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Abstract

A map from the initial conditions to the values of the function and its first spatial derivative
evaluated at the interface is constructed for the heat equation on finite and infinite domains with
n interfaces. The existence of this map allows changing the problem at hand from an interface
problem to a boundary value problem which allows for an alternative to the approach of finding
a closed-form solution to the interface problem.

1 Introduction

Interface problems for partial differential equations (PDEs) are initial boundary value problems for
which the solution of an equation in one domain prescribes boundary conditions for the equations
in adjacent domains. In applications, conditions at the interface follow from conservations laws.
Few interface problems allow for an explicit closed-form solution using classical solution methods.
Using the Fokas method [7, 8] such solutions may be constructed [2], 3| [4} [1T], 12} 13| [14] 15].

The construction of a Dirichlet-to-Neumann map, that is, determining the boundary values
that are not prescribed in terms of the initial and boundary conditions, is important in the study
of PDEs and particularly inverse problems [6, [I6]. In what follows we construct a similar map
between the initial values of the PDE and the function (and some number of spatial derivatives)
evaluated at the interface. This map allows for an alternative to the approach of finding solutions
to interface problems as presented in earlier papers using the Fokas Method by the authors and
others. Given the initial conditions one could find the value of the function and its derivatives at
the interface(s). This changes the problem at hand from an interface problem to a boundary value
problem (BVP). At this point, the BVP could be solved using any number of methods appropriate
for the given problem.



2 The heat equation on an infinite domain with n interfaces
Consider
up = o () Uy, (1)

together with the initial condition ug(x) = u(z,0) and the asymptotic conditions lim, . u(x,t) =
0, where —oco <z < 00,0 <t < T, and

0-1, x < x]_,

0'%, T <zx<T9,
O'(x) = :

o2, Tpo1 < T < Tp,

2
Optls T > Tn.

We can rewrite as the set of equations

uﬁj) :af-ugv, rjg <z <z 0<t<T, (2)
for 1 < j <mn+1 where zyp = —oo and z,,+1 = co. We impose the continuity interface conditions [9,
3]
w9 (x5, 1) =ul+D (z;,1), t>0,
a?-ugj)(:cj,t) = ]2-+1u§6j+1)(xj,t), t>0,

for 1 < j < n. Since ul)(z,t) is defined on the open interval z;_; < 2 < xj, when we write

ul) (z,t) we mean lim,_, - uY)(z,t). Similarly, we denote lim,_ + w ) (2,t) by vt (z;,1).
J J

Without loss of generality we shift the problem so x; = 0. Using the usual steps of the Fokas

method [7, 8, 5] we have the local relations

(e~ Mty (2, ), =(ope * W W) (2, ) + ikuV (2, 1)), 3)

where w;(k) = (0;k)?. These relations are a one-parameter family obtained by rewriting (2.
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Figure 1: Domains for the application of Green’s Theorem in the case of an infinite domain with n
interfaces.



Integrating over the appropriate cells of the domain (see Figure (1)) and applying Green’s Theo-
rem we find the global relations

zj
o/

j—

T
+ /0 O'Je zkm;-l—wj(k)S(u;j) (zj,5) + ik:u(j)(mj, s))ds (4)

e—zkx ()( )d:(,‘—/ ! e_ikx+wj(k)Tu(j)(l‘,T) dax
1 z

j—1

T
—/0 a]e —ikz; 1+wﬂ(k)5(u;j)(xj_1,s)—i—iku(j)(xj_l,s))ds,
for 1 < j <n+1 Define D ={k € C: Re(wj(k)) <0}, Dp = {k € D : |k|] < R} and
D}, = {k € Dg : Im(k) > 0} as in Figure [24 . where R > 0 is an arbitrary finite constant. When
j =1 () is valid for k € C* \ D. Similarly, for j = n+ 1, ({) is valid for k € C~ \ D. For
2<j<n, is valid for k € C\ D. The dispersion relation wj(k) = (0jk)? is invariant under the
symmetry k — —k. We supplement the n + 1 global relations above with their evaluation at —k,
namely,

Im (k) Im (k)

(a) (b)

Figure 2: (a) The domain D}, for the heat equation. (b) The contour £ is shown as a red dashed
line. An application of Cauchy’s Integral Theorem using this contour allows elimination of the
contribution of terms involving the Fourier transform of the solution.

