral element of the isola as a
function of ε. Solid curves illustrate asymptotic result (4.32). Circles illustrate
results of FFH.

is asymptotic to the ∆n = 2 high-frequency isola. This ellipse has center that drifts from the
collision site at a rate comparable to its semi-major and -minor axes,

a2 = ε2|S2|
√
−(µ0 +m)(µ0 + n) (4.34a)

b2 = a2

∣∣∣∣
cg(µ0 +m) + cg(µ0 + n)

cg(µ0 +m)− cg(µ0 + n)

∣∣∣∣ , (4.34b)

respectively. This behavior contrasts with that seen in the ∆n = 1 case, where the center drifts
slower than the axes grow. Comparison with numerical computations using FFH show that (4.33)
is an excellent approximation for ∆n = 2 high-frequency isolas; see Figure 5.

4.3. High-Frequency Instabilities: ∆n ≥ 3

The approach used to obtain leading-order behavior of the ∆n = 1, 2 high-frequency isolas gen-
eralizes to higher-order isolas. The method consists of the following steps, each of which is readily
implemented in a symbolic programming language:

(i) Given ∆n ∈ N, determine the unique µ0, m, and n to satisfy collision condition (3.9),
assuming β satisfies (3.10).

(ii) Expand about the collided eigenvalues in a formal power series of ε and similarly expand
their corresponding eigenfunctions and Floquet exponents. To maintain uniqueness of the
eigenfunctions, choose the normalization (4.4).

(iii) Substitute these expansions into the spectral problem (3.6). Collecting like powers of ε,
construct a hierarchy of inhomogeneous linear problems to solve.

(iv) Proceed order by order. At each order, impose solvability and normalization conditions.
Invert the linear operator against its range using the method of undetermined coefficients.
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Figure 5. (Left) ∆n = 2 high-frequency isola for α = 1, β = 0.25, σ = 1, and
ε = 10−3. The solid red curve is ellipse (4.33). Blue circles are a subset of spectral
elements from the numerically computed isola using FFH. Blue circles are a subset of
spectral elements from the numerically computed isola using FFH. (Right) Floquet
parameterization of the real (blue) and imaginary (red) parts of the isola. Solid
curves illustrate asymptotic result (4.28a). Circles indicate results of FFH.

Use previous normalization and solvability conditions as well as the collision condition to
simplify problems if necessary.

We conjecture that this method yields the first nonzero real part correction to the ∆nth high-
frequency isola at O(ε∆n). We have shown that this conjecture holds for ∆n = 1, 2. For ∆n = 3,
one can show that the high-frequency isola is asymptotic to the ellipse

λ2
r

ε6
+

(
λi +Ω(µ0 + n) + ε2

[
Pm

µ0
cg(µ0+n)−Pn

µ0
cg(µ0+m)

cg(µ0+m)−cg(µ0+n)

])2

ε6
(

cg(µ0+m)+cg(µ0+n)
cg(µ0+m)−cg(µ0+n)

)2 = −S2
3 (µ0 +m)(µ0 + n) +O(ε), (4.35)

where

S3 = σ
[
Qn,n+1Qn,n+2 + 2û2(x)2(Qn,n+1 +Qn,n+2) + 2û3(x)3

]
. (4.36)

The semi-major and -minor axes of (4.35) scale as O(ε3), as the conjecture predicts. If true for all
∆n, this conjecture explains why higher-order isolas are challenging to detect both in numerical and
perturbation computations of the stability spectrum.

One notices that the center of (4.35) drifts similarly to that of the ∆n = 2 high-frequency iso-
las (4.33). In fact, centers of higher-order isolas (beyond ∆n = 1) all drift at a similar rate, as these
isolas all satisfy the same O(ε2) problem and, hence, yield corrections at this order. Consequently,
one can expect to incur corrections to the imaginary component of the high-frequency isola before
reaching O(ε∆n), making it more difficult to prove our conjecture about the first occurence of a
nonzero real part correction.

