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Wilton ripples are a type of periodic traveling wave solution of the full water wave problem
incorporating the effects of surface tension. They are characterized by a resonance
phenomenon that alters the order at which the resonant harmonic mode enters in a
perturbation expansion. We compute such solutions using non-perturbative numerical
methods and investigate their stability by examining the spectrum of the water wave
problem linearized about the resonant traveling wave. Instabilities are observed that
differ from any previously found in the context of the water wave problem.

1. Introduction

In 1915 J. R. Wilton (Wilton 1915) included the effects of surface tension and con-
structed a series expansion in terms of the amplitude of one-dimensional periodic waves
in water of infinite depth, extending Stokes’s work (Stokes 1847). He noticed that if
the (non-dimensionalized) coefficient of surface tension equals 1/n (n ∈ Z+), the Stokes
expansions giving travelling wave solutions to Euler’s equations are singular. As a way
to rectify the problem, he modified the form of the perturbation expansion so that the
nth harmonic enters at order (n− 1) or (n− 2) instead of n. The resulting solutions are
known as resonant harmonics or Wilton ripples.

The occurrence of Wilton ripples is not merely a mathematical phenomenon. Henderson
and Hammack (Henderson & Hammack 1987) generated and observed such waves in a
controlled tank experiment. In the experiment, several sensors were placed at different
points along the length of the tank. They measured the wave profile and the frequencies
of the wave as it travelled down the tank. Even though waves of roughly 20Hz were
generated by the paddles at one end of the tank, frequencies around 10Hz were observed
as well. This is a manifestation of Wilton ripples.

McGoldrick contributed significantly to the understanding of gravity-capillary waves
and their relation to resonant interaction, using both experiment and theory. He demon-
strated experimentally that gravity-capillary waves lose their initial profile as they
propagate (McGoldrick 1970a). He also examined these waves using weakly nonlinear
theory (McGoldrick 1970b) and used the method of multiple scales (McGoldrick 1971)
to investigate the evolution of the gravity-capillary waves. Further, resonant phenomena
such as Wilton ripples have been studied in model equations. For instance Boyd and
Haupt (Haupt & Boyd 1988) investigated Wilton ripples in the context of the so-called
super Korteweg-de Vries or Kawahara (Kawahara 1972) equation by adding resonant
harmonics into the series expansion, following Wilton’s original approach (Stokes 1847).
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Akers and Gao (Akers & Gao 2012) derived an explicit series solution for the Wilton
ripples in this same context.

Not much work has been done analyzing the stability of Wilton ripples. In fact, we
are aware only of the work of Jones (Jones 1996, 1992). He investigated a system of
coupled partial differential equations describing up to cubic order the interaction of the
fundamental mode of a gravity-capillary wave with its second harmonic. He also provided
wave train solutions of these equations. These were used to examine the stability of
gravity-capillary waves as different parameters are varied. We will analyze the stability of
resonant solutions by looking at the stability eigenvalue problem obtained by linearizing
around a steady state solution. This was previously done by McLean (1982) (McLean
1982) who built on numerical work of Longuet-Higgins (Longuet-Higgins 1978a,b) as well
as others to examine growth rates of instabilities as a function of wave steepness. We
will also use the ideas seen in MacKay and Saffman (1986) (MacKay & Saffman 1986)
and use the Hamiltonian structure of the problem in order to find where instabilities can
occur.

In this paper, working with fully nonlinear solutions of the water wave equations, we
investigate the spectral stability of resonant gravity-capillary waves using the Fourier-
Floquet-Hill method (Deconinck & Kutz 2006). To our knowledge, our work presents the
first study of the different instabilities to which Wilton ripples are susceptible, without
restricting the nature of the disturbances. Our paper follows the previous investigations
on the instabilities of one-dimensional periodic travelling gravity waves (Deconinck &
Oliveras 2011) and of gravity waves in the presence of weak surface tension (Deconinck
& Trichtchenko 2014). More details and a more comprehensive investigation of the
different types of solutions, their series expansions, and their instabilities will be published
elsewhere (Trichtchenko et al. 2015).

