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Abstract

We consider the dynamical stability of periodic solutions of integrable equations with 2×2 Lax pairs.

We construct the eigenfunctions and hence the Floquet discriminant for such Lax pairs. The boundedness

of the eigenfunctions determines the Lax spectrum. We use a connection between the Lax spectrum and

the stability spectrum to show that the subset of the real line which gives rise to stable eigenvalues is

contained in the Lax spectrum. This subset is the full spectrum for self-adjoint members of the AKNS

hierarchy. For non-self-adjoint members of the AKNS hierarchy admitting a common reduction, the real

line is always part of the Lax spectrum and maps to stable eigenvalues of the stability problem. We

demonstrate our methods work for a variety of examples.

1 Introduction

A surprisingly large number equations of physical significance possess a Lax pair [3, 4]. An important feature

of equations with a Lax pair is the Lax spectrum: the set of all Lax parameter values for which the solution

of the Lax pair is bounded. For our purposes, this is important for determining the stability of solutions

of a given integrable equation [7, 8, 9, 10, 12, 14, 15, 16, 19, 28, 31]. Until recently, the Lax spectrum has

only been determined explicitly for decaying potentials on the whole line or for self-adjoint problems with

a finite domain. For problems with periodic coefficients, the Floquet discriminant [2, 9, 18, 19, 23, 28] is a

useful tool for numerically computing and giving a qualitative description of the Lax spectrum, but it is not

used generally to get an explicit description of the Lax spectrum. A full description of the Lax spectrum

can allow one to prove the stability of solutions to integrable equations with respect to certain classes of

perturbations [16].

In this paper, we construct a function defined by an integral whose zero level set determines the Lax

spectrum for 2× 2 Lax pairs. We show that the subset of the real line which gives rise to stable eigenvalues

in the stability problem is always contained in the Lax spectrum. Next, we show that the Lax spectrum

of self-adjoint members of the AKNS hierarchy consists only of this subset of the real line. Conversely, for

non-self-adjoint members of the AKNS hierarchy admitting a common reduction, we show that the real line

is always part of the Lax spectrum and always maps to stable eigenvalues of the stability problem. Our

construction determines all unbounded components of the Lax spectrum and of the stability spectrum. We

finish by providing examples of equations that fit the framework presented as well as some examples that do

not immediately fit, but for which similar conclusions may be drawn.

2 Setup

We consider an integrable evolution equation of the form

ut = N (u, ux, . . . , uNx), (1)
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where N is a nonlinear function of u and N of its spatial derivatives. The function u may be real or complex

valued. Since (1) is integrable, it possesses a Lax pair (we use this as our definition of integrable). We

focus on equations which possess a 2× 2 Lax pair, i.e., there exists a pair of two linear ordinary differential

equations (ODEs),

φx(x, t; ζ) =

(
α(x, t; ζ) β(x, t; ζ)

γ(x, t; ζ) −α(x, t; ζ)

)
φ(x, t; ζ) = Xφ, (2a)

φt(x, t; ζ) =

(
A(x, t; ζ) B(x, t; ζ)

C(x, t; ζ) −A(x, t; ζ)

)
φ(x, t; ζ) = Tφ, (2b)

such that the compatibility of mixed derivatives ∂tφx = ∂xφt holds if (1) holds. Here ζ ∈ C is the Lax

parameter, assumed to be independent of x and t. The compatibility of (2) defines the evolution equations [3]

αt −Ax = γB − βC, (3a)

βt −Bx = 2 (βA− αB) , (3b)

γt − Cx = −2 (γA− αC) . (3c)

Equation (1) is equivalent to (3) upon making specific choices for P = {α, β, γ, A, B, C}. We make the

following assumptions on the elements of P.

Assumption 1. All elements of P are bounded for all x ∈ R.

Assumption 2. The elements of P are autonomous in t.

Assumptions 1 and 2 hold for many equations (see Section 6), including all frequently studied members of

the AKNS hierarchy (Section 5).

We define the Lax spectrum σL as σL = {ζ ∈ C : φ is bounded for x ∈ R, including as x→ ±∞}. The

Lax spectrum depends on the solution to (1), which determines the coefficients of X and T . Of course,

σL depends on which norm of φ is used. In this paper, we are interested in the Lax spectrum when |u|
is periodic with period P . For studying the stability of u, one typically writes the equation in a frame in

which u is stationary with respect to the temporal variable. In what follows, we assume that (1) has already

been put in a frame such that the solutions of interest are independent of time. In the stationary frame, the

conditions (3) become

Ax = βC − γB, (4a)

Bx = 2 (αB − βA) , (4b)

Cx = −2 (αC − γA) , (4c)

by Assumption 2.

3 Motivation: the nonlinear Schrödinger equation

The nonlinear Schrödinger (NLS) equation is

iΨt +
1

2
Ψxx − κΨ |Ψ|2 = 0, (5)

where Ψ(x, t) is a complex-valued function and κ = −1 and κ = 1 correspond to the focusing and defocusing

equations respectively. The Lax pair for the NLS equation [32] is given by (2) with

α = −iζ, β = Ψ, γ = κΨ∗, (6a)

A = −iζ2 − iκ |Ψ|2 /2, B = ζΨ + iΨx/2, C = ζκΨ∗ − iκΨ∗x/2. (6b)
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Here and throughout Ψ∗ is the complex conjugate of Ψ. Equating Ψ(x, t) = e−iωtψ(x, t), where ω ∈ R is

constant, we obtain the NLS equation in a frame rotating with constant phase speed ω,

iψt + ωψ +
1

2
ψxx − κψ |ψ|2 = 0. (7)

Equation (7) is obtained from the compatibility of the new t-equation,

φt =

(
−iζ2 − iκ |ψ|2 /2 + iω/2 ζψ + iψx/2

ζκψ∗ − iκψ∗x/2 iζ2 + iκ |ψ|2 /2− iω/2

)
φ =

(
T − ω

2
T0

)
φ, (8)

where

T0 =

(
−i 0

0 i

)
, (9)

and the x equation, which is unchanged. The elliptic solutions of the NLS equation are solutions of (7) with

periodic amplitude and ψt = 0.

