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Abstract

The goal of this work is to investigate the effect of the inclusion of small surface tension on the
instabilities of gravity water waves that are present even in shallow water [15]. Using the recent refor-
mulation of Ablowitz, Fokas and Musslimani [1], we compute traveling water waves where the effects
of both gravity and small surface tension are incorporated. The spectral stability of these solutions is
examined using Hill’s method [14]. It is found that the instabilities are not suppressed by the inclusion
of surface tension. In fact, the growth rates associated with them increase as the surface tension grows.
Generalizing the work of MacKay and Saffman [30], the persistence of these instabilities is confirmed
analytically for waves of small amplitude.

1 Introduction

The classical water wave problem is the problem of determining the shape and dynamics of the free surface
on a three-dimensional incompressible, inviscid fluid. If, in addition, the fluid is irrotational, a velocity
potential may be introduced. Considering waves without variation in the second horizontal direction, the
problem is described by the classical equations [38]



φxx + φzz = 0, (x, z) ∈ D,
φz = 0, z = −h, x ∈ (0, L),

ηt + ηxφx = φz, z = η(x, t), x ∈ (0, L),

φt +
1

2

(
φ2x + φ2y

)
+ gη = σ

ηxx

(1 + η2x)
3/2

, z = η(x, t), x ∈ (0, L),

(1)

where h is the height of the fluid, g is the acceleration due to gravity and σ > 0 is the coefficient of surface
tension1. Further, η(x, t) is the elevation of the fluid surface, and φ(x, z, t) is its velocity potential. In this
paper, we focus on solutions on a periodic domain D = {(x, z) | 0 ≤ x < L,−h < z < η(x, t)}, see Fig. 1.

The work presented here follows that of Deconinck & Oliveras [15]. They presented a thorough numerical
overview of the spectral instabilities of periodic traveling one-dimensional gravity (i.e., σ = 0) water waves.
An emphasis of that work is the presence of oscillatory instabilities even for waves in shallow water (kh <
1.363, see [5, 39], here k = 2π/L). Since the underlying waves are periodic, their stability analysis uses Hill’s
method, see [14], which incorporates the conclusions from Floquet’s Theorem with Fourier analysis. This
associates with each wave a range of Floquet exponents µ which may be taken as (−π/L, π/L]. The growth
rates of the oscillatory instabilities is small, even for waves of moderate amplitude, and the range of Floquet
exponents with which they are associated is narrow (on the order of 10−4 for L = 2π). A naive uniform
distribution on (−π/L, π/L] of Floquet exponents is bound to miss the presence of these instabilities, unless

1As noted in [4], σ > 0 for liquid-gas interfaces.
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Figure 1: The domain on which we solve Euler’s equations.

an exorbitantly large number of µ values are considered. Numerically, this is prohibitively expensive (often,
no more than 100 µ-values are chosen), and an adaptive approach is used in [15], with more values of µ
considered near those values of the Floquet exponents where instabilities may arise, as predicted by MacKay
& Saffman [30].

Our goal is to investigate the effect of the inclusion of surface tension on the oscillatory instabilities. It
is well known that the incorporation of capillary effects leads to the presence of resonances in the Fourier
representation of the periodic traveling water waves. If the resonance condition is satisfied exactly, so-called
Wilton ripples are found [38, 40]. Even when the condition is not met, its residual can be made arbitrarily
small by the consideration of Fourier modes with sufficiently high wave number. This is especially problematic
for waves of moderate or high amplitude, whose accurate Fourier representation requires more modes. This
is discussed in more detail in Sections 4 and 5. Because of this, we limit our investigations to the instabilities
of waves of small amplitude, so that (near-) resonance is avoided. Waves in both shallow and deep water are
considered.

In the next section we provide an overview of the literature on this classical problem. Section 3 discusses
the reformulation of the water wave problem we use, both for the computation of the traveling wave solutions,
and for the analysis of their stability. After that, different sections are devoted to the computation of the
solutions, and to the numerical investigation of their spectral stability. In addition, we revisit the work of
MacKay & Saffman [30], which allows for an analytical prediction of which modes may lead to instabilities.
We finish with conclusions.

2 Literature overview

The study of water waves goes back as far as Newton (1687), Euler (1761) and Bernouilli (1738) [11].
The study of water waves benefits from theoretical contributions in addition to experimental ones. This
literature review attempts to cover the literature that is most relevant to the current work. It is by no means
comprehensive. First, we discuss the history of the computation of traveling wave solutions to (1). Next, we
review the literature on the investigation of their stability properties.

Stokes was the first to construct solutions to Euler’s equations in 1847. He introduced a form for a graph
of a traveling wave on a periodic domain [35]. This was done perturbatively by adding successive harmonics
of a cosine profile. In 1880, he conjectured there is a gravity wave of maximum height that is achieved when
the distance from crest to trough is 0.142 wavelengths [11]. The first papers to show that series expansion in
powers of the wave amplitude (or Stokes expansions) converges were due to Nekrasov (1921) [33] and Levi-
Civita (1925) [24]. They showed that the Stokes series converges when the ratio of amplitude to wavelength
is sufficiently small and the waves are in infinitely deep water. Struik (1926) [36] extended this analysis for
water of finite depth.

Examining periodic surface gravity-capillary waves using an expansion like the one used by Stokes, Wilton
(1915) [40] computed successive coefficients, while including the effects of surface tension. He showed that if
the coefficient of surface tension in deep water is proportional to the inverse of an integer, the denominator
of the expansion coefficients becomes zero. Since the terms of the series are computed only up to a scaling,
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he postulated that by choosing this scaling constant proportional to the vanishing denominator, convergence
of the series may once again be achieved.

