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Abstract

In order to establish the stability of an equilibrium solution U of an infinite-dimensional
dynamical system @ = X (u), one is interested in the spectrum of the linear operator L[U]
obtained by linearizing the dynamical system around U. We use a spectrally accurate method
for the computation of the spectrum of the maximal extension of the operator L[U]. The method
is particularly well-suited to the case of periodic U, although no periodic boundary conditions on
the perturbations are imposed. By incorporating the fundamentals of Floquet theory, an almost
uniform approximation to the entire spectrum of the maximal extension is obtained, as opposed
to an approximation of a few selected elements. The numerical component of the method is
limited to (i) choosing the size of the matrices to be used, and (ii) an eigenvalue solver, such
as the QR algorithm. Compared to often-used finite-difference approaches, the method is an
order of magnitude faster for comparable accuracy. We illustrate that the method is efficiently
extended to problems defined on the whole line.
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1 Introduction

Stability plays an essential role in many branches of science and engineering, including several
aspects of fluid mechanics [21], pattern formation with reaction-diffusion models [41], high-speed
transmission of information [26] and feasibility of MHD fusion devices [13]. The investigation of
the stability of solutions of a given mathematical model is an essential aspect of understanding
the physical system considered. Stability analysis is important for at least three reasons. First,
if a physical phenomenon is observable and persists, then the corresponding solution to a valid
mathematical model should be stable. Second, if instability is established, the nature of the unstable
modes might hint at what patterns may develop from the unstable solutions. Third, for many
problems of physical interest, fundamental mathematical models are well established. However, in
many cases these fundamental models are too complicated to allow for detailed analysis, thus leading
to the study of simpler approximate models using reductive perturbation methods. Consequently,
the stability analysis can be used to validate or to suggest modifications to the mathematical models



used for the given application. Consequently, the stability analysis can be used to validate or to
suggest modifications to the mathematical models used for a given application. Taken as a whole,
stability analysis can yield significant insight into a given physical, biological, or engineering system.

2 Problem Formulation

In this paper, we focus on dynamical systems, i.e., systems with a time-like variable. In the
theory of dynamical systems (see e.g. [45, 17]), equilibrium solutions are singled out because of
their relative simplicity within the class of all possible solutions. Furthermore, for non-Hamiltonian
systems equilibrium solutions represent the simplest class of potential attractors for the system.
Counsider a dynamical system

o= X(u), (1)

for a function u, which may have multiple components. Here 4 denotes differentiation of u with
respect to a time-like variable ¢. If X (u) is an n-dimensional vector, then the system is finite dimen-
sional, and the equilibrium solutions are points in R”. This case is not considered here. Instead,
we consider the case where u depends not only on ¢, but on one or more different independent
“spatial” variables, x, y, etc. For simplicity, the rest of this section treats v as a real function of
only one spatial variable, thus u = wu(z,t) (the complex case is treated by splitting it in real and
imaginary parts). Then X is an operator acting on « and its spatial derivatives, and the dynamical
system is more explicitly written as

U= N(x,u, g, Ugg, - - ), (2)

where lower indices denote differentiation with respect to x.
Equilibrium solutions U(x) are functions that satisfy

N(z,U, Uy, Usg, ...) = 0. (3)

Note that one may use different reductions of the dynamical system, leading to solutions defined
in terms of fewer independent variables, like the equilibrium solutions. With some conditions on
N(z,U,Uy,Uyy, . ..), the above equation has solutions by the basic Cauchy-Kovaleskaya theorem,
but only those solutions that satisfy the boundary conditions imposed on (1) are of interest. Of all
such possible boundary conditions, we focus specifically on periodic boundary conditions when the
equation is defined on a finite domain, and on bounded solutions if the equation is defined on an
infinite domain.

Having obtained such a solution, we wish to know about its stability (see for instance [28, 45])
what can be said about solutions near the equilibrium solution? Will they wander away from
the equilibrium solution? Will they approach it? Or will they stay nearby without approaching
it? This question can be answered at different levels. Typically the operator N(x,u, uy, Ugy, .- .) is
nonlinear, and we want to know about stability of the equilibrium solution in the sense of Lyapunov:
U(x) is nonlinearly stable if for all € > 0 there is a § > 0 such that if ||u(z,t) — U(x)||t=0 < ¢ then
||u(z,t) —U(z)|| < e for all t > 0, where ||u|| denotes a suitably chosen function norm. Usually this
is asking for too much. The list of problems for which the stability has been settled this conclusively



is short, and we have to be satisfied with different concepts of stability. One often used concept is
that of spectral stability:

Definition (Spectral stability). An equilibrium solution U(z) of a dynamical system 4 =
X (u) is spectrally stable if the spectrum of the linear operator obtained by linearizing X (u) around
U(z) has no strictly positive real part.

Linearizing the dynamical system (1) or (2) with u(z,t) = U(z) + ev(z,t) gives (assuming
analyticity of N at u(x,t) = U(x))
. . ON  ON ON
0= L[U(z)jv+ O(e), with L[U(z)] = Flii + 8—%896 + m@g +.... (4)
Here expressions like dN/OU, are shorthand for ON/Ouy|,=y. Since the right-hand side of this
equation is independent of ¢, separation of variables (ignoring the O(e) term)

v(z,t) = w(z)e (5)

results in

LIU(z)]w(z) = Aw(z), (6)
justifying the definition of spectral stability. This is the concept of stability we use in this paper.
It is different from linear stability (for every e > 0 there is a 6 > 0 such that if ||v(z,)||;=0 < I,
then ||v(z,t)|| < € for all t) which results from spectral stability if the eigenfunctions of L[U(x)] are
complete, or if all purely imaginary eigenvalues have multiplicity one. Amusingly, spectral stability
is a necessary condition for nonlinear stability, whereas linear stability is not [28]. Clearly neither
one of these is sufficient to give nonlinear stability.

The method presented in this paper is applicable to the more general problem of computing the
spectrum of a locally-acting (no integration operators) linear operator with periodic coefficients

M
L= fu@d, felz+L)=fil), (7)
k=0
which does not necessarily originate from a stability problem. If the functions f(z), k=1,..., M

are scalar valued, the operator £ is a scalar linear operator, otherwise it is a vector operator. The
spectrum o (L) is defined by

o(L) ={A e C:|lw|| < oo}, (8)

where w satisfies Lw = Aw, and is defined in a function space determined by which norm is used.

Equation (6) is the focal point of this paper. Ideally, one would be able to determine the
spectrum analytically. This is only possible in some cases, and typically one has to resort to
numerical methods. Depending on the system under consideration, some basic properties and
bounds on the spectrum may be known [16, 35, 36]. This is the case for self-adjoint systems (the
spectrum is confined to the real line), Hamiltonian systems (eigenvalues occur in quadruplets), etc.

Remark (Applications to the inverse scattering method). In addition to investigating
the spectral stability of solutions of nonlinear partial differential equations, there are many more



applications where the spectrum of a given linear operator is needed. As an example, consider
the inverse scattering method for integrable differential equations [3, 2]. Associated with every
such integrable equation is a Lax pair, which consists of two linear operators. The first step of
the inverse scattering program is to solve the forward scattering problem: given initial conditions
for the integrable system, one calculates the spectral information associated with the first (usually
spatial) element of the Lax pair. The method discussed in this paper may be used to solve this
problem numerically. Some examples are given in Section 5.

Below, in section 3, an overview is given of the commonly used finite-difference approach. Next,
in section 4, we present a method which recasts the spectral problem in an equivalent setting, using
Fourier modes. Different aspects of this approach have already been used by different authors,
see for instance [7, 22, 25, 42]. Those authors were focused on solving specific problems, rather
than considering the numerical method in its own right. Numerous classical examples are discussed
in Section 5. Those examples were all selected because they give rise to spectra that are well
understood, enabling us to separate the use of the method from the problems posed by specific
applications.

3 Finite difference methods

The method of finite differences is the most commonly used technique for computing an approx-
imation to the spectrum of a given linear operator. As indicated below, finite-difference methods
(FDMs) are black-box methods in that they use little of the specifics of the problem at hand. It
is possible and even likely that for any given problem a more tailored approach will result in a
“better” (faster, more accurate, etc) answer. The main advantage of finite-difference methods is
their applicability to a large class of problems, without their having to involve the mathematical
details of the specific problem. In addition, finite-difference methods are relatively straightforward
to implement and can handle different types of boundary conditions with the same ease.

FDMs are based on Taylor series expansions, and as such allow for explicit estimates of the
computational error. To illustrate the use of these methods, we consider the numerical approx-
imation of the spectrum of (6), using the form (7) for L[U(x)]. As for the method outlined in
Section 4, the coefficients f,,(x), n = 0,1,..., M are assumed to be periodic on S = {z € [0, L]},
or fp(x+ L) = fp(z), for alln = 0,1,..., M. The main steps of an FDM are

1. Discretize the spatial domain S — Sj: zy = zo+kh, with h = Az = L/N, the stepsize. Here
k=0,1,...,N — 1, and we formally set £y = Tk moqa ~ if K > N. Thus zy = z¢, xN11 = 21,
etc.

2. A decision is made about the order of the FDM approximation: what is the order of the
dominant error term in replacing £ — L, (see below)? An explicit formula is constructed for
L},, which operates on functions defined on Sy, i.e., on vectors in R*" | where n is the number
of components of L.

3. The spectral problem (6) is replaced by the finite-dimensional eigenvalue problem L£,WW =
AW, with W € RV,



4. A numerical eigenvalue solver (typically based on the QR algorithm) is used to compute
the nN (counting multiplicities) eigenvalues {A,..., A\, } corresponding to this discretized
spectral problem. The \;, k = 1,...,nN are an approximation to elements of the spectrum
of £ in the sense that all A\;’s converge to elements of o(L£) as h — 0 or N — oo.

5. If so desired, a discrete approximation on the grid S, of the eigenfunction w with eigenvalue
A is given by the eigenvector W of the corresponding approximate eigenvalue.

