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Stability of Periodic Traveling Wave Solutions to the Kawahara Equation\ast 
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Abstract. We analyze the stability of periodic, traveling-wave solutions to the Kawahara equation and some
of its generalizations. We determine the parameter regime for which these solutions can exhibit
resonance. By examining perturbations of small-amplitude solutions, we show that generalized
resonance is a mechanism for high-frequency instabilities. We derive a quadratic equation which fully
determines the stability region for these solutions. Focusing on perturbations of the small-amplitude
solutions, we obtain asymptotic results for how their instabilities develop and grow. Numerical
computation is used to confirm these asymptotic results and illustrate regimes where our asymptotic
analysis does not apply.
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1. Introduction. The goal of this work is to examine the stability of periodic traveling-
wave solutions to the lowest-order dispersive nonlinear scalar partial differential equations
that may exhibit instabilities. To this end, we consider a general fifth-order Korteweg--de
Vries (KdV-)-type equation of the form

ut = \alpha uxxx + \beta u5x + \sigma 
\bigl( 
up+1

\bigr) 
x

(1)

with the linear dispersion relation \omega (k) = \alpha k3  - \beta k5. Here \alpha , \beta , \sigma are parameters with the
exponent p taking on positive integer values. We focus mainly on p = 1 which is the Kawahara
equation [15] (sometimes referred to as the super KdV equation [11]), and p = 2 which is a
modified fifth-order KdV equation [20]. The system (1) is Hamiltonian,

ut = \partial x
\delta H

\delta u
(2)
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with

H =

\int L

0

\biggl( 
1

2

\bigl( 
 - \alpha u2x + \beta u2xx

\bigr) 
+

\sigma 

p+ 2
up+2

\biggr) 
dx,(3)

and we have restricted ourselves to the finite domain x \in [0, L]. Thus, (2) provides a convenient
setting to use the spectral stability theory of [7]. In this manuscript, we derive criteria for
instability of small-amplitude periodic solutions of (2) and we show how the numerical results
match perturbative approximations stemming from the theory. The focus of this work is on
high-frequency instabilities, away from the origin in the spectral plane. In other words, we do
not discuss the modulational or Benjamin--Feir instability.

The stability theory for the third-order KdV and modified KdV equations and their gen-
eralizations with different nonlinearities is well established, both for solutions defined on the
whole line and for periodic solutions; see, for instance, [13] and references therein. In contrast,
the literature for stability studies of the Kawahara equation and its generalizations is limited.
For whole-line solutions, Bridges, Derks, and Gottwald [4] devise a computational method
using Evans functions to examine the stability of solitary-wave solutions to fifth-order KdV
equations with polynomial nonlinearities and they show where instabilities arise. Haragus,
Lombardi, and Scheel [10] consider stability of periodic solutions to the Kawahara equation.
They conclude that waves whose amplitude scales as the 5/4th power of the wave speed are
stable. Our results are not restricted to this scaling regime, nor are we limited to the specific
Kawahara nonlinearity. Our focus is on the spectral stability of periodic small-amplitude trav-
eling waves of (2). In particular, we examine how these waves behave if they are perturbed
by high-frequency disturbances of any period. We start by applying the theory of [7], where
we have shown that a third-order KdV equation does not exhibit high-frequency instabilities.

Our problem falls within the general class of problems studied by Haragu\c s and Kapitula
[9] and Johnson, Zumbrun, and Bronski [12] or, computationally, Deconinck and Kutz [6]:
a Floquet--Bloch decomposition is used to decompose the instability spectrum (consisting of
a collection of curves) into a union of point spectra, corresponding to perturbations with a
specific Floquet exponent; see below.

The equations we analyze have two dispersive terms, which depending on the sign of \alpha 
and \beta , allow for two linear waves with different wavenumbers to travel at the same speed.
Since such equations are often used to describe water waves in the long-wave regime where the
forces of gravity and surface tension are both important [15, 23], our study gives insight into
the mechanism for instability in the context of more complicated equations describing water
waves. It is known that equations admitting bidirectional waves can exhibit high-frequency
instabilities [7, 5] and, in this work, we show that resonance provides another mechanism,
even in the context of one-directional wave propagation.

Resonant phenomena are not only interesting from a stability perspective, but they also
affect the asymptotic analysis of solutions. Haupt and Boyd [11] showed how to modify
the series representation (Stokes expansion) of a resonant or near-resonant solution. They
presented numerical results near the resonant regime, discussing how resonance affects the
ordering of the coefficients for the asymptotic series expansion. Akers and Gao [3] considered
near-bichromatic solutions to models with a quadratic nonlinearity and a general dispersion
relation. We consider a dispersion relation containing both third- and fifth-order terms, while
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allowing for a general nonlinearity. We construct an asymptotic form of the solutions near
and away from resonance and we show how the asymptotic representation of the solutions
indicates stability properties depending on the regime the solution is in.

There is a vast amount of literature on the stability of solutions in the context of the full
Euler equations and only the most relevant references are discussed here. Eigenvalues of the
spectral stability problem for the water wave problem using an approach that takes advantage
of its Hamiltonian nature, are considered by MacKay and Saffman [18]. Not restricting the
results to solutions to a particular period, Zufiria [26] noted that more general bifurcations
exist in a weakly nonlinear regime which can be described by p : q resonances and was able
to compute nonsymmetric waves. Away from the resonant regime, it has been noted by
McLean [19] that an instability can be described by an Nth-order interaction that grows at
order N . Akers [2] further discussed the relationship between the Nth-order interaction and
the collision of unstable eigenvalues in the spectral stability problem. Moreover, he related
the instabilities arising from the classical resonant interaction theory (for a summary see [8])
to instabilities that arise from using Floquet--Bloch decomposition. For resonant solutions
describing water waves, it has been shown that an asymptotic expansion for the solutions
follows a similar pattern to the work of Haupt and Boyd in [11] and that resonance has an
effect on the stability of these solutions.