Following Stokes’s conjecture of a wave of greatest height for gravity waves [35], Crapper [12] investigated
the possibility of a wave of maximum height for purely capillary waves. Using a series expansion similar to
Stokes (1957), he wrote down an exact solution for capillary waves of arbitrary amplitude on an infinitely
deep fluid, and concluded a similar result was possible for finite depth. He found that for infinite depth, the
wave of greatest height occurs when the distance from crest to trough is 0.73 wavelengths. A good overview
of results on the computation of traveling wave solutions, including many results not discussed here, is found
in the recent monograph by Vanden-Broeck [38]. Many of the results detailed there show the intricacies that
follow from the inclusion of surface tension.

With solutions to Euler’s equations on the periodic domain in hand, it is important to address their
stability. Phillips (1960) [19] examined the dynamics of gravity waves on the surface of deep water and
realized that when certain conditions are met, the waves behave as forced, resonant oscillators which cause
energy transfer between the constituting wave trains. This work was supported by many experimental and
numerical results such as the ones by Longuet-Higgins [28] and others. Phillips focussed on a perturbation
series expansion and the conditions necessary for the higher-order terms to satisfy the linear dispersion
relation. He predicted that resonant triads are not possible for gravity waves in deep water. McGodrick
showed such triads are possible when surface tension is incorporated [19]. This was followed in 1967 by the
works of Benjamin [5] and Whitham [39], who derived the criterion that Stokes waves on sufficiently deep
water, i.e., kh > 1.363 with k = 2π/L, are modulationally unstable. For kh < 1.363, this instability is not
present.

In 1968, these efforts were followed by the seminal work of Zakharov [41]. Starting from Euler’s equations,
he showed that the water wave problem is Hamiltonian. He wrote the energy in terms of the canonical
variables η(x, t) and q(x, t) = φ(x, η(x, t), t). Truncating in powers of the wave amplitude, he derived what
is now called the Zakharov equation, from which the Nonlinear Schrödinger equation easily follows. This
equation describes the dynamics of a modulationally unstable wave train, and in this sense predicts what
happens after the onset of the Benjamin-Feir instability.

By linearizing around a steady state solution, a stability eigenvalue problem is obtained whose spectrum
determines the spectral stability of that solution. By examining the collision of eigenvalues in this spectrum,
McLean (1982) [31] separated the instabilities in two classes. Building on numerical work of Longuet-
Higgins [25, 26] and others, he obtained the maximal growth rates for different instabilities as a function
of wave steepness. Exploiting the Hamiltonian nature of the problem [41], MacKay and Saffman (1986)
[30] established necessary criteria for the onset of different instabilities as the amplitude of the solution is
increased, within the framework of the general theory of Krein signatures [29]. These results are used below.

Many different ways of reformulating Euler’s equations exist, mainly aimed at avoiding having to solve
Laplace’s equation in an unknown domain. The conformal mapping method is used to solve the one-
dimensional water wave problem and leads to equations such as the ones used by Longuet-Higgins and
Cokelet (1976) [28]. Another approach uses the canonical coordinates introduced by Zakharov [41], and
defines a Dirichlet-to-Neumann operator, see Craig and Sulem (1993) [10]. Akers and Nicholls (2010) use the
“Transformed Field Expansion” method, and they include the effects of surface tension [2]. Since we build
on the work of Deconinck and Oliveras (2011) [15], the method most relevant to us is the reformulation due
to Ablowitz, Fokas and Musslimani (2006) [1]. In this paper, the water wave problem is rewritten as two
coupled equations, one local and one nonlocal. Since this is the basis for our work, this method is discussed
below in some detail. The solutions of Deconinck and Oliveras [15] are in the form of a cosine series whose
coefficients vary as the amplitude of the solution is increased. In [15], the effects of surface tension are not
included. The stability of the solutions is analyzed using the Fourier-Floquet-Hill method [13, 14]. Deconinck
and Oliveras show that, in addition to the Benjamin-Feir instability, there are bubbles of instability which
show up more prominently as the amplitude of the solution is increased. These bubbles are shown to exist
where the condition for the onset of instabilities due to MacKay and Saffman [30] is met. In shallow water
(for kh < 1.363), they are found to be the only instabilities.

With the inclusion of surface tension, the majority of the results on stability for solutions of the water wave
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problem focus on solutions defined on the whole line. Longuet-Higgins (1988) demonstrated numerically that
the limiting capillary-gravity waves exist in deep water [27]. It was found that solitary waves of depression
are stable and solitary waves of elevation are unstable for small steepness. The solutions become stable at
finite steepness, see Calvo and Akylas (2001) [8]. The computation of solutions for gravity-capillary solitary
waves was extended to two (surface) dimensions by Parau et al. (2004) [34] in infinite depth. It was found
that these waves are unstable to perturbations transverse to the direction of propagation, but are stable to
perturbations along the direction of propagation by Kim and Akylas (2007) [23]. Milewski et al. (2010) [32]
analyzed the dynamics of interacting solitary waves.