Thus for a given N or h, a given number of eigenvalues and eigenvectors is computed. In order
to approximate more elements of o(L), one increases N, which at once results in more accurate
approximate spectral elements, and more of them. These are obtained at the cost of increased com-
putational time, proportional to (nN)3, if the QR algorithm is used for the eigenvalue/eigenvector
solver [46].

To investigate the use of finite differences more explicitly, we consider two examples. For the
first example we use the FDM to approximate the spectrum of a scalar operator (n = 1) with second
order accuracy. For the second example, we give the FDM scheme to approximate the spectrum of
Hill’s equation with fourth-order accuracy.

Example 1. Consider the scalar operator £ = ZkMzo fe(x)0F. Tts discretization Ly, is given by
a sum of corresponding discrete terms: £; = Zi\io (fk(x)(?’af)h. Here the kth term is given by a
matrix, whose entries are determined by

with

FM = diag(fi(z0), fi(21). ..., felan—1)), (10)

where diag(-) denotes the matrix with given entries on the diagonal and zeros off the diagonal.

Further, the matrix D,(Cm’h), forany k =1,..., N is the mth order FD matrix corresponding to the
k-th derivative operator. Thus D[(]2’h) =1,
0 1 0 0 —1
-1 1 0
&+ ) ( B ) 0 -1 0 1 0
_w(z —w(zr — 2 2n) _ L .
Oyw(z) = 57, +0O(h°) = D7 = 5% . ,
0 -1 0 1
0 0 -1 0 1
1 0 0 -1
(11)
h) —2 —h
02u(z) = w(z + h) — 2w(z) +w(z — h) LOU?) =

h2



1 -2 1
) 1 -2 1 0
2,h .

DM — i~ N (12)

0o 1 -2 1 0

1 -2 1

1 0 1 -2
and similar formulas for D,(f’h), k > 2. All these matrices will be banded (due to the second-order

approximation) with corner elements due to the boundary conditions. In the above we have assumed
periodic boundary conditions, w(xy) = w(zp). A different choice of the boundary conditions will
result in different corner elements. In the case of periodic boundary conditions, the corner elements
are formally obtained by “wrapping around” the elements of the diagonal band.

Example 2. Consider Hill’s equation

—y" +q(z)y = Ay, (13)

with g(z + L) = ¢(z), a periodic function. A myriad of results is known about the spectrum of
this equation, see for instance [37]. Many of these will be discussed and used as benchmarks in
later sections, where our numerical results are discussed. For now, we give the FD scheme for this
equation. The result

Y (z) (—y(x + 2h) + 16y(x + h) — 30y(z) + 16y(z — h) — y(z — 2h)) + O(h*) (14)

1282

is easily verified using Taylor expansions centered at . Thus, the FDM approximation for Hill’s
equation is

(—Dg‘*”” + Q) Y =AY, (15)

with @ = diag(Q(xp), Q(x1),...,Q(rnN—1)) and, using periodic boundary conditions,

=30 16 -1 0 - - 0 -1 16

6 -30 16 -1 0 .- .- 0 -1

-1 16 =30 16 -1 o - - 0

) 0 -1 16 =30 16 -1 0
Dy = o . (16)

0 -1 16 -30 16 -1 0

0 - e 0 -1 16 =30 16 -1

-1 o - - 0 -1 16 30 16

16 -1 o - - 0 -1 16 30



Remarks

e The implementation of FDMs is fairly straightforward, as the above illustrates. Further,
the local nature of FDMs leads to banded matrices, with a few additional corner elements,
due to the boundary conditions. Thus the matrices obtained from the FDM are often sparse,
which does offer some advantages for the computation of the eigenvalues [46].

e The main limitation of FDMs is the lack of control the user has over the location of the
eigenvalues that are being computed. Suppose that the operator at hand is self adjoint, as
in the second example above, so that its spectrum is on the real line. Often one is interested
in the largest (or smallest) eigenvalue. Similarly, in a more general setting one is especially
interested in the boundary of the spectrum in the complex plane. An FDM is unable to single
out such boundary elements and a good resolution of the largest eigenvalue may require an
unreasonably fine grid Sj,, not because the calculations are not accurate enough, but because
no eigenvalues are being computed close enough to the largest one for lower resolutions.
These calculations are costly, as the only way to compute more eigenvalues is to decrease grid
spacing, which increases matrix size.

e Hill’s equation. For the second example above, it is known from Floquet theory [37] (for
more on this, see the next section), that the edges of the spectral bands correspond to eigen-
functions that are periodic with period equal to or double that of the coefficients. This implies
that using the FDM with periodic boundary conditions, as was done above, will result in a
good approximation to half of the spectral band edges. Specifically, a good approximation
to the lowest eigenvalue will be found. For more general operators, no general theorems are
known and it is unclear which spectral elements will be approximated by using the FDM with
periodic boundary conditions.

e Eigenfunctions with larger periods. This last problem may be remedied somewhat, as
is often done. In order to achieve a larger computational spectral density, one may increase
the spatial grid to an integer multiple of the period of the coefficients while maintaining
periodic boundary conditions. This effectively allows for the computation of spectral elements
corresponding to eigenfunctions that are not periodic with the same period as the coefficients,
but are periodic with a larger period. For instance, for the second example, one can employ
a spatial grid spanning two periods, effectively computing spectral elements corresponding to
both periodic and antiperiodic eigenfunctions, and thus approximating all band edges. It is
clear this is done at a large computational expense: to achieve an accuracy comparable to the
original calculations, the matrix size needs to be multiplied by the number of periods P that
are being considered in order to have the grid spacing remain constant. As a consequence,
the computational cost using the QR algorithm is multiplied by P3.

4 OQOutline of the Floquet-Fourier-Hill method

In this section we present a Floquet-Fourier-analysis based method. This method was first used
with minor variations by Hill in 1886 [27] to determine the spectrum of the equation that now bears
his name. Because of this we refer to the method as the Fourier-Floquet-Hill method (FFHM), or



sometimes Hill’s method, in short. The method allows for the computation of the spectra of linear
operators and has numerous advantages over the FDMs presented in the previous section. Below
we show that:

1. The periodicity of the coefficients of the linear operator is used explicitly by using Fourier
series.

2. The FFHM is spectrally accurate in the sense that the approximations of the spectral el-
ements it computes are spectrally accurate, as a result of the use of these Fourier series
approximations.

3. These spectral elements are obtained as eigenvalues of a truncated difference equation. This
difference equation is equivalent to the original problem (6). No discretization is necessary to
obtain it. Thus the lattice used for the computation of the spectral elements is inherent in
the original equation (6) considered: it is the lattice conjugate to the period lattice of (6)

4. If we settle on the QR algorithm for the computation of the eigenvalues of the matrix obtained
from this truncated difference equation, then the only fundamental numerical decision to be
made is that of how to truncate the domain of the difference equation. The algorithm in its
most general form allows for some additional choices, but these are not essential.

5. The incorporation of Floquet theory into the FFHM allows for an almost uniform approx-
imation of those components of the spectrum that are being approximated, as opposed to
isolated elements of it.

For convenience, we assume that all coefficients of the operator £ in (7) are analytic, so that
integrals, derivatives and sums, finite or infinite, proper or improper, may be interchanged when
so desired. For the sake of explicitness, we also assume below n = 1, i.e., the operator £ is scalar.
A vector example is considered in Section 5.4.

Since the coefficients of £ are periodic with period L, they may be represented by a Fourier
series:

fel@) = > fr, ek, k=0,...,M, (17)
j=—00
with
. 1 L2 L
fro=7 [ Ale)e i, k=0...M, jez, (18)
—L/2

where ¢ denotes the imaginary unit. Additional relationships exist between some of these coefficients
if fr(x) is real-valued, but no such constraint needs to be imposed now.

We start by recalling Floquet’s theorem, as found for instance in [4, 14, 23]. As is usual, the
theorem is formulated for first-order systems.

Theorem: (Floquet) Consider the linear homogeneous differential equation

y = A(z)y, (19)



for some square matrix A(z) of complex continuous functions such that A(z + L) = A(z). Then
any fundamental matrix ®(z) of this system may be decomposed as

D (x) = b(z)el®, (20)

where ®(z 4+ L) = &(x), ®(x) is nonsingular and R is a constant matrix.

If we are only interested in solutions that are bounded for all z € R, Floquet’s theorem allows us
to greatly reduce the functional form of any such solutions. The behavior as £ — Fo00 is governed
by the exponential factor, since the first factor is periodic. Further, we may use a similarity
transformation to reduce R to its Jordan form. Indeed, the differential equation under consideration
is linear, and so only a set of fundamental solutions is of interest. We refer to the eigenvalues of R
as Floquet exponents. There are three cases:

1. Suppose there exist Floquet exponents r giving rise to non-diagonal blocks in the Jordan
form of R. Then the corresponding solutions of the differential equation are algebraically
growing. Such Floquet exponents may be ignored since we are only interested in solutions of
the differential equations that are bounded for all x, by the definition of the spectrum of the
differential operator.

2. Similarly, if there are Floquet exponents with nonzero real part, then these give rise to
exponentially growing solutions as z — oo (Rr > 0) or z — —oo (Rr < 0).

3. It follows that the only solutions of linear homogeneous differential equations with periodic
coefficients that are bounded for all € R correspond to purely imaginary Floquet exponents.

Thus, every bounded solution of our fundamental equation (6) is of the form

w(z) = (), (21)

with ¢(z + L) = ¢(z) for any fixed \, and p € [0,27/L). The factor e is referred to as a Floquet
multiplier and ip is the Floquet exponent mentioned above. In what follows, we loosely refer to
i as the Floquet exponent. Note that in different areas of science, Floquet theory may be known
as monodromy theory (Hamiltonian systems, etc) or Bloch theory (solid state theory, etc). In the
context of Bloch theory the Floquet exponent is often referred to as the quasi-momentum.