The stability of the elliptic solutions of the defocusing and focusing NLS equation was studied in [8] and

[16] respectively. To study the stability of the elliptic solutions, linearize (7) about a stationary solution

ψ̃(x) by letting ψ(x, t) = ψ̃(x) + εu(x, t) +O(ε2). This results in

Ut =

(
u

κu∗

)
t

=

(
i
2∂

2
x − 2iκ|ψ̃|2+iω −iψ̃2

iψ̃∗2 − i
2∂

2
x + 2iκ|ψ̃|2−iω

)(
u

κu∗

)
= LNLSU. (10)

Since LNLS does not depend explicitly on t, we may separate variables with

U(x, t) =

(
u(x, t)

κu∗(x, t)

)
= eλt

(
v(x)

κv∗(x)

)
= eλtV (x), (11)

resulting in the spectral problem

λV = LNLSV. (12)

We define the stability spectrum σLNLS
= {λ ∈ C : V is bounded for x ∈ R}. Since the NLS equation is

Hamiltonian [32], the stability spectrum has a quadrafold symmetry: if λ ∈ LNLS, then −λ, λ∗, − λ∗ ∈
σLNLS

. Therefore ψ̃(x) is spectrally stable if σLNLS
⊂ iR. For the NLS equation and other integrable

equations, σLNLS
can be determined by using the squared-eigenfunction connection. The eigenfunctions of

LNLS are given by ([8], see [3] for the original ideas leading to this)

U(x, t) =

(
φ2

1

φ2
2

)
, (13)

where φ = (φ1, φ2)ᵀ is an eigenfunction of (8). Since (8) is homogeneous in t, it may be solved by separation

of variables. With

φ(x, t) = eΩtϕ(x) (14)

we obtain

Ωϕ =
(
T − ω

2
T0

)
ϕ = T2ϕ, (15)
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Figure 1: The real vs. imaginary part of the Lax and stability spectrum (left and right of each panel,
respectively) for an elliptic solution of (a) the defocusing NLS equation and (b) the focusing NLS equation.
The real component of σL and its image under Ω is colored blue. The rest of σL is in black. The Lax
spectrum is computed analytically [8, 15] and the stability spectrum is the image under Ω.

and the eigenfunctions of LNLS are given by

U(x, t) = eλtV (x) =

(
φ2

1

φ2
2

)
= e2Ωt

(
ϕ2

1(x)

ϕ2
2(x)

)
. (16)

The major insight from (16) is that λ = 2Ω(ζ) when ζ ∈ σL. Since λ ∈ iR corresponds to stable elements of

the spectrum, we are interested in finding ζ such that Ω(ζ) ∈ iR. Since Ω is defined by the 2× 2 eigenvalue

equation (15), Ω ∈ iR if ζ ∈ σL and T2 is skew adjoint. For both the focusing [16] and the defocusing cases

[8], Ω(σL ∩ R) ⊂ iR, see Figure 2. The elliptic solutions of the defocusing NLS equation are stable since

σL = {ζ ∈ R : Ω(ζ) ∈ iR} [7], see Figure 1a. The Lax spectrum for the elliptic solutions of the focusing NLS

equation is more difficult to find since it is not just a subset of the real line (see Figure 1b and Appendix A).

However, for the focusing NLS equation, the elliptic solutions are stable only with respect to a special class

of perturbations which gives rise to only real ζ [16].

While investigating the stability for elliptic solutions of the focusing NLS equation in [16], we observed

that the imaginary elements of the stability spectrum for other integrable equations also originate from the

real part of the Lax spectrum. This includes the defocusing mKdV equation (see [14] and Section 6.1) and

the sine-Gordon equation (see [12] and Section 6.2). This leads to the conjecture that solutions of integrable

equations are stable if and only if ζ ∈ R. This conjecture is proven here for members of the AKNS hierarchy

with r = ±q∗ (see Corollary 9). In the rest of the paper, we generalize this idea for equations with more

general Lax pairs (2). Although finding the Lax spectrum is an interesting and important problem in its

own right, we are interested in finding the Lax spectrum to determine the stability of stationary solutions

to integrable equations. Since the squared-eigenfunction connection gives

λ = 2Ω(ζ), (17)

we are especially interested in finding σL when Ω(ζ) ∈ iR, since integrable equations are Hamiltonian and

the stability spectrum possesses a quadrafold symmetry. Thus the only option for stability is to have the

spectrum confined to the imaginary axis.

4 Computing the Lax spectrum

With A, B, and C t-independent, (2b) may be solved by separation of variables. Equating

φ(x, t) = eΩtϕ(x), (18)
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(2b) becomes a 2× 2 eigenvalue equation for Ω:

Ωϕ = Tϕ. (19)

Using the expression for T ,

Ω2 = A2 +BC. (20)

Lemma 3. Ω is independent of x and t.

Proof. Independence of t is by Assumption 2. Multiplying (4b) by C and (4c) by B and adding the resulting

equations yields

0 = ∂x(BC) + 2A(βC − γB). (21)

Using (4a),

0 = ∂x(BC +A2) = ∂x(Ω2), (22)

so Ω2 is independent of x.

As a result of Lemma 3, Ω = Ω(ζ) is a function only of ζ and the solution parameters. The eigenfunctions

of (2b) may be written as either

φ(x, t) = eΩty1(x)

(
−B(x)

A(x)− Ω

)
, or φ(x, t) = eΩty2(x)

(
A(x) + Ω

C(x)

)
. (23)

Here the scalar functions y1(x) and y2(x) are determined by the requirement that φ(x, t) not only solves

(2b), but also (2a), since (2a-b) have a common set of eigenfunctions. Substitution in (2a) gives

−By′1 −Bxy1 = (−αB + β(A− Ω))y1, (A− Ω)y′1 +Axy
′
1 = (−γB − α(A− Ω))y1, (24a)

