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Abstract

The classical problem of heat conduction in one dimension on a composite ring is examined. The problem

is formulated using the heat equation with periodic boundary conditions. We provide an explicit solution of

this problem using the Method of Fokas. The location of the interfaces is known, but neither temperature

nor heat flux are prescribed there. Instead, the physical assumption of continuity at the interface is imposed.
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1. Introduction

Interface problems for partial differential equations (PDEs) are initial boundary value problems for which

the solution of an equation in one domain prescribes boundary conditions for the equations in adjacent

domains. In applications, precise interface conditions follow from conservations laws. Few interface problems

allow for an explicit closed-form solution using classical solution methods. Using the Fokas method [1, 2]

such solutions may be constructed.

In three recent papers [3, 4, 5] this was done for the classical problem of the heat equation. In [5] the main

application considered is that of heat flow in composite walls or rods while in [3, 4] the heat equation is viewed

as a simplified reaction-diffusion equation describing the spreading of tumors in the brain. Problems in both

finite and infinite domains were investigated in [5] and the method was compared with classical solution

approaches if such exist. Here we extend the method to consider the heat equation with an interface and

periodic boundary conditions. The representation formulae for the solution can be evaluated numerically,

hence the problem can be solved in practice using techniques presented in [6, 7].

Solutions of PDEs with periodic boundary conditions can be easily computed using Fourier series [8]

and using the method of Fokas [9]. The addition of an interface makes finding an explicit solution to
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Figure 1: The heat equation with an interface posed on a ring.

this problem impossible using separation of variables. Rather, separation of variables results in a solution

defined implicitly in terms of eigenvalues which satisfy a transcendental equation. In other words, although

the solution is periodic, it is not useful to assume a solution of the form
∑∞
j=−∞ aj(t)e

ijx since the equation

defined on the whole domain ut = σ2(x)uxx with σ(x) piecewise constant is no longer diagonal in Fourier

space since σ(x) has an infinite-term Fourier series. However, the addition of an interface makes the problem

only slightly more difficult when using the method of Fokas as presented in [5, 9]. Thus, the Fokas method

provides an interesting alternative to this important classical problem.

2. Heat Conduction with Periodic Boundary Conditions

We consider the problem of heat conduction in a ring consisting of two different materials as in Figure 1.

We seek two functions:

u(1)(x, t), x ∈ (x0, x1), t ≥ 0, u(2)(x, t), x ∈ (x1, x2), t ≥ 0,

satisfying the equations, initial, boundary, interface continuity conditions:

u
(1)
t = σ2

1u
(1)
xx , u(1)(x, 0) = u

(1)
0 (x) x ∈ (x0, x1), t > 0, (1a)

u
(2)
t = σ2

2u
(2)
xx , u(2)(x, 0) = u

(2)
0 (x), x ∈ (x1, x2), t > 0, (1b)

u(1)(x0, t) = u(2)(x2, t), u(1)(x1, t) = u(2)(x1, t), t > 0, (1c)

σ2
1u

(1)
x (x0, t) = σ2

2u
(2)
x (x2, t), σ2

1u
(1)
x (x1, t) = σ2

2u
(2)
x (x1, t), t > 0. (1d)

Following the Fokas method [1, 2, 5, 10] we have the local relations

(e−ikx+(σ1k)
2tu(1))t = (σ2

1e
−ikx+(σ1k)

2t(u(1)x + iku(1)))x, x ∈ (x0, x1), (2a)

(e−ikx+(σ2k)
2tu(2))t = (σ2

2e
−ikx+(σ2k)

2t(u(2)x + iku(2)))x, x ∈ (x1, x2). (2b)
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Let C+ = {z ∈ C : Im(z) ≥ 0}, C− = {z ∈ C : Im(z) ≤ 0}. Define D = {k ∈ C : Re(k2) < 0} = D+ ∪D−.

We define the time transforms of the initial and boundary data and the spatial transforms of u for k ∈ C as

follows:

û
(1)
0 (k) =

∫ x1

x0

e−ikxu
(1)
0 (x) dx, û(1)(k, t) =

∫ x1

x0

e−ikxu(1)(x, t) dx,

û
(2)
0 (k) =

∫ x2

x1

e−ikxu
(2)
0 (x) dx, û(2)(k, t) =

∫ x2

x1

e−ikxu(2)(x, t) dx,

g0(ω, t) =

∫ t

0

eωsu(1)(x1, s) ds =

∫ t

0

eωsu(2)(x1, s) ds, g1(ω, t) =

∫ t

0

eωsu(1)x (x1, s) ds =
σ2
2

σ2
1

∫ t

0

eωsu(2)x (x1, s) ds,

h0(ω, t) =

∫ t

0

eωsu(1)(x0, s) ds =

∫ t

0

eωsu(2)(x2, s) ds, h1(ω, t) =

∫ t

0

eωsu(1)x (x0, s) ds =
σ2
2

σ2
1

∫ t

0

eωsu(2)x (x2, s) ds.

