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In this manuscript, we consider the Cauchy problem for a Schrödinger system with

power-type nonlinearities

{
i ∂

∂t u j + �u j +∑m
k=1 a jk |uk |p|u j |p−2u j = 0,

u j (x, 0) = ψ j0(x),
where

u j : RN × R → C, ψ j0 : RN → C for j = 1, 2, . . . , m and ajk = akj are positive
real numbers. Global existence for the Cauchy problem is established for a certain
range of p. A sharp form of a vector-valued Gagliardo-Nirenberg inequality is
deduced, which yields the minimal embedding constant for the inequality. Using
this minimal embedding constant, global existence for small initial data is shown
for the critical case p = 1 + 2/N. Finite-time blow-up, as well as stability of
solutions in the critical case, is discussed. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4774149]

I. INTRODUCTION

The nonlinear Schrödinger (NLS) equation

iut + �u ± |u|2u = 0, (1.1)

where u is a function of (x, t) ∈ RN × R, arises in many situations. Equation (1.1) describes
the evolution of small-amplitude, slowly varying wave packets in a nonlinear medium.5 Indeed,
it has been derived in such diverse fields as waves in deep water,28 plasma physics,29 nonlinear
fiber optics,12, 13 magneto-static spin waves,30 and many other settings. Similarly, the m-component
coupled nonlinear Schrödinger (CNLS) system with power-type nonlinearities

i
∂

∂t
u j + �u j +

m∑
k=1

a jk |uk |p|u j |p−2u j = 0, (1.2)

with x ∈ RN , and j = 1, . . . , m, where uj are complex-valued functions of (x, t) ∈ RN × R and
ajk = akj are positive real numbers, arises under conditions similar to those described by Eq. (1.1).
CNLS models physical systems in which the field has more than one component. For example, in
optical fibers and waveguides, the propagating electric field has two components that are transverse
to the direction of propagation. The CNLS system also arises in the Hartree-Fock theory for a two-
component Bose-Einstein condensate, i.e., a binary mixture of Bose-Einstein condensates in two
distinct hyperfine states. In almost all of these applications, N = 1 and p = 2. Readers are referred
to various other works5, 12, 13, 28, 29 for the derivation and applications of this system.

The energy E and the component mass Q for the system (1.2) are defined, respectively, as

E(u1, . . . , um) = 1

2

m∑
j=1

∫
RN

|∇u j (x, t)|2 dx − 1

2p

m∑
j,k=1

a jk

∫
RN

|u j (x, t)|p|uk(x, t)|p dx, (1.3)

Q(u j ) =
∫
RN

|u j (x, t)|2 dx, (1.4)
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for j = 1, 2, . . . , m. Their conservation is an important ingredient for our proof of the global existence
of solutions.

Notation: For 1 ≤ p ≤ ∞, we denote by L p = L p(RN ) the space of all measurable functions f

on RN for which the norm ‖ f ‖p = (∫RN | f |p dx
) 1

p is finite for 1 ≤ p < ∞ and ‖f‖∞ is the essential
supremum of |f| on RN . Whether we intend the functions in Lp to be real-valued or complex-valued
will be clear from context. H 1(RN ) is the usual Sobolev space consisting of measurable functions
such that both f and its first spatial derivative are in L2. We define the space

H(m) = H 1(RN ) × . . . × H 1(RN )︸ ︷︷ ︸
m

.

If T > 0 and Y is a Banach space, we denote by C([0, T], Y) the Banach space of continuous
maps f: [0, T] → Y, with norms ‖ f ‖C([0,T ],Y ) = supt∈[0,T ] ‖ f (t)‖Y .

We study the well-posedness of the Cauchy problem for system (1.2) in the space H(m). In other
words, for a certain range of p, we examine the existence and uniqueness of solutions to⎧⎪⎨

⎪⎩ i
∂

∂t
u j + �u j +

m∑
k=1

a jk |uk |p|u j |p−2u j = 0,

u j (x, 0) = ψ j0(x),

(1.5)

where u j : RN × R → C, ψ j0 : RN → C for j = 1, 2, . . . , m and ajk = akj are positive real numbers.
This is analogous to the case of the single (focusing) NLS equation{

i
∂

∂t
v + �v + |v|2αv = 0,

v(x, 0) = ψ(x),
(1.6)

for v : RN × R → C and ψ : RN → C. It is well known that the local critical exponent for the H1

local well-posedness of Eq. (1.6) is α = 2/(N − 2).6, 7 Indeed, one can use a contraction mapping
technique based on Strichartz estimates6, 7 or Kato’s fixed-point method14 to prove that Eq. (1.6) is
locally well posed in H 1(RN ) for 0 ≤ α < 2/(N − 2), (0 ≤ α < ∞ if N = 1, 2). To establish a
global result, the conservation of

E(v) = 1

2

∫
RN

|∇v(x, t)|2 dx − 1

2α + 2

∫
RN

|v(x, t)|2α+2 dx

is used to obtain an a priori estimate for extending the unique solution by a continuation argument
in the case 0 ≤ α < 2/N. In the critical power case α = 2/N, Weinstein27 showed that the local
well-posedness result can be extended to a global one, provided that the L2-norms of the initial
data are small enough. More precisely, it was shown that the minimal constant C = Cα, N for the
interpolation estimate due to Gagliardo and Nirenberg

‖ f ‖2α+2
2α+2 ≤ C2α+2

α,N ‖∇ f ‖αN
L2 ‖ f ‖2+α(2−N )

L2 , (1.7)

for 0 ≤ α < 2/(N − 2) if N ≥ 3, and 0 ≤ α < ∞ if N = 1, 2 is

Cα,N =
(

α + 1

‖φ‖2α
L2

) 1
2α+2

, (1.8)

where φ is the ground state (positive solution of minimal L2-norm27) solution of

αN

2
�φ −

(
1 + α

2
(2 − N )

)
φ + φ2α+1 = 0.

Using this minimal constant, Weinstein showed that for α = 2/N, a sufficient condition for the
global existence of solutions to Eq. (1.6) is

‖ψ‖L2 < ‖�‖L2 ,
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where � is the unique, positive, radial solution of

�u − u + u
4
N +1 = 0.

It is useful to point out that the constant Cα, N is related to the L2-norm of any ground-state
solution of Eq. (1.1), and that it depends only on the dimension N and power α. Thus, it is easily
estimated numerically.

