
A

i
K
m
t
t
p
o
©

K

1

i
g
p
s
a
s

S
t
p
v
g
s
T

0

Available online at www.sciencedirect.com

Mathematics and Computers in Simulation 127 (2016) 263–272

Original article

Computing Riemann theta functions in Sage with applications

Christopher Swierczewski ∗, Bernard Deconinck
Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, United States

Received 17 November 2011; received in revised form 27 September 2012; accepted 28 April 2013
Available online 16 May 2013

bstract

A new implementation for the computation of the Riemann theta function in the open-source mathematical software Sage
s discussed. This implementation is used in two applications. The first is the computation of three-phase solutions of the
adomtsev–Petviashvili equation using an algorithm due to Dubrovin, originally implemented by Dubrovin et al. Our imple-
entation is significantly easier, due to our more straightforward computation of the theta function. The second application is that of

he computation of the bitangents of a quartic plane algebraic curve, relevant in convex optimization. Since Sage currently lacks the
ools for computing with Riemann surfaces, this second application relies partially on results obtained using Maple’s algcurves
ackage. The current manuscript is the first step towards porting the functionality of the algcurves package to Sage as well as
ther scientific Python distributions.

2013 IMACS. Published by Elsevier B.V. All rights reserved.

eywords: Riemann theta functions; Sage; Algebraic curves; Integrable equations; Bitangent lines

. Introduction

The Riemann theta function is the fundamental building block for the Abelian functions [3]. These are functions
n g complex variables, which are meromorphic and doubly periodic in each variable. As such, the Abelian functions
eneralize the classical elliptic functions to multiple variables. Like the elliptic functions, Abelian functions arise in a
lethora of applications: all integrable equations have solutions that are expressed in terms of Abelian functions, the
o-called algebro-geometric solutions [4]. Riemann theta functions can be associated with Riemann surfaces [15] and
s such they are important for different optimization and cryptography applications which rely on algebraic curves,
ee e.g. [20].

Until recently, the Riemann theta function could not be computed efficiently. In 1997, Dubrovin, Flickinger and
egur [12], while computing solutions of the Kadomtsev–Petviashvili (KP) equation (see below), outlined how Riemann

heta functions of genus no more than 3 can be computed, using different representations for different values of the
arameters describing the theta function. The number of representations used grows exponentially with the number of
ariables g. As such, the approach used in [12] does not allow for an efficient numerical implementation for increasing

. In 2004, Deconinck et al. [7] described a new algorithm for the computation of the Riemann theta function, using a
ingle representation for all values parameterizing the function. The essence of this algorithm is briefly recalled below.
he computation of the Riemann theta function in Maple uses an implementation of this algorithm by the second

∗ Corresponding author. Tel.: +1 253 223 3721.
E-mail addresses: cswiercz@uw.edu (C. Swierczewski), bernard@uw.edu (B. Deconinck).

378-4754/$36.00 © 2013 IMACS. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.matcom.2013.04.018

http://www.sciencedirect.com/science/journal/03784754
dx.doi.org/10.1016/j.matcom.2013.04.018
mailto:cswiercz@uw.edu
mailto:bernard@uw.edu
dx.doi.org/10.1016/j.matcom.2013.04.018

264 C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272

author and Mark van Hoeij. To our knowledge this algorithm is also the one used in Mathematica. Here we report on
an implementation by the first author in the open-source mathematical software Sage [23]. This presents the first step
towards the larger goal of porting the functionality of Maple’s algcurves package [8] to Sage and other common
Python-based scientific computing packages.

In addition we present two applications of the Riemann theta function using this Sage implementation. First, we
duplicate the results of Dubrovin, Flickinger and Segur [12] for the computation of three-phase solutions of the KP
equation. Our implementation of their algorithm is much more concise, due to the use of the results of [7] for the
computation of the Riemann theta function. Second, we computationally realize some classical results about the
bitangents (tangents at two distinct points) of quartic plane algebraic curves. Using our Sage implementation of the
Riemann theta function, combined with some results obtained using Maple’s algcurves package (since Sage does
not yet include its full capabilities), we compute all bitangents of such curves in terms of the Riemann theta function
determined by the Riemann surface associated with the quartic curve. Other applications of the Riemann theta function
abound, such as in convex optimization, number theory and other areas [3,20]. We will delay their computational
investigation until the complete algcurves package has been ported.

