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Abstract

Explicit parametric solutions are found for a nonlinear long-wave model describing steady
surface waves propagating on an inviscid fluid of finite depth in the presence of a linear shear
current. The exact solutions, along with an explicit parametric form of the pressure and
streamfunction give a complete description of the shape of the free surface and the flow
in the bulk of the fluid. The explicit solutions are compared to numerical approximations
previously given in [1], and to numerical approximations of solutions of the full Euler equa-
tions in the same situation [31]. These comparisons show that the long-wave model yields
a fairly accurate approximation of the surface profile as given by the Euler equations up
to moderate waveheights. The fluid pressure and the flow underneath the surface are also
investigated, and it is found that the long-wave model admits critical layer recirculating flow
and non-monotone pressure profiles similar to the flow features of the solutions of the full
Euler equations.

1 Introduction

Background vorticity can have a significant effect on the properties of waves at the surface of a
fluid [19,24,26,30,32,35]. In particular, in the seminal paper of Teles da Silva and Peregrine [31],
it was found that the combination of strong background vorticity and large amplitude leads to
a number of unusual wave shapes, such as narrow and peaked waves and overhanging bulbous
waves. In the present contribution, we continue the study of a simplified model equation which
admits some of the features found in [31]. The equation, which has its origins in early work of
Benjamin [3], has the form

(
Q+

ω0

2
u2
)2(du

dx

)2

= −3

(
ω2
0

12
u4 + gu3 − (2R− ω0Q)u2 + 2Su−Q2

)
, (1)

where we denote the volume flux per unit span by Q, the momentum flux per unit span and
unit density corrected for pressure force by S, and the energy density per unit span by R.
The gravitational acceleration is g and the constant vorticity is −ω0. The total flow depth as
measured from the free surface to the rigid bottom is given by the function u(x).

Equation (1) was recently studied in [1]. It was found that solutions of this equation exhibit
similar properties as solutions of the full Euler equations displayed in [31]. In particular, in [1]
an expression for the pressure was developed, and it was shown that the pressure may become
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non-monotone in the case of strong background vorticity. Indeed, it was shown in [1] that if
|ω0| is big enough, the maximum fluid pressure at the bed is not located under the wavecrest.
Such behavior is usually only found in transient problems (cf. [33]). Moreover in some cases,
the pressure near the crest of the wave may be below atmospheric pressure.

The purpose of the present work is two-fold. First, we develop a method by which equation (1)
can be solved exactly. The resulting solutions are compared to the the numerical approximations
found in [1] and to some of the solutions of the full Euler equations from [31]. Secondly, more
features of the solutions of (1) are discussed. Using a similar analysis as in [1], the streamfunction
is constructed, and it is found that solutions of (1) may feature recirculating flow and pressure
inversion. These features may have an impact on the study of sediment resuspension. Indeed,
while it is generally accepted that the main mechanism for sediment resuspension is turbulence
due to flow separation in the presence of strong viscous shear stresses [7,27,29], the strongly non-
monotone pressure profiles exhibited by the solutions of (1) may represent a more fundamental
mechanism for particle suspension than the viscous theory.

The geometric setup of the problem is explained as follows. Consider a background shear flow
U0 = ω0z, where ω can be positive or negative (cf. Figure 1). Superimposed on this background
flow is wave motion at the surface of the fluid. One may argue that the wave motion itself
introduces variations into the shear flow due to the Stokes drift [16, 25]. However for very
long waves, the Stokes drift can be compared to the Stokes drift in the KdV equation [5], and
it becomes negligible in the long-wave limit. Moreover, as observed by a number of authors
[3, 31, 32], a linear shear current can be taken as a first approximation of more realistic shear
flows with more complex structures.