Another question relevant for nonlinear systems such as system (1.2) is the existence and stability
of nontrivial solutions (u1, . . . , um), that is, solutions with m nonzero components. Such solutions
are referred to as co-existing or vector solutions. For system (1.2), there are many semitrivial
(or collapsing) solutions, which are vector solutions with at least one, but not all, components
identically zero. In these cases, the system collapses into a system with fewer components. For
example, Nguyen and Wang19 show that for a 2-component coupled system (m = p = 2 and N = 1),
there are obstructions to the existence and stability of nontrivial solutions with all components
positive (a solution of (1.2) is called positive if each component is of the form eiαtR(x) with R(x) a
real-valued positive function). Roughly speaking, in order to have positive nontrivial solutions, the
nonlinear couplings have to be either small or large. In this situation, multiple solutions of system
(1.2) exist and it is nontrivial to classify and distinguish solutions. Many works1–4, 9, 15–18, 21, 22, 25, 26

concern 2-component systems or systems with small couplings. Despite the partial progress made
so far, many questions remain and little is known for m-component systems with m ≥ 3.

It is the aim of this paper to establish the well-posedness result as well as to investigate the
analogous properties of solutions mentioned above for the m-component coupled system (1.2). The
case m = 2 has been studied1, 2, 10, 11, 23 and standard scaling arguments suggest the local critical
exponent for the local well-posedness in H(m) is p = N/(N − 2). Indeed, it is well-known that for
the equation

iut + �u + |u|αu = 0

the critical nonlinearity is α = 4/(N − 2). (See, for example, Refs. 6 and 7) Due to the L2, H1-scalings
of uj, exact same calculation gives p = N/(N − 2) as the critical exponent for our system. (See also
Remark 1.1 below.) Thus, the methods mentioned above for establishing local existence for Eq. (1.6)
in H1, namely, the contraction mapping technique based on Strichartz estimates,6, 7 or Kato’s fixed
point method,14 can be used to establish local well-posedness of system (1.2) in H(m) for p < N/(N
− 2). The following bounds for the nonlinear terms are crucial. Let u = (u1, u2, . . . , um). Equate

g j (u) =
m∑

k=1

a jk |uk |p|u j |p−2u j .

For every K > 0, there exists L(K) < ∞ such that for almost all x ∈ RN and all u, v such that
|u j |, |v j | ≤ K ,

|g j (u) − g j (v)| ≤ c1L(K )
m∑

k=1

|uk − vk |, (1.9)

where c1 is a positive constant and{
L(K ) ∈ C ([0,∞)) , with 2 ≤ p < ∞ if N = 1, 2,

L(K ) ≤ K 2p−2, with 2 ≤ p < 3 if N = 3.

To derive Eq. (1.9), we have used∥∥u j |2p−2u j − |v j |2p−2v j

∣∣ ≤ max{|u j |2p−2, |v j |2p−2}|u j − v j |, (1.10a)

∥∥uk |p|u j |p−2u j − |vk |p|v j |p−2v j

∣∣ ≤ max{|uk |p|u j |p−2, |vk |p|v j |p−2} ∣∣u j − v j

∣∣
≤ K 2p−2|u j − v j |.

(1.10b)
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Remark 1.1: The use of (1.10b) necessitates 2 ≤ p in order to use the contraction mapping
technique based on Strichartz estimates;6, 7 and when coupled with p < N/(N − 2), it is implied that
2 ≤ p < 3 when N = 3. This condition puts a restriction on the applicable range of p for dimension
1 ≤ N ≤ 3 for the proof of local existence and for N = 1 for the proof of global existence.

Remark 1.2: It is worth pointing out that there are cases when 1 ≤ p is allowed. For example, if
uj = Aju for some real constants Aj, then the system (1.2) is uncoupled and the result follows directly
from Cazenave,6, 7 provided the initial data are related accordingly.

One technical point deserves some comments here. It was claimed by Fanelli and Montefusco11

and Song23 that the local well-posedness result for m = 2 follows from the contraction mapping
argument for 1 ≤ p < N/(N − 2) (the power has been re-scaled here for comparison). While it is
true that there are instances when 1 ≤ p is acceptable as mentioned above, it appears the range for p
cannot be extended to include p < 2 in general due to Remark 1.2 and thus the claim is doubtful. It
may be possible that other methods allow for the local well-posedness when 1 ≤ p < N/(N − 2) in
which case results in this paper hold for all dimensions N.

Recall the following inequality due to Gagliardo and Nirenberg:20

P(ψ1, ψ2, . . . , ψm) : = 1

2p

m∑
j,k=1

a jk

∫
RN

|ψ j |p|ψk |p dx

≤ c

⎛
⎝ m∑

j=1

‖∇ψ j‖2
2

⎞
⎠

(p−1)N
2
⎛
⎝ m∑

j=1

λ j‖ψ j‖2
2

⎞
⎠

N−p(N−2)
2

.

(1.11)

This allows the use of the conserved quantity E(u1, u2, . . . , um) associated with the system
(1.2) to obtain an H(m)-bound on the solutions in order to obtain global existence in the case p < 1
+ 2/N. (See, for example, Theorem 6.1.1 in Cazenave.7)

Theorem 1.1: Let p < 1 + 2/N. For any (ψ10, . . . , ψm0) ∈ H(m), there exists a unique solution
(u1, . . . , um) ∈ C([0,∞);H(m)) and the Cauchy problem (1.5) is globally well posed in H(m).

Remark 1.3: To extend the local existence result to a global one, we require p < 1 + 2/N as
the nonlinear terms can then be controlled by the H1 –norm of the solution, a sufficient condition
for a continuation argument (see, for example, Theorem 6.1.1 of Ref. 7). Recall that for the local
existence, the contraction method we used above requires that 2 ≤ p to have Lipschitz continuity.
The condition p < 1 + 2/N when coupled with 2 ≤ p < N/(N − 2) for local existence implies that N
= 1. Thus, we refrain from putting the restriction 2 ≤ p in the above Theorem since if other methods
allow for 1 ≤ p in local existence (which we know is true for at least one case as mentioned in the
Remark 1.2) then global existence follows, so long as p < 1 + 2/N.

The manuscript is organized as follows. Section II summarizes progress that has been made for
system (1.2) as well as its associated elliptic system (2.1) and gives a statement of our contribution.
A sharp form of the vector-valued Gagliardo-Nirenberg inequality is established in Sec. III. This
yields an a priori estimate needed for global existence of solutions in the case p < 1 + 2/N, along
with the minimal embedding constant for the Gagliardo-Nirenberg inequality. Using this minimal
embedding constant, global existence for small initial data is shown for the case p = 1 + 2/N
in Sec. IV. Finite-time blow-up and stability of solutions in the global critical power case (p = 1
+ 2/N) are discussed in Sec. V.
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II. STATEMENT OF RESULTS

Consider standing wave solutions of the form u j (t, x) = eiλ j tψ j (x), with λj > 0. Substituting
this into the first equation of (1.5), one obtains the associated elliptic system

−�ψ j + λ jψ j =
m∑

k=1

a jk |ψk |p|ψ j |p−2ψ j . (2.1)

When p = 2 or m = 2, much is known about this system.1, 3, 4, 9, 15–18, 21, 22, 25, 26 In these references,
various methods were employed to construct solutions for various parameter regimes. In particular,
Wei and Yao24 studied the associated elliptic system when p = m = 2, a11 = μ1, a12 = a21 = β, a22

= μ2, λ1 = λ2 = λ: {�u − λu + μ1u3 + βuv2 = 0,

�v − λv + μ2v
3 + βu2v = 0

(2.2)

with N ≤ 3. Complete classifications in the case of N = 1 and partial answers in the case N = 2, 3
were given in by Wei and Yao.24 When p = m = 2 and N ≤ 3, there exists 
 > 0, depending on λj,
ajk > 0, such that system (2.1) has a vector ground-state solution provided a12 > 
.2 The case p = 2,
λj = λ, N ≤ 3 and general m were studied by Bartsch and Wang.3

Since we will discuss the elliptic system (2.1) for which the restriction 2 ≤ p is not required,
and since, as pointed out in the Introduction, there are cases when 1 ≤ p allows for local existence,
we will assume henceforth that 1 ≤ p unless otherwise stated.