5. ∆n = 1 High-Frequency Instabilities at Higher-Order

As we saw in Section 4.1, the asymptotic formulas for the ∆n = 1 high-frequency isola fail to
capture its O(ε2) drift along the imaginary axis. This is expected, as we only considered the O(ε)
problem. In this section, we go beyond the leading-order behavoir of these instabilities. We expect
similar calculations to arise if one considered the O(εp) problem for a generic ∆n isola, where p > ∆n.
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5.1. The O(ε) Problem Revisited

Finishing our work from Section 4.1, we solve for w1(x) in (4.8). We find

w1(x) = Qn,n−1e
i(n−1)x + γ0Qn,m+1e

i(m+1)x + γ1e
imx, (5.1)

where QN,M is defined as in (4.23) and γ1 is an undetermined constant at this order.

5.2. The O(ε2) Problem

At O(ε2), we have

(L0 − λ0)w2(x) = λ2w0(x) + λ1w1(x)− ic0(µ1w1(x) + µ2w0(x))− c2(iµ0 + ∂x)w0(x) (5.2)

− 3i(iµ0 + ∂x)
2(µ1w1(x) + µ2w0(x)) + 3µ2

1(iµ0 + ∂x)w0(x)

− 5βi(iµ0 + ∂x)
4(µ1w1(x) + µ2w0(x)) + 10βµ2

1(iµ0 + ∂x)
3w0(x)

− 2σ(iµ0 + ∂x)(u1(x)w1(x) + u2(x)w0(x))− 2σiµ1u1(x)w0(x).

After substituting w0(x), w1(x), u1(x), and u2(x) into (5.2), solvability conditions of the second-
order problem form the linear system

(
1 −iσ(µ0 + n)
γ0 λ1 + iµ1cg(µ0 +m)

)(
λ2

γ1

)
= i

(
σγ0µ1 − C̃n,−1

µ2,µ1,µ0

σµ1 − γ0C̃
m,1
µ2,µ1,µ0

)
, (5.3)

where

C̃N,k
µ2,µ1,µ0

= µ2cg(µ0 +N)− P̃N,k
µ0

+ µ2
1D

N
µ0
, (5.4a)

P̃N,k
µ0

= (µ0 +N) [σ(Qn,N+k + 2υ2,0) + c2] , (5.4b)

DN
µ0

= 3(µ0 +N)− 10β(µ0 +N)3. (5.4c)

For µ1 ∈ (−M1,M1) (4.12), one can show that

det

(
1 −iσ(µ0 + n)
γ0 λ1 + iµ1cg(µ0 +m)

)
= 2λ1,r. (5.5)

Since λ1,r 6= 0 for this interval of µ1, it follows that (5.3) is invertible. Using Cramer’s rule and
(4.10a) and (4.10b), the solvability conditions at O(ε), gives

λ2 = −
i

2λ1,r
(Aλ1 + iµ1B) , (5.6)

where

A = C̃m,1
µ2,µ1,µ0

+ C̃n,−1
µ2,µ1,µ0

, (5.7a)

B = cg(µ0 +m)C̃n,−1
µ2,µ1,µ0

+ cg(µ0 + n)C̃m,1
µ2,µ1,µ0

− σ2(2µ0 +m+ n). (5.7b)

5.3. Determination of µ2: The Regular Curve Condition

A quick calculation shows that λ2 has two branches, λ2,+ and λ2,−, and, for any µ2 ∈ R, λ2,+ =

−λ2,−. Consequently, (5.6) results in a spectrum that is symmetric about the imaginary axis regard-
less of µ2. We want this spectrum to be a continuous, closed curve about the imaginary axis. As
we shall see, this additional constraint is enough to determine µ2 uniquely. We call this additional
constraint the regular curve condition.