Considering the spectral stability of traveling waves and how it changes with respect
to the amplitude of the wave for the full water wave problem was done by Nicholls in [21,
22]. In particular, the author devised a criterion for instability based on the breakdown of
the series expansions for eigenvalues as a function of a small parameter representing wave
amplitude. Akers and Nicholls [1] extended the analysis to include surface tension. The
authors computed perturbation series expansions of the eigenvalues and included numerical
computations showing that oppositely signed eigenvalue collisions did not lead to instability for
a fixed Floquet parameter. In this work, we examine the dependence of instabilities not only
on wave amplitude, but also on Floquet parameter using both numerics and a perturbation
series expansion.

The layout of the paper is as follows. In section 2 we derive a necessary condition for
instability and discuss how it is impacted by resonance. In section 3, we derive asymptotic
approximations to solutions and matrices describing spectral stability, in particular, focusing
on Kawahara and more general equations. We illustrate numerically how well these asymptotic
results work in section 4. We conclude in section 5.

2. Instability criteria for small-amplitude solutions. We begin by deriving a criterion
for the instability of a traveling wave solution, involving \alpha , \beta , and \sigma , without requiring the
functional form of this solution. Using this criterion, we are able to look at a particular form
of the solutions and their perturbations in different parameter regimes. Moving to a frame of
reference traveling at speed V , we obtain

ut = V ux + \alpha uxxx + \beta u5x + \sigma 
\bigl( 
up+1

\bigr) 
x
.(4)

Let u(0)(x) be a stationary solution of period L of (4) (corresponding to a traveling wave
solution of (1)) and u(1)(x) a small perturbation of this solution such that

u(x, t) = u(0)(x) + \delta e\lambda tu(1)(x) +O(\delta 2)(5)
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with \delta small, using separation of variables to justify the time dependence of the first-order
term.

At zeroth order in \delta , the steady-state problem for a traveling wave with speed V is given
by

V u(0)x + \alpha u(0)xxx + \beta u
(0)
5x + \sigma 

\Bigl[ 
(u(0))p+1

\Bigr] 
x
= 0,(6)

where u(0)(x) is periodic with period L. Using the scaling symmetry of the equation, we may
choose L = 2\pi , so that

u(0)(x) =
\infty \sum 

n= - \infty 
\^u
(0)
k eikx.(7)

At first order in \delta , using (5) in (4) gives

\lambda u(1) = V u(1)x + \alpha u(1)xxx + \beta u
(1)
5x + \sigma (p+ 1)

\Bigl[ \Bigl( 
u(0)

\Bigr) p
u(1)

\Bigr] 
x
.(8)

We do not restrict the perturbation u(1)(x) to have the same period as u(0)(x). By Floquet's
theorem [6], all bounded solutions of (8) are of the form

u(1)(x) = ei\mu x
\infty \sum 

m= - \infty 
\^u(1)m eimx + c.c.,(9)

where \mu \in [0, 1/2) is the Floquet parameter and c.c. denotes the complex conjugate. Equation
(8) is a spectral problem where eigenfunctions corresponding to \lambda with Re(\lambda )> 0 give rise to
unstable perturbations u(1)(x).

For small-amplitude waves, the nonlinear term in (8) can be neglected. This implies that
our perturbative analysis applies regardless of the exponent of the nonlinearity. Using (7) and

omitting the nonlinear term, the coefficient of \^u
(0)
k in the steady-state problem (6) is

ikV0  - ik3\alpha + ik5\beta = 0,(10)

so that

V0 = k2\alpha  - k4\beta .(11)

Here V0 is the leading-order term in the \delta -expansion of V . We choose the first Fourier co-

efficient \^u
(0)
1 as a free parameter, so that k = 1 and V0 = \alpha  - \beta . This gives the bifurcation

point (0, V0) in the (\^u
(0)
1 , V )-plane from which nonzero solutions emanate. However, if for

k = K \not = 1

\beta =
\alpha 

K2 + 1
,(12)

then the two modes with wavenumbers k = 1 and k = K travel with the same speed and

there are two free coefficients \^u
(0)
1 and \^u

(0)
K in (7). This is referred to as resonance and the



STABILITY TO THE KAWAHARA EQUATION 2765

resulting solutions exhibit Wilton ripples. We begin our analysis by considering solutions
without resonances, but extend this analysis to include solutions in the resonant regime.

Using (9), the spectral problem (8) in Fourier space to leading order in \delta is

\lambda \mu 
m = i(m+ \mu )V0  - i(m+ \mu )3\alpha + i(m+ \mu )5\beta ,(13)

leading to a purely imaginary spectrum and the conclusion that the zero solution is spectrally
stable since perturbations in (5) do not grow exponentially in time. Spectrally unstable
perturbations require Re(\lambda ) > 0. Since (1) is Hamiltonian, the spectrum of (4) is symmetric
with respect to both the real and imaginary \lambda axis, and for every element of the spectrum with
Re(\lambda ) > 0, there is another one for which Re(\lambda ) < 0. The spectrum depends continuously
on the amplitude of the solution. As the amplitude increases, a pair of purely imaginary
eigenvalues may collide, after which they can leave the imaginary axis symmetrically. This
requires that for a given perturbation with Floquet parameter \mu , there is a pair (m,n) such
that

\lambda \mu 
m = \lambda \mu 

n \in i\BbbR .(14)

These eigenvalues will vary with the amplitude of the solution as we move up the solution
bifurcation branch and therefore their location in the complex plane will change. This implies
that the Floquet parameter \mu for which they collide will also change.

