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Abstract
The stability of the stationary periodic solutions of the integrable (one-
dimensional, cubic) defocusing nonlinear Schrödinger (NLS) equation is
reasonably well understood, especially for solutions of small amplitude. In
this paper, we exploit the integrability of the NLS equation to establish
the spectral stability of all such stationary solutions, this time by explicitly
computing the spectrum and the corresponding eigenfunctions associated with
their linear stability problem. An additional argument using an appropriate
Krein signature allows us to conclude the (nonlinear) orbital stability of all
stationary solutions of the defocusing NLS equation with respect to so-called
subharmonic perturbations: perturbations that have period equal to an integer
multiple of the period of the amplitude of the solution. All results presented
here are independent of the size of the amplitude of the solutions and apply
equally to solutions with trivial and nontrivial phase profiles.

1. Introduction

The defocusing one-dimensional nonlinear Schrödinger equation with cubic nonlinearity is
given by

ı�t = − 1
2�xx + � |�|2 . (1)

Here �(x, t) is a complex-valued function, describing the slow modulation of a carrier
wave in a dispersive medium. Due to both its physical relevance and its mathematical
properties, (1) is one of the canonical equations of nonlinear dynamics. The equation has been
used extensively to model, among other applications, waves in deep water [2, 39], propagation
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in nonlinear optics with normal dispersion [23, 28], Bose–Einstein condensates with repulsive
self-interaction [21, 34] and electron plasma waves [12]. Equation (1) is completely integrable
[1, 40]. This will be used extensively later on.

The equation has a large class of stationary solutions; these are written as

� = e−ıωtφ(x), (2)

where ω is a real constant. Among this class of solutions are the dark and grey solitons, for
which φ(x) is expressed in terms of hyperbolic functions. These solutions may be regarded as
limit cases of the so-called elliptic solutions studied in this paper. The stationary solutions (2)
are either periodic or quasi-periodic as functions in x. The amplitude of φ(x) of the elliptic
solutions is expressed in terms of Jacobi elliptic functions. A thorough discussion of the
stationary solutions is found in, for instance, [9]. The details relevant to our investigations are
presented in section 2.

The stability analysis of the stationary solutions was begun in [39], where the now
classical calculation for the modulational stability of the plane-wave solution (φ(x) constant)
is given. The literature discussing the stability of the soliton solutions is extensive, see [29],
and references therein. Rowlands [35] may have been the first to consider the stability of the
elliptic solutions directly. He studied the spectral stability problem for these solutions using
regular perturbation theory with the Floquet parameter as a small expansion parameter. At
the origin in the spectral plane, this parameter is zero, thus Rowlands was able to obtain
expressions for the different branches of the continuous spectrum near the origin. For the
focusing NLS equation these calculations demonstrate that the spectrum lies partially in the
right-half plane, which leads to the conclusion of instability. For the defocusing NLS equation
(1), the first approximation to these branches lies on the imaginary axis, and Rowlands’ method
is inconclusive with regards to stability or instability of the elliptic solutions. More recently,
the stability of the elliptic solutions has been examined by Gallay and Hărăguş [17, 18]. In
[18], they established the spectral stability of small-amplitude solutions of the form (2) of
(1), as well as their (nonlinear) orbital stability with respect to perturbations that are of the
same period as |φ(x)|. In [17], the restriction on the amplitude for the orbital stability result is
removed. Hărăguş and Kapitula [22] put some of these results in a more general framework
valid for spectral problems with periodic coefficients originating from Hamiltonian systems.
They establish that the small-amplitude elliptic solutions investigated in [18] are not only
spectrally but also linearly stable. Lastly, we should mention a recent paper by Ivey and
Lafortune [26]. They undertake a spectral stability analysis of the cnoidal wave solution of the
focusing NLS equation, by exploiting the squared-eigenfunction connection, like we do in [5]
for the cnoidal wave solutions of the Korteweg–de Vries equation and here, see below. Their
calculations use Floquet theory for the spatial Lax operator to construct an Evans function for
the spectral stability problem, whose zeros give the point spectrum corresponding to periodic
perturbations. They also obtain a description of the continuous spectrum (which contains this
point spectrum) using a Floquet discriminant. Their description of the spectrum is explicit in
the sense that no differential equations remain to be solved. By computing level curves of this
Floquet discriminant numerically, they obtain a numerical description of the spectrum.

In this paper, we confirm the recent findings on spectral and orbital stability of the
elliptic solutions of the defocusing equation and extend their validity to solutions of arbitrary
amplitude. In addition, we extend the stability results to the class of so-called subharmonic
perturbations, i.e. perturbations that are periodic with period equal to an integer multiple of
the period of the amplitude |φ(x)|. Further, exploiting the integrability of (1), we are able
to provide an explicit analytic description of the spectrum and the eigenfunctions associated
with the linear stability problem of all elliptic solutions. We follow the same method as in [5],
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using the algebraic connection between the eigenfunctions of the Lax pair of (1) and those
of the spectral stability problem. This explicit characterization of the spectrum, as well as
the extension of the spectral stability results to arbitrary amplitude, and the results involving
subharmonic perturbations are new. It appears that the methods of Ivey and Lafortune [26]
allow for an equally explicit description when applied to the defocusing case. They rely on
the general theory of hyperelliptic Riemann surfaces and theta functions, which are restricted
to the elliptic case, through a nontrivial reduction process. We never leave the realm of
elliptic functions, resulting in a significantly more straightforward approach. The explicit
characterization of the spectrum is an obvious starting point for the stability analysis of more
general solutions to non-integrable generalizations of the NLS equations, such as the two-
dimensional NLS equation [10, 11] or one-dimensional perturbations of the NLS equation
which might include such effects as dissipation or external potentials, see e.g., [7, 26]. As in
[17, 18, 22], we prove the spectral stability of the elliptic solutions of (1), without imposing
a restriction on the amplitude. The results of [22] allow us to prove the completeness of the
eigenfunctions of the linear stability problem, resulting in a conclusion of linear stability.
Similarly to the last section of [13], we employ an appropriate Krein signature calculation
to allow us to invoke the classical results of Grillakis, Shatah and Strauss [20], from which
(nonlinear) orbital stability follows.

It should be emphasized that our results are equally valid for elliptic solutions that have
trivial phase (φ(x) real) as for solutions with a non-trivial phase profile (φ(x) not purely real).
Similar calculations to the ones presented here apply to the focusing NLS equation, without
the conclusion of stability, of course. That case is more complicated, due to the Lax operator
associated with that integrable equation not being self adjoint. It will be presented separately
elsewhere.

Before entering the main body of the paper, we wish to apologize to the reader for the
use of no less than three different incarnations of the NLS equation, in addition to (1). One is
obtained through a scaling transformation with a time-dependent exponential factor, to allow
the stationary solutions to appear as equilibrium solutions. The second one is used to facilitate
our proof of spectral stability and involves a time- and space-dependent exponential factor.
The last NLS form writes the second one in terms of its real and imaginary parts, and is useful
for our proof of orbital stability. All forms are introduced because we benefit greatly from
their use. None are new to the literature. It does not appear straighforward to avoid the use of
any of them without much added complication.

2. Elliptic solutions of the defocusing NLS equation

The results of this section are presented in more detail in [9]. We restrict our considerations to
the bare necessities for what follows.