To motivate the regular curve condition, consider the real and imaginary parts of (5.6):

λ2,r =
1

2λ1,r
(Aλ1,i + µ1B) , (5.8a)

λ2,i = −
A

2
. (5.8b)

As |µ1| approaches M1, λ1,r approaches zero. To avoid unwanted blow-up of λ2,r, we must impose

lim
|µ1|→M1

(Aλ1,i + µ1B) = 0. (5.9)
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Since µ1 appears in A only as µ2
1, we can rewrite (5.9) with the help of (4.11a) as

lim
µ2

1
→M2

1

(
−
A

2
(cg(µ0 +m) + cg(µ0 + n)) + B

)
= 0. (5.10)

Equation (5.10) is the regular curve condition for second-order corrections to the ∆n = 1 isola.
Unpacking the definitions of A and B above, the regular curve condition implies that

µ2 =
Pm,1
µ0

− Pn,−1
µ0

cg(µ0 +m)− cg(µ0 + n)
−

2σ2(2µ0 +m+ n)

(cg(µ0 +m)− cg(µ0 + n))2
, (5.11)

where

PN,k
µ0

= P̃N,k
µ0

+
4σ2(µ0 +m)(µ0 + n)

(cg(µ0 +m)− cg(µ0 + n))2
DN

µ0
. (5.12)

Therefore, to O(ε2), the asymptotic interval of Floquet exponents that parameterizes the ∆n = 1
high-frequency isola is

µ ∈
(
µ0 − εM1 + ε2µ2, µ0 + εM1 + ε2µ2

)
. (5.13)

5.4. The Most Unstable Eigenvalue

To O(ε), the expression for the real part of the ∆n = 1 high-frequency isola is

λ(1)
r := ελ1,r = ±ε

√

−µ2
1

[
cg(µ0 +m)− cg(µ0 + n)

2

]2
− σ2(µ0 +m)(µ0 + n). (5.14)

The most unstable eigenvalue of (5.14) occurs when µ1 = µ∗,1, where µ∗,1 is a critical point of λ
(1)
r :

∂λ
(1)
r

∂µ1

∣∣∣∣
µ∗,1

= 0. (5.15)

Solving (5.15), one finds µ∗,1 = 0, and we conclude that the Floquet exponent that corresponds to
the most unstable eigenvalue is µ∗ = µ0 +O(ε2), as found in Section 4.1.

To O(ε2), the real part of our isola is

λ(2)
r := ελ1,r + ε2λ2,r, (5.16)

where λ1,r is given in (5.14) and λ2,r is given in (5.8a). Without loss of generality, we choose the
positive branch of λ1,r.

Taking inspiration from (5.15), we consider the critical points of (5.16):

∂λ
(2)
r

∂µ1

∣∣∣∣
µ∗,1

= 0. (5.17)

After some tedious calculations, (5.17) yields the following equation for µ∗,1:

−µ∗,1λ
2
∗,1,r

(
cg(µ0 +m)− cg(µ0 + n)

2

)2

+
ε

2

[
λ2
∗,1,r

(
λ∗,1,i

∂A

∂µ1

∣∣∣∣
µ∗,1

+A∗
∂λ1,i

∂µ1

∣∣∣∣
µ∗,1

+ µ∗,1
∂B

∂µ1

∣∣∣∣
µ∗,1

+ B∗

)
+ µ∗,1 (A∗λ∗,1,i + µ∗,1B∗)

(
cg(µ0 +m)− cg(µ0 + n)

2

)2]
= 0,

(5.18)

where it is understood that starred variables are evaluated at µ∗,1. Unpacking the definitions of A,
B, λ1,r, and λ1,i reveals that (5.18) is a quartic equation for µ∗,1 with the highest degree coefficient
multiplied by the small parameter ε. Rather than solving for µ∗,1 directly, we obtain the roots
perturbatively.