If it is assumed that the free surface describes a steady periodic oscillatory pattern, then the
flow underneath the free surface can be uniquely determined [10, 23], even in the presence of
vorticity. Thus for the purpose of studying periodic traveling waves, one may use a reference
frame moving with the wave. This change of reference frame leads to a stationary problem
in the fundamental domain of one wavelength. The incompressibility guarantees the existence
of the streamfunction ψ and if constant vorticity ω = −ω0 is stipulated, the streamfunction
satisfies the Poisson equation

∆ψ = ψxx + ψzz = ω0, in 0 < z < η(x) = ψ|z=η. (2)

As explained in [2, 4], the three parameters Q, S and R are defined as follows. If ψ = 0 on the
streamline along the flat bottom, then Q denotes the total volume flux per unit width given
by

Q =

∫ η

0
ψzdz . (3)

Thus Q is the value of the streamfunction ψ at the free surface. The flow force per unit width
S is defined by

S =

∫ η

0

{
P
ρ + ψ2

z

}
dz, (4)

and the energy per unit mass is given by

R =
1

2
ψ2
z +

1

2
ψ2
x + gη on z = η(x) . (5)
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Finally, the pressure can be expressed as

P = ρ
(
R− gz − 1

2
(ψ2

x + ψ2
z) + ω0ψ − ω0Q

)
, (6)

It is well known that the quantities Q and S do not depend on the value of x [4]. Using the
fact that S is a constant, the derivation of the model equation (1) can be effected by assuming
that the waves are long, scaling z by the undisturbed depth h0, x by a typical wavelength L,
and expanding in the small parameter β = h20/L

2. This yields (1) as an approximate model
equation describing the shape of the free surface. In order to distinguish from the free surface η
in the full Euler description, we call the unknown of equation (1) u which is an approximation
of η. The derivation of (1) was given in [1, 4], where it was shown that (1) is expected to be
valid as an approximate model equation describing waves on the surface of the shear flow if
the wavelength is long compared to the undisturbed depth of the fluid. On the other hand, a
detailed analysis of the derivation explained in [1, 4] shows that there are no assumptions on
the amplitude of the waves. Thus at least formally, the model (1) can be expected to model
waves of intermediate amplitude.

x

z

h0U0

Direction of wave propagation

Figure 1: This figure shows the background shear flow U0 = ω0z. In the figure, ω0 is positive, and the
waves which are superposed onto this background current propagate to the left.

2 Explicit solutions

In order to obtain solutions of (1) given in explicit form, we apply the change of variables

dy

ds
=
du

dx

(
Q+

ω0

2
u2
)
,

y(s) = u(x).

This gives us a new equation for y(s) in the form(
dy

ds

)2

= −3

(
ω2
0

12
y4 + gy3 − (2R− ω0Q)y2 + 2Sy −Q2

)
, (7)

and the relation
ds

dx
=

1

Q+ y2ω0/2
. (8)

Integrating (8) we have

x(s) =

∫ s (
Q+

ω0

2
y2
)
dξ − x1. (9)
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where x1 is a constant of integration, written explicitly for convenience. We want to solve (7)
for y(s) and plug our solution into (9). We notice that in the variables y and dy

ds the equation
describes an elliptic curve of genus one [14]. Hermite’s Theorem [34, p. 394] states that for a
uniform solution to exist we need

∫
ds to be an abelian integral of the first kind. This condition

is indeed satisfied and we proceed with using a birational transformation to put (7) in the
standard Weierstraß form (

dy0
dx0

)2

= 4y30 − g2y0 − g3, (10)

where the transformation is given as

x0 = −
24(−2

√
12Q2y2ω0 −

√
12Qgy3 + 4

√
12QRy2 + 4

√
12Q3 − 6

√
12QSy + 8Q2 dy

ds − 4dydsSy)

y3
,

y0 =
4(−Qy2ω0 + 2Ry2 + dy

ds

√
12Q+ 6Q2 − 6Sy)

y2
, (11)

and g2 and g3 are the lattice invariants

g2 = −768QRω0 + 768R2 − 1152Sg,

g3 = 2048Q3ω3
0 − 6144Q2Rω2

0 − 6912Q2g2

+ 6144QR2ω0 − 4608QSgω0 + 2034S2ω2
0 − 4096R3 + 9216RSg.