2. Riemann theta functions

In this section we summarize the basic facts about the Riemann theta function. We mention the challenges in
computing the Riemann theta function, a solution of the computational problem due to Deconinck et al. [7] and we
discuss a recent implementation in Sage due to the first author.

Definition 1. A matrix � ∈ Cg×g is called a Riemann matrix if it is symmetric and its imaginary part Im(�) is
positive definite.

The set of Riemann matrices is denotedHg and is referred to as the Siegel upper half space [15]. Different conventions
are used by different authors, corresponding to their different conventions for the definition of the Riemann theta function
below.

Definition 2. The Riemann theta function θ : Cg × Hg → C is defined in terms of its Fourier series

θ(z|�) =
∑
n∈Zg

e2πi((1/2)n · �n+n · z).

The Riemann theta function converges absolutely and uniformly on compact sets in Cg × Hg. It is periodic in z
with integer periods and quasi-periodic in z in the columns of �. In other words, if m, n ∈ Zg then

θ(z + m + �n|�) = e−2πi((1/2)n · �n+n · z)θ(z|�). (1)

A generalization of the Riemann theta function, involving a non-integer shift in some of its arguments, is referred
to as the Riemann theta function with characteristics.

Definition 3. Let α, β ∈ [0, 1)g. The Riemann theta function with characteristic

[
α

β

]
is defined as

θ

[
α

β

]
(z|�) =

∑
n∈Zg

e2πi((1/2)(n+α) · �(n+α)+(n+α) · (z+β))

= e2πi((1/2)α · �α+α · (z+β))θ(z + �α + β|�).
Note that θ

[
0

0

]
(z, �) = θ(z, �). See [15–17] for further definitions and properties of the Riemann theta function.

C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272 265

3

a
o
r
V
r
p

w

H
y
c
a
w
t
a
s
R
p

t
l
a
p
t
C
a
c
g

m

Fig. 1. A cartoon of a genus 2 Riemann surface, with a homology basis indicated.

. Algebraic curves, Riemann surfaces, and Riemann matrices

Riemann matrices, and thus Riemann theta functions, are naturally associated with compact Riemann surfaces. It
ppears that only Riemann theta functions originating from Riemann surfaces arise in applications. In this section we
utline briefly the details of how plane algebraic curves give rise to Riemann surfaces, and how Riemann surfaces give
ise to Riemann theta functions. The reader can find more detail in standard references such as [11,15]. Deconinck and
an Hoeij [9] present a description specifically aimed at applied mathematicians. The main goal of this section is to

ecall some concepts for the benefit of the reader and to establish some notation, which is used in the remainder of the
aper.

For our purposes, a plane algebraic curve VC(f) is the zero set of a polynomial f(x, y) in two variables x, y ∈ C
ith complex coefficients {ajk ∈ C, j + k ≤ N}. It is determined by an equation of the form

f (x, y) =
∑
j,k

ajkx
jyk = 0. (2)

ere N is the degree of the algebraic curve. Typically such algebraic curves have singular points, i.e., (x, y) for which f(x,
) = 0, fx(x, y) = 0 = fy(x, y). A plane algebraic curve also has “points at infinity”, which are found by homogenizing the
urve by considering zNf(x/z, y/z) = 0 and equating z = 0 (we have assumed that {ajk, j+ k = N} /= ∅). If we desingularize
nd compactify VC(f), we obtain a compact Riemann surface, which we may conveniently represent by VC(f) as
ell. The desingularizing can be done, for instance, by imposing analyticity of the different branches of VC(f) at

he singular points, for instance by using Puiseux series representations for these branches [9]. Compactification is
s straightforward as incorporating the points at infinity by using homogenous triples (x : y : z) to describe VC(f). It
hould be noted that all compact Riemann surfaces can be represented as plane algebraic curves. In what follows
iemann surfaces are assumed to be compact and we move freely between the Riemann surface and its representing
lane algebraic curve.

