
ON THE SPECTRAL STABILITY OF SOLITARY WAVE SOLUTIONS
OF THE VECTOR NONLINEAR SCHRÖDINGER EQUATION
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Abstract. We consider a system of coupled cubic nonlinear Schrödinger (NLS) equations

i
∂ψj

∂t
= −

∂2ψj

∂x2
+ ψj

n∑
k=1

αjk|ψk|2 j = 1, 2, . . . , n,

where the interaction coefficients αjk are real. The spectral stability of solitary wave solutions (both
bright and dark) is examined both analytically and numerically. Our results build on preceding
work by Nguyen et al. and others. Specifically, we present closed-form solitary wave solutions with
trivial and non-trivial phase profiles. Their spectral stability is examined analytically by determining
the locus of their essential spectrum. Their full stability spectrum is computed numerically using
a large-period limit of Hill’s method. We find that all nontrivial-phase solutions are unstable while
some trivial-phase solutions are spectrally stable. To our knowledge, this paper presents the first
investigation of the stability of the solitary waves of the coupled cubic NLS equation without the
restriction that all components ψj are proportional to sech.
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1. Introduction. We consider the n-component coupled nonlinear Schrödinger
(CNLS) system:

i
∂ψj
∂t

= −∂
2ψj
∂x2

+ ψj

n∑
k=1

αjk|ψk|2, j = 1, 2, . . . , n, (1.1)

where ψj(x, t) is a complex-valued dimensionless wave function. When n = 1, (1.1)
is referred to as the cubic nonlinear Schrödinger (NLS) equation. It has been used
extensively to model, among many other applications, waves in deep water [1, 33, 50],
propagation in nonlinear optics [26, 30, 49], Bose-Einstein condensates [23, 24, 39, 32],
and electron plasma waves [11]. The interaction matrix α = (αjk)nj,k=1 contains the
information about the nature of the interactions between the different components
of the wave functions. Many scalings of the independent and dependent variables
that change the effective interaction matrix α are possible. We choose one such that
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diagonal elements are ±1, while the off-diagonal elements are nonzero parameters.
This allows for the consideration of the limit to an uncoupled system in which these
off-diagonal elements limit to zero. In other words, we regard (1.1) as a perturbation
of n scalar NLS equations. Readers are referred to various other works (e.g. [5, 27,
28, 50, 51]) for the derivation of this system in its various application settings.

If system (1.1) is expressed in its original physical dimensions, the matrix α is usu-
ally symmetric since the interaction of wave functions with each other is typically
symmetric. For example, in applications to Bose-Einstein condensates the govern-
ing equations for the interaction of n ≥ 2 condensates (without the influence of an
external potential) are [46]

i~
∂ψj
∂t

= − ~2

2mj

∂2ψj
∂x2

+

n∑
k=1

2π~2ajk
mjk

|ψk|2ψj , j = 1, . . . , n, (1.2)

where ψj(x, t) is the wave function for the j-th condensate, mj is the atomic mass of
the atom species of the j-th condensate, mjl = mjml/(mj +ml) is the reduced mass
corresponding to the atom species of the j-th and l-th condensates and ajk = akj is
the s-wave scattering length between the atomic species j and k. Rescaling dependent
and independent variables, mj = 2~,mjk = ~, t = 2πt̃, x = 2

√
πx̃, and ψj = ψ̃j/

√
ajj

we have (1.1) with αjk = ajk/|ajj |. Clearly, αjj = ±1 but αjk is not necessarily
αkj . Thus in what follows we cannot impose that the matrix α in (1.1) is
symmetric.

The literature discussing the stability of the soliton solutions in the case n = 1 is
extensive, see [7, 31] for instance, as well as references therein. More recently, the lit-
erature has focused on the stability of the periodic counterparts of the solitons. This
began with Rowlands [43], who found that for the focusing NLS equation (α > 0)
elliptic solutions are unstable. Gallay and Hărăguş [20, 21], and Hărăguş and Kapit-
ula [25] establish spectral and orbital stability of elliptic solutions for the defocusing
NLS equation (α < 0). These results are extended by Bottman et al. [7]. Although
we only investigate solitary wave solutions, the results for the elliptic solutions are
relevant for us, see §5.

The case of n = 2 with all elements of α equal is considered in [19]. In this case,
the system is integrable and more analysis can be done than is undertaken here.
In this case, the CNLS system (1.1) is known to possess modulational instabilities
experimentally [41, 42] and theoretically [6, 40]. Nguyen et al. [36] consider the
system (1.1) with a general power-type nonlinearity and αjk = αkj . They prove global
existence for small initial data and they establish conditions for finite-time blow-up,
which implies instability. Deconinck et al. [16] find two distinct families of solutions
which are extensions of the families found for the scalar case, discussed in [8, 9]. We
restrict the solutions discussed in [16] to the solitary wave case. These are discussed
in detail in the next section. The special case α12 = α21, α11 = α22 = −1 of (1.1)
with n = 2 is discussed by Yang and Benney [48]. They study the dynamics of both
exact and approximate solutions. For the case α12 = α21 the orbital stability of some
solitary wave solutions of (1.1) is established in [35] and [37], see also [3, 4, 38].