Like the coefficient functions, the function ¢(z) may be expanded as a Fourier series with period
L as well. For future use, we expand ¢(z) as a Fourier series in z of period PL, with P € N. This
effectively limits the possible values of the Floquet exponent p: if P =1, at most u € [0,27/L); if
P =2, at most u € [0,7/L) is needed, etc. Thus

w(z) = T Z ng pi2mjz/PL _ Z qgj 6m:(u+27rj/PL)7 (22)
j=—00 j=—00
and
2 1 PL/2 i2mjx/PL
o —i12T)T - 7 2
b=pr [, 00 dr,  je (23)



is the jth Fourier coefficient of ¢(z). After we multiply (6) (using (7)) by e~%%, any term of the
resulting equation is periodic. Taking the nth Fourier coefficient of this equation, we obtain

5 1 (PR, /PL
—12TNT 77/ €T
Aoy = — / e H E fr(z dz

—PLJ2
M oo 00 1 PL/2
_ Z Z Z —i2rnx/PL—ipz+i2mjz/L ak ipr+i2rma/PL d
- 7] mPL e T € L
k=0 j=—oom= _PL/2

PL/2

Mo > > 2rm\ 1% 1
_ 12nz(—n+jP+m)/PL

k=0 j=—oc0om=—00 ~PL/2

= Z Z Z fk,g¢m[ (M—i‘%—m)]k%,jpmm, (24)

k=0 j=—o0om=—o0

where 0, is the Kronecker delta. Thus, if n — m is divisible by P (i.e., P|n —m),

> M 27rm \ 1"
Z ( Ak,";m [ (M + ﬁ)] ) bm = Apn, nEL. (25)

m=—oo k=0

This equation can be rewritten as a bi-infinite matrix equation:

L(p)d = o, (26)

with ¢ = (..., qg,g,cﬁ:ll bo, b1, bo . . )T and where the u-dependence of L is explicitly indicated.
This bi-infinite matrix £(u) is defined by

ﬁ(ﬂ)nm = ’ M 7 2rm\1k .lf Pin= (27)
Ek:ofk,”;,m[ i(p+BE)] if Pln—m

The difference equation (25) or the matrix equation (26) are equivalent to the original problem
(6). No approzimations were introduced to obtain either (25) or (26). The linear problem (6) has
associated with it its period lattice A = {nL : n € Z}. As a consequence, the equivalent problem in
terms of Fourier series (25) or (26) has associated with it the conjugate lattice A = {n 27 /L : n € Z}
(remember that the integer parameter P was artificially introduced and is not essential to the
problem), which determines the set of possible p values: p € [0,27/PL) (incorporating P again).

It is conceivable that problems exist where the difference equation (25) is more convenient to
analyze than (6), but in this paper it is regarded as a tool to obtain numerical approximations to
o(L), the spectrum of (6). To this end, we choose a cut-off N on the number of Fourier modes of
the eigenfunctions ¢(z), resulting in a matrix system of dimension 2N + 1:

En (BN = AN, (28)

10



where the eigenvalues Ay are approximations, in the sense that all Ay € o(Ly (1)) = X € o(L)
as N — oo. Similarly, for any fixed p, the knowledge of the eigenvectors g%N allows for the
reconstruction of the eigenfunction w(x), using (22). Thus, the definition of convergence used here
is the following:

Definition (Convergence of the spectral approximation). Any eigenvalue Ay of £y (1)
converges to an element of o(L):
lim d(An,o(L)) =0, (29)

N—oo

where d(Ay,0(L)) denotes the distance of Ay to the set o(L) [34]. Further, the incorporation of
the entire interval of Floquet exponents p € [0,27/PL) gives rise to the entire spectrum:

i U  ollnw) =0o(£). (30)
nef0,2m/PL)

It is not proven here that this definition of convergence holds for the numerical method pre-
sented. However, it is clear from Example 2 (see below) that this concept of convergence holds for
the case of operators with constant coefficients. Further, our numerical examples of Section 5 point
to the same conclusion.

At this point we have all the ingredients for a numerical scheme for computing an approximation
of o(L). The steps of the FFHM are:

1. Fix P, so that ¢(z) may be expanded in a Fourier series of period PL.
2. Fix the number of Fourier modes N to be used for the approximation of ¢(z).
3. Fix a sequence of p-values {u1,...,up}, pux € [0,2n/PL), k=1,...,D.

4. For each k € {1,..., D} compute the eigenvalues (and if so desired, the eigenvectors) of the
(2N + 1)-dimensional matrix equation Ly (uk)dn = ANPN-

5. The collection of all of these eigenvalues gives an approximation to o(£). A more accurate
approximation may be obtained by increasing N. An approximation of the same accuracy
but with more spectral elements may be obtained by increasing D while keeping N constant.

The black-box nature of this algorithm is the reason that the FFHM is straightforward to use as
the computational engine of SpectrUW [18, 19].

It may be appropriate to comment on (27). This formula is meant to illustrate the black-box
nature of the FFHM: it provides a prescription by which to fill the matrix /jN(u) for any scalar
finite-order linear differential operator. However, the formula may not appear as transparent as it
should. To clarify its use, we elaborate on it from a different point of view. First, it is clear that
every term of (7) corresponds to a term in the summation in (27):

Fe(@) 0 < LB (), (31)
such that

11



M
=3 W), (32)

k=1
As above, the entries £*) (1), of LK) (1) are given by
0 if Pfn—m
2 am\1k -
fk,";,m[ ('“"‘QPZL)] if Pln—m

Thus, when setting up the FFHM matrix L ~N(p) for a given linear operator, one proceeds term-by-
term. For every term, the following steps are executed:

(33)

LK) (1)nm = {

1. Construct the bi-infinite list of Fourier coefficients of f(z): (... ,fk,_2, fk,_l, fAkyo, fAkyl, fk,g, cel)e

2. A matrix of dimension (2N + 1) x (2N + 1) is filled in, with the following structure:

* * *
* * *
* * *
* * *
* * * , (34)
* * *
* * *
* * *
* * *

where % denotes a non-zero entry. Thus, the non-zero matrix entries fill the main diagonal
and certain sub- and superdiagonals. Between any two filled diagonals, there are exactly P—1
zero diagonals.

3. Every non-zero diagonal is multiplied by one of the Fourier coefficients of fi(z): the main
dlagonal by fk o , the first non-zero superdlagonal by fk _1, the first non-zero subdiagonal
by fk 1, the second non-zero superdiagonal by fk _9, and so on. Thus generlcally [,N( )
is a full matrix. In the special case where all the coefficients fx(z), & € {0,...,M} are
trigonometric polynomials, the bi-infinite matrix f,(u) has a finite number of nonzero super
and subdiagonals, thus it is a banded matrix.

4. On these non-zero diagonals, every Fourier coefficient entry is multiplied by [ (u + 217521)]]9,

where m is the column in which the entry goes. Note that rows and columns are numbered

from —N to N. Thus the zero-th (middle) column is multiplied by (ix)*. The first column

(i.e., the column to the right of the central column) is multiplied by (ig-+i27/PL)*, the minus

first column (i.e., the column to the left of the central column) is multiplied by (ip—i2n /PL)¥.

The second column is multiplied by (ip + i4w/PL)*, and so on.

12



This way, every single one of the matrices LK) ()N is easily constructed, using a diagonal-by-
diagonal construction, followed by multiplying columns by the appropriate Floquet factor. We
illustrate this using an example:

Example 1. Consider the term f(z)87, where f(z) = Y 00 e /27*  Thus we have L =
27, and the list of Fourier coefficients of f(x) is given by (... ,fk’,g,fk’,l,fkyo,fkyl,fk’g, ) =
(...,1/2%4,1/2%21,1/22,1/2%,...). Let us choose P = 3, so that all filled diagonals of the FFHM
matrix corresponding to f(z)97 are separated by P — 1 = 2 zero diagonals. For simplicity, let

N =4, so that a 9 x 9 matrix is constructed, as shown below.

4 -3 2 -1 0 1 2 3 4
i i 7 . . 7
4| (ip - 4i/3)7 0 0 % 0 0 (m+22;/3) o o
;T . . [d
-3 0 (ip — 3i/3)7 0 0 (2/;) 0 0 (m+23;/3) o
-2 0 0 (ip — 2i/3)7 0 0 M 0 0 (iH+24i'/3)7
1 (iu—ii/sﬂ 0 0 (i — i/3)7 0 0 (m+z;i/3)7 0 0 <
0 0 (i#—zi/3)7 0 0 ()7 0 0 (iu+32i/3)7 0
N . 7 : : 7
1 0 0 Gp=2i/3) 0 0 (ip +i/3)7 0 0 Gptti/3)
. . 7 . | 7
2 (l/A*;Z/Zi) 0 0 % 0 0 Gip + 2i/3)7 0 0 x
; N T
3 0 (zu—;i/a) 0 0 % 0 0 (ip +3i/3)7 0
i ;7307 T
4 0 0 LeZ 8- 0 0 Gutl/o) 0 0 (in + 4i/3)7
N N LN
f2 f1

T T T T T T
(in—4i/3)7 (i =3i/3)7  (p—2/3)7  Gp-i/3)7 @7 Gp+i/3)7  Gu+2i/3)7  (u+3i/3)T  (p+4i/3)7
This example demonstrates how the FFHM matrices are built up, with Fourier coefficients filling in
along (sub,super) diagonals, separated by P —1 zero diagonals. The Floquet factors (ip+2mm/PL)
fill in along columns, as demonstrated above. For clarity, rows and columns have been labeled as
they should, from —N to N, resulting in the FFHM matrix in the box.

The following example illustrates that the FFHM is exact on the class of linear operators with
constant coefficients. Further, it shows that the spectrum obtained does not consist of a discrete
set of points (as would be the case when using periodic eigenfunctions), but rather of a set with
continuous components in the complex plane.

Example 2. Consider the important special case of the operator £ having constant coeflicients:

M
L= apdl, a,e€C k=0,1,..., M. (35)
k=0
In this case L = 0 and it suffices to choose N = 0, so that
w(z) =e*dy, peR (36)
we obtain (using a 1 x 1 matrix eigenvalue equation)

M
A=) a(in)*, neR, (37)
k=0
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which is the correct analytical expression for the locus of o(L£). Note that (37) is the disper-
sion relationship for the linear partial differential equation u; = Lu (see the Appendix of [3], for
instance).

