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Abstract

We derive explicit solution representations for linear, dissipative, second-order Initial-Boundary Value Prob-
lems (IBVPs) with coefficients that are spatially varying, with linear, constant-coefficient, two-point boundary
conditions. We accomplish this by considering the variable-coefficient problem as the limit of a constant-coefficient
interface problem, previously solved using the Unified Transform Method of Fokas. Our method produces an ex-
plicit representation of the solution, allowing us to determine properties of the solution directly. As explicit
examples, we demonstrate the solution procedure for different IBVPs of variations of the heat equation, and
the linearized complex Ginzburg-Landau (CGL) equation (periodic boundary conditions). We can use this to
find the eigenvalues of dissipative second-order linear operators (including non-self-adjoint ones) as roots of a
transcendental function, and we can write their eigenfunctions explicitly in terms of the eigenvalues.

Contents

1 Introduction 2

2 Assumptions and definitions 2

3 The whole-line problem 5
3.1 Example: The partially lumped heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 A note about the integrability conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Example: The constant-coefficient, advected heat equation . . . . . . . . . . . . . . . . . . . . 7

4 The half-line problem 7
4.1 Example: The advected heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 The finite-interval problem 9
5.1 Example: The heat equation with homogeneous, Dirichlet boundary conditions . . . . . . . . . . . . . 11
5.2 Example: The CGL equation with periodic boundary conditions . . . . . . . . . . . . . . . . . . . . . 12
5.3 Sturm-Liouville Problems: Eigenvalues and Eigenfunctions . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.1 Example: Eigenvalues for the CGL equation with periodic boundary conditions . . . . . . . . . 14

Appendices 15

A Derivations 15
A.1 The finite-interval problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
A.2 The half-line problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
A.3 The whole-line problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

B Proofs: the solution expressions are well defined 23

C Proofs: the solution expressions solve the evolution equation 36

1

ar
X

iv
:2

40
5.

20
53

6v
1 

 [
m

at
h.

A
P]

  3
0 

M
ay

 2
02

4



D Proofs: the solution expressions satisfy the boundary values 45

E Proofs: the solution expressions satisfy the initial condition 49

1 Introduction

The Unified Transform Method (UTM), or Method of Fokas, is used to solve Initial Value Problems (IVPs) and Initial-
Boundary Value Problems (IBVPs) for integrable equations. Its application to linear, constant-coefficient partial
differential equations (PDEs) is particularly convenient and straightforward. The UTM leads to many new insights
on PDEs and IBVPs, see for instance [1, 7, 10, 11, 12, 13, 14, 29], and references therein. Especially relevant for us,
the method has been used to explicitly solve interface problems and problems with piecewise-constant coefficients,
see [5, 6, 17, 23, 24, 25, 26]. The purpose of this paper is to generalize the UTM to solve variable-coefficient IBVPs.
In [29], Fokas and Treharne use a Lax Pair approach to analyze specific variable-coefficient IBVPs. Their approach
reduces the problem from solving a Partial Differential Equation to solving an Ordinary Differential Equation (ODE)
by writing the solution of the PDE as an integral over the solutions to a non-autonomous ODE, but it does not provide
an explicit representation of the solution. This approach, like separation of variables, is useful if the associated ODE
is a second-order, self-adjoint problem on a finite domain, for which we have regular Sturm-Liouville theory [3], but
does not generalize well to problems that are not self adjoint, of higher order, or posed on an unbounded domain.

In our approach to variable-coefficient IBVPs, we divide the domain into N parts and approximate the equation
by a constant-coefficient equation on each part. We solve the resulting interface problem using the UTM as shown in
[5, 6, 17, 23, 24, 25, 26]. Using Cramer’s rule, the solution in each part is found as a ratio of determinants. Through
the nontrivial steps of obtaining an explicit expression for the determinants and taking the limit as N goes to infinity,
a complicated but explicit solution expression is obtained. As in previous applications of the UTM (e.g., [1, 13] for
constant-coefficient problems, [6, 27] for interface problems), one of the benefits of our approach is characterizing
which boundary conditions give rise to a well-posed IBVP. In particular, for the finite-interval problem, this work
is consistent with Locker’s work on Birkhoff regularity, e.g., [16]. Since the UTM is generalizable to large classes of
varying boundary conditions, IBVPs of higher order, including non-self-adjoint problems, we expect our method to
generalize in these same directions as well.

In this manuscript, expanding on work presented in [9], we construct explicit solution expressions for general,
second-order IBVPs with spatially-varying coefficients and with linear, two-point boundary conditions, as integrals
over known quantities. We present the solutions for the whole-line problem, the half-line problem, and the finite-
interval problem. We choose to demonstrate the solution process to the three problems in all their generality starting
with the simplest, so that we start with the whole-line problem in Section 3, followed by the half-line problem in
Section 4, finishing with the finite-interval problem in Section 5. In Sections 3.1, 4.1, 5.1, and 5.2, we restrict to
specific examples. For the finite-interval problems, our explicit representation characterizes the eigenvalues of the
ODE obtained through separation of variables and gives the eigenfunctions explicitly in terms of these eigenvalues, see
Section 5.3. This allows for the numerical approximation of the eigenvalues, including for non-self-adjoint problems.
Other numerical applications are presented in [9]. In Appendix A, we present a formal derivation of the solution. In
this appendix we switch the order of exposition by deriving the solution to the finite-interval problem first, as the
solution of the other two problems follows from it. We finish the paper with rigorous proofs in Appendices B–E.

Our formulae may seem complicated; however, they are similar to the solutions found in [21], which have been
used to prove a variety of properties of solutions to ODEs and eigenvalue problems. Indeed, our notation is inspired
by this book. While our solutions are similar, our methods are entirely different. The reader may also find our
expressions reminiscent of path integrals [28], although those are usually used to propagate in time, unlike our
spatial “discretization” approach.

2 Assumptions and definitions

Throughout this paper, we consider the linear, second-order evolution equation with spatially variable coefficients:

qt = α(x) (β(x)qx)x + γ(x)q + f(x, t), x ∈ D ⊂ R, t > 0, (2.1a)

q(x, 0) = q0(x), x ∈ D, (2.1b)
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Figure 1: The region Ω with the branch cuts for g(k, x).

on different domains D with (possibly) some functions f0(t), f1(t) prescribed at the boundary of D. In all cases, the
solution is written as

q(x, t) =
1

2π

ˆ
∂Ω

Φ(k, x, t)

∆(k)
e−k

2t dk, (2.2)

where the functions Φ(k, x, t) and ∆(k) depend on D and the initial and boundary conditions provided. The region
Ω = {k ∈ C : |k| > r and π/4 < arg(k) < 3π/4}, for some r >

√
Mγ , where Mγ = ∥γ∥∞, as shown in Figure 1. In

this section, we establish notation and introduce assumptions on the functions in (2.1) that we use throughout the
paper.

We define arg( · ) ∈ [−π/2, 3π/2). We use D to denote the domain of the problem, so that D = R, D = (xl,∞),
and D = (xl, xr) for the whole-line, half-line, and the finite-interval problems, respectively. The domain D is given
by the open set, and we denote the closure by D. We write the L1–norm over the domain D ⊆ R as ∥ · ∥D. When
used on a function of multiple variables, we implicitly assume a supremum norm on the other variables, e.g., for a
function f(k, x) for k ∈ Ω ⊆ C and x ∈ D,

∥f∥D = sup
k∈Ω

ˆ
D
|f(k, x)| dx.

In this way, the norms always represent fixed numbers, never functions. The notation AC( · ) represents the space
of locally absolutely continuous functions on the closure of the domain. We use the ‘big-oh’ notation O( · ) and the
‘little-oh’ notation o( · ), as described in [19].

Assumption 1. We assume the following about the coefficient functions α, β, γ:

1. supx∈D | arg(α(x)β(x)| < π/2,

2. α, β ∈ AC(D),

3. mαβ = infx∈D |α(x)β(x)| > 0,

4. αβ, γ ∈ L∞(D), and we define Mαβ = ∥αβ∥∞ and Mγ = ∥γ∥∞,

5. (β′/β − α′/α), γ′ ∈ L1(D).

Assumption 2. We assume the following about the inhomogeneous, initial, and boundary functions f, q0, fm:

1. For the inhomogeneous function f(x, t), we assume f(x, ·) ∈ AC((0, T )) for each x ∈ D, and

∥f∥D = sup
t∈[0,T ]

ˆ
D
|f(x, t)| dx <∞ and ∥ft∥D = sup

t∈[0,T ]

ˆ
D
|ft(x, t)| dx <∞.

2. For the initial condition q0(x), we assume q0 ∈ L1(D).

3. For the boundary functions fm(t), m = 0, 1, we assume fm ∈ AC((0, T )) and f ′m ∈ L∞((0, T )).
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Assumption 3. The finite-interval IBVP has a number of subcases. One of these, Case 4 (see Definition 8), requires
the following assumption, in addition to Assumption 1:

1. β′/β − α′/α ∈ AC(D).

2. For the boundary functions fm(t), m = 0, 1, we require f ′m ∈ AC((0, T )) and f ′′m ∈ L∞((0, T )).

Remark 4.

• Assumption 1.1 is equivalent to restricting to problems that we call fully dissipative. This is in contrast to
problems that we call partially dissipative and/or partially dispersive where supx∈D | arg(α(x)β(x))| = π/2, but
infx∈D | arg(α(x)β(x))| < π/2 or fully dispersive where | arg(α(x)β(x))| = π/2 for all x ∈ D.

• Assumption 1.2 may seem odd considering that we derive our results from those for an interface problem in
Appendix A. However, in that section, we use the mean value theorem as we let the limit of the number of
interfaces N approach infinity, and thus we assume continuity of our function. This section can be amended to
include piecewise continuous functions, but makes the solution formulas even more complicated. For simplicity,
we restrict to continuous functions. Alternatively, we could employ distribution theory to extend the current
results to discontinuous functions.

• Assumptions 1.3 and 1.4 are physically natural conditions to impose. Assumption 1.5 ensures that our solution
is well defined. It may be possible to extend this to other Lp spaces or other more general spaces with some
more work.

• Throughout this paper, we always use Assumptions 1 and 2. We clearly state when Assumption 3 is used, which
is only for the 4th Boundary Case of the finite-interval.

Definition 5. For x ∈ D, since α(x) and β(x) are continuous by Assumption 1.2, we define arguments of α(x) and
β(x) to be θα(x) and θβ(x), chosen to be continuous1, so that

α(x) = |α(x)|eiθα(x) and β(x) = |β(x)|eiθβ(x). (2.3)

Using this, we define, for x ∈ D,

µ(x) =
1√

α(x)β(x)
=

1√
|α(x)β(x)|

e−
i
2 (θα(x)+θβ(x)), (2.4)

and, for x ∈ D and k ∈ C,

g(k, x) =

√
1 +

γ(x)

k2
=

√∣∣∣∣1 + γ(x)

k2

∣∣∣∣e i
2 arg(1+γ(x)/k2). (2.5)

We also define n(k, x) = µ(x)g(k, x), (βµ)(x) = β(x)µ(x), and (βn)(k, x) = β(x)n(k, x),

√
(βµ)(x) = 4

√∣∣∣∣β(x)α(x)

∣∣∣∣e i
4 (θβ(x)−θα(x)),

√
g(k, x) = 4

√∣∣∣∣1 + γ(x)

k2

∣∣∣∣e i
4 arg(1+γ(x)/k2), (2.6)

and
√
(βn)(k, x) =

√
(βµ)(x)

√
g(k, x). Finally, we define

u(x) =
1

µ(x)

(
β′(x)

β(x)
− α′(x)

α(x)

)
, (2.7)

and

qα(x) =
q0(x)

α(x)
, fα(x, t) =

f(x, t)

α(x)
, f̃α(k

2, x, t) =

ˆ t

0

fα(x, s)e
k2s ds, (2.8)

and ψα(k
2, x, t) = qα(x) + f̃α(k

2, x, t).

1Note that not necessarily θα(x) = arg(α(x)), given how we defined the range of arg( · ) above, because of the continuity requirement.
For instance, if α(x) = exp(ix) (and say β(x) = exp(−ix)), we can set θα(x) = x.
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Figure 2: Terminology for the derivation of the partially lumped heat equation [20].

3 The whole-line problem

Consider (2.1) for x ∈ R and with decay at infinity,

qt = α(x) (β(x)qx)x + γ(x)q + f(x, t), x ∈ R, t > 0, (3.1a)

q(x, 0) = q0(x), x ∈ R, (3.1b)

lim
|x|→∞

q(x, t) = 0, t > 0. (3.1c)

Theorem 6. Under Assumptions 1 and 2, the IVP (3.1) has the solution

q(x, t) =
1

2π

ˆ
∂Ω

Φ(k, x, t)

∆(k)
e−k

2t dk, (3.2)

where Ω is shown in Figure 1. Here

Φ(k, x, t) =

ˆ ∞

−∞

Ψ(k, x, y)ψα(k
2, y, t)√

(βn)(k, x)
√

(βn)(k, y)
dy and ∆(k) =

∞∑
n=0

E(−∞,∞)
2n (k), (3.3)

with, for y < x,

Ψ(k, x, y) = exp

(
ik

ˆ x

y

n(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

(−1)ℓẼ(−∞,y)
n−ℓ (k)E(x,∞)

ℓ (k), (3.4)

and for y > x, Ψ(k, x, y) = Ψ(k, y, x). Here, E(a,b)
0 (k) = 1, Ẽ(a,b)

0 (k) = 1, and for n ≥ 1,

E(a,b)
n (k) =

1

2n

ˆ
a=y0<y1<···<yn<yn+1=b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
ik

n∑
p=0

(1− (−1)n−p)

ˆ yp+1

yp

n(k, ξ)dξ

)
dyn, (3.5a)

Ẽ(a,b)
n (k) =

1

2n

ˆ
a=y0<y1<···<yn<yn+1=b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
ik

n∑
p=0

(1− (−1)p)

ˆ yp+1

yp

n(k, ξ)dξ

)
dyn, (3.5b)

where dyn = dy1 · · · dyn and the prime denotes the derivative with respect to the second variable. The function

E(a,b)
n (k) is defined for b = ∞ and if n is even, for a = −∞. The function Ẽ(a,b)

n (k) is defined for a = −∞ and if n
is even, for b = ∞. The functions ψα(k

2, x, t), n(k, x), and (βn)(k, x) are given in Definition 5.

Proof. The formal derivation is given in Appendix A. Its validity is proven in Appendices B–E.

3.1 Example: The partially lumped heat equation

Consider the heat equation with partial lumping analysis [20], describing the temperature T (x, t) in a body with
minimal temperature variation in the y and z directions with ambient temperature T∞, heat transfer coefficient h0,
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thermal conductivity k0, cross-sectional area A(x), and perimeter p(x), see Figure 2. We assume the length L is
much greater than the width in the y and z directions. Ignoring temperature deviations in the y and z-directions,
this IBVP takes the form

θt =
1

A(x)

(
A(x)θx

)
x
− C(x)θ, x ∈ R, t > 0, (3.6a)

θ(x, 0) = θ0(x), x ∈ R, (3.6b)

lim
|x|→∞

θ(x, t) = 0, t > 0. (3.6c)

Here θ(x, t) = T (x, t) − T∞ represents the difference of the temperature in the body T (x, t) and the ambient
temperature T∞, the function C(x) = h0p(x)/(k0A(x)) > 0, and we equate the thermal diffusivity to 1 (α = 1).
Comparing this to (3.1), we have α(x) = 1/A(x), β(x) = A(x), γ(x) = −C(x), and f(x, t) ≡ 0. We require the
absolute continuity of A(x) > 0, the boundedness of C(x), and the absolute integrability of A′(x)/A(x) and C ′(x),
so that Assumption 1 is satisfied. Then we have the solution

θ(x, t) =
1

2π

ˆ
∂Ω

Φ(k, x, t)

∆(k)
e−k

2t dk, (3.7)

where Ω is shown in Figure 1,

n(k, x) =

√
1− C(x)

k2
, (3.8)

and ψα(k
2, x, t) = A(x)θ0(x). The functions Φ(k, x, t) and ∆(k) are given in (3.3).

3.2 A note about the integrability conditions.

A variable coefficient PDE in the form

qt = a(x)qxx + b(x)qx + c(x)q, (3.9)

can always be written in the form of (3.1a) as

qt = a(x) exp

(
−
ˆ x

x0

b(y)

a(y)
dy

)[
exp

(ˆ x

x0

b(y)

a(y)
dy

)
qx

]
x

+ c(x)q, (3.10)

which gives

α(x) = a(x) exp

(
−
ˆ x

x0

b(y)

a(y)
dy

)
, β(x) = exp

(ˆ x

x0

b(y)

a(y)
dy

)
, and γ(x) = c(x). (3.11)

From this, we have

(βn)′(k, x)

(βn)(k, x)
=

1

2

(
β′(x)

β(x)
− α′(x)

α(x)
+

γ′(x)

k2 + γ(x)

)
=

1

2

(
2b(x)

a(x)
− a′(x)

a(x)
+

c′(x)

k2 + c(x)

)
, (3.12)

which we can see is not integrable (over an infinite or semi-infinite domain) if a, b, c are constants with ab ̸= 0. This
presents a problem for our solution. However, we can make the change of variables,

q(x, t) = exp

(
−
ˆ x

x0

b(y)

2a(y)
dy

)
u(x, t). (3.13)

The PDE becomes

ut = a(x)uxx +

(
a′(x)b(x)− a(x)b′(x)

2a(x)
− b(x)2

4a(x)
+ c(x)

)
u, (3.14)

for which, we have

α(x) = a(x), β(x) = 1, γ(x) =
a′(x)b(x)− a(x)b′(x)

2a(x)
− b(x)2

4a(x)
+ c(x), (3.15)

and
(βn)′(k, x)

(βn)(k, x)
=

1

2

(
−a

′(x)

a(x)
+

γ′(x)

k2 + γ(x)

)
. (3.16)

In the case of constant coefficients, the integrability condition, Assumption 1.5, is satisfied and our solution is well
defined.
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3.2.1 Example: The constant-coefficient, advected heat equation

Consider the constant-coefficient IBVP

qt = qxx + cqx, x ∈ R, t > 0, (3.17a)

q(x, 0) = q0(x), x ∈ R, (3.17b)

lim
|x|→∞

q(x, t) = 0, t > 0. (3.17c)

This problem is well posed for c ∈ R [13]. The PDE (3.17a) can be written in the form (3.1a) as

qt = e−cx (ecxqx)x, (3.18)

with α(x) = e−cx, β(x) = ecx, and γ(x) = 0. Since β′/β − α′/α = 2c is not absolutely integrable over the real line,
and Assumption 1.5 is not satisfied. With the change of variables q(x, t) = e−cx/2u(x, t), the IBVP (3.17) becomes

ut = uxx −
c2

4
u, x ∈ R, t > 0, (3.19a)

u(x, 0) = ecx/2q0(x), x ∈ R, (3.19b)

lim
|x|→∞

u(x, t) = 0, t > 0. (3.19c)

Now α(x) = 1, β(x) = 1, and γ(x) = −c2/4, so that β′/β − α′/α = 0 and γ′ = 0, and Assumption 1 is satisfied.
This example shows that, although all evolution equations can be written in the form (3.1a), a transformation may
be needed before the integrability conditions are met and the solution expression (3.2) applies.

4 The half-line problem

Consider (2.1) on the half line x > xl with a linear, constant-coefficient boundary condition and decay at infinity,

qt = α(x) (β(x)qx)x + γ(x)q + f(x, t), x > xl, t > 0, (4.1a)

q(x, 0) = q0(x), x > xl, (4.1b)

f0(t) = a0q(xl, t) + a1qx(xl, t), t > 0, (4.1c)

lim
x→∞

q(x, t) = 0, t > 0, (4.1d)

with (a0, a1) ̸= (0, 0).

Theorem 7. Under Assumptions 1 and 2, the IBVP (4.1) has the solution

q(x, t) =
1

2π

ˆ
∂Ω

Φ(k, x, t)

∆(k)
e−k

2t dk, (4.2)

where Ω is shown in Figure 1. Here

∆(k) = 2

∞∑
n=0

(
(−1)nia0
kn(k, xl)

− a1

)
E(xl,∞)
n (k), (4.3)

and
Φ(k, x, t) = B0(k, x)F0(k

2, t) + Φψ(k, x, t), (4.4)

where

Φψ(k, x, t) =

ˆ ∞

xl

Ψ(k, x, y)ψα(k
2, y, t)√

(βn)(k, x)
√
(βn)(k, y)

dy. (4.5)

The functions ψα(k
2, x, t) and n(k, x) are defined in Definition 5. The boundary term B0(k, x) is defined by

B0(k, x) =
4β(xl) exp

(
ik
´ x
xl
n(k, ξ) dξ

)
√
(βn)(k, xl)

√
(βn)(k, x)

∞∑
n=0

(−1)nE(x,∞)
n (k), (4.6)

7



and

Fm(k2, t) =

ˆ t

0

ek
2sfm(s) ds, m = 0, 1. (4.7)

Note that we will use F1(k
2, t) in the finite-interval problem in Section 5. For xl < y < x,

Ψ(k, x, y) = 4 exp

(
ik

ˆ x

xl

n(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

(−1)ℓ
(

a0
kn(k, xl)

S(xl,y)
n−ℓ (k)− a1C(xl,y)

n−ℓ (k)

)
E(x,∞)
ℓ (k), (4.8)

and Ψ(k, x, y) = Ψ(k, y, x) for xl < x < y. E(a,b)
n (k) is defined in (3.5a), C(a,b)

0 (k) = 1, S(a,b)
0 (k) = 0, and for n ≥ 1,

C(a,b)
n (k) =

1

2n

ˆ
a=y0<y1<···<yn<yn+1=b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
cos

(
k

n∑
p=0

(−1)p
ˆ yp+1

yp

n(k, ξ) dξ

)
dyn, (4.9a)

S(a,b)
n (k) =

1

2n

ˆ
a=y0<y1<···<yn<yn+1=b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
sin

(
k

n∑
p=0

(−1)p
ˆ yp+1

yp

n(k, ξ) dξ

)
dyn, (4.9b)

where dyn = dy1 · · · dyn and the prime denotes the derivative with respect to the second variable, as before.