First, we show that the minimal constant CN ,p,a jk ,λ j in the vector-valued Gagliardo-Nirenberg
inequality(1.11) is achieved through a minimization problem and

CN ,p,a jk ,λ j = P(ψ∗
1 , ψ∗

2 , . . . , ψ∗
m)

with (ψ∗
1 , ψ∗

2 , . . . , ψ∗
m) being minimizer (see Lemma 3.2). Using this minimal embedding constant,

we deduce that the Cauchy problem (1.5) is also well posed in the critical power case p = 1 + 2/N
provided the initial data are sufficiently small. More precisely,

Theorem 2.1: Let (ψ10, . . . , ψm0) ∈ H(m) and C = CN ,p,a jk ,λ j . If p = 1 + 2/N, then there exists
a unique solution (u1, . . . , um) ∈ C([0,∞);H(m)) of the Cauchy problem (1.5) so long as

m∑
j=1

λ j‖ψ j0‖2
2 <

(
1

2C

) N
2

. (2.3)

Theorem 2.2 gives sufficient conditions for blow-up of solutions of system (1.5).

Theorem 2.2: When 1 + 2/N ≤ p < N/(N − 2), there exists 0 < T < ∞ such that

lim
t→T

m∑
j=1

‖∇u j‖2 = +∞,

provided any of the following three holds:

(i) E < 0;

(ii) E = 0, and Im
∫
RN

m∑
j=1

(x · ∇ψ j0)ψ j0 dx < 0;

(iii) E > 0, and Im
∫
RN

m∑
j=1

(x · ∇ψ j0)ψ j0 dx < −
√

2E · V (0).

Even though the minimal constant CN ,p,a jk ,λ j can be expressed in terms of P(ψ∗
1 , ψ∗

2 , . . . , ψ∗
m),

the description of minimizers in general is difficult. This is due to the fact that not much is known
about the associated elliptic system (2.1) when m ≥ 3 (even for the case p = 2).

We make the following two assumptions,
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(P1): (symmetry condition) λj ≡ λ, ajj = μj, ajk ≡ β (j �= k) for j, k = 1, 2, . . . m;
(P2): (existence condition) the coupling coefficient β > 0 is either

(i) sufficiently small, or
(ii) β > max {μ1, μ2}, if m = 2, p = 2.

Notice that the assumptions (P1)-(P2) lead to a focusing model. Without loss of generality,
assume that λ = 1. The system takes the form

−�ψ j + ψ j = μ j |ψ j |2p−2ψ j + β
∑
k �= j

|ψk |p|ψ j |p−2ψ j (2.4)

with m ≥ 2 and N ≤ 3. Let ω be the unique positive radial solution of

−�ω + ω = ω2p−1, (2.5)

where x ∈ RN and ω(|x|) → 0 as |x| → ∞.

Theorem 2.3: For β > 0 small enough, there exists a unique positive vector solution to system
(2.4).

Theorem 2.4: Let ω be defined as above. Then system (2.4) has a positive vector solution �*
that can be written in terms of ω, provided any of the following two hold:

(i) p = 2 and 0 < β < min 1 ≤ j ≤ m{μj} or β > max 1 ≤ j ≤ m{μj};
(ii) 1 < p �= 2, for any β.

Remark 2.1: The case m = p = 2 has been proved many times before.2, 11, 24 Theorems 2.3
and 2.4, proved in Sec. III guarantee existence of a positive vector solution whose components are
constant multiples of ω. Moreover, when β > 0 is small enough, the positive vector solution is
unique. Thus, any ground-state solution has identical components equal to the scalar solution.

It follows immediately from Theorems 2.2, 2.3, and 2.4 in the critical power case p = 1 + 2/N
that the solutions for the m-system (1.2) are unstable. Therefore, the condition in Theorem 2.1 is
sharp.

Theorem 2.5: Assume (P1) holds and λ = 1, then the minimal constant in the vector Gagliardo-
Nirenberg inequality (1.11) is

1. for β > 0 sufficiently small

CN ,p = min{μ1, . . . , μm} p(N − p(N − 2))
N (p−1)−2

2

2(N (p − 1))
N (p−1)

2 ‖ω‖2p−2
2

2. when m = p = 2, β > max {μ1, μ2},

CN = μ1 + μ2 − 2β

μ1μ2 − β2

(4 − N )
N−2

2

N
N
2 ‖ω‖2

2

.

Remark 2.2: The above Theorem generalizes the results obtained by Fanelli and Montefusco11

in a couple of aspects. They only discussed the case m = 2 (the 2-system); moreover, the discussion
was restricted to the super-symmetric situation where μ1 = μ2 = 1. Here, we study the general
m –system where the μj are not necessarily the same. In particular, our constants CN, p generalize
those obtained in Theorem 2 by Fanelli and Montefusco11 for the super-symmetric 2-system.

Theorem 2.6: Let p = 1 + 2/N, and suppose that (P1) and (P2) hold. Then the H(m)-solution
of (2.4) is unstable for the m-system (1.2) in the following sense. Let ψ = (ψ1, . . . , ψm) ∈ H(m),
(ψ �= 0) solve system (2.4). Then, for any δ > 0, there is an m-vector function ξ with ‖ξ − ψ‖2 < δ,
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such that for (u1(t, x), . . . , um(t, x)) the solution of system (1.5) with uj(x, 0) = ξ j attains

lim
t→T −

m∑
j=1

‖∇u j (t)‖2 = ∞,

for some 0 < T < ∞.

Note that this theorem follows immediately from Theorem 2.2.

III. MINIMAL CONSTANT FOR THE VECTOR-VALUED GAGLIARDO-NIRENBERG
INEQUALITY

First, we present the proof of Theorem 2.3, which guarantees the uniqueness of a positive vector
solution to system (2.4) when β > 0 is sufficiently small.