Stationary solutions (2) of (1) satisfy the ordinary differential equation

ωφ = − 1
2φxx + φ|φ|2. (3)

Substituting an amplitude-phase decomposition

φ(x) = R(x) eıθ(x) (4)

in (3), we find ordinary differential equations satisfied by the amplitude R(x) and the phase
θ(x) by separating real and imaginary parts, after factoring out the overall exponential factor.
Here we explicitly use that both amplitude and phase are real-valued functions. The equation
for the phase θ(x) is easily solved in terms of the amplitude. One finds

θ(x) = c

∫ x

0

1

R2(y)
dy. (5)
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Here c is a constant of integration. Using standard methods for elliptic differential
equations (see for instance [8, 30]), one shows that the amplitude R(x) is given by

R2(x) = k2sn2 (x, k) + b, (6)

where sn(x, k) is the Jacobi elliptic sine function, and k ∈ [0, 1) is the elliptic modulus
[8, 30]. The amplitude R(x) is periodic with period T (k) = 2K(k), where K(k) is the
complete elliptic integral of the first kind [8, 30]:

K(k) =
∫ π/2

0

1√
1 − k2 sin2 y

dy. (7)

The form of the solution (6) leads to

ω = 1
2 (1 + k2) + 3

2b, (8)

and

c2 = b(b + 1)(b + k2). (9)

Conditions on the reality of the amplitude and phase lead to the constraint b ∈ R
+ (including

zero) on the offset parameter. The class of solutions constructed here is not the most general
class of stationary solutions of (1). We did not specify the full class of parameters allowed
by the Lie point symmetries of (1), which allow for a scaling in x, multiplying by a unitary
constant, etc. The methods introduced in the remainder of this paper apply equally well and
with similar results to the full class of stationary elliptic solutions.

If the constant c is zero, the solution is referred to as a trivial-phase solution. Otherwise
it is called a nontrivial-phase solution. It is clear from the above that the only trivial-phase
solutions are (up to symmetry transformations)

�(x, t) = ksn(x, k) e− ı
2 (1+k2)t . (10)

This one-parameter family of solutions is found from the two-parameter family of stationary
solutions by equating b = 0. The trivial-phase solutions are periodic in x. Their period is
4K(k). In contrast, the nontrivial-phase solutions are typically not periodic in x. The period
of their amplitude is T (k) = 2K(k), whereas the period τ(k) of their phase is determined by
θ(τ (k)) = 2π . Unless τ(k) and T (k) are rationally related, the nontrivial-phase solution is
quasi-periodic instead of periodic.

This quasi-periodicity is more immediately obvious using a different form of the elliptic
solutions (see [17, 18]), which will prove useful in section 6. We split the integrand of (5) as

c

R2(x)
= κ(k, b) + K(x; k, b), (11)

where κ(k, b) is the average value of c/R2(x) over an interval of length T (k). Thus the average
value of K(x; k, b) is zero. Then the elliptic solutions may be written as

�(x, t) = e−ıωt+ıκxR̂(x), (12)

where R̂(x + T (k)) = R̂(x) is typically not real. It is clear from this formulation of the elliptic
solutions that they are generically quasiperiodic with two incommensurate spatial periods
T (k) and 2π/κ(k, b).

3. The linear stability problem

Before we study the orbital stability of the elliptic solutions, we examine their spectral and
linear stability. To this end, we transform (1) so that the elliptic solutions are time-independent
solutions of this new equation. Let

�(x, t) = e−ıωtψ(x, t). (13)
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Then

ıψt = −ωψ − 1
2ψxx + ψ |ψ |2. (14)

As stated, the elliptic solutions are those solutions for which ψt ≡ 0. Next, we consider
perturbations of such an elliptic solution. Let

ψ (x, t) = eıθ(x) (R(x) + εu(x, t) + ıεv(x, t)) + O(ε2), (15)

where ε is a small parameter and u(x, t) and v(x, t) are real-valued functions. Since their
dependence on both x and t is unrestricted, there is no loss of generality from factoring out the
temporal and spatial phase factors. Substituting (15) into (1) and separating real and imaginary
parts, the terms of zero order in ε vanish, since R(x) eıθ(x) solves (1). Next, we equate terms
of order ε to zero and separate real and imaginary parts, resulting in

∂

∂t

(
u

v

)
= L

(
u

v

)
= J

(
L+ S

−S L−

) (
u

v

)
, (16)

where

J =
(

0 1
−1 0

)
, (17)

and the linear operators L−, L+ and S are defined by

L− = −1

2
∂2
x + R2(x) − ω +

c2

2R4(x)
, (18)

L+ = −1

2
∂2
x + 3R2(x) − ω +

c2

2R4(x)
, (19)

S = c

R2(x)
∂x − cR′(x)

R3(x)
= c

R(x)
∂x

1

R(x)
. (20)

We wish to show that perturbations u and v that are initially bounded remain so for all
times. By ignoring terms of order ε2 and higher we are restricting ourselves to linear stability.
The elliptic solution φ(x) = R(x) eıθ(x) is by definition linearly stable if for all ε > 0
there is a δ > 0 such that if ||u(x, 0) + ıv(x, 0)|| < δ then ||u(x, t) + ıv(x, t)|| < ε for all
t > 0. It should be noted that this definition depends on the choice of the norm || · || of the
perturbations. In the next section this norm will be specified. The linear stability problem (16)
is written in its standard form to allow for a straightforward comparison with the results of
other authors, see for instance [17, 18, 22, 35], and many references where only the soliton
case is considered. Some of our calculations are more conveniently done using a different
form of the linear stability problem (16) or the spectral stability problem (22, below). These
forms will be introduced as necessary.

Since (16) is autonomous in t, we can separate variables and consider solutions of the
form (

u(x, t)

v(x, t)

)
= eλt

(
U(x, λ)

V (x, λ)

)
, (21)

so that the eigenfunction vector (U(x, λ), V (x, λ))T satisfies the spectral problem

λ

(
U

V

)
= L

(
U

V

)
= J

(
L+ S

−S L−

) (
U

V

)
. (22)

Since −S is the Hermitian conjugate of S, this latter form of the spectral problem
emphasizes the Hamiltonian structure of the problem. In what follows, we suppress the λ
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dependence of U and V. In order to show that the solution φ(x) = R(x) eıθ(x) is spectrally
stable, we need to verify that the spectrum σ(L) does not intersect the open right-half of the
complex λ plane. To avoid confusion with other spectra defined below, we refer to σ(L) as
the stability spectrum of the elliptic solution φ(x). Since the nonlinear Schrödinger equation
(1) is Hamiltonian [2], the spectrum of its linearization is symmetric with respect to both the
real and the imaginary axis [38], so proving the spectral stability of an elliptic solution is
equivalent to proving the inclusion σ (L) ⊂ ıR.

Spectral stability of an elliptic solution implies its linear stability if the eigenfunctions
corresponding to the stability spectrum σ(L) are complete in the space defined by the norm
|| · ||. In that case all solutions of (16) may be obtained as linear combinations of solutions
of (22).

The first goal of this paper is to prove the spectral and linear stability of all solutions (2) by
analytically determining the stability spectrum σ(L), as well as its associated eigenfunctions.
It is already known from [18] and [22] that the inclusion σ (L) ⊂ ıR holds for solutions of
small amplitude, or, equivalently, solutions with small elliptic modulus, leading to spectral
stability. We strengthen these results by providing a completely explicit description of σ(L)

and its eigenfunctions, without requiring any restriction on the elliptic modulus. To conclude
the completeness of the eigenfunctions associated with σ(L), and thus the linear stability of
the elliptic solutions, we rely on the SCS lemma, see Hărăguş and Kapitula [22].

4. Numerical results

In the next few sections, we determine the spectrum of (22) analytically. Before we do so, we
compute it numerically, using Hill’s method [15]. Hill’s method is ideally suited to a periodic-
coefficient problem such as (22). It should be emphasized that almost none of the elliptic
solutions are periodic in x, as discussed in section 2. Nevertheless, since we have factored out
the exponential phase factor eıθ(x) and the remaining coefficients are all expressed in terms
of R(x), the spectral problem (22) is a problem with periodic coefficients, even for elliptic
solutions that are quasi-periodic.

Using Hill’s method, we compute all eigenfunctions using the Floquet–Bloch
decomposition(

U(x)

V (x)

)
= eiμx

(
Û (x)

V̂ (x)

)
, Û (x + T (k)) = Û (x), V̂ (x + T (k)) = V̂ (x), (23)

with μ ∈ [−π/2T (k), π/2T (k)). It follows from Floquet’s theorem [3] that all bounded
solutions of (22) are of this form. Here bounded means that maxx∈R{|U(x)|, |V (x)|} is finite.
Thus

U,V ∈ C0
b (R). (24)

By a similar argument as that given at the end of section 2, the typical eigenfunction (23)
obtained this way is quasi-periodic, with periodic eigenfunctions ensuing when the two periods
T (k) and 2π/μ are commensurate. Specifically, our investigations include perturbations of an
arbitrary period that is an integer multiple of T (k), i.e., subharmonic perturbations.