4.1 Example: The advected heat equation

Consider the advected heat equation on the half line with spatially variable thermal conductivity σ2(x) > 0 and
velocity c(x), without forcing and with homogeneous Dirichlet boundary conditions, i.e.,

qt =
(
σ2(x)qx

)
x
− c(x)qx, x > 0, t > 0, (4.10a)

q(x, 0) = q0(x), x > 0, (4.10b)

q(0, t) = 0, t > 0, (4.10c)

lim
x→∞

q(x, t) = 0, t > 0. (4.10d)

Here xl = 0, a0 = 1 and a1 = 0. Further,

α(x) = exp

(ˆ x

0

c(ξ)

σ2(ξ)
dξ

)
, β(x) = σ2(x) exp

(
−
ˆ x

0

c(ξ)

σ2(ξ)
dξ

)
, γ(x) = 0, (4.11)

f(x, t) = 0, and f0(t) = 0. We require absolute continuity of σ(x), boundedness of c(x), and since

β′(x)

β′(x)
− α′(x)

α(x)
=

2σ′(x)

σ(x)
− 2c(x)

σ2(x)
, (4.12)

we require absolute integrability of σ′(x)/σ(x) and c(x), so that Assumption 1 is satisfied. Note that if σ(x) is
absolutely continuous and σ′(x)/σ(x) is absolutely integrable, then σ(x) is bounded above and below. This problem
has the solution (4.2), where Ω is shown in Figure 1, n(k, x) = 1/σ(x),

kn(k, 0)∆(k) = 2i

∞∑
n=0

(−1)nE(0,∞)
n (k). (4.13)

Since B0(k, x, t) = 0 and ψ(k2, y, t) = q0(y), we have

Φ(k, x, t) =

ˆ ∞

0

exp

(
1

2

ˆ x

y

c(ξ)

σ2(ξ)
dξ

)
Ψ(k, x, y)q0(y)√

σ(x)σ(y)
dy, (4.14)

and for 0 < y < x,

kn(k, 0)Ψ(k, x, y) = 4 exp

(
ik

ˆ x

0

dξ

σ(ξ)

) ∞∑
n=0

n∑
ℓ=0

(−1)ℓS(0,y)
n−ℓ (k)E

(x,∞)
ℓ (k), (4.15)

and Ψ(k, x, y) = Ψ(k, y, x) for 0 < x < y.
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5 The finite-interval problem

Consider (2.1) on the finite interval xl < x < xr with linear, constant-coefficient boundary conditions,

qt = α(x) (β(x)qx)x + γ(x)q + f(x, t), x ∈ (xl, xr), t > 0, (5.1a)

q(x, 0) = q0(x), x ∈ (xl, xr), (5.1b)

f0(t) = a11q(xl, t) + a12qx(xl, t) + b11q(xr, t) + b12qx(xr, t), t > 0, (5.1c)

f1(t) = a21q(xl, t) + a22qx(xl, t) + b21q(xr, t) + b22qx(xr, t), t > 0. (5.1d)

Considering the concatenated matrix

(a : b) =

(
a11 a12 b11 b12
a21 a22 b21 b22

)
, (5.2)

we let (a : b)i,j = det((a : b){1,2},{i,j}) denote the determinant of the 2 × 2 minor with columns at i and j [22]. We
require rank(a : b) = 2 and one of the following Boundary Cases.

Definition 8. For x ∈ D = (xl, xr), we define the constants

mc0 =
(a : b)1,4
µ(xl)

− (a : b)2,3
µ(xr)

, mc1 =
(a : b)1,4
µ(xl)

+
(a : b)2,3
µ(xr)

, ms =
(a : b)1,3
µ(xl)µ(xr)

, (5.3)

and u± = u(xr)± u(xl), where µ(x) and u(x) are defined in Definition 5. We define the following Boundary Cases:

1. (a : b)2,4 ̸= 0,

2. (a : b)2,4 = 0 and mc0 ̸= 0,

3. (a : b)2,4 = 0, mc0 = 0, mc1 = 0, and (a : b)1,3 ̸= 0,

4. (a : b)2,4 = 0, mc0 = 0, mc1 ̸= 0, and mc1u+ − 8ms ̸= 0.

Please refer to Remark 10 for an interpretation of these different Boundary Cases.

Theorem 9. Under Assumptions 1 and 2 (and for Boundary Case 4, Assumption 3), the IBVP (5.1) has the solution

q(x, t) =
1

2π

ˆ
∂Ω

Φ(k, x, t)

∆(k)
e−k

2t dk, (5.4)

where Ω is shown in Figure 1. We define

Ξ(k) = exp

(
ik

ˆ xr

xl

n(k, ξ) dξ

)
, (5.5)

where n(k, x) is defined in Definition 5. Then

∆(k) = 2iΞ(k)

(
a(k) +

∞∑
n=0

cn(k)C(xl,xr)
n (k) +

∞∑
n=0

sn(k)S(xl,xr)
n (k)

)
, (5.6)

with

a(k) =
β(xr)(a : b)1,2 + β(xl)(a : b)3,4

k
√
(βn)(k, xl)

√
(βn)(k, xr)

, (5.7a)

cn(k) = (−1)n
(a : b)1,4
kn(k, xl)

− (a : b)2,3
kn(k, xr)

, (5.7b)

sn(k) = (−1)n(a : b)2,4 +
(a : b)1,3

k2n(k, xl)n(k, xr)
. (5.7c)

The numerator of (5.4) is

Φ(k, x, t) = B0(k, x)F0(k
2, t) + B1(k, x)F1(k

2, t) + Φψ(k, x, t), (5.8a)
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where

Φψ(k, x, t) =

ˆ xr

xl

Ψ(k, x, y)ψα(k
2, y, t)√

(βn)(k, x)
√

(βn)(k, y)
dy. (5.8b)

The function ψα(k
2, x, t) is defined in Definition 5, Fm(k2, t) is defined in (4.7), and the boundary terms B0(k, x)

and B1(k, x) are given by

B2−j(k, x) = (−1)j
4Ξ(k)√
(βn)(k, x)

{
β(xr)√

(βn)(k, xr)

[
− aj1
kn(k, xl)

∞∑
n=0

S(xl,x)
n (k) + aj2

∞∑
n=0

C(xl,x)
n (k)

]

+
β(xl)√

(βn)(k, xl)

[
bj1

kn(k, xr)

∞∑
n=0

S(x,xr)
n (k) + bj2

∞∑
n=0

(−1)nC(x,xr)
n (k)

]}
, j = 1, 2. (5.8c)

Further, for xl < y < x < xr,

Ψ(k, x, y) = 4Ξ(k)

{
−(a : b)2,4

∞∑
n=0

n∑
ℓ=0

(−1)ℓC(xl,y)
n−ℓ (k)C(x,xr)

ℓ (k) +
(a : b)1,3

k2n(k, xl)n(k, xr)

∞∑
n=0

n∑
ℓ=0

S(xl,y)
n−ℓ (k)S(x,xr)

ℓ (k)

+
(a : b)1,4
kn(k, xl)

∞∑
n=0

n∑
ℓ=0

(−1)ℓS(xl,y)
n−ℓ (k)C(x,xr)

ℓ (k)− (a : b)2,3
kn(k, xr)

∞∑
n=0

n∑
ℓ=0

C(xl,y)
n−ℓ (k)S(x,xr)

ℓ (k)

− β(xr)(a : b)1,2

k
√
(βn)(k, xl)

√
(βn)(k, xr)

∞∑
n=0

S(y,x)
n (k)

}
, (5.9a)

and, for xl < x < y < xr,

Ψ(k, x, y) = 4Ξ(k)

{
−(a : b)2,4

∞∑
n=0

n∑
ℓ=0

(−1)ℓC(xl,x)
n−ℓ (k)C(y,xr)

ℓ (k) +
(a : b)1,3

k2n(k, xl)n(k, xr)

∞∑
n=0

n∑
ℓ=0

S(xl,x)
n−ℓ (k)S(y,xr)

ℓ (k)

+
(a : b)1,4
kn(k, xl)

∞∑
n=0

n∑
ℓ=0

(−1)ℓS(xl,x)
n−ℓ (k)C(y,xr)

ℓ (k)− (a : b)2,3
kn(k, xr)

∞∑
n=0

n∑
ℓ=0

C(xl,x)
n−ℓ (k)S(y,xr)

ℓ (k)

− β(xl)(a : b)3,4

k
√

(βn)(k, xl)
√

(βn)(k, xr)

∞∑
n=0

S(x,y)
n (k)

}
. (5.9b)

Note that Ψ(k, x, y) ̸= Ψ(k, y, x) unless β(xr)(a : b)1,2 = β(xl)(a : b)3,4. The functions C(a,b)
n (k) and S(a,b)

n (k) are
defined in (4.9a) and (4.9b), respectively.

Remark 10. We use underline to denote non-zero terms in this remark. Further, we use row reduction and the fact
that the order of equations (5.1c) and (5.1d) is irrelevant.

1. If (a : b)2,4 ̸= 0, the most general form of the matrix (a : b) in (5.2) is

(a : b) =

(
a11 a12 b11 0
a21 0 b21 b22

)
.

This case includes the classical Neumann and Robin boundary conditions at both boundaries. We refer to these
as Robin-type boundary conditions. In the case of constant coefficients, this is Birkhoff regular [16].

2. If (a : b)2,4 = 0 and mc0 ̸= 0, the most general form of the matrix (a : b) in (5.2) are

(a : b) =

(
a11 a12 0 0
a21 0 b21 0

)
,

(
0 0 b11 b12
a21 0 b21 0

)
,

(
a11 0 0 0
0 a22 b21 b22

)
,

(
0 0 b11 0
a21 a22 0 b22

)
;

or

(a : b) =

(
a11 0 b11 0
0 a22 b21 b22

)
, where

a11 b22

µ(xl)
+
a22 b11

µ(xr)
̸= 0.

This case includes a Robin boundary condition on the left (or right) and a Dirichlet boundary condition on the
right (or left). It also includes the classical periodic ‘boundary conditions’. We refer to these as mixed-type or
periodic-type boundary conditions. In the case of constant coefficients, this is Birkhoff regular [16].
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3. If (a : b)2,4 = 0, mc0 = 0, mc1 = 0, and (a : b)1,3 ̸= 0, the most general form of the matrix (a : b) in (5.2) are

(a : b) =

(
a11 0 0 b12
0 0 b21 0

)
or (a : b) =

(
a11 0 0 0
0 a22 b21 0

)
.

This case includes the case of the classical Dirichlet boundary conditions. We refer to these as Dirichlet-type
boundary conditions. In the case of constant coefficients, this is Birkhoff regular for the case of Dirichlet
boundary conditions (i.e., if a22 = 0 = b12 or, equivalently, if (a : b)1,2 = 0 = (a : b)3,4) and is Birkhoff irregular
if a22 ̸= 0 or b12 ̸= 0 (or, equivalently, if (a : b)1,2 ̸= 0 or (a : b)3,4 ̸= 0) [16].

4. If (a : b)2,4 = 0, mc0 = 0, mc1 ̸= 0, and mc1u+ − 8ms ̸= 0, the most general form of the matrix (a : b) is

(a : b) =

(
a11 0 b11 0
a21 a22 0 b22

)
, where

a11 b22

µ(xl)
+
a22 b11

µ(xr)
= 0 and a21 ̸= −1

4
µ(xl)a22u+.

This case does not include any classical boundary conditions. Instead, it is an interface problem on a circle.
In the case of constant coefficients, this is Birkhoff irregular [16].

5.1 Example: The heat equation with homogeneous, Dirichlet boundary conditions

Consider the heat equation on the finite interval with spatially varying thermal conductivity σ2(x) without forcing
and with homogeneous Dirichlet boundary conditions, i.e.,

qt =
(
σ2(x)qx

)
x
, x ∈ (0, 1), t > 0, (5.10a)

q(x, 0) = q0(x), x ∈ (0, 1), (5.10b)

q(0, t) = 0, t > 0, (5.10c)

q(1, t) = 0, t > 0. (5.10d)

We let xl = 0, xr = 1, α(x) = 1, β(x) = σ2(x), γ(x) = 0, f(x, t) = 0, fm(t) = 0 (m = 0, 1), and

(a : b) =

(
1 0 0 0
0 0 1 0

)
. (5.11)

Since (a : b)2,4 = 0, mc0 = 0, mc1 = 0, and (a : b)1,3 = 1 ̸= 0, this is an example of Boundary Case 3 and it is regular.
We require absolute continuity of σ(x), integrability of q0(x), and absolutely integrability of σ′(x)/σ(x). This has
the solution

q(x, t) =
1

2π

ˆ
∂Ω

Φ(k, x)

∆(k)
e−k

2t dk, (5.12)

where Ω is shown in Figure 1. Since n(k, x) = 1/σ(x), a(k) = 0, cn(k) = 0, and sn(k) = σ(0)σ(1)/k2, then

k2∆(k)

2iσ(0)σ(1)
= exp

(
ik

ˆ 1

0

dξ

σ(ξ)

) ∞∑
n=0

S(0,1)
n (k), (5.13)

and since B0(k, x) = B1(k, x) = 0 and ψα(k
2, y, t) = q0(y), we have

Φ(k, x) =

ˆ 1

0

Ψ(k, x, y)q0(y)√
σ(x)σ(y)

dy, (5.14)

where, for 0 < y < x < 1,

k2Ψ(k, x, y)

4σ(0)σ(1)
=

∞∑
n=0

n∑
ℓ=0

S(0,y)
n−ℓ (k)S

(x,1)
ℓ (k), (5.15)

and Ψ(k, x, y) = Ψ(k, y, x) for 0 < x < y < 1. This is the same solution given in [9]. It reduces to the solution given
in [13] for constant σ(x).
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5.2 Example: The CGL equation with periodic boundary conditions

The complex Ginzburg-Landau (CGL) equation is the nonlinear PDE

At = (1 + ia(x))Axx +A− (1 + ib(x))|A|2A, (5.16)

where a, b are real functions of x. In the special case a(x) = 0 = b(x), (5.16) is the real Ginzburg-Landau equation.
If a(x), b(x) → ∞, (5.16) becomes the Nonlinear Schrödinger (NLS) equation [2]. Consider the linearized (about
A = 0), CGL equation with periodic boundary conditions:

At = (1 + ia(x))Axx +A, x ∈ (0, 1), t > 0, (5.17a)

A(x, 0) = A0(x), x ∈ (0, 1), (5.17b)

A(0, t) = A(1, t), t > 0, (5.17c)

Ax(0, t) = Ax(1, t), t > 0. (5.17d)

Here xl = 0, xr = 1, α(x) = 1 + ia(x), β(x) = 1, γ(x) = 1, f(x, t) = 0, f0(t) = 0 = f1(t), and

(a : b) =

(
1 0 −1 0
0 1 0 −1

)
. (5.18)

We assume a(x) ∈ R and a ∈ AC(D), so that Assumption 1 is satisfied. Here,

µ(x) =
e−

i
2 arctan(a(x))

4
√
1 + a(x)2

and g(k) =

√
1 +

1

k2
, (5.19)

and n(k, x) = µ(x)g(k), where the square root in g(k) is defined in (2.5). Since (a : b)2,4 = 0 and mc0 ̸= 0, this is a
Boundary Case 2 example, which is regular. For simplicity, we assume that a(x) is periodic, i.e., a(0) = a(1). This
problem has the solution

q(x, t) = − 1

2πi

ˆ
∂Ω

Φ̃(k, x)

∆̃(k)
e−k

2t dk, (5.20)

where we define ∆̃(k) = kn(k, 0)Ξ(−k)∆(k)/(4i) and Φ̃(k, x) = −kn(k, 0)Ξ(−k)Φ(k, x)/4, and where Ω is shown in
Figure 1. Here, a(k) = 2/(kn(k, 0)), cn(k) = −(1+(−1)n)/(kn(k, 0)), sn(k) = 0, and since B0(k, x, t) = 0 = B1(k, x, t)
and ψα(k

2, x, t) = A0(x)/(1 + ia(x)),

∆̃(k) = 1−
∞∑
n=0

C(0,1)
2n (k) and Φ̃(k, x) =

ˆ 1

0

Ψ̃(k, x, y)A0(y)

(1 + ia(y))
√
n(k, x)

√
n(k, y)

dy. (5.21)

We define Ψ̃(k, x, y) = −kn(k, 0)Ξ(−k)Ψ(k, x)/4,

Ψ̃(k, x, y) =

∞∑
n=0

n∑
ℓ=0

(−1)ℓS(0,y)
n−ℓ (k)C

(x,1)
ℓ (k) +

∞∑
n=0

n∑
ℓ=0

C(0,y)
n−ℓ (k)S

(x,1)
ℓ (k) +

∞∑
n=0

S(y,x)
n (k), (5.22)

for 0 < y < x < 1, and Ψ̃(k, x, y) = Ψ̃(k, y, x) for 0 < x < y < 1.

5.3 Sturm-Liouville Problems: Eigenvalues and Eigenfunctions

Theorem 11. The Sturm–Liouville problem

α(x) (β(x)y′)
′
+ γ(x)y = λy, (5.23)

with boundary conditions

a11y(xl) + a12y
′(xl) + b11y(xr) + b12y

′(xr) = 0, (5.24a)

a21y(xl) + a22y
′(xl) + b21y(xr) + b22y

′(xr) = 0, (5.24b)

12



has the eigenfunctions

Xm(x) =
Cm√

(βn)(κm, x)

∞∑
n=0

C(xl,x)
n (κm) +

Sm√
(βn)(κm, x)

∞∑
n=0

S(xl,x)
n (κm), (5.25)

corresponding to the eigenvalues λm = −κ2m, where {κm}∞m=1 are the zeros of ∆(k) (5.6). Here,

Cm = −a12κmn(κm, xl)√
(βn)(κm, xl)

− b11√
(βn)(κm, xr)

∞∑
n=0

S(xl,xr)
n (κm)− b12κmn(κm, xr)√

(βn)(κm, xr)

∞∑
n=0

(−1)nC(xl,xr)
n (κm), (5.26a)

Sm =
a11√

(βn)(κm, xl)
+

b11√
(βn)(κm, xr)

∞∑
n=0

C(xl,xr)
n (κm)− b12κmn(κm, xr)√

(βn)(κm, xr)

∞∑
n=0

(−1)nS(xl,xr)
n (κm). (5.26b)

Proof. Using (C.1) in (5.25) gives that the eigenfunctions solve the eigenvalue equation (5.23). Inserting (5.25) into
the boundary conditions (5.24a), we find

a11Xm(xl) + a12X
′
m(xl) + b11Xm(xr) + b12X

′
m(xr) = CmSm − SmCm = 0. (5.27)

For (5.24b), we find

a21Xm(xl) + a22X
′
m(xl) + b21Xm(xr) + b22X

′
m(xr)

= Cm

[
a21√

(βn)(κm, xl)
+

b21√
(βn)(κm, xr)

∞∑
n=0

C(xl,xr)
n (κm)− b22κmn(κm, xr)√

(βn)(κm, xr)

∞∑
n=0

(−1)nS(xl,xr)
n (κm)

]

+ Sm

[
a22κmn(κm, xl)√

(βn)(κm, xl)
+

b21√
βn)(κm, xr)

∞∑
n=0

S(xl,xr)
n (κm) +

b22κmn(κm, xr)√
(βn)(κm, xr)

∞∑
n=0

(−1)nC(xl,xr)
n (κm)

]
. (5.28)

Expanding (5.28), we obtain

a21Xm(xl) + a22X
′
m(xl) + b21Xm(xr) + b22X

′
m(xr)

=
(a : b)1,2κm

β(xl)
+

(a : b)3,4κm
β(xr)

[ ∞∑
n=0

(−1)nC(xl,xr)
n (κm)

∞∑
n=0

C(xl,xr)
n (κm) +

∞∑
n=0

(−1)nS(xl,xr)
n (κm)

∞∑
n=0

S(xl,xr)
n (κm)

]

+
κ2mn(κm, xl)n(κm, xr)√

(βn)(κm, xl)
√

(βn)(κm, xr)

[ ∞∑
n=0

cn(k)C(xl,xr)
n (k) +

∞∑
n=0

sn(k)S(xl,xr)
n (k)

]
. (5.29)

Using the identity

1 =

∞∑
n=0

(−1)nC(xl,xr)
n (k)

∞∑
n=0

C(xl,xr)
n (k) +

∞∑
n=0

(−1)nS(xl,xr)
n (k)

∞∑
n=0

S(xl,xr)
n (k), (5.30)

in (5.29), this becomes

a21Xm(xl) + a22X
′
m(xl) + b21Xm(xr) + b22X

′
m(xr) =

κ2mn(κm, xl)n(κm, xr)√
(βn)(κm, xl)

√
(βn)(κm, xr)

∆(κm) = 0, (5.31)

and the second boundary condition (5.24b) is satisfied.
To prove (5.30), we define the right-hand side as e1 and rewrite it as a Cauchy product, obtaining

e1 =

∞∑
n=0

n∑
ℓ=0

(−1)ℓ
[
C(xl,xr)
ℓ (k)C(xl,xr)

n−ℓ (k) + S(xl,xr)
ℓ (k)S(xl,xr)

n−ℓ (k)
]
. (5.32)

Letting ℓ→ n− ℓ in the inner sum, we see that

n∑
ℓ=0

(−1)ℓ
[
C(xl,xr)
ℓ (k)C(xl,xr)

n−ℓ (k) + S(xl,xr)
ℓ (k)S(xl,xr)

n−ℓ (k)
]
= 0, (5.33)
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for odd ℓ. The n = 0 term is 1. The n ≥ 2 even terms are 0 and thus gives e1 = 1. For n = 2, we show

0 =

ˆ xr

xl

dz1

ˆ xr

z1

dz2 cos

(ˆ xr

xl

−
ˆ z1

xl

+

ˆ z2

z1

−
ˆ xr

z2

ν(k, ξ) dξ

)
−
ˆ xr

xl

dy1

ˆ xr

xl

dz1 cos

(ˆ y1

xl

−
ˆ xr

y1

−
ˆ z1

xl

+

ˆ xr

z1

ν(k, ξ) dξ

)
+

ˆ xr

xl

dy1

ˆ xr

y1

dy2 cos

(ˆ y1

xl

−
ˆ y2

y1

+

ˆ xr

y2

−
ˆ xr

xl

ν(k, ξ) dξ

)
. (5.34)

Let Ij denote the three integrals above, in order. Since the first and the last term are equal and equal to

I1 = I3 =

ˆ xr

xl

dy1

ˆ xr

y1

dy2 cos

(
2

ˆ y2

y1

ν(k, ξ) dξ

)
, (5.35)

and since the second term is

I2 = −
ˆ xr

xl

dy1

ˆ xr

xl

dz1 cos

(
2

ˆ y1

z1

ν(k, ξ) dξ

)
= −

ˆ xr

xl

dy1

ˆ y1

xl

dz1 cos

(
2

ˆ y1

z1

ν(k, ξ) dξ

)
−
ˆ xr

xl

dy1

ˆ xr

y1

dz1 cos

(
2

ˆ y1

z1

ν(k, ξ) dξ

)
= −2

ˆ xr

xl

dy1

ˆ xr

y1

dz1 cos

(
2

ˆ y1

z1

ν(k, ξ) dξ

)
, (5.36)

and so the n = 2 term is 0. The other n terms are similar.

Comparing to Pöschel and Trubowitz [21] (α(x) = β(x) = 1, γ(x) = −q(x), λ = k2), we find that

y1(x, k
2, q) =

√
n(k, 0)

n(k, x)

∞∑
n=0

C(0,x)
n (k) and y2(x, k

2, q) =
1

k
√
n(k, 0)

√
n(k, x)

∞∑
n=0

S(0,x)
n (k), (5.37)

where n(k, x) =
√
1− q(x)/k2.

5.3.1 Example: Eigenvalues for the CGL equation with periodic boundary conditions

We revisit the complex Ginzburg-Landau equation described in Section 5.2, setting a(x) = x sin(2πx). The associated
eigenvalue problem is of the form

(1 + ia(x))y′′ + y = λy, y(0) = y(1), y′(0) = y′(1). (5.38)

The eigenvalues λm = −κ2m are related to the zeroes κm (m = 0, 1, 2, . . .) of ∆̃(k) (5.21). Since ∆̃(k) is even in k, if
κm is a root, so is −κm, and each gives rise to the same eigenvalue. Since g(±i) = 0, and

C(0,1)
n (0) =

1

2n

ˆ
0<···<1

(
n∏
p=1

µ′(yp)

µ(yp)

)
dyn =

1

2nn!

