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Abstract

All solutions of the Korteweg – de Vries equation that are bounded on the real line are physically
relevant, depending on the application area of interest. Usually, both analytical and numerical
approaches consider solution profiles that are either spatially localized or (quasi)periodic. In this
paper, we discuss a class of solutions that is a nonlinear superposition of these two cases: their
asymptotic state for large|x| is (quasi)periodic, but they may contain solitons, with or without
dispersive tails. Such scenarios might occur in the case of localized perturbations of previously
present sea swell, for instance. Such solutions have been discussed from an analytical point of
view only recently. We numerically demonstrate different features of these solutions.
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1. Introduction

The Korteweg – de Vries (KdV) equation is one of the most studied nonlinear partial differen-
tial equations. It can be written as

qt + 6qqx + qxxx = 0, (1)

wherex and t represent a scaled spatial and temporal independent variable, respectively, and
q(x, t) is the function to be determined. The KdV equation arises inthe study of long waves
in shallow water, ion-acoustic waves in plasmas, and in general, describes the slow evolution
of long waves in dispersive media [1]. The importance of the equation partially derives from
how well its solutions match experimental observations [2,3, 4]. When comparing solutions
with both experimental and numerical data, the so-called soliton [1] solutions have often taken a
dominant place. Although these solutions are beyond doubt significant, their simple functional
form and straightforward dynamical behavior have contributed to their prominence. Recent work
on the numerical evaluation of solutions other than solitons has allowed for the detailed study of
other important classes of solutions, such as dispersive tails [5] or (quasi-) periodic multi-phase
solutions, the so-called finite-genus solutions. Althoughthe finite-genus solutions have been
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computed before by others [6, 7, 8], their computation within the framework of Riemann-Hilbert
problems [9] now allows for the investigation of the nonlinear superposition of such solutions
with solitons and dispersive tails. The corresponding numerical method was discussed in detail
in [10]. The analysis of such superposition solutions was examined by Egorova, Grunert and
Teschl [11] and by Mikikits-Leitner & Teschl [12], including some scenarios that are not covered
in [10].

From an analysis point of view, the nonlinear superpositionof finite-genus solutions and local-
ized profiles containing dispersion and solitons requires the use of non-standard function spaces
because of the asymptotic behavior of the finite-genus solutions, which are typically quasi pe-
riodic. This is not required in the study of the finite-genus solutions on their own, as these are
finite-dimensional solutions. Only when the number of phases is allowed to increase without
bound are function-theoretic considerations relevant [13]. In that case, one often restricts to peri-
odic boundary conditions, allowing the use of standard spaces. Dispersion, on the other hand, is
inherently infinite dimensional. Both solitons and dispersive tails fit within the framework of the
inverse scattering transform [5, 14], resulting in standard spaces with initial data that are local-
ized on the whole line. When the solution contains both finite-genus components and dispersion
with solitons, neither the use of standard spaces with periodic functions or with localized func-
tions is possible. Egorovaet al. [11] introduce new spaces where the quasi-periodic behavior at
bothx→ +∞ andx→ −∞ is subtracted off, so that only localized functions remain. Note that
the quasi-periodic behavior on either end is distinct, as isdemonstrated numerically below.

The same issues that complicate the analysis prevent the numerical computation of the solu-
tions using traditional methods: not only is the quasi-periodic behavior as|x| → ∞ problematic,
the presence of dispersion with its small but effectively faster (ast increases) oscillations dooms
any approach using a traditional time-stepping algorithm.A discussion of this is found in [5].
Our method avoids these issues completely: using the integrable nature of (1) the superposition
solutions are evaluated at anyx or t by solving a Riemann-Hilbert problem, as briefly outlined
below. The crux of the present work and that in [10] is that theapproach of [5] to make the
inverse scattering transform effective may be combined with that in [9], where finite-genus so-
lutions are computed, using the Riemann-Hilbert approach.The result is an effective numerical
algorithm to compute the superposition solutions, which are in effect localized perturbations of
finite-genus solutions.