For fixed \alpha , we can ensure a \lambda \mu 
n and \lambda \mu 

m collide by choosing

\beta = \alpha 
(m+ \mu )(1 - (m+ \mu )2) - (n+ \mu )(1 - (n+ \mu )2)

(m+ \mu )(1 - (m+ \mu )4)(n+ \mu )(1 - (n+ \mu )4)
(15)

with a bifurcation branch starting at V0 = \alpha  - \beta . We refer to this as a generalized resonance
condition: a resonance between modes with wavenumbers \mu + m and \mu + n, which are not
restricted to be 2\pi periodic. The regular resonance condition (12) is obtained from (15) by
imposing \mu = 0 and m = 1. We conclude that the only mechanism for an instability to occur
for a small-amplitude solution for the fifth-order KdV equation, is due to the presence of the
parameter \beta , leading to a generalized resonance.

In general, it is easier to check for eigenvalue collisions without imposing \mu \in [0, 1/2).
Instead we consider the ``unfolded"" version of the collision condition given by

\lambda \mu 
0 = \lambda \mu 

| m - n| \in i\BbbR .(16)

We emphasize that this condition depends on the difference between the Fourier modes of the
perturbation, i.e., on | m - n| . In order for an instability to occur, the condition

5\beta \mu 4 + 10\beta \=n\mu 3 + (10\beta \=n2  - 3\alpha )\mu 2 + (5\beta \=n3  - 3\alpha \=n)\mu + \beta \=n4  - \alpha \=n2 + V0 = 0(17)

must be satisfied. This is obtained from (16) by substituting the form of \lambda from (13), with
\=n = | m - n| . This simplifies to a fourth-order polynomial in \mu . This is a condition for collisions
to occur at zero amplitude. Even if this condition is not satisfied for a particular choice of
\alpha and \beta , instabilities may result from eigenvalue collisions for nonzero amplitude solutions
along the bifurcation branch. In what follows, we replace \=n by n, to ease notation.
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As the amplitude is increased from zero, collided eigenvalues move in a way that conserves
the total energy (Hamiltonian) of the system. For eigenvalues to move off the imaginary
axis, they need to have opposite sign contributions to the Hamiltonian [7], i.e., their Krein
signatures are opposite [17, 18]. For solutions of small amplitude of a system of the form (2),
it is straightforward to compute the Krein signatures \kappa (\lambda \mu 

n), \lambda 
\mu 
n \not = 0 [7]:

\kappa (\lambda \mu 
n) = sgn

\biggl( 
\omega (n+ \mu )

n+ \mu 

\biggr) 
.(18)

It follows [7] that colliding eigenvalues \lambda \mu 
0 and \lambda \mu 

n have opposite Krein signatures if and only
if

s = \mu (\mu + n) < 0.(19)

In [16], we prove a general result that shows the quartic equation (17) is rewritten in terms
of s as

5\beta s2 + (5\beta n2  - 3\alpha )s+ \beta n4  - \alpha n2 + V0 = 0.(20)

Without loss of generality, we let \alpha = 1 and we focus on the V0 = \alpha  - \beta = 1  - \beta solution
branch. The criterion for both roots of the above quadratic equation to be negative is given
by [16]

\beta > max

\biggl( 
3

5n2
,

1

n2 + 1

\biggr) 
,(21)

in which case the colliding eigenvalues have opposite signature. Furthermore, the bound above
which there are no collisions is [7]

\beta < min

\biggl( 
6

5n2
,

1

(n/2)2 + 1

\biggr) 
.(22)

The stability region given by the bounds (21) and (22) is shown in Figure 1. In this figure,
the line to the left of which the collisions are all of the same Krein signature is given by
\beta = 3/(5n5) for n <

\sqrt{} 
12/7 and \beta = 1/(n2 + 1) for n \geq 

\sqrt{} 
12/7. The line to the right of

which there are no collisions is given by \beta = 6/(5n2) for n <
\sqrt{} 

3/2 and by \beta = 1/(n2/4 + 1)
for n \geq 

\sqrt{} 
3/2. If a point is on the left line (black), then we have stability. If a point is on

the right line (red), then it meets the criterion for instability (see [16] for more details and a
rigorous proof).

3. Asymptotic analysis. We examine the possible instability regions for a nonzero am-
plitude solution. Small-amplitude solutions to generalized KdV equations are straightforward
to compute perturbatively. First we integrate the zeroth order, steady-state equation (6) to
obtain

V u(0) + \alpha u(0)xx + \beta u
(0)
4x + \sigma (u(0))p+1 + const. = 0.(23)



STABILITY TO THE KAWAHARA EQUATION 2767

Figure 1. The shaded regions represent the areas in the \beta  - n space for which there are no predicted
instabilities.

Using (7), reality of the solutions requires \^u
(0)
k = u

(0)
 - k. The solution is constructed as a cosine

series:

u(0) = a0 +
\infty \sum 
n=1

an cos(nx).(24)

As mentioned above, we use u
(0)
1 = a1 as a small parameter so that the solution contains the

k = 1 mode. The integration constant in (23) may be equated to zero or, alternatively, we
may choose a0 = 0.