Some results on the stability of periodic waves with surface tension can be found. Both Zhang and
Melville [42] and Choi and Tiron [37] consider high surface tension, relative to the effect of gravity. In fact,
for [37], g = 0, as they investigate the stability of Crapper’s solutions [12]. More recently, and most relevant
to the present work, Akers and Nicholls [2, 3] examine the spectral stability of traveling gravity-capillary
waves, using the method of transformed field expansions. In [2], eigenvalues are not allowed to collide. As
a consequence, the onset of instability can be predicted (when eigenvalues collide), but such instabilities
cannot be tracked through the collision. This restriction is lifted in [3]. In both papers, the authors focus on
perturbations of a prescribed (quasi-) period (not necessarily equal to the period of the underlying traveling
wave), as the amplitude of the solution is increased. In our work, no perturbation period is prescribed,
leading to a more comprehensive view of the spectral instabilities.

3 Reformulation

The reformulation of (1) of Ablowitz, Fokas and Musslimani [1] follows the work of Zakharov [41] by writing
the water wave problem in terms of just the surface variables η(x, t) and q(x, t) = φ(x, η(x, t), t), the velocity
potential evaluated at the surface. Ablowitz, Fokas and Musslimani [1] show that the two functions η(x, t)
and q(x, t) satisfy the system

qt +
1

2
q2x + gη − 1

2

(ηt + ηxqx)
2

1 + η2x
= σ

ηxx

(1 + η2x)
3/2

, (2)∫ L

0

eikx [iηt cosh(k(η + h)) + qx sinh(k(η + h))] dx = 0, ∀k ∈ Λ, (3)

where Λ = {2πn/L | n ∈ Z, n 6= 0, }. In [1], only the whole line case is treated. The extension to the
periodic case is straightforward [15].

Following the derivation of Deconinck and Oliveras [15], we transform to a traveling frame of reference,
moving with speed c. Thus implies the substitution x→ x− ct, ηt → ηt − cηx and qt → qt − cqx. The local
and nonlocal equations (2) and (3) become

qt − cqx +
1

2
q2x + gη − 1

2

(ηt − cηx + ηxqx)2

1 + η2x
= σ

ηxx
(1 + η2x)3/2

, (4)∫ L

0

eikx (i(ηt − cηx) cosh(k(η + h)) + qx sinh(k(η + h))) dx = 0, k ∈ Λ. (5)

Traveling wave solutions are stationary in this frame of reference, thus qt = 0 = ηt. We solve for qx using
the local equation:

qx = c−
√

(1 + η2x)

(
c2 − 2gη + 2σ

ηxx
(1 + η2x)3/2

)
, (6)
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where we have chosen the negative sign in front of the square root [9]. Substituting in the nonlocal equation
(5), integrating by parts and simplifying, we are left with∫ L

0

eikx

√
(1 + η2x)

(
c2 − 2gη + 2σ

ηxx
(1 + η2x)3/2

)
sinh(k(η + h))dx = 0, k ∈ Λ. (7)

Alternatively,∫ L

0

eikx

√
(1 + η2x)

(
c2 − 2gη + 2σ

ηxx
(1 + η2x)3/2

)
(sinh(kη) + cosh(kη) tanh(kh)) dx = 0, k ∈ Λ, (8)

where we have separated the explicit dependence on the depth h. This is useful for numerical purposes, and
it allows for an easy limit when considering the case of water of infinite depth. Indeed, in the limit h→∞,
(8) gives ∫ L

0

eikx

√
(1 + η2x)

(
c2 − 2gη + 2σ

ηxx
(1 + η2x)3/2

)
e|k|ηdx = 0, k ∈ Λ. (9)

In what follows, we equate the solution period L to 2π. Thus Λ = {n | n ∈ Z, n 6= 0, }.

4 Constructing traveling-wave solutions

We construct solutions to (8) (or (9)) using numerical continuation. AUTO [16] and MatCont [18] are often
used for this purpose. For our equations these software packages are difficult to use because of the nonlocality
present. Instead, we wrote our own continuation program. The trivial solution η = 0 satisfies (8) for all
values of c. At particular values of the wave speed c the equation admits nontrivial solutions as well, and
bifurcation branches emanate. To determine these values of c, we linearize (8):

∫ 2π

0

eikx
[
c2η + (−gη + σηxx)

tanh(kh)

k

]
dx = 0, k ∈ Λ. (10)

With2

η =

∞∑
n=1

an cos(nx),

the linearized equation becomes

[
c2 −

(
g + k2σ

) tanh(kh)

k

]
ak = 0, k ∈ Λ. (11)

We impose that for k = 1, the factor in brackets is zero, so that

c =
√

(g + σ) tanh(h), (12)

and a1 is not forced to be zero. Then, for almost all values of σ,

η = a1 cos(x), (13)

2This form of η equates the average of the free surface to zero, without loss of generality.
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Figure 2: Figure 2a displays the solution set of the resonance condition for different Fourier modes k and
different values of the coefficient of surface tension, for both deep (solid curve) and shallow water (dashed
curve). The red dots indicate the resonant k values for σ = 1/(90π). Figure 2a displays the solution set as
a function of depth h and wave number k, for σ = /(90π) and the red dots correspond to the values of the
depth we use, h = 0.5 (shallow water) and h = 1.5 (deep water).

where a1 is an arbitrary constant. Near c =
√

(g + σ) tanh(h), (8) with a1 sufficiently small, is an accurate
representation of the solution. To compute η(x) as we continue up the branch, we use Newton’s method in
Fourier space as described below. This results in a finite-term Fourier representation of the solution, which
is truncated at whatever order guarantees the numerical accuracy desired.

