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Abstract

The cubic vector nonlinear Schrödinger equation with an external trigonometric potential
models a quasi-dimensional multi-component Bose-Einstein condensate trapped in a standing-
light wave. We construct families of exact stationary solutions for the more general case of an
elliptic function potential. Some of these solutions degenerate to zero as the effect of the external
potential disappears, whereas others limit to solutions of the free vector nonlinear Schrödinger
equation. The stability of these solutions is examined both analytically and numerically. The
stability results depend on the nature of the atomic interactions both within the components but
also between components. As in the scalar case (one component) with repulsive interaction, all
linearly stable solutions are deformations of the ground state of the linear Schrödinger equation.
Unlike the scalar case with attractive interaction, no solutions are found to be stable if there is
any attractive interaction present.

1 Introduction

The experimental realization of Bose-Einstein condensation [1] provides one of a few examples of
a macroscopic quantum phenomenon [2, 3]. The creation of a Bose-Einstein condensate (BEC) is
accomplished experimentally by super-cooling certain dilute alkali gases to below a critical temper-
ature, generally in the microKelvin range (see [4] for an overview). Currently, the entire experiment
takes place in an electromagnetic trap [5] on the order of millimeters or smaller. In most experi-
ments, the electromagnetic trap results in a confining potential which is harmonic, or very nearly so.
In addition to confining potentials, recent interest has focused on sinusoidal potentials, obtained by
placing the BEC in a standing light wave [6]. Possible applications of BECs in sinusoidal potentials
include the study of phase coherence [7, 8, 9], matter-wave diffraction [10], matter-wave gratings
and matter-wave transport [11], and quantum logic [12, 13].

In most experiments, only one atomic species is involved, and only one quantum state of this
atomic species participates in the condensation. However, experiments where two distinct BECs are
present in the same trap are possible: in [14, 15] two different condensates correspond to different
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spin states of 87Rb; in [16] an optical trap was used for the confinement of a 23Na spinor condensate,
effectively resulting in distinct interacting condensates. More recently, interacting condensates of
different atomic species were produced [17].

In this paper, the mean-field dynamics and stability of quasi–one–dimensional, coupled, dilute–
gas BECs in a sinusoidal potential are examined. The case of a single condensate in such a potential
was already considered in [18, 19] (BEC with repulsive interatomic interaction) and [20] (BEC with
attractive interatomic interaction).

The mean–field theory for the ground state of a single macroscopic BEC wave function is
constructed using the Hartree–Fock approximation [21], assuming a full occupancy rate for the
condensate (i.e. zero temperature), and a hard interaction between atoms. The resulting governing
equation is the Gross-Pitaevskii equations [22, 23]. Note that the asymptotic exactness of this
equation was demonstrated in [24, 25]. The number of spatial dimensions that are considered is
a crucial factor for the dynamics of the condensate. One-dimensional, two-dimensional and three-
dimensional BECs all behave in radically different manners [26, 27]. The quasi-one-dimensional
regime is relevant when the transverse dimensions of the condensate are on the order of its healing
length, and both are much smaller than its longitudinal dimension [28, 29]. Thus the condensate has
the form of an ellipsoid stretched along one of its major axes. In this regime the BEC remains phase
coherent and the governing equation is one-dimensional: the Gross-Pitaevskii equation reduces to
a one-dimensional nonlinear Schrödinger equation (NLS) with an external potential. The quasi-
one-dimensional regime should be contrasted with a truly one-dimensional theory which requires
transverse dimensions on the order of or less than the atomic interaction length.