Figure 1 shows discrete approximations to the spectrum of (22), computed using
SpectrUW 2.0 [14]. The solution parameters for the top two panels (a) and (b) are b = 0 (thus
corresponding to a trivial-phase solution (10)) and k = 0.8. The numerical parameters (see
[14, 15]) are N = 20 (41 Fourier modes) and D = 40 (39 different Floquet exponents).
The right panel (b) is a blow-up of the left panel (a) around the origin. First, it appears
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(a) (b)

(c) (d)

Figure 1. Numerically computed spectra (imaginary part of λ vs. real part of λ) of (22) for different
solutions (2), with parameter values given below, using Hill’s method with N = 20 (41 Fourier
modes) and D = 40 (39 different Floquet exponents), see [14, 15]. (a) A trivial-phase sn-solution
with k = 0.5. (b) A blow-up of (a) around the origin, showing a band of higher spectral density.
(c) A nontrivial-phase solution with b = 0.2 and k = 0.5. (d) A blow-up of (c) around the origin,
similarly showing a band of higher spectral density.

that the spectrum is on the imaginary axis4, indicating spectral stability of the snoidal
solution (10). Second, the numerics show that a symmetric band around the origin has a
higher spectral density than does the rest of the imaginary axis. This is indeed the case, as
shown in more detail in figure 2(a), where the imaginary parts in [−1, 1] of the computed
eigenvalues are displayed as a function of the Floquet parameter μ. This shows that λ values
with imaginary parts in [−0.37, 0.37] (approximately) are attained for four different μ values
in [−π/2T (k), π/2T (k)). The rest of the imaginary axis is only attained for two different μ

values. This picture persists if a larger portion of the imaginary λ axis is examined. These
numerical results are in perfect agreement with the theoretical results below.

The bottom two panels (c) and (d) correspond to a nontrivial-phase solution with b = 0.2
and k = 0.5. The numerical parameters are identical to those for panels (a) and (b). Again,
the spectrum appears to lie on the imaginary axis, with a higher spectral density around the
origin. The clumping of the eigenvalues outside of the higher-density band is a consequence of
aliasing. This is an artifact of the numerics and the graphics. A plot of the imaginary parts of the
computed eigenvalues as a function of μ is shown in figure 2(b). As for the trivial-phase case
this shows the quadruple covering of the spectrum of a band around the origin of the imaginary
axis, and the double covering of the rest of the imaginary axis. Due to the nontrivial-phase
profile, the curves in figure 2(b) have lost some symmetry compared to those in figure 2(a).

4 The order of magnitude of the largest real part computed is 10−10.
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(a) (b)

Figure 2. The imaginary part of λ as a function of μ, demonstrating the higher spectral density (four
vs. two) corresponding to figure 1(b) (left panel) and to figure 1(d) (right panel). The parameter
values are identical to those of figure 1.

Making the opposite choice for the sign on c in (9) results in the figure being slanted in the
other direction.

The above considerations remain true for different values of the offset b ∈ R
+ and the

elliptic modulus k ∈ [0, 1), although the spectrum does depend on both, as we will prove in
the following sections. Thus, for all values of (b, k) ∈ R

+ × [0, 1), the spectrum of the elliptic
solutions appears to be confined to the imaginary axis, indicating the spectral stability of these
solutions. Similarly, for all these parameter values, the spectrum σ(L) covers a symmetric
interval around the origin four times, whereas the rest of the imaginary axis is double covered.
The edge point on the imaginary axis where the transition from spectral density four to two
occurs depends on both b and k and is denoted λc(b, k). The k-dependence of λc(b = 0.2, k)

is shown in figure 3. Again, both numerical and analytical results (see section 6) are displayed.
For these numerical results, Hill’s method with N = 50 was used.

5. Lax pair representation

Since our analytical stability results originate from the squared-eigenfunction connection
between the defocusing NLS linear stability problem (16) and its Lax pair, in this section we
examine this Lax pair, restricted to the elliptic solutions of the defocusing NLS.

As for the stability problem, we consider the generalized defocusing NLS (14). This
equation is integrable, thus it has a Lax pair representation. Specifically, (14) is equivalent to
the compatibility condition χxt = χtx of the two first-order linear differential equations

χx =
(−ıζ ψ

ψ∗ ıζ

)
χ, χt =

(−ıζ 2 − ı
2 |ψ |2 + ı

2ω ζψ + ı
2ψx

ζψ∗ − ı
2ψ∗

x ıζ 2 + ı
2 |ψ |2 − ı

2ω

)
χ. (25)

Thus (14) is satisfied if and only if both equations for χ of (25) are satisfiable. Written as
a spectral problem with parameter ζ , the first equation is seen to be formally self adjoint [27],
thus the spectral parameter ζ is confined to the real axis. Restricting to the elliptic solutions
gives

χx =
(−ıζ φ

φ∗ ıζ

)
χ, χt =

(−ıζ 2 − ı
2 |φ|2 + ı

2ω ζφ + ı
2φx

ζφ∗ − ı
2φ∗

x ıζ 2 + ı
2 |φ|2 − ı

2ω

)
χ. (26)
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Figure 3. Numerical and analytical results for the imaginary part of the edge point λc(b, k) of
the quadruple-covered region as a function of the elliptic modulus k for b = 0.2. The solid curve
displays the analytical result, the small circles are obtained numerically.

(This figure is in colour only in the electronic version)

We refer to the spectrum of the first equation of (26) as σL. It is the set of all ζ values
for which this equation has a solution bounded in x (as in section (4)). As discussed above,
σL ⊂ R. The main goal of this section is the complete analytic determination of σL. For ease
of notation, we rewrite the second equation of (26) as

χt =
(

A B

C −A

)
χ. (27)

Since A, B and C are independent of t, we may separate variables. Consider the ansatz

χ (x, t) = e�tϕ(x), (28)

where � is independent of t. We refer to the set of all � such that χ is a bounded function of
x as the t-spectrum σt . Substituting (28) into (27) and canceling the exponential, we find(

A − � B

C −A − �

)
ϕ = 0. (29)

This implies that the existence of nontrivial solutions requires

�2 = A2 + BC = −ζ 4 + ωζ 2 − cζ + 1
16 (4ωb − 3b2 − k′4), (30)

where k′2 = 1 − k2. We have used the explicit form of φ(x), given in section 2. This
demonstrates that � is not only independent of t, but also of x. Such a conclusion could also
be arrived at by expressing the derivatives of the operators of (26) as matrix commutators, and
applying the fact that the trace of a matrix commutator is identically zero [4, 16].

9
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Having determined � as a function of ζ for any given elliptic solution of defocusing NLS
(i.e., in terms of the parameters b and k), we now wish to do the same for the eigenvector ϕ(x),
determined by (29). Immediately,

ϕ = γ (x)

( −B(x)

A(x) − �

)
, (31)

where γ (x) is a scalar function. Indeed, the vector part of (31) ensures that χ(x, t) satisfies
the second equation of (26). Next, we determine γ (x) so that χ(x, t) also satisfies the first
equation. Substituting (31) in this first equation results in two homogeneous linear scalar
differential equations for γ (x) which are linearly dependent. Solving gives

γ (x) = γ0 exp

(
−

∫
(A − �)φ + Bx + ıζB

B
dx

)
. (32)

For almost all ζ ∈ C, we have explicitly determined two linearly independent solutions
of the first equation of (26). Indeed, for all ζ , there should be two such solutions, and two
have been constructed for all ζ ∈ C for which � �= 0: the combination of (31) and (32) gives
two solutions, corresponding to the different signs for � in (30). These solutions are clearly
linearly independent. For those values of ζ for which � = 0, only one solution is generated.
A second one may be found using the method of reduction of order.