This paper discusses the case of stationary solitary wave solutions with both trivial
and nontrivial-phase profiles in the case n = 2. We examine stability for various
choices of the interaction matrix α by investigating the locus of the essential spectrum.
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If solutions are found to have a purely imaginary essential spectrum, we use Hill’s
method to study their spectral stability by computing the discrete spectrum. To our
knowledge, this paper presents the first investigation of the stability of the solitary
waves of (1.1) without the restriction that all components ψj are proportional to sech.
Specifically we investigate the interaction of bright with dark solitary waves and dark
with dark solitary waves. For any case of α, the stability study of the nontrivial-phase
solutions is new as well.

2. Stationary Solutions. We restrict our attention to stationary solutions
of (1.1), i.e. solutions whose time-dependence is of the following form,

ψj(x, t) = exp(−iωjt+ iθj(x))rj(x), (2.1)

where j = 1, . . . , n, and

dθj
dx

=
cj

r2j (x)
, (2.2a)

r2j = Aj tanh2(x) +Bj , (2.2b)
n∑
l=1

αjlAl = 2, (2.2c)

ωj = 2 +
Bj
Aj

+

n∑
l=1

αjlBl, (2.2d)

c2j =
Bj
Aj

(Aj +Bj)
2. (2.2e)

Equations (2.2) are an immediate consequence of substituting the ansatz (2.1)
into (1.1). Note that (2.2) gives all solutions of the form (2.1) for (1.1). No addi-
tional ansatz is required. In order to uniquely determine the amplitude of the elliptic
oscillations Aj , the matrix α needs to be inverted. The resulting family of solutions
has n free parameters Bj , j = 1, 2, . . . , n. If the matrix α is of co-rank m we have an
n+m-dimensional family of solutions.

If dθj/dx = 0 (cj = 0) the solution is referred to as having trivial phase and we
choose θj(x) = 0, without loss of generality. With n = 2, (2.2) are written out
explicitly as

dθ1
dx

=
c1

r21(x)
,

dθ2
dx

=
c2

r22(x)
, (2.3a)

r21 = A1 tanh2(x) +B1, r22 = A2 tanh2(x) +B2, (2.3b)

2 = α11A1 + α12A2, 2 = α21A1 + α22A2, (2.3c)

c21 =
B1

A1
(A1 +B1)2, c22 =

B2

A2
(A2 +B2)2. (2.3d)

We have three cases for (α11, α22) depending on whether the self-interactions are
focusing (αkk = −1) or defocusing (αkk = +1):
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1. (α11, α22) = (−1,−1), i.e. (focusing, focusing),

2. (α11, α22) = (−1, 1), i.e. (focusing, defocusing),

3. (α11, α22) = (1, 1), i.e. (defocusing, defocusing).

The case α11 = 1 and α22 = −1 can be ignored since it is identical to Case 2 if the
indices are switched. Requiring r2j ≥ 0, c2j ≥ 0 for j = 1, 2 restricts our parameter
space as displayed for trivial-phase solutions in Figures 2.1, 2.2, 2.3 and for nontrivial-
phase solutions in Figure 2.4.

2.1. Trivial-Phase Solutions. Trivial-phase solutions occur for those values of
B1, B2 for which c1 = c2 = 0. Specifically, in the solitary wave case,

Bj = 0⇒ ψj(x, t) =
√
Aj tanh(x)e−iωjt (2.4a)

Bj = −Aj ⇒ ψj(x, t) =
√
−Aj sech(x)e−iωjt (2.4b)

We refer to (2.4a) as a dark solitary wave while (2.4b) is a bright solitary wave.

First, we examine the case when the matrix α has co-rank 1. Then α21 = α11 and
α12 = α22. We may solve for one of A1, A2 in terms of the other. Without loss of
generality, let A1 = (2− α22A2)/α11.

• For Case 1, (sech(x), sech(x)) solutions exist for all values of A2 ≤ 0 while
(tanh(x), tanh(x)) solutions are impossible for any value of A2. If A2 ≥ 0,
(sech(x), tanh(x)) solutions are possible, while if A2 ≤ −2, (tanh(x), sech(x))
solutions exist.

• In Case 2, (sech(x), sech(x)) solutions exist for all values of A2 ≤ 0 while
(sech(x), tanh(x)) solutions are possible for all values of A2 ≥ 0. If A2 ≥
2, (tanh(x), tanh(x) solutions exist. There are no values of A2 for which
(tanh(x), sech(x)) solutions are possible.

• Finally, in Case 3, (sech(x), sech(x)) and (tanh(x), sech(x)) solutions exist for
all values of A2 ≤ 0. If 0 ≤ A2 ≤ 2, (tanh(x), tanh(x)) solutions are possible.
If A2 ≥ 0, (sech(x), tanh(x)) solutions exist.

Next, if α is not singular, each of Cases 1, 2, and 3 leads to solutions corresponding
to the four combinations of sech(x) and tanh(x). The possible values of α12 and α21

for which solutions exist are shown as shaded regions in Figures 2.1, 2.2, and 2.3.
In Cases 1 and 3 we do not discuss (tanh(x), sech(x)) solutions because these are
the same as (sech(x), tanh(x)) solutions with the indices switched. These regions are
created by requiring (2.3) to be satisfied.

