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Abstract

All solutions of the Korteweg — de Vries equation that arermbed on the real line are physically
relevant, depending on the application area of interestiallls both analytical and numerical
approaches consider solution profiles that are eitheradlydticalized or (quasi)periodic. In this
paper, we discuss a class of solutions that is a nonlinearpagition of these two cases: their
asymptotic state for largl is (quasi)periodic, but they may contain solitons, with dthaut
dispersive tails. Such scenarios might occur in the casecalized perturbations of previously
present sea swell, for instance. Such solutions have bsenstied from an analytical point of
view only recently. We numerically demonstrat&eient features of these solutions.
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1. Introduction

The Korteweg — de Vries (KdV) equation is one of the most €ddionlinear partial dieren-
tial equations. It can be written as

Ot + 600y + xxx = 0, (1)

wherex andt represent a scaled spatial and temporal independent lgrigspectively, and
g(x, t) is the function to be determined. The KdV equation arisethénstudy of long waves
in shallow water, ion-acoustic waves in plasmas, and in ggndescribes the slow evolution
of long waves in dispersive media [1]. The importance of thaation partially derives from
how well its solutions match experimental observations3j24]. When comparing solutions
with both experimental and numerical data, the so-calléitbed1] solutions have often taken a
dominant place. Although these solutions are beyond dagbifieant, their simple functional
form and straightforward dynamical behavior have contetuo their prominence. Recent work
on the numerical evaluation of solutions other than saditoas allowed for the detailed study of
other important classes of solutions, such as dispersigg5hor (quasi-) periodic multi-phase
solutions, the so-called finite-genus solutions. Althotigh finite-genus solutions have been
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computed before by others [6, 7, 8], their computation withie framework of Riemann-Hilbert
problems [9] now allows for the investigation of the noninsuperposition of such solutions
with solitons and dispersive tails. The corresponding micabmethod was discussed in detail
in [10]. The analysis of such superposition solutions wasngred by Egorova, Grunert and
Teschl [11] and by Mikikits-Leitner & Teschl [12], includirsome scenarios that are not covered
in [10].

From an analysis point of view, the nonlinear superpostidimite-genus solutions and local-
ized profiles containing dispersion and solitons requineause of non-standard function spaces
because of the asymptotic behavior of the finite-genusisolsit which are typically quasi pe-
riodic. This is not required in the study of the finite-genokiions on their own, as these are
finite-dimensional solutions. Only when the number of pkaseallowed to increase without
bound are function-theoretic considerations relevarit [ti@hat case, one often restricts to peri-
odic boundary conditions, allowing the use of standardepabispersion, on the other hand, is
inherently infinite dimensional. Both solitons and dispersails fit within the framework of the
inverse scattering transform [5, 14], resulting in staddgraces with initial data that are local-
ized on the whole line. When the solution contains both figéaus components and dispersion
with solitons, neither the use of standard spaces with gerfoinctions or with localized func-
tions is possible. Egorowat al. [11] introduce new spaces where the quasi-periodic behavio
bothx — +c0 andx — —o is subtracted b, so that only localized functions remain. Note that
the quasi-periodic behavior on either end is distinct, aeimonstrated numerically below.

The same issues that complicate the analysis prevent therimahcomputation of the solu-
tions using traditional methods: not only is the quasi-pdid behavior a$x] — oo problematic,
the presence of dispersion with its small bffeetively faster (asincreases) oscillations dooms
any approach using a traditional time-stepping algorit#rdiscussion of this is found in [5].
Our method avoids these issues completely: using the Biddgnature of (1) the superposition
solutions are evaluated at aryor t by solving a Riemann-Hilbert problem, as briefly outlined
below. The crux of the present work and that in [10] is thatdperoach of [5] to make the
inverse scattering transfornffective may be combined with that in [9], where finite-genus so
lutions are computed, using the Riemann-Hilbert approadtie. result is an fective numerical
algorithm to compute the superposition solutions, whiahiaretect localized perturbations of
finite-genus solutions.

The goal of this short paper is the computational investgadf some of the properties of
the superposition solutions, especially with regards éoiialitative and quantitativeféiérences
that occur as a consequence of the nonlinear superpositlmmdiscussion dliers from that in
[10] where the numerical method is discussed and presentgceat detail. In contrast, only
limited space is devoted to the dressing method [15] andeémBhn-Hilbert problems, while no
mentioning is made of the numerical method, other than ptesesome of its results.

2. TheDressing Method

The numerical method we sketch here is derived frondthesing methofl5, 16, 17]. Before
discussing the method, we discuss an analogous methoedpplihe linear equation

Gt + Oxxx = 0. (2
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One can write down a solution in Ehrenpreis form

q(X, t) — ff(k)eikx+ik3tdk
r

whererl is chosen so that the integral is convergent. The solutidheoinitial-value problem on
the line with decaying initial data is solved with:

f(k) = 2—1 fR e *Xq(x,0)dx, I =R.