There are particular values of σ for which the factor in parentheses of (11) is zero for a second value of
k 6= 1, once c has been chosen as in (12). In this case, the linear solution consists of two terms, leading to
resonant solutions or Wilton ripples [38]. Since the goal of our work is to examine the effect of small surface
tension on gravity waves, we wish to stay away from the resonance phenomenon. The factor seen in (11)
appears at all orders. More explicitly, the resonance condition is given by

(g + σ) tanh(h)−
(
g + k2σ

) tanh(kh)

k
= 0. (14)

This equation can be solved (numerically) for k, as a function of g, h, and σ. For most parameter values, the
solution k is not an integer, implying that resonance does not occur. However, for computational purposes
we need to avoid near resonances as well. Near resonances occur for integer values of k near the solution
of (14). This leads to small denominators in terms with these wave numbers in the Fourier series of the
solution, which presents numerical difficulties, unless their numerators are even smaller3. Thus, in order to
have a well-resolved solution, we need to stay away from Fourier modes that satisfy (14) or for which the
residual of this equation is small.

For fixed g and two different values of h (h = 0.5, shallow water, dashed line, and h = 1.5, deep water,
solid line), Figure 2a displays the solution of (14) in the (k, σ) plane. For instance, the figure shows that
for σ = 1/(90π), near resonance and the small-denominator problem in the Fourier series occur near the
125th and the 260th mode for deep and shallow water respectively. Provided that the desired accuracy of
the solution under consideration is achieved with far fewer terms, near resonance is not a problem. For our
purposes, we let σ = 1/(90π), and we consider solutions that require never more than 100 terms in their

3This happens if the near-resonance occur for sufficiently high wave number terms, which are not necessary for the accurate
numerical evaluation of the series
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Fourier expansion to achieve the numerical accuracy desired. This imposes a de facto restriction on the
amplitude of the solution we consider, while allowing for solutions that, although not of maximal amplitude,
are decidedly in the nonlinear regime. It should be noted that for σ = 0, resonance is not possible. Also, in
the limit of water of infinite depth, resonance occurs for k = g/σ.

4.1 Numerical Implementation

In order to construct the solutions numerically, using a continuation method, we truncate the number of
Fourier modes of the solution to a finite integer N . Let

ηN (x) =

N∑
j=1

aj cos(jx). (15)

Recall that the nonlocal equation (8) is valid for every integer k 6= 0. We truncate the number of equations
to N so that k = 1, . . . , N . However the speed c at which the wave moves is an additional unknown. Thus
an extra equation is required. Different options are possible and their convenience is dictated by how we
parameterize the solution bifurcation branch. If we parametrize using a1, then we can either prescribe a1 as
a variable or we can add the equation

a1 − ã1 = 0,

where ã1 is a prescribed value, determining the next solution on the bifurcation branch. Parameterizing using
a1 is a convenient and justifiable choice for solutions of small amplitude. As the amplitude is increased, this
may cease to be the case, but since we are limiting ourselves to solutions of small and moderate amplitude,
this is not an issue for us. Alternatively, one could prescribe the L2 or L∞ norm of the solution, as was done
in [15]. In any case, we end with N + 1 equations determining N + 1 unknowns.

Remark. We may overdetermine the number of equations so as to solve a least-squares problem. How-
ever, this requires the use of additional values of k > N . Since for large values of k, the cosh and sinh
contributions in the nonlocal equation become large exponentially fast this must be done with care to con-
trol numerical error.

Denote the vector of unknowns as

z = [c, a1, a2, a3, . . . , aN ]T .

Equating

F (N)(z) = [a1 − ã1, F1(z), F2(z), . . . , FN (z)]T ,

where ã1 is given as a small increment of the value at the previous solution, and

F
(N)
j (z) =

∫ 2π

0

eijx

√√√√(1 + η2N,x

)(
c2 − 2gηN + 2σ

ηN,xx
(1 + η2N,x)3/2

)
(sinh(kηN ) + cosh(kηN ) tanh(kh))dx

=

∫ 2π

0

fj(k, c, ηN , ηN,x, ηN,xx)dx,

which defines fj(k, c, ηn, ηN,x, ηN,xx). We wish to solve F (N)(z) = 0 for the unknown vector z. Using
Newton’s Method, the n-th iteration is given by
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Figure 3: The solution bifurcation branches for pure gravity waves (σ = 0, black) and gravity-capillary
waves (σ = 1/(90π), red) for (a) shallow water, h = 0.5, (b) deep water, and (c) water of infinite depth.

zn+1 = zn − J−1(zn)F (zn),

where J is the Jacobian with entries

(J)jl =
δFj
δzl

=

∫ 2π

0

(
∂fj
∂zl

+
∂fj
∂ηN

∂ηN
∂zl

+
∂fj
∂ηN,x

∂ηN,x
∂zl

+
∂fj

∂ηN,xx

∂ηN,xx
∂zl

)
dx,

which is readily computable. Our continuation method starts from flat water, after which we proceed to
follow the bifurcation branch with initial guess

[
√

(g + σ) tanh(h), ã1, 0, 0, 0, . . . , 0]T .

This initial guess is modified as we proceed up the branch. Python and Matlab both are used to implement
the numerical scheme. To check the convergence of the algorithm, we check the residual error as well as
the decay in the Fourier modes of the solution. Results are given below. The continuation is started using
N=20 Fourier modes only, due to the small amplitude of the solution. Only a few of the 20 modes are
distinguishable from 0 initially. As the bifurcation parameter is increased, more than 20 modes are needed
to accurately represent the solution. The value of N is increased acoordingly, i.e., more equations are
used, depending on more unknowns. This is limited by the presence of the exponentially growing functions,
which is why we work with solutions that are accurately represented using no more than 100 Fourier modes.
Throughout the exponential decay of the Fourier amplitudes that is expected of an analytic solution profile
is checked, ensuring that the computed modes with highest wave number have neglible (less than 10−14)
Fourier amplitude.