Proof: Define the following functional �β : H(m) → R,

�β(ψ1, . . . , ψm)= 1

2

m∑
j=1

(‖∇ψ j‖2
2 + ‖ψ j‖2

2)− 1

2p

⎛
⎝ m∑

j=1

μ j‖ψ j‖2p
2p + β

∫
RN

∑
j,k=1, j �=k

|ψ jψk |p dx

⎞
⎠ .

(3.1)

It is well known that �0 has a unique positive and radial solution6, 7

(ψ∗
1 (x), . . . , ψ∗

m(x)) =
((

1

μ1

) 1
2p−2

ω(x), . . . ,

(
1

μm

) 1
2p−2

ω(x)

)
,

where ω is the unique positive radial solution to equation (2.5). Moreover, the Hessian
�′′

0(ψ∗
1 , . . . , ψ∗

1 ) is invertible. By the implicit function theorem, there exist β0 > 0, r0 > 0 and
a map φ : (−β0, β0) → Br0 (ψ∗

1 , . . . , ψ∗
m) ⊂ H(m) such that for any β ∈ ( − β0, β0), �β(ψ1, . . . ,

ψm) = 0 has a unique solution (ψ1, . . . , ψm) = φ(β) in Br0 (ψ∗
1 , . . . , ψ∗

m).
To complete the argument, one needs to show that the set of positive radial solutions to system

(2.4) is compact for bounded β. The method used here is borrowed from Dancer and Wei.8 By
standard regularity theory, ψ∗

j ∈ C2(R) for each j = 1, . . . , m. Here, we consider the ψ∗
j ’s as

functions of one variable. Thus, on any finite interval the solution sequence {(ψ l
1, . . . , ψ

l
m)}∞l=1 has a

convergent subsequence. In order to show compactness, it suffices to show the sequence of solutions
uniformly vanishes as r → ∞.

Claim: For any ε > 0, 1 ≤ j ≤ m, there exists rε > 0, such that

m∑
j=1

ψ l
j (rε) < ε, ∀l ∈ N. (3.2)

Note that ψ l
j is positive and decreasing in r so (3.2) indicates the uniform decay of the sequence in

L∞. Suppose that the claim is false, then there exists a subsequence (still denoted by {(ψ l
1, . . . , ψ

l
m)})

and α > 0, such that

α = ψ l
1(r j ) + ψ l

2(r j ) + . . . + ψ l
m(r j ). (3.3)

By shifting the origin to rj and letting ε → 0, one obtains a nontrivial solution (ψ1, ψ2, . . . ,
ψm) on R of the system

−ψ ′′
j = −ψ j + μ jψ

2p−1
j +

m∑
k �= j

βψ
p−1
j ψ

p
k , (3.4)
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where j, k = 1, 2, . . . , m, and
∑m

j=1 ψ j (0) = α. Note ψ j ≥ 0 are bounded and decreasing on R.
Denote

ψ+
j = lim

r→∞ ψ j (r ), ψ−
j = lim

r→−∞ ψ j (r ).

Then (ψ+
1 , . . . , ψ+

m ) and (ψ−
1 , . . . , ψ−

m ) both solve the equations

ψ j = μ jψ
2p−1
j + β

m∑
k �= j

ψ
p−1
j ψ

p
k , j, k = 1, 2, . . . , m.

Since
∑m

j=1 ψ+
j ≤ α, by choosing α arbitrarily small, we see that ψ+

j = 0. If ψ1 does not van-
ish identically, then ψ−

1 > 0 and 1 = μ1(ψ−
1 )2p−2 + β

∑m
j=2(ψ−

j )p. Hence, ψ1(−1 + (ψ1)2p−2 +
β
∑m

j=2(ψ j )p) < 0 on R and therefore ψ ′′
1 > 0 on R. Consequently, ψ1 is strictly concave up and

bounded on R, which is impossible. Thus, the claim holds and Theorem 2.3 follows. �

Remark 3.1: Notice that Theorem 2.3 does not require μj ≡ μ.

Theorem 2.4 provides sufficient conditions for the existence of a positive vector solution to (2.4)
whose components are constant multiples of ω, where ω is defined as in (2.5). We prove it now.

Proof: Case (i). System (2.4) becomes

−�ψ j + ψ j = μ j |ψ j |2ψ j + βψ j

m∑
k �= j

|ψk |2, m ≥ 2. (3.5)

If 0 < β < min {μj} or β > max {μj}, a direct calculation shows the above system has solutions of
the form

�∗ = (ψ1, ψ2, . . . , ψm) =
(√

(�−1
)1w,
√

(�−1
)2w, . . . ,
√

(�−1
)mw
)

, (3.6)

where

� =

⎛
⎜⎜⎜⎝

μ1 β . . . β

β μ2 . . . β
...

...
. . .

...
β β . . . μm

⎞
⎟⎟⎟⎠ , 
 =

⎛
⎜⎜⎜⎝

1
1
...
1

⎞
⎟⎟⎟⎠ , (3.7)

and (� − 1
)j denotes the jth component of the m-vector. Therefore, Lemma 2.4 is proved in this
case.

Case (ii). We use mathematical induction. First, let us look at the case m = 2. Assume ψ1(x)
= Aω(x), ψ2(x) = Bω(x) solve system (2.4) for some A, B > 0. Then, one has the following algebraic
system:

μ1 A2p−2 + β Ap−2 B p = 1, (3.8a)

μ2 B2p−2 + β Ap B p−2 = 1. (3.8b)

Subtracting Eq. (3.8a) from Eq. (3.8b) and letting t = B/A, one arrives at the following continuous
function:

g(t) := μ2t2p−2 − βt p + βt p−2 − μ1.

One can claim that for fixed 1 < p and p �= 2, there exists t0 > 0 such that g(t0) = 0. Indeed:

(a) If p > 2, then g(0) = − μ1 < 0 and g(1) = μ2 − μ1 > 0, thus there exists t0 ∈ (0, 1) such
that g(t0) = 0.
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(b) If 1 < p < 2, then g(1) = μ2 − μ1 > 0 and g(M) < 0 for some M > 0, thus there exists t0 > 1
such that g(t0) = 0.

Substituting B = t0A into Eq. (3.8)

A =
(

1

μ1 + βt p
0

) 1
2p−2

, and

B = t0

(
1

μ1 + βt p
0

) 1
2p−2

.

Consequently, the solution of (2.4) can be represented as

ψ1(x) = 1

(μ1 + βt p
0 )

1
2p−2

ω(x),

ψ2(x) = t0

(μ1 + βt p
0 )

1
2p−2

ω(x).

Thus, case (ii) is proved for m = 2.
As it is shown above, the key step is finding solutions of (3.8). Notice that solving system (3.8)

for A and B is the same as finding the positive zeroes of the auxiliary function g. This idea can be
generalized to m equations.