The solution of the periodic problem, often solved in terrha Bourier series, can be expressed
in this form [18]. Taking a constructive approach, we maycsyeoth f (k) andI” and construct
a solution of (2). This is the so-called direct method. Anrepée solution is simply

Q(X,t) — feikx+ik3tdk,
r

whererl is a contour in the upper-half plane such tkdtis real valued. This is directly related
to the Airy function [19].

To motivate the extension to nonlinear problems, we showctmection between contour
integrals andRiemann—Hilbert problemsSiven an oriented contolirc C andG : T’ — C>?a
Riemann—Hilbert problem (RHP) poses the task of finding @tion® : C \ T’ — C™? that is
analytic inC \ T" and satisfies

®*(K) = D (KG(K), kel,

where we us@(w0) = | if m= 2 (matrix RHP) andb(c0) = [1, 1] if m = 1 (vector RHP).
Consider the RHP

1 0

(D+(k) =07 (k) eikx+ik3tf(k) 1

, ke, ®(c0)=1.

Assuming sfficient decay off (k) as|k| — o it can be shown that [20]

1 0 1 eiks+isztf(s)
‘D(k)z[ Fily 1 ] (9 = Efers

Then
—2ri “llim kd1(K) = f gk £ (lydk
—00 l—*

is a solution of (2). The dressing method [15] is a genertitimeof this procedure to nonlinear
PDEs. Define the Pauli matrices
|10 1
’ 0—2 - 1 O .

We state the dressing method as a theorem.
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Figure 1: The jump contours of the RHP associated with thdimzsr superposition of a dispersive solution of (1) and a
quasi-periodic solution of (1). Heeekg are the stationary points of egfk) and¢ > 0 is a constant chosen for numerical
purposes.

Theorem 2.1. Let®(k) solve the RHP
O (k) = O~ (K)e "Wy (keMe ke, 6(K) = ikx + 4ik3, (o) = [1,1],

wherel = T (with orientation),detV(k) = 1, W = V(-k) and V-}(k) = o-2V(E)o-2. Assume
that the RHP has a unique solution that igf&tiently djferentiable in x and t and all existing
derivatives ar@)(1/k) as k— co. Define

[ Q) QY | =2 Jim kdx®(K)ors. 3)
Thend(k) solves
—Dyy + 2ikdyo3 — Q(X, 1)@ = 0,
— D + 4ik3Dor3 = (2Q(x, 1) — 4k2) (Dx — ikdDo3) — Qx(X, 1) D,
and Qx, t) solves(1).
Using these ideas a RHP was derived in [10] that corresparttie nonlinear superposition of
a quasi-periodic, finite-genus solution of (1) with a sautof the Cauchy initial-value problem
on the line with rapidly decaying initial data. The detaifslte RHP can be found in [10] and
the jump contours are displayed in Figure 1. The contour$ierimaginary axis correspond to
solitons in the solution. The ellipses on the real axis @poad to a quasi-periodic background
solution and the array of contours passing aroukg represent the dispersive aspects of the

solution, see [5]. As we discuss in the following sectionotieer numerical methods exist for
computing such solutions.

(4)

3. Numerical Results

In this section we present the results of our computations.d@/not address accuracy. An
in-depth analysis can be found in [5, 9, 21, 22]. An overvidthe numerical method for RHPs
that we use is found in [23, 24]. These works address eveppgasonsider here. In general, the
method takes irx andt as parameters and returns an approximation of the solutithre goint
(%, t). No time-stepping or spatial discretization is used t@obthe plots we display below.
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3.1. Genus two with two solitons

The exact arrangement of contours shown in Figure 1 prodheesolution of the KdV equa-
tion shown in Figure 3. We see significant dispersion intimgavith the quasi-periodic back-
ground. We emphasize that due to this quasi-periodic backgt, no other existing numerical
methods can compute this solution. Furthermore, the diggebrings with it other numerical
issues, see [5]. We also display the solutions before sopiign in Figure 2. Removing the
ellipses from Figure 3 we obtain the (localized) solutiorfrigures 2(a) and 2(b). Leaving only
the ellipses in Figure 3 we obtain the solution in Figure 2(c)

The quasi-periodic background shown in Figure 3 has foumasgtic regions: (ix < 0, (ii)
between the dispersive tail and the first soliton, (iii) betw the two solitons, and (iW) > 0.
Since KdV solitons always separate we expeet2 regions whem solitons are present in the
solution. We analyze these regions in more detail on a cgsme basis in what follows. In this
paper we restrict to a genus two (or lower) background butete there is no barrier preventing
computations with higher genus background.

We compare our computed solutions with the analysis in [2], th particular, we compute
the amplitude of the discrete Fourier transform (DFT) ofdbkution in each of the regions out-
lined in Section 3.1. See Figure 3 for these results. Thedigi@monstrates that each region
consists asymptotically of a solution of the KdV equatiothwthe same two fundamental fre-
guencies — a genus two solution. Furthermore, the resuttsrsibelow in (5(c)) indicates that
this must be the same solution with phase shifts. This caedm®gorously through the analysis
of the RHP [12].