To determine the spectrum σL, we need to determine the set of all ζ ⊂ R such that (31)
is bounded for all x. Clearly, the vector part of (31) is bounded as a function of x. Thus, we
need to determine for which ζ the scalar function γ (x) is bounded. For this, it is necessary
and sufficient that〈

�
(

(A − �)φ + Bx + ıζB

B

)〉
= 0. (33)

Here 〈 · 〉 = 1
T (k)

∫ T (k)

0 · dx is the average over a period and � denotes the real part. The
investigation of (33) is significantly simpler for the trivial-phase case b = 0 than for the
general nontrivial-phase case. We treat these cases separately.

5.1. The trivial-phase case: b = 0

With b = 0, (30) becomes

�2 = −ζ 4 + ωζ 2 − k′4

16
= −(ζ − ζ1)(ζ − ζ2)(ζ − ζ3)(ζ − ζ4), (34)

with

ζ1 = − 1
2 (1 + k), ζ2 = − 1

2 (1 − k), ζ3 = 1
2 (1 − k), ζ4 = 1

2 (1 + k). (35)

The graph for �2 as a function of ζ is shown in figure 4(a).
The explicit form of (33) is different depending on whether � is real or imaginary. It

should be noted that since ζ ∈ R, it follows from (34) that these are the only possibilities.
First, we consider � being imaginary or zero, requiring |ζ | � (k + 1)/2 or |ζ | �

(1 − k)/2. It follows from the definitions of A and B that the integrand in (33) may be
written as a rational function of the periodic function sn2(x, k), multiplied by its derivative
2sn(x, k)cn(x, k)dn(x, k). As a consequence the average of this integrand is zero. Thus, all
these values of ζ belong to the Lax spectrum. Extra care should be taken when ζ = 0, in
which case the denominator in (33) is singular, and not integrable. This case may be dealt
with separately. One finds that the vector part of (31) cancels the singularity in γ (x). In
fact, the two eigenfunctions of the first equation of (26) are (−dn(x, k), kcn(x, k))T and
(−kcn(x, k), dn(x, k))T .

10
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Figure 4. �2 as a function of real ζ , for k = 0.5. The union of the bold line segments is the Lax
spectrum σL. (a) shows the symmetric trivial-phase case with b = 0. (b) illustrates a nontrivial-
phase case, with b = 0.2.

Next, we consider the case where � is real, requiring (1−k)/2 < |ζ | < (1+k)/2. Similar
to the above, the integrand contains many terms of the form R(sn2(x, k))(sn2(x, k))′, where
R is a rational, nonsingular function. The average of such terms vanishes, leaving a single
term −4�ζ sn2(x, k)/(4ζ 2sn2(x, k) + cn2(x, k)dn2(x, k)). This term is of fixed sign and never
results in zero average. The corresponding values of ζ are not in σL.

In summary, we have established that

σL = (−∞, ζ1] ∪ [ζ2, ζ3] ∪ [ζ4,∞). (36)

This set is indicated in figure 4(a) as a bold line. Furthermore, we find that the corresponding
values of � are imaginary, covering the entire imaginary axis. Thus,

σt = ıR. (37)

We may be more specific. The segment ζ ∈ (−∞, ζ1] gives rise to a complete covering
of the imaginary axis, as does ζ ∈ [ζ4,∞). Next, the segment ζ ∈ [0, ζ3] gives rise to
� ∈ [−i|�min|, i|�min|] = [−ik′2/4, ik′2/4], as does ζ ∈ [ζ2, 0]. Thus, there is an interval
on the imaginary axis around the origin that is quadruple covered, while the rest of the
imaginary axis is double covered. Thus

σt = (ıR)2 ∪
[
− ık′2

4
,
ık′2

4

]2

, (38)

where the exponents denote multiplicities.

5.2. The nontrivial-phase case: b > 0

The nontrivial-phase case is more complicated. First, note that the discriminant of (30) is
k4k′4 �= 0 for k �= 0, 1. This implies that the four roots of the right-hand side of (30) are
always real, for all values of b > 0. Indeed, complex roots would come about by the collision

11
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of real roots, which is not possible since the discriminant is never zero. In fact, the explicit
expressions for these roots are quite simple:

ζ1 = 1
2 (−√

b −
√

b + k2 − √
b + 1),

ζ2 = 1
2 (

√
b +

√
b + k2 − √

b + 1),

ζ3 = 1
2 (

√
b −

√
b + k2 +

√
b + 1),

ζ4 = 1
2 (−√

b +
√

b + k2 +
√

b + 1).

(39)

An indicative graph for �2 as a function of ζ is given in figure 4(b), using k = 0.5 and b = 0.2.
As for the trivial-phase case, we split the examination of the real ζ -axis in two parts: those

ζ -values for which � is pure imaginary, and those for which � is real.
If ζ ∈ (−∞, ζ1] ∪ [ζ2, ζ3] ∪ [ζ4,∞), then � is pure imaginary. As before, the integrand

of (33) is of the form R(sn2(x, k))(sn2(x, k))′, where R is a rational function of its argument,
resulting in a zero average. Thus all these values of ζ are in the Lax spectrum. Again one
has to consider the case where B might have zeros. It is easy to see that this occurs only
when either ζ = c/2b or when ζ = c/2(b + k2). Note that both values are in the specified
ζ -range, as the corresponding values for �2 are negative. Although the expressions of the
corresponding eigenfunctions are not as compact as for the trivial-phase case, one easily
shows that all singularities of γ (x) cancel with roots of the vector part of (31). Thus these
values are legitimate members of the Lax spectrum.

Next, if � is real, up to terms with zero average, the integrand may be written as
2�

P(sn2(x, k))
(k2sn2(x, k) + b)(c − 2ζ(k2sn2(x, k) + b)), (40)

where P(sn2(x, k)) is a polynomial with no real roots. Unlike the trivial-phase case, the
numerator of this expression has roots for −K(k) < x < K(k), and it is not obvious to see
that its average is nonzero. We use a more abstract argument. The left-hand side of (33) depends
analytically on b and on ζ , at least for ζ ∈ (ζ3, ζ4) and b > 0. An identical argument holds
for ζ ∈ (ζ1, ζ2). For convenience, we denote this left-hand side as F(ζ, b). Thus, elements
of σL are real values of ζ for which F(ζ, b) = 0. It should be noted that ζ3 and ζ4 depend
on b (see (35)), but since ζ3 and ζ4 are always well separated, this is no cause for concern.
For a fixed value of b, and using the analytical dependence of F(ζ, b) on ζ , it follows that
F(ζ, b) is either identically zero, or has isolated zeros. If F(ζ, b) were to have isolated zeros,
these would correspond to isolated points in σL. Since σL is the spectrum of a period problem,
this is not possible [37]. Thus we investigate the possibility that for a fixed value of b > 0,
F(ζ, b) is identically zero for all ζ ∈ (ζ3, ζ4). We know this is not true for b = 0. Due to
the analytic dependence on b, it follows that it is not true for 0 < b � b1, for b1 sufficiently
small. The last possibility to examine is whether there can exist a value of b > b1 for which
F(ζ, b) is identically zero as a function of ζ . If we think of the spectra σL parameterized by
increasing values of b, this would imply the sudden presence of a continuous subset of σL out
of a vacuum: i.e., this subset would not emerge from or be connected to other parts of σL.
Since σL depends continuously on its parameters [24], this is not possible. We conclude that
F(ζ, b) has no zeros if � is real.

It follows that our conclusions are identical to those for the trivial-phase case. Specifically,
we have established (36) and (37). As before, the set σL is indicated in figure 4(b) as a bold
line. Analogously to (38), we may write

σt = (ıR)2 ∪ [ − ı

√∣∣�2
min

∣∣, ı√∣∣�2
min

∣∣]2
, (41)

where the exponents denote multiplicities, as before. Here �2
min is the minimal value of �2

as a function of ζ . This value depends on the two parameters b and k. If desired, it can be

12
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calculated using Cardano’s formulae, but we do not subject the reader to its explicit form. The
perfect agreement between the numerics and this analytical result is illustrated in figure 3 for
b = 0.2, for varying k.