(ˆ 1

0

µ′(y)

µ(y)
dy

)n
=

1

2nn!

(
log

(
µ(1)

µ(0)

))n
= 0, (5.39)

then ∆̃(±i) = 0, and κ0 = i (and −i) is an exact double root of ∆̃(k), and λ0 = −κ20 = 1 is an exact eigenvalue of
the problem, which can be confirmed directly (with the constant eigenfunction). We define

m(x) =

ˆ x

0

µ(ξ) dξ and η(y) =
(βn)′(k, x)

(βn)(k, x)
=
µ′(x)

µ(x)
=

2πx cos(2πx) + sin(2πx)

2i− 2x sin(2πx)
. (5.40)

We truncate (5.21) at order n = N and denote as ∆̃N (k). Denoting k = kg(k), the zeroth-order approximations of
the roots of ∆̃(k) are

∆̃0(k) = 1− cos (m(1)k ) = 0 ⇒ κ(0)m = ±
√

4m2π2 −m(1)2

m(1)
, m = 1, 2, 3, . . . . (5.41)
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Method: λ1 λ2 λ3 λ4
chebfun −41.585 + 3.3357i −41.689 + 7.7171i −170.71 + 19.919i −170.62 + 23.463i

NDEigenvalues −41.585 + 3.3364i −41.689 + 7.7167i −170.73 + 19.929i −170.65 + 23.464i
Hill’s Method −41.585 + 3.3358i −41.689 + 7.7171i −170.71 + 19.919i −170.62 + 23.463i

FindRoot: ∆0(k) −42.012 + 5.3928i −42.012 + 5.3928i −171.05 + 21.571i −171.05 + 21.571i
FindRoot: ∆1(k) −41.595 + 3.3501i −41.671 + 7.7097i −170.73 + 19.949i −170.60 + 23.434i
FindRoot: ∆2(k) −41.585 + 3.3356i −41.689 + 7.7172i −170.70 + 19.916i −170.63 + 23.466i

Table 1: Eigenvalues of the system (5.23) calculated using MATLAB’s chebfun package, Mathematica’s NDEigen-
values, Hill’s method [4], and a root finding algorithm on ∆̃N (k) for N = 0, 1, 2.

As in the case κ0 = ±i, these approximations are double roots. However, the actual eigenvalues are simple roots

that are near these points. The next-order approximations κ
(1)
m are the roots of

0 = ∆̃1(k) = 1− cos (m(1)k )− C(0,1)
2 (k). (5.42)

In order to compute C(0,1)
2 (k), we use an interpolation function for m(x), and rewrite

k

n∑
p=0

(−1)p
ˆ yp+1

yp

n(k, ξ) dξ = kg(k)

n∑
p=0

(−1)p(m(yp+1)−m(yp)) = k

(
m(1)− 2

n∑
p=0

(−1)pm(yp)

)
. (5.43)

Then we use (4.9a) to compute the ∆̃1(k). We use a root finding algorithm to find the roots, using that

∂k C(0,1)
n (k) =

1

2n

ˆ
0<···<1

(
n∏
p=1

η(yp)

)
cos

(
k

(
m(1)− 2

n∑
p=0

(−1)pm(yp)

))(
m(1)− 2

n∑
p=0

(−1)pm(yp)

)
dyn. (5.44)

The results are shown in Table 1.

Appendices

A Derivations

In this appendix, we derive the solution expressions for the finite-interval, half-line, and whole-line IBVPs, in that
order. The solution for each successive problem is obtained from the preceding one in a straightforward manner.

A.1 The finite-interval problem

T
t

x

x0=xl x1 x2 ... xN -1 xN=xr

1

α1,

β1,

γ1

2

α2,

β2,

γ2

...

...

N

αN,

βN,

γN

g0,1
(1) g0,1

(2) g0,1
(N -1) g0,1

(N)g0,1
(0)

Δx1 Δx2 ... ΔxN

Figure 3: A partition of the finite interval [xl, xr].
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To consider the finite-interval problem (5.1), we form a partition {xj , j = 0, . . . , N} of the interval [xl, xr], see Figure 3.
For simplicity, we assume that the partition is evenly spaced, i.e., ∆xj = ∆x = (xr−xl)/N for j = 1, . . . , N , although
this assumption may be relaxed easily. On each subinterval, we solve the evolution equation (5.1a) with constant-
coefficient approximations αj , βj , γj , j = 1, . . . , N for α(x), β(x), and γ(x) (such that αj → α(xj), etc., in the limit
as N → ∞), with the initial condition restricted to the subinterval. At each interface xj , j = 1, . . . , N−1, we impose
continuity of the solution and a jump discontinuity on the derivative, corresponding to the evolution equation, i.e.,
we solve the following interface problem:

q
(j)
t = αjβjq

(j)
xx + γjq

(j) + f(x, t), x ∈ (xj−1, xj), t > 0, j = 1, . . . , N, (A.1a)

q(j)(x, 0) = q0(x), x ∈ (xj−1, xj), t > 0, j = 1, . . . , N, (A.1b)

q(j)(xj , t) = q(j+1)(xj , t), t > 0, j = 1, . . . , N − 1, (A.1c)

βjq
(j)
x (xj , t) = βj+1q

(j+1)
x (xj , t), t > 0, j = 1, . . . , N − 1, (A.1d)

with the boundary conditions

a11q
(1)(xl, t) + a12q

(1)
x (xl, t) + b11q

(N)(xr, t) + b12q
(N)
x (xr, t) = f0(t), t > 0, (A.2a)

a21q
(1)(xl, t) + a22q

(1)
x (xl, t) + b21q

(N)(xr, t) + b22q
(N)
x (xr, t) = f1(t), t > 0. (A.2b)

The jump discontinuity in the derivative (A.1d) can be derived by dividing the PDE (5.1a) by α(x) and integrating
over a small interval containing xj . Following [5, 6, 23, 24, 25, 26], we find the local relations(

e−iκx+wjtq(j)(x, t)
)
t
= αjβj

(
e−iκx+wjt

(
q(j)x (x, t) + iκq(j)(x, t)

))
x
+ e−iκx+wjtf(x, t), (A.3)

for x ∈ (xj−1, xj), 1 ≤ j ≤ N, and wj(κ) = αjβjκ
2 − γj . We define the “transforms”

q̂
(j)
0 (k) =

1

αj

ˆ xj

xj−1

e−ikyq0(y) dy, j = 1, . . . , N, (A.4a)

q̂(j)(k, t) =
1

αj

ˆ xj

xj−1

e−ikyq(j)(y, t) dy, j = 1, . . . , N, (A.4b)

f̃j(k, t) =
1

αj

ˆ t

0

ds

ˆ xj

xj−1

e−iky+Wsf(y, s) dy, j = 1, . . . , N, (A.4c)

Fm(W, t) =

ˆ t

0

eWsfm(s) ds, m = 0, 1, (A.4d)

g(j)m (W, t) =

ˆ t

0

eWsq(j)mx(xj , s) ds, j = 0, . . . , N, m = 0, 1, (A.4e)

with q
(0)
mx(xl, t) = q

(1)
mx(xl, t), for consistency at j = 0. Using the interface conditions (A.1c) and (A.1d), we have

g
(j)
0 (W, t) =

ˆ t

0

eWsq(j+1)(xj , s) ds, g
(j)
1 (W, t) =

βj+1

βj

ˆ t

0

eWsq(j+1)
x (xj , s) ds, j = 0, . . . , N − 1, (A.5)

where we define β0 = β1, again for consistency. From the boundary conditions (A.2),

a11g
(0)
0 (k2, t) + a12g

(0)
1 (k2, t) + b11g

(N)
0 (k2, t) + b12g

(N)
1 (k2, t) = F0(k

2, t), (A.6a)

a21g
(0)
0 (k2, t) + a22g

(0)
1 (k2, t) + b21g

(N)
0 (k2, t) + b22g

(N)
1 (k2, t) = F1(k

2, t). (A.6b)

Integrating the local relations (A.3) over Dj = (xj−1, xj)× (0, T ), we find

αj f̃j(κ, T ) =

ˆ T

0

dt

ˆ xj

xj−1

dx
[(
e−iκx+wjtq(j)

)
t
− αjβj

(
e−iκx+wjt

(
q(j)x + iκq(j)

))
x

]
, j = 1, . . . , N. (A.7)
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Using Green’s theorem,

αj f̃j(κ, T ) =

ˆ xj

xj−1

e−iκxq0(x) dx− ewjT

ˆ xj

xj−1

e−iκxq(j)(x, T ) dx

+ αje
−iκxj

ˆ T

0

ewjt
(
βjq

(j)
x (xj , t) + iβjκq

(j)(xj , t)
)
dt

− αje
−iκxj−1

ˆ T

0

ewjt
(
βjq

(j)
x (xj−1, t) + iβjκq

(j)(xj−1, t)
)
dt, j = 1, . . . , N, (A.8)

which are rewritten as global relations using (A.4),

ewjtq̂(j)(κ, t) = q̂
(j)
0 (κ)− f̃j(κ, t) + e−iκxj

(
βjg

(j)
1 (wj , t) + iβjκg

(j)
0 (wj , t)

)
− e−iκxj−1

(
βj−1g

(j−1)
1 (wj , t) + iβjκg

(j−1)
0 (wj , t)

)
, j = 1, . . . , N. (A.9)

As in [17, 24, 26], it is convenient for the first arguments of g
(j)
m (wj , t) to be identical. We transform the independent

variable κ in the jth equation as

κ = νj(k) =
k√
αjβj

√
1 +

γj
k2
, j = 1, . . . , N. (A.10)

We do not worry about the branch cuts here. The resulting branch cuts in the solution are defined in Section 2 and
proven to be correct in Appendices B–E. However, since we assume that γ(x) is bounded, there are no branch cuts
for |k| >

√
Mγ for k ∈ Ω where Mγ > 0 is defined in Assumption 1.4. Until we take the limit, we suppress the k

dependence of νj(k). Our global relations (A.9) become

ek
2tq̂(j)(νj , t) = q̂

(j)
0 (νj)− f̃j(νj , t) + e−iνjxj

(
βjg

(j)
1 (k2, t) + iβjνjg

(j)
0 (k2, t)

)
− e−iνjxj−1

(
βj−1g

(j−1)
1 (k2, t) + iβjνjg

(j−1)
0 (k2, t)

)
, j = 1, . . . , N. (A.11)

These relations are valid for k ∈ C, since the domains are bounded. Letting k 7→ −k, (and νj 7→ −νj), gives 2N
equations, along with (A.6) for 2N + 2 unknowns. We write this linear system of equations in matrix form as

AN (k)XN (k2, t) = YN (k, t)− ek
2tYN (k, t), (A.12)

where

XN (k2, t) =
(
g
(0)
0 (k2, t), . . . , g

(N)
0 (k2, t), β0g

(0)
1 (k2, t), . . . , βNg

(N)
1 (k2, t)

)⊤
, (A.13a)

YN (k, t) =
(
0, q̂

(1)
0 (ν1), . . . , q̂

(N)
0 (νN ), q̂

(1)
0 (−ν1), . . . , q̂(N)

0 (−νN ), 0
)⊤

−
(
−F0(k

2, t), f̃1(ν1, t), . . . , f̃N (νN , t), f̃1(−ν1, t), . . . , f̃N (−νN , t), −F1(k
2, t)

)⊤
, (A.13b)

YN (k, t) =
(
0, q̂(1) (ν1, t) , . . . , q̂

(N) (νN , t) , q̂
(1) (−ν1, t) , . . . , q̂(N) (−νN , t) , 0

)⊤
, (A.13c)

and

AN (k) =



a11 0 · · · 0 b11 a12/β0 0 · · · 0 b12/βN

AN,N+1(k) BN,N+1(k)

AN,N+1(−k) BN,N+1(−k)

a21 0 · · · 0 b21 a22/β0 0 · · · 0 b22/βN


, (A.14)
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where

AN,N+1(k) =

iβ1ν1e
−iν1x0 −iβ1ν1e−iν1x1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 iβNνNe
−iνNxN−1 −iβNνNe−iνNxN

, (A.15)

and

BN,N+1(k) =

e
−iν1x0 −e−iν1x1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 e−iνNxN−1 −e−iνNxN

. (A.16)

Here AN,N+1(k) and BN,N+1(k) are N × (N + 1)-dimensional matrices. Since the contribution involving YN along

the contour ∂Ω (see below) is zero [26], it suffices to solve ANXN = YN for the unknown functions g
(j)
m . This is

further justified in Appendices B–E. Using Cramer’s rule,

X
(j)
N (k2, t) = g

(j−1)
0 (k2, t) =

det
(
A(j)
N (k)

)
det
(
AN (k)

) , j = 1, . . . , N + 1, (A.17)

where the matrix A(j)
N (k) is AN (k) with the jth column replaced by YN . If we multiply this equation by ke−k

2t and
integrate over ∂Ω, where Ω = {k ∈ C : |k| > r and π/4 < arg(k) < 3π/4} for some r >

√
Mγ , see Figure 1, we can

invert the time “transform” g
(j−1)
0 (k2, t) [13], to find

q(j)(xj−1, t) =
1

iπ

ˆ
∂Ω

det(A(j)
N (k))

det(AN (k))
ke−k

2t dk, j = 1, . . . , N + 1. (A.18)

This gives the solution at the interface boundary points, which is all that is needed to consider the limit q(x, t) =
limN→∞ q(j)(xj−1, t), where the N dependence of q(j)(xj−1, t) is implicit. Alternatively, we could compute the full
solution of the interface problem as in [5, 24, 25, 26] and calculate that limit. This gives the same result.

Define

DN (k) = iN+1 det(AN (k))

ν1νN

(
N−1∏
p=1

1

Λ+
p

)
, (A.19)

with

Λℓ
p = (βν)p+1 + (−1)ℓp+ℓp+1(βν)p and Λ±

p = (βν)p+1 ± (βν)p, (A.20)

where ℓ ∈ {0, 1}N , so that ℓp, ℓp+1 ∈ {0, 1} and (βν)j = βjνj . Note that Λℓ
p = Λ+

p when ℓp = ℓp+1 and Λℓ
p = Λ−

p

when ℓp ̸= ℓp+1. For N ≤ 8, we explicitly verify using Mathematica that

DN (k) = 2i

{
βN (a : b)1,2 + β1(a : b)3,4√

(βν)1
√
(βν)N

√
(βν)N√
(βν)1

(
N−1∏
p=1

2(βν)p

Λ+
p

)
+ (a : b)2,4S

(1,N)
N,1 (k) +

(a : b)1,3
ν1νN

S
(1,N)
N,0 (k)

+
(a : b)1,4

ν1
C
(1,N)
N,1 (k)− (a : b)2,3

νN
C
(1,N)
N,0 (k)

}
, (A.21)

where (a : b)i,j = det((a : b){1,2},{i,j}) is the determinant of the minor of maximal size with columns at i and j [22]
of the concatenated matrix (a : b). We define

C
(q,s)
N,λ (k) =

∑
ℓ∈{0,1}s−q+1

ℓq=0

(−1)λℓs

(
s−1∏
p=q

Λℓ
p

Λ+
p

)
cos

(
s∑
p=q

(−1)ℓpνp∆x

)
, (A.22a)

S
(q,s)
N,λ (k) =

∑
ℓ∈{0,1}s−q+1

ℓq=0

(−1)λℓs

(
s−1∏
p=q

Λℓ
p

Λ+
p

)
sin

(
s∑
p=q

(−1)ℓpνp∆x

)
, (A.22b)
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where λ = 0, 1. We do not prove this result for general N . Its justification follows indirectly from the proofs in
Appendices B–E. We can show that

N−1∏
p=1

2(βν)p

Λ+
p

= exp

(
N−1∑
p=1

(
ln(2(βν)p)− ln(Λ+

p )
))

=

√
(βν)1√
(βν)N

+O(∆x), (A.23)

as N → ∞ and ∆x→ 0+. Similarly,

Λ−
p

Λ+
p

=
1

2

(βn)′(k, xp)

(βn)(k, xp)
∆x+O((∆x)2) and

m−1∏
p=ℓ

2(βν)p

Λ+
p

=

√
(βn)(k, xℓ)√
(βn)(k, xm)

+O(∆x), (A.24)

as ℓ,m,N → ∞, ∆x → 0+, and where the prime denotes the derivative with respect to the spatial variable, and
n(k, x), (βn)(k, x) are defined in Definition 5. Note that to use (A.24), we assume (βn)(k, x) is a smooth function of
x. If this function has a countable number of discontinuities, it is possible to proceed, but we have to account for
the jumps.

We wish to consider (A.21) asN → ∞ (i.e.,∆x→ 0+). To this end, we break up the sum in (A.22a) by the number
of times n the entries of the vector ℓ = (ℓq, . . . , ℓs) switch from 0 to 1 or from 1 to 0, e.g., (0, . . . , 0, 1, . . . , 1) switches
once, so n = 1. We sum over where the possible switches of each order n can occur i.e., q−1 < y1 < y2 < · · · < yn < s.
At the location of each switch, Λℓ

p/Λ
+
p = Λ−

p /Λ
+
p , whereas Λ

ℓ
p/Λ

+
p = 1 otherwise. Defining y0 = q − 1 and yn+1 = s,

this gives

C
(q,s)
N,λ (k) =

s−q∑
n=0

∑
y0<y1<···<yn<yn+1

(−1)λn

(
n∏
p=1

Λ−
yp

Λ+
yp

)
cos

 n∑
p=0

(−1)p
yp+1∑

r=yp+1

νp∆x

. (A.25)

Using (A.24), we arrive at a sum of n-dimensional Riemann sums which limit to n-dimensional integrals, giving

C
(q,s)
N,λ (k) =

∞∑
n=0

(−1)λnC(xq,xs)
n (k) +O(∆x), (A.26)

where C(a,b)
n (k) is defined in (4.9a). The limit of (A.22b) is

S
(q,s)
N,λ (k) =

∞∑
n=0

(−1)λnS(xq,xs)
n (k) +O(∆x), (A.27)

obtained the same way, with S(a,b)
n (k) defined in (4.9b). No more rigor is required at this point, as we prove in

Appendices B–E that our result is a solution under less restrictive assumptions needed to justify these steps.
Using (A.23), (A.26), and (A.27) in (A.21), we have that

∆(k) = lim
N→∞

Ξ(k)DN (k), (A.28)

gives (5.6). For the numerator, similar to DN (k) in (A.19), we define

EN (k, j, t) = iN
2 det(A(j)

N (k))

ν1νN

(
N−1∏
p=1

1

Λ+
p

)
, (A.29)

and use a cofactor expansion along the jth column of A(j)
N , so that

EN (k, j, t) =

N+1∑
m=1

Y
(m)
N M

(m,j)
N (k) +

N+1∑
m=1

Y
(m+N+1)
N M

(m+N+1,j)
N (k), (A.30)

whereM
(m,j)
N (k) are cofactors of the matrix A(j)

N , scaled by the same factor as in (A.29). With x = xj = j∆x = j/N ,
which is fixed, we let

B0(k, x) = kΞ(k) lim
N→∞

M
(1,j)
N (k) and B1(k, x) = kΞ(k) lim

N→∞
M

(2N+2,j)
N (k). (A.31)
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Since, for m = 1, . . . , 2N ,

Y
(m+1)
N = q̂

(m)
0 (νm)− f̃m(νm, t) =

e−iνmxm

αm

(
q0(xm)−

ˆ t

0

f(xm, s)e
k2s ds

)
∆x+O((∆x)2), (A.32)

so that, for m = 1, . . . , N ,

Y
(m+1)
N =

e−iνmxmψ
(m)
N (k2, t)

αm
∆x+O((∆x)2) and Y

(m+N+1)
N =

eiνmxmψ
(m)
N (k2, t)

αm
∆x+O((∆x)2), (A.33)

which defines ψ
(m)
N (k2, t). Then

Φ(k, x, t) = lim
N→∞

kΞ(k)EN (k, j, t), (A.34)

which gives (5.8a). Here

Φψ(k, x, t) = lim
N→∞

kΞ(k)

N∑
m=1

ψ
(m)
N (k2, t)

αm

(
e−iνmxmM

(m+1,j)
N (k) + eiνmxmM

(m+N+1,j)
N (k)

)
∆x, (A.35)

where we let y = xm = m∆x = m/N , which is kept fixed. This gives (5.8b), after defining

Ψ(k, x, y) = lim
N→∞

Ψ
(j,m)
N (k) = lim

N→∞
Ξ(k)

√
(βν)m

√
(βν)j

(
e−iνmxmM

(m+1,j)
N (k) + eiνmxmM

(m+N+1,j)
N (k)

)
,

(A.36a)

ψα(k
2, y, t) = lim

N→∞

ψ
(m)
N (k2, t)

αm
=
q0(y)

α(y)
−
ˆ t

0

f(y, s)

α(y)
ek

2s ds, (A.36b)

which defines Ψ
(j,m)
N .

For the boundary term B0(k, x), similar to (A.21), we explicitly verify using Mathematica for N ≤ 8 and for
1 = m < j ≤ N ,

M
(1,j)
N (k) =

4√
(βν)j−1

 βN√
(βν)j−1

 N−1∏
p=j−1

2(βν)p

Λ+
p

[−a21
ν1

S
(1,j−1)
N,0 (k) + a22C

(1,j−1)
N,0 (k)

]

+

√
(βν)j−1

ν1

(
j−1∏
p=1

2(βν)p

Λ+
p

)[
b21
νN

S
(j,N)
N,0 (k) + b22C

(j,N)
N,1 (k)

]}
, (A.37)

and using (A.24), (A.26), (A.27), and (A.31), we find (5.8c) for j = 2. Similarly, for the other boundary term
B1(k, x), we find (5.8c) for j = 1.

For the remaining terms, for 1 ≤ m < j ≤ N , we derive

Ψ
(j,m)
N (k) = 4Ξ(k)

√
(βν)j√
(βν)m

(
j−1∏
p=m

2(βν)p

Λ+
p

)[
− (a : b)2,4C

(1,m)
N,0 (k)C

(j,N)
N,1 (k) +

(a : b)1,3
ν1νN

S
(1,m)
N,0 (k)S

(j,N)
N,0 (k)

+
(a : b)1,4

ν1
S

(1,m)
N,0 (k)C

(j,N)
N,1 (k)− (a : b)2,3

νN
C
(1,m)
N,0 (k)S

(j,N)
N,0 (k)

]

− 4(a : b)1,2βN√
(βν)1

√
(βν)N

√
(βν)j√

(βν)j−1

√
(βν)m√
(βν)1

(
m∏
p=1

(βν)p

Λ+
p

) √
(βν)N√
(βν)j−1

 N−1∏
p=j−1

(βν)p

Λ+
p

S
(m+1,j−1)
N,0 (k).

