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Abstract

Rational solutions of the viscous Burgers equation are examined using the dynamics of
their poles in the complex x-plane. The dynamical system for the motion of these poles is finite
dimensional and not Hamiltonian. Nevertheless, we show that this finite-dimensional system is
completely integrable, by explicit construction of a sufficient number of conserved quantities.
The dynamical system has a class of non-equilibrium similarity solutions for which all poles have
equal real part for t sufficiently large. Within the context of the finite-dimensional dynamical
system these solutions are shown to be asymptotically stable.
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1 Introduction

The Burgers equation [1]

ut + uux = νuxx, (1)

arises in the study of gas dynamics. It is one of the canonical examples of a nonlinear partial
differential equation. It is often used to regularize the dissipationless Burgers equation ut+uux = 0,
to avoid the formation of shocks. In the context of integrable systems it is often mentioned as
the simplest nonlinear partial differential equation which is completely integrable, because of its
linearizing transformation

u = −2ν
φx

φ
, (2)
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due to Forsyth, Hopf and Cole [6, 5, 3]. This transformation transforms (1) into the linear heat
equation

φt = νφxx. (3)

The Burgers equation (1) stands out among the integrable equations as it is dissipative. Apart
from its linearizing transformation it has almost no features in common with the other canonical
integrable equations. One of the few was already pointed out by Chudnovs’ki & Chudnovs’ki, who
treated it parallel to the Korteweg-deVries equation

ut + uux = uxxx, (4)

when they discussed the pole dynamics of rational, trigonometric or hyperbolic solutions of these
equations in [2]. We reexamine the pole dynamics of rational solutions of (1) in more detail,
demonstrating that the resulting finite-dimensional dynamical system for the motion of the poles
is completely integrable, as a sufficient number of constants of the motion is constructed explicitly.
As should be expected, the dynamical system governing the motion of the poles is not Hamiltonian,
and a full set of constants of the motion is required.

After establishing the integrability, a class of similarity solutions of the dynamical system
is found, corresponding to non-equilibrium solutions of (1). We prove that these solutions are
asymptotically stable, both linearly and nonlinearly, in the context of the finite-dimensional system
describing the motion of the poles.

2 The motion of the poles of rational solutions

By definition, a rational solution only has a finite number of poles in the complex x-plane. Thus
we use the ansatz

u(x, t) = −2ν
N∑

k=1

Rk(t)
x− xk(t)

, (5)

where N is the number of poles. The ansatz (5) is substituted in (1). Next, let x = xk + ε,
and expand the resulting equation in powers of ε. The most singular terms have 1/ε3 behavior.
Equating their coefficient to zero gives

Rk(t) ≡ 1, k = 1, . . . , N. (6)

Thus all poles have residue 1. At order 1/ε2, the dynamical system for the motion of the poles is
obtained:

ẋk = −2ν

N∑
n6=k

1
xk − xn

, k = 1, . . . , N, (7)

where the dot denotes differentiation with respect to t. The coefficients of the terms of order 1/ε
and order 1 vanish identically, thus equations (6) and (7) are the only requirements for the ansatz
(5) to give a solution of Burgers equation (1). In particular, the situation is different from that
of for instance the Korteweg-de Vries (KdV) equation where the poles are constrained to live on
a lower-dimensional solution manifold which is invariant under the dynamics. In the case of the
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rational solutions of the KdV equation this also imposes a constraint on the number of poles N of
such a solution.

Remarks

• Examining the dynamics (7) with N = 2 (but x1 not necessarily equal to x∗2) shows that the
poles exert a force field on each other that is attractive in the real direction and repulsive in
the imaginary direction. Thus the long-term dynamics of (7) tends to line up the poles on a
vertical line in the complex plane along which the poles tend to infinity.

• The calculations presented here are consistent with those of [2]. There are significant dif-
ferences with the work of Senouf [8, 9], where meromorphic (in x) solutions of the Burgers
equation (1) are considered which have an infinite number of poles . Also, the solutions in
[8, 9] have an essential singularity at t = 0.