6. Spectral stability

The connection between the eigenfunctions of the Lax pair (25) and the eigenfunctions of the
linear stability problem (16) for the defocusing NLS equation (1) is well known [1, 2, 19,
32, 36]. It is convenient to phrase the result using the form (12) of the solutions. Write

�(x, t) = e−ıωt+ıκxR̃(x, t), (42)

where κ is the average value of c/R2(x), with R(x) the amplitude of the stationary solution
under consideration, as before. We see that the periodic part R̂(x) of the considered elliptic
solution (12) is a stationary solution of

ıR̃t = −ωR̃ − 1

2
R̃xx − ıκR̃x +

κ2

2
R̃ + R̃|R̃|2. (43)

To linearize around the elliptic solution with R̂(x) = R̂1(x) + ıR̂2(x), we let

R̃(x, t) = R̂(x) + ε(w1(x, t) + ıw2(x, t)) + O(ε2), (44)

which results in

∂

∂t

(
w1

w2

)
= JLκ

(
w1

w2

)
, (45)

with

Lκ =
(− 1

2∂2
x + 1

2κ2 + 3R̂2
1(x) + R̂2

2(x) − ω κ∂x + 2R̂1R̂2

−κ∂x + 2R̂1R̂2 − 1
2∂2

x + 1
2κ2 + R̂2

1(x) + 3R̂2
2(x) − ω

)
. (46)

It should be noted that although R̂(x) is a periodic solution of (43), it is not necessary for
R̃(x, t) to be periodic. Indeed, we wish to allow for perturbations (44) that are bounded and
sufficiently smooth, but otherwise arbitrary. Noting the independence of JLκ on t, we separate
variables as before,(

w1

w2

)
= eλt

(
W1

W2

)
, (47)

to obtain the spectral problem

λ

(
W1

W2

)
= JLκ

(
W1

W2

)
. (48)

We easily prove the following theorem.

Theorem 1. The vector (w1, w2)
T = (

e−ıκxχ2
1 + eıκxχ2

2 ,−ıe−ıκxχ2
1 + ı eıκxχ2

2

)T
satisfies the

linear stability problem (45). Here χ = (χ1, χ2)
T is any solution of (25) with the corresponding

elliptic solution φ(x) = R(x) eıθ(x) = R̂(x) eıκx .

Proof. The proof is by direct calculation: calculate ∂t (w1, w2)
T using the product rule and

the second equation of (25). Alternatively, calculate ∂t (w1, w2)
T using (45), substituting

(w1, w2)
T = (

e−ıκxχ2
1 + eıκxχ2

2 ,−ıe−ıκxχ2
1 + ıeıκxχ2

2

)T
. In both expressions so obtained,

eliminate x-derivatives of w1 and w2 (up to order 2) using the first equation of (25). The
resulting expressions are equal, finishing the proof. �

13
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Remarks.

• It is possible to repeat this proof for any solution ψ(x, t) of (14). It is not necessary that
the solution is a stationary elliptic solution.

• Despite the different form of the spectral stability problem (compare 48 with (22)), it is
clear that they determine the same spectra, with different but equivalent eigenfunctions.
Indeed, if an eigenfunction (W1,W2) corresponds to an element of the spectrum λ for
(48), then there is a corresponding eigenfunction (U, V ) with the same spectral element λ

for (22). Thus, there is no confusion when we use (48) to determine the stability spectrum
of an elliptic solution of (1).

To establish the spectral stability of the elliptic solutions of the defocusing NLS equation
(1), we need to establish that all bounded solutions (W1,W2) of (48) are obtained through the
squared-eigenfunction connection by(

W1

W2

)
= e2�t

(
e−ıκxϕ2

1 + eıκxϕ2
2

−ıe−ıκxϕ2
1 + ıeıκxϕ2

2

)
. (49)

If we manage to do so then by comparing with (47) we immediately conclude that

λ = 2�. (50)

Since σt = iR, we conclude that the stability spectrum is given by

σ(L) = σ(Lκ) = ıR. (51)

Here the norm that is necessary to define the spectrum is the supremum norm in C0
b (R). In

order to obtain this conclusion, we need the following theorem.

Theorem 2. All but six solutions of (48) are obtained through (49), where ϕ = (ϕ1, ϕ2)
T

solves the first equation of (26) and (29). Specifically, all solutions of (48) bounded on the
whole real line are obtained through the squared eigenfunction connection (49), with one
exception corresponding to λ = 0.

Proof. For any given value of λ ∈ C, (48) can be written as four-dimensional first-order
system of ordinary differential equations. Thus, for any value of λ ∈ C, (48) has four linearly
independent solutions. On the other hand, we have already shown (theorem 1) that (49)
provides solutions of this ordinary differential equation. Let us count how many solutions are
obtained this way, for a fixed value of λ. For any value of λ ∈ C, exactly one value of � ∈ C

is obtained through � = λ/2. Excluding the six values of λ for which the discriminant of (30)
as a function of ζ is zero (these turn out to be only the values of λ for which �2 reaches its
maximum or minimum value in figure 4), (30) gives rise to four values of ζ ∈ C. It should
be noted that we are not restricting ourselves to ζ ∈ σL now, since the boundedness of the
solutions is not a concern in this counting argument. Next, for a given pair (�, ζ ) ∈ C

2,
(29) defines a unique solution of the system consisting of the first equation of (26) and (29).
Thus, any choice of λ ∈ C not equal to the six values mentioned above, gives rise to exactly
four solutions of (48), through the squared eigenfunction connection of theorem 1 Before we
consider the six excluded values, we need to show that the four solutions (W1(x),W2(x))T

just obtained are linearly independent. As in [5], there are two parts to this.

(1) If there is an exponential contribution to (W1,W2)
T from γ (x) then an argument similar

to that given in [5] establishes the linear independence of the four solutions.

14
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(2) As in [5], the only possibility for the exponential factor due to γ (x) not to contribute is
for the integrand in that factor to be proportional to a logarithmic derivative. It is easily
checked that this occurs only for λ = 0 = �. It is a tedious calculation to verify that the
four solutions (W1(x),W2(x))T obtained through the squared eigenfunction connection
are linearly dependent. In fact, no two of them are linearly independent. Using the
invariances of the equation, one can construct four linearly independent solutions, two of
which are bounded, while the other two are unbounded. One of the bounded solutions is
the one obtained using the squared eigenfunction connection. Unlike for the KdV equation
[5], no linear combination of the unbounded solutions is bounded. Thus, in this case, three
of the solutions of (48) are not obtained through the squared eigenfunction connection.
Of these three solutions, only one is bounded.

For the six excluded values, three linearly independent solutions of (48) are found. The
fourth one may be constructed using reduction of order, and introduces algebraic growth.
Extra care is required for the trivial-phase case, for which both maxima are equal, but the
same conclusion follows. For the two λ values for which �2 reaches its minimum value, the
two solutions obtained from (49) are bounded, thus these values of λ are part of the spectrum.
The two values of λ for which �2 reaches its maximum value only give rise to unbounded
solutions and are not part of the spectrum.

We conclude that all but one of the bounded solutions of (48) are obtained through the
squared eigenfunction connection. This finishes the proof. �

Remark. It is important to remember that the algebraically growing solutions discussed
above (corresponding to λ = 0 = �) do not lead to solutions of (48) through the squared
eigenfunction connection. Indeed, those solutions do not solve the second equation of (26),
and therefore theorem 1 does not apply to them. If it did, eight solutions would be obtained
corresponding to λ = 0.

The above considerations are summarized in the following theorem.

Theorem 3 (Spectral Stability). The elliptic solutions of the NLS equation (1) are spectrally
stable. The spectrum of their associated linear stability problem (48) (or (22)) is explicitly
given by σ(L) = ıR, or, accounting for multiple coverings,

σ(L) = (ıR)2 ∪ [ − 2ı

√∣∣�2
min

∣∣, 2ı

√∣∣�2
min

∣∣]2
, (52)

where |�2
min| is as before.