More specifically, in Figures 2.1a, 2.1b, and 2.1c bounding curves are given by the
graphs of {α21 = −1 or α12 = −1 or α21 = 1/α12 > 0}, {α21 = 1/α12 > 0},
and {α21 = 1/α12 < 0 or α21 = −1} respectively. Points are removed from or
added to these lines in accordance with the rank-deficient case. Areas shaded in red
correspond to unstable solutions where the essential spectrum is not confined to the
imaginary axis (i.e., the solution is unstable), whereas areas in blue correspond to
solutions that have a purely imaginary essential spectrum, see §4. Note that a purely
imaginary essential spectrum does not guarantee spectral stability since we have not
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discussed the point spectrum. In Figure 2.1 and the following figures, the notation
(ψ1(x), ψ2(x)) ∼ (f(x), g(x)) is used to denote that ψ1(x) is proportional to f(x), and
ψ2(x) is proportional to g(x).
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Fig. 2.1: Ranges of (α12, α21) for which trivial-phase solutions exist in Case 1:
(α11, α22) = (−1,−1). (a) (ψ1(x), ψ2(x)) ∼ (sech(x), sech(x)), (b) (ψ1(x), ψ2(x)) ∼
(tanh(x), tanh(x)), and (c) (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x)).

Similarly, in Figures 2.2a, 2.2b, 2.2c, and 2.2d bounding curves are given by the
graphs of {α21 = −1/α12 < 0 or α21 = −1}, {α12 = 1 or α21 = −1/α12 < 0}, {α21 =
−1/α12 > 0 or α12 = 1 or α21 = −1}, and {α21 = −1/α12 > 0} respectively.

Finally, in Figures 2.3a, 2.3b, and 2.3c bounding curves are given by the graphs of
{α21 = 1/α12 < 0}, {α12 = 1 or α21 = 1/α12 < 0 or α21 = 1}, and {α12 = 1 or α21 =
1/α12 > 0} respectively. In addition, Figure 2.3a includes a point which corresponds
to a solution for singular α.

2.2. Nontrivial-Phase Solutions. For nontrivial-phase solutions we are un-
able to make many of the reductions discussed in §2.1. Once we choose α11 and α22,
the shaded regions of the (α12, α21)-plane do not depend on B1 and B2 if B1, B2 ≥ 0.
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Fig. 2.2: Ranges of (α12, α21) for which trivial-phase solutions exist in Case 2:
(α11, α22) = (−1, 1)). (a) (ψ1(x), ψ2(x)) ∼ (sech(x), sech(x)), (b) (ψ1(x), ψ2(x)) ∼
(tanh(x), tanh(x)), (c) (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x)), and (d) (ψ1(x), ψ2(x)) ∼
(tanh(x), sech(x)).

These regions are presented in Figure 2.4. It is of note that for any of the (α11, α22)
cases we can move continuously from nontrivial-phase to trivial-phase solutions by let-
ting Bj → 0. We cannot investigate the limit Bj → −Aj since the values of α12, α21

necessary to look at this limit are outside of the regions of existence presented in
Figure 2.4. The absence of this limit is related to the fact that in the scalar case,
nontrivial-phase bright solitons do not exist for focusing NLS whereas for defocusing
NLS gray solitons do exist [31].

In what follows we examine the limit (B1, B2)→ 0 since in this case nontrivial phase
solutions can limit to both stable and unstable trivial-phase solutions.

3. Stability Problem. To examine stability of the exact solutions given in (2.1),
we linearize the governing equations (1.1) around these solutions:
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Fig. 2.3: Ranges of (α12, α21) for which trivial-phase solutions exist in Case 3:
(α11, α22) = (1, 1). (a) (ψ1(x), ψ2(x)) ∼ (sech(x), sech(x)), (b) (ψ1(x), ψ2(x)) ∼
(tanh(x), tanh(x)), and (c) (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x)).

ψj(x, t) = eiθj(x)−iωjt
(
rj(x) + εφj(x, t) +O(ε2)

)
, (3.1)

for a small parameter ε. Substituting (3.1) into (1.1) and ignoring terms multiplying
higher than linear powers in ε gives

∂

∂t

(
u
v

)
= JL

(
u
v

)
= J

(
L+ S
−S L−

)(
u
v

)
, (3.2)

where u = (u1, . . . , un)T , v = (v1, . . . , vn)T and uj , vj are the real and imaginary
parts of φj respectively. Also,



8 DECONINCK, SHEILS, NGUYEN AND TIAN

-10 -5 0 5 10

-10

-5

0

5

10

Α12

Α
21

Case 1

-10 -5 0 5 10

-10

-5

0

5

10

Α12

Α
21

Case 2

(a) (b)

-10 -5 0 5 10

-10

-5

0

5

10

Α12

Α
21

Case 3

(c)

Fig. 2.4: Ranges of (α12, α21) for which nontrivial-phase solutions exist given B1, B2 ≥
0. (a) α11 = −1, α22 = −1, (b) α11 = −1, α22 = 1, and (c) α11 = 1, α22 = 1.