In the case m = 3, one needs to solve

μ1 A2p−2 + β Ap−2(B p + C p) = 1,

μ2 B2p−2 + βB p−2(Ap + C p) = 1,

μ3C2p−2 + βC p−2(Ap + B p) = 1.

(3.9)

Subtracting the first equation from the second and the third equation separately, and setting t
= B/A, s = C/A,

μ2t2p−2 + βt p−2(1 + s p) = μ1 + β(t p + s p),

μ3s2p−2 + βs p−2(1 + t p) = μ1 + β(t p + s p).
(3.10)

Denote

g1(t, s) = μ2t2p−2 + βt p−2(1 + s p) − μ1 − β(t p + s p),

g2(t, s) = μ3s2p−2 + βs p−2(1 + t p) − μ1 − β(t p + s p).

One needs to find t0, s0 > 0 such that g1(t0, s0) = 0 and g2(t0, s0) = 0.
Due to the symmetric structure of (3.9), without loss of generality, let us assume that:

(i) if 1 < p < 2, then μ1 > max {μ2, μ3};
(ii) if p > 2, then μ1 < min {μ2, μ3}.

In subcase (i), for each s ∈ [0, 1],

g1(1, s) = μ2 − μ1 < 0,

and g(T0, s) > 0, where

T0 =
(

β

μ1 + β

) 1
2−p

.

Thus, there exists ts ∈ (T0, 1) such that g1(ts, s) = 0. Define

S := {(ts, s)|s ∈ [T0, 1]},
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then S ⊂ [T0, 1] × [T0, 1] is a continuous curve, and

g2(t1, 1) = μ3 − μ1 < 0, g2(tT0 , T0) > 0,

i.e., the function g2 changes sign along S. Since g2 is also continuous, there exists a point on this
line (ts0 , s0) such that g2(ts0 , s0) = 0. Consequently, system (3.9) is solvable.

In subcase (ii), for each s ∈ [0, 1], g1(0, s) = − μ1 − βsp < 0 and g1(1, s) = μ2 − μ1 ≥ 0.
Thus, there exists ts ∈ (0, 1] such that g1(ts, s) = 0, and

S := {(ts, s)|s ∈ [0, 1]}
is a continuous curve. On the other hand, g2(t0, 0) = −μ1 − βt p

0 < 0 and g2(t1, 1) = μ3 − μ1 > 0.
Hence, the function g2 changes signs along S. Since g2 is also continuous, there exists a point on
the line (ts0 , s0) such that g2(ts0 , s0) = 0. Thus, system (3.9) is also solvable in this case.

Consider next the system of (m + 1) equations,

μ j A2p−2
j + β Ap−2

j

∑
k �= j

Ap
k = 1, (3.11)

with j = 1, 2, . . . , m + 1. The proofs for 1 < p < 2 and p > 2 run parallel to the arguments
shown above and thus, we omit the details for case 1 < p < 2 and only discuss the case p > 2.
Without loss of generality, assume that μ1 < min 2 ≤ j ≤ m{μj}. One now has at hand m continuous
functions g1(t1, . . . , tm), . . . , gm(t1, . . . , tm). The zeros of these m functions will yield a solution of the
system (3.11).

By induction, for each fixed s ∈ [0, 1] and 1 ≤ j ≤ m − 1, g j |tm=s has a root ((t1, . . . , tm − 1)s,
s). Thus,

S = {((t1, . . . , tm−1)s, s), s ∈ [0, 1]}
is a continuous curve on which the first (m − 1) functions are identically zero. On the other hand,

gm((t1, . . . , tm−1)0, 0) < 0,

and

gm((t1, . . . , tm−1)1, 1) ≥ 0.

Continuity of gm implies there exists s0 ∈ (0, 1] such that

gm((t1, . . . , tm−1)s0 , s0) = 0.

Since ((t1, . . . , tm−1)s0 , s0) ∈ S,

g j ((t1, . . . , tm−1)s0 , s0) = 0 for j = 1, . . . , m − 1.

Therefore, there exists a zero for the m functions, which in turn yields a solution to the system
(3.11). Hence, case (ii) is proved. Thus, Theorem 2.4 is proved. �

Remark 3.2: As a special case of Theorem 2.4, when μj ≡ μ for all j, the system takes the form

−�ψ j + ψ j = μ

m∑
j=1

|ψ j |2p−2ψ j + βψ j

m∑
k �= j

|ψk |p|ψ j |p−2ψ j

with m ≥ 2, and straightforward calculations show that it has a positive vector solution

(
ψ∗

1 (x), . . . , ψ∗
m(x)

) =
((

1

μ + (m − 1)β

) 1
2p−2

ω(x), . . . ,

(
1

μ + (m − 1)β

) 1
2p−2

ω(x)

)
.

Next, we turn our attention to finding the minimal constant in the vector-valued Gagliardo-
Nirenberg inequality that corresponds to the system (1.5), i.e., the constant CN ,p,a jk ,λ j in inequality
(1.11). This is established using the framework outlined by Weinstein.27
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Let J : H(m) → R be defined as

J (ψ1, ψ2, . . . , ψm) :=
(∑m

j=1 ‖∇ψ j‖2
2

)(p−1) N
2
(∑m

j=1 λ j‖ψ j‖2
2

)[N−p(N−2)]/2

P(ψ1, ψ2, . . . , ψm)
. (3.12)

A minimal constant is determined by the equation

α := 1

CN ,p,a jk ,λ j

= inf
(ψ1,...,ψm )∈H(m)

J (ψ1, . . . , ψm). (3.13)

Lemma 3.1: The minimum value for Eq. (3.13) is achieved and the minimizer (ψ∗
1 , . . . , ψ∗

m) can
be selected such that

m∑
j=1

‖∇ψ∗
j ‖2

2 = 1 =
m∑

j=1

λ j‖ψ∗
j ‖2

2. (3.14)

Proof: For ψ j ∈ H1 and any ν, μ > 0 let ψ
ν,μ

j (x) = νψ j (μx). Then,

‖∇ψ
ν,μ

j ‖2
2 = ν2μ2−N ‖∇ψ j‖2

2, ‖ψν,μ

j ‖2
2 = ν2μ−N ‖ψ j‖2

2,

‖ψν,μ

j ‖2p
2p = ν2pμ−N ‖ψ j‖2p

2p, ‖ψν,μ

j ψ
ν,μ

k ‖p
p = ν2pμ−N ‖ψ jψk‖p

p.

Therefore, J (ψν,μ

1 , . . . , ψ
ν,μ
m ) = J (ψ1, ψ2, . . . , ψm), for any (ψ1, . . . , ψm) ∈ H(m).

Let {(ψ s
1 , ψ

s
2 , . . . , ψ

s
m)} be a minimizing sequence for Eq. (3.13). Set

νs =
(∑m

j=1 λ j‖ψ s
j ‖2

2

) N−2
4

(∑m
j=1 ‖∇ψ j‖2

2

) N
4

,

μs =
(∑m

j=1 λ j‖ψ s
j ‖2

2∑m
j=1 ‖∇ψ j‖2

2

) 1
2

.