0 —/ ey (x) dx — /mj etketwi Ty D) (2, T) da
+

T ' ;
_/ o3ekritei s (O (2, s) — ikuld (251, 5)) ds,
0

for1<j<n+1. When j =1, is valid for k € C~ \ D. Similarly, for j =n+1, is valid for
ke Ct\D. For2<j<n, is valid for all £ € C\ D. Without loss of generality we choose to



work with the equations valid in the upper half plane. Define

4 t t '
géj)(w,t) —/0 eyl )(a:], )ds/o ewsu(3+1)(xj,s) ds,

. t o2 [t
ggj)(w,t) —/ eyl )(a:J, s)ds = —3 e” u(]ﬂ)(a:j,s) ds,

0 01 Jo
a9 (k, t) :/ ’ e~ ey () da,
| -
agj)(k‘) :/ e_mu(()])(x) dz,

7j—1

for 1 < j < n. Using the change of variables k = x/0; on the 4% equation, the global relations
valid in the upper-half plane are

e”Qtﬁ(l) <K,T> _ 7:L(()l) <’€> — piRT1/0 <mgél)(li2,T) +g§1)(/<&2,T)> 7 (6a)
o1 01 01
"t ) <:T> —a <:> —e <ZH96 J(K2,T) + g¥ )(HZ,T)>
J J J
—€ 7% gO (K' 7T)+ 2 gl (’% 7T) )
oj o;
N = N = R .
et 0) (:T) —af) <Jﬁ> =¢ <;égéj)(n2,T) +g§”(ﬁ2,T)>
J J J
R L o} (i—1)(,.2 (6)
+e 7 —90 (H 7T) - 791 ("i 7T) s
0j o;

_ _ iKTn y 2
o2t (nD) <Fv7T> _@gwl)( r > _ ot <““ g (K2, T) — ngm >(H2,T)>, (6d)
On+1

On+1 On+1 n+1

for 2 < j < n. Equation @ can be written as a linear system for the interface values:

A(r)X (K%, T) =Y (k) + Y(5,T),

where

n n T
X(K27T)_<[()1)7g((])779(() )79( )795 )77g§ )) )

+
~(1 R ~(n ~(2 —K ~(n+1 —K
Y(k)=— (u(()) <01> ,...,u((] ) <U ),u(()) <02>,...,u(() )<0n+1>> ,

3‘3
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The matrix A(k) consists of four n x n blocks as indicated by the dashed lines. The two blocks
in the upper half of A(k) are zero except for entries on the main and —1 diagonals. The lower
two blocks of A(k) only have nonzero entries on the main and +1 diagonals. The matrix A(k) is
singular for isolated values of k. Asymptotically, for large ||, the zeros of det(A(k)) are on the
real line [I0]. Since asymptotically there are no zeros in DE, a sufficiently large R may be chosen
such that A(k) is nonsingular for every x € D}, and det(A(k)) # 0.

Remark. We have been unable to construct physical examples where the zeros of det(A(k))
are in DT and are different from 0. However, if nonphysical values of the parameters are chosen
(e.g., oj imaginary), then det(A(x)) has zeros in D*.

Using Cramer’s Rule to solve this system, we have

_ det(A;(x, T))

(4)

90" (55 T) =gt ai) (78)
) _det(.Aj n(k,T))

glj ('427T) - det(tét(/{)) ’ (7b)

where 1 < j < n and A;(k,T) is the matrix A(x) with the j*" column replaced by Y + Y. This
does not give an effective initial-to-interface map because @ depends on the solutions 49 (-, T).
To eliminate this dependence we multiply @ by ke "t and integrate around DE, as is typical in
the construction of Dirichlet-to-Neumann maps [7]. Switching the order of integration we have

T
G (. K2(s—t) — —r2t R det(‘Aj (ﬁv T))
/0 u?(zj,s) /3D; Ke drds /aDge det(A(r)) dk, (8a)
T
U) (g K (s—t) _ _pz ko det(Ajyn(s, T))
/0 uy’ (x5, 5) /6D§ Ke dkds /aDE e det(A(r)) dk. (8b)

Using the change of variables i¢ = x? and the classical Fourier transform formula for the delta



function we have

. 1
u(j)(xj,t) :./ e
i Jopt
() 1 —r
u (xj,t) =— e
17 aDE

w2 kdet(A;(k,T))

det(Am) O -
2, kdet(Ajn(k,T)) o
det(A(k)) dr. o)