J =

(
0n 1n
−1n 0n

)
,

where 0n is the n×n zero matrix and 1n is the n×n identity matrix. The remaining
n× n matrix operators in (3.2) are given by

(L+)jk =

{
−∂2x +

c2j
r4j
− ωj + 2αjjr

2
j +

∑n
p=1 αjpr

2
p j = k

2αjkrjrk j 6= k
(3.3)

(L−)jk =

{
−∂2x +

c2j
r4j
− ωj +

∑n
p=1 αjpr

2
p j = k

0 j 6= k
(3.4)
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(S)jk =

{
2cj

r′j−rj∂x
r3j

j = k

0 j 6= k
(3.5)

where j, k = 1, . . . , n.

Since (3.2) is autonomous in t, we employ separation of variables and consider solu-
tions of the form (u(x, t), v(x, t)) ≡ eλt(û(x), v̂(x)). The eigenfunctions û and v̂ satisfy
the spectral problem

λ

(
û(x)
v̂(x)

)
= JL

(
û(x)
v̂(x)

)
= J

(
L+ S
−S L−

)(
û(x)
v̂(x)

)
. (3.6)

Since S is anti-symmetric, L is self adjoint and (3.6) demonstrates the Hamiltonian
structure of the problem. In order to show that solutions are spectrally stable, we need
to verify that the spectrum of JL does not intersect the open right half of the complex-
λ plane. That is, there are no λ with bounded eigenfunctions satisfying (3.6) such that
the real part of λ is positive. Since the CNLS equation is Hamiltonian [1], the spectrum
of its linearization is symmetric with respect to both the real and the imaginary
axis [47]. Thus, proving spectral stability of a solution is equivalent to proving that
the spectrum of JL is strictly imaginary. As usual the time-independent spectrum
consists of two parts, the essential spectrum and the discrete spectrum.

The analytical investigation of linear stability, beyond the study of the essential spec-
trum (see §4) for nontrivial-phase solutions, is beyond the scope of our methods.
However, if all condensate components are described by trivial-phase solutions, more
analysis is possible [8, 9, 10]. Note that in the trivial-phase case, S = 0n.

4. The Locus of the Essential Spectrum. The determination of the essential
spectrum is an important component for this work. We are able to get analytical
results for the essential spectrum of both the trivial and nontrival-phase solutions. If
for a particular solution any part of the essential spectrum is in the right-half complex
plane, the solution is spectrally unstable and there is no need to examine the stability
of the solution numerically unless we not only want to determine stability, but also
which modes are the most unstable. To answer this second question, a determination
of the entire spectrum is required. If a solution is spectrally unstable due to the
location of the essential spectrum we will forego the numerical investigation of the
next section.

Definition. A solution for which the essential spectrum of (3.6) is on the imaginary
axis is called essentially spectrally stable.

It is clear that solutions that are not essentially spectrally stable are spectrally unsta-
ble. The analytical expressions for the essential spectrum provide a means to check
the accuracy of the numerical results of the next section.

To compute the essential spectrum we investigate the asymptotic spectral problem
determined by letting |x| → ∞. This results in a constant coefficient problem and we
let (û(x), v̂(x)) ≡ eiκx(U, V ) where κ ∈ R. Equation (3.6) becomes
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λ

(
U
V

)
= JL̃

(
U
V

)
= J

(
L̃+ S̃

−S̃ L̃−

)(
U
V

)
, (4.1)

with

(L̃+)jk =

{
κ2 +

c2j
r4j
− ωj + 2αjjr

2
j +

∑n
p=1 αjpr

2
p, j = k,

2αjkrjrk, j 6= k,
(4.2)

(L̃−)jk =

{
κ2 +

c2j
r4j
− ωj +

∑n
p=1 αjpr

2
p, j = k,

0, j 6= k,
(4.3)

(S̃)jk =

{
2cj

r′j−iκrj
r3j

, j = k,

0, j 6= k,
(4.4)

for j, k = 1, 2, . . . , n.

Finding the eigenvalues of the matrix JL̃ gives a parameterization in terms of κ ∈ R
of the essential spectrum. Eigenvalues with nonzero-real part correspond to unstable
modes with a growth rate equal to the absolute value of the real part. In this paper
we do not concern ourselves with finding the largest growth rate. Instead we focus on
determining whether solutions are spectrally stable.

As mentioned in §1 we focus on the case n = 2. In this situation L̃ is a 4×4 matrix and
the characteristic equation is quartic in λ. In the trivial-phase case the characteristic
equation is biquadratic and we are able to compute explicit parameterizations for the
essential spectrum. This is also possible in the nontrivial-phase case but our formulas
become extremely unwieldy.

4.1. Trivial-Phase Solutions. For all three cases of α, if we are in the trivial-
phase case such that Bj = −Aj , that is, ψj(x) ∼ sech(x), (4.1) becomes

λ

(
U
V

)
=


0 0 1 + κ2 0
0 0 0 1 + κ2

−1− κ2 0 0 0
0 −1− κ2 0 0

( U
V

)
. (4.5)

The eigenvalues are λ = ±i(1 + κ2), each with multiplicity two. This results in a
double covering of the imaginary axis for values of |λ| > 1, shown in Figure 4.1.
Thus, all (sech(x), sech(x)) solutions are essentially spectrally stable. It remains to
examine their discrete spectrum which is done in the next section.