A compact Riemann surface has one topological invariant, its genus g. The genus is determined by the degree and
he branching structure of VC(f), as well as by its singularities [1]. On a genus g Riemann surface there exist exactly g
inearly independent holomorphic differentials ωj, j = 1, . . ., g, i.e., differentials that are analytic in the neighborhood of
ny place on the Riemann surface, including those places that correspond to points at infinity or singular points of the
lane algebraic curve. This is a consequence of the Riemann–Roch Theorem [11,15]. For the purposes of integrating
hese differentials on VC(f), there exists a basis of 2g closed paths {aj, bj, j = 1, . . ., g} on the Riemann surface, by
auchy’s Theorem. These paths cannot be contracted to a point. They form a basis in the sense that the integral of
ny holomorphic differential around any closed path on VC(f) can be written as a linear combination with integer
oefficients of integrals of this differential around the cycles {aj, bj, j = 1, . . ., g}. The basis cycles aj and bj, j = 1, . . .,
are chosen to have certain intersection properties [15]. A cartoon for g = 2 is displayed in Fig. 1. The values of

∮
ωj
ak

ay be used to normalize the differentials so that
∮

ak
ωj = δjk, where δjk is the Kronecker delta: δjk = 1 if j = k and 0

266 C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272

otherwise. In what follows we assume that the differentials ωj are so normalized. Riemann showed [11,15] that the
g × g matrix � obtained via

∮
bk

ωj = �jk

is a Riemann matrix. It should be mentioned that not all Riemann matrices are associated with Riemann surfaces this
way. In fact, the number of independent parameters characterizing a g × g Riemann matrix is g(g + 1)/2, whereas the
number of such parameters characterizing a g × g Riemann matrix that originates from a Riemann surface is 3g − 3.
The Schottky problem is the problem of determining which Riemann matrices are associated with Riemann surfaces
[11]. Note that for g ≤ 3 the number of free parameters in a Riemann matrix is not restricted by its association with
a Riemann surface. In other words, the Schottky problem does not present an obstacle when dealing with Riemann
matrices of genus ≤3. All of them may be thought of as originating from a Riemann surface. In fact, for g = 3, the
equations determining this surface are constructed in [13]. In its full generality, the Schottky problem was effectively
solved using the KP equation by Shiota [22].

4. Computation and implementation

A new implementation of the Riemann theta function is done in the open-source mathematics software package,
Sage. Sage [23] is a free, open-source mathematics software system licensed under the GNU Public License. It combines
other free, open-source mathematics software by packaging and unifying them through a common interface under the
Python programming language. It is the result of a volunteer effort by an international team of students, professors,
researchers, and software engineers from a variety of institutions.

Most of the underlying mathematical functionality of Sage is made possible through a collection of free, open-
source C/C++and Fortran-based libraries. These include, but are not limited to, ATLAS and BLAS for linear algebra
operations, GAP for computational discrete algebra and group theory, Maxima for symbolic computation, Pari/GP for
computations in number theory, MPIR for multi-precision integer and rational arithmetic, along with many other core
libraries.

Several pre-existing Python-based packages are included as part of the Sage library such as Numpy/Scipy for
numerical calculations, Sympy for symbolic arithmetic, and matplotlib for two-dimensional plotting. Finally, Sage
developers have written their own code, independent of pre-existing packages integrated into Sage. The code for
computing Riemann theta functions is an example of such an implementation.

The two main challenges in computing the Riemann theta function are that it is defined in terms of an infinite
series in Zg and, as seen by the quasi-periodicity property, it grows doubly exponentially in the directions specified
by the columns of �. Deconinck et al. [7] developed an algorithm that efficiently computes θ(z|�) to a user-specified
accuracy. The core of their technique is to factor out the exponential growth from the infinite sum, then determine
an optimal number of integer points over which to approximate the infinite series up to a user-defined accuracy. It
should be remarked that the algorithm does not require different series representations for the Riemann theta function
depending on the entries of �, as was necessary in [12], for instance.

This algorithm is implemented in Sage by the first author and can be found in the

sage.functions.riemann theta module located in the Sage library. We present an example of a
Sage calling sequence to compute the value of the Riemann theta function associated with the Riemann matrix

� =
(

i −1/2

−1/2 i

)
.