With the solution in hand, we substitute (9) into (8) to examine the resulting stability
spectral problem

\lambda 

\infty \sum 
m= - \infty 

\^u(1)m eimx = i

\infty \sum 
m= - \infty 

\bigl[ 
V (m+ \mu ) - \alpha (m+ \mu )3 + \beta (m+ \mu )5

\bigr] 
\^u(1)m eimx

+ \sigma (p+ 1)\partial x

\Biggl[ 
(u(0)(x))p

\infty \sum 
m= - \infty 

\^u(1)m eimx

\Biggr] 
.(25)

Multiplying by e - ikx and integrating over one period,

\lambda \^u
(1)
k = i

\bigl[ 
V (k + \mu ) - \alpha (k + \mu )3 + \beta (k + \mu )5

\bigr] 
\^u
(1)
k

+ \sigma 
p+ 1

2\pi 

\int 2\pi 

0
\partial x

\Biggl[ 
(u(0)(x))p

M\sum 
m= - M

\^u(1)m eimx

\Biggr] 
e - ikxdx.(26)

We focus on two different cases for the nonlinearity, p = 1 and p = 2. This allows us
to write down the form of the matrix entries for the stability problem explicitly in terms
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of the coefficients of (24). From Figure 1, we see that for sufficiently small \beta , there is a
limited number n of modes representing the unperturbed solution, giving rise to eigenvalue
collisions which can lead to instabilities through Hamilton--Hopf bifurcations. In order to
capture all possible instabilities, it is reasonable to truncate the Fourier series expansion (9)
of the perturbation at M modes, with 2M \geq n. Since only pairwise eigenvalue collisions are
considered, two modes contribute to each collision. We can isolate these modes and examine
the resulting 2\times 2 matrix. The region of validity of the pairwise analysis shrinks as n increases.
To get more accurate results, we consider increasingly larger matrices, increasing M in (26).

3.1. Kawahara equation: \bfitp = 1. The series solution (24) for (6) with p = 1 is obtained
from the recurrence relation

(V  - \alpha k2 + \beta k4)ak =  - \sigma 

2

\infty \sum 
n=k

anan - k  - 
\sigma 

2

k\sum 
n=0

anak - n.(27)

As stated above, we construct a formal perturbation series for the solution. We restrict
ourselves to small-amplitude waves. Since the solution bifurcates away from the zero amplitude
solution at V = V0 = \alpha  - \beta , we let a1 = \epsilon with \epsilon small. By dominant balance we obtain at
leading order

a0 =  - \sigma 

2

1

V0
a21 +O(\epsilon 3),(28)

a2 =  - \sigma 

2

1

V0  - 22\alpha + 24\beta 
a21 +O(\epsilon 3),(29)

a3 =  - \sigma 

2

1

V0  - 32\alpha + 34\beta 
(2a2a1) +O(\epsilon 4),(30)

a4 =  - \sigma 

2

1

V0  - 42\alpha + 44\beta 
(a22 + 2a3a1) +O(\epsilon 5),(31)

and so on, where we need to ensure the resonance condition V0 - k2\alpha +k4\beta = 0 is not satisfied
for k = 2, 3, 4 so the perturbation series is well ordered.

Note that for the above to work at all orders, it is necessary that V is expanded as a series
in \epsilon as well:

V =
\infty \sum 
n=0

\epsilon nVn(32)

with V0 = \alpha  - \beta . For our purposes, the explicit form of the other terms is not needed. From
the equations for the Fourier coefficients an, it is easy to see that modes an with odd index
n contain only odd powers of \epsilon , because we are grouping coefficients multiplying eikx using a
quadratic nonlinearity. It follows from (27) that V can only contain even powers of \epsilon .

We normalize the solution so that a0 = 0 by adjusting V using (24) in (23). This allows
us to obtain the expression for ak by rearranging (27) as

ak =  - \sigma 

2

1

V0  - k2\alpha + k4\beta 
ck\epsilon 

k +O(\epsilon k+1),(33)
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where ck is independent of \epsilon . We note that in the case of resonance for k = K, the coefficient
aK is of lower order than \epsilon K (i.e., this coefficient is more important than in the nonresonant
case). We show this numerically in section 4.

For the Kawahara equation (p = 1), the stability spectral problem (26) simplifies to

\lambda \^u
(1)
k = i

\bigl[ 
V (k + \mu ) - \alpha (k + \mu )3 + \beta (k + \mu )5

\bigr] 
\^u
(1)
k + 2\sigma i(\mu + k)

\infty \sum 
m= - \infty 

\^u(0)m \^u
(1)
(k - m).(34)

Denoting the vector of the Fourier coefficients by \vec{}U (1) = (\^u
(1)
 - M , . . . , \^u

(1)
 - 1, \^u

(1)
1 , . . . , \^u

(1)
M )T , the

spectral problem is written as a system in the form

\lambda \vec{}U (1) = S\vec{}U (1).(35)

We write the matrix S as

S = iD + iT,(36)

where the diagonal matrix D is read off from (13) so that

dm,n =

\Biggl\{ 
(n+ \mu )V  - (n+ \mu )3\alpha + (n+ \mu )5\beta for m = n,

0 for m \not = n.
(37)

It follows that the (not necessarily off-diagonal) matrix T is determined by the nonlinearity.
It is given by

tm,n = 2\sigma 

\Biggl\{ 
0 for m = n,

(\mu  - M +m - 1)a| n - m| for m \not = n.
(38)

Here M is the number of modes in the truncated expression for the perturbation given by
(9). We observe that for a zero-amplitude solution, T = 0 and S is diagonal as expected. To
retain the fourfold symmetry for the eigenvalues of a Hamiltonian system, it is necessary to
include the complex conjugate of u(1)(x).