(A.38)
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Taking the limit using (A.24), (A.26), and (A.27), as before letting xj → x and xm → y, we find for xr ≤ y < x ≤ xℓ,

Ψ(k, x, y) = 4Ξ(k)

{
−(a : b)2,4

( ∞∑
n=0

C(xl,y)
n

)( ∞∑
n=0

(−1)nC(x,xr)
n

)
+

(a : b)1,3
k2n(k, xl)n(k, xr)

( ∞∑
n=0

S(xl,y)
n

)( ∞∑
n=0

S(x,xr)
n

)

+
(a : b)1,4
kn(k, xl)

( ∞∑
n=0

S(xl,y)
n

)( ∞∑
n=0

(−1)nC(x,xr)
n

)
− (a : b)2,3
kn(k, xr)

( ∞∑
n=0

C(xl,y)
n

)( ∞∑
n=0

S(x,xr)
n

)

− (a : b)1,2β(xr)

k
√
(βn)(k, xl)

√
(βn)(k, xr)

∞∑
n=0

S(y,x)
n

}
, (A.39)

which may be rewritten as (5.9a). Similarly, for xl ≤ x < y ≤ xr, we find (5.9b). Finally, we have

q(x, t) = lim
N→∞

1

iπ

ˆ
∂Ω

det(A(j)
N (k))

det(AN (k))
ke−k

2t dk = lim
N→∞

1

2π

ˆ
∂Ω

kΞ(k)EN (k, j, t)

Ξ(k)DN (k)
e−k

2t dk, (A.40)

which gives (5.4).

A.2 The half-line problem

We obtain the solution of the half-line problem by taking the limit as xr → ∞ of the solution of the finite-interval
problem (5.1) with f1(t) = 0 and

(a : b) =

(
a0 a1 0 0
0 0 1 0

)
. (A.41)

In this limit, (5.4) becomes (4.2) with the same Ω, shown in Figure 1. This process is detailed below.
Using (A.41), we find the coefficients a(k) = 0, cn(k) = −a1/(kn(k, xr)), and sn(k) = a0/(k

2n(k, xl)n(k, xr)). We
define ∆̃(k) = kn(k, xr)∆(k), and (5.6) becomes

∆̃(k) = 2iΞ(k)

{
a0

kn(k, xl)

∞∑
n=0

S(xl,xr)
n (k)− a1

∞∑
n=0

C(xl,xr)
n (k)

}
. (A.42)

We have B1(k, x) = 0, and (5.8c) for j = 2 becomes

B̃0(k, x) = kn(k, xr)B0(k, x) =
4β(xl)Ξ(k)√

(βn)(k, xl)
√
(βn)(k, x)

∞∑
n=0

S(x,xr)
n (k). (A.43)

For xl ≤ y < x ≤ xr, (5.9a) becomes

Ψ̃(k, x, y) = kn(k, xr)Ψ(k, x, y) = 4Ξ(k)

{
a0

kn(k, xl)

∞∑
n=0

n∑
ℓ=0

S(x,xr)
ℓ (k)S(xl,y)

n−ℓ (k)− a1

∞∑
n=0

n∑
ℓ=0

S(x,xr)
ℓ (k)C(xl,y)

n−ℓ (k)

}
,

(A.44)

and, for xl < x < y < xr, Ψ̃(k, x, y) = Ψ̃(k, y, x). From (5.8a),

Φ̃(k, x, t) = kn(k, xr)Φ(k, x, t) = B̃0(k, x) + Φ̃ψ(k, x, t), (A.45)

where

Φ̃ψ(k, x, t) = kn(k, xr)Φψ(k, x, t) =

ˆ xr

xl

Ψ̃(k, x, y)ψα(k
2, y, t)√

(βn)(k, x)(βn)(k, y)
dy, (A.46)

and ψα(k
2, y, t) is defined in Definition 5.

To take the limit as xr → ∞, using (4.9b), we write

exp

(ˆ xr

a

ikn(k, ξ) dξ

)
S(a,xr)
n (k) =

1

2i · 2n

ˆ
a<···<xr

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)[
exp

(
n∑
p=0

(1 + (−1)p)

ˆ yp+1

yp

ikn(k, ξ) dξ

)

− exp

(
n∑
p=0

(1− (−1)p)

ˆ yp+1

yp

ikn(k, ξ) dξ

)]
dy1 · · · dyn. (A.47)
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Since Re(ikn(k, x)) < 0 for all k ∈ Ω and all x > xl, see Lemma 15 in Section B, it follows that

exp

(ˆ xr

yn

ikn(k, ξ) dξ

)
→ 0, (A.48)

as xr → ∞. Thus the term in (A.47) which does not contain the p = n term survives and considering even and odd
n separately, we conclude

exp

(ˆ xr

a

ikn(k, ξ) dξ

)
S(a,xr)
n (k) → − (−1)n

2i
E(a,∞)
n (k), as xr → ∞, (A.49)

where E(a,b)
n (k) is defined in (3.5b). Similarly,

exp

(ˆ xr

a

ikn(k, ξ) dξ

)
C(a,xr)
n (k) → 1

2
E(a,∞)
n (k), as xr → ∞. (A.50)

Therefore, we have as xr → ∞,

−2i∆̃(k) → 2

∞∑
n=0

(
(−1)nia0
kn(k, xl)

− a1

)
E(xl,∞)
n (k), (A.51)

and

−2iB̃0(k, x) →
4β(xl) exp

(´ x
xl
ikn(k, ξ) dξ

)
√

(βn)(k, xl)
√
(βn)(k, x)

∞∑
n=0

(−1)nE(x,∞)
n (k), (A.52)

and, for xl ≤ y < x,

−2iΨ̃(k, x, y) → 4 exp

(ˆ x

xl

iν(k, ξ) dξ

) ∞∑
n=0

n∑
n=0

(−1)ℓ
(

a0
kn(k, xl)

S(xl,y)
n−ℓ (k)− a1C(xl,y)

n−ℓ (k)

)
E(x,∞)
ℓ (k), (A.53)

and similarly for xl ≤ x < y. These final results combine to give (4.2).

A.3 The whole-line problem

We repeat the process from the previous section, now letting xl → −∞. Starting from the half-line solution (4.2)
with f0(t) = 0, a0 = 1, and a1 = 0. The denominator in (4.2) is determined by

kn(k, xl)∆(k) = 2i

∞∑
n=0

(−1)nE(xl,∞)
n (k). (A.54)

Since B0(k, x, t) = 0, we also have from (4.4)

Φ(k, x, t) =

ˆ ∞

−∞

Ψ(k, x, y)ψα(k
2, y, t)√

(βn)(k, x)(βn)(k, y)
dy, (A.55)

where ψα(k
2, y, t) is defined in Definition 5. For xl < y < x, (4.8) becomes

kn(k, xl)Ψ(k, x, y) = 4 exp

(ˆ x

xl

ikn(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

(−1)ℓS(xl,y)
n−ℓ (k)E(x,∞)

ℓ (k), (A.56)

and Ψ(k, x, y) = Ψ(k, y, x) for xl < x < y. Since E(xl,∞)
n (k) → 0 if n is odd, and from (A.47), we have

exp

(ˆ b

xl

ikn(k, ξ) dξ

)
S(xl,b)
n (k) → − 1

2i
Ẽ(−∞,b)
n (k), (A.57)

as xl → −∞. Therefore,

kn(k, xl)∆(k) → 2i

∞∑
n=0
n even

E(−∞,∞)
n (k). (A.58)
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For xl < y < x,

kn(k, xl)Ψ(k, x, y) = 2i exp

(ˆ x

y

ikn(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

(−1)ℓẼ(−∞,y)
n−ℓ (k)E(x,∞)

ℓ (k), (A.59)

and Ψ(k, x, y) = Ψ(k, y, x) for xl < x < y. Combining these results gives (3.2).

B Proofs: the solution expressions are well defined

Prior to proving that the solution expression (2.2) solves the evolution equation 2.1a and satisfies the initial and
boundary conditions for the problem considered, we show in this appendix that this expression is well defined for all
problems considered. We refer to the whole-line, half-line, and regular finite-interval problems as regular problems, and
the irregular finite-interval problems as irregular problems. Throughout, we need Assumptions 1 and 2 from Section 2.
For Boundary Case 4 of the finite-interval problem, we also require Assumption 3. Note that Assumption 3.1 is not
needed for all irregular problems, only for Boundary Case 4. Therefore, we will be explicit as to when Assumption 3
is required.

In this appendix, we denote the r dependence of Ω explicitly as Ω(r) = {k ∈ C : |k| > r and π/4 < arg(k) < 3π/4}.
We define arg( · ) ∈ [−π/2, 3π/2) with θ = arg(k). The following lemma characterizes some properties of the
coefficient functions α, β that follow from the assumptions.

Lemma 12. If α(x)β(x) is not identically zero, the following are equivalent:

a. αβ ∈ L∞(D),

b. α ∈ L∞(D),

c. β ∈ L∞(D),

as are the following:

i. mαβ = infx∈D |α(x)β(x)| > 0,

ii. mα = infx∈D |α(x)| > 0,

iii. mβ = infx∈D |β(x)| > 0.

Proof. Under Assumption 1.3, there exists an x0 ∈ D such that 0 < |α(x0)β(x0)| <∞. From Assumptions 1.2 and 1.5,

∣∣∣∣ β(x)β(x0)

∣∣∣∣ = ∣∣∣∣ α(x)α(x0)
exp

(ˆ x

x0

β′(y)

β(y)
− α′(y)

α(y)
dy

)∣∣∣∣ ≤ ∣∣∣∣ α(x)α(x0)

∣∣∣∣ exp(∥∥∥∥β′

β
− α′

α

∥∥∥∥
D

)
= E

∣∣∣∣ α(x)α(x0)

∣∣∣∣, (B.1a)

with E = exp(∥β′/β − α′/α∥D). We conclude that b⇒ c, b⇒ a, a⇒ c, iii⇒ ii, iii⇒ i, and i⇒ ii. Similarly,∣∣∣∣ α(x)α(x0)

∣∣∣∣ ≤ E

∣∣∣∣ β(x)β(x0)

∣∣∣∣, (B.1b)

so that c⇒ b, c⇒ a, a⇒ b, ii⇒ iii, ii⇒ i, and i⇒ iii.

Next, Lemmas 13–15 present some properties of the functions n(k, x) and (βn)(k, x).

Lemma 13. For |k| ≥ r >
√
Mγ , where Mγ is defined in Assumption 1.4, we have

mn =
1√
Mαβ

√
1− Mγ

r2
≤ |n(k, x)| ≤ 1

√
mαβ

√
1 +

Mγ

r2
=Mn, (B.2)

which defines mn,Mn > 0. From this, we also have mn ≤ |µ(x)| ≤Mn.

Proof. The proof is trivial from the definition of n(k, x) in Definition 5 using Assumptions 1.3 and 1.4.

Lemma 14. For |k| ≥ r >
√
Mγ , (βn)

′/(βn) ∈ L1(D), and under Assumption 3, u ∈ AC(D).
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Im(k)

Re(k)

Ω(r)

Ωext(r)

θ=π/4θ=3π/4

θ=θ0
r

R

i γ (x)

CR

Figure 4: The region Ωext(r) = {k ∈ C : |k| > r and θ0 < arg(k) < π− θ0} described in Lemma 15 (Ω(r)∪ the green
regions) and the contour CR = {k ∈ C : |k| = R and θ0 < arg(k) < π/4 or 3π/4 < θ < π − θ0}.

Proof. The function

(βn)′(k, x)

(βn)(k, x)
=

1

2

(
β′(x)

β(x)
− α′(x)

α(x)
+

γ′(x)

k2 + γ(x)

)
∈ L1(D), (B.3)

for |k| ≥ r >
√
Mγ , by Assumption 1.5. On the finite interval, by Assumptions 1.2 and 1.3, µ ∈ AC(D) and, from

Assumption 3.1, u ∈ AC(D) and thus u ∈ L∞(D) and u′ ∈ L1(D) [15].

Lemma 15. There exists an r >
√
Mγ , min > 0, and 0 < θ0 < π/4 such that

Re(ikn(k, x)) ≤ −min|k|, (B.4)

for k ∈ Ωext(r), where Ωext(r) = {k ∈ C : |k| > r and θ0 < arg(k) < π − θ0}, see Figure 4.

Proof. With ϕ = arg(kn(k, x)), Θ = supx∈D | arg(α(x)β(x))|, ψ = arg(1 + γ(x)/k2), (and θ = arg(k)), we have from
the definition of n(k, x) in Definition 5,

θ − 1

2
(Θ− ψ) ≤ ϕ ≤ θ +

1

2
(Θ + ψ), (B.5)

see Figure 5a. Using Assumption 1.4 and Figure 5b,

|ψ| ≤ arcsin

(∣∣∣∣γ(x)k2

∣∣∣∣) ≤ arcsin

(
Mγ

r2

)
≤ 2Mγ

r2
. (B.6)

Since 0 ≤ Θ < π/2, we can choose r >
√
Mγ large enough so that

|ψ| ≤ 1

2

(π
2
−Θ

)
, (B.7)

θ=
π

4θ=
3 π
4

kk

k

αβ

k

αβ

1 +
γ

k2
1 +

γ

k2

Re(z)

Im(z)

(a)

1

 γ(x)
k2

ψ

Re(z)

Im(z)

1+
γ (x)

k2

arcsin γ(x)

k2


(b)

Figure 5: (a) The arguments of kn(k, x) and its components, (b) ψ = arg
(
1 + γ(x)/k2

)
.

24



which gives, from (B.5),

θ − θ1 = θ − 1

4

(
Θ+

π

2

)
≤ θ − 1

2
(Θ + |ψ|) ≤ ϕ ≤ θ +

1

2
(Θ + |ψ|) ≤θ + 1

4

(
Θ+

π

2

)
= θ + θ1, (B.8)

which defines 0 < θ1 < π/4. For |k| > r and θ1 ≤ arg(k) ≤ π−θ1, we have that 0 ≤ ϕ ≤ π, so that Re(ikn(k, x)) ≤ 0.
In particular, Re(ikn(k, x)) < 0 for k ∈ Ωext(r). More specifically, using that sin(ϕ) ≥ ϕ(π − ϕ)/π for 0 ≤ ϕ ≤ π,
then for θ1 ≤ θ ≤ π − θ1, we have

Re(ikn(k, x)) = −|kn(k, x)| sin(ϕ) ≤ − 1

π
mn|k|ϕ(π − ϕ) ≤ − 1

π
mn|k|(θ − θ1)(π − θ1 − θ). (B.9)

Finally, (B.4) follows from choosing θ0 such that 0 ≤ θ1 < θ0 < π/4 and letting min = mn(θ0 − θ1)/4.

Having established some properties of the coefficient functions α, β and the dispersion functions n, (βn), we

define a generalization J (a,b)
n [σp,n](k) of the accumulation functions E(a,b)

n (k), Ẽ(a,b)
n (k), C(a,b)

n (k), and S(a,b)
n (k), and

we show some relations between these functions. Further, we show these functions are bounded and well defined,
and we find their large-k asymptotics.

Definition 16. With r from Lemma 15, (a, b) ⊆ D and k ∈ Ωext(r). For integer n > 0, we define the function

J (a,b)
n [σp,n](k) =

1

2n

ˆ
a=y0<y1<···<yn<yn+1=b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikn(k, ξ) dξ

)
dyn, (B.10a)

where σp,n is a non-negative integer-valued function of n and p = 0, 1, . . . , n. Here we require for any p that

σp,n ̸= σp+1,n. For n < 0, we define J (a,b)
n [σp,n](k) = 0, and for n = 0, we define

J (a,b)
0 [σ0,0](k) = exp

(
σ0,0

ˆ b

a

ikn(k, ξ) dξ

)
. (B.10b)

The function J (a,b)
n [σp,n](k) is defined as a→ −∞ if σ0,n = 0, and as b→ ∞ if σn,n = 0 (if D is unbounded).

Finally, we define

C(a,b)
n (k) = exp

(ˆ b

a

ikn(k, ξ) dξ

)
C(a,b)
n (k) and S(a,b)n (k) = exp

(ˆ b

a

ikn(k, ξ) dξ

)
S(a,b)
n (k), (B.11)

where C(a,b)
n (k) and S(a,b)

n (k) are defined in (4.9).

Lemma 17. With E(a,b)
n (k) and Ẽ(a,b)

n (k) defined in (3.5), and C
(a,b)
n (k) and S

(a,b)
n (k) defined in (B.11), we have the

following relations:

E(a,b)
n (k) = J (a,b)

n [1− (−1)n−p](k), (B.12a)

Ẽ(a,b)
n (k) = J (a,b)

n [1− (−1)p](k), (B.12b)

C(a,b)
n (k) =

1

2

[
J (a,b)
n [1 + (−1)p](k) + J (a,b)

n [1− (−1)p](k)
]
, (B.12c)

S(a,b)n (k) =
1

2i

[
J (a,b)
n [1 + (−1)p](k)− J (a,b)

n [1− (−1)p](k)
]
. (B.12d)

Proof. The proofs follow immediately from the definitions in (3.5) and (4.9).

The next two lemmas give bounds and asymptotics for the function J (a,b)
n [σp,n](k).

Lemma 18. For (x, y) ⊆ (a, b) ⊆ D, k ∈ Ωext(r), and r from Lemma 15,∣∣∣J (a,b)
n [σp,n](k)

∣∣∣ ≤ 1

2nn!

∥∥∥∥ (βn)′(βn)

∥∥∥∥n
(a,b)

and

∣∣∣∣∣
n∑
ℓ=0

(−1)λℓJ (a,x)
n−ℓ [σp,n−ℓ](k)J (y,b)

ℓ [σ̃p,ℓ](k)

∣∣∣∣∣ ≤ 1

2nn!

∥∥∥∥ (βn)′(βn)

∥∥∥∥n
(a,b)

,

(B.13)

where λ = 0, 1. These inequalities hold as a → −∞ and b → ∞, provided the functions are defined. Thus,

J (a,b)
n [σp,n](k) is well defined. The same bounds hold for E(a,b)

n (k), Ẽ(a,b)
n (k), C

(a,b)
n (k), and S

(a,b)
n (k).
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Proof. By Lemma 15, the exponentials in (B.10) are bounded by 1 for k ∈ Ωext(r). Using Lemma 14,

∣∣∣J (a,b)
n [σp,n](k)

∣∣∣ ≤ 1

2n

ˆ
a<y1<···<yn<b

∣∣∣∣∣
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

∣∣∣∣∣ dy1 · · · dyn =
1

2nn!

∥∥∥∥ (βn)′(βn)

∥∥∥∥n
(a,b)

, (B.14a)

so that∣∣∣∣∣
n∑
ℓ=0

(−1)λℓJ (a,x)
n−ℓ [σp,n−ℓ](k)J (y,b)

ℓ [σp,ℓ](k)

∣∣∣∣∣ ≤
n∑
ℓ=0

1

2n(n− ℓ)!ℓ!

∥∥∥∥ (βn)′(βn)

∥∥∥∥n−ℓ
(a,x)

∥∥∥∥ (βn)′(βn)

∥∥∥∥ℓ
(y,b)

=
1

2nn!

(∥∥∥∥ (βn)′(βn)

∥∥∥∥
(a,x)

+

∥∥∥∥ (βn)′(βn)

∥∥∥∥
(y,b)

)n
≤ 1

2nn!

∥∥∥∥ (βn)′(βn)

∥∥∥∥n
(a,b)

. (B.14b)

For E(a,b)
n (k), Ẽ(a,b)

n (k), C
(a,b)
n (k), and S

(a,b)
n (k), the result follows from (B.12). These bounds hold as a → −∞ or

b→ ∞, provided the functions are defined.

Lemma 19. There exists r >
√
Mγ , such that for any (a, b) ⊆ D and n ≥ 1,

J (a,b)
n [σp,n](k) → 0, as |k| → ∞, k ∈ Ωext(r). (B.15a)

This result holds as a → −∞ and b → ∞, provided the functions are defined. The result extends to E(a,b)
n (k),

Ẽ(a,b)
n (k), C

(a,b)
n (k), and S

(a,b)
n (k).

Next, we define λp,n = σp−1,n − σp,n. Using Assumption 3 and since λp,n ̸= 0 (see Definition 16), we have

J (a,b)
1 [σp,n](k) =

1

4λ1,1ik

[
u(b) exp

(
σ0,1

ˆ b

a

ikµ(ξ) dξ

)
− u(a) exp

(
σ1,1

ˆ b

a

ikµ(ξ) dξ

)]
+ o(k−1). (B.15b)

There exists r >
√
Mγ and C > 1 such that, for any (a, b) ⊆ D and k ∈ Ωext(r),∣∣J (a,b)

n [σp,n](k)
∣∣ ≤ Cn

|k|⌊n+1
2 ⌋

, (B.15c)

where ⌊ · ⌋ is the floor function.

Proof. From Lemma 15, for any r >
√
Mγ and for all k ∈ Ωext(r), we have

∣∣∣J (a,b)
n [σp,n](k)

∣∣∣= 1

2n

∣∣∣∣∣
ˆ
a=y0<y1<···<yn<yn+1=b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikn(k, ξ) dξ

)
dy1 · · · dyn

∣∣∣∣∣
≤ 1

2n

ˆ
a=y0<···<yn+1=b

(
n∏
p=1

∣∣∣∣ (βn)′(k, yp)(βn)(k, yp)

∣∣∣∣
)
exp

(
−min|k|

n∑
p=0

σp,n(yp+1 − yp)

)
dy1 · · · dyn, (B.16)

and since σp,n ≥ 0 and σp,n ̸= σp+1,n for any p, the argument of the exponential is strictly negative. Thus, by

Lemma 18 and the Dominated Convergence Theorem (DCT), we have (B.15a). For E(a,b)
n (k), Ẽ(a,b)

n (k), C
(a,b)
n (k), and

S
(a,b)
n (k), the result follows from (B.12).
Using the definition of n(k, x) in Definition 5, it is straightforward to show that

exp

(
ik

ˆ x

y

n(k, ξ) dξ

)
= exp

(
ik

ˆ x

y

µ(ξ) dξ

)(
1 +O(|x− y|k−1)

)
, (B.17)

for which, on a finite-interval, we may omit |x − y|. Using Assumption 1.5, (2.7), (B.3), and (B.17) in (B.10) for
n = 1, we have

J (a,b)
1 [σp,n](k) =

1 +O(k−1)

4

ˆ b

a

u(y)µ(y) exp

(
σ0,1

ˆ y

a

+σ1,1

ˆ b

y

ikµ(ξ) dξ

)
dy +O(k−2). (B.18)
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By Lemma 14, u ∈ AC(D) and integration by parts gives

J (a,b)
1 [σp,n](k) =

1

4λ1,1ik

(
u(b) exp

(
σ0,1

ˆ b

a

ikµ(ξ) dξ

)
− u(a) exp

(
σ1,1

ˆ b

a

ikµ(ξ) dξ

))

− 1

4λ1,1ik

ˆ b

a

u′(y) exp

(
σ0,1

ˆ y

a

+σ1,1

ˆ b

y

ikµ(ξ) dξ

)
dy +O(k−2). (B.19)

By Lemma 14 and the DCT, we obtain (B.15b).
Inequality (B.15c) for n = 0 and n = 1 follows from (B.10b) and (B.15b), respectively. Using (2.7), (B.3), and

(B.17) in (B.10) for n ≥ 2, we have

J (a,b)
n [σp,n](k) =

1 +O(k−1)

2n+1

ˆ
a<···<b

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
u(yn)µ(yn) exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn

+
1 +O(k−1)

2n+1

ˆ
a<···<b

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)(
γ′(yn)

k2 + γ(yn)

)
exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn.