(A+ Ω)y′2 +Axy2 = (α(A+ Ω) + βC)y2, Cy′2 + Cxy2 = (γ(A+ Ω)− αC)y2, (24b)

so that different (but equivalent) representations for y1(x) and y2(x) are obtained from the first or second

equation of (2a):

y1 = ŷ1 exp

(∫
x

αB − β(A− Ω)−Bx
B

dx

)
, y1 = ỹ1 exp

(
−
∫
x

γB + α(A− Ω) +Ax
A− Ω

dx

)
, (25a)

y2 = ŷ2 exp

(∫
x

α(A+ Ω) + βC −Ax
A+ Ω

dx

)
, y2 = ỹ2 exp

(∫
x

γ(A+ Ω)− αC − Cx
C

dx

)
, (25b)

where ŷ1, ỹ1, ŷ2, and ỹ2 are constants of integration. Since A, B, and C are bounded in x by Assumption 1,

in order for ζ ∈ σL, it must be that the exponential part of φ(x, t) is bounded in x. To bound the exponential

growth, we consider the real part of the exponential. The integrands may be rewritten using (4):

αB − β(A− Ω)−Bx
B

= −1

2

Bx
B

+
βΩ

B
, (26a)

γB + α(A− Ω) +Ax
A− Ω

= α+
βC

A− Ω
, (26b)

α(A+ Ω) + βC −Ax
A+ Ω

= α+
γB

A+ Ω
, (26c)

γ(A+ Ω)− αC − Cx
C

= −1

2

Cx
C

+
γΩ

C
. (26d)
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In order for ζ ∈ σL, each of the following should be bounded for x ∈ R, including as |x| → ∞,

I1 = Re

∫ (
α− d

dx
log(B)− β(A− Ω)

B

)
dx, (27a)

I2 = Re

∫ (
α+

d

dx
log(A− Ω) +

γB

A− Ω

)
dx, (27b)

I3 = Re

∫ (
α− d

dx
log(A− Ω) +

βC

A+ Ω

)
dx, (27c)

I4 = Re

∫ (
−α− d

dx
log(C) +

γ(A+ Ω)

C

)
dx, (27d)

I5 = Re

∫ (
−1

2

d

dx
log(B) +

βΩ

B

)
dx, (27e)

I6 = Re

∫ (
α+

βC

A− Ω

)
dx, (27f)

I7 = Re

∫ (
α+

γB

A+ Ω

)
dx, (27g)

I8 = Re

∫ (
−1

2

d

dx
log(C) +

γΩ

C

)
dx. (27h)

The boundedness of any of the expressions Ik (27) defines σL. For some problems, it is sufficient to analyze the

boundedness integral condition without calculating the integral explicitly [7, 8, 14, 31]. For other problems,

only part of the spectrum can be found without calculating the integral explicitly [12, 15, 16] (see Section

4.1). When the solutions of interest are given by elementary or elliptic functions, the integral may often be

calculated explicitly [12, 15, 16] and used to determine σL [16].

4.1 The Lax spectrum for imaginary Ω

The results in this section hold only for those solutions and parameter values for which Assumptions 4 and

5 hold.

Assumption 4. α ∈ iR.

Assumption 5. The quantities βC/A, and γB/A are periodic in x with the same period P as the solution.

With Assumptions 4 and 5 the boundedness conditions for the integrals Ik (27) become

Re

〈
β(A− Ω)

B

〉
= 0, (28a)

Re

〈
γB

A− Ω

〉
= 0, (28b)

Re

〈
βC

A+ Ω

〉
= 0, (28c)

Re

〈
γ(A+ Ω)

C

〉
= 0, (28d)

Re

〈
βΩ

B

〉
= 0, (28e)

Re

〈
βC

A− Ω

〉
= 0, (28f)

Re

〈
γB

A+ Ω

〉
= 0, (28g)

Re

〈
γΩ

C

〉
= 0, (28h)
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where 〈·〉 = 1
P

∫ P
0
· dx is the average over the period of the solution. Using (4) and (20), the conditions (28)

are all equivalent. It follows immediately from (28h) that {ζ ∈ C : Ω(ζ) = 0} ⊂ σL.

We consider the special case of γ = κβ∗ where κ = ±1. We let

β(x; ζ) = η(x; ζ)eiθ(x;ζ), γ(x; ζ) = κη(x; ζ)e−iθ(x;ζ), (29)

where η and θ are real-valued functions with η(x; ζ) ≥ 0. Introducing the isospectral transformation

Φ(x, t) =

(
Φ1

Φ2

)
=

(
e−iθ/2φ1

eiθ/2φ2

)
, (30)

the Lax pair becomes

Φx =

(
α̂ β̂

γ̂ −α̂

)
Φ, Φt =

(
Â B̂

Ĉ −Â

)
Φ, (31)

where

α̂ = α− iθx/2, β̂ = βe−iθ = η, γ̂ = γeiθ = κη, (32a)

Â = A, B̂ = e−iθB, Ĉ = eiθC. (32b)

Assumptions 1, 2, and 4 are satisfied in the hatted variables if they are satisfied in the original variables.

Further, Ω is unchanged by this transformation, see (20).

Lemma 6. If α ∈ iR, A ∈ iR, and γ = κβ∗, where κ = ±1, then C = κB∗.

Proof. The compatibility conditions (4) in the hatted variables give

0 = Re(Âx) = κRe(Ĉ − κB̂), (33)

so that Re(Ĉ) = κRe(B̂). Equations (4b) and (4c) give

Ĉx − κB̂x = −2α̂(Ĉ + κB̂) + 4κηÂ. (34)

Since α ∈ iR implies α̂ ∈ iR, the only real term in the above equation is equated to zero:

Re(−2α(Ĉ + κB̂)) = 0. (35)

As long as α̂ 6= 0, Im(Ĉ) = −κ Im(B̂). If α̂ = 0, then

∂x(Ĉ + κB̂) = 0. (36)

Since Im(Ĉ + κB̂) = 0 for α̂ 6= 0, it must be zero for all x. Therefore Ĉ = κB̂∗ and C = κB∗.

Theorem 7. Assume that A is periodic in x. Let O = {ζ ∈ C : A ∈ iR and β∗ = −γ}, then Ω(O) ⊂ iR
and O ⊂ σL.

Proof. Let ζ ∈ O. By Lemma 6, C∗ = −B and

Ω2(ζ) = A2 − |B|2 ≤ 0, (37)

thus Ω(O) ⊂ iR. By (4a),

Ax = 2i Im(βC), (38)
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so that

Re
βC

A− Ω
= −i Im(βC)

A− Ω
= − Ax

2(A+ Ω)
= −1

2

d

dx
log(A+ Ω). (39)

It follows from (28f) and the periodicity of A that O ⊂ σL.