We consider pairwise collisions of eigenvalues. For example, if we choose the parameters
\alpha = 1 and \beta = 1/4, the only real solutions to (17) occur for \=n = | m - n| \leq 3. In other words,
for those parameters we only need M = 2 to capture all the instabilities since the perturbation
has modes m =  - 2, - 1, 1, 2 with the largest difference between modes | m  - n| = 4. More
specifically, in order to know the information about collisions between only two modes, we
can focus on a 2 \times 2 matrix T . It is worth noting that a collision between modes m =  - 2
and n =  - 1 is equivalent to a collision between modes m = 2 and n = 1 due to symmetry.
Similarly, a collision between modes m =  - 2 and n = 1 is the same as between m = 2 and
n =  - 1 and, thus, considering both cases is redundant.

Arguably the most interesting case is that of (m,n) = ( - 2, - 1). We study the perturbation
of the eigenvalues by examining the block matrix

S( - 2, - 1) = i

\biggl( 
 - V ( - 2+\mu )+\alpha ( - 2+\mu )3 - \beta ( - 2+\mu )5 \sigma (\mu  - 2)a1

\sigma (\mu  - 1)a1  - V ( - 1+\mu )+\alpha ( - 1+\mu )3 - \beta ( - 1+\mu )5

\biggr) 
.

(39)
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We can explicitly compute the eigenvalues \=\lambda \mu 
 - 2, - 1 of S( - 2, - 1), where the bar denotes that

these eigenvalues are perturbations of the eigenvalues in (13). We obtain

\=\lambda \mu 
 - 2, - 1 =

i

2

\biggl[ 
d - 1, - 1 + d - 2, - 2 \pm 

\sqrt{} 
(d - 1, - 1  - d - 2, - 2)2 + 4\sigma 2a21(\mu  - 1)(\mu  - 2)

\biggr] 
.(40)

Since d - 1, - 1 \approx d - 2, - 2 near the collision, eigenvalues with nonzero real part are obtained if

(\mu  - 2)(\mu  - 1) < 0,(41)

which is equivalent to the Krein signature condition in [7], discussed in more detail in [16].
The exponential growth rate of the instability is proportional to a1 = O(\epsilon ) = O(\epsilon | m - n| ) with
m =  - 2 and n =  - 1, consistent with [18].

For the collision between modes m =  - 1 and n = 1, we consider the matrix

S( - 1, 1) = i

\biggl( 
 - V ( - 1+\mu )+\alpha ( - 1+\mu )3 - \beta ( - 1+\mu )5 \sigma (\mu  - 1)a2

\sigma (\mu + 1)a2  - V (1+\mu )+\alpha (1+\mu )3 - \beta (1+\mu )5

\biggr) (42)

with eigenvalues

\=\lambda \mu 
 - 1,1 =

i

2

\biggl[ 
d - 1, - 1 + d1,1 \pm 

\sqrt{} 
(d - 1, - 1  - d1,1)2 + 4\sigma 2a22(\mu  - 1)(\mu + 1)

\biggr] 
.(43)

The condition for the eigenvalue to have a nonzero real part is given by

(\mu + 1)(\mu  - 1) < 0,(44)

which is again equivalent to the Krein signature condition. The exponential part of the growth
rate for this instability is proportional to a2 = O(\epsilon 2) = O(\epsilon | m - n| ) with | m - n| = 2.

The last case we consider is the collision between modes m =  - 2 and n = 1:

S( - 2, 1) = i

\biggl( 
 - V ( - 2+\mu )+\alpha ( - 2+\mu )3 - \beta ( - 2+\mu )5 \sigma (\mu  - 2)a3

\sigma (\mu + 1)a3  - V (1+\mu )+\alpha (1+\mu )3 - \beta (1+\mu )5

\biggr) (45)

with eigenvalues

\=\lambda \mu 
 - 2,1 =

i

2

\biggl[ 
d - 2, - 2 + d1,1 \pm 

\sqrt{} 
(d - 2, - 2  - d1,1)2 + 4\sigma 2a23(\mu  - 2)(\mu + 1)

\biggr] 
.(46)

The condition for the eigenvalues to have a nonzero real part close to their collision is

(\mu  - 2)(\mu + 1) < 0,(47)

equivalent again to the Krein signature condition. The exponential growth rate, i.e., the real
part of the eigenvalue, is proportional to a3 = O(\epsilon 3) = O(\epsilon | m - n| ) with m =  - 2 and n = 1.

An accurate approximation of the instability growth rate requires the inclusion of all the
modes aj . The inclusion of more modes results in more accurate estimates, but becomes more
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cumbersome as block matrices of increasingly larger size must be dealt with. In practice, it
is most relevant to include the modes aj with j \in [m,n]. For instance, for the example of
colliding eigenvalues with m =  - 2 and n = 1, we consider the eigenvalues of a 3\times 3 matrix

\=S( - 2, - 1, 1) = i

\left(  d - 2, - 2 \sigma (\mu  - 2)a1 (\mu  - 2)a3
\sigma (\mu  - 1)a1 d - 1, - 1 \sigma (\mu  - 1)a2
(\mu + 1)a3 \sigma (\mu + 1)a2 d1,1

\right)  .(48)

In section 4, we demonstrate the growth rates of the instability as a function of \epsilon numerically
for particular parameters. The analytical expression for the eigenvalues are too cumbersome
to analyze.