• For Case 1, that is (α11, α22) = (−1,−1) the essential spectrum for the other
trivial-phase solutions is displayed in Figure 4.2. The analytical formula ob-
tained by solving (4.1) with the proper values of α11 and α22 implies the
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Fig. 4.1: The essential spectrum for any choice of α11, α12, α21, and α22 with
(ψ1(x), ψ2(x)) ∼ (sech(x), sech(x)).

essential spectrum has nonzero real part. The plots of these analytical for-
mulas presented in Figure 4.2 make it clear that the solutions are unstable in
every case shown. The explicit values of κ for which the real part of any eigen-
value is positive in the case (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)) is examined
later in this section.
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Fig. 4.2: (a) The essential spectrum for α11 = −1, α12 = 1.5, α21 = 2, and α22 =
−1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)). (b) The essential spectrum for α11 =
−1, α12 = 1, α21 = −2, and α22 = −1 with (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x)).

• For Case 2, that is (α11, α22) = (−1, 1) the essential spectrum for the non-
(sech(x), sech(x)) trivial-phase solutions is as given in Figure 4.3. Notice
that for some types of trivial-phase solutions, i.e. ψ1(x) ∼ tanh(x), ψ2(x) ∼
tanh(x), we show two sets of essential spectrum. This corresponds to the two
regions of the solution space shown in Figure 2.2d.
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Fig. 4.3: (a) The essential spectrum for α11 = −1, α12 = 3, α21 = .5, and α22 = 1 with
(ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)). (b) The essential spectrum for α11 = −1, α12 =
.5, α21 = −3, and α22 = 1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)). (c) The essential
spectrum for α11 = −1, α12 = .5, α21 = .1, and α22 = 1 with (ψ1(x), ψ2(x)) ∼
(sech(x), tanh(x)). (d) The essential spectrum for α11 = −1, α12 = −3, α21 = 1.5,
and α22 = 1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), sech(x)).

• Finally, for Case 3, that is (α11, α22) = (1, 1) the essential spectrum for the
non-(sech(x), sech(x)) trivial-phase solutions is shown in Figure 4.4. The
analytical formula obtained by solving (4.1) with the proper values of α11

and α22 gives an expression for the essential spectrum. The plots of these
analytical formulas presented in Figure 4.4 make it clear when the solutions
are unstable. The explicit values of κ for which the real part of any eigenvalue
is positive in the case (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)) is examined later
in this section.

It is possible to give explicit expressions characterizing κ for which the real part of λ
is positive. For instance in

• Case 1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)), (α11 = α22 = −1, α12 >
0, and α21α12 > 1), the essential spectrum is unstable whenever |κ| <
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Fig. 4.4: (a) The essential spectrum for α11 = 1, α12 = −1.5, α21 = .2, and α22 =
1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)). (b) The essential spectrum for α11 =
1, α12 = 1.5, α21 = 2, and α22 = 1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)). (c) The
essential spectrum for α11 = 1, α12 = .8, α21 = 3, and α22 = 1 with (ψ1(x), ψ2(x)) ∼
(sech(x), tanh(x)). (d) The essential spectrum for α11 = 1, α12 = 2.5, α21 = .5, and
α22 = 1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), sech(x)).

2
√

(α12 + 1)/(α12 − 1) and α12 = α21 > 1.

• Similarly, in Case 2 (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)), (α11 = −1, α22 = 1
and either 0 < α12 < 1 and α21 < −1/α12 or α12 > 1 and α21 > −1/α12),
the essential spectrum is unstable whenever α12 = α21 > 1 and |κ| >
2
√

(α2
12 − 1)/(α2

12 + 1).

• In the final case we consider, Case 3 (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)),
(α11 = α22 = 1 and −1 < α12, α12 6= 1) where the essential spectrum is
unstable whenever α12 = α21 > 1 and |κ| < 2

√
(α12 − 1)/(α21 − 1).

Remark. We can examine these cases further and look at the real and imaginary
parts of the eigenvalues for all κ ∈ R. For instance, in Case 1b, if α21 = α12 the
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eigenvalues are given by

λ1,2 = ±i|κ|
√

4 + κ2,

λ3,4 = ±|κ|

√
4(α12 + 1)(α21 + 1) + (1− α12α21)κ2

α12α21 − 1
.

These eigenvalues form a cross on the imaginary axis similar to that shown in Fig-
ure 4.2a. The part on the real axis depends on the values of α12 = α21. The pa-
rameterization of the essential spectrum is not informative because it gives no results
on the stability of the solution. We know the essential spectrum is stable (purely
imaginary) but we have yet to compute the discrete spectrum which may prove to
have nonzero real part which would imply instability.

4.2. Nontrivial-Phase Solutions. As mentioned before, the analytic expres-
sions for the parameterization of the nontrivial-phase solutions in terms of κ are too
complicated for generic values of α12, α21, B1, and B2. It is important to note that
for both trivial and nontrivial-phase solutions we have an analytic description of the
essential spectrum in terms of an implicitly defined quartic curve. In order to create
the plots for the more complicated nontrivial-phase case, we compute the roots of
the quartic equation numerically to machine precision. In the following figures we
present plots of the essential spectrum for a fixed (α12, α21) while varying B1 and B2,
eventually approaching B1 = B2 = 0, the trivial-phase case with ψj(x) ∼ tanh(x),
j = 1, 2. Figures 4.5, 4.6, 4.7, 4.8 display the essential spectrum for each of the three
choices with two possibilities for different values of α12, α21 for Case 3.