It follows from theorem 3 that the value of λc(b, k) in figure 3 is given by

λc(b, k) = 2
√∣∣�2

min

∣∣, (53)

which is the expression for the solid curve in figure 3.
Similar to the calculations in [5], we could obtain parametric representations for the

Floquet parameter and the imaginary part of the spectrum as a function of ζ . This would
reproduce the curves in figure 2.

Although the results of [22] specific to (1) are valid for small amplitude, no such restriction
is imposed for the use of their SCS lemma, as done in section 3 of [22]. Thus, we inherit the
conclusion of linear stability from [22]. Since the SCS lemma makes a statement about
the eigenfunctions of the spectral problem after Floquet decomposition, the linear stability
result holds with respect to what we called subharmonic perturbations in the introduction:
perturbations that are periodic with a period that is an integer multiple of the period of the
periodic part R̂(x) of the elliptic solution.
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Theorem 4 (Linear Stability). The elliptic solutions of the defocusing NLS equation (1) are
linearly stable with respect to square integrable subharmonic perturbations.

In other words, all solutions of (43) or, equivalently, (16) with sufficiently small square
integrable initial conditions remain small for all t > 0.

7. Nonlinear stability

Next, we consider the nonlinear stability of the elliptic solutions. It proves convenient to rewrite
the NLS equation (1) using real-valued dependent variables with �(x, t) = e−ıωtψ(x, t) =
e−ıωt (r(x, t) + ıl(x, t)). We have

∂

∂t

(
r

l

)
=

(−lxx/2 + l(r2 + l2) − ωl

rxx/2 − r(r2 + l2) + ωr

)
. (54)

In these variables, we write the elliptic solutions using

φ(x) = r̃(x) + ıl̃(x) = eıθ(x)R(x). (55)

This is almost identical to the reformulation used in section 6, but without the exponential
exp(ıκx) factored out.

As stated, we wish to allow for subharmonic perturbations: perturbations whose period
is a positive integer multiple of that of the minimal period 2T (k) of the amplitude of the
elliptic solutions. Note that there is no need to consider so-called superharmonic perturbations,
which have a period that is equal to this minimal period divided by a positive integer. Such
perturbations are also periodic with period equal to the minimal period, and they are de facto
included in our considerations. Further, in order to properly define the higher-order members
of the NLS hierarchy that are necessary for our stability argument below, we require that r(x, t),
l(x, t) and their derivatives of up to third order are square integrable. Hence we consider (54)
on the function space

V = H 3
per([−NT,NT ]) × H 3

per([−NT,NT ]),

where N is a fixed positive integer.
To facilitate our approach to the nonlinear stability problem, some tools from the theory

of the NLS equation as an integrable system are necessary. We review these here, partially to
aid the exposition, but also to reformulate these for our reformulation of the NLS equation (54)
using real coordinates. The essence of all these results is found in different classical sources
such as [1, 2, 16].

7.1. Hamiltonian structure of the NLS equation and the NLS hierarchy

Using its real form (54), the Hamiltonian structure of the NLS equation is given by

∂

∂t

(
r

l

)
= JH ′(r, l), (56)

where J is the skew-symmetric matrix

J =
(

0 1
−1 0

)
, (57)

the Hamiltonian H(r, l) is the nonlinear functional

H(r, l) =
∫ NT

−NT

H(r, l, rx, lx) dx =
∫ NT

−NT

(
1

4

(
r2
x + l2

x

)
+

1

4
(r2 + l2)2 − ω

2
(r2 + l2)

)
dx, (58)
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and H ′(r, l) denotes the variational derivative of H:

H ′(r, l) =
(
Hr − ∂xHrx

Hl − ∂xHlx

)
. (59)

By virtue of its integrability, the NLS equation possesses an infinite number of conserved
quantities H0, H1, H2, . . . , which are mutually in involution under the (canonical) Poisson
bracket specified by (57). Just like H = H2 + ωH0, with H0 = − 1

2

∫ NT

−NT
(r2 + l2)dx, defines

the NLS flow (54) with dynamical variable t, each Hj defines a dynamical equation with
evolution variable τj by

∂

∂τj

(
r

l

)
= JH ′

j (r, l). (60)

The collection of all these equations corresponding to j ∈ N is the NLS hierarchy. Each
equation in the NLS hierarchy is integrable, and has the same infinite sequence of conserved
quantities {Hj, j ∈ N} as the NLS equation (1), which is itself a member of the hierarchy,
corresponding to j = 2. Further, due to the involution property of their Hamiltonians, the
flows of all members of the NLS hierarchy mutually commute. This makes it possible for us
to think of simultaneous solutions to the entire hierarchy: (r, l) = (r, l)(τ0, τ1, τ2, τ3, . . .).

It is clear that any linear combination of right-hand sides of equations in the NLS hierarchy
gives rise to a dynamical equation whose flow commutes with all equations of the hierarchy.
We define the n-th NLS equation5 with evolution variable tn as

∂

∂tn

(
r

l

)
= J Ĥ ′

n(r, l), (61)

where

Ĥn = Hn +
n−1∑
j=0

cn,jHj , n � 1. (62)

Here the coefficients cn,j are constants. At the moment these constants are arbitrary. The crux
of our stability proof hangs on the freedom we have obtained from the introduction of these
constants. These constants will be fixed as convenient below. As seen above, the NLS equation
in the form (54) is the 2nd NLS equation with Ĥ2 = H = H2 + ωH0.

Every member of the NLS hierarchy has a Lax pair. These Lax pairs share the same first
component χτ1 = T1(ζ, r, l)χ , while their second component χτj

= Tj (ζ, r, l, rx, lx, . . .)χ is
different. The collection of all these Lax equations is called the linear NLS hierarchy. Its first
three members, using the (r, l) coordinates, are

χτ0 =
(

ı/2 0
0 −ı/2

)
χ, χτ1 =

( −ıζ r + ıl

r − ıl ıζ

)
χ,

χτ2 =
( −ıζ 2 − ı(r2 + l2)/2 ζ(r + ıl) + ı(rx + ılx)/2

ζ(r − ıl) − ı(rx − ılx)/2 ıζ 2 + ı(r2 + l2)/2

)
χ.

(63)

Additional members of the linear NLS hierarchy are easily constructed using the AKNS
method [1]. The compatibility condition of the τ1 equation with the n-th member of the linear
hierarchy results in the n-th equation of the NLS hierarchy.

A Lax equation for the n-th NLS equation is constructed by taking a linear combination
with the same coefficients of the lower-order Lax equations, as was done for the nonlinear
hierarchy. We define the n-th linear NLS equation as

χtn = T̂nχ, (64)

5 Truly, this is an n-parameter family of equations parameterized by the n parameters cn,j . We refer to this family
simply as the n-th NLS equation.
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where

T̂n =
(

Ân B̂n

Ĉn −Ân

)
= Tn +

n−1∑
j=0

cn,j Tj , T̂0 = T0. (65)

7.2. Stationary solutions of the NLS hierarchy

The n-stationary solutions of the NLS hierarchy are defined to be functions so that

∂

∂tn

(
r

l

)
= 0, (66)

for some choice of the constants cn,0, cn,1, ..., cn,n−1. Thus, an n-stationary solution satisfies
the ordinary differential equation

J Ĥ ′
n(r, l) = 0 ⇐⇒ Ĥ ′

n(r, l) = 0,

since J is invertible.
It is known that the n-stationary solutions can be written in terms of genus n− 1 Riemann

theta functions, or limits of these. We do not need this explicit representation, but we do need
some classical properties of these solutions, see e.g. [4].

• Since all flows of the NLS hierarchy commute, the set of n-stationary solutions is invariant
under any of the NLS equations. In other words, an n-stationary solution remains an n-
stationary solution after evolution under any of the NLS flows.

• Any n-stationary solution is also stationary with respect to all of the higher-order time
variables tm, m > n. In such cases, the constants cm,j with j � n are free parameters. An
example is provided below. In what follows, we make use of this fact in our construction
of a Lyapunov function.