By the above scaling invariance, {((ψ s
1 )νs ,μs , (ψ s

2 )νs ,μs , . . . , (ψ s
m)νs ,μs )} is also a minimizing sequence.

Moreover,

m∑
j=1

‖∇(ψ s
j )

νs ,μs ‖2
2 = 1,

m∑
j=1

λ j‖(ψ s
j )

νs ,μs ‖2
2 = 1

for each s ∈ N.

By Schwarz symmetrization,27 one can take (ψ s
j )

νs ,μs (x) = (ψ s
j )

νs ,μs (|x |). According to the
properties of symmetrization, the sequence of radial functions is also a minimizing sequence
and is bounded in H(m). Therefore, there exist (ψ∗

1 , . . . , ψ∗
m) ∈ H(m) and a subsequence, denoted

{((ψ s
1 )νs ,μs , . . . , (ψ s

m)νs ,μs )}, such that

((ψ s
1 )νs ,μs , . . . , (ψ s

m)νs ,μs ) ⇀ (ψ∗
1 , . . . , ψ∗

m)

in H(m). For p < N/(N − 2),

((ψ s
1 )νs ,μs , . . . , (ψ s

m)νs ,μs ) → (ψ∗
1 , . . . , ψ∗

m)

in L2p × . . . × L2p.
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Strong convergence is implied by Strauss’s Compactness Lemma.27 Since the L2-norm is weakly
lower semi-continuous,

m∑
j=1

‖∇ψ∗
j ‖2

2 ≤ 1,

m∑
j=1

λ j‖ψ∗
j ‖2

2 ≤ 1.

The strong convergence in L2p implies

P((ψ s
1 )νs ,μs , (ψ s

2 )νs ,μs , . . . , (ψ s
m)νs ,μs ) → P(ψ∗

1 , . . . , ψ∗
m).

Hence,

α ≤ J (ψ∗
1 , . . . , ψ∗

m) ≤ 1

P(ψ∗
1 , . . . , ψ∗

m)
= lim

s→∞ J ((ψ s
1 )νs ,μs , (ψ s

2 )νs ,μs , . . . , (ψ s
m)νs ,μs ) = α.

Therefore, ⎛
⎝ m∑

j=1

‖∇ψ∗
j ‖2

2

⎞
⎠(p−1) N

2
⎛
⎝ m∑

j=1

λ j‖ψ∗
j ‖2

2

⎞
⎠

N−p(N−2)
2

= 1,

and consequently
m∑

j=1

‖∇ψ∗
j ‖2

2 = 1,

m∑
j=1

λ j‖ψ∗
j ‖2

2 = 1.

Combined with weak convergence, one concludes that

((ψ s
1 )νs ,μs , . . . , (ψ s

m)νs ,μs ) → (ψ∗
1 , . . . , ψ∗

m)

in H(m). Thus, α = J (ψ∗
1 , . . . , ψ∗

m) and Eq. (3.13) holds. �

Remark 3.3: It follows from the above that the components of this minimizer are nonnegative. On
the other hand, some, but not all, of its components may be identically zero. For instance, if m = 2,
λj = 1, and a12 = a21 = β ∈ (a11, a22) then the Euler-Lagrange equations corresponding to Eq.
(3.13) do not have a positive vector solution, i.e., a solution with two positive components.3

Indeed, the minimal embedding constant CN ,p,a jk ,λ j can be represented in terms of minimizer
(ψ∗

1 , . . . , ψ∗
m) as follows.

Lemma 3.2:

CN ,p,a jk ,λ j = P(ψ∗
1 , ψ∗

2 , . . . , ψ∗
m).

Proof: Minimizer (ψ∗
1 , . . . , ψ∗

m) satisfies the following Euler-Lagrange equations:

−N (p − 1)�ψ∗
j + (N − p(N − 2))λ jψ

∗
j = α

m∑
k=1

a jk |ψ∗
k |p|ψ∗

j |p−2ψ∗
j , (3.15)

where j = 1, . . . , m. Multiplying both sides of the jth equation by ψ∗
j , integrating over RN and

adding the resulting equations,

N (p − 1)
m∑

j=1

‖∇ψ∗
j ‖2

2 + (N − p(N − 2))
m∑

j=1

λ j‖ψ∗
j ‖2

2 = α

m∑
j,k=1

a jk‖ψ∗
j ψ

∗
k ‖p

p. (3.16)

Similarly, multiplying both sides of the j th equation by (x · ∇ψ∗
j ), integrating over RN and

adding the resulting equations,

(2 − N )(p − 1)
m∑

j=1

‖∇ψ∗
j ‖2

2 − [N − p(N − 2)]
m∑

j=1

λ j‖ψ∗
j ‖2

2 = −α

p

m∑
j,k=1

a jk‖ψ∗
j ψ

∗
k ‖p

p. (3.17)
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Combining (3.16) − (3.17), 1/α = P(ψ∗
1 , ψ∗

2 , . . . , ψ∗
m). Thus, the minimal embedding constant

is

CN ,p,a jk ,λ j = P(ψ∗
1 , ψ∗

2 , . . . , ψ∗
m),

and (ψ∗
1 , ψ∗

2 , . . . , ψ∗
m) is minimizer of Eq. (3.13). �

Even though the minimal constant CN ,p,a jk ,λ j can be expressed in terms of P(ψ∗
1 , ψ∗

2 , . . . , ψ∗
m),

the description of minimizers in general proves to be a difficult task. This is due to the fact that not
much is known about the associated elliptic system (2.1) when m ≥ 3 (even for the case p = 2). The
rest of this section is devoted to this.

The minimal constant of Gagliardo-Nirenberg inequality is explicitly calculated first under
conditions (P1) and (P2). As the arguments being used are slightly different for the cases p = 2 and
p �= 2, the results are presented separately.

Lemma 3.3: Let ω be the unique positive radial solution of Eq. (2.5) and p = 2.

(a) For any m ≥ 2, if β > 0 is sufficiently small, the minimizer of Eq. (3.13) has exactly one
nontrivial component and the minimal constant can be computed explicitly as

CN = min(μ1, μ2, · · · , μm} (4 − N )
N−2

2

N
N
2 ‖ω‖2

2

.

(b) In the case m = 2 and β > max {μ1, μ2},

CN = μ1 + μ2 − 2β

μ1μ2 − β2

(4 − N )
N−2

2

N
N
2 ‖ω‖2

2

.

Proof: Case (a). According to Theorem 2.3, when β > 0 is small enough Eq. (3.6) gives the
unique positive solution of system (2.1). Thus, one needs only to compare the value of J at �* with
its values at the semitrivial solutions of system (2.4).