The goal of this short paper is the computational investigation of some of the properties of
the superposition solutions, especially with regards to the qualitative and quantitative differences
that occur as a consequence of the nonlinear superposition.The discussion differs from that in
[10] where the numerical method is discussed and presented in great detail. In contrast, only
limited space is devoted to the dressing method [15] and to Riemann-Hilbert problems, while no
mentioning is made of the numerical method, other than presenting some of its results.

2. The Dressing Method

The numerical method we sketch here is derived from thedressing method[15, 16, 17]. Before
discussing the method, we discuss an analogous method applied to the linear equation

qt + qxxx = 0. (2)
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One can write down a solution in Ehrenpreis form

q(x, t) =
∫

Γ

f (k)eikx+ik3tdk,

whereΓ is chosen so that the integral is convergent. The solution ofthe initial-value problem on
the line with decaying initial data is solved with:

f (k) =
1
2π

∫

R

e−ikxq(x, 0)dx, Γ = R.

The solution of the periodic problem, often solved in terms of a Fourier series, can be expressed
in this form [18]. Taking a constructive approach, we may specify both f (k) andΓ and construct
a solution of (2). This is the so-called direct method. An example solution is simply

q(x, t) =
∫

Γ

eikx+ik3tdk,

whereΓ is a contour in the upper-half plane such thatk3t is real valued. This is directly related
to the Airy function [19].

To motivate the extension to nonlinear problems, we show theconnection between contour
integrals andRiemann–Hilbert problems. Given an oriented contourΓ ⊂ C andG : Γ → C2×2 a
Riemann–Hilbert problem (RHP) poses the task of finding a functionΦ : C \ Γ → Cm×2 that is
analytic inC \ Γ and satisfies

Φ+(k) = Φ−(k)G(k), k ∈ Γ,

where we useΦ(∞) = I if m= 2 (matrix RHP) andΦ(∞) = [1, 1] if m= 1 (vector RHP).
Consider the RHP

Φ+(k) = Φ−(k)

[

1 0
eikx+ik3t f (k) 1

]

, k ∈ Γ, Φ(∞) = I .

Assuming sufficient decay off (k) as|k| → ∞ it can be shown that [20]

Φ(k) =

[

1 0
F(k) 1

]

, F(k) =
1

2πi

∫

Γ

eiks+is2t f (s)
s− k

ds.

Then

−2πi lim
|k|→∞

kΦ21(k) =
∫

Γ

eikx+ik3t f (k)dk

is a solution of (2). The dressing method [15] is a generalization of this procedure to nonlinear
PDEs. Define the Pauli matrices

σ3 =

[

1 0
0 −1

]

, σ2 =

[

0 1
1 0

]

.

We state the dressing method as a theorem.
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Figure 1: The jump contours of the RHP associated with the nonlinear superposition of a dispersive solution of (1) and a
quasi-periodic solution of (1). Here±k0 are the stationary points of expθ(k) andℓ > 0 is a constant chosen for numerical
purposes.

Theorem 2.1. LetΦ(k) solve the RHP

Φ+(k) = Φ−(k)e−θ(k)σ3V(k)eθ(k)σ3, k ∈ Γ, θ(k) = ikx+ 4ik3t, Φ(∞) = [1, 1],

whereΓ̄ = Γ (with orientation),detV(k) = 1, V(k̄) = V(−k) and V−1(k) = σ2V(k̄)σ2. Assume
that the RHP has a unique solution that is sufficiently differentiable in x and t and all existing
derivatives areO(1/k) as k→ ∞. Define

[

Q(x, t) Q(x, t)
]

= 2i lim
k→∞

k∂xΦ(k)σ3. (3)

ThenΦ(k) solves

−Φxx+ 2ikΦxσ3 − Q(x, t)Φ = 0,

−Φt + 4ik3Φσ3 = (2Q(x, t) − 4k2) (Φx − ikΦσ3) − Qx(x, t)Φ,
(4)

and Q(x, t) solves(1).