(B.20)

Let I(a,b)
n (k) denote the integral in the first line of (B.20):

I(a,b)
n (k) =

ˆ
a<···<b

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
u(yn)µ(yn) exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn. (B.21)

Integration by parts with respect to yn ∈ (yn−1, b) gives

I(a,b)
n (k) =

u(b)

ikλn,n

ˆ
a=y0<···<yn=b

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n−1∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn−1

−
ˆ
a<···<b

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
u(yn−1)

ikλn,n
exp

(
σn,n

ˆ b

yn−1

ikµ(ξ) dξ +

n−2∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn−1

−
ˆ
a<···<b

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
u′(yn)

ikλn,n
exp

(
n−1∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn. (B.22)

In the second line of (B.22), we integrate over yn−1 ∈ (a, b) last, leaving the remaining integral over a = y0 < y1 <
· · · < yn−2 < yn−1 to be done first. Similarly, in the third line of (B.22), we integrate over yn ∈ (a, b) last and leave
the remaining integral over a = y0 < y1 < · · · < yn−1 < yn to be done first. Returning to (B.20) yields

J (a,b)
n [σp,n](k) =

1 +O(k−1)

2n+1

u(b)

λn,nik

ˆ
a=y0<···<yn=b

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n−1∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn−1

− 1 +O(k−1)

2n+1

ˆ b

a

dyn−1
u(yn−1)

λn,nik

(βn)′(k, yn−1)

(βn)(k, yn−1)
exp

(
σn,n

ˆ b

yn−1

ikµ(ξ) dξ

)
×

×
ˆ
a=y0<···<yn−2<yn−1

(
n−2∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n−2∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn−2

− 1 +O(k−1)

2n+1

ˆ b

a

dyn

(
u′(yn)

λn,nik
+

γ′(yn)

k2 + γ(yn)

)
exp

(
σn,n

ˆ b

yn

ikµ(ξ) dξ

)
×

×
ˆ
a=y0<···<yn−1<yn

(
n−1∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n−1∑
p=0

σp,n

ˆ yp+1

yp

ikµ(ξ) dξ

)
dyn−1,

(B.23)
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which gives the asymptotic recurrence relation

J (a,b)
n [σp,n](k) =

1 +O(k−1)

4

u(b)

λn,nik
J (a,b)
n−1 [σp,n](k)

− 1 +O(k−1)

8

ˆ b

a

u(yn−1)

λn,nik

(βn)′(k, yn−1)

(βn)(k, yn−1)
exp

(
σn,n

ˆ b

yn−1

ikµ(ξ) dξ

)
J (a,yn−1)
n−2 [σp,n](k) dyn−1

− 1 +O(k−1)

4

ˆ b

a

(
u′(yn)

λn,nik
+

γ′(yn)

k2 + γ(yn)

)
exp

(
σn,n

ˆ b

yn

ikµ(ξ) dξ

)
J (a,yn)
n−1 [σp,n](k) dyn. (B.24)

Assuming (B.15c) holds for n = 0, 1, . . . ,m− 1, and using that |λp,n| ≥ 1, we find

∣∣∣J (a,b)
n [σp,n](k)

∣∣∣ ≤ 1 +O(k−1)

4

[
∥u∥∞
|k|

Cn−1

|k|⌊n
2 ⌋ +

∥u∥∞
2|k|

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

Cn−2

|k|⌊n−1
2 ⌋

+

(
∥u′∥D
|k|

+
∥γ′∥D

|k|2 −Mγ

)
Cn−1

|k|⌊n
2 ⌋

]
, (B.25)

which, using Lemma 14, gives (B.15c) for n ≥ 0.

Having defined the function J (a,b)
n [σp,n](k) and established some of its properties, we prove that the function ∆(k)

is bounded and well defined, and that the “transforms” Φ0(k, x), Φf (k, x, t) and Bm(k, x), of the initial condition
q0(x), the inhomogeneous function f(x, t), and the boundary functions fm(t), respectively, are bounded and well
defined.

Definition 20. We define

Φ0(k, x) =

ˆ
D

Ψ(k, x, y)qα(y)√
(βn)(k, x)

√
(βn)(k, y)

dy, (B.26a)

Φf (k, x, t) =

ˆ
D

Ψ(k, x, y)f̃α(k
2, y, t)√

(βn)(k, x)
√
(βn)(k, y)

dy, (B.26b)

so that Φψ(k, x, t) = Φ0(k, x) + Φf (k, x, t). We define the corresponding parts of the solution as

q0(x, t) =
1

2π

ˆ
∂Ω(r)

Φ0(k, x)

∆(k)
e−k

2t dk, (B.27a)

qf (x, t) =
1

2π

ˆ
∂Ω(r)

Φf (k, x, t)

∆(k)
e−k

2t dk, (B.27b)

qBm
(x, t) =

1

2π

ˆ
∂Ω(r)

Bm(k, x)

∆(k)
Fm(k2, t)e−k

2t dk, m = 0, 1, (B.27c)

where we define Bm(k, x) = 0 (m = 0, 1) for the whole-line problem and B1(k, x) = 0 for the half-line problem. Thus
q(x, t) = q0(x, t) + qf (x, t) + qB0

(x, t) + qB1
(x, t) for the finite-interval, half-line and whole-line problems.

Lemma 21. For all three problems, there exists r >
√
Mγ and M∆ > 0, so that for all k ∈ Ωext(r),

∆(k) = b0(k)(1 + ε(k)) and
1

2
|b0(k)| ≤ |∆(k)| ≤M∆, (B.28a)

where |ε(k)| < 1/2. For the whole-line problem,

b0(k) = 1; (B.28b)

for the half-line problem,

b0(k) = 2

(
ia0

kn(k, xl)
− a1

)
; (B.28c)

and, for the finite-interval problem,
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1. if (a : b)2,4 ̸= 0, then

b0(k) = −(a : b)2,4; (B.28d)

2. if (a : b)2,4 = 0 and mc0 ̸= 0, then

b0(k) =
imc0

k
; (B.28e)

3. if (a : b)2,4 = 0, mc0 = 0, mc1 = 0, and (a : b)1,3 ̸= 0, then

b0(k) = −ms

k2
; (B.28f)

4. with Assumption 3, if (a : b)2,4 = 0, mc0 = 0, mc1 ̸= 0, and mc1u+ − 8ms ̸= 0, then

b0(k) =
1

8k2
(mc1u+ − 8ms). (B.28g)

Proof. For the whole-line problem,

∆(k) = 1 +

∞∑
n=1

E(−∞,∞)
2n (k) = 1 + ε(k). (B.29)

By Lemmas 18 and 19 and the DCT,

ε(k) =

∞∑
n=1

E(−∞,∞)
2n (k) → 0, (B.30)

as |k| → ∞. Thus, we can choose r sufficiently large so that for k ∈ Ωext(r), |ε(k)| < 1/2, and

1

2
≤ 1− |ε(k)| ≤ |∆(k)| ≤ 1 + |ε(k)| < 3

2
. (B.31)

For the half-line problem, we write

∆(k) = 2

∞∑
n=0

(
(−1)nia0
kn(k, xl)

− a1

)
E(xl,∞)
n (k) = 2

(
ia0

kn(k, xl)
− a1

)1 + ∞∑
n=1

(−1)nia0
kn(k,xl)

− a1
ia0

kn(k,xl)
− a1

E(xl,∞)
n (k)

. (B.32)

Recall that we require (a0, a1) ̸= (0, 0). If a1 ̸= 0, we choose r >
√
Mγ sufficiently large so that |a1| > |a0|/(mnr)

for k ∈ Ωext(r). Using this, for either case, a0 ̸= 0 or a1 ̸= 0, we have∣∣∣∣∣∣
(−1)nia0
kn(k,xl)

− a1
ia0

kn(k,xl)
− a1

∣∣∣∣∣∣ ≤ |a1|+ |a0|
mnr∣∣∣|a1| − |a0|
mnr

∣∣∣ = A <∞, (B.33)

which defines A ≥ 1. We have

|ε(k)| =

∣∣∣∣∣∣
∞∑
n=1

(−1)na0
kn(k,xl)

+ ia1
a0

kn(k,xl)
+ ia1

E(xl,∞)
n (k)

∣∣∣∣∣∣ ≤ A

∞∑
n=1

∣∣∣E(xl,∞)
n (k)

∣∣∣→ 0, (B.34)

by the DCT. We choose r >
√
Mγ large enough such that |ε(k)| < 1/2 for k ∈ Ωext(r). Then

0 <

∣∣∣∣|a1| − ∣∣∣∣ a0
kn(k, xl)

∣∣∣∣∣∣∣∣ ≤ |∆(k)| ≤ 3

(
|a1|+

|a0|
mnr

)
<∞. (B.35)

For the finite-interval problem, since

C
(xl,xr)
0 (k) = Ξ(k)C(xl,xr)

0 (k) =
1

2

(
Ξ(k)2 + 1

)
and S

(xl,xr)
0 (k) = Ξ(k)S(xl,xr)

0 (k) =
1

2i

(
Ξ(k)2 − 1

)
, (B.36)
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where Ξ(k) is defined in (5.5) and C
(a,b)
n (k) and S

(a,b)
n (k) are defined in (B.11), we factor out the n = 0 term in (5.6)

and write

∆(k) = 2ia(k)Ξ(k) + ic0(k)
(
Ξ(k)2 + 1

)
+ s0(k)

(
Ξ(k)2 − 1

)
+ 2i

∞∑
n=1

(
cn(k)C

(xl,xr)
n (k) + sn(k)S

(xl,xr)
n (k)

)
. (B.37)

Since Ξ(k) → 0 exponentially fast, we have

∆(k) = ic0(k)− s0(k) + 2i

∞∑
n=1

(
cn(k)C

(xl,xr)
n (k) + sn(k)S

(xl,xr)
n (k)

)
+ o(k−2). (B.38)

1. If (a : b)2,4 ̸= 0, then we can write (B.28a) with b0(k) defined in (B.28d), where

ε(k) =
−1

(a : b)2,4

[
ic0(k)− s0(k) + (a : b)2,4 + 2i

∞∑
n=1

(
cn(k)C

(xl,xr)
n (k) + sn(k)S

(xl,xr)
n (k)

)]
+ o(k−2). (B.39)

Since cn(k) = O(k−1), s0(k) = (a : b)2,4 + O(k−2), sn(k) = O(k0), and because both C
(xl,xr)
n (k) → 0 and

S
(xl,xr)
n (k) → 0 by Lemma 19 and both are bounded (see Lemma 18), we can choose r >

√
Mγ sufficiently large

so that |ε(k)| < 1/2 for k ∈ Ωext(r), by the DCT. We have

1

2
|(a : b)2,4| ≤ |∆(k)| ≤ 3

2
|(a : b)2,4|. (B.40)

2. If (a : b)2,4 = 0 and mc0 ̸= 0, then we can write (B.28a) with b0(k) defined in (B.28e), where

ε(k) =
k

imc0

[
ic0(k)−

imc0

k
− s0(k) + 2i

∞∑
n=1

(
cn(k)C

(xl,xr)
n (k) + sn(k)S

(xl,xr)
n (k)

)]
+ o(k−1). (B.41)

Since c0(k) = mc0/k+O(k−3), sn(k) = O(k−2), cn(k) = O(k−1), and since C
(xl,xr)
n (k) → 0 and S

(xl,xr)
n (k) → 0

and both are bounded (see Lemma 18), we can choose r >
√
Mγ large enough such that |ε(k)| < 1/2 for

k ∈ Ωext(r), by the DCT. We have

|mc0 |
2|k|

≤ |∆(k)| ≤ 3|mc0 |
2r

. (B.42)

3. If (a : b)2,4 = 0, mc0 = 0, mc1 = 0, and (a : b)1,3 ̸= 0, then c0(k) = c1(k) = 0 and we can write (B.28a) with
b0(k) defined in (B.28f), where

ε(k) = − k2

ms

[
−s0(k) +

ms

k2
+ 2i

∞∑
n=1

sn(k)S
(xl,xr)
n (k)

]
+ o(k0). (B.43)

Since sn(k) = ms/k
2 + O(k−4), and since S

(xl,xr)
n (k) → 0 and is bounded (see Lemma 18), we can choose

r >
√
Mγ sufficiently large so that |ε(k)| < 1/2 for k ∈ Ωext(r), by the DCT. We have

|ms|
2|k|2

≤ |∆(k)| ≤ 3|ms|
2r2

. (B.44)

4. If (a : b)2,4 = 0, mc0 = 0, mc1 ̸= 0, and mc1u+ − 8ms ̸= 0, we can write (B.28a) with b0(k) defined in (B.28g),
where

ε(k) =
8k2

mc1u+ − 8ms

[
ic0(k) + 2ic0(k)C

(xl,xr)
2 (k)− s0(k) + 2ic1(k)C

(xl,xr)
1 (k)− mc1u+ − 8ms

8k2

+2i

∞∑
n=3

cn(k)C
(xl,xr)
n (k) + 2iΞ(k)

∞∑
n=1

sn(k)S
(xl,xr)
n (k)

]
+ o(k0). (B.45)
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By Lemmas 17 and 19, we have

C
(xl,xr)
1 (k)=

1

2

[
J (xl,xr)
1 [1 + (−1)p](k) + J (xl,xr)

1 [1− (−1)p](k)
]

= − 1

16ik
(u(xr) + u(xl))

(
1− exp

(ˆ xr

xl

2ikµ(ξ) dξ

))
+ o(k−1) = − 1

16ik
u+ + o(k−1). (B.46)

For n > 2, from Lemma 19, we have

∞∑
n=3

∣∣∣kC(xl,xr)
n (k)

∣∣∣ ≤ ∞∑
n=3

|k|Cn

|k|⌊n+1
2 ⌋

=
C4 + C3

k − C2
= O(k−1). (B.47)

Since c0(k) = O(k−3), c1(k) = −mc1/k + O(k−3), sn(k) = ms/k
2 + O(k−4), and since S

(xl,xr)
n (k) → 0 and

S
(xl,xr)
n (k) is bounded (see Lemma 18), we can choose r >

√
Mγ sufficiently large so that |ε(k)| < 1/2 for

k ∈ Ωext(r), by the DCT. We have

1

16|k|2
|mc1u+ − 8ms| ≤ |∆(k)| ≤ 3

16r2
|mc1u+ − 8ms|. (B.48)

Remark 22. Note that for constant-coefficient IBVPs (α, β, γ constant), the denominator ∆(k) reduces to

∆(k) = 2ia(k)Ξ(k) + ic0(k)
(
Ξ(k)2 + 1

)
+ s0(k)

(
Ξ(k)2 − 1

)
. (B.49)

If (a : b)2,4 = 0 and mc0 = 0 (i.e., c0(k) = 0 and s0(k) = (a : b)1,3), then we require (a : b)1,3 ̸= 0, so that ∆(k) ̸→ 0
exponentially fast (or is not identically zero). Thus, Boundary Cases 1–4 are the only allowable cases giving rise to
a well-defined solution for constant-coefficient problems. If the coefficients are not constant, it may be possible to go
out to higher order in the asymptotics of Lemma 21, e.g., (a : b)2,4 = 0, mc0 = 0, mc1 ̸= 0, and mc1u+ − 8ms = 0,
and additional allowable boundary conditions may be identified. This requires further investigation.

Lemma 23. Consider the finite-interval, half-line, and whole-line problems. For all three, there exists an r >
√
Mγ

and MΨ > 0 such that, for k ∈ Ωext(r), x ∈ D, and y ∈ D,

|Ψ(k, x, y)| ≤MΨ. (B.50a)

For the regular problems, ∣∣∣∣Ψ(k, x, y)

∆(k)

∣∣∣∣ ≤MΨ, (B.50b)

and for the irregular problems,∣∣∣∣Ψ(k, x, y)

∆(k)

∣∣∣∣ ≤MΨ

(
1 + |k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

))
≤ 3MΨ|k|. (B.50c)

Thus Ψ(k, x, y) and Ψ(k, x, y)/∆(k) are well-defined functions.

Proof. For the whole-line problem, from (3.4) and Lemma 15,

|Ψ(k, x, y)| ≤ e−min|k||x−y|
∞∑
n=0

1

2nn!

∥∥∥∥ (βn)′(βn)

∥∥∥∥n
R
≤ exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
, (B.51)

and (B.50a) follows. From Lemma 21, (B.50b) follows. For the half-line problem, with xl < y < x, from (4.8)

|Ψ(k, x, y)| ≤ 4

∣∣∣∣exp(ˆ x

y

ikn(k, ξ) dξ

)∣∣∣∣ ∞∑
n=0

n∑
ℓ=0

∣∣∣∣( a0
kn(k, xl)

S
(xl,y)
n−ℓ (k)− a1C

(xl,y)
n−ℓ (k)

)
E(x,∞)
ℓ (k)

∣∣∣∣
≤ 4e−min|k||x−y|

(
|a0|
mnr

+ |a1|
)
exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
, (B.52)
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and similarly for xl < x < y. Therefore (B.50a) follows. From Lemma 21, we have∣∣∣∣Ψ(k, x, y)

∆(k)

∣∣∣∣ ≤ 4
(
|a1|+ |a0|

|kn(k,xl)|

)
∣∣∣|a1| − ∣∣∣ a0

kn(k,xl)

∣∣∣∣∣∣ exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
≤ 4A exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
, (B.53)

where A is defined in (B.33). This gives (B.50b).
For the finite-interval problem:

1. if (a : b)2,4 ̸= 0, from (5.9a), we find for xl < y < x < rr,

|Ψ(k, x, y)| ≤ 4

(
|(a : b)2,4|+

|(a : b)1,3|
m2

nr
2

+
|(a : b)1,4|+ |(a : b)2,3|

mnr

)
exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
+

4Mβ |(a : b)1,2|
mβmn|k|

exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
e−min|k|(xr−xl−|x−y|), (B.54)

and similarly for xl < x < y < xr. Thus (B.50a) follows. From Lemma 21, (B.50b) follows.

2. If (a : b)2,4 = 0 and mc0 ̸= 0, from (5.9a), we find for xl < y < x < rr,

|Ψ(k, x, y)| ≤ 4

|k|

(
|(a : b)1,4|+ |(a : b)2,3|

mn
+

|(a : b)1,3|
m2

nr

)
exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
+

4Mβ |(a : b)1,2|
mβmn|k|

exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
e−min|k|(xr−xl−|x−y|), (B.55)

and similarly for xl < x < y < xr. This gives (B.50a). From Lemma 21, (B.50b) follows.

3. If (a : b)2,4 = 0, mc0 = 0, mc1 = 0, and (a : b)1,3 ̸= 0, then for xl < y < x < xr,

|Ψ(k, x, y)| ≤ 4

|k|2

(
|(a : b)1,3|

m2
n

+
4Mβ |(a : b)1,2||k|

mβmn
e−min|k|(xr−xl−|x−y|)

)
exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
, (B.56)

and similarly for xl < x < y < xr. This gives (B.50a). This Boundary Case is regular if both (a : b)1,2 = 0 and
(a : b)3,4 = 0 and irregular if either (a : b)1,2 ̸= 0 or (a : b)3,4 ̸= 0, see Remark 10. Lemma 21 gives (B.50b) or
(B.50c).

4. If (a : b)2,4 = 0, mc0 = 0, mc1 ̸= 0, and mc1u+ − 8ms ̸= 0, then,

(a : b)1,4
µ(xl)

=
(a : b)2,3
µ(xr)

=
mc1

2
. (B.57)

From this (a : b)1,4/n(k, xl) = mc1/2 + O(k−2) and (a : b)2,3/n(k, xr) = mc1/2 + O(k−2). Using Lemma 19,
there exists an r > C2 such that∣∣∣∣∣

∞∑
n=1

n∑
ℓ=0

(−1)λℓJ (xl,y)
n−ℓ [σp,n−ℓ](k)J (x,xr)

ℓ [σp,ℓ](k)

∣∣∣∣∣ ≤
∞∑
n=1

n∑
ℓ=0

Cn−ℓ

|k|⌊n−ℓ+1
2 ⌋

Cℓ

|k|⌊ ℓ+1
2 ⌋

=
(k + C)2

(k − C2)2
− 1 = O(k−1),

(B.58)

for k ∈ Ωext(r). For xl < y < x < xr, the n = 0 terms involving (a : b)1,4 and (a : b)2,3 combine to give

(a : b)1,4
kn(k, xl)

S(xl,y)
0 (k)C(x,xr)

0 (k)− (a : b)2,3
kn(k, xr)

C(xl,y)
0 (k)S(x,xr)

0 (k)

=
mc1

2k

(
S(xl,y)
0 (k)C(x,xr)

0 (k)− C(xl,y)
0 (k)S(x,xr)

0 (k)
)
+O(k−3)

=
mc1

2k
sin

(ˆ y

xl

−
ˆ xr

x

kn(k, ξ) dξ

)
+O(k−3), (B.59)

so that, for xl < y < x < xr,

|Ψ(k, x, y)| ≤ 4

{
|mc1 |
4|k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

)
+O(k−2)

}
+

4Mβ |(a : b)1,2|
mβmn|k|

e−min|k|(xr−x). (B.60)

This gives (B.50a). Using Lemma 21, we arrive at (B.50c). The same can be shown for xl < x < y < xr.

32



Lemma 24. Consider the finite-interval and half-line problems. There exists an r >
√
Mγ and MB > 0 such that

for k ∈ Ωext(r) and x ∈ D, for both the half-line (m = 0) and the finite-interval problem (m = 0, 1),

|Bm(k, x)| ≤MB. (B.61a)

Further, for the half-line problem (m = 0),∣∣∣∣B0(k, x)

∆(k)

∣∣∣∣ ≤MB|k|e−min|k|(x−xl), (B.61b)

and for the finite-interval problem (m = 0, 1),∣∣∣∣Bm(k, x)

∆(k)

∣∣∣∣ ≤MB|k|b
(
e−min|k|(xr−x) + e−min|k|(x−xl)

)
. (B.61c)

Here, b = 1 for regular boundary conditions, and b = 2 for irregular boundary conditions. It follows that the functions
Bm(k, x) and Bm(k, x)/∆(k) are well defined for the half-line and finite-interval problems.

Proof. For the half-line problem, using Lemmas 15 and 18 in (4.6), we have

|B0(k, x)| ≤
4Mβ

mβmn
exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)
e−min|k|(x−xl), (B.62)

which gives (B.61a). Lemma 21 gives (B.61b). Similarly, for the finite-interval problem, using Lemmas 15 and 18 in
(5.8c), we have

|B2−j(k, x)| ≤
4Mβ

mβmn
exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

){(
|aj1|
mn|k|

+ |aj2|
)
e−min|k|(xr−x) +

(
|bj1|
mn|k|

+ |bj2|
)
e−min|k|(x−xl)

}
,

(B.63)

for j = 1, 2, which gives (B.61a). For the finite-interval problem with Boundary Case 1 or 2 and for the irregular
boundary conditions, (B.61c) follows from the above and Lemma 21. For the regular version of Boundary Case 3,
we have aij = 0 for all i, j = 1, 2, except for a11 and b21, see Remark 10. Thus,

|B2−j(k, x)| ≤
4Mβ

mβm2
n|k|

exp

(
1

2

∥∥∥∥ (βn)′(βn)

∥∥∥∥
D

)(
|aj1|e−min|k|(xr−x) + |bj1|e−min|k|(x−xl)

)
, (B.64)

from which (B.61c) follows, using Lemma 21.