• Different constraints may be imposed on the solution (5) of (1): we may require those
solutions to be real-valued, and we may require the real-values solutions to be bounded. On
the other hand, one can study solutions of (1) that are complex valued for real x, or solutions
that are real valued for real x, but unbounded on the real line. These are valid mathematical
problems, although they are less relevant for the applications of the Burgers equation. The
calculations we present are valid without any constraints, unless specifically stated otherwise.

If we require solutions to be real when restricted to the real line the set {xk(t), k = 1, . . . , N}
is invariant under complex conjugation. Further, if we are only interested in solutions that
are bounded on the real x-axis, none of the poles xk(t) are to be real. In that case N is
necessarily even, in order for solutions to be bounded.

• The dynamical system (7) presented here is similar to that describing the interaction of
a finite number of point vortices [11]. That system strongly resembles (7) if one were to
consider an imaginary viscosity and add some complex conjugations. The point vortex
system is known to be Hamiltonian, unlike the system considered here, see below. As a
consequence, the nature of the dynamics is entirely different.

3 A complete set of constants of the motion

The system (7) is not Hamiltonian. One easily checks that the divergence of the flow is not zero.
If the system were Hamiltonian with N degrees of freedom (i.e., is 2N dimensional), Liouville’s
theorem [10] to ensure integrability demands the existence of N constants of the motion that
are mutually in involution with respect to the Poisson bracket. This is not sufficient here. In
this section, N constants of the motion are constructed for the N -dimensional system (7). One
should note that these counting arguments require some care as the systems under consideration are
defined in terms of N complex-valued functions. However, the constants of the motion constructed
are also complex valued.

Define

Jn(t) =
1
n

N∑
k=1

xn
k(t), n = 1, . . . , N. (8)
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From the fundamental theorem of algebra, it is clear that the quantities J1, J2, . . . , JN are func-
tionally independent, as they are a basis for the symmetric functions of x1, x2, . . . , xN of degree
≤ N . We have the following theorem:

Theorem The quantities J1, J2, . . . , JN are polynomial in t. This t dependence is completely
determined by the recursion relationship

dJn

dt
= −ν(n− 2)(2N + 1− n)Jn−2 − ν

n−3∑
k=1

k(n− 2− k)JkJn−2−k, (9)

and J1 = J10, J2 = −νN(N − 1)t + J20. For n = 3 the sum in the recursion relationship is to be
ignored. Here J10, J20, . . . , JN0 are constants of the motion, determined by the initial position of
the poles x1, x2, . . . , xN , such that Jn(0) = Jn0, n = 1, 2, . . . , N . For example, we have

J1 = J10,

J2 = J20 − νN(N − 1)t,
J3 = J30 − 2ν(N − 1)J10t,

J4 = J40 − ν
(
2(2N − 3)J20 + J2
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)
t + ν2N(N − 1)(2N − 3)t2,

. . .

Proof
n = 1. Consider

dJ1

dt
=

d

dt

N∑
k=1

xk = − 2ν
N∑

k=1

N∑
j 6=k

1
xk − xj

, using (7)

= −2ν

N∑
j=1

N∑
k 6=j

1
xk − xj

, (switching the sums)

= 2ν

N∑
j=1

N∑
k 6=j

1
xj − xk

= 2ν

N∑
k=1

N∑
j 6=k

1
xk − xj

, (switching the labels k and j)

= −dJ1

dt
,

and thus dJ1/dt = 0 and J1 = J10.

n = 2. Consider

dJ2

dt
=

d

dt

(
1
2

N∑
k=1

x2
k

)
=

N∑
k=1

xkẋk = − 2ν

N∑
k=1

xk

N∑
j 6=k

1
xk − xj

, using (7)

= −2ν
N∑

k=1

N∑
j 6=k

(
1 +

xj

xk − xj

)

= −2νN(N − 1)− 2ν
N∑

j=1

N∑
k 6=j

xk

xj − xk
, (switching the labels k and j)