It is well known that the solution to (10) is y0(x0) = ℘(x0+c0; g2, g3), where ℘ is the Weierstraß
P function and c0 is an arbitrary constant [6, 14]. We invert the birational transformation to
determine the exact solution to (7) as

y(s) =
A+B℘′((s+ c0)/4; g2, g3) + C℘((s+ c0)/4; g2, g3)

℘2((s+ c0)/4; g2, g3) +D℘((s+ c0)/4; g2, g3) + E
,

with
A = −288Q2g − 96Qω0S + 192RS,

B =
√

12Q,

C = −24S,

D = 8Qω0 − 16R,

E = 64Q2ω2
0 − 64QRω0 + 64R2.

This gives us u(x(s)) in the form

u(x(s)) =
A+B℘′((s+ c0)/4; g2, g3) + C℘((s+ c0)/4; g2, g3)

℘2((s+ c0)/4; g2, g3) +D℘((s+ c0)/4; g2, g3) + E
, (12)

as a function of the parameter s. If we express x(s) as a function of s, then we have a parametric
representation for u(x), the surface elevation. From (9) we have

x(s) = Qs− x1 +
ω0

2

∫ s

y2(ξ)dξ. (13)

Expanding and simplifying y(s)2 gives

y2 =
4B℘3 + C2℘2 + (2AC −B2g2)℘+ (A2 −B2g3)

(℘2 +D℘+ E)2
+

2AB − 2BC℘

(℘2 +D℘+ E)2
℘′, (14)
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making use of the shorthand ℘ = ℘((s + c0)/4; g2, g3) and ℘′ = ℘′((s + c0)/4; g2, g3). Plugging
(14) into (13) and integrating gives

x(s) = Qs− x1 + ω0B

8(2A− CD) arctan
(

D+2℘√
−D2+4E

)
(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A+ 4CD)℘

(D2 − 4E)(℘2 +D℘+ E)


+
ω0

2

∫ s 4B℘3 + C2℘2 + (2AC −B2g2)℘+ (A2 −B2g3)

(℘2 +D℘+ E)2
dξ. (15)

To evaluate the integral in (15) we let

m1 = −D
2
−
√
D2 − 4E

2
,

n1 = −D
2

+

√
D2 − 4E

2
,

denote the roots of ℘2 +D℘+ E = 0. The integrand can be split into its components

4B℘3 + C2℘2 + (2AC −B2g2)℘+ (A2 −B2g3)

(℘−m1)2(℘− n1)2
=
J(m1, n1)

(℘−m1)2
+
K(m1, n1)

℘−m1
+
J(n1,m1)

(℘− n1)2
+
K(n1,m1)

℘− n1
,

with

J(m1, n1) =
A2 −B2g3 + 2ACm1 −B2g2m1 + C2m2

1 + 4B2m3
1

D2 − 4E
,

K(m1, n1) =
−2A2 + 2B2g3 − 2ACm1 +B2g2m1 + 4B2m3

1 − 2ACn1 +B2g2n1 − 2C2m1n1 − 12B2m2
1n1

(4E −D2)3/2
.

Letting
α = ℘−1(m1),

β = ℘−1(n1),

and
x1 = −c0Q+ x2,

where x2 is another arbitrary constant, we express x(s) as

x(s) = Q(s+ c0)− x2 + ω0B

8(2A− CD) arctan
(

D+2℘√
−D2+4E

)
(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A+ 4CD)℘

(D2 − 4E)(℘2 +D℘+ E)


+ 2ω0

[
J(m1, n1)I2((s+ c0)/4, α) +K(m1, n1)I1((s+ c0)/4, α)

+ J(n1,m1)I2((s+ c0)/4, β) +K(n1,m1)I1((s+ c0)/4, β)
]
, (16)

where I1 and I2 come from [6] and [21] and are expressed as

I1(u, γ) =
1

℘′(γ)

[
log

(
σ(u− γ)

σ(u+ γ)

)
+ 2uζ(γ)