We must first construct the matrix over a ComplexField object – a field of complex numbers with a prescribed
precision. The desired number of bits of accuracy is given as an argument to ComplexField.

s
s
s
[
[

a

s
1
s
s
s
0
s
C

d
i

s
5
s
-

s
-

F

T
d
T
p
i

s
.
s
s
s
s
s
s
s

h

5

q

C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272 267

age: R.<I> = ComplexField(32) # I=sqrt(-1)
age: Omega = Matrix(R,2,2,[I,-1/2,-1/2,I])
age: Omega
1.00000000*I -0.500000000]
-0.500000000 1.00000000*I]

To evaluate the Riemann theta function at a point z ∈ Cg = C2, provide a Python list or Sage vector representing z
s well as the Riemann matrix as input.

age: RiemannTheta([0,0], Omega)
.16540106 - 6.14229246e-24*I
age: v = vector(R,[1/2,1/3 +I/4])
age: val = RiemannTheta(v, Omega)
age: val
.795738522 - 0.187073837*I
age: parent(val)
omplex Field with 32 bits of precision

Note that the precision of the output is only up to the precision given by the Riemann matrix. We also compute
irectional derivatives of the Riemann theta function. This is done by providing a list of Python list objects as a third
nput. For example, z = (z1, z2) = (1.7 − 1.2I, − 0.4 + I/3) and Riemann matrix � be defined as above. We compute

∂

∂z1
θ(z, �) and

∂

∂z2
θ(z, �).

age: RiemannTheta([1.7-1.2*I,-0.4+I/3], Omega, [[1,0]])
54.338151 - 409.949386*I
age: RiemannTheta([1.7-1.2*I,-0.4+I/3], Omega, [[0,1]])
127.329415 +139.848367*I

We also compute (∂2θ/∂z1∂z1)(z, �).

age: RiemannTheta([1.7-1.2*I,-0.4+I/3], Omega, [[1,0],[0,1]])
817.237957 - 970.730267*I

or plotting purposes we use the oscillatory part of the Riemann theta function, defined in [7],

θ̂(z|�) = e−πIm(z) · Im(�)−1Im(z)θ(z|�).

hat is, the oscillatory part of the Riemann theta function is the Riemann theta function with the
oubly exponential growth factored out, thus leaving only bounded, oscillatory behavior. The Riemann-
heta.exp and osc at point() method allows the user to separately compute these exponential and oscillatory
arts. It returns a tuple (u, v) such that θ(z|�) = euv. Below, we create the function g(x, y) = θ̂(x + iy, 0|�) and plot
ts real part, imaginary part and absolute value. These plots are shown in Fig. 2.

age: def g(x,y):
...: return RiemannTheta.exp and osc at point([x+I*y,0], Omega)[1]
age: plot3d(lambda x,y: real(g(x,y)), (0,1), (0,5), adaptive=True)
age: plot3d(lambda x,y: imag(g(x,y)), (0,1), (0,5), adaptive=True)
age: plot3d(lambda x,y: abs(g(x,y)), (0,1), (0,2), adaptive=True)
age: from matplotlib import cm # for matching color scheme to 3D plots
age: contour plot(lambda x,y: real(g(x,y)), (0,1), (0,5), cmap=cm.hsv)
age: contour plot(lambda x,y: imag(g(x,y)), (0,1), (0,5), cmap=cm.hsv)
age: contour plot(lambda x,y: abs(g(x,y)), (0,1), (0,2), cmap=cm.hsv)

Additional examples of Sage code using RiemannTheta() can be found in a Sage Notebook worksheet at
ttp://www.cswiercz.info/publications.html.
. Applications

In this section we present applications of Riemann theta functions to integrable equations and bitangent lines of
uartic curves.

http://www.cswiercz.info/publications.html

268 C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272
Fig. 2. Three-dimensional and contour plots of the real part, imaginary part, and absolute value of the oscillatory part θ̂(x + iy, 0|�) of the Riemann
theta function θ(x + iy, 0|�).

5.1. The Kadomtsev–Petviashvili equation

The Kadomtsev–Petviashvili (KP) equation is a well-studied and fundamental example of an integrable partial dif-
ferential equation. It describes long waves in shallow water that are weakly two-dimensional, among other applications
[2]. It is given by

(−4ut + 6uux + uxxx)x + 3uyy = 0. (3)

The equation admits a large family of (quasi-) periodic solutions of the form

u(x, y, t) = c + 2
∂2

∂x2 log θ(z|�) (4)

where � is a Riemann matrix obtained from an algebraic curve, c is a constant, and the phase variable z = (z1, . . ., zg)
is given by

z = kx + ly + ωt + φ, k, l, ω, φ ∈ Cg,

and k, l, ω and φ are parameterized by the same Riemann surface that determines �, see [11,14]. Such a solution to
KP is referred to as a genus g solution. Krichever [14] describes a method for generating these solutions starting with
a Riemann surface and a divisor of degree g on this surface (i.e., a set of g points on the surface).