= −2νN(N − 1)− dJ2

dt
,
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and thus dJ2/dt = −νN(N − 1) and J2 = −νN(N − 1)t + J20.

n ≥ 3. Consider

dJn

dt
=

d

dt

(
1
n

N∑
k=1

xn
k

)
=

N∑
k=1

xn−1
k ẋk = − 2ν

N∑
k=1

N∑
j 6=k

xn−1
k

xk − xj
, using (7)

= −2ν
N∑

k=1

N∑
j 6=k

(
xn−1

k − xn−1
j

xk − xj
+

xn−1
j

xk − xj

)

= −2ν

N∑
k=1

N∑
j 6=k

xn−1
k − xn−1

j

xk − xj
− 2ν

N∑
j=1

N∑
k 6=j

xn−1
k

xj − xk
, (relabeling the second term)

= −2ν
N∑

k=1

N∑
j 6=k

xn−1
k − xn−1

j

xk − xj
− dJn

dt
,

and thus

dJn

dt
= −ν

N∑
k=1

N∑
j 6=k

xn−1
k − xn−1

j

xk − xj
= − ν

N∑
k=1

N∑
j 6=k

n−2∑
m=0

xm
k xn−m−2

j

= −ν
n−2∑
m=0

N∑
k=1

xm
k

N∑
j 6=k

xn−m−2
j = − ν

n−2∑
m=0

N∑
k=1

xm
k

 N∑
j=1

xn−m−2
j − xn−m−2

k


= −ν

n−3∑
m=0

N∑
k=1

xm
k

 N∑
j=1

xn−m−2
j − xn−m−2

k

− ν(N − 1)
N∑

k=1

xn−2
k

= −ν
n−3∑
m=0

N∑
k=1

xm
k (n− 2−m)Jn−2−m + ν

n−3∑
m=0

N∑
k=1

xn−2
k − ν(N − 1)(n− 2)Jn−2

= −ν

n−3∑
m=1

N∑
k=1

xm
k (n− 2−m)Jn−2−m − ν

N∑
k=1

(n− 2)Jn−2 + ν(n− 2)2Jn−2

− ν(N − 1)(n− 2)Jn−2

= −ν

n−3∑
m=1

m(n− 2−m)JmJn−2−m − νN(n− 2)Jn−2 + ν(n− 2)2Jn−2

− ν(N − 1)(n− 2)Jn−2

= −ν
n−3∑
m=1

m(n− 2−m)JmJn−2−m − ν(n− 2)(2N + 1− n)Jn−2,

which proves the theorem.

Remark: A related set of conserved quantities may be derived using the Forsyth-Cole-Hopf
transformation (2). The heat equation (3) may be rewritten as a formal conservation law:

∂

∂t
φ(x, t) =

∂

∂x
νφx(x, t). (10)
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For solutions of the form (5) φ =
∏N

n=1(x− xn(t)) =
∑N

k=0 ∆kx
k, where

∆N = 1

∆N−1 = −
N∑

n=1

xn

∆N−2 =
N∑

n=1

∑
m6=n

xnxm

· · ·

∆0 = (−1)N
N∏

n=1

xn.

Note that the quantities ∆k, k = 0, . . . , N − 1 are symmetric functions of the pole locations x1,
. . . , xN . Their collection is a different but equivalent basis for the symmetric functions of the N
variables x1, . . . , xN .

Substituting φ =
∑N

k=0 xk∆k in the conservation form of the heat equation (10) and equating
coefficients of different powers of x gives rise to the equations

∆̇k = ν(k + 2)(k + 1)∆k+2, (11)

for k = 0, . . . , N − 2, with ∆̇N−1 = 0 and ∆̇N = 0. The initial values of the quantities ∆k give
rise to a set of constants of the motion for (7) which is different from that constructed before
but clearly equivalent to it. Using the Forsyth-Cole-Hopf transformation thus allows for a quicker
proof of the integrability of the system (7). However, the first proof given requires no knowledge
of the connection between the Burgers equation and the heat equation. Such a direct proof may
prove easier to generalize in situations where such connections are not known.