3.2. Modified fifth-order KdV equation (\bfitp = 2). We repeat the above process for (1)
with p = 2. In a moving frame, the stationary problem is

V u(0) + \alpha u(0)xx + \beta u
(0)
4x =  - \sigma (u(0))3.(49)

As in the previous section, we truncate at N = 4 and set V0 = \alpha  - \beta . We find a0 = 0, a2 = 0,
and a4 = 0, giving the same order of approximation as for the quadratic nonlinearity. Further

a3 \approx 
\sigma 

V  - 9\alpha + 81\beta 
a31,(50)

provided that \beta \not = \alpha /10 (the resonance condition). As before, to balance the higher-order
terms in each of the equations, we introduce an expansion for the wave speed given by (32).
Since for k even, ak = 0, every odd term in \=V is zero, as in the case p = 1.

We compute the stability matrix by considering (26) with p = 2 and substituting the
expansion (9) for u(1). After performing the appropriate truncations, multiplying by e - ikx,
and integrating with respect to x, we obtain D as in (37) whereas the contribution from the
nonlinear term is
(51)

T = 3\sigma 

\left(     
2(\mu  - 2)(a21 + a23) 0 0 2(\mu  - 2)a1a3

0 2(\mu  - 1)(a21 + a23) (\mu  - 1)[a21 + 2a1a3] 0

0 (\mu + 1)[a21 + 2a1a3] 2(\mu + 1)(a21 + a23) 0

2(\mu + 2)a1a3 0 0 2(\mu + 2)(a21 + a23)

\right)     .

The stability matrix for p = 2 is more sparse than for p = 1 since the coefficients of the even-
order terms in the cosine series for u(0) are zero. We note that there is a nonzero contribution
to the diagonal terms for the full matrix S.

We can repeat the same analysis as for p = 1 to determine for which colliding eigenvalues,
indexed by m and n, we get instabilities. In this case, the analysis is simplified by the presence
of many zeros in the matrix T . For example, the eigenvalues of the matrix S( - 2, - 1) are given
by

\=\lambda \mu 
 - 2, - 1 =

\Biggl\{ 
i
\bigl[ 
 - V ( - 2 + \mu ) + \alpha ( - 2 + \mu )3  - \beta ( - 2 + \mu )5 + 6\sigma (\mu  - 2)(a21 + a23)

\bigr] 
,

i
\bigl[ 
 - V ( - 1 + \mu ) + \alpha ( - 1 + \mu )3  - \beta ( - 1 + \mu )5 + 6\sigma (\mu  - 1)(a21 + a23)

\bigr] 
,

(52)
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and are purely imaginary. This implies the ( - 2, - 1) collision does not result in instabilities,
up to this order. When considering the ( - 1, 1) collision, it is no longer straightforward to
analyze when the eigenvalues develop a nonzero real part. Specifically, it is no longer easy to
see how the Krein condition from [7] enters.

4. Computational analysis. To illustrate the concepts we described above, we use numer-
ical solvers implemented in MATLAB. The coefficients in the series expansions for solutions to
the KdV equation can be found analytically at all orders, but in practice it is more convenient
to use floating point calculations of these coefficients. We solve (23) for p = 1 and p = 2 for
both nonresonant and resonant cases, varying the coefficient \beta to get to the different regimes.

We proceed as in section 3. We treat a1 as a parameter and (V, a2, a3, . . . , aN )T as un-
knowns. We use a numerical continuation method by choosing a small value for a1, computing
a true solution using a Newton method. We scale the result and use it as an initial guess to
compute a larger amplitude solution. This produces the bifurcation branches shown in the
top-left corner of Figures 4--8. The wave profiles for the steady-state Kawahara equation
(49) for the largest amplitude wave computed are shown in Figure 2 with \beta = 1/4 (left,
nonresonant) and \beta = 1/5 (right, resonant). The wave profiles for the steady-state modified
fifth-order KdV equation (49) for the largest amplitude wave computed are shown in Figure 3
with the nonresonant profile on the left with \beta = 1/4 and the resonant profile with \beta = 1/10
on the right. For the resonant profiles in these figures, we see that the main wave resembles a
cosine, and there are smaller-amplitude oscillations of higher frequency, referred to as Wilton
ripples in the context of water waves [25].

To analyze how the coefficients a2, . . . , aN depend on a1, we show log-log plots for resonant
and nonresonant regimes with a linear fit and the slope of that fit labeled as m on each plot
of Figures 4--8. We consider the nonresonant case with \beta = 1/4 for the Kawahara equation
(p = 1) in Figure 4 and those of the modified fifth-order KdV equation (p = 2) in Figure 5.
The coefficients for the resonant K = 2 mode with \beta = 1/5 are shown in Figure 6. We see that
a2 grows like O(\epsilon ), in contrast to O(\epsilon 2) in the nonresonant case. Note that for the resonant

Figure 2. Two sample wave profiles for (6) with p = 1, with the wave profile for \alpha = 1, \beta = 1/4 on the
left and \alpha = 1, \beta = 1/5 (resonant, K = 2), on the right.
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Figure 3. Two sample wave profiles for (49) (p = 2) with the wave profile for \alpha = 1, \beta = 1/4 on the left
and \alpha = 1, \beta = 1/10 (resonant, K = 3) regime on the right.

Figure 4. Fourier coefficients of a branch of solutions of (6) with p = 1 with \alpha = 1 and \beta = 1/4. The top
left figure shows the bifurcation branch of the first Fourier mode a1 as a function of the speed of the wave V .
Subsequent plots display Fourier coefficients aj versus a1 (i.e., the small parameter) on a log-log plot compared
to a line with the labeled slope. We see that ak = O(\epsilon k).

solutions, the bifurcation branch has a turning point. If we change which mode is resonant,
e.g., K = 5, by equating \beta = 1/26, we see that the ordering of the modes with respect to the
powers of \epsilon changes such that now a5 = O(\epsilon 3) as shown in Figure 7. This is similar to the
result shown in [11]. For the modified fifth-order KdV equation, only odd-index modes are
resonant as shown in Figure 8 where with K = 3, a3 is the dominant resonant coefficient.