4.2 Numerical Results

We compare the computed traveling wave profiles for particular values of the depth h, with and without
surface tension. The value σ = 1/(90π) is used throughout. The solution bifurcation branches are shown
in Figure 3. The case of no surface tension is shown in black, while σ = 1/(90π) is red. This convention is
used throughout the paper. The top row of Figure 4 displays the actual solution profile, divided by η(0), to
allow for the comparison of profiles of different amplitudes. Different columns show the results for different
depth h, with h = 0.5, h = 1.5, and h = ∞ in order. The bottom row of Figure 4 shows the exponential
decay of the Fourier coefficients of the computed solutions. It is clear that the effect of small surface tension
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Figure 4: Solution profiles η(x)/η(0) for (a) shallow water, h = 0.5, (b) for deep water, h = 1.5, and (c)
for water of infinite depth, h = ∞. Note that in deep water, the profiles of pure gravity waves (black) and
gravity-capillary waves (red) with σ = 1/(90π) are almost indistinguishable. The exponential decay of the
Fourier modes for the corresponding solutions is shown in the bottom row.

on the solution profile is perturbative only: no qualitative changes are discernible and quantitative changes
are small.

In the top row of Figure 4, normalized wave profiles with higher troughs correspond to solutions higher
on the bifurcation branches of Figure 4. Those solutions are also the profiles for which the decay of the
Fourier amplitudes is the slowest. Accordingly, the Fourier representation of the profile requires more terms
for comparable numerical accuracy. It appears that the inclusion of surface tension requires more Fourier
modes for the accurate representation of the solution.

5 Stability

Next, we consider the spectral stability of these solutions. Our main interest is in comparing these results
with those of Deconinck and Oliveras [15], where σ = 0. Since our traveling wave solutions are periodic,
we use the Fourier-Floquet-Hill method [14] and follow the setup of [15]. Spectral stability of a solution is
defined as

Definition 1. (Spectral Stability). The equilibrium solution u0(x) of a dynamical system ut = N (x, u, ux, . . .)
is spectrally stable if the spectrum of the linear operator obtained by linearizing N around u0(x) has no strictly
positive real part.

This implies that perturbations of this solution do not exhibit exponential growth. Assume we have a linear
operator L with elements λ of its spectrum such that
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Lv = λv.

The spectrum of a linear operator is defined in the standard way [20]:

Definition 2. (Spectrum of a Linear Operator). The spectrum of the linearized operator L is given by

σ(L) = {λ ∈ C : ||v(x)||∞ <∞} . (16)

For our purposes, the norm || · ||∞ denotes the infinity norm. Let the form of the solution to the equations
(4) and (5) in the traveling frame of reference be

q(x, t) = q0(x) + εq1(x)eλt +O(ε2), (17)

η(x, t) = η0(x) + εη1(x)eλt +O(ε2), (18)

where η0 is obtained from the numerical scheme described in the previous section and q0 follows from
(6). Since the water wave problem is Hamiltonian [41] the spectrum (16) of any traveling wave solution is
symmetric with respect to both the real and imaginary axes. Thus, in order for the solution to be spectrally
stable, it is necessary for the spectrum to be on the imaginary axis, i.e., Re{λ} = 0, for all λ in σ(L).

We do not restrict the period of the perturbations q1 and η1, which is possible by using Floquet’s Theorem
[21, 14]. For our problem, this implies that perturbations may be decomposed as

q1(x) = eiµxq̃1, η1(x) = eiµxη̃1, (19)

where µ ∈ [−1/2, 1/2) is the Floquet exponent and q̃1, η̃1 are periodic with period 2π. It is straightforward
to apply the Floquet Theorem to the local equation, but the nonlocal case requires modification: before
perturbing (5) using perturbations of the form (19) with arbitrary period, we replace the integral over one
period by the average over the whole line [15]:

〈f(x)〉 = lim
M→∞

1

M

∫ M/2

−M/2

f(x)dx, (20)

which is defined for almost periodic f(x), which includes (quasi-) periodic f(x) as in (19) [7]. The generalized
local equation is identical to the previous one if the integrand is periodic.

5.1 The Generalized Eigenvalue Problem

We linearize the following system of equations about a traveling wave solution:

qt − cqx +
1

2
q2x + gη − 1

2

(ηt − cηx + qxηx)2

1 + η2x
= σ

ηxx
(1 + η2x)3/2

, (21)

lim
M→∞

1

M

∫ M/2

−M/2

eikx [i(ηt − cηx) cosh(k(η + h)) + qx sinh(k(η + h))] dx = 0, k ∈ Λ. (22)

Using (17-18), ignoring terms of O(ε2) and higher, and dropping the tildes, we obtain

λ (fη1 − q1) = (q0,x − c)Dxq1 + gη1 − f [(q0,x − c)Dxη1 + η0,xDxq1] + f2η0,xDxη1

− σ D
2
xη1

1 + η
3/2
0,x

+ σ
3η0,xxη0,xDxη1
(1 + η20,x)5/2

, (23)

λ
〈
eikx [−iCkη1]

〉
=
〈
eikx [−iCkcDxη1 + SkDxq1 + (−iη0,xcSk + q0,xCk) kη1]

〉
, (24)

10



where

f(η0, q0) =
η0,x(q0,x − c)

1 + η20,x
, Dx = iµ+ ∂x,

Sk = sinh(k(η0 + h)), Ck = cosh(k(η0 + h)), Tk = tanh(k(η0 + h)).