4 Similarity solutions

A family of similarity solutions of (7) is easily constructed using the ansatz

xn(t) = x0 + T (t)ζn, n = 1, . . . , N, (12)

with ζk, x0 ∈ C. Substitution in (7) gives

TT ′ = −2ν

ζk

N∑
n6=k

1
ζk − ζn

, k = 1, . . . , N. (13)

Since the right-hand side does not depend on t, and the left-hand side is independent of the index
k, both sides are equal to a constant c. It follows from (13) that the value of c does not impact
the product of T (t)ζk. Without loss of generality we let c = ν in what follows. This gives rise to

T =
√

2ν(t− t0), (14a)

ζk = −2
N∑

n6=k

1
ζk − ζn

, k = 1, . . . , N. (14b)
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Thus, once the nonlinear algebraic system (14b) is solved for the set {ζ1, . . . , ζN}, the set of
expressions (12) provides a solution of the dynamical system (7). At this point (5) may be used
to reconstruct a solution of the Burgers equation (1). From (14a), all poles collide at x = x0 when
t = t0, and no poles collide for t 6= t0. Due to the nature of the force field, this implies that all
poles are lined up horizontally for t < t0. For t > t0, all poles are on a vertical line through x0.
For both cases the poles are symmetrically distributed around x0. If x0 is real, the solution of the
Burgers equation is real. Otherwise it is not.

Examples

For real-valued solutions of (1), x0 merely shifts the solution (5) along the real axis, and it is
omitted in the following examples.

• N = 2, real-valued solutions. In this case ζ2 = ζ∗1 and it easily follows that the only
solution of (14b) (up to permutation) is ζ1 = i = −ζ2. Then u = −4νx/(x2 + 2ν(t − t0))
is a two-pole real-valued rational solution of (1). This solution is nonsingular for real x for
t > t0.

• N = 4, real-valued solutions. Looking for solutions with ζ1 = iα = ζ∗2 , ζ3 = iβ = ζ∗4 ,
with α, β ∈ R+ and α < β gives α =

√
3−

√
6, β =

√
3 +

√
6, so that

x1 = i

√
2ν(t− t0)(3−

√
6) = x∗2, x3 = i

√
2ν(t− t0)(3 +

√
6) = x∗4,

resulting in a four-pole real-valued rational solution of (1):

u = − 4νx

x2 + 2ν(t− t0)(3−
√

6)
− 4νx

x2 + 2ν(t− t0)(3 +
√

6)
.

This solution is nonsingular for real x for t > t0.

5 Stability of the similarity solutions

In this section, we examine the stability of the similarity solutions specified by (12), in the context
of the finite-dimensional system (7). In order to do so, we transform this system to one where the
similarity solutions correspond to stationary points. Let

xj = x0 + x
√

2(t− t0) zj(t), j = 1, . . . , N. (15)

Then zj(t) = ζj (j = 1, . . . , N) gives the similarity solutions. An elementary calculation gives

dzj

dτ
= −ν

N∑
k 6=j

1
zj − zk

− 1
2
zj , j = 1, . . . , N. (16)

Here τ = ln(t − t0). Since we are interested in the behavior of this system for t → ∞, τ may
be considered real. Next, we linearize this nonlinear system around its stationary points, the
similarity solutions. Let
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zj = ζj + εξj +O(ε2), j = 1, . . . , N. (17)

Substitution in (16) and collecting first-order terms in ε results in the linear system of equations

ξ̇j =

−1
2

+ ν

N∑
k 6=j

1
(ζj − ζk)2

 ξj − ν

N∑
k 6=j

ξk

(ζj − ζk)2
, j = 1, . . . , N. (18)

Since the poles of the similarity solutions line up vertically as t →∞, we set

ζj = x0 + iβj , βj ∈ R, j = 1, . . . , N,

resulting in

ξ̇j =

−1
2
− ν

N∑
i6=j

1
(βj − βi)2

 ξj + ν
N∑

k 6=j

ξk

(βj − βk)2
, j = 1, . . . , N. (19)