Remarks

e Historical context. G. W. Hill [27] used virtually the same method to examine the spectrum
of what is now known as Hill’s equation, only three years after the publication of Floquet’s
theorem [23]. For computing purposes Hill used N = 1, resulting in a 3 x 3 matrix, P =1,
with 4 = 0 and p = 1, corresponding to the edges of the spectrum. Given how crude Hill’s
approximation was, the results obtained were remarkably accurate. Hill did consider the
infinite-dimensional difference system as well, leading to “Hill’s infinite determinant”, obtain-
ing some theoretical results from it. Since then Hill’s method has been used sporadically.
Analysts were at odds with the convergence issues of the infinite-dimensional determinant
approach, and the generality of Hill’s approach for numerical purposes went unrecognized. A
good overview of Hill’'s work may be found in Whittaker and Watson’s classic text. There
are many instances where Hill’s approach was used to numerically approximate the spectrum
of a linear problem. The method is somewhat popular in the area of fluid stability, e.g.
[7, 25, 39] and [15], but its connection to Hill’s work and its generality are unacknowledged.
The FFHM was rediscovered in the Russian literature by Pavlenko and Petviashvili [42], and
successively used by others [22]. These authors appear unaware of Hill’s work, but Pavlenko
and Petviashvili hint at the generality of the method.

e Function space and boundary conditions. Typical eigenfunctions of the form (22) are
quasi-periodic due to the presence of two typically non-commensurate periods PL and 27/p.
Nevertheless, the eigenfunctions are square-integrable on [—PL/2, PL/2], since the 27/u-
periodicity disappears from the integration:

1 Pe <
pr | uPds= 3 <. (38)

—PL/2 je—oo

In addition, all these eigenfunctions are bounded on the real line, by construction.

The boundary conditions can be made more explicit at this point. The eigenfunctions satisfy

w(z + PL) = "Ly (z), (39)

which follows from (22) immediately. Such boundary conditions are known as Bloch boundary
conditions [5]. Due to the attention devoted to second-order self-adjoint problems, it has been
customary to focus especially on periodic (with period L) and anti-periodic (with period 2L)
eigenfunctions, which correspond to p = 0 with P = 2. This results in an infinite, but discrete
set, which is a subset of the spectrum we wish to capture. By considering eigenfunctions of
larger periods (for instance by choosing P > 2), a larger discrete subset is found. This subset
provides a point covering of higher density of the spectrum we wish to obtain than the first
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subset. As the period of the eigenfunctions approaches infinity, an increasingly larger discrete
subset of the spectrum we consider is found. That spectrum may be obtained as the limit
spectrum of these discrete spectra, for sequences of eigenfunctions with increasing periods.
The linear operator £ with these boundary conditions is referred to as the maximal extension
of L [32].

Eigenfunctions with larger periods. The integer parameter P was introduced artifically.
Often it is chosen to be 2, so that the functions ¢(z) are periodic with period 2L, i.e., ¢(z) is
periodic or antiperiodic with the same period as the coefficients fi(z), k = 1,..., M. Thus,
even when choosing D = 1 all periodic or anti-periodic eigenfunctions of (6) are obtained.
This allows for a more direct comparison with classical monodromy methods, such as those
used for instance in [12]. Moreover, often the elements of the spectrum corresponding to
periodic and anti-periodic eigenfunctions are good approximations to the extremal parts of
the spectrum, e.g., the elements with largest or smallest real parts, etc. For second-order
self-adjoint problems, it is known that these spectral elements give the edge elements of the
spectrum exactly [37]. Further, for a (2N + 1) x (2N 4 1) FFHM matrix, used to determine
the first 2N + 1 Fourier coefficients of the eigenfunctions, choosing P = 2 results in the same
number of Fourier coefficients being required of the input functions fy(z), ..., fo(z). In other
words, the same amount of information is used as input for the problem as we are aiming
to find as output. As the first example above illustrates, choosing P > 2, we are trying to
recover more information about the eigenfunctions than is used as input for the coefficient
functions. In Example 1, the eigenvectors are 9 dimensional, resulting in 9 Fourier coefficients
of the eigenfunctions. On the other other hand, only 5 Fourier coefficients of f(z) are used to
construct the FFHM matrix. Conversely, with P = 1, 4N 41 Fourier modes of the coefficient
functions are used to compute only 2N + 1 Fourier coefficients of the eigenfunctions. Lastly,
as the examples below illustrate, different choices of P may lead to faster computations.

Hill’s equation. The most familiar example of a spectral problem for a linear differential
operator is that of Hill’s equation, where the spectral elements corresponding to periodic or
anti-periodic eigenfunctions give rise to the edge elements of the spectrum. So, what is the
purpose of incorporating Floquet theory? It should be emphasized that for more general
problems (higher order, or non self-adjoint) no such general theorems exist. Indeed, it is easy
to construct examples where the extremal parts of the spectrum are not obtained from merely
considering periodic or anti-periodic eigenfunctions. In such cases, the spectral elements
of most importance correspond to Floquet exponents different from p = 0 or p = 2n/L,
and it is crucial to scan the entire p-interval. Many such examples are given in [11]. One
specific example is illustrated in Section 5.4. As is illustrated there, incorporating p-values
different from the boundary values is crucial: not doing so may result in wrong predictions
for the maximal growth rate in the context of an instability problem. Many authors ignore
this, and consider only periodic and anti-periodic perturbations, e.g., [15, 39]. Although not
guaranteed, this may give reasonable results, as periodic and anti-periodic modes may have
eigenvalues near the edge of the spectrum, as noticed in [39].

Choosing Floquet exponents. For convenience, the sequence {u1,...,up}, pg € [0,27/PL),
k =1,...,D isusually chosen equally spaced, so that uy = 2n(k—1)/PLD,k=1,...,D. Ifso
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4.1

chosen, the functions wy(z) = e *¢(x) are periodic with period PLD. Truly quasi-periodic
functions w(z) may be obtained by including p-values that are not rationally related to 27/ L.
It should be remarked that in applications it is often beneficial to choose € [-n/PL,7/PL),
for symmetry reasons. This is especially important for computations where N is small (say
N = 10 or less). In those cases, the asymmetric truncation of the bi-infinite difference equa-
tion may result in errors which are avoided by performing this asymmetric truncation over a
symmetric range of p-values.

If values of p are chosen outside of the basis cell of the conjugate lattice, i.e., u & [0,27/PL),
then an equivalent difference equation (25) is obtained, but for a shifted bi-infinite eigenvector
(;AS. Since n runs over all integers, this results in the same eigenvalues, but with shifted
eigenvectors. Thus no new elements of the spectrum are obtained this way, and p may be
restricted to the basis cell of the conjugate lattice, as stated.

Infinite domains. The FFHM may be extended to problems defined on the whole real
line by applying it to a periodic extension of a suitable cutoff of the whole line problem: if
fe:z € R— fr(z), k € {0,..., M}, with lim,_, 4+ frx(z) = 0, then the FFHM may be used
on the same problem with the coefficients fi(z) replaced by Fj(z), such that Fy : x — fi(z)
for € [-L/2,L/2] and Fj(x) = Fi(r mod L) otherwise. This way, an approximation is
obtained for o(L)y, the spectrum of the problem with periodic coefficients with period L.
For many problems o(£);, — o(L£) as L — co. In many cases, including some examples in the
next section, the convergence may be observed as the convergence of continuous spectrum
to discrete spectrum. From the results obtained in [44], it follows that under appropriate
conditions, this convergence is exponential: isolated eigenvalues are approximated by small
circles (or degenerate circles, i.e., line segments) surrounding them, and the radius of such a
circle goes to zero exponentially, as the period approaches infinity.

Heisenberg’s matrix formulation of non-relativistic quantum mechanics [38] is obtained
by reformulating the Schrodinger equation in its so-called momentum representation. This is
nothing but a transformation to Fourier variables. When operating on the whole real line, it
is clear that applying Hill’s method is just this transformation from the Schrodinger operator
formulation to the Heisenberg matrix formulation. For problems with periodic coefficients,
Floquet or Bloch theory has to be taken into account in order to have the Heisenberg and
Schrodinger representations be fully equivalent. An example using a two-dimensional lin-
ear Schrodinger operator with periodic coefficients can be found in Section 5.6. However,
the above demonstrates that these approaches are not restricted to the linear Schrédinger
equation, but rather can be applied to spectral problems of arbitrary order.

The effect of truncating the Fourier series to include a finite number of modes is to not
approximate spectral elements in parts of the spectrum that are far removed from the origin
of the spectral plane.

Fourier transforms vs. Fourier series

Taking a Fourier transform of (6) results in the difference equation
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i (k) = f: f: Fri [z <ﬁ — ?)]kw(ﬁ —2mj/L), (40)

k=0j=—00

where w = ffooo e~y (z)dz. This difference equation is clearly defined on the conjugate lattice

A ={n2r/L:n € Z}. Further, in the setting of Fourier transforms, & is not restricted to integer
values, and may thus assume all values in [0,27/L), resulting in a one-parameter family of grids,
all shifted versions of the elementary grid (27/L)Z by shifting by p = k mod 2x/L. Then pu plays
the role of a Floquet exponent. This approach may be considered a direct proof of that part of the
classical Floquet theorem that deals with bounded solutions. As before, a numerical method for the
approximation of o(£) may be obtained from the difference equation (40) by truncating the size of
the bi-infinite eigenvectors. This scheme has the same features advertised at the beginning of this
section. Although appearing similar, it is not immediately evident that the difference equations
(25) and (40) are equivalent. To establish this, we return to the form of the eigenfunction given by
the Floquet theorem: w(z) = e*®$(z). Equivalently, substituting the Fourier series of ¢(z) results
in (22). This shows that the Fourier transform of w(x) resides on a shifted delta-function measure.
Explicitly, we obtain

w(k) =2m Y d(u— K+ 2mj/PL). (41)

j=—00

Substituting this result in (40) results in (25), establishing the equivalence of the two approaches.
There are settings where the use of Fourier transforms is advantageous over that of Fourier series.
In (7), we restricted ourselves to differential operators. When using the Fourier transform approach,
it is possible in some cases to incorporate integration operators (not always, as this leads to division
by the Fourier variable), and in all cases to incorporate convolution operators. Either one leads to
significant complications of the FDM. The FFHM also runs into problems, and we can no longer
fall back on the Floquet theorem to justify its use.