Since q1 and η1 are periodic with period 2π,

q1 =

∞∑
m=−∞

Qme
imx, η1 =

∞∑
m=−∞

Nme
imx, (25)

with

Qn =
1

2π

∫ 2π

0

e−inxq1(x)dx, Nn =
1

2π

∫ 2π

0

e−inxη1(x)dx. (26)

Truncating to the 2N + 1 Fourier modes from −N to N , we define

U(x) =
[
N−N (x), . . . , N0(x), . . . , NN (x), Q−N (x), . . . Q0(x), . . . , QN (x)

]T
. (27)

This leads to the finite-dimensional generalized eigenvalue problem

λL1U(x) = L2U(x). (28)

where

L1 =

[
A −I
C 0

]
, L2 =

[
S T
U V

]
(29)

with I and 0 the (2N +1)× (2N +1) identity and zero matrix, respectively. The blocks A, S and T originate
from the local equation, while C,U and V come from the nonlocal equation. Their matrix entries are

Am,n =
1

2π

∫
ei(m−n)xfdx, Cm,n = −i 1

2π

∫
ei(m−n)xCµ+mdx,

Sm,n = − 1

2π

∫
ei(m−n)x

[
−g + f(q0x − c)i(µ+ (m−N))− f2η0xi(µ+ (m−N))

+σ
−(µ+ (m−N))2

1 + η20x
− σ 2η0xxη0xi(µ+ (m−N))

(1 + η20x)2

]
dx,

Tm,n =
1

2π

∫
ei(m−n)x [(q0x − c)i(µ+ (m−N))− fη0xi(µ+ (m−N))] dx,

Um,n =
1

2π

∫
ei(m−n)x [Sµ+mi(µ+ (m−N))] dx,

Vm,n =
1

2π

∫
ei(m−n)x [−ic(µ+ (m−N))Ck + k(−iη0xcSµ+m) + q0xCµ+m] dx.

Lastly,

Cµ+m = cosh((µ+m)η0) + Tµ+m sinh((µ+m)η0), Sµ+m = sinh((µ+m)η0) + Tµ+m cosh((µ+m)η0),

with Tµ+m = tanh((µ+m)h). All block matrices in (29) are of size (2N + 1)× (2N + 1) with N the number
of modes we retain. The convergence properties of the Floquet-Fourier-Hill method as N →∞ are discussed
in [13, 22].
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Figure 5: Values of the Floquet exponent µ for which the collision condition is met, as a function of depth
h. As before, black curves correspond to σ = 0, while curves in red are for σ = 1/90π. Different curves are
obtained for different values of m, as indicated. As h is increased, only two different values of µ for which
small amplitude instabilities may exist are approached asymptotically when σ = 0: µ = 0 and µ = 1/4.
With σ = 1/(90π) this is not the case and small amplitude solutions are potentially unstable with respect
to perturbations of many different periods.

5.2 A Necessary Condition for Instabilities

Since the traveling wave solutions of Section 4 are constructed through numerical continuation from the
trivial flat water state, it is natural to begin by considering the spectral stability of the flat water state.
This is conveniently done using the Hamiltonian form of the problem, following Mackay and Saffman [30]
and using notions from resonant interaction theory, as in [31]. These concepts are particularly easy to use
in the flat water case, since the spectral problem (23-24) is one with constant coefficients. It is well known
that spectral elements corresponding to different Floquet exponents do not interact, thus we may restrict
our attention to a fixed µ value. It may be convenient to not restrict µ to the unit interval around the origin,
keeping in mind that values of µ that have the same non-integer part are equivalent.

For flat water, η0 ≡ 0, q0 ≡ 0, and the spectral problem (23-24) becomes

λ (−q1) = (−c)Dxq1 + gη1 − σD2
xη1,

λ (−iCµ+mη1) = −iCµ+mcDxη1 + Sµ+mDxq1.

This system is easily solved, and the eigenvalues are explicitly given by

λsµ+m = ic(µ+m) + is
√

[g(µ+m) + σ(µ+m)3] Tµ+m, (30)

with s = ±1. At this point the assumption σ > 0 mentioned in the footnote on page 1 is shown to be
vital: if σ < 0 it is clear that the flat water state is not spectrally stable, and we end up with a variety of
nonphysical and unobserved instabilities for surface water waves. With this assumption, all eigenvalues are
on the imaginary axis and the flat water state is spectrally stable. The spectrum of (23-24) is a continuous
function of the parameters appearing in L1 and L2 [20], including the traveling wave amplitude. In order for
eigenvalues to leave the imaginary axis, they have to do so in pairs, symmetric with respect to both the real
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Figure 6: The imaginary part of the eigenvalues for which the collision condition is met as a function of
depth h. On the left the case of gravity waves (σ = 0) is displayed. The case σ = 1/(90π) is shown on
the right. Different curves correspond to different values of m. Negative values would result in the mirror
imagine of this figure below the horizontal axis.

h = 0.5 h = 1.5 h =∞
σ = 0 σ = 1/90π σ = 0 σ = 1/90π σ = 0 σ = 1/90π

m µ Im{λ} µ Im{λ} µ Im{λ} µ Im{λ} µ Im{λ} µ Im{λ}
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0.106 0.148 0.100 0.139 0.322 0.687 0.314 0.673 0.25 0.75 0.243 0.736
3 0.375 0.519 0.345 0.478 -0.108 1.730 -0.157 1.651 0 2 -0.065 1.904
4 -0.206 1.088 -0.292 0.973 -0.095 3.188 -0.316 2.900 0.25 3.75 -0.028 3.389