Using Green’s Theorem on the domains [x0, x1]× [0, t], and [x1, x2]× [0, t] respectively, we have the global

relations

e(σ1k)
2tû(1)(k, t) =σ2

1e
−ikx1

(
g1((σ1k)2, t) + ikg0((σ1k)2, t)

)
− σ2

1e
−ikx0

(
h1((σ1k)2, t) + ikh0((σ1k)2, t)

)
+ û

(1)
0 (k), (3a)

e(σ2k)
2tû(2)(k, t) =e−ikx2

(
σ2
1h1((σ2k)2, t) + ikσ2

2h0((σ2k)2, t)
)

− e−ikx1
(
σ2
1g1((σ2k)2, t) + ikσ2

2g0((σ2k)2, t)
)

+ û
(2)
0 (k). (3b)

Both equations are valid for k ∈ C as is to be expected using the Fokas Method in bounded domains.

Inverting the Fourier transforms in (3a)

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−(σ1k)
2tû

(1)
0 (k) dk

+
σ2
1

2π

∫ ∞
−∞

eik(x−x1)−(σ1k)
2t(g1((σ1k)2, t) + ikg0((σ1k)2, t)) dk

− σ2
1

2π

∫ ∞
−∞

eik(x−x0)−(σ1k)
2t(h1((σ1k)2, t) + ikh0((σ1k)2, t)) dk.

(4)

The integrand of the second integral is entire and decays as k →∞ for k ∈ C− \D−. The third integral has

an integrand that is entire and decays as k →∞ for k ∈ C+ \D+. It is convenient to deform both contours

away from k = 0 to avoid singularities in the integrands below. Initially, these singularities are removable,

since the integrands are entire. Writing integrals of sums as sums of integrals, the singularities may, and do,

cease to be removable. With the deformations away from k = 0, the apparent singularities are no cause for

concern. In other words, we deform D+ to D+
0 and D− to D−0 as shown in Figure 2. Thus
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Figure 2: The domains D+ and D− as well as D+
0 and D−0 which are used for integration in (5) and (6).

u(1)(x, t) =
1

2π

∫ ∞
−∞

eikx−(σ1k)
2tû

(1)
0 (k) dk

− σ2
1

2π

∫
∂D−

0

eik(x−x1)−(σ1k)
2t(g1((σ1k)2, t) + ikg0((σ1k)2, t)) dk

− σ2
1

2π

∫
∂D+

0

eik(x−x0)−(σ1k)
2t(h1((σ1k)2, t) + ikh0((σ1k)2, t)) dk.

(5)

To obtain the solution u2(x, t) for x ∈ (x1, x2) we apply the inverse Fourier transform to (3b) and again

deform where appropriate to find

u(2)(x, t) =
1

2π

∫ ∞
−∞

eikx−(σ2k)
2tû

(2)
0 (k) dk

− 1

2π

∫
∂D+

0

eik(x−x1)−(σ2k)
2t(σ2

1g1((σ2k)2, t) + ikσ2
2g0((σ2k)2, t)) dk

− 1

2π

∫
∂D−

0

eik(x−x2)−(σ2k)
2t(σ2

1h1((σ1k)2, t) + ikσ2
2h0((σ2k)2, t)) dk.

(6)

The pair (3) and their evaluation at −k (using the invariance of ω1(k) and ω2(k) under k → −k) give

four equations to solve for four unknowns, g0(ω, t), g1(ω, t), h0(ω, t), and h1(ω, t) where one must be careful

to use all the symmetries of the set of dispersion relations, namely k → −k, k → kσ1/σ2 and k → kσ2/σ1.