To analyze the stability of the obtained solutions, we compute the matrices (25) with p = 1
for Kawahara and p = 2 for a modified fifth-order KdV equation. We check the number of
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Figure 5. Fourier coefficients of a branch of solutions of (49) (p = 2) with \alpha = 1 and \beta = 1/4. The top
left figure shows the bifurcation branch of a1 as a function of V . Subsequent plots display Fourier coefficients
aj versus a1 (i.e., the small parameter) on a log-log plot fitted to a line with the labeled slope. We see that
ak = O(\epsilon k) with even-order coefficients equal to zero.

Figure 6. Fourier coefficients of a branch of solutions of (6) with p = 1 in the resonant regime with K = 2,
\alpha = 1, and \beta = 1/5. The top left figure is the bifurcation branch of a1 as a function of V . Subsequent plots
display Fourier coefficients plotted versus the first Fourier mode a1 (i.e., the small parameter) on a log-log plot
compared to a line with the labeled slope. We see that both a1 = O(\epsilon ) (by assumption) and a2 = O(\epsilon ).
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Figure 7. Fourier coefficients of a branch of solutions of (6) with p = 1 in the resonant regime with K = 5,
\alpha = 1, and \beta = 1/26. The top left figure shows the bifurcation branch of a1 as it depends on V , followed by
log-log plots of aj versus a1, and a line with the labeled slope. We have that a1 = O(\epsilon ) (by assumption) and
the resonant mode a5 = O(\epsilon 3).

Figure 8. Fourier coefficients of a branch of solutions of (49) with p = 2 in the resonant regime with
K = 3, \alpha = 1, and \beta = 1/10. The top left figure is the bifurcation branch of a1 as a function of V , followed
by log-log plots of aj versus a1, with a line of the labeled slope. We have that a1 = O(\epsilon ) by assumption, and
a3 = O(\epsilon ). The solutions contain no even modes.
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Figure 9. The eigenvalues \lambda \mu 
n given by (13) for \alpha = 1 and \beta = 1/4. The panel on the right is a magnification

near the horizontal axis of the panel on the left with the three unique collisions labeled.

Table 1
The list of collisions obtained from solving (17) with \alpha = 1 and \beta = 1/4. The collision label is equal to the

order of the growth rate of the instability. The resulting numerical stability analysis is shown in Figures 10--12.

| m - n| \mu Im(\lambda ) Signature Conclusion

1 0.7845  - 0.1798 same stable
2 0.6324 0.2277 different instability possible
3  - 0.7928 0.2128 different instability possible

Fourier modes needed to capture the instabilities by examining how many eigenvalue collisions
exist for a given \beta . For example, with \beta = 1/4, there are 3 unique collisions as seen in Figure
9. There we plot several eigenvalues \lambda \mu 

n without restricting the Floquet parameter \mu to be in
[ - 1/2, 1/2]. Instead, we show the ``unfolded"" eigenvalues. Table 1 gives the numerical values
of the Floquet parameter \mu for which these collisions occur. The signature column in the table
refers to the Krein signature for the colliding eigenvalues.

In order to see if instability arises as the amplitude increases, we compute the eigenvalues
for the linearization around a nonzero amplitude solution. We compare these numerically
computed eigenvalues for a perturbation that contains many Fourier modes with the eigen-
values obtained analytically from the 2 \times 2 matrices for \beta = 1/4. The results are shown in
Figures 10--12. The analytically obtained expressions of the eigenvalues are labeled with red
circles and the numerical results are labeled with blue crosses. An avoided collision is shown in
Figure 10 for a small-amplitude solution with the numerical and asymptotic results in perfect
agreement. The numerical precision is O(10 - 12), and the numerical results for the real part
are showing zero, effectively. We see that for parameter regimes where the necessary condi-
tion for instability is met, this appears in the numerical results. As illustrated in Figures 11
and 12, by comparing the eigenvalue collisions for solutions of nonzero amplitude using the
perturbative calculation from the 2 \times 2 matrix and using the numerical results for a matrix
containing many Fourier modes of the perturbation, we see that for (m,n)-collisions resulting
in higher-order growth rates, it is necessary to consider matrices taking into account all modes
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Figure 10. The real and imaginary part of the spectrum for a1 = 10 - 3 near the location of the collision
labeled as 1 in Figure 9. The theory predicts that this collision does not result in an instability, and this is
verified here. On the left is Im(\lambda ) versus the Floquet parameter \mu . On the right is Re(\lambda ). Red circles label
every tenth point of the asymptotic prediction from the 2\times 2 matrix given by (40) and the blue crosses label the
numerical computations for a larger 16\times 16 matrix.

Figure 11. The real and imaginary part of the spectrum for a1 = 10 - 3 near the location of the collision
labeled as 2 in Figure 9. The theory predicts that this collision may result in an instability, and it is verified
here that it does. On the left is Im(\lambda ) versus the Floquet parameter \mu . On the right is Re(\lambda ). Red circles label
every tenth point of the asymptotic prediction from the 2 \times 2 matrix given by (43) and the blue crosses label
the numerical computations for a larger 16\times 16 matrix. This illustrates that collisions resulting in higher-order
growth rates require the consideration of matrices of larger size.

between m and n. Not doing so results in poor comparisons between the perturbative and
numerical results for the value of the Floquet parameter for which the collision occurs.