2. Computing Resonant Gravity-Capillary Waves

One-dimensional gravity-capillary waves are governed by the Euler equations,

φxx + φzz = 0, (x, z) ∈ D, (1a)

φz = 0, z = −h, x ∈ (0, L), (1b)

ηt + ηxφx = φz, z = η(x, t), x ∈ (0, L), (1c)

φt +
1

2

(
φ2
x + φ2

z

)
+ gη = σ

ηxx

(1 + η2
x)

3/2
, z = η(x, t), x ∈ (0, L), (1d)

which incorporate the effects of both gravity and surface tension, where g is the accel-
eration due to gravity and σ is the coefficient of surface tension. Here h is the height
of the fluid when at rest, η(x, t) is the elevation of the fluid surface and φ(x, z, t) is
the velocity potential. As was shown in (Vasan & Deconinck 2013), we can add an
arbitrary function Cφ(t) (of time but not space) to the Bernoulli condition (1d), which
we will do for computational purposes below. We focus on solutions on a periodic domain
D = {(x, z) | 0 6 x < L,−h < z < η(x, t)} as shown in figure 1. It is clear that
the parameter space for the travelling-wave solutions of this problem is extensive. A
comprehensive investigation will be presented in (Trichtchenko et al. 2015). In this brief
communication, we restrict our attention to solutions for which g = 1, the period L = 2π
and the water depth h = 0.05. If one employs the criteria of (Benjamin 1967; Benjamin
& Feir 1967; Whitham 1967), this puts us in the shallow water regime, quite different
from Wilton (Wilton 1915) who worked with h = ∞. However, it should be noted that
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Figure 1. The domain on which we solve Euler’s equations.

the above references distinguishing shallow water from deep water do not incorporate
surface tension, and as such their results do not immediately apply.

The regular perturbation expansion (or Stokes expansion) for a 2π-periodic travelling
water wave takes the form

η(x) = ε cosx+

∞∑
k=2

εkηk(x), ηk(x) =

k∑
j=2

2η̂kj cos(jx), (2)

where the Euler equations are reduced using the travelling wave reduction ∂t → −c∂x.
Regular perturbation theory (see, for instance, (Vanden-Broeck 2010)) leads to an ex-
pression for ηk(x) with a denominator proportional to the left-hand side of

(g + σ)k tanh(h)−
(
g + k2σ

)
tanh(kh) = 0, (k 6= 1). (3)

We refer to (3) as the resonance condition as it indicates that the k-th harmonic is
resonant with the base mode. If resonance occurs, i.e. (3) holds for a certain value of k,
say k = K, the regular Stokes expansion breaks down, and it is not possible to determine
ηK(x) in the form (2). Instead, the resonant harmonic arises in the Stokes series at order
εK−1 or εK−2 (Vanden-Broeck 2010; Wilton 1915). It is easy to see that (3) cannot hold
when σ = 0. In other words, surface tension is a necessary condition for the occurrence
of resonance. Further, (3) holds for at most one value of k > 2 (Trichtchenko et al. 2015).

To compute travelling solutions of (1a-d), we developed a variant of the boundary
integral method of Wilkening & Yu for the time-periodic problem (Wilkening & Yu
2012), modified to take advantage of the travelling wave assumption. Considering only
the equations (1c-d), which are valid at the surface z = η, and defining a surface velocity
potential q(x, t) = φ(x, η(x, t), t), we have

−cηx = φz − ηxφx := G(η)q, (4a)

−cqx = P

[
−cφzηx −

1

2

(
φ2
x + φ2

z

)
− gη + σ

ηxx

(1 + η2
x)

3/2

]
. (4b)

Here (4b) is obtained from (1d) by using qt = φt + φzηt at the free surface prior to
restricting to a travelling frame. Equation (4a) defines the Dirichlet to Neumann operator
G(η). Further, P is the projection operator onto functions of zero mean: Pf(x) = f(x)−
1

2π

∫ 2π

0
f(x)dx. The introduction of this operator is required since the left-hand side of

(4b) clearly has zero average. This amounts to including Cφ(t) in (1d) to avoid secular
growth in φ(t) as the wave travels. In addition, in the next step we invert G(η). Working
with functions of zero average guarantees the existence of a unique inverse.