Returning to the elliptic solutions ψ(x, t) = φ(x) = r̃(x) + ıl̃(x), we know that they
satisfy the ordinary differential equation (3). This is nothing but the second stationary NLS
equation in complex coordinates:

ψt2 = 0 ⇐⇒ H ′
2 + c2,1H

′
1 + c2,0H

′
0 = 0, (67)

with c2,1 = 0 and c2,0 = ω. Thus the elliptic solutions are 2-stationary solutions of the NLS
hierarchy. As stated above, this implies they are m-stationary solutions for any m > 2 as well.
As an example, consider the fourth NLS equation

Ĥ ′
4(r, l) = 0 = H4(r, l) + c4,3H

′
3(r, l) + c4,2H

′
2(r, l) + c4,1H

′
1(r, l) + c4,0H

′
0(r, l). (68)

The elliptic solutions satisfy this equation with

c4,0 = ωc4,2 + 2ıcc4,3 − k4

2
− 2k2 − 5bk2 − 1

2
− 15b2

2
− 5b, (69)

c4,1 = 4ıc + 2ωc4,3, (70)

for any values of c4,2 and c4,3.
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7.3. Orbital stability of the elliptic solutions

We begin by translating some of the results of the previous sections to the (r, l) coordinates
used here. Expanding about the elliptic solution (55),(

r(x, t)

l(x, t)

)
=

(
r̃(x)

l̃(x)

)
+ ε

(
w1(x, t)

w2(x, t)

)
+ O(ε2). (71)

Note that this w = (w1, w2)
T is different from, but obviously related to, that of the previous

section. Substituting this in (14) and ignoring terms beyond first order in ε, we find

wt = JMw, (72)

where the symmetric differential operator M = Ĥ ′′
2 (r̃, l̃) is the Hessian of Ĥ2(r, l) evaluated

at the elliptic solution:

Ĥ ′′
2 (r̃, l̃) =

(− 1
2∂2

x + 3r̃2 + l̃2 − ω 2r̃ l̃

2r̃ l̃ − 1
2∂2

x + r̃2 + 3l̃2 − ω

)
. (73)

Again, we separate variables. Let w(x, t) = eλtW(x). This results in the eigenvalue problem

λW = JMW. (74)

As in the previous section, the solutions of this problem are related to those of the Lax pair
problem (25):

λ = 2�, W(x) =
(

χ2
1 + χ2

2

−ıχ2
1 + ıχ2

2

)
. (75)

These relations are verified in the same way as before.
Before we turn to nonlinear stability, we briefly review the simplest symmetries of the

NLS equation, namely those that leave the class of elliptic solutions invariant. These are
the multiplication by a constant phase factor, and the translation in x. These symmetries are
represented by the Lie group G = R × S1. Let g = (x0, γ ) ∈ G. Then elements of G act on
�(x, t) according to

T (g)�(x, t) = eıγ �(x + x0, t), (76)

or, in real coordinates,

T (g)

(
r(x, t)

l(x, t)

)
=

(
cos γ − sin γ

sin γ cos γ

) (
r(x + x0, t)

l(x + x0, t)

)
. (77)

The orbit of a solution �(x, t) under the group G is the collection {T (g)�(x, t), g ∈ G}.
Stability of the elliptic solutions is considered modulo these two symmetries: an elliptic
solution is considered stable if it never strays far from its orbit when perturbed with sufficiently
small perturbations. Concretely, an elliptic solution φ(x) = r̃(x) + ıl̃(x) is stable if nearby
solutions stay near elliptic solutions for all time.

Definition. The stationary solution � = e−ıωt (r̃(x) + ıl̃(x)) is (nonlinearly) orbitally stable
in V if for any given ε > 0 there exists a δ(ε) > 0 such that if (r(x, 0), l(x, 0))T ∈ V then for
all t > 0

||(r(x, 0), l(x, 0))T − (r̃(x), l̃(x))T || < δ

⇒ inf
g∈G

||(r(x, t), l(x, t))T − T (g)(r̃(x), l̃(x))T || < ε.

To prove nonlinear stability, we start by constructing a Lyapunov functional. For
Hamiltonian systems, this is typically a constant of the motion K(r,l) for which (r̃, l̃)T is
an unconstrained minimizer:
d

dt
K(r, l) = 0, K ′(r̃, l̃) = 0, 〈v,K ′′(r̃, l̃)v〉 > 0, for all v ∈ V, v �= 0. (78)
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Here the notation K ′(r, l) denotes the variational derivative, as in (59), but allowing for
the possibility of functionals depending on higher than first derivatives. If K(r, l) =∫ NT

−NT
K(r, l, rx, lx, rxx, lxx, . . .) dx, then

K ′(r, l) =
∑

j

(−1)j

(
∂

j
x (∂K/∂rjx)

∂
j
x (∂K/∂ljx)

)
, (79)

where the index jx denotes the j th derivative with respect to x. The above sum is
finite, with the number of terms determined by the order of the differential expression
K(r, l, rx, lx, rxx, lxx, . . .). The above concept of a Lyapunov function will be generalized
slightly below, to accommodate orbital stability.

An infinite number of candidates for a Lyapunov functional suggest themselves, since
NLS is an integrable Hamiltonian system. Indeed, all conserved quantities of the equation
satisfy the first condition. We want to construct one that satisfies the other requirements as
well.

Linearizing the n-th NLS equation about the elliptic solution (r̃, l̃)T results in

wtn = JLnw, (80)

where Ln is the Hessian of Ĥn evaluated at (r̃, l̃)T , and w is the same as above, but it is
regarded now as a function of all tn. The squared eigenfunction connection (75) and separation
of variables give

2�nW(x) = JLnW(x), (81)

where �n is obtained through

χ = e�ntn

(
χ1

χ2

)
. (82)

Note that due to their commutativity, the different equations of the linear NLS hierarchy share
the common set of complete eigenfunctions (χ1, χ2)

T . Substituting this in (64) determines a
relationship between �n and ζ , similar to that obtained in section 5. In general, this relationship
defines a Riemann surface of genus n, see section 4.6 of [4]. However, the algebraic curve
determining this Riemann surface is singular for n > 2 when evaluated at the elliptic solutions,
as detailed by the next theorem.

Theorem 5. Let (r̃, l̃)T be a stationary solution of the second NLS equation. For all n > 2
the algebraic relationship between �n and ζ reduces to

�2
n(ζ ) = p2

n(ζ )�2(ζ ), (83)

where �2(ζ ) is given in (30), and pn(ζ ) is a polynomial of degree n − 2 in ζ . Furthermore,
the choice of the free parameters cn,j , j > 1 gives complete control over the roots of pn(ζ ).

Proof. The proof is analogous to a special case of that given in section 4 of [33] for the
finite-genus solutions of the KdV equation. When evaluated at a stationary solution of the n-th
NLS equation, the flows of all higher-order NLS equations become linearly dependent. The
theorem is a consequence of this linear dependence and the specific functional form (obtained
through a standard AKNS calculation [1]) the matrices in the linear NLS hierarchy take as
polynomials in ζ . �

With these facts established, we return to proving orbital stability. The construction of a
Lyapunov functional establishes so-called formal stability [25]. We go from formal stability
to nonlinear (orbital) stability using the following theorem, which is a rephrasing of results
due to Grillakis, Shatah and Strauss [20] and Maddocks and Sachs [31].

20



J. Phys. A: Math. Theor. 44 (2011) 285201 N Bottman et al

Theorem 6 (Orbital Stability). Let (r̃, l̃)T be a linearly stable equilibrium solution of the
integrable Hamiltonian problem (r̃, l̃)Tt = JH ′(r̃, l̃) on the function space V. Further, suppose
there exist constants cn,j , 0 � j � n − 1 such that the Hamiltonian Ĥn for the n-th equation
of the hierarchy satisfies:

(1) The kernel of Ĥn(r̃, l̃) is spanned by the generators of the symmetry group G acting on
(r̃, l̃)T .

(2) For all eigenfunctions W corresponding to nonzero eigenvalues of Ĥn, we have that
Kn(W) := 〈W, Ĥ ′′

n (r̃, l̃)W 〉 > 0.