]
,

I2(u, γ) =
℘′′(γ)

℘′3(γ)
log

(
σ(u+ γ)

σ(u− γ)

)
− 1

℘′2(γ)
(ζ(u+ γ) + ζ(u− γ))−

(
2℘(γ)

℘′2(γ)
+

2℘′′(γ)ζ(γ)

℘′3(γ)

)
u.
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Here ζ is the Weierstraß zeta function and σ is the Weierstraß sigma function. Thus we have
x(s) given in (16) and u(x(s)) given in (12) both as functions of s. This gives a parametric
representation of our solution as a function of s{

y = u(x(s)), given in (12),

x = x(s), given in (16).
(17)

The approximation to the pressure given in [1] is

P = ρ

{
R− gz − 1

2

(
Q

u2
+
ω0

2

)2

(z2u′2 + u2) +
1

2

(
ω0

6
u3 − ω0

2
z2u− 2

3
ω0z

3 − Q

3
u+ z2

Q

u

)

×
(

2Q
u′2

u3
− u′′

(
Q

u2
+
ω0

2

))}
. (18)

This leads to a parametric representation of the pressure as a function of s{
y = P (u(x(s)), z), given in (18),

x = x(s), given in (16),
(19)

where z is the distance from the channel bed.

Finally, note that an expression for the streamfunction can be derived using the techniques
of [1]. Since this was not done in [1], the derivation is outlined in the appendix for the sake of
completeness. The expression for the streamfunction is

ψ =
1

2
z2ω0 + z

(
Q

u
− uω0

2
+
Qu′2

3u
− Qu′′

6
− ω0u

2u′′

12

)
− z3

6

(
2Qu′2

u3
− Qu′′

u2
− ω0u

′′

2

)
, (20)

which gives a parametric representation of the streamfunction as a function of s as{
y = ψ(u(x(s)), z), given in (20),

x = x(s), given in (16).
(21)

3 Matching the explicit solutions to previous works

First, we verify the explicit solutions found here and the numerical approximations given in [1]
by comparing them to each other. Following the analysis of [1], we first note that (1) can be
written in the form

u′2 =
G(u)

F(u)
. (22)

Letting Z1, Z2, m and M represent the roots of the numerator G on the right-hand side of (22)
we write

G(u) = −3

(
ω2
0

12
u4 + gu3 − (2R− ω0Q)u2 + 2Su−Q2

)
=
ω2
0

4
(M − u)(u−m)(u− Z1)(u− Z2). (23)
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By comparing the coefficients of (23) and assuming that Q, m, and M are given, the two
additional roots Z1 and Z2 are found as (note that a small typo in [1] has been corrected
here)

Z1 = 1
2

{
−
(

12
ω2
0
g + (M +m)

)
−
√(

12
ω2
0
g + (M +m)

)2
+ 48Q2

ω2
0mM

}
,

Z2 = 1
2

{
−
(

12
ω2
0
g + (M +m)

)
+

√(
12
ω2
0
g + (M +m)

)2
+ 48Q2

ω2
0mM

}
.

The total head R and the flow force S are obtained as

R =
ω0Q

2
− ω2

0

24
(Z1Z2 +mM + (M +m)(Z1 + Z2)) ,

S = −ω
2
0

24
((M +m)Z1Z2 +mM(Z1 + Z2)) .

Following the work in [1] there are two cases depending on the sign of ω0. If ω0 > 0, then u′2

has no singularities and there is a smooth periodic solution if Z2 < m < M . If ω0 < 0, then
u′2 has two singularities and the parameter space is more restricted. To find the conditions for
smooth solutions to exist, we let F(u) be expressed as

F(u) =
(
Q+

ω0

2
u2
)2

=
ω2
0

4
(u−A+)2(u−A−)2, (25)

which reveals that the derivative is singular when u takes the values A+ =
√

2Q
−ω0

and A− =

−
√

2Q
−ω0

. In the case ω0 < 0, smooth solutions exist when M < A+. To better understand this

condition, we introduce the non-dimensional Froude number

F =
ω0M

2

2Q
.