Using these ideas a RHP was derived in [10] that corresponds to the nonlinear superposition of
a quasi-periodic, finite-genus solution of (1) with a solution of the Cauchy initial-value problem
on the line with rapidly decaying initial data. The details of the RHP can be found in [10] and
the jump contours are displayed in Figure 1. The contours on the imaginary axis correspond to
solitons in the solution. The ellipses on the real axis correspond to a quasi-periodic background
solution and the array of contours passing around±k0 represent the dispersive aspects of the
solution, see [5]. As we discuss in the following section, noother numerical methods exist for
computing such solutions.

3. Numerical Results

In this section we present the results of our computations. We do not address accuracy. An
in-depth analysis can be found in [5, 9, 21, 22]. An overview of the numerical method for RHPs
that we use is found in [23, 24]. These works address every case we consider here. In general, the
method takes inx andt as parameters and returns an approximation of the solution at the point
(x, t). No time-stepping or spatial discretization is used to obtain the plots we display below.
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3.1. Genus two with two solitons
The exact arrangement of contours shown in Figure 1 producesthe solution of the KdV equa-

tion shown in Figure 3. We see significant dispersion interacting with the quasi-periodic back-
ground. We emphasize that due to this quasi-periodic background, no other existing numerical
methods can compute this solution. Furthermore, the dispersion brings with it other numerical
issues, see [5]. We also display the solutions before superposition in Figure 2. Removing the
ellipses from Figure 3 we obtain the (localized) solution inFigures 2(a) and 2(b). Leaving only
the ellipses in Figure 3 we obtain the solution in Figure 2(c).

The quasi-periodic background shown in Figure 3 has four asymptotic regions: (i)x≪ 0, (ii)
between the dispersive tail and the first soliton, (iii) between the two solitons, and (iv)x ≫ 0.
Since KdV solitons always separate we expectn+ 2 regions whenn solitons are present in the
solution. We analyze these regions in more detail on a case-by-case basis in what follows. In this
paper we restrict to a genus two (or lower) background but we note there is no barrier preventing
computations with higher genus background.

We compare our computed solutions with the analysis in [11, 12]. In particular, we compute
the amplitude of the discrete Fourier transform (DFT) of thesolution in each of the regions out-
lined in Section 3.1. See Figure 3 for these results. The figure demonstrates that each region
consists asymptotically of a solution of the KdV equation with the same two fundamental fre-
quencies — a genus two solution. Furthermore, the results shown below in (5(c)) indicates that
this must be the same solution with phase shifts. This can be seen rigorously through the analysis
of the RHP [12].

3.2. Genus two with four solitons
To further demonstrate the method we plot the evolution of a dispersive four-soliton solution

on a small amplitude quasi-periodic background. The quasi-periodicity of the background is not
easily seen by the eye but the amplitude of the DFT clearly shows two fundamental frequencies.
This solution is shown in Figure 4.

4. The Nonlocality of Superposition

We may compute simpler solutions as well. In Figure 5 we display a purely dispersive solution
of (1) superimposed on a periodic genus one background. Letq2(x, t) be this solution. If we
remove the dispersive contours from the RHP we obtain a periodic, genus one solution of the
KdV equation. Label this solutionq1(x, t). On the other hand, if we remove the ellipses on the
real axis we obtain a purely dispersive solution of the KdV equation that decays at infinity. Label
this solutionq0(x, t). We measure the effect of nonlinearity by examiningq2(x, t) − q1(x, t). If
the effect of nonlinearity was local thenq2(x, t)−q1(x, t) would be a local perturbation ofq0(x, t)
and would decay at infinity. In Figure 5(c) we see that this effect is non-local: forx ≪ 0 we
see thatq2(x, t) is a phase-shifted genus one solution while forx ≫ 0, q2(x, t) ∼ q1(x, t). This
significantly complicates the computation of such solutions with classical methods because the
solution cannot be approximated by a periodic solution.