If the genus does not exceed 3 then the Schottky problem is not an issue, in that, all 2 × 2 and 3 × 3 Riemann
matrices are derived from algebraic curves, as mentioned above. Therefore, without needing to use the theory of
Riemann surfaces, the calculation of solutions to KP of the form in Eq. (4) is reduced to solving algebraic equations
in the components of the vectors k, l and ω. The algorithm is described in [12]. Furthermore, in the genus g = 3 case
the vector φ can be chosen to be real, but otherwise arbitrary.
Computing genus 3 solutions to KP is an example of an application of Riemann theta functions in Sage, and serves
as additional verification that the Riemann theta function algorithm is correctly implemented. The code is too long
to be shown here in its entirety. (Approximately 40 lines, not including the code to compute values of the Riemann
theta function and its derivatives.) The difference between this implementation and that of Dubrovin et al. [12] is in

t
d
m

D

F
k

C

i

W

W

1
2

3
4
5

6

C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272 269

he computation of the Riemann theta function. They required several different representations for computing θ(z|�)
epending on where � lies in Hg. With the algorithm of Deconinck et al. [7], special treatment for different Riemann
atrices is unnecessary.
We present the major steps of the computation with tools particular to Sage. In order to match the convention of

ubrovin, Flickinger, and Segur for the definition of the Riemann theta function we make the transformation

z �→ 1

2π
z, � �→ 1

2πi
�.

ollowing [12] we introduce the following notation: given the characteristic m ∈ {0, 1/2}3 and the parameter k = (k1,
2, k3)T,

θ̂[m] = θ

⎡
⎣m

0

⎤
⎦ (z|�)|z=0, θ̂ij[m] =

∂2θ

⎡
⎣m

0

⎤
⎦ (z|�)

∂zi∂zj

|z=0,

θ̂ijkl[m] =
∂4θ

⎡
⎣m

0

⎤
⎦ (z|�)

∂zi∂zj∂zk∂zl

|z=0, ∂4
k θ̂[m] =

∑
1≤i,j,k,l≤3

kikjkkklθ̂ijkl[m].

hoose characteristics m1, . . ., m7 such that the 7 × 7 matrix⎛
⎜⎜⎜⎝

θ̂11[m1] · · · θ̂33[m1] θ̂[m1]

...
. . .

...
...

θ̂11[m7] · · · θ̂33[m7] θ̂[m7]

⎞
⎟⎟⎟⎠

s invertible. Denote the elements of the inverse matrix by⎛
⎜⎜⎜⎜⎜⎝

a11
m1

· · · a11
m7

...
. . .

...

a33
m1

· · · a33
m7

am1 · · · am7

⎞
⎟⎟⎟⎟⎟⎠ .

e define the polynomials Qij(k) and Pij(k):

Qij = −
∑

m∈{m1,...,m7}
aij
m∂4

k θ̂[m],

Pij = 1

2
[k2

i Qii(k) − kikjQij(k) + k2
jQjj(k)].

ith these definitions, we describe the algorithm for generating genus g = 3 solutions to the KP equation.

. Construct a 3 × 3 Riemann matrix over ComplexField.

. Compute the quantities ∂4
k θ̂[m] over all half-period characteristics m ∈ {0, 1/2}3 with symbolic variables k1, k2, k3

as coefficients. Note that in the notation of [12] α = m and β = 0.
. Compute the quantities θ̂ij[m] over all half-period characteristics m ∈ {0, 1/2}3.
. Construct and invert a 7 × 7 matrix with entries of the form θ̂ij[m].

. Compute the polynomials Qij(k) and Pij(k) and substitute values for k1 and k2. Solve for and choose a particular

value of k3 using the compatibility condition H.11 in [12] and substitute into Qij and Pij as well.
. Write out the list of equations in Eqs. (H.9) and (H.10) of [12], substitute a value for l1, and solve for the remaining

unknowns l2, l3 and ω using a numerical root finder in the Numpy/Scipy numerics package included with Sage.