Next we vary \beta , resulting in a different number of eigenvalue collisions. For example, in
the resonant regime with the lowest resonant mode at K = 2, many eigenvalues collide at
the origin, seen in Figure 13. However, for K = 2 (and \beta = 1/5), there are collisions only
for \lambda = 0 and we cannot compute a definite signature. We examine how eigenvalues evolve



2778 O. TRICHTCHENKO, B. DECONINCK, AND R. KOLL\'AR

Figure 12. The real and imaginary part of the spectrum for a1 = 10 - 3 near the location of the collision
labeled as 3 in Figure 9. The theory predicts that this collision may result in an instability, and it is verified
here that it does. On the left is Im(\lambda ) versus the Floquet parameter \mu . On the right is Re(\lambda ). Red circles label
every tenth asymptotic prediction from the 2\times 2 matrix given by (43) and the blue crosses label the numerical
computations for a larger 16\times 16 matrix. This illustrates that collisions resulting in higher-order growth rates
require the consideration of matrices of larger size.

Figure 13. The eigenvalues \lambda \mu 
n given by (13) for \alpha = 1 and \beta = 1/5 (resonant regime with K = 2) with

the plot on the right showing the region around the horizontal axis where the only collisions happens.

as the amplitude is increased by examining the case with a single eigenvalue collision at the
origin, as shown in Figure 14. We see (right column) that these eigenvalues move away from
the origin and a second instability develops (more easily seen in the first column) where the
resonant harmonic interacts with the perturbation. These unstable eigenvalues interact and
the graph of their spectrum becomes less ellipsoidal as the amplitude increases. These results
are easy to compute numerically, but the asymptotic expansions are unwieldy, emphasizing
the benefit of the numerical approach.

Figure 15 is identical to Figure 1, but using a value of \beta = 3/160 for the horizontal line
determining the number of instabilities. For this value there are 14 collisions, but only 7 with
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Figure 14. Spectra for \alpha = 1 and \beta = 1/5 for which there is only one collision at the origin for zero
amplitude, as shown in Figure 13. In the left column we show which perturbations (as determined by the
Floquet parameter) are unstable with which growth rate. On the right the spectrum in the complex plane is
displayed. Moving down, the amplitude of the solution increases. The observed instabilities originate from
\mu = 0, move away from the origin, and interact with each other.
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Figure 15. Summary of the stability regions with the red line showing the value of \beta = 3/160 and the
intersection at | m - n| = 14.

opposite Krein signature. In this case, we can summarize what happens for each eigenvalue
collision in Table 2. This shows perfect agreement between our numerics and theory.

5. Conclusion and discussion. The main result of this work is the demonstration that
small-amplitude stability criteria for the fifth-order KdV equation reduce to considering the
roots of a quadratic equation. The full characterization of the stability is given in Figure 1.
By considering different forms of the nonlinearity, this analysis is extended to show how these
instabilities depend on the small amplitude using a perturbation expansion of the solutions.
These perturbation results are validated with numerical computations. The main criterion for
having any possibility for an instability is the existence of a generalized resonance as in (12).

As is seen from the computations, even when the nonlinearity and the growth rate of the
instability are small, we deviate from the asymptotic results as seen in Figures 11 and 12.
This implies it is necessary to proceed to higher order in the perturbation expansion and we
may have to consider the perturbations of eigenvalues for the full matrix. Even at the order
of our analysis, we see that the Floquet parameter for which an instability occurs changes
even for small-amplitude solutions. This is why the instabilities are hard to find numerically,
without any theoretical input. They are of small magnitude and appear for Floquet parameters
different than the parameter for the collisions for zero-amplitude solutions. The perturbation
expansion informs the numerical procedure and allows us to narrow down the parameter range
where the instability can occur.

We may repeat this analysis for different dispersive equations by using the theory of
[16], for example, for the Whitham or similar equations. The resulting polynomial equation
determining the Krein signature will be of higher (than second) polynomial order. If only
two dispersive terms are present, the bounds for where instabilities are found are given ex-
plicitly in [16]. If more terms are present, Sturm's theorem can be used to methodically
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Table 2
The list of all collisions obtained from solving (17) for \alpha = 1 and \beta = 3/160 with the numerical evaluations

in the right column verifying the conclusions column.

| m - n| \mu Im(\lambda ) Signature Conclusion Numerics

1 5.09 62.82 same stable

2 5.48 51.62 same stable

3 4.79 35.98 same stable

4 5.02 19.78 same stable

5 4.16 7.09 same stable

6 4.23 0.595 same stable

7 3.24  - 0.219 same stable

8  - 3.23  - 0.305 different
instability
possible

9 2.27  - 3.22 different
instability
possible

10 2.36  - 13.41 different
instability
possible

11 1.49  - 29.71 different
instability
possible

12 1.64  - 49.13 different
instability
possible

13 0.74  - 64.87 different
instability
possible

14 0.69  - 57.60 different
instability
possible



2782 O. TRICHTCHENKO, B. DECONINCK, AND R. KOLL\'AR

determine how many negatively signed collisions exist depending on the parameters in the
equation.

In this work, we have focused on small solutions with small perturbations. This allowed
us to keep very few terms in the perturbation expansion for the solutions, their perturbations,
and the growth rates. In general, more terms in the expansion can be kept. This leads to larger
matrices. The perturbation of the eigenvalues of these matrices can be considered by using
the theory available in [14]. For fully nonlinear solutions, numerical computations remain the
fastest and easiest way to obtain the full spectrum showing all the unstable perturbations.
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