Table 1: This table gives the Floquet parameters µ for which we have an eigenvalue collision in the case of
flat water. The approximate values shown here are for the test cases we consider in the numerical results
section, presenting only those Floquet parameters for which the largest instabilities are expected.

and imaginary axis. This is only possible through eigenvalue collisions, which are a necessary condition for
the development of instabilities [29]. Thus we examine for which parameter values different eigenvalues given
by (30) collide. This was originally investigated by MacKay and Saffman [30], who found that eigenvalues
with the same sign s do not collide. Otherwise the collision condition becomes

λs1µ = λs2µ+m for any m ∈ Z, s1 6= s2. (31)

This equation determines for which Floquet exponents µ (modulo 1) eigenvalues collide, depending on
different parameters h, g, σ. Figure 5 displays values of µ for which (31) is satisfied, as a function of the
depth h, for fixed g and σ (σ = 0 in black, and σ = 1/(90π), in red). The different curves correspond to
different values of m.

Figure 6 shows the positive imaginary part of the collision points (their real part is zero) as a function
of the water depth for σ = 0 (left) and σ = 1/(90π) (right). Table 1 compares such imaginary parts
computed for different depths h with and without surface tension. One of the goals for examining the
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Figure 7: Tracking the bubble location and width as a function of solution amplitude, with curves in black
for σ = 0, curves in red for σ = 1/(90π). The left panel tracks the largest bubble, the middle panel the
second largest. Their instability growth rates are shown on the right.

spectral stability of non-zero amplitude traveling wave profiles is to track whether the collided eigenvalues
do result in instabilities, and if so, how these evolve for solutions of higher amplitude.

5.3 Numerical Procedure

We proceed to solve the generalized eigenvalue problem (28) using the Floquet-Fourier-Hill method [14, 15]
for a sufficient number of values of the Floquet exponent µ to ensure all features of the spectrum are resolved.
This is done in part by tracking (see below) the location of instabilities of solutions of smaller amplitude, as
we continue up the solution branch. The collided eigenvalues of the flat water state are the starting point for
this. As discussed below, we find that all traveling water waves are spectrally unstable, irrespective of their
amplitude and of the depth of the water. This result is not surprising for waves in deep water, where the
presence of the Benjamin-Feir instability [6] is well known. Deconinck and Oliveras [15] computed bubbles
of instability (i.e., topological ovals of spectral elements across the imaginary axis, which emanate from the
flat-water collided eigenvalues for small wave amplitude), but these bubbles are narrow and it was reasonable
to hope that the inclusion of surface tension might prevent their formation, leading to spectrally stable wave
profiles for at least some amplitude and depth range. This is not the case. The goal of this and the following
subsections is to demonstrate how surface tension affects the results of [15], while it cannot overcome the
instabilities. For the three values of depth h in Figure 3, we examine the Floquet parameter µ for which
instabilities are present, as well as the graph of the spectrum in the complex λ plane. We can do so along the
entire solution branch in Figure 3. The figures included results only for the solution labeled with a square
in Figure 3, roughly in the middle of the computed branch.

5.4 Bubble Tracking

It is interesting to note that the center of the bubbles of instability are not given by the collision values of
Table 1. The locations of the bubbles move as we increase the amplitude of the traveling waves. We can
track the movement of the center of the bubbles as well as of their width numerically, as shown in Figure 7.
This was done for shallow water bubbles, since the bubbles are most important there. In Figure 7a-b, we
track the movement of the largest and second-largest bubble of instability, respectively. As usual, black
curves correspond to σ = 0, red ones to σ = 1/(90π). Lastly, Figure 7c shows the change in the size of the
bubble i.e., its associated instability growth rate) as a function of the solution amplitude, hence the largest
bubble corresponds to the top curves, the second bubble to the bottom curves. The rapid movement of
the bubbles presents a numerical difficulty that needs to be overcome with a careful choice of the Floquet
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Figure 8: The maximal growth rate max Re(λ) as a function of the Floquet exponent µ for h = 0.5 (shallow
water). Throughout, black dots correspond to σ = 0, while red dots are for σ = 1/(90π). Nonzero max Re(λ)
denote instabilities. The right panel is a zoom of the indicated region of the left panel.

exponents used in order to resolve all relevant features of the stability spectrum.

5.5 Stability Spectra

Figures 8-10 display the maximal real part of the spectral elements as a function of the Floquet parameter
µ. Nonzero values correspond to instabilities. The results for shallow water (h = 0.5) are in Figure 8. They
illustrate that the effect of surface tension is to shift for which Floquet exponents instabilities occur, while
barely affecting their growth rate. The zoom on the right shows that the numerical results are well resolved
and that the sharp spikes on the left lie above a range of µ values for which instabilities are present. As the
wave amplitude is decreased, the width of these ranges shrinks to zero, approaching one of the values of µ
for which eigenvalues collide for the flat water state. Different instabilities are visible, with a wide variety of
instability growth rates. Figure 9 shows the result for deep water (h = 1.5) and Figure 10 shows the result
for infinitely deep water (h = ∞), where the results are dominated by the Benjamin-Feir instability, as in
[15]. Although the Benjamin-Feir instability is affected by the inclusion of surface tension, it appears to be
affected much less than the bubbles, which are still present, but whose location may be shifted significantly.