To examine the right-hand-side of () we factor the matrix A(x) as AL(k)AM (k) where

_7/*1'
e ot

A" (k)

is a diagonal matrix. The elements of AM (k) are either 0, O(x), or decaying exponentially fast for
K € DE. Hence,

det(AY (x)) = c(r) = O(x"),
for large x in Dj;. Now, det(A(k)) = c(x)det(A"(k)) as k — oo for K € D}. Similarly, factor
Ai(k,T) = AL(k )AM(R T)AR(,% T) where .AR(F; T) is the 2n x 2n identity matrix with the (j, 7)
component replaced by 7. Then det(A;(k,T)) = e’ T det(AL(m))det(A;\/[(m,T)). Thus, the

integrand we are considering in (9)) is
M
/ - d :/ eﬁQ(T_t)/-ﬁdet(Aj (k,T))
oD}, oD} c(k)

The elements of .A;M (k,T) are the same as those in AM (k) except in the 5"
the determinant of .Aé” (k,T) along the ;"

E (CZ ( ZN ( )ﬂ( ) <CK/ ’ > i C uo( ) < . ))
J4 CZ

where ¢; = O(k°?) and ¢y, = O(k) for 1 < £ < n. The terms involving @9 (-, T), the solutions of
our equation, are decaying exponentially for x € DE. Thus, by Jordan’s Lemma [I], the integral of
this term along a closed, bounded curve in C* vanishes. In particular we consider the closed curve
Lt = Lpy U L where Lps = ODLEN{k: |kl < C} and L = {k € D}, : |k| = C}, see Figure
Since the integral along EJCC vanishes for large C, must vanish since the contour £ D becomes
D}, as C — oo.

w2 kdet(A;(k,T))
det(A)

K.

column. Expanding
column we see that

2(T—1) det(AM

(&

(10)
ZHIZ —‘,—[{ (T t)

+ erinlr) (



Since the terms involving the elements of Y(x,T) evaluate to zero in the solution expression we
have the solution

u(‘]) X5 :i 6_52tM K a

(25:0) =72 /BD; det(A(r)) O (11a)
S det(Aga(s)

u(xj)(fﬁj;t) —E /BDE € Wdﬁ, (11b)

where A;(x) is the matrix A(x) with the 5 column replaced by Y (k). Equation [11]is an effective
map between the values of the function at the interface and the given initial conditions.

Remark. Note that since the problem is linear, one could have assumed the initial condition
was zero for x outside the region xy, 1 < & < xy. Then, the map would be in terms of just u(()z).
Summing over 1 < ¢ <n + 1 would give the complete map for a general initial condition.

As an example of a specific initial-to-interface map we consider the equation with n = 1.
Using we have

2, (1) __ 10109 / —k2t N OB A TN ) I Bl
oiuy’(0,1) o1+ 02) Joot Ke o1y o o2l p. dk,
1 2 K —K
W 4) = —r2t [ 2.(1) [ K 24(2) d
u'(0, 1) = /8D§ e (Jluo <U1) + oy p. K.

In this case we can deform DE back to the real line easily. For general n this is not the case.
Switching the order of integration and evaluating the x integral we have

0 fe'e)
2. (1) _ 0102 —y2/(4tc2), (1) —y2/(4to2), (2)
1 0 _o2/(4162) (1 R -2) (2
u(0,1) :m (U% /_Ooe vi/ 1)U(() )(y) dy + U%/D e v/ 2)u(() )(Z/) dy) , (12b)

which is an explicit map from the initial data to the value of the temperature and its associated
flux at the interface, x = 0. If one allows o1 = o9 the problem is simply that of the heat equation
on the whole line. Equation with o1 = 09 is exactly the Green’s Function solution of the whole
line problem evaluated at x = 0 [9].

3 The heat equation on a finite domain with n interfaces

Consider on a finite domain, x¢y < x < x,41, with the boundary conditions

BruM (o, t) + BoulM (o, t) =f1(), t>0, (13a)
Bt (w11, 1) + Baul (w11, 1) =fa(t), t>0. (13b)

As before, we rewrite as the set of equations
(4)

Uy :U?u(]g, rjig <z <z, 0<t<T,

Z.



for 1 < j < n+ 1, subject to the continuity interface conditions

u(j)(xj’ t) :u(j+1)(xj’ t), t >0,
0]2 g,j)(xj,t) :U?+1u§cj+1)(xj,t), t>0,

for 1 < j < n. Without loss of generality we shift the problem so that zg = 0.
t

T

9 =0 I T2 Tn—1 Ty Tn+1

Figure 3: Domains for the application of Green’s Theorem in the case of a finite domain with n
interfaces.