4.2 Computational cost

One of the main features of these FFHMs is the possibility to obtain a better, more uniform
approximation of o(L) by increasing D. Thus instead of computing eigenvalues and eigenvectors
of a larger matrix, we compute eigenvalues and eigenvectors of matrices of the same size, but
of more of them. This results in a significant reduction of computation time required for the
approximation of o(L£): The cost for the computation of D(2N + 1) eigenvalues and eigenvectors
(accuracy determined by N), using the QR algorithm, is proportional to D(2N + 1)3. Using a
standard FDM, this cost would be proportional to D3(2N + 1)3, thus FDMs are a factor D? more
expensive. This quick comparison does not take into account the actual location of the eigenvalues
computed, which is more uniform for the FFHMs than for the FDMs. Furthermore, in order to
obtain the same accuracy as the FFHMs, FDMs usually require a higher value of N, as can be seen
from Table 1.
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4.3 Incorporating Floquet theory in FDMs

It is also possible to augment FDMs in a similar way by taking Floquet theory into account. Re-
turning to the FDM with periodic boundary conditions, we illustrate below how FDMs may be
modified rather trivially to also obtain more uniform approximations of o (L), at a low implementa-
tion cost and a computational increase linear in the number of Floquet shifts D. At that point, the
most important remaining difference between FDMs and FFHMs is the higher (spectral) accuracy
of the latter.

We illustrate this using the second example of Section 3. To obtain (15) and (16), the periodic

boundary condition assumption yyir = yr with & = —2,-1,0,1,2 was used. Instead, we may
use Floquet or Bloch boundary conditions: from y(z) = e'**¢(x), we obtain y(z + L) = e**Ly(z).
Thus we may impose yyir = €y for k = —2,-1,0,1,2, for @ € [0,27) which corresponds to

p € [0,27/L). Then the FDM to approximate o(£) is (15), but with

—~30 16 —1 0o --- e 0 —e 16e %
16 —30 16 —1 0 0 —e_w
-1 16 =30 16 -1 0o - 0
. 0 -1 16 —-30 16 -1 0
Dyt — — L (42)
0 -1 16 —30 16 -1 0
0 0 -1 16 —30 16 -1
it O .- .. 0 =1 16 =30 16
16e? it 0 - .. 0 -1 16 30

As a general rule, every non-zero element in the upper right corner is multiplied by e~ and

the corresponding elements in the lower left corner are multiplied by e’. If the original matrix
Dgl’h) in (16) was self-adjoint, so is the above one. With (42) and (15), for any fixed € € [0,27) an
approximation to the spectrum o(£) may be obtained. Then more equally accurate elements of this
spectrum are obtained by varying 0, without decreasing h. Thus, as in the FFHM, more elements
of the spectrum are obtained at the cost of computing eigenvalues of matrices of the same size.
For instance, to approximate spectral elements corresponding to both periodic and antiperiodic
eigenfunctions, the above matrix is used twice: once with § = 0 (periodic) and once with 6 = =

(antiperiodic).

5 Examples

In this section we consider several examples. These examples were chosen because their spectra are
well-understood. Thus we can demonstrate the virtues and pitfalls of each method without getting
tangled up in the intricacies of the specific problem we are attempting to solve. All numerical runs
were done in Matlab, on a Mac G4 single processor (1GHz) laptop with 1GB memory.

5.1 Mathieu equation

The Mathieu functions [1] are the bounded solutions of the Mathieu equation
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y" + (a — 2qcos(2z))y = 0, (43)

one of the classical linear differential equations defining a class of special functions. The equation
originates from the Helmholtz equation through the use of separation of variables. The equation is
trivially rewritten in the form (6):

—y" + 2q cos(2x)y = ay. (44)
Here we are interested in determining all a values for which bounded solutions to (44) exist. Many
texts on perturbation methods (e.g. [6, 33]) use this equation as one of their prototypical examples.
One of their goals is to determine the edges of the spectrum for varying g. The operator —92 +
2¢ cos(2z) is self-adjoint, thus the spectrum is confined to the real line. Also, since the operator
—9? is positive and 2q cos(2z) is a bounded operator (for fixed q), the spectrum of (44) is bounded
from below, and extends to infinity. Thus, as announced, the spectrum of this problem is well-
understood. We illustrate here how an accurate approximation to the spectrum may be obtained
using either the FDM or the FFHM. Both methods are compared using different sets of criteria.
Using (22) with L = 7 and equating the coefficients of different harmonics results in the differ-
ence equation

~ 2n 2 ~ ~
qbn-p+ (N + F) $n + q(ﬁn+P = ady, n € %, (45)

with p € [0,2/P). Because of the symmetry of the coefficient function of (44), it is possible to
reduce the list of possible y values further. Since we wish to emphasize the black-box qualities of
the FFHM this is not pursued here.

Restricting the above equation to n = —N, ..., N results in a class of matrix equations (28), one
for each choice of P. Here Ly is of size (2N +1) x (2N +1). Its diagonal is ((z — N/P)?,..., (4 —
2/P)? 1% (n+2/P)2,...,(u+ N/P)?). Its Pth sub- and super diagonals consist of ¢’s. All other
elements are zero. This matrix is self-adjoint for any choice of p € [0,2/P), and any choice of
q € R, reflecting the self-adjointness of the original problem.

Consider the truncated matrix equation with D equispaced p-values: uy = 2(k — 1)/P, k =
L,...,D. Let (a1,a2,...,ap@en+1)) be the ordered list of eigenvalues of the D linear problems

associated with £y for these different ; values. Then ayy1 > ag, for k=1,...,D(2N +1) — 1.

First, we compute approximations to the lowest eigenvalue & of (44). We choose ¢ = 2, then
a ~ —1.513956885056448. The results are displayed in Table 1. For all runs, D = 1 and p = 0, thus
we are computing eigenvalues corresponding to eigenfunctions with period mP. It is known [37]
that for (44) the endpoints of the spectral bands correspond to periodic or anti-periodic (periodic
with twice the period) eigenfunctions. Thus the FFHM and its Fourier transform analogue are
ideally suited to the task of computing ¢ with high accuracy. Moreover, as observed from Table
1, a linear increase in the number of Fourier modes results in an exponential improvement in the
accuracy of a, as is expected of a spectral method. A comparable accuracy improvement using
the FDM requires an exponential size increase of the FDM matrix. It is important to notice the
dependence on P of the computational time of the Fourier methods.

A second comparison focuses on entire components of the spectrum, as opposed to a single
element of it. Define the numerical spectral deficit of a spectral band op to be
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Accuracy: 1073 Accuracy: 107° Accuracy: 107
Matrix size | CPU time || Matrix size | CPU time || Matrix size | CPU time
FFHM (P =1) 5 0.5 7 0.6 9 0.5
FFHM (P = 2) 7 1 13 1 17 1
FFHM (P = 4) 9 1.5 25 2.6 33 3.3
FDM2 239 1075 8000 5.5E6 N/A N/A
FDM4 52 25 293 1100 1630 1.5E5

Table 1: Comparing the FDM (2nd and 4th order) and FFHM for computing the lowest eigenvalue
a ~ —1.513956885056448 of (44) with ¢ = 2. All CPU times are given relative to those of the
FFHM with P = 2, which are 0.0004s, 0.0007s and 0.0010s, respectively. Here N/A means “not
applicable” and denotes a numerical run requiring a matrix size beyond Matlab7’s capabilities.

5 _ ma‘xak,,ak,+1€0'3 (ak+1 - a’k))
? o]

(46)

In other words, dp is the fraction of the maximal distance between any two successive approxi-
mations to spectral elements in op to the length of the spectral band op. Thus as dp — 0, a
uniformly better approximation to op is obtained. It follows from Floquet theory applied to the
Matthieu equation [37] that 6 — 0 simultaneously across all spectral bands where approximations
to spectral elements are computed. Thus, g has a constant value across all spectral bands that
are approximated, and is zero for all others. As IV is increased, the number of bands that are
approximated by the FFHM increases. In Table 2, a comparison is shown for the FFHM and the
FDM (using the second band). For all FFHM runs, the N value from Table 1 is used for which a
is approximated with an accuracy of 1073. Then D is increased to obtain more spectral element
approximations. This was also done for the FDM (4th order), as explained at the end of the last
section. All these results are contrasted with the 4th order FDM without using Floquet theory.
One should notice that the CPU time is inversely proportional to the required §g. This is a vast
improvement over regular FDMs without Floquet theory. Except for the largest allowed spec-
tral deficit, these methods require matrixes of a size larger than what Matlab7 can handle (about
8192 x 8192). For the most efficient FFHM with P = 2, the matrix size is 7, which is a tiny matrix
for Matlab computations. Smaller dp does not increase this matrix size (until |op|dp becomes
comparable to the allowed error on @), but rather requires the consideration of more matrices of
this same size.

Figure 1 illustrates the effect of increased § (theoretically independent of which band is being
considered), to obtain approximations to entire parts of the spectrum, as opposed to isolated points
of it. Lastly, we regenerate the famous picture of the spectrum of the Mathieu equation (43) for
varying ¢, see [6, 1]. This picture displays a vs. ¢, for 0 < ¢ < 15, using 300 different equally spaced
g values. The same matrix size (25 x 25) was used for all ¢ values, so as to automate the numerics
more eagily. Similarly, D = 62 for all g values. Figure 2 was generated in 25.5 seconds, using the
FFHM with P = 2. Any point in Fig. 2 has an absolute error of at most 10~3.

20



02 = 0.25 62 = 0.025 d2 = 0.0025
D [ CPU time | D | CPU time | D | CPU time

FFHM (P =1) 12 0.4 124 1 1190 1.3
FFAM (P=2) | 6 ] 62 ] 590 I
FFOM (P =4) | 3 2 31 13 205 13
FDM4
Matrix size=1172 || 1 5.4E5 N/A N/A N/A N/A
FDM4, D > 1 4 8100 32 2100 310 1700

Table 2: Comparing the FDM (4th order) and FFHM for computing a uniform approximation to
the second spectral band of (44) with ¢ = 2. All CPU times are given relative to those of the FFHM
with P = 2, which are 0.001s, 0.03s and 0.35s, respectively. Here N/A means “not applicable” and
denotes a numerical run that was not done due to lack of memory on our platform.