Lemma 25. Consider the finite-interval, half-line, and whole-line problems. For all three, there exists an r >
√
Mγ

and MΦ > 0 such that for k ∈ Ωext(r) and x ∈ D,

|Φ0(k, x)| ≤MΦ∥q0∥D. (B.65a)

For the regular problems, ∣∣∣∣Φ0(k, x)

∆(k)

∣∣∣∣ ≤MΦ∥q0∥D, (B.65b)

and for the irregular problems,∣∣∣∣Φ0(k, x)

∆(k)

∣∣∣∣ =MΦ∥q0∥D
(
1 + |k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

))
≤ 3MΦ|k|∥q0∥D. (B.65c)

It follows that Φ0(k, x) and Φ0(k, x)/∆(k) are well-defined functions.

Proof. The inequalities (B.26a) follow directly from Lemma 23.
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Lemma 26. Consider the finite-interval, half-line, and whole-line problems. For all three, there exists an r >
√
Mγ

and Mf > 0 such that for k ∈ Ωext(r)\Ω(r) (the green region of Figure 4), for x ∈ D, and for t ∈ [0, T ],∣∣Φf (k, x, t)e−k2t∣∣ ≤Mf∥f∥D. (B.66a)

Further, for the regular problems, ∣∣∣∣∣Φf (k, x, t)e−k
2t

∆(k)

∣∣∣∣∣ =Mf∥f∥D, (B.66b)

and for the irregular problems,∣∣∣∣∣Φf (k, x, t)e−k
2t

∆(k)

∣∣∣∣∣ =Mf∥f∥D
(
1 + |k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

))
≤ 3Mf |k|∥f∥D. (B.66c)

Thus, Φf (k, x, t) and Φf (k, x, t)/∆(k) are well-defined functions.

Proof. For k ∈ Ωext(r)\Ω(r), |e−k
2(t−s)| < 1. It follows from (2.8) and Assumption 2.1 that

ˆ
D

∣∣f̃α(k2, x, t)e−k2t∣∣ dx ≤
ˆ
D

ˆ t

0

|fα(x, s)| dsdy ≤ T∥f∥D
mα

. (B.67)

Using this and (B.50) in (B.26b), we obtain (B.66) for any x ∈ D and for t ∈ [0, T ].

Lemma 27. There exists an r >
√
Mγ so that for x ∈ D and t ∈ [0, T ], J (a,b)

n (k), ∆(k), Ψ(k, x, y), and Φ0(k, x)

are analytic in k, for k ∈ Ωext(r). The functions Φf (k, x, t)e
−k2t and Bm(k, x)e−k

2t are analytic in k for k ∈
Ωext(r)\Ω(r).

Proof. Consider a closed contour Γ ∈ Ωext(r). Then

˛
Γ

J (a,b)
n [σp,n](k) dk =

1

2n

ˆ
a<···<b

dyn

˛
Γ

dk

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikn(k, ξ) dξ

)
= 0, (B.68)

by Cauchy’s theorem. We can switch the order of integration by Fubini’s theorem and Lemma 18. Therefore, by

Morera’s theorem, J (a,b)
n [σp,n](k) is analytic for k ∈ Ωext(r). For all three types of IBVPs considered, the same

argument applies for the ∆(k), Ψ(k, x, y), and the Φ0(k, x) functions by Lemmas 21, 23, and 25, and for the Bm(k, x)
and Φf (k, x, t) functions by Lemma 24 and 26.

The following lemmas prove that the different parts of the solution are well defined.

Lemma 28. For the half-line problem (m = 0) and the finite-interval problem (m = 0, 1), there exists an r >
√
Mγ

such that, for any x ∈ D and t ∈ (0, T ), the function qBm
(x, t) (B.27c) can be written as

qBm(x, t) =
1

2π

ˆ
∂Ωext(r)

Bm(k, x)

∆(k)
Fm(k2, t)e−k

2t dk, (B.69a)

where

Fm(k2, t) = −fm(0)

k2
− 1

k2

ˆ t

0

ek
2sf ′m(s) ds, (B.69b)

with the bound

∣∣Fm(k2, t)e−k
2t
∣∣ ≤ ∥fm∥∞e−|k|2 cos(2θ)t

|k|2
+

∥f ′m∥∞
(
1− e−|k|2 cos(2θ)t

)
|k|4 cos(2θ)

. (B.70)

The function qBm(x, t) is well defined.
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Proof. From (4.7) and Assumption 2.3, for k ∈ Ωext(r)\Ω(r),

∣∣Fm(k2, t)e−k
2t
∣∣ ≤ ∣∣∣∣ˆ t

0

e−k
2(t−s)fm(s) ds

∣∣∣∣ ≤ T∥fm∥∞. (B.71)

Therefore, for x ∈ D, we have exponential decay of the integrand of qBm(x, t) from Lemma 24. Using Lemma 27, we
can deform the contour of (B.27c) from Ω(r) to Ωext(r). Assumption 2.3 allows us to integrate (4.7) by parts so that

Fm(k2, t)e−k
2t =

fm(t)

k2
− fm(0)e−k

2t

k2
− 1

k2

ˆ t

0

e−k
2(t−s)f ′m(s) ds, (B.72)

which gives (B.69), after using Cauchy’s theorem on the fm(t) term. Equation (B.70) follows from (B.69b) and
Assumption 2.3. From Lemma 24, for the half-line problem,

|qBm(x, t)| ≤ MB

2π

ˆ
∂Ωext(r)

|k|e−min|k|(x−xl)
∣∣Fm(k2, t)e−k

2t
∣∣ dk, (B.73a)

and for the finite-interval problem,

|qBm
(x, t)| ≤ MB

2π

ˆ
∂Ωext(r)

|k|b
(
e−min|k|(xr−x) + e−min|k|(x−xl)

) ∣∣Fm(k2, t)e−k
2t
∣∣ dk. (B.73b)

From (B.73), we see that qBm
(x, t) is well defined for x ∈ D and for t ∈ (0, T ).

Lemma 29. Consider the finite-interval, half-line, and whole-line problems. There exists an r >
√
Mγ so that for

x ∈ D and t ∈ (0, T ), q0(x, t) (B.27a) can be written as

q0(x, t) =
1

2π

ˆ
∂Ωext(r)

Φ0(k, x)

∆(k)
e−k

2t dk, (B.74)

which is well defined.

Proof. By Lemmas 25 and 27, Φ0(k, x)/∆(k) is bounded, well defined, and analytic for k ∈ Ωext(r). Let
CR = {k ∈ C : |k| = R and θ0 < θ < π/4 or 3π/4 < θ < π − θ0}, see Figure 4. For the regular problems, using sym-
metry, ∣∣∣∣ˆ

CR

Φ0(k, x)

∆(k)
e−k

2t dk

∣∣∣∣ ≤ 2MΦ∥q0∥∞
ˆ π

4

θ0

e−R
2 cos(2θ)tRdθ ≤

πMΦ∥q0∥D
(
1− e−R

2t
)

2Rt
→ 0, (B.75)

as R→ ∞. Thus we can deform the contour by Cauchy’s theorem to conclude (B.74). For the irregular problems, the
above holds for the integral over the first term of (B.65c) and for x ∈ D, the second term is exponentially decaying,
and we again conclude (B.74). It follows that for all three problems

|q0(x, t)| =
MΦ∥q0∥D

2π

ˆ
∂Ωext

∣∣∣ke−k2t∣∣∣ |dk| <∞. (B.76)

Lemma 30. Consider the finite-interval, half-line, and whole-line problems. There exists an r >
√
Mγ so that for

x ∈ D and t ∈ (0, T ), qf (x, t) (B.27b) can be written as

qf (x, t) =
1

2π

ˆ
∂Ωext(r)

Φf(k, x, t)e
−k2t

∆(k)
dk, (B.77a)

where

Φf(k, x, t) =

ˆ
D

Ψ(k, x, y)fα(k
2, y, t)√

(βn)(k, x)
√

(βn)(k, y)
dy, (B.77b)
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and

fα(k
2, y, t) = −fα(y, 0)

k2
− 1

k2

ˆ t

0

fα,s(y, s)e
k2s ds. (B.77c)

Further, we have the bound

ˆ
D

∣∣fα(k2, y, t)e−k2t∣∣ dy ≤ ∥f∥De−|k|2 cos(2θ)t

mα|k|2
+

∥ft∥D
(
1− e−|k|2 cos(2θ)t

)
mα|k|4 cos(2θ)

. (B.78)

For all three problems, there exists an Mf > 0 such that∣∣Φf(k, x, t)e
−k2t∣∣ ≤Mf

ˆ
D

∣∣fα(k2, y, t)e−k2t∣∣ dy. (B.79a)

For the regular problems ∣∣∣∣∣Φf(k, x, t)e
−k2t

∆(k)

∣∣∣∣∣ ≤Mf

ˆ
D

∣∣fα(k2, y, t)e−k2t∣∣ dy, (B.79b)

and for the irregular problems,∣∣∣∣∣Φf(k, x, t)e
−k2t

∆(k)

∣∣∣∣∣ ≤Mf

(
1 + |k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

)) ˆ
D

∣∣fα(k2, y, t)e−k2t∣∣ dy. (B.79c)

It follows that qf (x, t) is well defined for all three problems.

Proof. By Lemmas 26 and 27, Φf (k, x, t)e
−k2t/∆(k) is bounded, well defined, and analytic for k ∈ Ωext(r)/Ω(r). Let

CR be defined as in the proof of Lemma 29, see Figure 4. Then, for the regular problems, using symmetry,∣∣∣∣∣
ˆ
CR

Φf (k, x, t)e
−k2t

∆(k)
dk

∣∣∣∣∣ ≤ 2Mf∥f∥D
ˆ π

4

0

Re−R
2 cos(2θ)t dθ → 0, (B.80)

as R→ ∞. Thus, we can deform the integral in (B.27b) from Ω(r) to Ωext(r). For the irregular problems, the above
holds for the integral over the first term of (B.66c) and for x ∈ D the second term is exponentially decaying. Thus,
we can still deform from Ω(r) to Ωext(r). Using Assumption 2.1, we can integrate (2.8) by parts, to obtain

f̃α(k
2, x, t) =

fα(x, t)e
k2t − fα(x, 0)

k2
− 1

k2

ˆ t

0

fα,s(x, s)e
k2s ds, (B.81)

which gives (B.77), after using Cauchy’s theorem on the fα(x, t) term. Equation (B.78) follows directly from (B.77c)
and Assumption 2.1, and equation (B.79) follows from Lemma 23. From (B.79), we see that the integrand in qf (x, t)
is absolutely integrable and is therefore well defined for all x ∈ D and any t ∈ (0, T ) (or for any x ∈ D and for all
t ∈ [0, T ]).

Finally, we combine all the results obtained.

Theorem 31. There exists an r >
√
Mγ such that the functions (3.2), (4.2), and (5.4) are well defined for all x ∈ D

and for any t ∈ (0, T ).

Proof. Combining Lemmas 28, 29, and 30, we obtain our result.

C Proofs: the solution expressions solve the evolution equation

In this appendix, we prove that the solution expressions (3.2), (4.2), and (5.4) for the whole-line, half-line, and
finite-interval problems, respectively, solve the evolution equation (2.1) in their respective domains. Naturally, we
are in need of lemmas on the derivatives of various quantities defining the solution expressions. The following lemma
deals with derivatives with respect to the spatial variable.
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Lemma 32. For n ≥ 0, the derivatives of E(x,∞)
n (k) and Ẽ(−∞,x)

n (k) are given by

∂xE(x,∞)
n (k) = −1

2

(βn)′(k, x)

(βn)(k, x)
E(x,∞)
n−1 (k)− (1− (−1)n)ikn(k, x)E(x,∞)

n (k), (C.1a)

∂xẼ(−∞,x)
n (k) =

1

2

(βn)′(k, x)

(βn)(k, x)
Ẽ(−∞,x)
n−1 (k) + (1− (−1)n)ikn(k, x)Ẽ(−∞,x)

n (k), (C.1b)

and those of C(a,b)
n (k) and S(a,b)

n (k) are

∂xC(xl,x)
n (k) =

1

2

(βn)′(k, x)

(βn)(k, x)
C(xl,x)
n−1 (k)− (−1)nkn(k, x)S(xl,x)

n (k), (C.1c)

∂xC(x,xr)
n (k) = −1

2

(βn)′(k, x)

(βn)(k, x)
C(x,xr)
n−1 (k) + kn(k, x)S(x,xr)

n (k), (C.1d)

∂xS(xl,x)
n (k) =

1

2

(βn)′(k, x)

(βn)(k, x)
S(xl,x)
n−1 (k) + (−1)nkn(k, x)C(xl,x)

n (k), (C.1e)

∂xS(x,xr)
n (k) =

1

2

(βn)′(k, x)

(βn)(k, x)
S(x,xr)
n−1 (k)− kn(k, x)C(x,xr)

n (k). (C.1f)

Proof. Since (βn)′/(βn) ∈ L1(D) by Lemma 14, the proof is by direct calculation of the derivatives of (3.5) and (4.9)
[18]. We show one such calculation. From (3.5b),

∂xẼ(a,x)
n (k) =

∂x
2n

ˆ x

a

dy1

ˆ x

y1

dy2 · · ·
ˆ x

yn−2

dyn−1

ˆ x

yn−1

dyn

(
n∏
p=1

(βn)′

(βn)

)
exp

(
n∑
p=0

(1− (−1)p)

ˆ yp+1

yp

ikn(k, ξ) dξ

)
,

(C.2)

so that

∂xẼ(a,x)
n (k) =

(βn)′(k, x)

(βn)(k, x)

1

2n

ˆ
a=y0<···<yn=x

(
n−1∏
p=1

(βn)′

(βn)

)
exp

(
n−1∑
p=0

(1− (−1)p)

ˆ yp+1

yp

ikn(k, ξ) dξ

)
dyn−1

+ (1− (−1)n)
ikn(k, x)

2n

ˆ
a=y0<···<yn+1=x

(
n∏
p=1

(βn)′

(βn)

)
exp

(
n∑
p=0

(1− (−1)p)

ˆ yp+1

yp

iν(k, ξ) dξ

)
dyn,

(C.3)

which gives (C.1b).

In Lemma 33, we prove a general summation identity for the generalized accumulation functions J (a,b)
n [σp,n](k).

This identity is used to prove the problem-specific identities in Lemma 34. In turn, these are used to prove the
relation between χ(k, x) (C.18b) and ∆(k) in Lemma 38.

Lemma 33. Let σp,n−ℓ and σ̃p,ℓ be two non-negative integer-valued functions as described in Definition 16. Denote

σp,n =

{
σp,n−ℓ, if 0 ≤ p ≤ n− ℓ,
σ̃p−(n−ℓ),ℓ, if n− ℓ < p ≤ n.

(C.4a)

If σn−ℓ,n−ℓ = σ̃0,ℓ and σp,n is independent of ℓ, then

J (a,b)
n [σp,n](k) =

n∑
ℓ=0

J (a,x)
n−ℓ [σp,n−ℓ](k)J (x,b)

ℓ [σ̃p,ℓ](k). (C.4b)

Proof. Define

j(a,b)n [σp,n](k) =

n∑
ℓ=0

J (a,x)
n−ℓ [σp,n−ℓ](k)J (x,b)

ℓ [σ̃p,ℓ](k). (C.5)
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By the definition of J (a,b)
n [σp,n](k) (B.10),

j(a,b)n [σp,n](k) =
1

2n

n∑
ℓ=0

ˆ
a<···<x

(
n−ℓ∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n−ℓ∑
p=0

σp,n−ℓ

ˆ yp+1

yp

ikn(k, ξ) dξ

)
dy1 · · · dyn−ℓ×

×
ˆ
x<···<b

(
n∏

p=n−ℓ+1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

 n∑
p=n−ℓ

σ̃p−(n−ℓ),ℓ

ˆ yp+1

yp

ikn(k, ξ) dξ

 dyn−ℓ+1 · · · dyn.

(C.6)

In the exponential of the first integral, for the p = n − ℓ term, yn−ℓ+1 is defined as x. In the exponential in the
second integral, for the p = n− ℓ term, yn−ℓ = x. Since σn−ℓ,n−ℓ = σ̃0,ℓ = σn−ℓ,n, multiplying the exponentials and
adding these terms together, we have

σn−ℓ,n−ℓ

ˆ x

yn−ℓ

ikn(k, ξ) dξ + σ̃0,ℓ

ˆ yn−ℓ+1

x

ikn(k, ξ) dξ = σn−ℓ,n

ˆ yn−ℓ+1

yn−ℓ

ikn(k, ξ) dξ, (C.7)

and the two integrals are combined as

j(a,b)n [σp,n](k) =
1

2n

n∑
ℓ=0

ˆ
a<···<yn−ℓ<x<yn−ℓ+1<···<b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikn(k, ξ) dξ

)
dy1 · · · dyn.

(C.8)

Summing over ℓ is equivalent to adding up all possibilities of x lying between one of the y1, . . . , yn. Since σp,n is
independent of ℓ by assumption, the integrand is independent of ℓ, and

j(a,b)n [σp,n](k) =
1

2n

ˆ
a=y0<···<yn+1<b

(
n∏
p=1

(βn)′(k, yp)

(βn)(k, yp)

)
exp

(
n∑
p=0

σp,n

ˆ yp+1

yp

ikn(k, ξ) dξ

)
dy1 · · · dyn, (C.9)

which is (C.4).

From the identity in Lemma 33, we can prove the following more specific forms of (C.4b).

Lemma 34. For the whole-line problem, if n is even,

E(−∞,∞)
n (k) =

n∑
ℓ=0

Ẽ(−∞,x)
n−ℓ (k)E(x,∞)

ℓ (k). (C.10a)

For the half-line problem, for any n,

E(xl,∞)
n (k) =

n∑
ℓ=0

(
C
(xl,x)
n−ℓ (k)− (−1)niS

(xl,x)
n−ℓ (k)

)
E(x,∞)
ℓ (k). (C.10b)

Finally, for the finite-interval problem, for any n,

C(xl,xr)
n (k) =

n∑
ℓ=0

(
C
(xl,x)
n−ℓ (k)C

(x,xr)
ℓ (k)− (−1)n−ℓS

(xl,x)
n−ℓ (k)S

(x,xr)
ℓ (k)

)
, (C.10c)

S(xl,xr)
n (k) =

n∑
ℓ=0

(
S
(xl,x)
n−ℓ (k)C

(x,xr)
ℓ (k) + (−1)n−ℓC

(xl,x)
n−ℓ (k)S

(x,xr)
ℓ (k)

)
. (C.10d)

Proof. For the whole-line problem, we define ewl as the right-hand side of (C.10a). Using (B.12), we write ewl as

ewl =

n∑
ℓ=0

J (−∞,x)
n−ℓ [1− (−1)p](k)J (x,∞)

ℓ [1− (−1)ℓ−p](k). (C.11)
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From Lemma 33, if n is even, σp,n−ℓ = 1− (−1)p and σ̃p,ℓ = 1− (−1)ℓ−p so that σn−ℓ,n−ℓ = σ̃0,ℓ and

σp,n =

{
σp,n−ℓ, if 0 ≤ p ≤ n− ℓ,
σ̃p−(n−ℓ),ℓ, if n− ℓ < p ≤ n,

=

{
1− (−1)p, if 0 ≤ p ≤ n− ℓ,
1− (−1)ℓ−(p−(n−ℓ)), if n− ℓ < p ≤ n,

= 1− (−1)n−p, (C.12)

is independent of ℓ so that (C.10a) follows.
For the half-line problem, we define ehl as the right-hand side of (C.10b). Using (B.12),

ehl =
1

2

n∑
ℓ=0

(
(1− (−1)n)J (xl,x)

n−ℓ [1 + (−1)p](k) + (1 + (−1)n)J (xl,x)
n−ℓ [1− (−1)p](k)

)
J (x,∞)
ℓ [1− (−1)ℓ−p](k), (C.13)

which is simplified to

ehl =

n∑
ℓ=0

J (xl,x)
n−ℓ [1− (−1)n−p](k)J (x,∞)

ℓ [1− (−1)ℓ−p](k). (C.14)

From Lemma 33, σp,n−ℓ = 1 − (−1)n−p and σ̃p,ℓ = 1 − (−1)ℓ−p so that σn−ℓ,n−ℓ = σ̃0,ℓ and σp,n = 1− (−1)n−p.
Equation (C.10b) follows.

For the finite-interval problem, we define ec and es as the right-hand side of (C.10c) and (C.10d), respectively.

Using (B.12), we write these in terms of J (a,b)
n [σp,n](k), obtaining

ec =
1

4

n∑
ℓ=0

(1 + (−1)n−ℓ)
(
J (xl,x)
n−ℓ [1 + (−1)p](k)J (x,xr)

ℓ [1 + (−1)p](k)

+J (xl,x)
n−ℓ [1− (−1)p](k)J (x,xr)

ℓ [1− (−1)p](k)
)

+
1

4

n∑
ℓ=0

(1− (−1)n−ℓ)
(
J (xl,x)
n−ℓ [1 + (−1)p](k)J (x,xr)

ℓ [1− (−1)p](k)

+J (xl,x)
n−ℓ [1− (−1)p](k)J (x,xr)

ℓ [1 + (−1)p](k)
)
, (C.15a)

es =
1

4i

n∑
ℓ=0

(1 + (−1)n−ℓ)
(
J (xl,x)
n−ℓ [1 + (−1)p](k)J (x,xr)

ℓ [1 + (−1)p](k)

−J (xl,x)
n−ℓ [1− (−1)p](k)J (x,xr)

ℓ [1− (−1)p](k)
)

+
1

4i

n∑
ℓ=0

(1− (−1)n−ℓ)
(
J (xl,x)
n−ℓ [1 + (−1)p](k)J (x,xr)

ℓ [1− (−1)p](k)

−J (xl,x)
n−ℓ [1− (−1)p](k)J (x,xr)

ℓ [1 + (−1)p](k)
)
, (C.15b)

which simplify to

ec =
1

2

n∑
ℓ=0

(
J (xl,x)
n−ℓ [1 + (−1)p](k)J (x,xr)

ℓ [1 + (−1)n−ℓ+p](k) + J (xl,x)
n−ℓ [1− (−1)p](k)J (x,xr)

ℓ [1− (−1)n−ℓ+p](k)
)
,

(C.16a)

es =
1

2i

n∑
ℓ=0

(
J (xl,x)
n−ℓ [1 + (−1)p](k)J (x,xr)

ℓ [1 + (−1)n−ℓ+p](k)− J (xl,x)
n−ℓ [1− (−1)p](k)J (x,xr)

ℓ [1− (−1)n−ℓ+p](k)
)
.

(C.16b)

For the first terms of ec and es, σp,n−ℓ = 1 + (−1)p, and σ̃p,ℓ = 1 + (−1)n−ℓ+p so that σn−ℓ,n−ℓ = σ̃0,ℓ and
σp,n = 1 + (−1)p. For the second terms of ec and es, σp,n−ℓ = 1 − (−1)p, and σ̃p,ℓ = 1 − (−1)n−ℓ+p so that
σn−ℓ,n−ℓ = σ̃0,ℓ and σp,n = 1− (−1)p. Equations (C.10c) and (C.10d) follow.