5. Nonlinear Peak Amplitude

It is a relevant physical question to ask how the (quasi-)periodic background affects the soliton
amplitude. The method presented here allows this question to be examined for the KdV equa-
tion. We remove dispersion from the solution. The associated RHP contains only circles on the
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Figure 2: (a) A dispersive solution of the KdV equation with two solitons att = 0. (b) A dispersive solution of the KdV
equation with two solitons att = 5. (c) A genus-two solution of the KdV equation.
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Figure 3: A two-soliton solution of the KdV equation with a quasi-periodic genus two background. The insets show
the amplitude of the DFT of the solution over the indicated regions to demonstrate the fundamental frequencies that are
present. (a) The solution att = 0. (b) The solution att = 5.
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Figure 4: A dispersive four-soliton solution of the KdV equation with a quasi-periodic genus two background. The insets
show the amplitude of the DFT of the solution over the indicated regions to demonstrate the fundamental frequencies
that are present. (a) The solution att = 0. (b) The solution att = 5.

imaginary axis and ellipses on the real line. Letqfull (x, t) be the solution of the KdV equation
found by solving this RHP.

In the absence of the ellipses, the RHP can be solved explicitly and the solution separates
asymptotically into a sum of the form

qs(x, t) ∼
m
∑

j

2κ2j sech2(κ j(x− 4κ2j t + φ j)) + O(t−n) for all n > 0 ast→ ∞,

with κ j < κ j+1, see Figure 2(b) for an example. Therefore we know the maximum value of the
solution for large time is 2κ2m. Additionally, we can compute an intervalI j(t) such that the peak
of the jth soliton lies inI j(t). We perform our comparison for the largest and therefore fastest
moving soliton. Letqfg(x, t) be the finite-genus solution of the KdV equation found by removing
the circles on the imaginary axis from the RHP.

If, asymptotically, solutions superimpose linearly we would expect the maximum value
maxx∈Im(t) qfull (x, t) of the solution to be bounded above by maxx∈Im(t) qfg(x, t) + 2κ2m and below
by minx∈Im(t) qfg(x, t)+ 2κ2m. We takeIm(t) to be an interval of length 0.8 and plot the above quan-
tities in the two soliton, genus two case in Figure 6. We see that maxx∈Im(t) qfg(x, t)+2κ2m is not the
upper bound due to nonlinear interactions although it is a fairly accurate upper estimate. Impor-
tantly, we see that minx∈Im(t) qfg(x, t) + 2κ2m seems to be a true lower bound but it does not closely
track the solution. This experiment indicates that a quasi-periodic background rarely amplifies
the peak above maximum linear level and that it never suppresses the peak below the minimum
linear level.

6. Conclusions

We have combined the dressing method and Riemann–Hilbert contour deformations with a
numerical method for RHPs to compute a class of step-like finite-genus solutions of the KdV
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Figure 5: A solution of the KdV equation with a periodic genusone background. The insets show the amplitude of
the DFT of the solution over the indicated regions to demonstrate the fundamental frequencies that are present. (a) The
solution att = 0. (b) The solution att = 2. (c) A plot of q2(x, 2) − q1(x, 2). This difference does not decay at infinity
indicating that the nonlinear superposition ofq0 andq1 is non-local.

equation [11] which we call superposition solutions. Due toeither quasi-periodicity (Figure 3)
or the induced phase shift (Figure 5) no other existing numerical methods can compute these
solutions. The KdV equation is one of the most studied nonlinear PDEs in the last half century,
yet we are able to produce plots of physically relevant solutions that have not been seen before.

We are also able to examine the effect of a quasi-periodic background on the amplitude of soli-
tons. When compared with a linear scenario we see mild amplification over small time intervals.
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10