Substituting these expressions into (5) we have equations for u(1)(x, t) and u(2)(x, t) which involve û(1)(k, t)

and û(2)(k, t) evaluated at a variety of arguments but without the factor eωt. Such integrands decay in

the regions around whose boundaries they are integrated. Making extensive use of Jordan’s Lemma and

Cauchy’s Theorem, these integrals are shown to vanish. Thus the final solution is given by
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u(1)(x,t)=
1

2π

∫ ∞
−∞

eikx−ω1tû
(1)
0 (k)dk

+

∫
∂D−

0

eikx−ω1t

2∆1(k)

(
(σ1+σ2)2e

ik(x0−x1)+
ikσ1
σ2

(x1−x2)−4σ1σ2−(σ1−σ2)2e
ik(x0−x1)+

ikσ1
σ2

(x2−x1)
)
û
(1)
0 (k)dk

+

∫
∂D−

0

(σ2
1−σ2

2)eik(x−x0−x1)−ω1t

2∆1(k)

(
e
ikσ1
σ2

(x1−x2)−e
ikσ1
σ2

(x2−x1)
)
û
(1)
0 (−k)dk

+

∫
∂D−

0

σ1(σ1+σ2)eikx−ω1t

∆1(k)

(
e
−ikx1+

ikσ1
σ2

x1−e−ikx0+
ikσ1
σ2

x2

)
û
(2)
0

(
kσ1

σ2

)
dk

+

∫
∂D−

0

σ1(σ1−σ2)eikx−ω1t

∆1(k)

(
e
−ikx0−

ikσ1
σ2

x2−e−ikx1−
ikσ1
σ2

x1

)
û
(2)
0

(
−
kσ1

σ2

)
dk

+

∫
∂D+

0

eikx−ω1t

2∆1(k)

(
(σ1−σ2)2e

ik(x1−x0)+
ikσ1
σ2

(x2−x1)+4σ1σ2−(σ1+σ2)2e
ik(x0−x1)+

ikσ1
σ2

(x2−x1)
)
û
(1)
0 (k)dk

+

∫
∂D+

0

(σ2
1−σ2

2)eik(x−x0−x1)−ω1t

2∆1(k)

(
e
ikσ1
σ2

(x1−x2)−e
ikσ1
σ2

(x2−x1)
)
û
(1)
0 (−k)dk

+

∫
∂D+

0

σ1(σ1+σ2)eikx−ω1t

∆1(k)

(
e
−ikx1+

ikσ1
σ2

x1−e−ikx0+
ikσ1
σ2

x2

)
û
(2)
0

(
kσ1

σ2

)
dk

+

∫
∂D+

0

σ1(σ2−σ1)eikx−ω1t

∆1(k)

(
e
−ikx0−

ikσ1
σ2

x2−e−ikx1−
ikσ1
σ2

x1

)
û
(2)
0

(
−
kσ1

σ2

)
dk,

(7)

for x ∈ (x0, x1) where

∆1(k) =π
(
σ1

(
e−ik

σ1
σ2
x1 − e−ik

σ1
σ2
x2

) (
e−ikx0 + e−ikx1

)
+ σ2

(
e−ik

σ1
σ2
x1 + e−ik

σ1
σ2
x2

) (
e−ikx0 − e−ikx1

))
∗(

σ1

(
e−ik

σ1
σ2
x1 + e−ik

σ1
σ2
x2

) (
e−ikx0 − e−ikx1

)
+ σ2

(
e−ik

σ1
σ2
x1 − e−ik

σ1
σ2
x2

) (
e−ikx0 + e−ikx1

))
.

For x ∈ (x1, x2), the solution u(2)(x, t) is found by switching (1) and (2) on σ1, σ2, u(1)(·) and u(2)(·),

replacing ∆1(k) with ∆2(k) = −∆1 (kσ2/σ1), and interchanging the integration paths
∫
D+

0
and −

∫
D−

0
.

Note that ∆1(k) = 0 whenever k = 0, cot
(
k(x0−x1)

2

)
tan

(
kσ1(x1−x2)

2σ2

)
= −σ2

σ1
, or

cot
(
kσ1(x1−x2)

2σ2

)
tan

(
k(x0−x1)

2

)
= −σ2

σ1
are satisfied. Observe that ∆j(k) = 0 only for real values of k

for j = 1, 2. Thus, through the deformation to D+
0 and D−0 we have avoided any singularities and, on the

contours, the quantities needed are evaluated without problem.

We have solved the classical problem of heat conduction on a ring with two domains using the Method

of Fokas. It is straightforward to generalize this work to the problem of n domains with periodic boundary

conditions by combining what was done in [5] and [3, 4] for the heat equation with multiple domains, with

what we present here for periodic boundary conditions.
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