5.2 Hill’s equation with a finite number of gaps
5.2.1 The periodic case

As our next example, we consider two Hill equations with a finite number of gaps:

L_(k)yu = —u"+ 2k%sn’(z,k) — k> )u = Mu, (47a)
Li(k)v = —v" + (6k%sn®(z,k) —4 — kv = . (47b)

Here sn(z, k) denotes the Jacobi sine function, limiting to sin(z) as the elliptic modulus approaches
0, and limiting to tanh(z) as the elliptic modulus approaches 1. Further, sn(z, k) resp. sn?(z, k) is
periodic with period 4K (k) resp. 2K (k), where K (k) = OW/2(1 — k?sin® )~ Y2dz is the complete
elliptic integral of the first kind [49]. Finally, L_ (k) and Ly (k) are the linear Schrodinger operators
determined by the left-hand sides of these two Hill equations. It is known (see e.g., Whittaker and
Watson [49]) that all equations of the form (47a-b) give rise to a real spectrum (due to the equation
being self adjoint), with a spectrum that is bound from below, but not from above. Further, there
are a finite number of finite-sized gaps in the spectrum to the right of the lowest eigenvalue if and
only if the coefficient of 2k%sn?(z, k) is a triangular number, i.¢e., a number of the form n(n +1)/2,
n a positive integer. The number of spectral gaps is exactly n. For (47a), n = 1, while for (47b)
n = 2. The special case of Hill’s equation considered here is also known as the Lamé equation [29].
All other coefficients in (47a-b) are chosen for later convenience. The spectra of these equations
and all their eigenfunctions are known exactly. The spectra are drawn in Fig. (3).
The Fourier series of sn?(z,k) is given by

1 E(k) 22 S~ ng" nwT
ent) = 2 (1 505) - e 2o T o (K05 1)

n=1

where ¢ = e "KW/ KK) ' = /T — k2, and E(k) = 0”/2 1 — k2 sin? zdz is the complete integral
of the second kind. Note that this Fourier series appears to be an obscure result, not even mentioned
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Figure 1: Numerical approximations of the spectrum for the Mathieu equation (44) with ¢ = 2.
For the figure on the left p = 0.25, while 6 = 0.025 on the right. Four different methods were
used, all approximating @ with an accuracy of 10°%. For (a-c) the FFHM was used with P = 1,
P =2 and P = 4 respectively. For (d) the FDM4 was used. In these figures, approximate spectral
elements computed with D = 1 are indicated by circles. The a-value is real and is shown on the
horizontal axis.

in [24]. An erroneous Fourier series for sn?(z, k) is mentioned in [8]. Jacobi published a correct one
in his treatise on elliptic functions [30]. Since the Fourier series of sn?(z, k) does not terminate, the
matrices resulting from the FFHM for (47a-b) are not banded.

These cases of Hill’s equation with their analytically known spectra are excellent benchmarks
for the numerical methods discussed in this paper. Figure 4 illustrates the exponential convergence
rate of the FFHM, compared to the finite-order convergence rate of the FDM4. Another advantage
of the FFHM is the ease with which eigenfunctions may be reconstructed, as the eigenvectors of
the eigenvalue problem solved give truncated vectors of Fourier coefficients of the eigenfunctions
(possibly after multiplication by the appropriate e**). There is a single eigenfunction of (47b)
corresponding to A = —3(1 — k?), namely (up to a multiplicative constant)

y = sn(z, k)dn(z, k). (49)

The numerical eigenfunction is easily normalized by requiring that y(K (k)) = k'. Figure 5a displays
the numerical approximation to the eigenfunction for k¥ = 0.9, while Fig. 5b shows the numerically
computed L2-norm of the difference between (49) and its approximation using the FFHM as a func-
tion of k, as well as the matrix sizes giving rise to this difference. By the nature of its construction,
the approximation of the eigenfunction is given by a trigonometric polynomial and is uniformly

valid as a function of z. This should be contrasted with the piecewise in x approximation obtained
from the FDM4.
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Figure 2: The spectrum for the Mathieu equation (44), using the FFHM with P = 2. Every black
point is an approximate point of the spectrum. No filling in of spectral regions was done. All
plotted points were the result of a computation.

5.2.2 The soliton limit

The FFHM is ideally suited for problems with periodic coefficients. In problems (47a-b), the period
of the coefficients increases as k — 1, since limy_,1 K (k) = oo. In this limit, the two Hill equations
become

L (1)u=—u"+(1—-2sech’z)u = Mu, (50a)
Li(1)v = —v" + (1 — 6sech?z)v = . (50b)

The spectrum of the first equation consists of a double eigenvalue at A = 0 and a continuous band
A € [1,00). Similarly, the spectrum of the second equation is A € [-3] U [0] U [1, 00). This limit of
the periodic problem will be referred to as the soliton limit. There are two ways to approach these
spectral problems using the FFHM:

e Large k limit: consider (47a-b) for large (i.e., close to 1) values of k. Here close to 1 should
be on the order of £ = 0.9999 or more. Then 2K(0.9999) = 11.29, and the functional form
of sn?(x, k) starts to resemble sech?z. In this case reasonable accuracy requires many terms
of the series (48). For instance, £ = 0.9999 requires N = 25, resulting in matrices of size
51 x 51. For numerical purposes this is still a small matrix, especially when compared to
the matrix size that would be required using equally spaced FDMs, in order to discretize a
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Figure 3: The spectra of the two Hill equations (47a-b).

periodic function on an interval of length 11.29 with high accuracy. Table 1 gives an idea of
the order of magnitude of the matrix sizes and the CPU times that FDMs would require to
obtain comparable results.

e Soliton cut-off: a second approach is to consider (50a-b) directly, but cut off the exponential
tails of the coefficients. Then we may consider a periodic extension of the resulting problem.
This extension will have an exponentially small mismatch at the edges. The advantage of
this approach is that large periods are easily achieved. The Fourier coefficients of a truncated
sech?z give rise to integrals that cannot be evaluated analytically, but their high-accuracy
numerical evaluation poses no problem. This second approach is the one of choice when
handed a typical problem defined on the whole real line, for the simple reason that it is
typically not obvious how to construct a sequence of periodic problems that does not have a
mismatch at the edges of its period interval which limits to the given problem on the whole
real line.

For both of these scenarios the accuracy of the periodic approximation may be judged by the extent
to which the finite spectral bands have collapsed to points. No comparison with the FDM approach
will be done, as we are only considering black-box FDMs that have equally spaced grids, which
is unnecessarily computationally intensive and wasteful. Letting kK = 1 — ¢, using the analytical
expressions for the band edges giving in Fig. 4 we find that the length of the spectral bands
approaches zero at a quadratic rate in €. Table 3 shows that the Soliton cut-off approach is capable
of obtaining equally accurate results compared to the large k limit approach. Note that in general,
for problems that are not self-adjoint, a large-period approximation to a whole-line problem will
have small circles of continuous spectrum, surrounding the location of the isolated eigenvalues of
the limit problem. Self-adjoint problems are one example where these small circles degenerate to
small line-segments (“bands”). An overview of results like this may be found in [44], where one also
finds statements about the convergence of the radius of the small circles to zero, as the period of
the periodic generalization approaches infinity. Results from large £ limit numerics and the soliton
cut-off approach are given in Table 3. These results illustrate that the exponential mismatch at
the edges of the period box result in a loss of accuracy for an equal number of Fourier modes, so
that a larger number of modes has to be used to obtain the same accuracy. Another example of
the soliton cut-off method is given in the next section.
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Figure 4: The convergence of the FFHM (two bottom curves) and of the FDM4 (two top curves).
The points on the solid curves show the accuracy of numerically computing the lowest eigenvalue of
(47a). The points on the dotted curves show the same for (47b). These computations demonstrate
the claimed exponential convergence rate of the FFHM, compared to the power-law (4th order
here) convergence for FDMs. Using the FFHM with double-precision arithmetic, it is pointless to
proceed beyond matrices of size 35 (i.e., 17 Fourier modes), as the obtained accuracy is on the level
of machine round-off error.

5.3 The forward scattering problem for the Korteweg-deVries equation

As mentioned in the introduction, the FFHM may be used to numerically solve the forward scatter-
ing problem for any integrable equation. A special case of this is illustrated here for the Korteweg-
deVries (KdV) equation with sech? potential. The KdV equation

up = 06Uy + Ugpy (51)

is the compatibility condition ;¢ = 9y, of the two linear differential equations

M=t — (52a)
P = —teth + (2u 4 4N)th,. (52b)

An overview of the inverse scattering method, as applied to the KAV equation, may be found
in [40]. For the purpose of illustrating the FFHM as a numerical means to examine the forward
scattering problem, we let
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Figure 5: The numerical approximation using FFHM of the eigenfunction (49) (a, top), and the
pointwise error of this approximation (a, bottom). Also shown (b) are the varying matrix sizes
M = 2N + 1 as a function of the elliptic modulus k, for £ = 0.1 to k£ = 0.99, required to maintain
an L?-error < 10~% on the numerical approximation of the eigenfunction (49).

u = afa + 1)sech?(z), (53)

where « is a real, positive parameter.It is known (see [20] for example) that the number of solitons
in this profile is [ + 1], where [] denotes the integer part of its argument. This number is also
equal to the number of discrete eigenvalues of the spectral problem (52a). Figure 6 illustrates these
facts. It was computed using the soliton cut-off method, with L = 20 and N = 100. Also indicated
are the curves o = n++/—\, for n = 0,1,2,3,4. These are hard to tell apart from the numerically
computed discrete eigenvalues, with which they perfectly match.