3.2. Genus two with four solitons

To further demonstrate the method we plot the evolution abpetsive four-soliton solution
on a small amplitude quasi-periodic background. The gpesgidicity of the background is not
easily seen by the eye but the amplitude of the DFT clearlyshwo fundamental frequencies.
This solution is shown in Figure 4.

4. The Nonlocality of Superposition

We may compute simpler solutions as well. In Figure 5 we digplpurely dispersive solution
of (1) superimposed on a periodic genus one backgroundgi(gtt) be this solution. If we
remove the dispersive contours from the RHP we obtain a gietigenus one solution of the
KdV equation. Label this solutiogy(x,t). On the other hand, if we remove the ellipses on the
real axis we obtain a purely dispersive solution of the Kd\atépn that decays at infinity. Label
this solutiongo(x, t). We measure thefiect of nonlinearity by examiningz(x,t) — qi(x. t). If
the dfect of nonlinearity was local thegp(x, t) — g1(x, t) would be a local perturbation gf(x, t)
and would decay at infinity. In Figure 5(c) we see that tHfsa is non-local: fox < 0 we
see thatpp(x,t) is a phase-shifted genus one solution whilexas 0, gz2(X, t) ~ qi(X,t). This
significantly complicates the computation of such solwieiith classical methods because the
solution cannot be approximated by a periodic solution.

5. Nonlinear Peak Amplitude

Itis a relevant physical question to ask how the (quasiidpér backgroundiects the soliton
amplitude. The method presented here allows this questitie examined for the KdV equa-
tion. We remove dispersion from the solution. The assodiRidP contains only circles on the
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Figure 2: (a) A dispersive solution of the KdV equation wittotsolitons at = 0. (b) A dispersive solution of the KdV
equation with two solitons dt= 5. (c) A genus-two solution of the KdV equation.
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Figure 3: A two-soliton solution of the KdV equation with aagirperiodic genus two background. The insets show
the amplitude of the DFT of the solution over the indicategiors to demonstrate the fundamental frequencies that are
present. (a) The solution &t 0. (b) The solution at = 5.
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Figure 4: A dispersive four-soliton solution of the KdV etjoa with a quasi-periodic genus two background. The insets
show the amplitude of the DFT of the solution over the indidategions to demonstrate the fundamental frequencies
that are present. (a) The solutiontat 0. (b) The solution at = 5.

imaginary axis and ellipses on the real line. kggti (x,t) be the solution of the KdV equation
found by solving this RHP.

In the absence of the ellipses, the RHP can be solved expl&sid the solution separates
asymptotically into a sum of the form

m
as(x, 1) ~ Z 2 sechi(kj(x — 4t + ¢;)) + O(t™") for all n > 0 ast — oo,
j

with «j < «j.1, sSee Figure 2(b) for an example. Therefore we know the maximvaiue of the
solution for large time is 2, Additionally, we can compute an intervig(t) such that the peak
of the jth soliton lies inl;(t). We perform our comparison for the largest and therefoseef
moving soliton. Letyy(x, t) be the finite-genus solution of the KdV equation found by oging
the circles on the imaginary axis from the RHP.

If, asymptotically, solutions superimpose linearly we \Wbexpect the maximum value
MaXel () Crun (X, t) Of the solution to be bounded above by max O (X, t) + 2«2, and below
by Minei,, v Gig(% t) + 2«2 We takely(t) to be an interval of length.8 and plot the above quan-
tities in the two soliton, genus two case in Figure 6. We saerttax, ) g (X, t) + 2«2, is not the
upper bound due to nonlinear interactions although it igréyfaccurate upper estimate. Impor-
tantly, we see that mjg,, Org(X. t) + 2«2, seems to be a true lower bound but it does not closely
track the solution. This experiment indicates that a qpasiedic background rarely amplifies
the peak above maximum linear level and that it never suppsathe peak below the minimum
linear level.

6. Conclusions

We have combined the dressing method and Riemann—Hilbretbeodeformations with a
numerical method for RHPs to compute a class of step-likéefigénus solutions of the KdV
7



04
1.0 001

000
05 / 10

10° 1
-40-20 0 20 40 -40-20 0 20 40

(b)

t=2

Figure 5: A solution of the KdV equation with a periodic geraree background. The insets show the amplitude of
the DFT of the solution over the indicated regions to denratesthe fundamental frequencies that are present. (a) The
solution att = 0. (b) The solution at = 2. (c) A plot of ga(x, 2) — q1(X, 2). This diterence does not decay at infinity
indicating that the nonlinear superpositionggfandq; is non-local.

equation [11] which we call superposition solutions. Dueitber quasi-periodicity (Figure 3)
or the induced phase shift (Figure 5) no other existing nicabmethods can compute these
solutions. The KdV equation is one of the most studied ne@lirPDESs in the last half century,
yet we are able to produce plots of physically relevant smhstthat have not been seen before.
We are also able to examine thieet of a quasi-periodic background on the amplitude of soli-
tons. When compared with a linear scenario we see mild acgtiifin over small time intervals.
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