An application of the method of dominant balance to (5.18) shows that all of its roots have leading
order behavior O(ε−1), except for one. Because we anticipate that limε→0 µ∗,1 = 0 to match results
at the previous order, it is this non-singular root that we expect to yield the next order correction
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Figure 6. (Left) Interval of Floquet exponents that parameterize the ∆n = 1
high-frequency isola for parameters α = 1, β = 0.7, and σ = 1 as a function of ε.
Solid blue curves indicate the asymptotic boundaries of this interval according to
(5.13), while the dotted blue curves give the O(ε) result. Blue circles indicate the
numerical boundaries computed using FFH. The solid red curve gives the Floquet
exponent corresponding to the most unstable spectral element of the isola according
to (5.22), while the dotted red gives the O(ε) result. The red circles indicate the
same but computed numerically using FFH. (Right) The real (blue) and imaginary
(red) parts of the most unstable spectral element of the isola as a function of ε. Solid
curves illustrate asymptotic result (5.23). Dotted curves illustrate the asymptotic
results only to O(ε). Circles illustrate results of FFH.

for µ∗,1. Therefore, we need not concern ourselves with singular perturbation methods and, instead,
make the following ansatz:

µ∗,1 = 0 + εµ∗,1,1 +O(ε2). (5.19)

Plugging our ansatz into (5.18) and keeping terms of lowest power in ε, we find the following linear
equation to solve for µ∗,1,1:

−µ∗,1,1

(
cg(µ0 +m)− cg(µ0 + n)

2

)2

+
1

2
(B0 −A0) = 0, (5.20)

where A0 and B0 are A and B evaluated at µ1 = 0, respectively. Using the definition of A and B
together with the expression for µ2 in (5.11) above, one finds that

µ∗,1,1 = −4σ2(µ0 +m)(µ0 + n)

(
Dm

µ0
−Dn

µ0

(cg(µ0 +m)− cg(µ0 + n))3

)
. (5.21)

It follows that the Floquet exponent corresponding to the most unstable eigenvalue of the ∆n = 1
high-frequency isola is

µ∗ = µ0 + ε2(µ2 + µ∗,1,1) +O(ε3). (5.22)

The most unstable eigenvalue is then

λ∗ = λ0 + ελ1|µ1=0 + ε2λ2|µ1=0,µ2=µ2+µ∗,1,1
+O(ε3). (5.23)

Figure 6 and Figure 7 show improvements to results in Figure 2 and Figure 3, respectively, as a
result of our higher-order calculations.

6. Conclusions

In this work, we investigate the asymptotic behavior of high-frequency instabilities of small-
amplitude Stokes waves of the Kawahara equation. For the largest of these instabilities (∆n = 1, 2),
we introduce a perturbation method to compute explicitly
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Figure 7. (Left) ∆n = 1 high-frequency isola for α = 1, β = 0.7, σ = 1, and
ε = 10−3. The solid red curve is parameterized by (5.6). This curve is no longer
an ellipse, but a more complicated algebraic curve. For comparison, the dotted red
curve is the ellipse found at O(ε). Blue circles are a subset of spectral elements from
the numerically computed isola using FFH. (Right) Floquet parameterization of the
real (blue) and imaginary (red) parts of the isola. Solid curves illustrate asymptotic
result (5.6). Dotted curves illustrate the asymptotic results only to O(ε). Circles
indicate results of FFH.

(i) the asymptotic interval of Floquet exponents that parameterize the high-frequency isola,
(ii) the leading-order behavior of its most unstable spectral elements, and
(iii) the leading-order curve asymptotic to the isola.

We outline the procedure to compute these quantities for higher-order isolas. For the first time,
we compare these asymptotic results with numerical results and find excellent agreement between
the two. We also obtain higher-order asymptotic results for the ∆n = 1 high-frequency isolas by
introducing the regular curve condition.

The perturbation method used throughout our investigation holds only for nonresonant Stokes
waves (2.12). Resonant waves require a modified Stokes expansion, and as a result of this modifica-
tion, the leading-order behavior of the high-frequency isolas will change. Some numerical work has
been done to investigate this effect [28], but no perturbation methods have been proposed.