As written, (4a-b) is a system of two equations for the two unknown surface variables
q(x) and η(x), linked by φ(x, z) through the solution of Laplace’s equation (1a) in the
domain D. We solve the first equation for q(x) using the inverse G(η)−1 of the Dirichlet
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to Neumann operator (Craig & Sulem 1993):

q = −cG(η)−1ηx,

(
φx
φz

)
=

1

1 + η2
x

(
1 −ηx
ηx 1

)(
qx
−cηx

)
. (5)

This determines q, φx and φz on the free surface given η. Equation (4b) may then be
rewritten as R(c, η) = 0, with

R(c, η) := P

[
cφx −

1

2
φ2
x −

1

2
φ2
z − gη + σ∂x

(
ηx

(1 + η2
x)

1/2

)]
, (6)

where we moved cqx inside P [· · · ] and used qx = φx+φzηx. Next we define the objective

function F (c, η) = 1
4π

∫ 2π

0
R(c, η)2 dx, which is minimized (holding the first Fourier mode

of η fixed at the desired amplitude, η̂1 = ε/2) using the modified Levenberg-Marquardt
method developed by Wilkening and Yu in (Wilkening & Yu 2012).

Rather than computing the operator G(η) as described in (Wilkening & Yu 2012)
and inverting it in (5), we reverse the algorithm to directly compute the Neumann to
Dirichlet operator. In more detail, G(η)q can be computed by first solving a second-
kind Fredholm integral equation

[
1
2 I + K

]
µ = q to find the dipole density µ, and then

evaluating G(η)q =
[

1
2H+G

]
µ′, where H is the Hilbert transform. Formulas for K and G

are given in (Wilkening & Yu 2012). The modification is to solve
[

1
2H+G

]
µ′ = −cηx for

µ′, which is essentially a second-kind Fredholm integral equation due to H2 = −P ; take
an antiderivative to find µ; and evaluate q =

[
1
2 I + K

]
µ. The improved accuracy comes

from taking an antiderivative instead of a derivative in the middle step. A similar idea
was used by Sethian and Wilkening (Sethian & Wilkening 2004) in the context of linear
elasticity to avoid loss of digits when evolving a semigroup whose generator involves two
spatial derivatives of a type of Dirichlet-Neumann operator — the inverse operator can
be computed much more accurately.

Figure 2 displays laptop-computed solutions running compiled C++ code implementing
the method sketched above. We use as many Fourier modes as needed to ensure the high-
est modes decay to double or quadruple-precision roundoff thresholds. A key difference
between these numerical results and those for gravity waves with a small coefficient of
surface tension (Deconinck & Trichtchenko 2014) is that the Fourier modes no longer
decay monotonically. The solutions computed here show a resonance at the K = 10th
mode and its higher harmonics. As the amplitude is increased, the modes neighboring
the resonant modes start to grow as well.

3. Stability

We examine the stability of the solutions of the previous section using the Fourier-
Floquet-Hill numerical method described in (Deconinck & Kutz 2006). Convergence
theorems for this method are found in (Curtis & Deconinck 2010; Johnson & Zumbrun
2012). Denoting one of the travelling solutions computed above by (η0; q0), we consider
a perturbed solution

η(x, t) = η0(x−ct)+δη1(x−ct)eλt+. . . , q(x, t) = q0(x−ct)+δq1(x−ct)eλt+. . . . (1)

Here (η1; q1) is the spatial part of the perturbation, bounded for all x, including as |x| →
∞. Specifically, η1(x) is not required to be periodic with the same period as η0(x). Note
that Re(λ) > 0 implies exponential growth of the perturbed solution, and thus instability
of η0(x). Substitution of (1) in the governing equations (1a-d) and neglecting terms of
order δ2 yields a linear (but nonlocal) generalized eigenvalue problem for η1, q1 that is
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Figure 2. Wave profiles for solutions with amplitude ε = 2η̂1 = 1.244× 10−6, 2.448× 10−6 and
4.254×10−6 (top), and semi-log plots of the absolute values of their Fourier modes η̂k (bottom).

