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The neck instability of bright solitons of the hyperbolic nonlinear Shrödinger equation is investigated. It is
shown that this instability originates from a four-wave mixing interaction that links on-axis to off-axis radiation
at opposite frequency bands. Our experiment supports this interpretation. © 2012 Optical Society of America
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Symmetry-breaking instability of solitons has been
studied in different areas of physics and appears as a
common feature shared by most solitons despite the
diversity of the physical systems that support them
[1–3]. In optics, the break-up of self guided light beams
through transverse and/or modulational instability has
been demonstrated for solitons in self-focussing and de-
focusing Kerr media [1,4] as well as in second harmonic
generation media [5]. In particular, for the case of fo-
cusing Kerr nonlinearity, the dynamics is governed by
the nonlinear Schrödinger (NLS) equation that possesses
solutions in the form of bright (1+1)D spatial solitons.
When propagating in a (2+1)D media, these solitons are
known to be unstable against periodic perturbations in
the extra transverse dimension in which they are uni-
form (regardless of the relative sign between the disper-
sion (diffraction) terms, i.e. in both elliptic and hyper-
bolic systems) [6,7]. In hyperbolic systems, such as nor-
mally dispersive planar waveguides, the transverse in-
stability in (2+1)D leads to a spontaneous breaking of
spatial bright soliton stripe into a spatiotemporal snake
like pattern. However, beside the well known snake in-
stability branch in the cubic soliton spectrum, another
instability branch associated with a neck type instabil-
ity has recently been identified theoretically [8] and ex-
perimentally [9]. Neck instability of spatially localized
waves has also been reported in other media with normal
dispersion, such as bulk media [10], coupled nonlinear
waveguides [11] or quadratic media [12]. However, this
neck instability is counterintuitive since it is well known
that continuous waves are stable when propagating in
a (1+1)D normally dispersive focusing Kerr medium.
This is the reason why we propose in the present Let-
ter a detailed theoretical and experimental analysis of
the neck instability of solitons of the (2+1)D hyperbolic
NLS equation. As we shall see, this instability shares
some properties with light filament dynamics that oc-
cur in spatially localized beams propagating in normally
dispersive bulk media [13].
Let us consider the hyperbolic nonlinear Schrödinger

equation with normal time dispersion:
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In optics, this equation describes the dynamics of
the slowly varying spatiotemporal envelope of the elec-
tric field E = A0ψ exp (ik0z − iω0t), of carrier fre-
quency ω0 and propagation constant k0. In this equa-
tion, Z = zLNL, X = x(LNL/k0)−1/2 and T =
(t − zv−1

g )(LNLk′′0 )
−1/2 are the normalized longitudi-

nal, transverse and time coordinates, respectively, and
LNL = 1/(γA2

0) is the nonlinear length, where γ is the
nonlinear coefficient of the waveguide; k′′0 is the group ve-
locity dispersion coefficient and vg = 1/k′0 is the group
velocity of light in the waveguide.
The fundamental bright soliton stripe solution of Eq.1

is ψ = sech(X) exp(iZ/2). The stability analysis has
shown that this solution is unstable against perturba-
tions of the form [8]:

pΓ(X;Ω) = ε0(u+ iv) exp(iZ/2), (2)

with {u, v} = [{U(X), V (X)} exp(iΩT + ΓZ) + c.c.],
where the eigenfunctions {U, V } are complex functions
of the transverse coordinate X; Ω is the modulation
frequency and c.c. denotes the complex conjugate of
the previous term. Mathematically, U and V are so-
lutions of the the linear eigenvalue problem resulting
from the linearization of the equation of motion obtained
by injecting the perturbed solution ψ = sech(x) + pΓ
into (1) [8]. Note that if the perturbation pΓ, given by
(U, V,Γ,Ω), is unstable with the gain g then p∗Γ∗ de-
scribed by (U∗, V ∗,Γ∗,Ω) is also unstable with the same
gain but opposite drift velocity. These two solutions rep-
resent two physically discernible solutions and are gen-
erally distinct, meaning that pΓ and p∗Γ∗ may grow in-
dependently depending on how the instability is seeded.
Fig.1(a), shows the instability gain (g = 2Re[Γ]) as a
function of Ω for the neck instability (i.e. for even U and
V ). As can be seen, temporal modulations are neutrally
stable for small Ω. For frequencies larger than the fre-
quency threshold Ωt ≈ 0.31, the eigenmodes are unstable
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Fig. 1. (color online) (a) Oscillatory neck instability gain.
(b) Density plot of | p̃Γ | as a function of the frequency
detuning Ω. The amplitude has been normalized so that
the energy