Substituting F for ω0 we find four cases:
0 < F : smooth solutions exist is Z2 < m < M,

−1 < F < 0 : smooth solutions exist,

F = −1 : limiting case of smooth solutions ceasing to exist,

F < −1.1 : smooth solutions do not exist but overhanging waves are possible.

(26)

Only solutions of the first two cases above are seen in [1]. Below we show one representative
example of each of the cases. As in [1], we use the parameters

g = 9.81; ρ = 1; m = 1.1; Q = 1.2
√
g; h0 = 3

√
g−1Q2; ω0 =

2QF

M2
. (27)

For the following figures, we use the following parameters:
0 < F : M = 1.3 and F = 1.15,

−1 < F < 0 : M = 1.7 and F = −0.3,

F = −1 : M = 1.7 and F = −1,

F < −1.1 : M = 1.7 and F = −1.1.

7



(a) (b)

Figure 2: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
0 < F, M = 1.3, F = 1.15, and −1/2 ≤ s ≤ 1/2. Smooth solutions exist.

(a) (b)

Figure 3: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
−1 < F < 0, M = 1.7, F = −0.3, and −1/2 ≤ s ≤ 1/2. Smooth solutions exist.

(a) (b)

Figure 4: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
F = −1, M = 1.7, F = −1, and −1/2 ≤ s ≤ 1/2. Cusp solution.

(a) (b)

Figure 5: (a) u(x) as a function of x. (b) P (u(x), 0) as a function of x.
F < −1, M = 1.7, F = −1.1, and −1/2 ≤ s ≤ 1/2. Overhanging solutions.
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Additionally, in order to obtain periodic solutions with m < u(x) < M and with zero imaginary
part, we need to set

c0 = 4ω2(g2, g3), (28)

where ω2 is a Weierstraß half period corresponding to the lattice invariants g2 and g3 with
non-zero imaginary part.

We produce plots of the explicit solutions for the various cases of (26) with the parameters given
in (27), (28) and (32). Two plots for each case will be shown:

1. u(x) as a function of x,

2. P (u(x), 0) as a function of x.

Note that since our solutions are symmetric under spacial translations (varying x2) we can
shift the waves so they coincide with those in [1]. Figures 2 and 3 show two curves found
in [1], and no visual difference can be detected between the explicit solutions and the numerical
approximations of [1]. We notice that x(s) is a monotone function of s as F > −1 decreases up
until the critical value of F = −1. Beyond the critical point where F = −1, x(s) is no longer
monotone and as a result the solutions are no longer smooth. Figure 4 shows the limiting case of
a cusped solution. Note that the evaluation of the pressure at the bottom under the wavecrest
appears to yield extremely low and apparently non-physical values. Figure 5 shows a looped
(or self-intersecting) solution which is allowed in equations (10) and (11), but not possible in
(1). Since it was assumed in the derivation that the free surface is a single-valued function of
x, the solution shown in Figure 5 is beyond the physical validity of the equation.

Next we investigate whether the solutions of (1) are close to the solutions of the full Euler
equations with a background shear flow found in [31]. Figure 6 and 7 show a sequence of large
waveheight solutions with waveheight H = 1.2, and for the set of parameters g = 9.81, ρ =
1.0, h0 = 1.0. Note also that by rearranging the variables, we can make the self-intersecting
solution look like an overhanging solution. Even though the curves shown in Figure 7 look
similar to the free surface profiles shown in Figure 6 of [31], strictly speaking, the curves in
Figure 7 do not represent solutions of (1).