Here η̂k = 1
2π

∫ 2π

0
η(x)e−ikx dx. As expected from the results for gravity waves (Deconinck &

Oliveras 2011), the troughs get wider and the crests become more narrow as the amplitude
increases. The Wilton ripples also become more apparent, especially in the troughs. For the
wave of highest amplitude plotted, a depression is present in the crest.

invariant under spatial translation by 2π; see (Deconinck & Oliveras 2011; Deconinck
& Trichtchenko 2014). Therefore we expect η1, q1 to also be eigenfunctions of the shift
operator, and hence be of Bloch form(

η1(x)
q1(x)

)
= eiµx

∞∑
m=−∞

(
N̂m
Q̂m

)
eimx =

∞∑
m=−∞

(
N̂m
Q̂m

)
ei(m+µ)x, µ ∈ (−1/2, 1/2]. (2)

Due to the Hamiltonian nature of (1a-d) (Zakharov 1968), the spectrum of this gen-
eralized eigenvalue problem is reflection symmetric with respect to both the real and
imaginary axes (Wiggins 1990). As a consequence, the presence of any eigenvalue λ off
the imaginary axis implies instability.

For the case of flat water (η0(x) ≡ 0), the spectrum may be computed analytically. It
consists of all values of the form

λ±µ+m = ic(µ+m)±i
√

[g(µ+m) + σ(µ+m)3] tanh((µ+m)h), µ ∈ (−1/2, 1/2], m ∈ Z,
(3)

where c =
√

(g + σ) tanhh is the wave speed in the linearized regime. Since these values
are all imaginary, we conclude that flat water is spectrally stable. However, as we examine
solutions with a nonzero amplitude, instabilities arise. Figures 3 and 4 show detailed
stability results for the three larger-amplitude solutions of figure 2. Figure 3 shows the
complex λ plane, while figure 4 shows Re(λ) vs µ. Many phenomena are similar to
those observed for gravity (Deconinck & Oliveras 2011) and (non-resonant) gravity-
capillary (Deconinck & Trichtchenko 2014) waves, such as the presence of bubbles of
high-frequency instabilities for the larger-amplitude waves. New phenomena are observed
as well. We observe nested structures for the two larger-amplitude waves, and, despite
being in shallow water, we notice the presence of a modulational instability (columns 2
and 3). As shown in the right panel of figure 5, the onset of this modulational instability
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Figure 3. Stability results for the solutions shown in figure 2. The columns correspond to
ε = 1.244× 10−6, 2.448× 10−6, and 4.254× 10−6, respectively. For each amplitude, two zooms
of the region indicated by the red box above are presented in the second and third rows.

Figure 4. Dependence of Re(λ) on µ for ε = 1.244× 10−6, 2.448× 10−6, and 4.254× 10−6.

occurs around ε = 1.555 × 10−6, when the large bubble of instability present at that
amplitude merges with its mirror image at the origin.