Observe

(�−1
) j = |�|−1
m∏

k �= j

(μ̃k − β̃) = Nα

|�|(4 − N )

m∏
k �= j

(μk − β).

Using the scaling invariance of J, one obtains

J (ψ1, . . . , ψm) =
(∑m

j=1 ‖∇ψ j‖2
2

) N
2
(∑m

j=1 ‖ψ j‖2
2

) 4−N
2

P(ψ1, ψ2, . . . , ψm)

=
4
(∑m

j=1

∏m
k �= j (μk − β)

)2

∑m
j=1 μ j

∏m
k �= j (μk − β)2 + 2β

∏m
j=1(μ j − β)

· ‖∇ω‖N
2 ‖ω‖4−N

2

‖ω‖4
4

.

Denote

fm(β) =
(∑m

j=1

∏m
k �= j (μk − β)

)2

∑m
j=1 μ j

∏m
k �= j (μk − β)2 + 2β

∏m
j=1(μ j − β)

.

One can rewrite J(�*) as

J (ψ1, . . . , ψm) = fm(β)
4‖∇ω‖N

2 ‖ω‖4−N
2

‖ω‖4
4

. (3.18)

It is easy to see that

fm(0) =
(∑m

j=1

∏m
k �= j (μk − β)

)2

∑m
j=1 μ j

∏m
k �= j (μk − β)2 + 2β

∏m
j=1(μ j − β)

∣∣∣∣
β=0

=
m∑

j=1

1

μ j
.
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On the other hand, let

ψ j (x) =
√

4 − N

μ jα
ω

(√
4 − N

N
x

)
,

where j = 1, 2, . . . , m.
(Notice that as 2 = p < N/(N − 2), one has N < 4 and the square roots are well defined.) Each

(0, . . . , ψ j, . . . , 0) is a critical point of J, and

J (ψ j , 0) = 4‖∇ω‖N
2 ‖ω‖4−N

2

μ j‖ω‖4
4

. (3.19)

Comparing Eqs. (3.18) and (3.19),

J (ψ1, . . . , ψm) > max{J (ψ1, 0, . . . , 0), · · · , J (0, . . . , 0, ψm)}.
By iterative arguments, one sees that

τm > max{τm−1, τm−2, . . . , τ2} > min{τm−1, τm−2, . . . , τ2} > τ1,

where τ j = min {J(� j)} such that � j solves (3.5) with exactly j nontrivial components.
Therefore, the minimal constant is given by

CN = min{μ1, μ2, · · · , μm} (4 − N )
N−2

2

N
N
2 ‖ω‖2

2

.

Case (b). When m = 2, the unique positive solution of system (3.5) (Ref. 24) can be represented
as

�∗(x) =
(√

μ2 − β

μ1μ2 − β2
ω

(√
4 − N

N
x

)
,

√
μ1 − β

μ1μ2 − β2
ω

(√
4 − N

N
x

))
. (3.20)

Thus, one needs to compare the values of J at �* with the values at semitrivial critical points.
It suffices to show that f2(β) < min{μ−1

1 , μ−1
2 } when β > max {μ1, μ2}. This point is clear since

f2(β) − 1

μ1
= (μ1 − β)2

μ1(μ1μ2 − β2)
< 0 and

f2(β) − 1

μ2
= (μ2 − β)2

μ2(μ1μ2 − β2)
< 0.

�
Remark 3.4: The explicit representation of CN when β is large and m ≥ 3 remains an open

question. Since results on the uniqueness of a positive solution are not known, the comparison above
cannot be used.

Lemma 3.4: Let ω be the unique solution of (2.5), p �= 2. Then provided β > 0 is sufficiently
small, the minimizer of Eq. (3.13) must have exactly one nonzero component. Moreover, the minimal
constant in this case is given by

CN ,p = min {μ1, . . . , μm} p(N − p(N − 2))
N (p−1)−2

2

2(N (p − 1))
N (p−1)

2 ‖ω‖2p−2
2

. (3.21)

Proof: Notice that from Theorem 2.4, the Eq. (2.4) has a positive vector solution �* that can
be written in terms of ω, provided that β > 0 is small enough.

First, consider the case m = 2. Since J is scaling invariant, we evaluate J at (ψ∗
1 , ψ∗

2 ),

J (ψ∗
1 , ψ∗

2 ) = 2p(A2 + B2)p−1 ‖∇ω‖N (p−1)
2 · ‖ω‖N−p(N−2)

2

‖ω‖2p
2p

.
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where A, B are solutions of (3.8). Denote f2, p(β) = (A2 + B2)p − 1. It is clear that

f2,p(0) = (1 + t2
0 )p−1

μ1 + βt p
0

∣∣∣∣
β=0

= (1 + t2
0 )p−1

μ1
>

1

μ1
.

Similarly, one has f2, p(0) > 1/μ2, i.e., the unique positive solution has higher energy than the
semitrivial solutions. Thus, the minimizer must have one trivial component. Straightforward calcu-
lation using the known semitrivial solution gives the advertised minimal constant.

Next, the general case m ≥ 3 follows from induction. Consider the minimizer of J with m
components (ψ∗

1 , . . . , ψ∗
m).

J (ψ∗
1 , . . . , ψ∗

m) = 2p fm,p(β)
‖∇ω‖N (p−1)

2 · ‖ω‖N−p(N−2)
2

‖ω‖2p
2p

,

where ψ∗
j (x) = A jω

(√
N−p(N−2)

N (p−1) x
)

, with the Aj’s as given in Theorem 2.4, and

fm,p(β) =
(∑

j=1 A2
j

)p

∑
j=1 μ j A2p

j + β
∑

j �=k Ap
j Ap

k

.

Denote Aj/A1 = tj for j = 2, . . . , m, then

fm,p(β) =
(

1 +∑ j=2 t2
j

)p

μ1

(
1 +∑ j=2 t2

j

)
+ βF(t2, . . . , tm)

,

where F is polynomial in the tj’s. Therefore,

fm,p(0) =
(

1 +∑ j=2 t2
j

)p−1

μ1
>

1

μ1
.

Explicit calculation gives fm, p(0) > max {1/μ1, . . . , 1/μm}. For semitrivial solutions, similar in-
equalities can be established in a straightforward manner. Thus by the continuity of the fm, p for
small β, the minimizer of J has only one nonzero component, and the minimal constant takes the
form (3.21). �

IV. GLOBAL EXISTENCE IN THE GLOBAL CRITICAL POWER CASE

Theorem 2.1 assures that the Cauchy problem (1.5) is well posed in the critical power case p
= 1 + 2/N provided the initial data are sufficiently small. We present a proof of this now.