We can also set our solutions to be 2π periodic. For this we need to examine the periods of
x(s) and u(s). Let ω1 be the Weierstraß half period corresponding to the lattice invariants g2
and g3 with non-zero real part. We note that

u(s+ Tu) = u(s),

where
Tu = 8ω1,

denotes the period of u(x), since both ℘((s+ c0)/4; g2, g3) and ℘′((s+ c0)/4; g2, g3) are periodic
of period 8ω1. Next we notice that

x(s+ Tu) = x(s) + Tx,

where

Tx = QTu + 2ω0 [J(m1, n1)J2(α) +K(m1, n1)J1(α) + J(n1,m1)J2(β) +K(n1,m1)J1(β)] ,

with

J1(γ) =
1

℘′(γ)
(−4ζ(ω1)γ + 4ω1ζ(γ)) ,
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(a) (b)

Figure 6: u(x) as a function of x: (a) smooth solution F = −0.5, (b) peaked solution F = −1.0.

(a) (b)

Figure 7: u(x) as a function of x: (a) overhanging solution F = −2.0, (b) overhanging solution F = −3.0.

and

J2(γ) =
℘′′(γ)

℘′3(γ)
4ζ(ω1)γ −

4ζ(ω1)

℘′2(γ)
− 2ω1

(
2℘(γ)

℘′2(γ)
+

2℘′′(γ)ζ(γ)

℘′3(γ)

)
.

This was determined by noting that

I1(u+ 2ω1, γ) = I1(u, γ) + J1(γ),

I2(u+ 2ω1, γ) = I2(u, γ) + J2(γ),

which we see from [28]:
ζ(u+ 2ω1) = ζ(z) + 2ζ(ω1),

σ(u+ 2ω1) = −e2ζ(ω1)(u+ω1)σ(z).

Here Tx gives an analytical expression for the wavelength of the solution. If we wanted to force
our solutions to be 2π periodic, we could simply rescale x by 2π/Tx and u by 2π/Tx as this is
the scaling symmetry of (1).

In order to better compare our results with those in [1], we would like to have the peak of the
wave at x = 0. To achieve this we determine the value of s for which u(s) is at a peak and call
this value Ts. Taking (11) we have

℘((Ts + c0)/4, g2, g3) =
4(−QM2ω0 + 2RM2 + 6Q2 − 6SM)

M2
,

where we plugged in y = M and dy/ds = 0 to be at the peak of the wave. This gives

Ts = 4℘−1
(

4(−QM2ω0 + 2RM2 + 6Q2 − 6SM)

M2
, g2, g3

)
− c0.
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Figure 8: Comparing approximate solutions of the full Euler equations (dashed curve) to exact solutions
of (1) (solid curve). The waves have waveheight H = 1 and wavelength 2π. The problem is normalized
with g = 1 and h0 = 1, and the background vorticity is ω0 = −3.

Thus for solutions with the peak at x = 0, we rewrite (17), (19), and (21) as{
y = u(Tu(s− Ts)), given in (12),

x = x(Tu(s− Ts)), given in (16),
(29)

{
y = P (u(Tu(s− Ts)), z), given in (18),

x = x(Tu(s− Ts)), given in (16).
(30)

{
y = ψ(u(Tu(s− Ts)), z), given in (20),

x = x(Tu(s− Ts)), given in (16).
(31)

Additionally, we set

x2 = Tu

(
Q(s̃+ c0) + ω0B

[
8(2A− CD) arctan

(
D+2℘((s̃+c0)/4)√

−D2+4E

)
(−D2 + 4E)3/2

+
−4AD + 8CE + (−8A+ 4CD)℘((s̃+ c0)/4)

(D2 − 4E)(℘((s̃+ c0)/4)2 +D℘((s̃+ c0)/4) + E)

]
+ 2ω0

[
J(m1, n1)I2((s̃+ c0)/4, α) +K(m1, n1)I1((s̃+ c0)/4, α)

+ J(n1,m1)I2((s̃+ c0)/4, β) +K(n1,m1)I1((s̃+ c0)/4, β)
])
, (32)

where s̃ = Tu(0− Ts). This x2 is chosen so that when s = 0, x = 0. Additionally, note that we
scale s by Tu. The scaling of s is so that as s ranges from −1/2 to 1/2, we plot exactly one
period of wavelength Tx.