7. Appendix

Theorem 1. For each ∆n ∈ N, if β satisfies (2.12) and (3.10), there exists a unique µ0 ∈ [0, 1/2]
and unique m 6= n ∈ Z such that the collision condition (3.9) is satisfied.

Proof. Define

F (k; ∆n) =
Ω(k +∆n)− Ω(k)

∆n
. (7.1)

Using the definition of the dispersion relation Ω,

F (k; ∆n) = 5βk4 + 10β∆nk3 + (10β(∆n)2 − 3)k2 + (5β(∆n)3 − 3∆n)k

+ β(∆n)4 − (∆n)2 + 1− β.
(7.2)

A direct calculation shows that

F (k; ∆n) = F (−(k +∆n);∆n). (7.3)

Hence, the graph of F is symmetric about k = −∆n/2. We prove the desired result for the various
cases of ∆n.
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Case 1. Suppose ∆n = 1. Then, k1 = 0 and k2 = −1 are roots of F by inspection. The
remaining roots are

k3,4 =
−1±

√
12
5β − 3

2
. (7.4)

Because β satisfies (3.10), one can show that

0 <
12

5β
− 3 < 1, (7.5)

so that k3,4 ∈ (k2, k1). Because F is symmetric about k = −∆n/2, we have k3 ∈ (−1/2, 0) and
k4 ∈ (−1,−1/2).

Each of these wavenumbers kj is mapped to a Floquet exponent µ ∈ (−1/2, 1/2] according to

µ(k) = k − [k], (7.6)

where [·] denotes the nearest integer function6. Both k1 and k2 map to µ = 0. One checks that
µ(k3) = −µ(k4) 6= 0 and |µ(k3)| = |µ(k4)| < 1/2, since k4 = −(k3 + 1) and −1/2 < k3 < 0. Thus,
the requisite µ0 ∈ (0, 1/2) is µ(kj), where j is either 3 or 4 depending on which has the correct sign.
Then, n = [kj ] and m = n+∆n. These are unique by the uniqueness of kj .

Case 2. Suppose ∆n = 2. A calculation of F (−1; 2) and Fk(−1; 2) shows that k1,2 = −1 is a
double root. The remaining roots are

k3,4 = −1±

√
3

5β
− 2. (7.7)

Clearly, µ(k1,2) = 0. Since k4 = −(k3 + 2), we again have µ(k3) = −µ(k4). Also, from the formula
for k3 above, we have that −1 < k3 < 0 by (3.10), so µ(k3) is nonzero. Thus, µ(kj) is the requisite
µ0 ∈ (0, 1/2], where j is either 3 or 4 depending on which has the correct sign. Again, n = [kj ] and
m = n+∆n are uniquely defined.

Remark. Unlike in the first case, we cannot guarantee µ0 6= 1/2. Indeed, this value can be
achieved when β = 4/15.

Case 3. Suppose ∆n ≥ 3. The discriminant of F (k; ∆n) with respect to k is

∆k[F ] = 5β
[
(∆n)2 − 4

] [
β((∆n)2 + 4)− 4

] [
5β
(
β
(
(∆n)4 + 4

)
− 2

(
(∆n)2 + 2

))
+ 9
]2

. (7.8)

For β satisfying inequality (3.10), we have ∆k[F ] < 0, implying there are two distinct real roots of F .
These roots must be nonpositive by an application of Descartes’ Rule of Signs on F . Without loss
of generality, suppose k2 < k1. Then, by the symmetry of F about k = −∆n/2, k2 = −(k1 +∆n).
It follows that µ(k1) = −µ(k2). Thus, µ(kj) is the requisite value of µ0 ∈ [0, 1

2 ], where j = 1 or 2
depending on which has the correct sign. The integers n and m are uniquely defined as before.