Theorem 8. Assume that A is periodic in x. Let O = {ζ ∈ C : A ∈ iR and β = γ∗}, S = {ζ ∈ C : Ω(ζ) ∈
iR}, and U = {ζ ∈ C : Ω(ζ) ∈ R\{0}}. Then O ⊂ S ∪U and O∩S ⊂ σL. Additionally, if Arg(β) = Arg(B)

then O ∩ U 6⊂ σL.

Proof. Let ζ ∈ O. By Lemma 6, C∗ = B and

Ω2(ζ) = A2 + |B|2 ∈ R, (40)

so either ζ ∈ S or ζ ∈ U . When ζ ∈ O ∩ S,

Re
γB

A− Ω
=

1

2

(
γB

A− Ω
+

γ∗B∗

A∗ − Ω∗

)
=

1

2

(
γB − βC
A− Ω

)
= − Ax

2(A− Ω)
= −1

2

d

dx
log(A− Ω).

(41)

It follows from (28b) and the periodicity of A that O ∩ S ⊂ σL.

Next, let ζ ∈ O∩U . The integral conditions induced by the Lax pair (32) are given by (28) in the hatted

variables. Further, C∗ = B implies that Ĉ∗ = B̂∗. Condition (28h) becomes

Re
γ̂Ω

Ĉ
=
κηΩ

|B̂|2
Re B̂. (42)

In order for Ω ∈ R \ {0},

0 ≤ A2 < − |B|2 = −|B̂|2. (43)

If Arg(B) = Arg(β), then (̂B) ∈ R. Since |B̂| is nonzero, Re(B̂) is nonzero. Equations (42) and (28h) imply

that ζ /∈ σL, so that O ∩ U 6⊂ σL.

5 The AKNS hierarchy

The AKNS hierarchy [3] contains a variety of physically important nonlinear evolution equations. For the

Lax pair (2) which are members of the AKNS hierarchy

α = −iζ, β = q(x, t), γ = r(x, t), (44)

where r(x, t) and q(x, t) may be complex-valued functions. The compatibility conditions (3) become

Ax = qC − rB, (45a)

qt = Bx + 2iζB + 2Aq, (45b)

rt = Cx − 2iζC − 2Ar. (45c)

8



Equation (1) is equivalent to (45b) and (45c) by relating q and r to u. In what follows we examine stationary

solutions so that qt = rt = 0 and the compatibility conditions (45) are

Ax = qC − rB, (46a)

Bx = −2iζB − 2Aq, (46b)

Cx = 2iζC + 2Ar. (46c)

The x-equation of the Lax pair (2a,44) may be written in terms of a problem with spectral parameter ζ,

ζφ =

(
i∂x −iq
ir −i∂x

)
φ = Lφ. (47)

The operator L is self adjoint if and only if r = q∗. When L is self adjoint, σL ⊂ R. Determining σL when

L is not self adjoint is significantly more complicated.

Assumptions 1 and 2 are satisfied by α, β and γ, by construction. Also, α ∈ iR is constant with respect to

x for ζ ∈ R, which satisfies Assumption 4 and the first part of Assumption 5. The t-equation for equations in

the AKNS hierarchy may be found by assuming A, B and C have power series representations. A recursion

operator is used to find A, B, and C [21, Chapter 2]. The recursion operator depends and acts only on

homogeneous combinations of q and r. Therefore, it gives rise only to homogeneous combinations of q, r, and

their derivatives, i.e., terms of the form qjnxq
k
mx where n, m, j, k ∈ N and j + k is even. Thus Assumptions

1 and 2 are also satisfied for A, B and C. If q and r are related by

r = κq∗, (48)

where κ = ±1, then

q(x) = eiθ(x)Q(x), and r(x) = κe−iθ(x)Q(x), (49)

where Q and θ are real-valued functions and |q| = Q. Assuming |q| is periodic with period P , it follows that

A has period P by the above arguments. Using (46), Assumption 5 is satisfied. The reduction (48) is a

common reduction for members of the AKNS hierarchy (see Sections 3 and 6.1). The condition (48) is the

same as that studied in Section 4.1.

Theorem 8 applies to the entire Lax spectrum for problems with self-adjoint Lax pairs since σL ⊂ R. In

particular,

σL = {ζ ∈ R : Ω(ζ) ∈ iR}. (50)

Theorem 7 applies to non self-adjoint Lax pairs with r = −q∗ and for ζ ∈ σL ∩ R such that α(ζ) ∈ iR. In

particular, R ⊂ σL and Ω(R) ⊂ iR.

It is clear that the real line is an important part of the Lax spectrum for members of the AKNS hierarchy.

In fact, we have the following corollary.

Corollary 9. Ω(σL ∩ R) ⊂ iR for members of the AKNS hierarchy satisfying (48).

In other words, any eigenmodes of the stability problem of (1) that are parameterized by real

ζ ∈ σL do not give rise to instabilities.

6 Examples

Many equations fit the above description, i.e., Theorems 7 and 8 can be applied directly. For other equations,

Theorems 7 and 8 cannot be applied directly, but the spectrum has a similar structure and can be found

in a similar way. We begin with two equations in the AKNS hierarchy for which the results in Section 5

9



apply directly. We provide one example which is not in the AKNS hierarchy but for which Theorems 7 and

8 apply directly. Finally, we provide three examples for which Theorems 7 and 8 do not apply directly but

for which the spectrum is analyzed in a similar way.

6.1 The modified Korteweg-de Vries equation

The modified Korteweg-de Vries equation (mKdV) is given by

ut − 6κu2ux + uxxx = 0, (51)

where u is real valued and κ = −1 and κ = 1 correspond to the focusing and defocusing cases respectively.