Proof: Denote the energy functional by

E(ψ1, . . . , ψm) = 1

2

m∑
j=1

‖∇ψ j (t)‖2
2 − P(ψ1(t), . . . , ψm(t)). (4.1)
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Using the minimal constant C = CN ,p,a jk ,λ j obtained above with p = 1 + 2/N,

m∑
j=1

‖∇ψ j (t)‖2
2 = 2E + 2P(ψ1(t), . . . , ψm(t))

≤ 2E + 2C

⎛
⎝ m∑

j=1

‖∇ψ j‖2
2

⎞
⎠(p−1) N

2
⎛
⎝ m∑

j=1

λ j‖ψ j‖2
2

⎞
⎠

N−p(N−2)
2

= 2E + 2C

⎛
⎝ m∑

j=1

‖∇ψ j‖2
2

⎞
⎠
⎛
⎝ m∑

j=1

λ j‖ψ j‖2
2

⎞
⎠

2
N

.

This implies ⎛
⎜⎝1 − 2C

⎛
⎝ m∑

j=1

λ j‖ψ j0‖2
2

⎞
⎠

2
N

⎞
⎟⎠ m∑

j=1

‖∇ψ j‖2
2 ≤ 2E . (4.2)

Therefore, if the initial data
∑m

j=1 λ j‖ψ j0‖2
2 are chosen small enough, namely

m∑
j=1

λ j‖ψ j0‖2
2 <

(
1

2C

) N
2

,

the H1-seminorm will be uniformly bounded. A standard continuation argument (see, for example,
Theorem 6.1.1 in Cazenave7) establishes the global existence of solution for system (1.5). �

Remark 4.1: Under conditions (P1) and (P2), the bound on the initial data is the same as that
given by Weinstein.27

Remark 4.2: The condition in Theorem 2.1 is sharp, that is, the bound given in Theorem 2.1 is
the smallest possible. This can be seen by considering the case where the initial data are exactly a
solitary wave. A direct calculation shows that E(ψ1, . . . , ψm) = 0.

V. FINITE TIME BLOW-UP OF SOLUTIONS AND INSTABILITY RESULT FOR p = 1 + 2/N

For 2/N ≤ α < 2/(N − 2), N ≥ 3, it has been proved27 that the L2-norms of the gradient of
solutions can blow up in finite time without restriction on the initial data. More precisely, we have:

Lemma 5.1: Let f be such that |x|f and ∇f belong to L2(RN ). Then f is in L2(RN ) and the
following estimate holds:

‖ f ‖2
2 ≤ 2

N
‖∇ f ‖2‖x f ‖2.

To show the H1-semi-norm blow-up, it suffices to show that the functional variance

V (t) =
∫
RN

|x |2
m∑

j=1

|ψ j (t, x)|2 dx (5.1)

vanishes as t → t* for some t* < ∞.

Lemma 5.2: Let (ψ1, . . . , ψm) be a solution to the system (1.5) on an interval I. Then for each t
∈ I, the variance satisfies the following identities:

V ′(t) = 4 Im
∫
RN

m∑
j=1

(x · ∇ψ j )ψ j dx, (5.2)
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V ′′(t) = 8
∫
RN

m∑
j=1

|∇ψ j |2 dx − 4N (p − 1)

p

∫
RN

m∑
j,k=1

a jk |ψ j |p|ψk |p dx . (5.3)

Proof: Multiplying the j th equation of (1.5) by 2ψ j and examining the imaginary parts,

∂

∂t
|ψ j |2 = −2Im(ψ j�ψ j ) = −2∇ · (Imψ j∇ψ j ) (5.4)

with j = 1, . . . , m. Multiplying these m equations by |x|2 and integrating by parts, one arrives at
Eq. (5.2).

On comparing Eqs. (5.2) and (5.3), it is clear that one needs only prove

d

dt

(
Im
∫
RN

(x · ∇ψ j )ψ j dx

)
= 2

∫
RN

|∇ψ j |2 dx − N (p − 1)

p

∫
RN

m∑
k=1

a jk |ψk |p|ψ j |p, (5.5)

for 1 ≤ j ≤ m. Fixing j and integrating by parts,

d

dt

(
Im
∫
RN

(x · ∇ψ j )ψ j dx

)
= Im

∫
RN

(
(x · ∇ψ jψ j t + (x · ∇ψ j t )ψ j

)
dx

=Re
∫
RN

i(x · ∇ψ j )ψ j t − N Im
∫
RN

ψ jψ j t dx−Im
∫
RN

(x · ∇ψ j )ψ j t

=2Re
∫
RN

i(x · ∇ψ j )ψ j t + NRe
∫
RN

iψ jψ j t .

(5.6)

It is easy to see Eq. (5.3) holds by substituting the following two equalities into Eq. (5.6):

Re
∫
RN

i(x · ∇ψ j )ψ j t = Re
∫
RN

(x · ∇ψ j )

(
−�ψ j −

m∑
k=1

a jk |ψk |p|ψ j |p−2ψ j

)

= − N − 2

2

∫
RN

|∇ψ j |2 + N

2p

∫
RN

m∑
k=1

a jk |ψk |p|ψ j |p.

Re
∫
RN

i ψ jψ j t = Re
∫
RN

ψ j

(
−�ψ j −

m∑
k=1

a jk |ψk |p|ψ j |p−2ψ j

)

=
∫
RN

|∇ψ j |2 −
∫
RN

m∑
k=1

a jk |ψk |p|ψ j |p.

�
Remark 5.1: Equation (5.3) can be rewritten as

V ′′(t) = 8
m∑

j=1

‖∇ψ j‖2
2 − 8N (p − 1)P(ψ1, . . . , ψm)

= 16E − 8(N (p − 1) − 2)P(ψ1, . . . , ψm).

Moreover, in the global critical power case p = 1 + 2/N, one has V ′′(t) = 16E .

The blow-up result for solutions of system (1.5) is given in Theorem 2.2 and is now proved.

Proof: There exists t* < ∞ such that limt→t∗ V (t) = 0 provided ψ j remains in H 1(RN ) and
V (t) is defined as in Eq. (5.1). In cases (i) and (ii), it is easy to see that the claim is true. In case (iii),
Lemma 5.2 implies V ′′(t) ≤ 16E . Integrating twice,

V (t) ≤ 8Et2 + V ′(0)t + V (0). (5.7)
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That is, V is bounded above by a quadratic function in t. Under the assumptions

Im
∫
RN

m∑
j=1

(x · ∇ψ j0)ψ j0 dx < −
√

2EV (0),

one has V ′(0) ≤ −4
√

2E · V (0). Then (5.7) has a nonnegative minimum value, which is attained at
t̃ = −V ′(0)/16E . Therefore, there exists a t∗ ≤ t̃ such that the claim holds. The conclusion follows
from Lemma 5.1. �

It has been shown in Sec. III that under the assumption (P1) and λ = 1, the solutions of (2.4)
must have exactly one nonzero component. Theorems 2.5 and 2.6 thus follow immediately.
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