Remark. In [21], β = 1/((∆n/2)2 + 1) is included in inequality (3.10) when ∆n ≥ 3. For this
β, F (k; ∆n) has a double root at k∗ = −∆n/2. However, Ω(k∗) = 0, which corresponds to an
eigenvalue collision at the origin. Eigenvalue collisions at the origin do not satisfy (3.9).

In each of these cases, we have found kj < 0 such that F (kj ; ∆n) = 0. Importantly, one must
check that Ω(kj) 6= 0 for such kj . Indeed, suppose Ω(kj) = 0. A direct calculation shows that
kj = ±1, 0, or k2j = (1 − β)/β. Clearly kj = 0 or 1 contradict that kj < 0. If kj = −1, then

F (−1;∆n) = 0 implies β = 1/[(∆n− 1)2 + 1], which contradicts (2.12) when ∆n 6= 2. If ∆n = 2,
β = 1/2, which contradicts (3.10).

It remains to be seen if k2j = (1− β)/β leads to contradiction. Indeed, a straightforward (although

tedious) calculation shows that, if k2j = (1−β)/β, F (kj ; ∆n) = 0 implies β = 0, β = 1/[1+(∆n/2)2],

6Our convention is [p/2] = (p − 1)/2 for p odd.
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β = 1/[1 + (∆n − 1)2], or β = 1/[1 + (∆n + 1)2]. All of these lead to contradictions of (2.12) or
(3.10). Therefore, we must have Ω(kj) = Ω(µ0 + n) = Ω(µ0 +m) 6= 0 in all cases, as desired.

�

In expressions for the isolas derived in Sections 4 and 5, factors of cg(µ0 +m)− cg(µ0 + n) appear
in denominators. A consequence of Theorem 1 is that this factor is never zero:

Corollary 1. Fix ∆n ∈ N and choose β to satisfy (2.12) and (3.10). Consider µ0 ∈ [0, 1/2]
that solves Ω(µ0 +m) = Ω(µ0 + n) for unique integers m,n such that m = n + ∆n. Suppose, in
addition, that µ0 solves cg(µ0 +m) = cg(µ0 + n), where cg(k) = Ω′(k). Then, ∆n = 2 and µ0 = 0.

Proof. If Ω(µ0 + m) = Ω(µ0 + n) and cg(µ0 + m) = cg(µ0 + n), then k0 = µ0 + m is a double
root of F (k; ∆n). From the proof of the theorem above, the only double root is k0 = −1 (i.e.
µ0 = 0) when ∆n = 2.

�

The corresponding eigenvalue collision for this ∆n and µ0 happens at the origin in the complex
spectral plane and is not of interest to us. Thus, cg(µ0 +m) 6= cg(µ0 + n).

In Section 4.2, the quantity S2 (4.27c) must be nonzero in order for ∆n = 2 high-frequency in-
stabilities to exist at O

(
ε2
)
. The following corollary shows S2 6= 0 for β satisfying inequality (3.10).

Corollary 2. For S2 defined in (4.27c) and β satisfying inequality (3.10) for ∆n = 2, S2 6= 0.

Proof. Since ∆n = 2, we have from (3.10) that 1/5 < β < 3/10. In addition, from Theorem 1
and Corollary 1, we know k1,2 = 1 is a double root of F (k; ∆n) for all β in this interval, and the
remaining roots of F are

k3,4 = −1±

√
3

5β
− 2. (7.9)

These remaining roots correspond to the nonzero eigenvalue collisions that give rise to the ∆n = 2
high-frequency instability.

The quantity S2 can be written in terms of k3,4 as

S2 = σ2

[
k3,4 + 1

Ω(k3,4 + 1)− Ω(k3,4)
+

1

Ω(2)

]
, (7.10)

Because k3,4 are symmetric about k = 1 (from the symmetry of F ), the value of S2 is independent
of the choice of k3,4. Using the definition of the dispersion relation Ω (2.14), (7.10) simplifies to

S2 =
σ2

2(1− 5β)
, (7.11)

which is nonzero for 1/5 < β < 3/10.

�
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