Equation (51) is a member of the AKNS hierarchy (Section 5) with [3]

A = −4iζ3 − 2iζqr, B = 4ζ2q + 2q2r + 2iζqx − qxx, C = 4ζ2r + 2qr2 − 2iζrx − rxx, (52)

and r = κq = κu. Letting (y, τ) = (x− ct, t), where c ∈ R is constant, gives mKdV in the traveling frame,

uτ − cuy − 6κu2uy + uyyy = 0. (53)

The Lax pair (53) given by

φy = Xφ, φτ = (T + cX)φ. (54)

The elliptic solutions of mKdV are found upon equating uτ = 0 [14]. Theorem 7 applies when κ = −1 and

Theorem 8 applies when κ = 1. The squared-eigenfunction connection for the mKdV equation is the same as

for NLS (13). Since λ = 2Ω(ζ) where ζ ∈ σL = {ζ ∈ R : Ω(ζ) ∈ iR}, the elliptic solutions for the defocusing

mKdV equation are spectrally stable [14]. For the focusing mKdV equation, the elliptic solutions are stable

with respect to perturbations which correspond to ζ ∈ R. To determine the full stability spectrum, one must

compute σL off the real line. To do so, one may use the integral condition(27) or the Floquet discriminant

(Section A). Plots of the Lax spectrum for the defocusing case can be found in [14, Figures 7 and 8] and for

the focusing case in [14, Figures 9 and 13]. Plots of the stability spectrum for the defocusing case can be

found in [14, Figures 3 and 5] and for the focusing case in [14, Figures 10 and 14].

6.2 The sine- and sinh-Gordon equations

The sine-Gordon (s-G) equation in light-cone coordinates is given by

uξη = sinu, (55)

where u(ξ, η) is real valued. Equation (55) is a member of the AKNS hierarchy (Section 5) with [3]

A =
i

4ζ
cos(u), B =

i

4ζ
sin(u), C =

i

4ζ
sin(u). (56)

We write (ξ, η) instead of (x, t) to distinguish between the light-cone coordinates (ξ, η) and the space-time

coordinates (x, t). Equation (55) is equivalent to the compatibility of mixed derivatives, ∂ηvξ = ∂ξvη, by

requiring that r = −q = ux/2. Since r = −q, (55) is not self adjoint. A self-adjoint variant of s-G is the

sinh-Gordon (sh-G) equation,

uξη = sinhu. (57)

10



Equation (57) is a member of the AKNS hierarchy (Section 5) with [3]

A =
i

4ζ
cosh(u), B = − i

4ζ
sinh(u), C =

i

4ζ
sinh(u), (58)

and is equivalent to the compatibility of mixed derivatives under the reduction r = q = ux/2.

Assumptions 1-4 hold for both the s-G equation and the sh-G equation if ζ ∈ R and u is periodic. Since

r = q, the sh-G equation is a self-adjoint member of the AKNS hierarchy, so σL ⊂ R and Theorem 8 applies.

Theorem 7 applies to the s-G equation, i.e., R ⊂ σL. To transform (55) from light-cone to laboratory

coordinates, we let (x, t) = (η + ξ, η − ξ) to obtain

utt − uxx + sin(u) = 0. (59)

The same coordinate transformation on (57) gives

utt − uxx + sinh(u) = 0. (60)

The Lax pair for both systems is

wx =
1

2
(T +X)w = X̂w, wt =

1

2
(T −X)w = T̂w. (61)

We move the s-G equation and the sh-G equation to a traveling frame by letting (z, τ) = (x− V t, t) for

constant V ∈ R and find

(V 2 − 1)uzz − 2V uzτ + uττ + sin(u) = 0, (62)

and

(V 2 − 1)uzz − 2V uzτ + uττ + sinh(u) = 0, (63)

respectively. The new Lax pair is given by

wz = X̂w, wτ = (T̂ + V X̂)w = T̃w. (64)

Stationary solutions are found by letting uτ = 0. The s-G equation and the sh-G equation in lab coordinates

do not fit into the AKNS hierarchy. However, when ζ ∈ R and u is periodic, Assumptions 1-4 hold for

both equations in lab coordinates. Theorems 7 and 8 apply to (59) and (60) respectively. Theorems 7 and

8 apply in both light-cone and lab coordinates since the transform to lab coordinates is isospectral: the

eigenfunctions of (64) are bounded if and only if the eigenfunctions of the problem in light-cone coordinates

are bounded. We continue to study the spectral problem for pedagogical purposes.

The Lax pair (61) defines a quadratic eigenvalue problem (QEP),

Q(ζ)w = (Mζ2 +Nζ +K)w = 0. (65)

There are two choices for M, N , and K:

M1 =

(
1 0

0 1

)
, N1 =

(
−2i∂x iq

−ir 2i∂x

)
, K1 =

(
ia ib

ic −ia

)
, (66a)

M2 =

(
1 0

0 −1

)
, N2 =

(
−2i∂x iq

ir −2i∂x

)
, K2 =

(
ia ib

−ic ia

)
, (66b)
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where

a = ζA, b = ζB, c = ζC. (67)

Then ζ ∈ C is an eigenvalue of Q if Q(ζ)w = 0 for all bounded w. A QEP is classified as self adjoint if

M, N, and K are self adjoint [33]. The eigenvalues for self-adjoint QEPs are either real or come in complex-

conjugate pairs. If M1, N1, and K1 are chosen, then Q(λ) is self adjoint if r = q∗, a∗ = −a, and c∗ = b,

which is the case for the sh-G equation. If M2, N2, and K2 are chosen, then Q(λ) is self adjoint if r = −q∗,
a∗ = −a, and c∗ = −b, which is the case for the s-G equation. It follows that for either equation, the Lax

spectrum consists of real or complex-conjugate spectral elements. This confirms what we know from the

isospectral transform to light-cone coordinates. The whole real line is part of the Lax spectrum for the s-G

equation and the Lax spectrum for the sh-G equation is a subset of the real line. To determine the subset

of σL off the real line, one may use the integral condition (27) or the Floquet discriminant (Section A) (see

[12]). Plots of the Lax spectrum for the s-G equation can be found in [12, Figures 7 and 8]. Plots of the

stability spectrum for the s-G equation can be found in [12, Figures 6 and 8].