∫∞
−∞ | p̃Γ |2 dKx is independent of Ω in

each sidebands. The white dashed line shows the rela-
tion Kx =

√
2Ω.

as a result of a Hamiltonian Hopf bifurcation similarly
to the one reported in the context of modulational in-
stability of quadratic solitons [12] . Moreover, the neck
instability exhibits no high frequency cut-off contrary to
the neck instability of bright solitons in anomalous dis-
persive media [7].
The neck instability of bright solitons of the (2+1)D

NLS equation may be understood as a noncollinear four-
wave mixing interaction driven by Kerr nonlinearity, sim-
ilarly to the Y-shaped instability of spatially localized
nonlinear mode occurring in normally dispersive bulk
media [13]. Indeed, for transversally localized waves, ef-
ficient amplification of new frequencies is possible when
one of the two sideband waves is noncollinear with the
soliton beam. Let us assume that the signal wave (with
frequency ω0 − ∆ω) is collinear with the soliton beam
(with the propagation constant ks and kp respectively)
and let ki⊥ be the transverse projection of the wave vector
of the idler wave (with frequency ω0 + ∆ω and propa-
gation constant ki). It is easy to show that the longitu-
dinal phase matching condition (ksz + kiz = 2kpz) leads
to the relation ki⊥ = ±(2k0k”0)

1/2∆ω when cross phase
modulation on the idler wave is assumed to be negligible
owing to the transversally confined character of the soli-
ton beam. In dimensionless variables this later dispersion
relation becomes Ki

⊥ = ±
√
2Ω. This simple analysis sug-

gests that the angularly resolved spectrum of the neck
instability has off-axis transverse components.
In order to confirm this interpretation, the two di-

mensional Fourier transform (with respect to T and X)
p̃Γ(Kx;Ω) of the symmetric unstable eigenmodes was
computed for frequency detunig Ω larger than Ωt. The
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Fig. 2. (color online) Measured spatiotemporal spectrum
at the output of a 5mm long waveguide when a soliton
beam (center panels) is launched together with a seed
beam with a negative frequency detuning close (top)
and far (bottom) from the threshold. The peak power
at the waveguide input are 1,3 kW and ∼ 140mW, re-
spectively. The intensity has been normalized to one in
each panel for revealing the structure of the spectrum in
the sidebands. The white dotted curve shows the theo-
retical dominant transverse frequency of p̃Γ.

spatially symmetric eigenfunctions U and V of Eq. 2 were
obtained by numerically solving the linear eigenvalue
problem. As can be seen in Fig. 1(b), | p̃Γ | features
a single peak centered on Kx = 0 in the negative fre-
quency sideband of the spatiotemporal spectrum. In the
positive sideband, this spectrum is composed of a single
peak for frequencies close to Ωt but of two narrow peaks
for large frequency detunings. As the frequency detun-
ing increases, the position of the maxima become closer
to the theoretical curve Kx = ±