For Cases 1 and 2 and the first choice of α12, α21 for Case 3 the essential spec-
trum always covers the imaginary-λ axis and in addition contains a set whose graph
has the shape of a figure eight. The figure eight collapses onto the real axis as B1

and B2 approach zero, eventually limiting to the cross as shown in Figures 4.5, 4.6
and 4.7. This limit is qualitatively the same as that seen in the trivial-phase case in
Figures 4.2a, 4.3a, and 4.4a. In Figure 4.8 the figure eight collapses onto the imag-
inary axis and approaches a stable solution as B1 and B2 go to zero. This mirrors
the case shown in Figure 4.4a. In the figures presented in this paper we take the
limit B1, B2 → 0 along B1 = B2. However, taking the limit along any curve with
B1, B2 ≥ 0 will also give a series figure eights collapsing to the axis.

Bottman and Deconinck [7] prove stability of trivial- and nontrivial-phase solutions
of the scalar defocusing NLS equation. To compare results we choose α22 = α11 = 1
and α12 = α21 = 0. In this case the eigenvalue problem for the essential spectrum,
Equation (4.1) becomes

λ

(
û
v̂

)
=


−iκ
√

2B1 0 κ2 0
0 −iκ

√
2B2 0 κ2

−4− 2B1 − κ2 0 −iκ
√

2B1 0
0 −4−B2 − κ2 0 −iκ

√
2B2

( û
v̂

)
.

(4.6)

The eigenvalues for (4.6) are given by

λ1,2 = −iκ(
√

2B1 ±
√

4 + 2B1 + κ2),
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Fig. 4.5: (a) The essential spectrum of nontrivial-phase solutions with α11 = α22 =
−1, α12 = 1.5, and α21 = 2 for varying values of B1 = B2 computed analytically. (b)
A zoomed in picture for B1 = B2 = .0001.
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Fig. 4.6: (a) The essential spectrum of nontrivial-phase solutions with α11 = −1,
α22 = 1, α12 = 1.5, and α21 = .25 for varying values of B1 = B2 computed analyti-
cally. (b) A zoomed in picture for B1 = B2 = .0001.

and

λ3,4 = −iκ(
√

2B2 ±
√

4 + 2B2 + κ2).

Clearly these are imaginary for B1, B2 ≥ 0. Varying κ results in λ’s covering the
whole of the imaginary axis. This is consistent with the analysis in [7].

Remark. The reader may be familiar with the appearance of a figure eight in the
context of the stability analysis of solutions of the NLS equation. Indeed, the sta-
bility spectrum a trivial-phase cm-type of the focusing NLS equation consists of the
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Fig. 4.7: (a) The essential spectrum of nontrivial-phase solutions with α11 = 1, α22 =
1, α12 = 2, and α21 = 1.5 for varying values of B1 = B2 computed analytically. (b)
A zoomed in picture for B1 = B2 = .0001.
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Fig. 4.8: (a) The essential spectrum of nontrivial-phase solutions with α11 = 1, α22 =
1, α12 = −.5, and α21 = .5 for varying values of B1 = B2 computed analytically and
(b) a zoomed in picture for B1 = B2 = .0001.

imaginary axis and a figure eight centered at the origin, see [17, 29]. The center of
the figure eight is the hallmark of the Benjamin-Feir or modulational instability [43].
The figure eight obtained in our investigations is quite different: our solutions are
solitary wave solutions, and the figure eight is the zero set of an explicitly known
quartic curve. In addition, the size of the figure eight is significantly larger than that
of the trivial-phase cn solution. As a consequence, the growth rates associated with
the instabilities found here are larger.

5. The Numerical Computation of the Spectrum. We use Hill’s Method
as presented in [15]. Since the coefficients of L can be approximated by functions with
period 2L we represent them as Fourier series. We recall Floquet’s Theorem [2, 13, 18],
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Theorem (Floquet). Consider the linear homogeneous differential equation y′ =
A(x)y, for some square matrix A(x) of complex continuous functions such that A(x+
2L) = A(x). Then any fundamental matrix Φ(x) of this system may be decomposed
as Φ(x) = Φ̂(x)eRx, where Φ̂(x+2L) = Φ̂(x), Φ̂(x) is nonsingular and R is a constant
matrix.

We refer to the eigenvalues of the matrix R as the Floquet exponents. It follows [15]
that every bounded solution of (3.6) is of the form

(
û(x)
v̂(x)

)
= eiµxφ(x),

with φ(x+2L) = φ(x) for any fixed λ and µ ∈ [0, π/L). The factor exp(iµx) is referred
to as the Floquet multiplier and iµ is the Floquet exponent (eigenvalue of the matrix
R). In this manuscript we loosely refer to µ as the Floquet exponent. Writing φ(x)
as a Fourier series such that

φ̂j =
1

4L

∫ 2L

−2L
φ(x)eπijx/(2L) dx, j ∈ Z, (5.1)

Equation (3.6) is equivalent to

M̂(µ)φ̂ = λφ̂, (5.2)

where φ̂ = (. . . , φ̂−1, φ̂0, φ̂1, . . .)
T and M̂(u) is a bi-infinite matrix. It is important

to note that no approximations have been introduced to obtain (5.2). In order to
obtain a numerical method which approximates the spectrum of (3.6), we choose a
cut-off N on the number of Fourier modes of the eigenfunctions φ(x) which results in
a (2N + 1)× (2N + 1) matrix system

M̂N (µ)φ̂N = λN φ̂N , (5.3)

where the eigenvalues λN approach λ as N approaches infinity.