6.3 Derivative nonlinear Schrödinger equation

The derivative NLS (dNLS) equation,

iqt = −qxx + iκ(|q|2 q)x, κ = ±1, (68)

was first solved on the whole line using the Inverse Scattering Transform in [24]. The Lax pair for (68) is

given by (2) with [24]

α = −iζ2, β = qζ, γ = rζ, (69a)

A = −2iζ4 − iζ2rq, B = 2ζ3q + iζqx + ζrq2, C = 2ζ3r − iζrx + ζr2q. (69b)

where r = κq∗ ∈ C. Using q(x, t) 7→ e−iωtq(x, t) where ω is a real constant, (68) becomes

iqt = −qxx + iκ(|q|2 q)x − ωq, (70)

and A 7→ A+ iω/2; otherwise (69) remains the same. Stationary solutions satisfy

−qxx + iκ(|q|2 q)x − ωq = 0. (71)

Quasi-periodic elliptic solutions to the stationary problem were found in [22].

The Lax pair defines a QEP (65). There are two choices for M, N, and K,

M1 =

(
1 0

0 1

)
, N1 =

(
0 iq

−ir 0

)
, K1 =

(
−i∂x 0

0 i∂x

)
, (72a)

M2 =

(
1 0

0 −1

)
, N2 =

(
0 iq

ir 0

)
, K2 =

(
−i∂x 0

0 −i∂x

)
. (72b)

If M1, N1, and K1 are chosen, then Q(λ) is self adjoint if r = q∗. If M2, N2, and K2 are chosen, then Q(λ)

is self adjoint if r = −q∗. It follows that eigenvalues are real or come in complex-conjugate pairs for either

choice of κ.

Since Assumptions 1-4 hold for ζ ∈ R ∪ iR and |q| periodic, Theorems 7 and 8 apply in some cases.

Theorem 7 applies when β∗ = −γ, i.e., when β∗ = −γ if ζ ∈ R and κ = −1 or ζ ∈ iR and κ = 1.

Theorem 8 applies when β∗ = γ, i.e., when β∗ = γ if ζ ∈ R and κ = 1 or ζ ∈ iR and κ = −1. Defining

Ωi = {ζ ∈ C : Ω(ζ) ∈ iR}, R ∪ (Ωi ∩ iR) ⊂ σL and Ω(R ∪ (Ωi ∩ iR)) ⊂ iR for κ = −1 (see Figure 2a). If

κ = 1, iR ∪ (R ∩ Ωi) ⊂ σL and Ω(iR ∪ (R ∩ Ωi)) ⊂ iR (see Figure 2b). To compute the spectrum off of the

12



2 1 0 1 2

2

1

0

1

2

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20

σL σLdNLS

Ω

(a)

2 1 0 1 2

2

1

0

1

2

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20

σL σLdNLS

Ω

(b)

Figure 2: The real vs. imaginary part of the Lax and stability spectrum (left and right respectively) for
a periodic solution of (a) the focusing dNLS equation and (b) the defocusing dNLS equation. The Lax
spectrum is computed numerically using [11] and the stability spectrum is the image under Ω. The Lax
spectrum on the real and imaginary axes are colored blue and red respectively. Their image under the map
Ω is colored in the stability spectrum accordingly. The Lax Spectrum off the real and imaginary axes is
black.

real or imaginary axes, one must examine the integral conditions (27) or construct the Floquet discriminant

(Appendix A).

6.4 The Korteweg-de Vries equation

Perhaps the best-known integrable equation is the Korteweg-de Vries (KdV) equation [4],

ut + 6uux + uxxx = 0, (73)

where u is a real-valued function of x and t. The KdV equation is a singular member of the AKNS hierarchy:

it is obtained using the AKNS Lax pair (44) with r = −1 [3]. When r is constant, the Lax pair can be

rewritten as an eigenvalue problem with spectral parameter ζ2. With r = −1,

ζ2v2 = −(q + ∂2
x)v2 = LKdV v. (74)

The operator LKdV is self adjoint, so the KdV equation is said to have a self-adjoint Lax pair even though

the Lax operator L (47) is not. Since LKdV is self adjoint, ζ2 ∈ R.

Defining (y, τ) = (x− ct, t), we obtain the KdV equation in the traveling frame,

uτ − cuy + 6uuy + uyyy = 0. (75)

The periodic stationary solutions of (75) are the cnoidal waves which are defined in terms of Jacobi elliptic

functions [1, 10]. In the traveling frame, the Lax pair is given by (2) with

α = −iζ, β = u, γ = −1, (76a)

A = −4iζ3 + 2iuζ − ux − icζ, B = 4uζ2 + 2iζux − 2u2 − uxx + cu, C = −4ζ2 + 2u− c. (76b)

Using (20) and (75) with uτ = 0,

Ω2 = 2a− (c+ 4ζ2)(−k + cζ2 + 4ζ4), (77)
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where

k = 3u2 − cu+ uxx and 2a = ux − 2ku+ 2u3 − cu2 (78)

are constants found from integrating (75) with uτ = 0. Assumptions 1-4 hold for ζ ∈ R if u is periodic.

Since γ and C are real valued for ζ ∈ R, ζ ∈ R ∩ σL if Ω(ζ) ∈ iR (28h). The analysis of the Lax spectrum

for the cnodial waves of the KdV equation can be found in [10] including plots of the real Lax spectrum [10,

Figure 4] and of the imaginary stability spectrum [10, Figure 1].

6.5 Vector and matrix nonlinear Schrödinger equations

The Manakov system or two-component Vector NLS (VNLS) equation is given by

i
∂q1

∂t
+
∂2q1

∂x2
+ 2(|q1|2 + |q2|2)q1 = 0,

i
∂q2

∂t
+
∂2q2

∂x2
+ 2(|q1|2 + |q2|2)q2 = 0,

(79)

where q1 and q2 are complex-valued functions. The system (79) was shown to be integrable in [30]. Its

finite-genus solutions (including its elliptic solutions) were explicitly constructed in [17]. Its Lax pair is

vx =

(
α βᵀ

γ ρ

)
v = Xv, vt =

(
A Bᵀ

C D

)
v = Tv, (80)

with

α = −iζ, β = q, γ = −q∗, ρ = iζI2, (81a)

A = −2iζ2 + iqᵀq∗, B = 2ζq + iqx, C = −2ζq∗ + iq∗x, D = 2iζ2I2 − iq∗qᵀ, (81b)

and q = (q1, q2)ᵀ. The compatibility conditions are

Ax = βᵀC −Bᵀγ, (82a)

Bx = 2αBᵀ − 2Aβᵀ, (82b)