270 C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272

Fig. 3. A contour plot of a genus 3 solution to the KP equation. The x- and y-axes are the horizontal and vertical axes, respectively. Here, the

Riemann matrix is that given in (5). The phase vectors are k = (0.5, 1, 1.2060)T, l = (−0.2, − 1.3974, 0.6148)T, ω = (−1.1427, − 6.2228, − 0.3940)T,
and φ = (0, 0, 0)T. Lastly, t = 0.5.

An example contour plot of a genus 3 solution to the KP equation corresponding to the Riemann matrix

� =

⎛
⎜⎝ 2 1 1

1 4.5 0.9

1 0.9 4.54

⎞
⎟⎠ (5)

is shown in Fig. 3. The horizontal and vertical axes are the x- and y-coordinates, respectively, and the color indicates
surface wave height. This solution matches that found in Fig. 4 of [12].

5.2. Bitangents of plane quartic curves

The computation of bitangent lines is useful for computations in optimization-related fields such as algebraic geom-
etry and convex optimization. In algebraic geometry, bitangents can be used to represent smooth complex projective
plane quartic curves as both a symmetric determinant of a linear form (or, determinantal representation) and a sum of
three squares [18]. In convex optimization, bitangents are used to construct a “visibility complex” which, in turn, is
used to solve the shortest path problem in Euclidean space [20].

Definition 4. A bitangent to a curve VC(f) determined by f(x, y) = 0 (see (2)) is a line L that lies tangent to VC(f)
at least two distinct points.

By Bezout’s Theorem, if a curve has a bitangent it necessarily must be of degree at least four [5]. A result of Plücker
determines that a degree four complex curve admits exactly 28 complex bitangents [19]. In particular, Plücker showed
that the number of real bitangents of any quartic must be 28, 16, or fewer than 9. The connection between Riemann

theta functions and the bitangent lines of smooth quartics was known to Riemann [21]. Note that the genus of the
Riemann surface corresponding to a nonsingular curve VC(f) of degree 4 is exactly 3 [1]. Thus the Riemann theta
function associated with VC(f) depends on z = (z1, z2, z3)T and a 3 × 3 Riemann matrix �. Further, there are three

C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272 271

F
t

l
P

w
t

T
z

f

f
e

o

ig. 4. The real graph of the Edge Quartic f(x, y) = 25(x4 + y4 + 1) − 34(x2y2 + x2 + y2) = 0 and its 28 real bitangents. Note that four of them lie tangent
o VC(f) at infinity.

inearly independent normalized holomorphic differentials ωj, j = 1, 2, 3 on VC(f), see Section 3. Using the Newton
olygon method [6] these are of the form

ωj = Aj(x, y)

∂f/∂y
dx, (6)

ith Aj(x, y) a polynomial of degree one. The following theorem concretely gives an equation for the bitangents in
erms of the Riemann theta function and these holomorphic differentials [3,10].

heorem. The bitangents of a smooth plane quartic curveVC(f)with corresponding Riemann theta functionθ(z1, z2,
3|�)and normalized holomorphic differentials are determined by

3∑
j=1

∂θ

[
α

β

]
(z1, z2, z3|�)

∂zj

∣∣∣∣∣∣∣∣∣
(z1,z2,z3)=(0,0,0)

ωj = 0, (7)

or all odd characteristics[α, β].

Equivalently, using (6), the bitangent lines can be written as

3∑
j=1

∂θ

[
α

β

]
(z1, z2, z3|�)

∂zj

∣∣∣∣∣∣∣∣∣
(z1,z2,z3)=(0,0,0)

Aj(x, y) = 0,

or all odd characteristics [α, β]. It is this form of the bitangents that is used to produce Fig. 4, which displays an
xample computation where we compute the 28 real bitangents of the Edge quartic, defined by
25(x4 + y4 + 1) − 34(x2y2 + x2 + y2) = 0.

Some missing functionality prevents us from computing bitangents entirely within Sage. Primarily, the computation
f a Riemann matrix from an algebraic curve has yet to be implemented. Doing so requires computing monodromy

[
[
[

[
[

[
[
[
[
[

[

[
[
[

272 C. Swierczewski, B. Deconinck / Mathematics and Computers in Simulation 127 (2016) 263–272

groups, homology, cohomology bases, etc. However, Sage does provide an interface to Maple where different parts of
the algcurves package, written by Deconinck, van Hoeij, and Patterson [8] can be used. Thus, given a Riemann
matrix, we can, in fact, calculate (7).