5.4 The focusing Nonlinear Schrodinger equation
Consider the focusing Nonlinear Schrodinger (NLS) equation in one spatial dimension

Mpt = _prm - 2|1/J|21/J7 (54)

for a complex wave field ¢ (z,t). Either the focusing or defocusing NLS equation arises in any
application where slowly modulated waves in a nonlinear medium are considered [3]. The focusing
equation (54) has many exact solutions, one of which is

P(w,t) = O (z, k), (55)

where dn(z, k) is the third of Jacobi’s elliptic functions. It limits to 1 as the elliptic modulus &
approaches 0, and to sechz as the elliptic modulus k approaches 1. Further, du(z, k) is periodic
with period 2K (k) [49]. In the limit £ — 0, (55) becomes
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Elliptic Modulus & | Period 2K (k) | N
1-1073 9.0 22
1-101 11.3 27
1-107° 13.6 32
1-10° 15.9 37
1-10"" 18.2 42
1-1078 20.5 47
1-107"° 22.8 52

‘ Soliton cut-off ‘ 22 ‘ 100 ‘

Table 3: A comparison of the large k£ approach with the soliton cut-off method. For all runs, the
number of modes with a given spatial period was chosen to ensure a band length of any finite-sized
band less than 1076, This table illustrates there is a price to pay for the exponential mismatch at
the edges of the period box, using the soliton cut-off method.

Y(x,t) = e*t, (56)

which is a plane wave solution of the NLS equation. On the other hand, in the limit & — 1, (55)
becomes

Y(z,t) = e'lsech z, (57)

which is a one-soliton solution of (54). In order to examine the linear stability of these solutions,
we let

Glw,t) = (#o,1) + eU(w) + iV (@))€, (58)

where w = 2 — k? for solutions of the form (55), or w = 1 for the soliton solution (57). Substitution
of this ansatz in (54) and retaining first-order terms in € results in the linear matrix equation

( —Li(k) Lfo(k) > ( g ) :’\( g ) (59)

with the linear operators L_ (k) and L (k) as given in (47a-b) for k£ € [0, 1), and (50a-b) for k = 1.
The problem at hand is to determine the spectrum of (59), i.e., the set of all A for which there
are bounded perturbations U(x) and V(z). If any such X has nonzero real part (the spectrum has
reflection symmetry across both the real and imaginary A\ axis, due to the Hamiltonian character
of the NLS equation), the NLS solution is unstable.

Since the linear stability problem (59) has constant coefficients if £ = 0, the spectrum is easily
found in this case. It consists of the entire imaginary axis and the real interval [—2,2]. For the
soliton case (k = 1) the spectrum is known analytically as well, as are many of the eigenvectors
(U, V)T [48]. The spectrum is contained on the imaginary A-axis and consists of two semi-infinite
line segments from +¢ to oo along the imaginary axis, and an eigenvalue of multiplicity four at the
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Figure 6: Spectra of the Schrodinger operator with potential as given by (53), for varying «, using
the soliton cut-off method as described in the text. Also plotted are the parabolae o = n 4+ v/ =\
forn =0,1,2, 3,4, which perfectly match the computed approximations to the discrete eigenvalues.
Note that some remnants of the periodic extension may be observed in the continuous spectrum
A < 0 on the right.

origin. The literature on the stability analysis of the solutions with 0 < k < 1 is limited. The most
recent and most extensive results may be found in [31]. To the best of our knowledge, nobody has
been able to describe the spectrum fully for 0 < k < 1, either analytically or numerically.

In order to use the FFHM we proceed as before, using the Fourier series of the coefficient
functions of (59), and substituting an unknown Fourier series for U and V. The procedure differs
slightly from what was done before, as (59) is a matrix system of differential equations. In essence,
all is similar to what was done for the scalar case. Instead of a scalar bi-infinite difference equation,
a block matrix equation with bi-infinite blocks is constructed. The block matrix entries correspond
to the elements of the 2 x 2 matrix in (59). The zero entries give rise to bi-infinite zero blocks,
whereas the L_ (k) and —L (k) entries result in the same bi-infinite blocks as for the scalar case.
Specifically, let

m .

U = ¢ Y Uit (60a)
j=—00

Vo= e Z Vjeﬁgf, (60b)
j=—00
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Pa) = Yyt (60c)
j=—00
with
U ! /Pm (U(w)e ) e 158 d (61a)
= = x)e ) eV PL dux, a
’ PL | prs2
- 1 /PL/2 (V( ) _i”x) _Z.21rja: d (Glb)
P = = z)e e "PL dz,
! PL | _pr)»
1 L/2 Comin

o= g Pt (61¢)

LJ_ 1,

for j € Z. Due to the linearity of the equations, the truncated finite-difference equation obtained
from (59) using the above is (59) with the following replacements:

U = (U)X (62a)
) (62b)
- ) - N
L (k) — ( (if_g + U) +w| dnm — 2'Y(n—m)/P5p|n—m) ) (62c)
: ) E 7\;m,7N
Ly(k) — ( (if_g + U) + w| Opm — 6')/(n—m)/P5p|n—m> ) (62d)
L . n,m=—N

where dpj,_,, is 1 if P divides n —m and 0 otherwise. As before, a different difference equation is
obtained for each choice of p. The bi-infinite difference equation is obtained by letting N — oo.

Since Ref. [31] appears to have the best stability results for the solution (55), it is appropriate to
compare the method used there with the FFHM used here. The method used by Kartashov et al. in
[31] is referred to as semi-analytical. Nevertheless, every run requires the solution of a 4-dimensional
initial-value problem, where the spatial variable plays the role of the evolution variable over the
period chosen for the perturbation. As such, the method is restricted to perturbations whose period
is an integer multiple of the period of the underlying solution. It is clear that the complexity of
this method scales linearly (at best) with the chosen period for the perturbation. In contrast, the
FFHM does not require the solution of an initial-value problem for a differential equation, and the
perturbations it considers are not limited to be periodic. In practice they often are, as the range
of the Floquet parameter p is usually divided in equal-length segments. Considering perturbations
with larger periods amounts to a different choice of p, which does not affect the complexity of the
algorithm. An operation count or a duration for the numerical runs is not given in [31], or any of
its sibling papers. However, we have been able to compare the efficiency of the FFHM with that
of the method used by Carter and Segur [12] which seems to be identical to that of Kartashov et
al.. We found the FFHM to be several orders of magnitude faster [10].
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Figure 7: Spectra of (59) for varying values of k. Shown is the complex A-plane for (from left
to right) £ = 0, k = 0.7, k = 0.9, and k = 1 — 10~?. The respective values used for (N, D) are
(3,2000), (15,200), (20,120), and (52,80). The value of N was chosen to ensure sufficient accuracy
(107) of the calculated results. The value of D ensures a sufficiently dense covering of the plotted
spectrum.

The results of our numerical explorations are shown in Figs. 7 and 8. Figure 7 show the
spectra corresponding to the solution (55) and its limiting cases, for various choices of the elliptic
modulus. These computations used the FFHM, with parameters as indicated. As is found in the
literature [31], Fig. 7 demonstrates that the solution (55) is unstable for all values of the elliptic
modulus, except & = 1. This shows that in the one-dimensional setting the bright soliton solution
of the focusing NLS equation is spectrally stable. Figure 8 shows (a) the maximal growth rate
as a function of the elliptic modulus &, together with the growth rate due to perturbations with
p =0, i.e., perturbations that share or double the period of the underlying solution (55); (b) the
separation away from the origin of the imaginary component of the spectrum, again for equal-period
and other perturbations. Figure 8 extends Figs. la and 2a of [31]. This figure illustrates that it is
essential to consider the entire range of u-values, not just the values on the boundary of its domain:
merely considering periodic or anti-periodic modes results in an underestimation of the maximal
growth rate by more than 10%.
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Figure 8: (a) The maximal growth rate of (55) and its limit cases (56) and (57), as a function of k.
For the bottom curve, only periodic and anti-periodic perturbations are considered. The top curve
accounts for a variety of p values, and thus corresponds to perturbations of arbitrary period, or
even quasi-periodic ones. (b) The separation of the imaginary components of the spectrum from
the real axis. In this case, using periodic or anti-periodic perturbations suffices to find the points
of these imaginary components. We note that this separation is a perfect fit with the curve k2, as
remarked in [31]. However, we disagree with Kartashov et al [31] that the top curve in (a) is well
described by 2(1 — k?). Two hundred points are plotted for each curve. All points plotted are the
result of computing a spectrum, with N = 50 and D = 10.

5.5 The quantum harmonic oscillator

In Section 5.2.2, an example was given where the FFHM was applied to a non-periodic problem.
In that case, an exponentially small mismatch existed at the boundaries of the periodic domain,
as a consequence of using the soliton cut-off method. In this section, we examine the performance
of the FFHM when applied to the one-dimensional quantum harmonic oscillator, i.e., the spectral
problem

— e+ 2P =X, zER (63)

In this case, the penalty for using the soliton cut-off method is enormous: the z? potential is
limited to a finite area x € [—L/2, L/2], resulting in a large derivative mismatch at the boundaries
z = £L/2. The purpose of this section is to illustrate what the FFHM allows one to get away
with: the method is not designed to work on a problem like (63). On the other hand, (63) is well-
understood and its eigenvalues and eigenfunctions are known and can be found in any quantum
mechanics text [38]. Therefore it is a good test case for any numerical method. The results of
applying the FFHM are shown in Table 4 and Fig. 9, with parameter values as indicated.

These results illustrate that the computations of the eigenvalues remains highly accurate, even
when the pointwise error of the approximation of the eigenfunctions increases. This is not surpris-
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Exact eigenvalue | Absolute error using FFHM
1 4.011724286101526e-11
3 2.640969221090472e-09
5 6.515937123197091e-09
7 6.373176653085011e-09
9 2.706672219687789¢-09
11 2.547496436022811e-09
13 9.293426472822830e-09
15 7.243926347655361e-09
17 1.454309739301607e-08
19 3.501478929024415e-08

Table 4: The first 10 eigenvalues of (63) and their absolute errors using the FFHM with N = 100,
L =16.

ing, as this same principle underlies the success of the Rayleigh-Ritz principle, both in quantum
mechanics [9] and in nonlinear problems [47]. As before, without knowing the exact values of the
eigenvalues, the convergence of the method may be estimated by considering the degeneration of
small periodic bands or circles of approximate spectral elements to their discrete limit.