Cx = 2ρC + 2γA, (82c)

Dx = γBᵀ − Cβᵀ. (82d)

As before, Ω is found by separation of variables and satisfies(
A− Ω Bᵀ

C D − ΩI2

)(
φ1

φ2

)
= 0, (83)

for nontrivial eigenvectors φ = (φ1, φ2)ᵀ. Note that Ω does not have the form (20). Instead, Ω satisfies

0 = det

(
A− Ω Bᵀ

C D − ΩI2

)
=

{
(A− Ω) det ((D − ΩI2)− CBᵀ/(A− Ω)) , Ω /∈ σ(A),

det(D − ΩI2)
(
(A− Ω)−Bᵀ(D − ΩI2)−1C

)
, Ω /∈ σ(D),

(84)

where σ(L) represents the spectrum of L. As usual, Ω(ζ) defines a Riemann surface. In the genus-one
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case [17], it is represented by

f(ζ,Ω) = (Ω + 2iζ2)(Ω− 2iζ2)2 + (2λ2ζ + λ3)(Ω− 2iζ2) + µ0 = 0, (85a)

λ2 = −i(qᵀq̄x − qᵀx q̄), (85b)

λ3 = qᵀx q̄x + (qᵀq̄)2, (85c)

µ0 = i |q1,xq2 − q2,xq1|2 . (85d)

Since

det(D − ΩI2) = (Ω− 2iζ2)(A+ Ω), (86)

we use the second expression in (84) only when Ω = 2iζ2 or A + Ω = 0. But Ω = 2iζ2 satisfies (85a) only

if q2 and q1 are proportional, and Ω = A satisfies (85a) only if |q1|2 + |q2|2 is constant. In the first case,

(79) reduces to two uncoupled NLS equations, for which the spectrum is known. In the second case (79)

reduces to two uncoupled linear NLS equations, for which the spectrum is known. Therefore, we assume

that D − ΩI2 is invertible.

The eigenfunctions of (80) are

v(x, t) = eΩty1(x)

(
a

−(D − ΩI2)−1Ca

)
, (87)

where a ∈ C is an arbitrary scalar. The scalar function y1(x) is determined by substitution in the x equation

(80):

y′1 =
(
α− βᵀ(D − ΩI2)−1C

)
y1, (88)

so that

y1 = ŷ1 exp

(∫
x

(
α− βᵀ(D − ΩI2)−1C

)
dx

)
, (89)

where ŷ1 is a constant. Thus, ζ ∈ σL provided that∣∣∣∣Re

∫
x

(
α− βᵀ(D − ΩI2)−1C

)
dx

∣∣∣∣ <∞ (90)

is bounded for all x ∈ R. For periodic potentials and ζ ∈ R, this becomes

Re
〈
βᵀ(D − ΩI2)−1C

〉
= 0. (91)

For ζ ∈ R,

A† = −A, C† = −Bᵀ, D† = −D, (βᵀ)† = −γ, (92)

where F † = (F ∗)ᵀ is the conjugate transpose of F . It follows that T defined by (80) is skew-adjoint and

Ω ∈ iR. Further,

(D − ΩI2)† = −(D − ΩI2). (93)
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It follows that

Reβᵀ(D − ΩI2)−1C =
1

2

[
βᵀ(D − ΩI2)−1C + C†((D − ΩI2)−1)†(βᵀ)†

]
=

1

2

[
Tr
(
βᵀ(D − ΩI2)−1C −Bᵀ(D − ΩI2)−1γ

)]
=

1

2

[
Tr
(
(D − ΩI2)−1Cβᵀ − (D − ΩI2)−1γBᵀ

)]
=

1

2

[
Tr
(
(D − ΩI2)−1 (Cβᵀ − γBᵀ)

)]
=

1

2

[
Tr
(
(D − ΩI2)−1(−Dx)

)]
= −1

2

∂x det(D − ΩI2)

det(D − ΩI2)

= −1

2
∂x log det(D − ΩI2),

(94)

so that

Re
〈
βᵀ(D − ΩI2)−1C

〉
= 0, (95)

and Ω(ζ) ∈ iR for ζ ∈ R, as illustrated in Figure 3.

The work above can be generalized to the Matrix NLS (MNLS) equation,

iUt + Uxx − 2κUU∗U = 0, (96)

where U is an `1 × `2 matrix, and κ = −1 and κ = 1 correspond to the focusing and defocusing cases

respectively. The Lax pair for the MNLS equation is given by

Ψx =

(
−iζI`1 Q

R iζI`2

)
Ψ = XΨ, (97a)

Ψt =

(
A B

C D

)
Φ = TΨ, (97b)

A = −2iζ2I`1 − iQR, B = 2ζQ+ iQx, C = 2ζR− iRx, D = 2iζ2I`2 + iRQ. (97c)

Here, Q and R are `1 × `2 and `2 × `1 complex-valued matrices respectively and In is the n × n identity

matrix. The x equation may be written as a spectral problem,

ζΨ =

(
iI`1∂x −iQ
iR −iI`2∂x

)
Ψ = LΨ. (98)

L is self adjoint if R∗ = Q, hence σL ⊂ R if R∗ = Q. The compatibility conditions are the same as (82d).

6.6 PT-symmetric reverse space nonlocal NLS equation

The PT-symmetric reverse space nonlocal NLS equation is given by [5]

iΨt(x, t) +
1

2
Ψxx(x, t)− κΨ(x, t)2Ψ∗(−x, t) = 0, (99)

where κ = ±1. This equation is a member of the AKNS hierarchy (Section 5) with [5]

A(x, t) = −iζ2 − iqr/2, B = ζq + iqx/2, C = ζr − irx/2, (100)
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Figure 3: The Lax spectrum (Re(ζ) vs. Im(ζ)) for the Manakov system (80) with initial condition
q1(x, 0) = 4 cos(x), q2(x, 0) = 10 cos(x). The real line is colored blue. The Lax spectrum is computed nu-
merically using the method described in [11].