The convergence of this method as N → ∞ is proven in [14]. This method is spec-
trally accurate for differential eigenvalue problems with periodic coefficients and an
almost-uniform approximation to the entire spectrum is obtained [15]. The numerical
component of this method is limited to

1. choosing the size of the matrices to be used, and

2. an eigenvalue solver.
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Hill’s method is not intended for linear operators with coefficients that are localized
on the whole line as is the case with our problem. In our simulations we approx-
imate the localized function by an elliptic one which converges to it as the elliptic
modulus k approaches one [34]. In order to ensure that Hill’s method is providing
an accurate approximation to the periodic problem, the number of Fourier modes
needs to be increased as the period is increased. This is similar to the work done
in [12]. In using this method of approximating infinite line potentials with periodic
potentials with large periods the question arises in what sense the spectrum of such
large-period potentials approximates the spectrum of infinite-line potentials. Since
the spectrum of the periodic problem is the image of the unit circle in the complex
plane as parameterized by the Floquet exponent, Gardner [22] showed that if the
period L is sufficiently large, the image of the unit circle is mapped to a simple closed
curve containing the spectrum of the infinite line problem. Moreover multiplicities
are preserved, implying that no eigenvalues are lost, or no spurious eigenvalues are
introduced in the limit.

5.1. Trivial-Phase Solutions. The figures in this section have multiple parts.
The blue and red dots correspond to the spectrum computed numerically using Hill’s
method. Red dots indicate periodic perturbations (Floquet parameter equal to zero)
and blue dots represent the full range of the Floquet parameter. The analytic expres-
sion for the locus of the essential spectrum computed and discussed in §4 is shown in
light gray for comparison. All simulations are carried out in python and the formulae
used are direct adaptations of those found in [15]. For the numerics seen here, we
chose the elliptic modulus k to be 1 − 10−16. This choice was seen to be sufficiently
close to 1 as was discussed above.

In Figure 5.1 in the case of any interaction matrix α for solutions with (ψ1(x), ψ2(x)) ∼
(sech(x), sech(x)), the solution is stable with essential spectrum lining the imaginary
axis for purely imaginary |λ| > 1. The point at the origin is an eigenvalue or member of
the discrete spectrum. The numerics agree with the analysis of the essential spectrum
in §4. This shows that solutions of the form (ψ1(x), ψ2(x)) ∼ (sech(x), sech(x)) are
spectrally stable. In what follows we focus on the remaining cases.

• Case 1 solutions are unstable in every case of (ψ1, ψ2) and the corresponding
α12, α21 by virtue of the essential spectrum computed in §4.

• Case 2 solutions are spectrally stable if (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x))
and for α12 and α21 in the regions shown in Figure 2.2c. In all other sub-
cases of Case 2, the solutions are unstable. In Figure 5.2 the spectrum for
cases which have purely imaginary essential spectrum are shown. As seen in
Figure 5.2a, a positive real eigenvalue exists which implies instability. This
illustrates the importance of examining both the essential and the discrete
spectrum.

• Case 3 solutions are stable if (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x)) and for
α12 and α21 in the regions shown in Figure 2.3c. If (ψ1(x), ψ2(x)) ∼
(tanh(x), tanh(x)), solutions have discrete spectrum with nonzero real part
and these solutions are unstable. The discrete and essential spectrum are plot-
ted in Figure 5.3 for solutions with purely imaginary essential spectrum. As
in the previous case, a real positive eigenvalue exists in the (tanh(x), tanh(x))
case as seen in Figure 5.3a.
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Fig. 5.1: The stability spectrum for any choice of α11, α12, α21, and α22 with
(ψ1(x), ψ2(x)) ∼ (sech(x), sech(x)).

(a) (b)

Fig. 5.2: (a) The stability spectrum for α11 = −1, α12 = .5, α21 = −3, and α22 = 1
with (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)). (b) The spectrum for α11 = −1, α12 =
.5, α21 = .1, and α22 = 1 with (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x)).

6. Summary. We have thoroughly investigated all cases of the two-component
coupled NLS system. Solutions that are spectrally stable are presented in Table 6.1
where α12 and α21 are chosen to be in the proper ranges as discussed in §2. All other
solutions, including all nontrival-phase solutions, are spectrally unstable. For the
case α12 = α21, the first four rows of Table 6.1 are consistent with results presented
in [3, 4, 35, 37, 38].
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(a) (b)

Fig. 5.3: (a) The stability spectrum for α11 = 1, α12 = −1.5, α21 = .2, and α22 =
1 with (ψ1(x), ψ2(x)) ∼ (tanh(x), tanh(x)). (b) The stability spectrum for α11 =
1, α12 = .8, α21 = 3, and α22 = 1 with (ψ1(x), ψ2(x)) ∼ (sech(x), tanh(x)).