In shallow water without surface tension, Deconinck and Oliveras [15] found the bubbles of instability
shown in the first row of Figure 11. Two zooms of the complex λ plane shown on the left are shown
there, demonstrating the absence of any instability at the origin (middle) and an enlargement of the bubble
corresponding to the dominant instability (right). If surface tension is included, the results change as shown
in the second row of Figure 11. The location of the bubbles changes, as remarked above. The largest real
part is slightly increased, although this is hard to discern in Figure 11. The change in bubble location is a
consequence of the change in eigenvalue collision location, displayed in Table 1. Importantly, more bubbles
are visible with surface tension than without. This is illustrated in the second panel where two bubbles are
shown to exist close to (but not at) the origin of the λ plane.

For waves in deep water (h > 1.363) [5, 39] without surface tension, both the bubble instabilities as
well as the Benjamin-Feir instability appear. In terms of the largest growth rate of the instabilities, the
Benjamin-Feir instability dominates for h > 1.4306, see [15]. A representative result is shown in the top
row of Figure 12. The results with surface tension included are shown in the bottom row. Once again,
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Figure 9: The maximal growth rate max Re(λ) as a function of the Floquet exponent µ for h = 1.5 (deep
water). Throughout, black dots correspond to σ = 0, while red dots are for σ = 1/(90π). Nonzero max Re(λ)
denote instabilities.

the growth rates are slightly higher with surface tension than without. This is more obvious in Figure 8.
Zooming into the center of the complex plane clearly shows the figure eight characteristic of the Benjamin-
Feir instability, both with and without surface tension. However, with surface tension, two other facets
are apparent. Zooming in one more time to resolve the pattern seen at the center, we see a bubble of
instability quite clearly for σ = 1/(90π), absent for pure gravity waves. Another feature is the splitting of
the Benjamin-Feir figure eight, away from the origin. This occurs for gravity waves as well, but it appears
to happen for gravity-capillary waves for traveling waves of significantly lower amplitude.

Finally, the case of infinite depth is examined in Figure 13. As before, the results for pure gravity waves
(σ = 0) are shown in the top row, those with σ = 1/(90π) in the bottom row. Once again, the Benjamin-Feir
instability and bubble instabilities are observed. The Benjamin-Feir instability is even more dominant than
before, as shown in Figure 13. Both with and without surface tension, the bubbles can barely be seen. As
for h = 1.5, zooming into the origin, shows that the Benjamin-Feir instability has split away from the origin
for a traveling wave of this amplitude.

6 Conclusions

We have investigated the effect of small surface tension on the spectral stability of the one-dimensional
evolution of periodic traveling water waves within the context of the classical Euler equations governing
potential flow. First, we used numerical continuation to extend the results of [15] by computing traveling
wave solutions of the Euler equations in the presence of surface tension. This was done using the water wave
formulation of Ablowitz, Fokas, and Musslimani [1], and care was taken to avoid resonant or near-resonant
waves.

With these solutions in hand, we numerically computed their stability spectrum using the Floquet-
Fourier-Hill method [14], ensuring that all relevant aspects of the spectrum were captured. To this end, we
tracked the location of the bubbles of instability that originate from collided eigenvalues in the flat water
state. We found that the inclusion of surface tension does not overcome the formation of the bubbles, so
that all periodic traveling waves of the water wave problem are spectrally unstable. For pure gravity waves
(σ = 0), this conclusion was already reached in [15], which focuses on the one-dimensional problem, and it
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Figure 10: The maximal growth rate max Re(λ) as a function of the Floquet exponent µ for h =∞ (infinitely
deep water). Throughout, black dots correspond to σ = 0, while red dots are for σ = 1/(90π). The right
panel is a zoom of the indicated region of the left panel.

can be inferred from restricting the two-dimensional studies of [31, 17] to one spatial dimension by allowing
only one-dimensional perturbations. In fact, with surface tension, the growth rates observed are somewhat
larger than those seen without. Our instability conclusion holds for both shallow and deep water. In shallow
water, the bubbles appear to be the only mechanism for instability, while in deep water the Benjamin-Feir
or modulational instability is typically dominant.
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[24] T. Levi-Civita. Détermination rigoreuse des ondes permanentes d’ampleur finie. Math. Ann., 93:264,
1925.

[25] M. S. Longuet-Higgins. The instabilities of gravity waves of finite amplitude in deep water. I. Super-
harmonics. Proc. Roy. Soc. London Ser. A, 360:471–488, 1978.

[26] M. S. Longuet-Higgins. The instabilities of gravity waves of finite amplitude in deep water. II. Subhar-
monics. Proc. Roy. Soc. London Ser. A, 360:489–505, 1978.

[27] M. S. Longuet-Higgins. Capillary-gravity waves of solitary type and envelope solitons on deep water.
J. Fluid Mech., 252:703–711, 1993.

[28] M. S. Longuet-Higgins and E. D. Cokelet. The deformation of steep surface waves on water. I. A
numerical method of computation. Proc. Roy. Soc. London Ser. A, 350:1–26, 1976.

[29] R. S. MacKay. Stability of equilibria of Hamiltonian systems. In Nonlinear phenomena and chaos
(Malvern, 1985), Malvern Phys. Ser., pages 254–270. Hilger, Bristol, 1986.

[30] R. S. MacKay and P.G. Saffman. Stability of water waves. Proc. R. Soc. London A, 406:115–125, 1986.

[31] J. W. McLean. Instabilities of finite-amplitude water waves. J. Fluid Mech., 114:315–330, 1982.

20



[32] P. A. Milewski, J.-M. Vanden-Broeck, and Z. Wang. Dynamics of steep two-dimensional gravity–
capillary solitary waves. J. Fluid Mech., 664:466–477, 2010.
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