and r(x, t) = κq∗(−x, t) = κΨ∗(−x, t) ∈ C. Solutions of (5) with

Ψ(x, t) = Ψ(−x, t), (101)

are also solutions of (99). Thus all even solutions of 5 examined in [8] for κ = 1 and in [16] for κ = −1

are solutions to (99). These solutions, and other periodic and quasi-periodic solutions of (99), were first

reported in [26]. Almost every solution found in [26] is even in x, except for one which is odd. For the even

solutions, the Lax spectrum remains unchanged since Ψ(x, t) = Ψ(−x, t). For κ = 1, the Lax pair is not self

adjoint, and σL is not necessarily a subset of R. With the equation written in a uniformly rotating frame so

that all components are time independent, we see that for ζ ∈ R, Assumptions 1-4 hold,

A∗(−x) = −A(x), and C∗(−x) = κB(x). (102)

It follows that ζ ∈ σL if any of the conditions (28) hold. With ζ ∈ R,

Ω2(ζ) = A(x)2 +B(x)C(x) = A(−x)2 +B(−x)C(−x)

= (A2 +BC)∗ =
(
Ω2(ζ)

)∗
,

(103)

so Ω(R) ⊂ R ∪ iR.

If Ω(ζ) ∈ iR,

Re

∫ P

0

(
q(x)C(x)

A(x)− Ω

)
dx =

1

2

(∫ P

0

q(x)C(x)

A(x)− Ω
dx+

∫ P

0

q∗(x)C∗(x)

A∗(x)− Ω∗
dx

)

=
1

2

(∫ P

0

q(x)C(x)

A(x)− Ω
dx−

∫ −P
0

q∗(−x)C∗(−x)

A∗(−x)− Ω∗
dx

)

=
1

2

(∫ P

0

q(x)C(x)

A(x)− Ω
dx+

∫ 0

−P

q∗(−x)C∗(−x)

−A(x) + Ω
dx

)

=
1

2

(∫ P

0

q(x)C(x)

A(x)− Ω
dx+

∫ P

0

q∗(−x)C∗(−x)

−A(x) + Ω
dx

)

=
1

2

(∫ P

0

q(x)C(x)− q∗(−x)C∗(−x)

A(x)− Ω
dx

)

=
1

2

∫ P

0

Ax
A(x)− Ω

dx = 0,

(104)
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since A is periodic when q and r are. It follows that {ζ ∈ R : Ω(ζ) ∈ iR} ⊂ σL for κ = ±1.

7 Conclusion

The stability spectrum and the Lax spectrum for solutions of many integrable equations on the whole line

have been characterized for some time. The same level of understanding for the periodic problem does

not exist. One reason the whole line problem is more straightforward to study is the ability to do spatial

asymptotics to find the essential spectrum which contains the unbounded components of the spectrum. In

this work, we have given a complete characterization of all unbounded components of the Lax

spectrum for a number of integrable equations.

We have shown that for a number of members of the AKNS hierarchy, real Lax spectra corresponds to

stable modes of the linearization. We have also shown how this might occur for non-AKNS equations. We

have given two theorems with easily verifiable assumptions (7 and 8) for determining this. The methods

described in this paper can be applied to other equations not mentioned in Section 6. Some examples

include: Hirota’s equation (or the mixed generalized NLS-generalized mKdV equation) [20, 27], the Modified

Vector dNLS equation [13], the Massive Thirring Model [25], the O4 nonlinear σ-model [29], the complex

reverse space-time nonlocal mKdV equation [6], and the reverse space-time nonlocal generalized sine-Gordon

equations [6].

Appendix A The Floquet discriminant

A common tool for characterizing the Lax spectrum for periodic potentials is the Floquet discriminant

[2, 9, 18, 28]. The Floquet discriminant is typically approximated numerically since the eigenfunctions of

the x equation are unknown for generic potentials. In our setting, we have explicit expressions for the

eigenfunctions (23). Since Ω(ζ) is defined by its square, (20) defines two different values of Ω for every value

of ζ for which Ω(ζ) 6= 0. Hence (23) defines the two linearly independent solutions of (2) except for when

Ω(ζ) = 0. When Ω(ζ) = 0, only one solution is generated by (23) and a second solution is found using the

method of reduction of order. The solution found by reduction of order is algebraically unbounded so it is

not an eigenfunction. For Ω(ζ) 6= 0, the two eigenfunctions of (2) are

φ±(x, t) = e±Ωty±(x)

(
−B(x)

A(x)− Ω±

)
. (105)

We use one choice of (23) and one choice of y1. The following computations proceed similarly for the other

choices. A fundamental matrix solution (FMS) of (2a) is given by

M(x) =

(
−B(x)y+(x) −B(x)y−(x)

(A(x)− Ω+)y+(x) (A(x)− Ω−)y−(x)

)
, (106)

where dependence on t has been omitted. The FMS normalized to the identity is given by

M̃(x;x0) = M−1(x0)M(x). (107)

To simplify notation, we define

I±(x; ζ) = −
∫ (

α+
βC

A− Ω±

)
dx. (108)

In this section we use Assumption 10 instead of Assumption 4.

Assumption 10. α is periodic in x with the same period P as the solution.
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Under Assumptions 5 and 10, each of the integrands in (27) is P -periodic, and we may use any of the

representations for I. It follows that

I±(x+ P ; ζ) = I±(x; ζ) + I±(P ; ζ). (109)

Then

y±(x+ P ) = y±(x)eI±(x;ζ)eI±(P ;ζ) = y±(x)Γ±(P ), (110)

and

M̃(x+ P ;x0) = M−1(x0)M(x+ P ) = M−1(x0)M(x)Γ(P ) = M̃(x;x0)Γ(P ), (111)

where

Γ(P ) =

(
Γ+(P ) 0

0 Γ−(P )

)
(112)

is the transfer matrix. In order for solutions to be bounded in space, it must be that the eigenvalues of the

transfer matrix have unit modulus. Thus,

Re (I±(P ; ζ)) = 0. (113)

If Assumption 10 holds, this is equivalent to (27). The Floquet discriminant is defined by

∆(ζ) = tr(Γ(P )) = Γ+(P ) + Γ−(P ), (114)

and

σL = {ζ ∈ C : Im(∆(ζ)) = 0 and |∆(ζ)| ≤ 2} . (115)

Both definition (115) and (27) require numerical computation or the use of special functions. We prefer

working with (27) directly, but we present the Floquet discriminant because of its popularity.
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