The following steps are very similar to those presented in the previous section. In what follows
we give a brief outline of the changes needed to solve on a finite domain.

Integrating the local relations around the appropriate domain (see Figure (1)) and applying
Green’s Theorem we find the global relations and their evaluation at —k ([5). In contrast to
Section 2| these 2n + 2 global relations are all valid for &k € C\ D. Without loss of generality we
choose to work with the equations valid in the upper-half plane. In addition to the definitions in
Section 2 we define

t
0O, 1) = / e“*uD (2, 5) ds,
0

t
génﬂ)(w,t) :/ e“’su("H)(an,s) ds,
0
) t
= [ e
0
t
fm(w,t) =/ e fim(s) ds,
0

for m = 1,2. Using the change of variables k = /0, the global relations valid in the upper-half
plane are

, . e N . .
) (ﬁ,T) gy (ﬁ) 5 (?g(()a)(ﬁaﬂ +g§a>(H2’T)>
J

gj gj

e L 071 (-1, 2 (142)
—e —g5 (k5 T)+ =gy (k°,T)],



2 0) (ﬂf’T) gy (-ﬂ) _ (—uﬁg((]j)(ﬁ27T) N g§j’(;-@2,T)>
; . P

| ) (14b)

1K - 05_ -

+e % (U,géj D2 T) - g ”(rﬁ,T)),
J J

for 1 < j < n+ 1 where we define g = o1 for convenience. These equations, together with the
boundary values , can be written as a linear system for the interface values

AFXF —yF L P,

where .
XF (2, T) = (950)7961)7~-.,gé"+1),g§°),g§1),...,g§”+1)) ,

]
YF(r,T) = - (ﬂ(mz,maé” (”) D (”) D (””) D (“) ,f2<m2,T>> ,
o1 On o1 On+1

.
VE(r,T) = "’ (0,a<1> (”ﬂT) At (”,T) LaW (_ﬁﬁ) LAt (_“,T> ,o) 7
o1 On o1 On+1

and
F
A (k) =
|
B | B2
. . kT . KT 2 ) KT
— —i—== i—L oy —i—2 —i—1
L o1 L2 o1 I —Ze o1 e o1
o1 o1 | o7
|
. |
|
. KTy . ETp41 | 2 KTp _ s FTngd
—1iK 2 1K o | —Tn o o
e n+1 e n+1 ) e n+1 e n+1
Ont1 Ont1 I ori1
T T T TRy T T T T T T TRE; T T T T T T T T T T T T #7777‘277}177:07777777 TRy T T T T T T T T T T T
ik 1—2 ik 1 | —oy 1—=2 i
e °1 e °1 e o1 e °1
o1 o1 } o7
. |
|
. KTyl . S 2 KEp KTy
ik - —iK & | "9 L' o
e n+1 e n+1 276 n+1 e n+1
On+1 On+1 ! oy
B3 ! Ba

The matrix A" (k) is made up of four (n+2) x (n+2) blocks as indicated by the dashed lines. The

two blocks in the upper half of A’ (k) are zero except for entries on the main and —1 diagonals.
The lower two blocks of A (k) only have entries on the main and +1 diagonals.

As before we use Cramer’s Rule to solve this system. After multiplying the solutions by fie_”2t,
integrating around DE, and simplifying as in the previous section we follow a similar process to
show the terms from Y (k, T') do not contribute to our solution formula using Jordan’s Lemma and
Cauchy’s Theorem. One can show that Af(H,T) can be replaced by Af(/ﬁ,t) by writing fOT -ds
as fg -ds + ftT-ds and noticing where the function in analytic and decaying. If the boundary
conditions are time-independent then so is Af .

In general, the initial-to-interface map for the heat equation on a finite domain with n interfaces
is given by

' det(AF (k, 1))
O) (g t) = e S
u(z;,1) /6D§ © mdet(AF(r)) o
) 2 det(AF (ﬁv t))
) (a0 4) — Qe
uy’ (z;,) /aD; € imdet(AF (k) e



where Af(n, t) is the matrix A (k,t) with the j*" column replaced by Y (x,t).
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