Acknowledgements

The authors acknowledge support from the National Science Foundation under grant NSF-DMS-1008001. Sage
development by the first author was made possible by grant NSF-DMS-0821725 from the National Science Foundation.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding sources.

References

[1] S.S. Abhyankar, Algebraic Geometry for Scientists and Engineers, vol. 35 of Mathematical Surveys and Monographs, American Mathematical
Society, Providence, RI, 1990.

[2] M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, vol. 4 of SIAM Studies in Applied Mathematics, Society for Industrial
and Applied Mathematics, Philadelphia, PA, 1981.

[3] H.F. Baker, Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions, Cambridge University Press, Cambridge, 1897.
[4] E.D. Belokolos, A.I. Bobenko, V.Z. Enol’skii, A.R. Its, V.B. Matveev, Algebro-geometric approach to nonlinear integrable problems, in:

Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1994.
[5] E. Bézout, Théorie générale des équations algébriques, University of Lausanne, 1779 (Ph.D. Pierres).
[6] G.A. Bliss, Algebraic Functions, Dover Publications, Inc., New York, 1966.
[7] B. Deconinck, M. Heil, A. Bobenko, M. van Hoeij, M. Schmies, Computing Riemann theta functions, Mathematics of Computation 73 (247)

(2003) 1417–1442.
[8] B. Deconinck, M. Patterson, Computing with plane algebraic curves and Riemann surfaces: the algorithms of the Maple package Algcurves,

in: Computational Approach to Riemann Surfaces, Lecture Notes in Mathematics, Springer Berlin, Heidelberg, 2011.
[9] B. Deconinck, M. van Hoeij, Computing Riemann matrices of algebraic curves, Physica D 152 (153) (2001) 28–46.
10] I. Dolgachev, Topics in Classical Algebraic Geometry, Lecture Notes, 2013, posted at http://www.math.lsa.umich.edu/idolga
11] B. Dubrovin, Theta functions and non-linear equations, Russian Mathematical Surveys 36 (2) (1981) 11–92.
12] B. Dubrovin, R. Flickinger, H. Segur, Three-phase solutions fo the Kadomtsev–Petviashvili equation, Studies in Applied Mathematics 99

(1997) 137–203.
13] J. Guàrdia, On the Torelli problem and Jacobian Nullwerte in genus three, Michigan Mathematical Journal 60 (1) (2011) 51–65.
14] I.M. Krichever, Integration of nonlinear equations by the methods of algebraic geometry, Functional Analysis and its Applications 11 (1) (1977)

12–26.
15] D. Mumford, Tata Lectures on Theta I, Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 1983.
16] D. Mumford, Tata Lectures on Theta II, Modern Birkhäuser Classics, Birkhäuser, Boston, MA, 1983.
17] National Institute of Standards and Technology, Digital Library of Mathematical Functions, 2011 http://dlmf.nist.gov/21
18] D. Plaumann, B. Sturmfels, C. Vinzant, Quartic curves and their bitangents, Journal of Symbolic Computation 46 (2011) 712–733.
19] J. Plücker, Solution d’une question fondamentale concernant theorie generale des courbes, Journal fur Die Reine und Angewandte Mathematik

12 (1834) 105–108.
20] M. Pocchiola, G. Vegter, The visibility complex, in: SCG’93 Proceedings of the ninth annual symposium on Computational gemoetry, 1993,
pp. 328–337.
21] B. Riemann, Zur theorie der Abelschen funktionen für den fall p = 3 (1876) 466–472.
22] T. Shiota, Characterization of Jacobian varieties in terms of soliton equations, Inventiones Mahtematicae 83 (2) (1986) 333–382.
23] W.A. Stein, et al., Sage Mathematics Software (Version 4.6.2), The Sage Development Team, 2011 http://www.sagemath.org

http://www.math.lsa.umich.edu/idolga
http://dlmf.nist.gov/21
http://www.sagemath.org

	Computing Riemann theta functions in Sage with applications
	1 Introduction
	2 Riemann theta functions
	3 Algebraic curves, Riemann surfaces, and Riemann matrices
	4 Computation and implementation
	5 Applications
	5.1 The Kadomtsev-Petviashvili equation
	5.2 Bitangents of plane quartic curves

	Acknowledgements
	References