In order to examine the linear stability of the similarity solutions, we investigate the location of
the eigenvalues of the matrix Λ specified by the right-hand side of (19):

Λjk =


−1

2
− ν

N∑
i6=j

1
(βj − βi)2

if k = j,

ν
1

(βj − βk)2
if k 6= j,

(20)

for j, k = 1, . . . , N .
Let

rj = ν

N∑
k 6=j

1
(βi − βj)2

> 0, j = 1, . . . , N. (21)

It is an immediate consequence of Gershgorin’s theorem [7] that all eigenvalues λj (j = 1, . . . , N)
of Λ are contained in the closed disks in C specified by∣∣∣∣λ− (−1

2
− rj

)∣∣∣∣ ≤ rj , j = 1, . . . , N. (22)

Thus all eigenvalues are in the left-half plane. In fact, they are all to the left of or on the vertical
line through −1/2. Further, since Λ is symmetric, all its eigenvalues are real. Thus all eigenvalues
are contained in the overlapping intervals[

−1
2
− 2rj ,−

1
2

]
, j = 1, . . . , N.

On the other hand, it is a simple observation to see that λ = −1/2 is an eigenvalue, with eigenvector
(1, 1, . . . , 1)T . Moreover, a simple shift of the eigenvalue by any positive number strictly greater
than 1/2 + max(r1, . . . , rN ) allows us to use Perron’s theorem [4], from which we conclude that
this maximal eigenvalue is simple. Thus

8




ξ1

ξ2
...

ξN

 =


1
1
...
1

 e−τ/2 =


1
1
...
1

 (t− t0)−1/2 (23)

is one of the fundamental solutions of (18). Further, it follows from the symmetry of Λ that it has
a complete set of eigenvectors, so that all other fundamental solutions of (18) decay faster than
exp(−τ/2), corresponding to decay in the original variable t.

In terms of the original variable t the fundamental mode corresponding to the maximal eigen-
value is a neutral mode, reflecting the arbitrariness in choosing x0. Since we know from Section
3 that the center of mass of the pole locations is conserved, this neutral mode can be eliminated
by restricting the class of perturbations so that the center of mass is constant. If the class of
perturbations is not so restricted (in other words, if the pole locations of the pertubation are not
symmetric with respect to the original center of mass), then the overall solution (similarity solu-
tion plus perturbation) has a different center of mass x̂0, and asymptotically tends to the original
similarity solution, except it is translated by x0 − x̂0.

Thus we have established the linear asymptotic stability (up to the existence of a neutral mode)
of the similarity solutions through the context of the system (18). Their nonlinear asymptotic
stability follows from the Hartman-Grobman theorem [10], as applied to (16).

In summary, we have proven the following theorem:

Theorem. The similarity solutions specified by (12) are asymptotically stable solutions of the
finite-dimensional system (7) with respect to the class of perturbations that preserve the center of
mass. If the perturbations are not restricted this way, solutions near similarity solutions still limit
to potentially translated incarnations of them.

6 Conclusions

In this paper we study the rational solutions of the Burgers equation. We have established the
following results:

• The dynamical system determining the motion of the poles is completely integrable. This
was shown using a direct calculation, although it may also be shown using the heat equation
and its connection to the Burgers equation using the Forsyth-Cole-Hopf transformation.
Since the constants of the motion are related to the symmetric functions of N variables in a
straight-forward way, we have reduced the problem of integrating the dynamical system to
that of finding the roots of a degree N polynomial.

• A class of similarity solutions has been constructed. For such real-valued solutions, all poles
are aligned on the real axis for t < t0, whereas they are aligned vertically in the complex
plane for t > t0. At t = t0 all poles coalesce. Here t0 is an arbitrary real constant. The poles
approach the point of coalescence horizontally at a rate of

√
t− t0, and they separate from

this point vertically at the same rate.

• After transformation to a system for which the similarity solutions are stationary, they are
shown to be asymptotically stable. This is done using a linear stability analysis, after which
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the Hartman-Grobman theorem is invoked to conclude nonlinear asymptotic stability.
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