Since eigenvalues are continuous with respect to variations of the wave amplitude
(Hislop & Sigal 1996), eigenvalues may leave the imaginary axis as the amplitude increases
only through collisions on the imaginary axis. This is required to ensure the Hamiltonian
symmetry of the spectrum. Thus, a necessary condition for the loss of stability of η0(x)
as the solution bifurcates away from the flat water state is that there exist µ and m such
that one of the following conditions holds:

λ+
µ = λ+

µ+m, λ+
µ = λ−µ+m, λ−µ = λ+

µ+m, λ−µ = λ−µ+m. (4)
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Figure 5. (left) Two bubbles of instability nucleate from the origin and move away from the
Re(λ) axis in opposite directions as ε increases from 0. The second bubble (with µ < 0) is not
shown as the figure is reflection symmetric about µ = 0 (and also about µ = 1/2, by periodicity).
(right) At larger amplitudes, the bubble merges with its mirror image to the right, and later
with its image to the left, at the origin.

For the resonant solutions with K = 10, we have a six-way crossing at λ = 0 when µ = 0,
namely

λ+
µ = λ−µ = λ+

µ−1 = λ−µ+1 = λ+
µ−10 = λ−µ+10 = 0, (µ = 0). (5)

To show that λ+
µ−10 = 0 and λ−µ+10 = 0, the resonance condition (3) may be used in

(3). As shown in figure 5, two bubbles of instability nucleate at this six-way crossing.
As the wave amplitude ε increases away from zero, these instability bubbles leave the
origin in the Re(λ) vs µ plane in opposite directions, one to the right (shown in figure 5),
and the other to the left, a mirror image of the one to the right. For small values of
ε, the bubbles are supported on intervals well separated from the origin. Indeed, the
range of values µ over which we observe an eigenvalue λ with Re(λ) 6= 0 has the form
(−µ1,ε,−µ0,ε) ∪ (µ0,ε, µ1,ε), with 0 < µ0,ε < µ1,ε < 1/2. Although µ0,ε and µ1,ε both
approach zero as ε→ 0+, the width µ1,ε − µ0,ε of each interval is much smaller than the
gap 2µ0,ε between intervals. For example, in the inset of the left panel of figure 5, when
ε = 4 × 10−7, the width is 1.09 × 10−6 while the gap is 11900 times larger. Thus, even
though the instability nucleates at µ = 0, it is not modulational since the wave numbers
of the unstable perturbations are tightly confined to a narrow interval separated from
the origin. In the right panel of figure 5, we see that as ε increases, the bubble grows in
size, merges with its reflection about µ = 1/2, and eventually forms a protrusion that
connects with its reflection about µ = 0 at the origin (around ε = 1.555× 10−6). Beyond
this point, modulational instabilities are present.

We finish these preliminary stability considerations by examining the short-time effect
of these instabilities on the water wave profiles they perturb. Given an eigenvalue-
eigenfunction pair, the short-time dynamics of the perturbed wave profile is dictated
by the linearized problem obtained above. We have

η(x+ ct, t) ≈ η0(x) + δRe{eiθeλtη1(x)}, η1(x) =

M∑
m=−M

N̂me
i(m+µ)x, (6)

where M is the number of Fourier modes of the computed eigenfunction and θ ∈ (−π, π]
is an arbitrary phase; see (Deconinck & Kutz 2006; Deconinck & Oliveras 2011). Since
the eigenfunction corresponding to λ̄ (associated with −µ) is the complex conjugate of
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Figure 6. Three snapshots of a perturbation of the wave in the left column of figure 2 (with
amplitude ε = 1.244 × 10−6), approximated by (6) and plotted over 8 (left) or 120 (right)
periods of the wave. Here µ = 0.06496517 corresponds to the most unstable eigenvalue, namely
λ = (4.557154 + 2.322777i)×10−7, and T = 2π/c = 28.09599 is the time it takes the underlying
traveling wave to traverse its wavelength. The unperturbed solution is in the resonant regime,
but with secondary oscillations indiscernible since many periods are shown at once.