√
2Ω (see white dashed

line in Fig.1) which supports the interpretation of the os-
cillatory neck instability as a noncollinear wave-mixing
interaction.
These results were investigated both numerically and

experimentally. We performed numerical simulations of
the propagation, according to Eq.1, of a perturbed soli-
ton beam of the form sech(X) ∗ (1 + ε exp[iΩT ]). The
simulations show that after few nonlinear lengths of
propagation, the spatiotemporal spectrum in the sig-
nal and idler sideband clearly feature one or two main
peaks whose position agree with the theoretical results
reported in Fig.1. Moreover, the finite time duration of
the soliton beam does not prevent the neck instability to
grow as long as it is significantly longer than the char-
acteristic time of the modulation (2π/Ω).
In the experiment, the neck instability of optical bright

solitons was studied in normally dispersive planar waveg-
uides made up of semiconductor AlGaAs alloys as the
hyperbolic (2+1)D Kerr media. The experimental setup
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Fig. 3. (color online) Transverse wavenumber of the
peaks in the idler sideband as a function of the frequency
detuning. The theoretical red curve shows the dominant
transverse frequency of p̃Γ. The length of the horizon-
tal and vertical bars correspond to the spectral width
of the seed beam (6 nm) and to the camera resolution,
respectively.

is similar to that of Ref. [14]. Because of the limited
size and resolution of the InGaAs camera, the whole an-
gularily resolved spectra was recorded in three separate
measurements to cover 250 nm. The central wavelength
of the soliton beam was set to 1536 nm while the seed
beam could continuously be tuned from ∼ 1500 nm to
∼ 1650 nm. The soliton and the seed beams had the same
input profile and a width of 17µm. Despite the larger
gain for the snake instability in (2+1)D hyperbolic Kerr
media, a proper alignment of the two input beams al-
lowed to selectively excite the neck instability. In the ex-
periment, snake and neck instabilities were distinguished
through their characteristic signature in the spatiotem-
poral spectrum. Moreover, the temporal modulation at
the waveguide input strongly breaks the symmetry along
the Ω axis. We thus expect to observe mainly the growth
of pΓ which is characterized by axial downshifted fre-
quencies emission. p∗Γ∗ has indeed a weak overlap with
the actual seed beam since its spectrum is a reflection
of the spectrum of pΓ about Ω = 0. Fig.2 shows typ-
ical results of two-dimensional spectra recorded at the
waveguide output. As can be seen, at a seed wavelength
of 1553 nm, both the signal and the idler waves have
their angular spectrum localized around the zero traverse
frequency, in agreement with the theoretical results for
small frequency detunings (see white dashed line). For
larger detunigs, the spectra clearly show a double peak
structure on the idler side and a single peak structure on
the signal side. This therefore demonstrate that for large
detuning the amplification of on axis downshifted fre-
quencies is accompanied by the generation of upshifted
angularly off-axis frequencies.
The dependence of the transverse wavenumber of the

maxima in the idler sideband with the seed beam fre-

quency detuning is reported in Fig. 3 and compared with
the theoretical results of Fig. 1(b). In the experiment, it
was clearly observed that the transverse wavenumber of
the idler waves increases with the modulation frequency
Ω past a given threshold. As can be seen, there is a very
good agreement between theory and the experimental re-
sults up to Ω ≈ 1.2. For larger Ω values, it appears that
the transverse wavenumber of the two maxima in the
idler sideband is lower than expected from theory and
numerical simulations. This discrepancy between theory
and experiment remains unclear and is not related to the
imaging systems nor to linear and nonlinear propagation
losses in the waveguide in accordance with the power in-
dependent dispersion relation. Note that for such large
detunings, a qualitative difference between the neck and
the snake instability spectra in the idler sideband can
still be observed since the peaks of the neck instabil-
ity have always a larger transverse wavenumber than
those of the snake instability. Previous experiments on
the snake instability have also featured a similar discrep-
ancy between theoretical and experimental spectra [14].
In conclusion, by means of a spatiotemporal spec-

tral analysis of light propagation in a semiconductor
planar waveguide we have demonstrated experimen-
tally that the neck instability of the bright solitons of
the hyperbolic nonlinear Schrodinger equation relies on
noncollinear phase-matched four-wave mixing processes.
Our experimental observations are in excellent agree-
ment with the linear stability analysis of the bright soli-
ton as well as with a simple geometrical approach of the
phase-matching condition.
This work was supported by the Belgian Science Pol-

icy Office under Grant No. IAP-VI10 and by the Fonds
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