Although the approximation of the eigenvalues is significantly more accurate than that of their
corresponding eigenfunctions, the approximation of especially the first few eigenfunctions is reason-
able. When comparing the effort required here with that which might be required using an FDM
to obtain equal accuracy (see Table 1, last two columns), the results are more than satisfactory.

5.6 A two-dimensional Schrodinger equation with periodic coefficients

Just like the FDM, the FFHM is easily adapted to multidimensional problems. Where previously
the coefficients of the linear operator were expanded in a one-dimensional Fourier series, now they
are expanded in a multidimensional Fourier series. Similarly, the eigenfunctions are expanded as
products of multidimensional Fourier series and an exponential factor containing a multidimensional
Floquet multiplier. For the sake of explicitness, in the remainder of this section we examine the
two-dimensional case. As an example, below we consider a specific two-dimensional Schrodinger
equation with a standing light-wave potential.

Any coefficient function of a two-dimensional linear operator with periodic coefficients is ex-
panded as

o0

floy)= D0 D7 frug, e rtse/betiily), (64)

Jz=—00 jy=—00

with

L. /2 /2
f]m;]y — / / Y f T y —z27r(sz/Lz+Jyy/Ly) dxdy’ (]a:a]y) € Z X Z’ (65)
LoLy J_1,2 )1, 2
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Figure 9: (a) The first, second, third and tenth eigenfunction of (63) using the FFHM with N = 100
and L = 16. (b) The absolute value of the pointwise error comparing with the exact eigenfunctions
using Hermite functions.

where L, and L, denote the periods in the z and y directions. Using a two-dimensional extension
of Floquet theory (perhaps more appropriately referred to as Bloch theory in the multidimensional
context), the eigenfunctions are expanded as

00 00
A M DR
Jo=—00 jy=—00
00 00
_ i i@ (phg +27Jz [ Pe Ly )+i +2mjy /Py L
- Z Z ¢ja};jye (Ba Jo/PeLe)+iy(py Jy/Py y)’ (66)

Jz=—00 jy=—00

where the expansion coefficients ‘ijx,jya (j2»Jy) € Z X Z are of the same dimension as w(z,y). Fur-
ther, the Floquet exponents (u,, ) are limited to the dual lattice of the original spectral problem,
with an extra scaling due to the integer factors P, and Py: (s, pty) € [0,27/P;Ly) % [0,27/ Py Ly).
Substitution of the Fourier expansions of the coefficient functions and of the eigenfunction ex-
pansions in the spectral problem results in a two-dimensional bi-infinite difference equation for the
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expansion coefficients gﬁjx,jy of the eigenfunctions. In fact, a two-parameter family of such difference
equations is obtained, as the difference equation is parametrized by p, and p,.

Let us consider the specific example of a two-dimensional Schrédinger equation with a potential
that is periodic in both z and y:

3 G+ ) + 2,00 = N, (67)

Substituting (66) in this equation we find the two-dimensional bi-infinite difference equation

n 2nk 2+ . 2l O\ 2
He ™ Py M P L,

for (k,l) € Z x Z. Further, as before f

+ Z Z Fot nmt Gmn = Abr, (68)

Py ' Py

1-
§¢k,l

m=—0o0 N=—0o0

»—t is defined to be zero if either one of (m — k)/P, or

m—k
Py Py

(n — 1)/ P, is noninteger.

In order to use (68) as the basis for a numerical scheme for computing the spectrum of the
two-dimensional Schrodinger equation (67), the number of modes in each dimension is truncated.
Depending on the periods in those dimensions, different truncations may be required for different
dimensions, to obtain a certain accuracy. It is clear at this stage how the implementation of such a
scheme will differ from that of the one-dimensional setting. Instead of a single loop over all retained
Fourier modes in one-dimension, a double nested loop is required, each inner loop corresponding
to a loop of Fourier modes in that dimension, depending on the Fourier mode of the outer loop.
Generalizing this to more than two dimensions should be obvious. Such constructions are also
required for implementations of FDMs in higher dimensions. The essential difference between the
two methods is that the number of Fourier modes required for a given accuracy is typically orders of
magnitude less than the number of grid points required in an FDM setting, as is seen in Table 1 and
Fig. 5. As the number of dimensions increases, this difference is paramount. Suppose a problem
with periodic coefficients is considered in one spatial dimension. Assume that to obtain a given
accuracy, 10 Fourier modes need to be retained, resulting in a matrix of size 21x21. Using Table 1
as a guide, an FDM matrix of size about 200 x 200 is required to obtain comparable accuracy, if a
4th order method is used. Now consider a two-dimensional version of this same problem with equal
periods in both dimensions. One may expect that 10 Fourier modes in each dimension is sufficient
to obtain an accuracy comparable to that obtained in the one-dimensional case. Thus, a matrix of
size 212 x 212 = 441 x 441 is required. For numerical purposes this is still a relatively small matrix.
Using FDM4, it appears a matrix of size 2002 x 200? = 40000 x 40000 is needed, which is large by
any standard. These comparisons are slated even more in favor of the FFHM if non-equal period
modes are considered and many matrices of the above sizes are necessary. This assumes that the
FDM4 is incorporating Floquet theory as specified before, and not by considering larger periods.
This would increase the required matrix size even more, resulting in prohibitively large matrices.
This discussion may be repeated for three or more dimensions, becoming more one-sided as the
number of dimensions increases.

It should not be a surprise that the study of spectra of linear Schrédinger operators has received
a lot of attention, given their importance in both physics and mathematics. Specifically, the
Schrédinger equation with a periodic potential is the fundamental equation of solid state physics.
Any text on solid state physics (e.g., the classic [5]) will touch on several ways in which the spectrum
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of this equation may be understood. One of the canonical ways is the so-called orthogonal plane-
wave expansion method, which is identical to Hill’s method as described here. This method is
the cornerstone for the computations performed by the commercial package RSoft [43]. As stated
before, particular aspects of the FFHM have been used before by different authors on specific
examples, and the plane-wave expansion method is another instance of this.

In solid state physics, the spectrum is usually plotted as a function of the Floquet parameters
(fogs toy) € [0,27/ Py Ly) % 0,27/ Py Ly,). This is useful in this setting, as (f4, fty) is the mathematical
representation of the quasi-momentum. With this knowledge, one determines at which values of
the quasi-momentum different Brillouin zones exist [5]. We will do the same below, for the case of
a standing-light wave potential modeled by

f(z,y) = Asin? zsin?y, (69)
so that L, = L, = w. Thus, using P, = Py =2, (yg, pty) € [0,1) x [0,1). Then

L Vi oS
(fig)  =af =12 1 —12 e | (70)
nI=Tee e 1/4 —1/2 1/4

and all Fourier coefficients of (69) not explicitly written are zero. The results for two different
values of A are shown in Fig. 10. For A = 0, the spectrum is A € [0,00), but for other values
of A band gaps may appear in this spectrum, as shown. To obtain the results shown in Fig. 10,
N = 3 modes were used, for 40 different values of the quasi-momentum in each dimension. Thus 49
eigenvalues of 40? = 1600 different matrices of size (2N +1)? x (2N +1)? = 49 x 49 were computed.
To generate the data for each of these figures took less than 9 seconds to generate. Lastly, Figs.
11 and 12 display a few eigenfunctions, for parameter values as indicated.

6 Summary

In 1886, Hill incorporated the theories of both Fourier and Floquet to investigate the spectrum of
what is now known as Hill’s equation [27]. In this paper, we have used Hill’s ideas to develop the
Fourier-Floquet Hill method (FFHM) for the numerical computation of spectra of arbitrary linear
operators with periodic coefficients. This method may be applied to scalar or vector operators, in
one or more dimensions. The incorporation of Fourier series leads to a spectrally accurate method.
Using Floquet theory results in a uniform approximation of entire components of the spectrum,
not a selected few points in it. We have also demonstrated that finite-difference methods (FDMs)
may be modified almost trivially so as to reap these benefits of incorporating Floquet theory. All
of these issues were amply discussed and illustrated in the examples.

In addition to its core application areas,we have illustrated that the FFHM may be applied
to problems with coefficients defined on unbounded domains, such as soliton problems or classical
problems involving special functions, such as the quantum harmonic oscillator. This greatly extends
the applicability of the FFHM.
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Figure 10: The eigenvalue A as a function of the quasi-momentum (i, f1y), for different values of
A: A= —0.3 (left), A =0 (middle) and A =1 (right). Note that the spectrum of (67) is obtained
by projecting these figures on the vertical axis. For all these runs, N = 3 proved sufficient, which
is not surprising given that the potential (69) is trigonometric. The data used to generate these
figures is accurate to within 1072, as in the case of the Mathieu equation (see Table 1).

The black-box method most commonly used for the computation of spectra of linear operators is
the FDM. We have demonstrated that for comparable accuracy the FFHM is orders of magnitude
faster, due to its spectral accuracy, and its ability to compute approximations to more spectral
elements by using multiple smaller matrices instead of a single large matrix. This enables us
to accurately compute spectra of linear operators that were previously outside the reach of any
computation effort.

Lastly, we have highlighted some interesting features of spectral problems which are often
disregarded in the literature: all too often the space of eigenfunctions is restricted to contain only
functions that are periodic with the same period as the coefficients, or small integer multiples
thereof. As demonstrated in the examples, unless the linear operator is scalar and of second order,
this approach is usually flawed, in that it will result in an underestimation of the extremal parts of
the spectrum. Perhaps most importantly, for problems originating from a linear stability analysis
this leads to an incorrect prediction of (i) the maximal growth rate and (ii) the shape of the most
unstable mode.
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Figure 11: Eigenfunctions of (67) with A = 1 corresponding to zero quasi-momentum, i.e.,
(has thy) = (0,0). These eigenfunctions are periodic with period 7 in both directions. They corre-
spond to the central points on the three eigenvalue sheets plotted in Fig. 10 on the right.
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