Then (r̃, l̃)T is an orbitally stable solution of (r, l)Tt = JH ′(r, l) in V.
It should be noted that the concept of orbital stability requires well-posedness of the

initial-value problem in V, for which the reader is referred to chapter 5, theorem 2.1 of [6].
Let us consider what remains to be done to use this theorem to establish orbital stability of

the elliptic solutions of the NLS equation. First, the linear stability of the elliptic solutions was
established in the previous section, using the SCS lemma of Hărăguş and Kapitula [22]. Second,
the kernel of Ĥ2 = H has geometric multiplicity two, when considered on V [17]. Using the
original complex formulation (1), the infinitesimal generator corresponding to phase invariance
is (�,�∗) → (ı�,−ı�∗), while that for translational invariance is (�,�∗) → (�x,�

∗
x ).

In terms of the real coordinates, those invariances are generated by (r, l) → (−l, r) and
(r, l) → (rx, lx), respectively. This implies that the two-dimensional null space of Ĥ ′′

2 (r̃, l̃) is
spanned by {(−l̃

r̃

)
,

(
r̃x

l̃x

)}
. (84)

Note that it follows from the Riemann surface relations in theorem 5 that the kernel of Ĥ ′′
n (r̃, l̃),

n > 2, is the same as that of Ĥ ′′
2 (r̃, l̃), provided pn(ζ ) has no zeros on the Lax spectrum.

Thus, it remains to be seen whether we can satisfy condition 2 of theorem 6: is it possible to
find Ĥn such that this requirement is satisfied? Let us calculate Kn(W). For any n, we have by
definition of Ln that (see (81))

JLnW = 2�nW ⇐⇒ LnW = 2�nJ
−1W, (85)

from which

Kn(W) =
∫ NT

−NT

W ∗ · LnW dx = 2�n

∫ NT

−NT

W ∗ · J−1W dx

= �n

�

∫ NT

−NT

W ∗ · L2W dx, (86)

so that

Kn(W(ζ )) = �n(ζ )

�(ζ )
K2(W(ζ )) = pn(ζ )K2(W(ζ )). (87)

This shows that any roots of �(ζ) result in removable singularities. In what follows we write
Kn(ζ ) for Kn(W(ζ )). Thus, in order to calculate Kn(ζ ), it suffices to calculate K2(ζ ) and to
know the polynomial pn(ζ ).

Let us calculate K2(ζ ). As the notation indicates, we consider all quantities (spectral
elements, �, eigenfunctions W , etc) parametrized by the Lax spectral parameter ζ . Some care
has to be taken to ensure that a consistent branch of �(ζ) is used. From LW = 2�J−1W =
2�(−W2,W1)

T , we get W ∗ · LW = 2�(W1W
∗
2 − W2W

∗
1 ). Using the squared eigenfunction

connection (75), we obtain

W ∗ · LW = 4ı�(|χ1|4 − |χ2|4). (88)
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We know that (see section 5) χ1 = −γ (x)B(x) exp(�t), χ2 = γ (x)(A(x) − �) exp(�t). The
factor exp(�t) is irrelevant for this calculation since � is imaginary on the Lax spectrum, thus
the exponential factor has unit magnitude. Next, we calculate the magnitude of γ (x). From
(32),

γ = γ0 exp

(
−

∫
(A − �)φ + Bx + ıζB

B
dx

)
= γ0

B
exp(ı real) exp

(
−

∫
(A − �)φ

B
dx

)
,

(89)

where ‘real’ denotes a sum of real quantities, so that the resulting exponential has no effect on
the magnitude. The constant factor γ0 has no effect on the sign of W ∗ · LW , and we equate it
to 1. Simplifying the integrand using (30) and C = B∗ yields

− (A − �)φ

B
= B∗φ

A + �
= ζ |φ|2 − ı

2φ∗
xφ

−ıζ 2 − ı
2 |φ|2 + ı

2ω − �

= ζ |φ|2 − ı
2 (r̃x − ıl̃x)(r̃ + ıl̃)

−ζ 2 − 1
2 |φ|2 + ω

2 + ı�
= imag +

− 1
2 (r̃ r̃x + l̃ l̃x)

−ζ 2 − 1
2 |φ|2 + ω

2 + ı�

= imag +
1

2

d

dx
ln

∣∣∣∣−1

2
(r̃2 + l̃2) +

ω

2
− ζ 2 + ı�

∣∣∣∣ , (90)

where ‘imag’ denotes an imaginary quantity, having no effect on the final calculation of |γ |.
Note that A + � is imaginary, so that the argument of the absolute value in (90) is real. It can
also be written as −ıA − ı�. We get

|γ |2 = | − ıA − ı�|
|B|2 = |A + �|

|B|2 = 1

|A − �| , (91)

using (30) once more. This results in

|χ1|4 = |γ |4|B|4 = |A + �|2, |χ2|4 = |γ |4|A − �|2 = |A − �|2, (92)

so that

W ∗ · LW = 4ı�(|A + �|2 − |A − �|2) = 4ı�(|ıA + ı�|2 − |ıA − ı�|2)
= 4ı�((ıA + ı�)2 − (ıA − ı�)2) = −16�2ıA, (93)

and finally

K2(ζ ) = −16�2(ζ )

∫ NT

−NT

(
ζ 2 − ω

2
+

1

2
|φ|2

)
dx. (94)

Before we calculate this integral explicitly, we note the following: (i) the factor −16�2(ζ )

is strictly positive or zero on the Lax spectrum ζ ∈ R. Those zero values are allowed, since
clearly they correspond to the kernel ofL. (ii) the integrand ıA has fixed sign on any component
of the Lax spectrum, since −A2 = −�2 + |B|2, which is strictly positive on the Lax spectrum.
It follows that the value of the integral as a function of ζ can only change sign for values of
ζ �∈ σL. In order to determine that such sign changes do in fact occur for all elliptic solutions,
we calculate (94) explicitly, using standard tables [8]. Using |φ|2 = k2sn2(x, k) + b, we obtain

K2(ζ ) = −32�2(ζ )NT (k)

(
ζ 2 − b

4
+

1

4

(
k′2 − 2

E(k)

K(k)

))
, (95)

where E(k) denotes the complete elliptic integral of the second kind:

E(k) =
∫ π/2

0

√
1 − k2 sin2 y dy. (96)
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Using this definition and the definition of K(k) (7), it is easily seen that the expression
k′2 − 2E(k)/K(k) is positive for all k ∈ [0, 1). It follows that the expression inside the outer
parenthesis is negative for ζ = 0, thus two sign changes of K2(ζ ) occur for each elliptic
solution. As remarked above, these sign changes occur for ζ = ±ζ0 �∈ σL, but the overall
result is that K2(ζ ) has a different fixed sign on the different components of σL. Thus no
conclusion about orbital stability can be drawn from K2(ζ ).

We turn to the other candidates Kn(ζ ). Two sign changes need to be made undone. We
wish to introduce two free parameters to do so, hence we turn to K4(ζ ) = p4(ζ )K2(ζ ). Recall
that p4(ζ ) is a polynomial of degree two, depending on the free constants c4,2 and c4,3. A
direct calculation gives

p4(ζ ) = �4(ζ )

�(ζ )
= 4ζ 2 + 2ıc4,3ζ − c4,2 + 3b + 1 + k2. (97)

Whole ranges of choices for the constants c4,2 and c4,3 allow us to achieve K4(ζ ) � 0 for all
ζ ∈ σL, with equality attained only for ζ such that W(ζ) is in the null space of L. Perhaps the
most convenient choice is

c4,2 = 4ζ 2
0 + 3b + 1 + k2, c4,3 = 0. (98)

We summarize our result in the following theorem.

Theorem 7. There exist constants c4,2 and c4,3 such that K4(ζ ) is strictly positive on the Lax
spectrum σL, with the exception of those values ζ ∈ σL that give rise to elements of the null
space of L, for which K4(ζ ) = 0. Therefore, the elliptic solutions of the NLS equation are
orbitally stable in V.

In other words, we have demonstrated that any elliptic solution of the NLS equation is
orbitally stable with respect to subharmonic perturbations that are sufficiently smooth.
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