α11 α22 ψ1(x) ψ2(x)

1 1 sech(x) sech(x)
1 −1 sech(x) sech(x)
−1 1 sech(x) sech(x)
−1 −1 sech(x) sech(x)
−1 1 sech(x) tanh(x)
1 1 sech(x) tanh(x)

Table 6.1: Solutions we found to be spectrally stable with α12 and α21 appropriately
chosen as discussed in §2.
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[25] Hărăguş, M. and Kapitula, T., On the spectra of periodic waves for infinite-dimensional
Hamiltonian systems, Phys. D, 237 (2008), pp. 2649-2671.

[26] Hasegawa, A., Optical Solitons in Fibers, Springer, New York, NY, 1990.
[27] Hasegawa, A. and Tappert, F., Transmission of stationary nonlinear optical pulses in dis-

persive dielectric fibers I. Anomalous dispersion, Appl. Phys. Lett., 23 (1973), pp. 142-144.
[28] Hasegawa, A. and Tappert, F., Transmission of stationary nonlinear optical pulses in dis-

persive dielectric fibers II. Normal dispersion, Appl. Phys. Lett., 23 (1973), pp. 171-172.
[29] Ivey, T. and Lafortune, S., Spectral stability analysis for periodic traveling wave solutions

of NLS and CGL perturbations, Phys. D, 237 (2008), pp. 1750-1772.
[30] Kivshar, Y. S. and Agrawal, G., Optical Solitons: From Fibers to Photonic Crystals, Aca-

demic Press, San Diego, CA, 2003.
[31] Kivshar, Y. S. and Luther-Davies, B., Dark optical solitons: physics and applications, Phys.

Rep. 298 (1998), pp. 81-197.
[32] Myatt, C. J., Burt, E. A., Ghrist, R. W, Cornell, E. A., and Wieman, C. E., Production

of Two Overlapping Bose-Einstein Condensates by Sympathetic Cooling, Phys. Rev. Lett.,
78 (1997), pp. 586.

[33] Newell, A. C., Solitons in Mathematics and Physics, SIAM: Philadelphia, PA: 1985.
[34] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov, Release 1.0.5 of 2012-

10-01.
[35] Nguyen, N., On the orbital stability of solitary waves for the 2-coupled nonlinear Schrödinger

system, Comm. Math Sci. 9.4 (2011), pp. 997-1012.
[36] Nguyen, N., Tian, R., Deconinck, B., and Sheils, N. E., Global Existence for a Coupled

System of Schrödinger Equations with Power Type Nonlinearity, Jour. Math. Phys. 54
(2013), 013701.

[37] Nguyen, N. and Wang, Z., Orbital stability of solitary waves for a nonlinear Schrödinger
system, Adv. Diff. Eqns. 16 (2011), pp. 977-1000 .

[38] Ohta, M., Stability of solitary waves for coupled nonlinear Schrödinger equations, Nonlinear



22 DECONINCK, SHEILS, NGUYEN AND TIAN

Anal. Theory, Methods & Appl., 26 (1996), pp. 933-939.
[39] Pitaevskii, L. P., Vortex lines in an imperfect Bose gas, Sov. Phys. JETP 13 (1961), pp.

451-454.
[40] Roske, G. J., Some nonlinear multiphase reactions, Stud. Appl. Math., 55 (1976), pp. 231-238.
[41] Rothenberg, J. E., Modulational instability for normal dispersion, Phys. Rev. A, 42 (1990),

pp. 682-685.
[42] Rothenberg, J. E., Observation of the buildup of modulational instability from wavebreaking,

Opt. Lett., 16 (1991), pp. 18-20.
[43] Rowlands, G. B., On the stability of solutions of the non-linear Schrödinger equation, IMA

J. Appl. Math., 13 (1974), pp. 367-377.
[44] Stamper-Kurn, D. M., Andrews, M. R., Chikkatur, A. P., Inouye, S., Miesner, H.-J,

Stenger, J. , and Ketterle, W., Optical Confinement of a Bose-Einstein Condensate,
Phys. Rev.Lett. 80 (1998), pp. 2027.

[45] Thelwell, R. J., Carter, J. D., and Deconinck, B., Instabilities of one-dimensional sta-
tionary solutions of the cubic nonlinear Schrödinger equation, J. Phys. A. 39 (2006), pp.
73-84.

[46] Tsurumi, T. S., Morise, H., and Wadati, M., Stability of Bose-Einstein condensates confined
in traps, Int. J. Mod. Phys. B. 14 (2000), pp. 655-719.

[47] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Ap-
plied Mathematics, vol 2. 2nd edn. Springer, New York, NY, 2003.

[48] Yang, J. and Benney, D. J., Some properties of nonlinear wave systems, Stud. Appl. Math.,
96 (1996), pp. 111-139.

[49] Yang, J., Coherent structures in weakly birefringent optical fibers, Stud. Appl. Math., 97
(1996), pp. 127-148.

[50] Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of a deep fluid,
J. Appl. Mech. Tech. Phys. 9 (1968), pp. 190-194.

[51] Zakharov, V. E., Collapse of Langmuir waves, Sov. Phys. JETP. 35 (1972), pp. 908-914.