We compare some wave profiles presented in Fig. 6 of by Teles da Silva and Peregrine [31] with
solutions of same parameters computed by the current explicit method. Note that in [31], the
parameters g and h0 were normalized, so that we need to choose g = 1 and h0 = 1.

We first present a comparison of a traveling wave of waveheight H = 1 and vorticity ω0 = −3.
In order to get a good match with the plot from Fig. 6 of [31], we selected m = 1.44,M =
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Figure 9: Comparing approximate solutions of the full Euler equations (dashed curve) to exact solutions
of (1) (solid curve). The problem is normalized with g = 1, h0 = 1 and wavelength 2π. The background
vorticity is ω0 = −3. (a) waveheight H = 4. (b) waveheight H = 5.

2.44, Q = 0.09 Figure 8 shows an explicit solution of (1) compared to a solution of the full Euler
equations shown in Fig. 6 in [31]. Even though the waveheight-depth ratio of 1/2 is not very
small, the profiles match fairly closely.

Comparing higher-amplitude waves is more difficult since the solutions shown in [31] with wave-
height larger than 1 are overhanging. Setting all parameters correctly yields the comparison
shown in Figure 9. As can be seen, the wavelength matches, and the solutions of (7),(8) are also
overhanging, but look very different nevertheless. One may conclude from this last comparison,
that if solutions of (7),(8) are not single-valued, and therefore are beyond the validity of (1),
they will not in general represent the physical reality of the surface-water wave problem.

4 Pressure contours and streamlines

In this section, we explore the flow underneath the surface as predicted by (1), with the help of
the expression (18) for the pressure and (20) for the streamfunction.

First, pressure contours and streamlines are reviewed for positive Froude numbers F . This case
corresponds to the case labelled ’upstream’ in [31]. As mentioned in that work, it is in this
case that a critical layer is possible. Examining figures 10-15, it appears that as the strength of
the vorticity increases, first, the pressure becomes non-monotone (Figure 11). In other words,
the pressure strongly departs from hydrostatic pressure, the bottom pressure is maximal under
the sides of the wave (not the crest), and this goes hand in hand with the development of
closed streamlines (Figure 12). For large enough Froude numbers, a critical layer (i.e., a closed
circulation) develops in the interior of the fluid domain (Figure 13). In the extreme case of
F = 3, pressure inversion occurs as regions of high pressure are above regions of low pressure
in the fluid column (Figure 15).

For negative Froude numbers, the flow corresponds to the downstream case [31]. In this case
non-monotone pressures also develop, but no critical layer occurs in the fluid domain. Figures
19 and 20 show strongly non-monotone pressures. Apparently, as the shape of the free surface
approaches a cusped profile, non-physical features appear in the description of the flow.
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Figure 10: Traveling wave with m = 1.1, M = 1.3, and F = 0.2. Left: pressure contours. Right:
streamlines.
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Figure 11: Traveling wave with m = 1.1, M = 1.3, and F = 0.9. Left: pressure contours. Right:
streamlines.
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Figure 12: Traveling wave with m = 1.1, M = 1.3, and F = 1.2. Left: pressure contours. Right:
streamlines.
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Figure 13: Traveling wave with m = 1.1, M = 1.3, and F = 1.5. Left: pressure contours. Right:
streamlines. Pressure highly non-monotone, critical layer appears.
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Figure 14: Traveling wave with m = 1.1, M = 1.3, and F = 2.0. Left: pressure contours. Right:
streamlines.
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Figure 15: Traveling wave with m = 1.1, M = 1.3, and F = 3.0. Left: pressure contours. Right:
streamlines. Pressure inversion: high pressure above low pressure.
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Figure 16: Traveling wave with m = 1.1, M = 1.3, and F = −0.001. Left: pressure contours. Right:
streamlines.
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Figure 17: Traveling wave with m = 1.1, M = 1.3, and F = −0.5. Left: pressure contours. Right:
streamlines.
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Figure 18: Traveling wave with m = 1.1, M = 1.3, and F = −0.7. Left: pressure contours. Right:
streamlines.
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Figure 19: Traveling wave with m = 1.1, M = 1.3, and F = −0.9. Left: pressure contours. Right:
streamlines.