Now, we begin taking derivatives of the solution expressions. In Definition 35, we introduce some functions that
appear in the derivatives of the solution expressions. In Lemmas 36–38, we prove some properties of these functions.
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Definition 35. We define

Ψ(k, x, y) =
√
(βn)(k, x)

∂

∂x

(
Ψ(k, x, y)√
(βn)(k, x)

)
= Ψx(k, x, y)−

1

2

(βn)′(k, x)

(βn)(k, x)
Ψ(k, x, y), and (C.17a)

Ψ̃(k, x, y) =
√

(βn)(k, x)
∂

∂x

(
(βΨ)(k, x, y)√

(βn)(k, x)

)
= (βΨ)x(k, x, y)−

1

2

(βn)′(k, x)

(βn)(k, x)

(
βΨ
)
(k, x, y), (C.17b)

where we use the notation (βΨ)(k, x, y) = β(x)Ψ(k, x, y). We also define

Ψ(k, x, x±) = lim
y→x±

Ψ(k, x, y), Ψ(k, x, x±) = lim
y→x±

Ψ(k, x, y), (C.18a)

and

χ(k, x) = (βΨ)(k, x, x−)− (βΨ)(k, x, x+). (C.18b)

Lemma 36. For the whole-line problem, for y < x,

Ψ(k, x, y) = ikn(k, x) exp

(ˆ x

y

ikn(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

Ẽ(−∞,y)
n−ℓ (k)E(x,∞)

ℓ (k), (C.19a)

and for x < y,

Ψ(k, x, y) = −ikn(k, x) exp
(ˆ y

x

ikn(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

(−1)nẼ(−∞,x)
n−ℓ (k)E(y,∞)

ℓ (k). (C.19b)

For the half-line problem, for xl < y < x,

Ψ(k, x, y) = 4ikn(k, x) exp

(ˆ x

xl

ikn(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

(
a0

kn(k, xl)
S(xl,y)
n−ℓ (k)− a1C(xl,y)

n−ℓ (k)

)
E(x,∞)
ℓ (k), (C.20a)

and for xl < x < y,

Ψ(k, x, y) = 4kn(k, x) exp

(ˆ y

xl

ikn(k, ξ) dξ

) ∞∑
n=0

n∑
ℓ=0

(−1)n
(

a0
kn(k, xl)

C(xl,x)
n−ℓ (k) + a1S(xl,x)

n−ℓ (k)

)
E(y,∞)
ℓ (k). (C.20b)

For the finite-interval problem, for xl < y < x < xr,

Ψ(k, x, y) = 4kn(k, x)Ξ(k)

{
− β(xr)(a : b)1,2

k
√
(βn)(k, xl)

√
(βn)(k, xr)

∞∑
n=0

(−1)nC(y,x)
n (k)

− (a : b)2,4

∞∑
n=0

n∑
ℓ=0

(−1)ℓC(xl,y)
n−ℓ (k)S(x,xr)

ℓ (k)− (a : b)1,3
k2n(k, xl)n(k, xr)

∞∑
n=0

n∑
ℓ=0

S(xl,y)
n−ℓ (k)C(x,xr)

ℓ (k)

+
(a : b)1,4
kn(k, xl)

∞∑
n=0

n∑
ℓ=0

(−1)ℓS(xl,y)
n−ℓ (k)S(x,xr)

ℓ (k) +
(a : b)2,3
kn(k, xr)

∞∑
n=0

n∑
ℓ=0

C(xl,y)
n−ℓ (k)C(x,xr)

ℓ (k)

}
,

(C.21a)

and for xl < x < y < xr,

Ψ(k, x, y) = 4kn(k, x)Ξ(k)

{
β(xl)(a : b)3,4

k
√
(βn)(k, xl)

√
(βn)(k, xr)

∞∑
n=0

C(x,y)
n (k)

+ (a : b)2,4

∞∑
n=0

n∑
ℓ=0

(−1)nS(xl,x)
n−ℓ (k)C(y,xr)

ℓ (k) +
(a : b)1,3

k2n(k, xl)n(k, xr)

∞∑
n=0

n∑
ℓ=0

(−1)n−ℓC(xl,x)
n−ℓ (k)S(y,xr)

ℓ (k)

+
(a : b)1,4
kn(k, xl)

∞∑
n=0

n∑
ℓ=0

(−1)nC(xl,x)
n−ℓ (k)C(y,xr)

ℓ (k) +
(a : b)2,3
kn(k, xr)

∞∑
n=0

n∑
ℓ=0

(−1)n−ℓS(xl,x)
n−ℓ (k)S(y,xr)

ℓ (k)

}
.

(C.21b)
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Proof. Using (C.1) in (3.4), (4.8), and (5.9), we find (C.19), (C.20), and (C.21) for the whole-line, half-line, and
finite-interval problems, respectively.

Lemma 37. Consider the finite-interval, half-line, and whole-line problems. There exists an r >
√
Mγ and MΨ > 0

so that for k ∈ Ωext(r), for x ∈ D, and for y ∈ D

|Ψ(k, x, y)| ≤MΨ|k|. (C.22a)

For the regular problems ∣∣∣∣Ψ(k, x, y)

∆(k)

∣∣∣∣ ≤MΨ|k|, (C.22b)

and for the irregular problems∣∣∣∣Ψ(k, x, y)

∆(k)

∣∣∣∣ ≤MΨ|k|
(
1 + |k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

))
. (C.22c)

Therefore, Ψ(k, x, y) and Ψ(k, x, y)/∆(k) are well-defined functions.

Proof. The proof is identical to that of Lemma 23 in Appendix B. Note that MΨ here and from Lemma 13 are
identical up to a factor of Mn. Without loss of generality, we take them to be the same.

Lemma 38. For the finite-interval, half-line, and whole-line problems,

χ(k, x) = 2ik(βn)(k, x)∆(k), (C.23)

where χ(k, x) is defined in (C.18b).

Proof. For the whole-line problem, using Lemma 36 in (C.18b),

χ(k, x) = ik(βn)(k, x)

∞∑
n=0

(1 + (−1)n)

n∑
ℓ=0

Ẽ(−∞,x)
n−ℓ (k)E(x,∞)

ℓ (k), (C.24)

which gives (C.23), using Lemma 34. Similarly, for the half-line problem,

χ(k, x) = −4k(βn)(k, x) exp

(ˆ x

xl

ikn(k, ξ) dξ

) ∞∑
n=0

(
(−1)na0
kn(k, xl)

+ ia1

) n∑
ℓ=0

(
C(xl,x)
n−ℓ (k)− (−1)niS(xl,x)

n−ℓ (k)
)
E(x,∞)
ℓ (k).

(C.25)

Using Lemma 34,

χ(k, x) = −4k(βn)(k, x)

∞∑
n=0

(
(−1)na0
kn(k, xl)

+ ia1

)
E(xl,∞)
n (k) = 2ik(βn)(k, x)∆(k). (C.26)

Finally, for the finite-interval problem, since C(x,x)
n (k) = δ0n and S(x,x)

n (k) = 0,

χ(k, x) = −4k(βn)(k, x)Ξ(k)

{
a(k) +

∞∑
n=0

cn(k)

n∑
ℓ=0

(
C(xl,x)
n−ℓ (k)C(x,xr)

ℓ (k)− (−1)n−ℓS(xl,x)
n−ℓ (k)S(x,xr)

ℓ (k)
)

+

∞∑
n=0

sn(k)

n∑
ℓ=0

(
S(xl,x)
n−ℓ (k)C(x,xr)

ℓ (k) + (−1)n−ℓC(xl,x)
n−ℓ (k)S(x,xr)

ℓ (k)
)}

, (C.27)

which gives (C.23), using Lemma 34.
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Lemma 39. For the half-line problem,

B0,x(k, x) =
4β(xl)ikn(k, x) exp

(´ x
xl
ikn(k, ξ) dξ

)
√
(βn)(k, xl)

√
(βn)(k, x)

∞∑
n=0

E(x,∞)
n (k), (C.28a)

and there exists an r >
√
Mγ and MB > 0 so that for k ∈ Ωext(r) and x ∈ D,

|B0,x(k, x)| ≤MB|k| and

∣∣∣∣B0,x(k, x)

∆(k)

∣∣∣∣ ≤MB|k|2e−min|k|(x−xl). (C.28b)

For the finite-interval problem, we have for j = 1, 2,

B2−j,x(k, x) = −(−1)j
4kn(k, x)Ξ(k)√

(βn)(k, x)

{
β(xr)√

(βn)(k, xr)

[
aj1

kn(k, xl)

∞∑
n=0

(−1)nC(xl,x)
n (k) + aj2

∞∑
n=0

(−1)nS(xl,x)
n (k)

]

+
β(xl)√

(βn)(k, xl)

[
bj1

kn(k, xr)

∞∑
n=0

C(x,xr)
n (k)− bj2

∞∑
n=0

(−1)nS(x,xr)
n (k)

]}
, (C.29a)

and there exists an r >
√
Mγ and MB > 0 so that for k ∈ Ωext(r) and x ∈ D,

|Bm,x(k, x)| ≤MB|k| and

∣∣∣∣Bm,x(k, x)∆(k)

∣∣∣∣ ≤MB|k|b+1
(
e−min|k|(xr−x) + e−min|k|(x−xl)

)
. (C.29b)

For regular boundary conditions b = 1, and for irregular boundary conditions b = 2. Therefore, the functions
Bm,x(x, t) and Bm,x(x, t)/∆(k) are well defined for the half-line and finite-interval problems.

Proof. Lemma 32 and a direct calculation gives (C.28a) and (C.29a). The proofs for (C.28b) and (C.29b) are identical
to the proof of Lemma 24. Note that, as in Lemma 37, the MB’s differ only by a factor of Mn (see Lemma 13).
Without loss of generality, we may take them to be identical.

Lemma 40. Consider the finite-interval, half-line, and whole-line problems. We have

Φ0,x(k, x) =

ˆ
D

Ψ(k, x, y)qα(y)√
(βn)(k, x)

√
(βn)(k, y)

dy, (C.30)

where Φ0(k, x) is defined in (B.26a). There exists an MΦ > 0 so that

|Φ0,x(k, x)| ≤MΦ|k|∥q0∥D and

∣∣∣∣Φ0,x(k, x)

∆(k)

∣∣∣∣ ≤MΦ|k|2∥q0∥D. (C.31)

Thus Φ0,x(k, x) and Φ0,x(k, x)/∆(k) are well defined for all three problems.

Proof. Breaking up the integral over D in (B.26a) into two integrals over the regions y < x and y > x and using the
Leibniz integral rule, we obtain

Φ0,x(k, x) =
(Ψ(k, x, x−)−Ψ(k, x, x+))qα(x)

(βn)(k, x)
+

ˆ
D

Ψ(k, x, y)qα(y)√
(βn)(k, x)

√
(βn)(k, y)

dy. (C.32)

Since Ψ(k, x, x−) = Ψ(k, x, x+), we find (C.30). We obtain (C.31) from Lemma 37. Since the integrand in (C.30) is
absolutely integrable, differentiation under the integral is allowed.

Lemma 41. Consider the finite-interval, half-line, and whole-line problems. For k ∈ Ωext, x ∈ D, and t ∈ (0, T ),

Φf,x(k, x, t) =

ˆ
D

Ψ(k, x, y)fα(k
2, y, t)√

(βn)(k, x)
√
(βn)(k, y)

dy. (C.33)

Further, there exists an Mf > 0 so that∣∣Φf,x(k, x, t)e
−k2t∣∣ ≤Mf |k|

ˆ
D

∣∣fα(k2, y, t)e−k2t∣∣ dy. (C.34a)
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For the regular problems, ∣∣∣∣∣Φf,x(k, x, t)e
−k2t

∆(k)

∣∣∣∣∣ ≤Mf |k|
ˆ
D

∣∣fα(k2, y, t)e−k2t∣∣ dy, (C.34b)

and for the irregular problems,∣∣∣∣∣Φf(k, x, t)e
−k2t

∆(k)

∣∣∣∣∣ ≤Mf |k|
(
1 + |k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

))ˆ
D

∣∣fα(k2, y, t)e−k2t∣∣ dy. (C.34c)

where Φf(k, x, t) and fα(k
2, y, t) are defined in (B.77b) and (B.77c), respectively.

Proof. Breaking up the integral over D in (B.26a) into two integrals over the regions y < x and y > x and using the
Leibniz integral rule, we obtain

Φf,x(k, x, t) =
(Ψ(k, x, x−)−Ψ(k, x, x+)) fα(k

2, x, t)√
(βn)(k, x)

√
(βn)(k, x)

+

ˆ
D

Ψ(k, x, y)fα(k
2, y, t)√

(βn)(k, x)
√
(βn)(k, y)

dy. (C.35)

Since Ψ(k, x, x−) = Ψ(k, x, x+) for all three problems, we obtain (C.33). Equation (C.34) follows from (C.22a). Since
the integrand (C.33) is absolutely integrable, differentiation under the integral is allowed.

Lemma 42. Consider the finite-interval, half-line, and whole-line problems. For x ∈ D and t ∈ (0, T ),

q0,x(x, t) =
1

2π

ˆ
∂Ωext

Φ0,x(k, x)

∆(k)
e−k

2t dk, (C.36a)

qf,x(x, t) =
1

2π

ˆ
∂Ωext

Φf,x(k, x, t)e
−k2t

∆(k)
dy, (C.36b)

qBm,x(x, t) =
1

2π

ˆ
∂Ωext

Bm,x(k, x)
∆(k)

Fm(k2, t)e−k
2t dk, (C.36c)

are well defined, i.e., we can differentiate under the integral sign. Furthermore, q0,x(x, t) and qf,x(x, t) are well defined
for x ∈ D. For the regular problems, qBm,x(x, t) is well defined for x ∈ D.

Proof. The integrand in q0,x(x, t) is exponentially decaying for t ∈ (0, T ), and therefore is well defined for x ∈ D.
From (C.34) and (B.78), we see that, for any t ∈ (0, T ), qf,x(x, t) is also well defined for x ∈ D. For t ∈ (0, T ), from
(C.28b), (C.29b), and (B.70), we see that for x ∈ D, qBm,x(x, t) has exponential decay and is well defined. For the
regular problems, qBm,x(x, t) is absolutely integrable for x ∈ D and is well defined.

Remark. For the irregular problems, qBm,x(x, t) may be ill defined at the boundaries, but the boundary conditions
(5.1c) and (5.1d) are well defined and satisfied, see Section D.

Lemma 43. Consider the finite-interval, half-line, and whole-line problems. For x, y ∈ D and k ∈ Ωext,

Ψ̃(k, x, y) = −k
2 + γ(x)

α(x)
Ψ(k, x, y). (C.37a)

For the half-line (m = 0) and the finite-interval problems (m = 0, 1),

(βBm,x)x(k, x) = −k
2 + γ(x)

α(x)
Bm(k, x), (C.37b)

for x ∈ D, t ∈ (0, T ), and k ∈ Ω.

Proof. For the whole-line problem, a direct calculation using Lemma 32 gives (C.37a) from (C.19a) for y < x and
from (C.19b) for y > x. Similarly, for the half-line problem, we obtain (C.37a) from (C.20a) for xl < y < x and from
(C.20b) for xl < x < y. Equation (C.37b) follows from (C.28a). For the finite-interval problem, we obtain (C.37a)
from (C.21a) for xl < y < x < xr and from (C.21b) for xl < x < y < xr. Finally, (C.37b) follows from (C.29a).
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Lemma 44. Consider the finite-interval, half-line, and whole-line problems. With f(k2, x, t) = α(x)fα(k
2, x, t),

α(x)(βΦ0,x)x(k, x) = 2ik∆(k)q0(x)− (k2 + γ(x))Φ0(k, x), (C.38a)

α(x)(βΦf,x)x(k, x, t) = 2ik∆(k)f(k2, x, t)− (k2 + γ(x))Φf(k, x, t), (C.38b)

Proof. Using Lemmas 40 and 41, we split D into the two parts y < x and y > x, and the Leibniz integral rule gives

(βΦ0,x)x(k, x) =
χ(k, x)q0(x)

α(x)(βn)(k, x)
+

ˆ
D

Ψ̃(k, x, y)q0(y)

α(y)
√
(βn)(k, x)

√
(βn)(k, y)

dy, (C.39a)

(βΦf,x)x(k, x, t) =
χ(k, x)f(k2, x, t)

α(x)(βn)(k, x)
+

ˆ
D

Ψ̃(k, x, y)f(k2, y, t)

α(y)
√

(βn)(k, x)
√
(βn)(k, y)

dy, (C.39b)

where χ(k, x) and Ψ̃(k, x, y) are defined in Definition 35. Using Lemmas 38 and 43 gives (C.38).

Lemma 45. Consider the finite-interval, half-line, and whole-line problem. For x ∈ D and t ∈ (0, T ), the t-
derivatives of q0(x, t), qf (x, t) and qBm(x, t) are

q0,t(x, t) = − 1

2π

ˆ
∂Ωext

k2Φ0(k, x)

∆(k)
e−k

2t dk, (C.40a)

qf,t(x, t) = − 1

2π

ˆ
∂Ωext(r)

k2Φf(k, x, t)e
−k2t

∆(k)
dk, (C.40b)

qBm,t(x, t) = − 1

2π

ˆ
∂Ωext(r)

k2Bm(k, x)

∆(k)
Fm(k2, t)e−k

2t dk, m = 0, 1. (C.40c)

These functions are well defined.

Proof. Differentiating (B.74) with respect to t gives (C.40a), since the integrand is absolutely integrable. From

(B.77c), fα,t(k
2, x, t)e−k

2t = −fα,t(x, t)/k2, and differentiating (B.77b) with respect to t yields

Φf,t(k, x, t)e
−k2t = −

ˆ
D

Ψ(k, x, y)fα,t(y, t)

k2
√

(βn)(k, x)
√
(βn)(k, y)

dy, (C.41)

so that, using Lemma 23,∣∣∣∣∣Φf,t(k, x, t)e
−k2t

∆(k)

∣∣∣∣∣ ≤ Mf

|k|2
(
1 + |k|

(
e−min|k|(x−xl) + e−min|k|(xr−x)

))
∥fα,t∥D. (C.42)

Differentiating (B.77a) with respect to t, we obtain

qf,t(x, t) =
1

2π

ˆ
∂Ωext(r)

Φf,t(k, x, t)e
−k2t

∆(k)
dk − 1

2π

ˆ
∂Ωext(r)

k2Φf(k, x, t)e
−k2t

∆(k)
dk. (C.43)

From (C.42), it follows that the first contour integral can be closed in the upper half plane, implying it is zero by

Cauchy’s theorem, resulting in (C.40b). From (B.79), qf,t(x, t) is well defined, for x ∈ D. Since Fm,t(k
2, t)e−k

2t =
−f ′m(t)/k2, differentiating (B.69a) with respect to t,

qBm,t(x, t) = −f
′
m(t)

2π

ˆ
∂Ωext(r)

Bm(k, x)

k2∆(k)
dk − 1

2π

ˆ
∂Ωext(r)

k2Bm(k, x)

∆(k)
Fm(k2, t)e−k

2t dk. (C.44)

As above, (B.61) allows us to close the contour of the first integral in the upper half plane, showing the first term is
zero by Cauchy’s theorem, obtaining (C.40c). From (B.61) and (B.70), qBm,t(x, t) is well defined for x ∈ D.

Lemma 46. For x ∈ D and t ∈ (0, T ), the derivatives

α(x)(βq0,x)x(x, t) + γ(x)q0(x, t) = q0,t(x, t), (C.45a)

α(x)(βqf,x)x(x, t) + γ(x)qf (x, t) + f(x, t) = qf,t(x, t), (C.45b)

α(x)(βqBm,x)x(x, t) + γ(x)qBm
(x, t) = qBm,t(x, t), m = 0, 1. (C.45c)

are well defined, i.e., differentiation under the integral sign is allowed.
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Proof. Direct differentiation of the results in Lemma 42 yields

(βq0,x)x(x, t) =
1

2π

ˆ
∂Ωext

(βΦ0,x)x(k, x)

∆(k)
e−k

2t dk, (C.46a)

(βqf,x)x(x, t) =
1

2π

ˆ
∂Ωext

(βΦf,x)x(k, x, t)e
−k2t

∆(k)
dk, (C.46b)

(βqBm,x)x(x, t) =
1

2π

ˆ
∂Ω

(βBm,x)x(k, x)
∆(k)

Fm(k2, t)e−k
2t dk, m = 0, 1. (C.46c)

Using Lemmas 43, 44, and 45,

α(x)(βq0,x)x(x, t) + γ(x)q0(x, t) = q0,t(x, t)−
q0(x)

iπ

ˆ
∂Ωext

ke−k
2t dk, (C.47a)

α(x)(βqf,x)x(x, t) + γ(x)qf (x, t) = qf,t(x, t)−
1

iπ

ˆ
∂Ωext

kf(k2, x, t)e−k
2tdk, (C.47b)

α(x)(βqBm,x)x(x, t) + γ(x)qBm
(x, t) = qBm,t(x, t), m = 0, 1. (C.47c)

Since the integrands in (C.47) are absolutely integrable, the differentiation inside the integral is justified. The path
for the remaining integral in (C.47a) can be deformed down to the real line showing it is zero. Using (B.77c), the
remaining integral in (C.47b) is evaluated as

−
ˆ
∂Ωext

kf(k2, x, t)e−k
2tdk =

ˆ
∂Ωext

(
f(y, 0)

k
+

1

k

ˆ t

0

fs(y, s)e
k2s ds

)
e−k

2tdk, (C.48)

which may also be deformed to an indented contour on the real line. The principal-value part integral is zero, while
the indentation integral evaluates to

1

iπ

ˆ
∂Ωext

kf(k2, x, t)e−k
2tdk = Res

((
f(y, 0)

k
+

1

k

ˆ t

0

fs(y, s)e
k2s ds

)
e−k

2t; k = 0

)
= f(y, t). (C.49)

Equation (C.47) yields (C.45).

Theorem 47. The solution expressions (3.2), (4.2), and (5.4) each solve the evolution equation (2.1a).

Proof. Since q(x, t) = q0(x, t) + qf (x, t) + qB0
(x, t) + qB1

(x, t), (C.45) gives the result.