η1(x), Re(eλtη1(x)) and Re(ieλtη1(x)) span the same space as eλtη1(x) and eλ̄tη1(x). If
Re(λ) 6= 0, Hamiltonian symmetry implies that −λ and −λ̄ are also eigenvalues, and
the eigenfunctions can be obtained by reversing the sign of q (i.e. reversing time) and
reflecting space. However, we focus here on linearized solutions that grow as t → +∞
rather than decay. The eigenfunctions (η1, q1) are normalized so that

∑
|m|6N |N̂m|2 = 1,

with complex phase chosen so that N̂0 is real and positive. The Fourier modes of the
eigenfunctions are found to decay exponentially, so it is not difficult to resolve a given
eigenfunction to double-precision accuracy.

Figure 6 shows the results of seeding the traveling solution η0(x − ct) of amplitude
ε = 1.244×10−6 with a multiple of the most unstable eigenfunction. This travelling wave
corresponds to the left panels of figures 2, 3 and 4. From the results of figure 4, Re(λ) is
maximized at µ = 0.06496417 by λ = (4.557154 + 2.322777i)× 10−7. The approximation
(6) was used with θ = 0 and δ = ε/200. With the above normalization

∑
m |N̂m|2 = 1,

we have

‖η1‖∞ = max06x62π |η1(x)| = 2.159, ‖δη1‖∞/‖η0‖∞ = 0.00639.

The left column of figure 6 shows eight periods of the traveling wave while the right
column shows 120 periods. In both columns, η(x + ct, t) is plotted, showing the results
in a frame traveling with the unperturbed wave. The rows show the perturbed solution
at t = 0, t = 250, 000T and t = 1, 000, 000T , where T = 2π/c = 28.09599 is the time
required for η0(x− ct) to traverse its wavelength. The effect of the initial perturbation is
difficult to discern from η0 in the top row of figure 6. At t = 250, 000T , the perturbation
has grown large enough to be visible in the figure, yielding small ripples in the troughs
and regular subharmonic variation in the heights of the wave crests. The third row
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(t = 1, 000, 000T ) shows the long-time evolution using the linear problem. Unlike the
second row, these graphs do not represent the nonlinear dynamics of the water wave
surface. Rather, since the perturbation has grown to several orders of magnitude larger
than the profile η0(x), the third panel in effect shows the eigenfunction profile.

These results show that low-amplitude Wilton ripples are remarkably stable. With
ε = 1.244 × 10−6, which already deviates substantially from a sinusoidal wave profile
(recall figure 2), the seeded wave can travel hundreds of thousands of wavelengths before
losing coherence. Since Re(λ) decreases rapidly as ε → 0 (recall figure 5), this effect is
even more pronounced at smaller amplitude. The two larger-amplitude waves studied
in detail in figures 2, 3 and 4 are much less stable, with multiple unstable branches of
eigenvalue curves and larger values of Re(λ), though still small compared to 1/T .

4. Conclusion

Using numerical techniques similar to those in (Deconinck & Oliveras 2011) and
(Deconinck & Trichtchenko 2014), as well as those introduced in (Wilkening & Yu
2012), we compute periodic traveling wave solutions of the full water wave problem
(1a-d) including the effects of surface tension. We focus specifically on solutions whose
small-amplitude limits are fully resonant, the so-called Wilton ripples. We present the
first computation of the stability spectra of these solutions, providing an overview of the
different types of instabilities to which they are susceptible. The resonance condition
allows for a collision of six eigenvalues which was not present in non-resonant gravity-
capillary waves. The smaller-amplitude resonant waves are found to be nearly spectrally
stable, maintaining coherence while travelling hundreds of thousands of wavelengths.
For larger-amplitude resonant waves, new types of instabilities are observed, manifesting
themselves as nested structures and Benjamin-Feir-like instabilities present in shallow
water waves. More comprehensive studies of these solutions and their instabilities will
be presented in (Trichtchenko et al. 2015).

This work was supported in part by the National Science Foundation through
grant NSF-DMS-1008001 (BD), by the EPSRC under grant EP/J019569/1 and by
NSERC (OT), and by the Director, Office of Science, Computational and Technology
Research, U.S. Department of Energy under contract number DE-AC02-05CH11231
(JW). Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the funding
sources.
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