5 Conclusion

The nonlinear differential equation (1) is known to be a model for steady surface water waves
on a background shear flow. The equation has been found to admit solutions given explicitly
in terms of a parametric representation featuring the Weierstraß P, zeta and sigma functions.
This representation is a convenient tool for obtaining a variety of wave profiles without having
to resort to numerical approximation. In connection with the reconstruction of the pressure
underneath the surface explained in [1], and the reconstruction of the streamfunction detailed
in the appendix, a complete description of the flow can be obtained.

The exact solutions of (1) have been compared to wave profiles obtained from full Euler compu-
tations in [31], and fair agreement was found for regular waves. On the other hand, overhanging
waves were found not to agree with the full Euler solutions. This is not surprising since the
parametric representation enables the description of multi-valued profiles which transcends the
collection of solutions of (1).

With a view towards the flow in the fluid column below the wave, a number of wave shapes
with increasing strength of vorticity were exhibited. It was found in the case of steady waves
propagating upstream that the flow underneath the waves may feature critical layers and non-
monotone pressure profiles. In the case of waves propagating downstream, the development of
cusped surface profiles goes hand in hand with unrealistic pressure profiles apparently conflicting
with the long-wave approximation which is the basis for the model (1). Building on the results
of this paper, future work may focus on detailed comparisons of the fluid flow as described by
the methods of the current work to numerical approximations of the flow governed by the Euler
equations with background vorticity. Such a study will cast more light on the limitations of the
current model, especially as regarding the ability to describe properties of the flow in the bulk
of the fluid.
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A Reconstruction of the streamfunction

We want to reconstruct the streamfunction ψ(x, z) using the solutions u of the differential
equation (1). This is done by using the ansatz

ψ =
1

2
z2ω0 + zf − 1

3!
z3f

′′
, (33)

for the streamfunction and the identity

Q =
1

2
u2ω0 + ζf − u3 1

6
f ′′,

both of which are valid to second order in the long-wave parameter β = h20/λ
2, where h0 is the

undisturbed depth of the fluid, and λ is the wavelength. To obtain an expression for f in terms
of ζ, one has to invert the operator 1− 1

6ζ
2∂xx, leading to[

1− 1

6
ζ2∂xx

]−1(Q
ζ
− 1

2
ζω0

)
= f.

In order to bring out the difference in scales between the undisturbed depth h0 and the wave-
length L, we use the scaling

x̃ =
x

L
, z̃ =

z

h0
, ζ̃ =

ζ

h0
, ψ̃ =

1

c0h0
ψ, ω̃0 =

h0
c0
ω0,

In addition, Q is scaled as

Q̃ =
Q

h0c0
.

In non-dimensional variables, the expression for ψ is

ψ̃ =
1

2
z̃2ω̃0 + z̃f̃ − β

3!
z̃3f̃

′′
+O(β2).

The function f̃ is written as

f̃ =

[
1 +

β

6
ũ2∂2x̃ +O(β2)

](
Q̃

ũ
− 1

2
ũω0

)
+O(β2).

=
Q̃

ũ
− 1

2
ũω̃0 +

β

3
Q

(ũ′)2

ũ
− β

6
Qũ′′ − β

12
ω0ũ

2ũ′′ +O(β2).

The second derivative is

f̃ ′′ = 2
Q̃

ũ3
(ũ′)2 − Q̃

ũ2
ũ′′ − 1

2
ω0ũ

′′ +O(β).

Putting these together, we find the streamfunction in terms of ũ:

ψ̃ =
1

2
z̃2ω̃0 + z̃

[
Q̃

ũ
− 1

2
ũω̃0 +

β

3
Q

(ũ′)2

ũ
− β

6
Qũ′′ − β

12
ω0ũ

2ũ′′

]

− β
3!
z̃3
[
2
Q

ũ3
(ũ′)2 − Q

ũ2
ũ′′ − ω0

2
ũ′′
]

+O(β2).
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