D Proofs: the solution expressions satisfy the boundary values

Definition 48. In this appendix, ℓ = 0 corresponds to the half-line problem, while ℓ = 1, 2 correspond to the
finite-interval problem. We define, for k ∈ Ωext and y ∈ D,

P(0)(k, y) =
a0Ψ(k, xl, y) + a1Ψ(k, xl, y)√

(βn)(k, xl)
, (D.1a)

P(ℓ)(k, y) =
aℓ1Ψ(k, xl, y) + aℓ2Ψ(k, xl, y)√

(βn)(k, xl)
+
bℓ1Ψ(k, xr, y) + bℓ2Ψ(k, xr, y)√

(βn)(k, xr)
, ℓ = 1, 2. (D.1b)

For k ∈ Ωext,

B
(0)
0 (k) = a0B0(k, xl) + a1B0,x(k, xl), (D.2a)

B(ℓ)
m (k) = aℓ1Bm(k, xl) + aℓ2Bm,x(k, xl) + bℓ1Bm(k, xr) + bℓ2Bm,x(k, xr), ℓ = 1, 2, m = 0, 1, (D.2b)

and

P(0)
0 (k) = a0Φ0(k, xl) + a1Φ0,x(k, xl), (D.3a)

P(ℓ)
0 (k) = aℓ1Φ0(k, xl) + aℓ2Φ0,x(k, xl) + bℓ1Φ0(k, xr) + bℓ2Φ0,x(k, xr), ℓ = 1, 2. (D.3b)
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For k ∈ Ωext and t ∈ (0, T ),

P(0)
f (k, t) = a0Φf(k, xl, t) + a1Φf,x(k, xl, t), (D.4a)

P(ℓ)
f (k, t) = aℓ1Φf(k, xl, t) + aℓ2Φf,x(k, xl, t) + bℓ1Φf(k, xr, t) + bℓ2Φf,x(k, xr, t), ℓ = 1, 2. (D.4b)

Finally, for t ∈ (0, T ),

Q(0)
Bm

(t) = a0qBm
(xl, t) + a1qBm,x(xl, t), (D.5a)

Q(ℓ)
Bm

(t) = aℓ1qBm(xl, t) + aℓ2qBm,x(xl, t) + bℓ1qBm(xr, t) + bℓ2qBm,x(xr, t), ℓ = 1, 2, (D.5b)

and

Q(0)
0 (t) = a0q0(xl, t) + a1q0,x(xl, t), (D.6a)

Q(ℓ)
0 (t) = aℓ1q0(xl, t) + aℓ2q0,x(xl, t) + bℓ1q0(xr, t) + bℓ2q0,x(xr, t), ℓ = 1, 2, (D.6b)

and

Q(0)
f (t) = a0qf (xl, t) + a1qf,x(xl, t), (D.7a)

Q(ℓ)
f (t) = aℓ1qf (xl, t) + aℓ2qf,x(xl, t) + bℓ1qf (xr, t) + bℓ2qf,x(xr, t), ℓ = 1, 2. (D.7b)

Lemma 49. For both the half-line problem and the finite-interval problem, for k ∈ Ωext and y ∈ D,

P(ℓ)(k, y) = 0, ℓ = 0, 1, 2. (D.8)

Proof. For the half-line, using (4.8) (with xl = x < y < xr) and (C.20b) in (D.1a), gives (D.8).

Ψ(k, xl, y) = −4 exp

(ˆ y

xl

ikn(k, ξ) dξ

) ∞∑
n=0

(−1)na1E(y,∞)
n (k),

Ψ(k, xl, y) = 4 exp

(ˆ y

xl

ikn(k, ξ) dξ

) ∞∑
n=0

(−1)na0E(y,∞)
n (k),

⇒ P(0)(k, y) =
a0Ψ(k, xl, y) + a1Ψ(k, xl, y)√

(βn)(k, xl)
= 0. (D.9)

Using (5.9) and (C.21) in (D.1b), the calculations for the finite-interval case are equally straightforward albeit more
tedious.

Lemma 50. For the half-line problem (m = 0), and for the finite-interval problem (m = 0, 1), for k ∈ Ωext,

B(ℓ)
m (k) = −2ik∆(k)δ̃ℓ−1,m, ℓ = 0, 1, 2. (D.10a)

Here

δ̃ℓ−1,m =

1, ℓ = 0, m = 0,
1, ℓ ̸= 0, m = ℓ− 1,
0, ℓ ̸= 0, m ̸= ℓ− 1.

(D.10b)

Proof. For the half-line problem, using (4.6) and (C.28a) in (D.2a), we find (D.10):

B0(k, xl) =
4

n(k, xl)

∞∑
n=0

(−1)nE(xl,∞)
n (k),

B0,x(k, xl) =
4ikn(k, xl)

n(k, xl)

∞∑
n=0

E(xl,∞)
n (k),

⇒ B
(0)
0 (k) = a0B0(k, xl) + a1B0,x(k, xl) = 4

∞∑
n=0

(
(−1)na0
n(k, xl)

+ a1ik

)
E(xl,∞)
n (k) = −2ik∆(k). (D.11)

The finite-interval case (using (5.8c) and (C.29a) in (D.2b)) is similar but more tedious. Its details are omitted.
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Lemma 51. For both the half-line problem and the finite-interval problem, for k ∈ Ωext and t ∈ [0, T ],

P(ℓ)
0 (k) = 0, (D.12a)

P(ℓ)
f (k, t) = 0. (D.12b)

Proof. Using (B.26a) and (C.30) in (D.3a) and (D.3b), we find

P(ℓ)
0 (k) =

ˆ
D

P(ℓ)(k, y)qα(y)√
(βn)(k, y)

dy, (D.13a)

which gives (D.12a), using Lemma 49. Similarly, using (B.77b) and (C.33) in (D.4a) and (D.4b), we find

P(ℓ)
f (k, t) =

ˆ
D

P(ℓ)(k, y)fα(k
2, y, t)√

(βn)(k, y)
dy, (D.13b)

which gives (D.12b), using Lemma 49.

Lemma 52. For the half-line (m = 0) and the finite-interval problem (m = 0, 1), for k ∈ Ωext and t ∈ [0, T ],

Q(ℓ)
0 (t) = 0, (D.14a)

Q(ℓ)
f (t) = 0, (D.14b)

Q(ℓ)
Bm

(t) = fm(t)δ̃ℓ−1,m, (D.14c)

where δ̃ℓ−1,m is defined in (D.10b).

Proof. From Lemmas 29, 30, and 42, Q(ℓ)
0 (t) (D.6) and Q(ℓ)

f (t) (D.7) are well-defined functions. Similarly, for the

regular problems, Q
(ℓ)
Bm

(t) (D.5) is a well-defined function from Lemmas 28 and 42. For the irregular problems, for
Boundary Case 3, qBm,x(x, t) may be undefined at the boundary, but the linear combination of boundary terms

Q(ℓ)
Bm

(t) (D.5b) is well defined. For Boundary Case 4, using Assumption 3, qBm,x(x, t) is well defined at the boundary

and therefore Q
(ℓ)
Bm

(t) is well defined.
For the irregular Boundary Case 3, see Remark 10.3, from (C.29a) for x ≈ xl,

B2−j,x(k, x) = (−1)j
4kn(k, x)Ξ(k)√

(βn)(k, x)

{
β(xl)bj2√
(βn)(k, xl)

∞∑
n=0

(−1)nS(x,xr)
n (k)

}
+O(k0). (D.15)

We can prove that either (i) b12 = 0 = b22, in which case Bm,x(k, xl) = O(k0), Bm,x(k, xl)/∆(k) = O(k−2), and
qBm,x(xl, t) is well defined, see Lemma 42; or (ii) if (b12, b22) ̸= (0, 0), then a12 = 0 = a22, in which case qBm,x(x, t)

does not appear in Q(ℓ)
Bm

(t). The same holds for x ≈ xr. It follows that Q(ℓ)
Bm

(t) is well defined.

For Boundary Case 4, with Assumption 3, we integrate Fm(k2, t) (B.69b) by parts to obtain

Fm(k2, t) = −fm(0)

k2
− ek

2tf ′m(t)− f ′m(0)

k4
+

1

k4

ˆ t

0

ek
2sf ′′m(s) ds, (D.16)

so that we may write qBm,x(x, t) (C.36c) as

qBm,x(x, t) =
1

2π

ˆ
∂Ωext

Bm,x(k, x)
∆(k)

F̃m(k2, t)e−k
2t dk, (D.17)

where

F̃m(k2, t) = −fm(0)

k2
+
f ′m(0)

k4
+

1

k4

ˆ t

0

ek
2sf ′′m(s) ds, (D.18)

and where the integral of the f ′m(t) term is zero by Cauchy’s theorem (before the x-differentiation). The first two

terms of F̃m(k2, t)e−k
2t are exponentially decaying for t ∈ (0, T ) and the last term is O(k−4), by Assumption 3.2.

Therefore qBm,x(x, t) is well defined for x ∈ D and t ∈ (0, T ). Consequentially, Q(ℓ)
Bm

(t) is well defined.

47



Using (B.74) and (C.36a) in (D.6), we find

Q(ℓ)
0 (t) =

1

2π

ˆ
∂Ωext

P(ℓ)
0 (k)

∆(k)
e−k

2t dk, (D.19a)

which gives (D.14a), using Lemma 51. Similarly, using (B.77) and (C.36b) in (D.7), we find

Q(ℓ)
f (t) =

1

2π

ˆ
∂Ωext

P(ℓ)
f (k, t)e−k

2t

∆(k)
dk. (D.19b)

Using Lemma 51, this gives (D.14b). Using (B.69) and (C.36c) in (D.5),

Q(ℓ)
Bm

(t) =
1

2π

ˆ
∂Ωext

B
(ℓ)
m (k)

∆(k)
Fm(k2, t)e−k

2t dk. (D.19c)

Finally, using Lemma 50 and (B.69b), we obtain

Q(ℓ)
Bm

(t) = − δ̃ℓ−1,m

iπ

ˆ
∂Ωext

(
fm(0)e−k

2t

k
+

1

k

ˆ t

0

e−k
2(t−s)f ′m(s) ds

)
dk. (D.19d)

Since the integrand is O(k−3), we can deform the path of integration to the real axis. Using the oddness of the
integrand, the principal value integral vanishes and only the residue contribution at the origin needs to be calculated:

Q(ℓ)
Bm

(t) = δ̃ℓ−1,mRes

(
fm(0)e−k

2t

k
+

1

k

ˆ t

0

e−k
2(t−s)f ′m(s) ds; k = 0

)
= fm(t)δ̃ℓ−1,m. (D.19e)

Lemma 53. Consider any t ∈ (0, T ), fixed. Then

lim
|x|→∞

q(x, t) = 0 and lim
x→∞

q(x, t) = 0, (D.20)

for the whole-line and half-line problems, respectively.

Proof. For any fixed t ∈ (0, T ), we have absolute integrability in (B.69), (B.74), and (B.77a). Therefore, we may
switch the limit and integrals. Since, from (B.51) and (B.52),

lim
|x|→∞

∣∣∣∣Ψ(k, x, y)

∆(k)

∣∣∣∣ ≤MΨe
−miν |k||x−y| = 0, lim

x→∞

∣∣∣∣Ψ(k, x, y)

∆(k)

∣∣∣∣ ≤MΨe
−miν |k||x−y| = 0, (D.21)

for the whole-line problem and the half-line problem, respectively, (D.20) follows.

Remark 54. Since we have absolute integrability in (C.36a), (C.36b), and in (C.36c), we conclude that also

lim
|x|→∞

qx(x, t) = 0 and lim
x→∞

qx(x, t) = 0, (D.22)

for the whole-line and half-line problems, respectively.

Theorem 55. Consider the finite-interval, the half-line, and the whole-line problems. For all three problems, the
solution expression (2.2) satisfies the appropriate boundary conditions.

Proof. Lemma 53 shows the boundary conditions for the whole-line problem and the right boundary condition for
the half-line problem are satisfied. From Lemma 52,

a0q(xl, t) + a1q(xl, t) = Q(0)
0 (t) +Q(0)

f (t) +Q(0)
Bm

(t) = f0(t). (D.23a)

Similarly, for the finite-interval problem,

aℓ1q(xl, t) + aℓ2qx(xl, t) + bℓ1q(xr, t) + bℓ2qx(xr, t) = Q(ℓ)
0 (t) +Q(ℓ)

f (t) +Q(ℓ)
B0

(t) +Q(ℓ)
B1

(t)

= f0(t)δ̃ℓ−1,0 + f1(t)δ̃ℓ−1,1. (D.23b)
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E Proofs: the solution expressions satisfy the initial condition

Theorem 56. Consider the finite-interval, half-line, and whole-line problms. For x ∈ D, fixed,

lim
t→0+

qf (x, t) = 0, (E.1a)

lim
t→0+

qBm
(x, t) = 0. (E.1b)

Proof. Since the integral in (B.77) is absolutely convergent, we can pass the limit t→ 0+ inside the integral to obtain
(E.1a) by using Cauchy’s theorem. Similarly, we move the limit in the integral in (B.69) to obtain (E.1b).

Lemma 57. For fixed x ∈ D, for y ∈ D, for the finite-interval, half-line, and whole-line problems,

Ψ(k, x, y)

∆(k)
= exp

(
sgn(x− y)ik

ˆ x

y

n(k, ξ) dξ

)(
1 + o(k0)

)
+ o(k−1), (E.2)

as |k| → ∞ for k ∈ Ωext.

Proof. For the whole-line problem, from (3.4), for y < x,

Ψ(k, x, y) = exp

(
sgn(x− y)ik

ˆ x

y

n(k, ξ) dξ

)(
1 +

∞∑
n=1

n∑
ℓ=0

(−1)ℓẼ(−∞,y)
n−ℓ (k)E(x,∞)

ℓ (k)

)
. (E.3)

By Lemma 19 and the DCT,

∞∑
n=1

n∑
ℓ=0

(−1)ℓẼ(−∞,y)
n−ℓ (k)E(x,∞)

ℓ (k) = o(k0). (E.4)

Dividing (E.3) by ∆(k) and using Lemma 21, we obtain (E.2). The proof for x < y is identical.
For the half-line problem, for xl < y < x, we write (4.8) as

Ψ(k, x, y) = 4 exp

(
ik

ˆ x

y

n(k, ξ) dξ

)[(
a0

kn(k, xl)
S
(xl,y)
0 (k)− a1C

(xl,y)
0 (k)

)
+

(
|a0|
mn|k|

+ |a1|
)
o(k0)

]
. (E.5)

Using

C
(a,b)
0 (k) =

1

2

(
exp

(
2ik

ˆ b

a

n(k, ξ) dξ

)
+ 1

)
, (E.6a)

S
(a,b)
0 (k) =

1

2i

(
exp

(
2ik

ˆ b

a

n(k, ξ) dξ

)
− 1

)
, (E.6b)

in (E.5), we find

Ψ(k, x, y) = 2 exp

(
ik

ˆ x

y

n(k, ξ) dξ

)[
ia0

kn(k, xl)
− a1 +

(
|a0|
mn|k|

+ |a1|
)
o(k0)

]
+O

(
e−min|k|(x−xl)

)
, (E.7)

which, from (B.28a) with (B.28c), gives (E.2). The proof is identical for xl < x < y.
For the finite-interval problem we consider the 4 different cases.

1. If (a : b)2,4 ̸= 0, then for xl < y < x < xr, using (B.28a) with (B.28d), we write (5.9a) as

Ψ(k, x, y)

b0(k)
=

−4

(a : b)2,4
exp

(
ik

ˆ x

y

n(k, ξ) dξ

){
−(a : b)2,4C

(xl,y)
0 (k)C

(x,xr)
0 (k) + o(k0)

}
+

4β(xr)(a : b)1,2

(a : b)2,4k
√
(βn)(k, xl)

√
(βn)(k, xr)

∞∑
n=0

Ξ(k)S(y,x)
n (k). (E.8)

Using (E.6a) and dividing by 1 + ε(k), we arrive at (E.2). The proof for xl < x < y < xr is identical.
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2. If (a : b)2,4 = 0 and mc0 ̸= 0, then for xl < y < x < xr, using (E.6) and (B.28a) with (B.28e), we write (5.9a)
as

Ψ(k, x, y)

b0(k)
=

4k

imc0

exp

(
ik

ˆ x

y

n(k, ξ) dξ

){
− 1

4i

(
(a : b)1,4
kn(k, xl)

+
(a : b)2,3
kn(k, xr)

)
+ o(k−1)

}
+ o(k−1). (E.9)

Using 1/n(k, x) = 1/µ(x) + O(k−2) and dividing by 1 + ε(k), we obtain (E.2). The proof for xl < x < y < xr
is identical.

3. If (a : b)2,4 = 0, mc0 = 0, mc1 = 0, and (a : b)1,3 ̸= 0, then for xl < y < x < xr, using (B.28a) with (B.28f), we
write (5.9a) as

Ψ(k, x, y)

b0(k)
= −4k2

ms
exp

(
ik

ˆ x

y

n(k, ξ) dξ

){
−1

4

(a : b)1,3
k2n(k, xl)n(k, xr)

+ o(k−2)

}
+ o(k−1). (E.10)

Using the asymptotics for 1/n(k, x) and dividing by 1 + ε(k) gives (E.2). The proof is identical for xl < x <
y < xr.

4. If (a : b)2,4 = 0, mc0 = 0, mc1 ̸= 0, and mc1u+ − 8ms ̸= 0, then for xl < y < x < xr, using that

∞∑
n=3

∣∣∣kC(a,b)
n (k)

∣∣∣ = O(k−1), (E.11)

using the asymptotics of 1/n(k, x), the fact that (a : b)1,4/µ(xr) = (a : b)2,3/µ(xl) = mc1/2, and (B.28a) with
(B.28g), we write (5.9a) as

Ψ(k, x, y)

b0(k)
=

32k2

mc1u+ − 8ms
exp

(
ik

ˆ x

y

n(k, ξ) dξ

){
mc1

2k

2∑
n=1

n∑
ℓ=0

(−1)ℓS
(xl,y)
n−ℓ (k)C

(x,xr)
ℓ (k)

−mc1

2k

2∑
n=1

n∑
ℓ=0

C
(xl,y)
n−ℓ (k)S

(x,xr)
ℓ (k) + o(k−2)− ms

4k2

}
+ o(k−1). (E.12)

Using integration by parts as in Lemma 19, we derive

C
(a,b)
1 (k) =

1

16ik
u+(a, b)

(
exp

(
2ik

ˆ b

a

n(k, ξ) dξ

)
− 1

)
+O(k−2), (E.13a)

S
(a,b)
1 (k) = − 1

16k
u−(a, b)

(
exp

(
2ik

ˆ b

a

n(k, ξ) dξ

)
+ 1

)
+O(k−2), (E.13b)

C
(a,b)
2 (k) =

1

16ik
mint(a, b)

(
exp

(
2ik

ˆ b

a

n(k, ξ) dξ

)
− 1

)
+O(k−2), (E.13c)

S
(a,b)
2 (k) = − 1

16k
mint(a, b)

(
exp

(
2ik

ˆ b

a

n(k, ξ) dξ

)
+ 1

)
+O(k−2), (E.13d)

where u±(a, b) = u(b)± u(a), and

mint(a, b) =

ˆ b

a

1

µ(y)

(
(βµ)′(y)

(βµ)(y)

)2

dy, (E.14)

with u(x) defined in (2.7). We find

Ψ(k, x, y)

b0(k)
=

32k2

mc1u+ − 8ms
exp

(
ik

ˆ x

y

n(k, ξ) dξ

){
−ms

4k2
+
mc1

64k2
(u+(xl, y)− u−(xl, y))

+
mc1

64k2
(u+(x, xr) + u−(x, xr)) + o(k−2)

}
+ o(k−1). (E.15)
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Combining terms,

Ψ(k, x, y)

b0(k)
=

32k2

mc1u+ − 8ms
exp

(
ik

ˆ x

y

n(k, ξ) dξ

){
−ms

4k2
+
mc1

32k2
u+ + o(k−2)

}
+ o(k−1), (E.16)

which, after dividing by 1 + ε(k), gives (E.2). The proof is identical for xl < x < y < xr.

Theorem 58. Consider the finite-interval, half-line, and whole-line problems. If q0 ∈ L1(D), then for almost every
x ∈ D,

lim
t→0+

q0(x, t) = q0(x). (E.17)

Proof. Using the change of variables k = λz with λ = 1/
√
t in (B.74),

q0(x, t) =
λ

2π

ˆ
∂Ωext

Φ0(λz, x)

∆(λz)
e−z

2

dz =
λ

2π

ˆ
∂Ωext

e−z
2

∆(λz)

ˆ
D

Ψ(λz, x, y)qα(y)√
(βn)(λz, x)

√
(βn)(λz, y)

dy dz. (E.18)

By Lemma 23, we can use the Fubini-Tonelli theorem to write this as

q0(x, t) =
λ

2π

ˆ
D
qα(y)

ˆ
∂Ωext

Ψ(λz, x, y)

∆(λz)

e−z
2√

(βn)(λz, x)
√
(βn)(λz, y)

dz dy. (E.19)

Using (E.2),

q0(x, t) =
λ
(
1 + o(λ0)

)
2π

ˆ
D

qα(y)√
(βµ)(x)

√
(βµ)(y)

ˆ
∂Ωext

exp

(
sgn(x− y)iλz

ˆ x

y

n(λz, ξ) dξ

)
e−z

2

dz dy + o(λ0).

(E.20)

Since ∣∣∣∣λ exp(sgn(x− y)iλz

ˆ x

y

µ(ξ) dξ

)
O(|x− y|λ−1)e−z

2

∣∣∣∣ ≤ O(|x− y|λ0)
∣∣e−z2∣∣, (E.21)

is absolutely integrable, we may use the DCT on the remainder term from (B.17). Substituting this result in (E.20),
we obtain

q0(x, t) =
λ

2π

ˆ
D

qα(y)√
(βµ)(x)

√
(βµ)(y)

ˆ
∂Ωext

exp

(
sgn(x− y)iλz

ˆ x

y

µ(ξ) dξ

)
e−z

2

dz dy + o(λ0), (E.22)

as λ→ ∞. Define Mx(y) =
´ y
x
µ(ξ) dξ. Deforming ∂Ωext down to the real axis and integrating the z-integral gives

q0(x, t) =
λ

2
√
π

ˆ
D

qα(y)e
− 1

4λ
2M2

x(y)√
(βµ)(x)

√
(βµ)(y)

dy + o(λ0). (E.23)

For a fixed x ∈ D, if q0(x) is finite, using that qα(y)/(µ(y)
√

(βµ)(y)) ∈ L1(D), it follows that for any ϵ > 0 and for
each λ, there exists φ ∈ AC(D) ∩ C0(D) [15], so that

ˆ
D

∣∣∣∣ q0(y)

µ(y)
√
(βµ)(y)

− φ(y)

∣∣∣∣ dy ≤ λ−2, and

∣∣∣∣∣φ(x)− qα(x)

µ(x)
√

(βµ)(x)

∣∣∣∣∣ ≤ ϵ

2
. (E.24)

Using this,

q0(x, t) =
λ

2
√
π
√
(βµ)(x)

[ˆ
D

(
qα(y)

µ(y)
√

(βµ)(y)
− φ(y)

)
µ(y)e−

1
4λ

2M2
x(y) dy +

ˆ
D
φ(y)µ(y)e−

1
4λ

2M2
x(y) dy

]
+ o(λ0).

(E.25)
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For the first integral and any ϵ > 0, we can find λ sufficiently large, so that∣∣∣∣∣ λ

2
√
π
√
(βµ)(x)

ˆ
D

(
qα(y)

µ(y)
√
(βµ)(y)

− φ(y)

)
µ(y)e−

1
4λ

2M2
x(y) dy

∣∣∣∣∣ ≤ Mn

2
√
πmβmnλ

≤ ϵ

2
. (E.26)

Since φ ∈ AC(D), we may integrate the second integral of (E.25) by parts to obtain

λ

2
√
π

ˆ
D
φ(y)µ(y)e−

1
4λ

2M2
x(y) dy = −1

2

ˆ
D
φ′(y)erf

(
λMx(y)

2

)
dy. (E.27)

At this point, we may take the limit as λ → ∞ using the DCT. Since arg(µ) ∈ (−π/4, π/4), if y > x, then
arg(Mx(y)) ∈ (−π/4, π/4) and the error function limits to 1 as λ→ ∞ [8]. If y < x, then arg(Mx(y)) ∈ (3π/4, 5π/4)
and the error function limits to −1. It follows that

lim
λ→∞

λ

2
√
π

ˆ
D
φ(y)µ(y)e−

1
4λ

2M2
x(y) dy = φ(x), (E.28)

and we have

q0(x, t) →
φ(x)√
βµ(x)

→ q0(x), (E.29)

as t→ 0+ and ϵ→ 0+. Since q0 ∈ L1(D), q0(x) is finite for almost every x ∈ D, concluding the proof.
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