If more than one distinct condensate is trapped in the confining potential the Gross-Pitaevskii
equation is no longer sufficient. In this case, the wave function for each BEC satisfies its own Gross-
Pitaevskii equation, coupled to the others by nonlinear mean-field interactions (see, for instance
[4, 31, 30]). Thus, in the quasi-one-dimensional regime, the dynamics is governed by a set of
coupled NLS equations with an external potential. This dynamics depends heavily on the sign
of the coupling constants, which characterize the strength of the interaction between the different
condensates. Myatt et al. [14] observed experimentally that the BECs corresponding to different
spin states of 87Rb have a repulsive interaction, implying a positive coupling constant. However, for
other atomic species and their isotopes, the coupling constant can be negative, resulting in various
possibilities: BECs with repulsive interatomic interaction and repulsive or attractive coupling,
BECs with attractive interatomic interaction and repulsive or attractive coupling, and mixes of
these two scenarios. All of these are considered for two classes of exact solutions of the coupled
NLS equations with a sinusoidal potential and generalizations thereof. Note that the stability of
such coupled condensates was considered previously in [4, 31], for the case of harmonic confinement,
using a variational reduction.

The paper is outlined as follows. In the next section we discuss the governing evolution equations
along with the confining potential. Section 3 introduces two classes of exact solutions of these
equations, which are valid for an arbitrary number of interacting condensates. Partial stability
results for these exact solutions are given in Section 4. These stability results are confirmed and
augmented by numerical simulations in Section 5. A brief discussion of the results and their
significance in an experimental context concludes the paper.
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2 Governing equations

The governing equations for the interaction of n ≥ 2 condensates are [4]

ih̄
∂Ψj

∂t
= − h̄2

2mj

∂2Ψj

∂x2
+ Vj(x)Ψj +

n
∑

l=1

2πh̄2ajl
mjl

|Ψl|2Ψj, j = 1, . . . , n. (1)

Here, Ψj(x, t) is the wave function for the j-th condensate; Vj(x) is the external potential expe-
rienced by the j-th condensate. In most situations Vj(x) = V (x) is identical for all j = 1, . . . , n.
However, because of the different properties of constituting atoms of the different condensates, it is
possible for different condensates in the same physical trap to experience different external poten-
tials. Also, mj is the atom mass of the atom species of the j-th condensate; mjl = mjml/(mj +ml)
is the reduced mass corresponding to atom species of the j-th and l-th condensate; finally, ajl = alj
is the s-wave scattering length between the atomic species j and l. The sign of this s-wave scatter-
ing length determines the nature of the interaction between the different atomic species: a positive
value gives rise to a repulsive interatomic interaction, whereas a negative value causes an attractive
interaction.

The equations (1) can be made nondimensional by rescaling of the dependent and independent
variables. After this rescaling, the equations have the form

i
∂Ψj

∂t
= − 1

2µj

∂2Ψj

∂x2
+ Vj(x)Ψj +

n
∑

l=1

αjl|Ψl|2Ψj, j = 1, . . . , n. (2)

We have not introduced new symbols for the dimensionless quantities, so as not to overburden
the notation. The symmetric matrix α = (αjk)

n
j,k=1 contains all information about the nature of

the interatomic interactions. Its entries are referred to as interaction coefficients. The parameters
µj, j = 1, . . . , n, play the role of effective masses. Current experiments [14, 15, 16] with multiple
condensates use different spin states or distinct isotopes of one atomic species, so that all µj ,
j = 1, . . . , n, are equal. In that case, the parameters µj, j = 1, . . . , n, can be removed by another
scaling transformation, so that effectively µj = 1, j = 1, . . . , n. This is the case used in the
numerical simulations of Section 5.

The external potentials considered in this paper are generalizations of the sinusoidal, standing
light wave potential [6]:

Vj(x) = −V0jsn
2(mx, k), (3)

with −V0j an amplitude parameter. The function sn(mx, k) denotes Jacobi’s elliptic sine function
[32]. As the elliptic modulus k → 0, sn(mx, k) → sin(mx). The Jacobi sine function sn(mx, k) is
periodic in x for every value of k ∈ [0, 1), with period given by the elliptic integral 4K(k)/m =

(4/m)
∫ π/2
0 dz/

√

1 − k2 sin2 z. Note that this period approaches infinity as k → 1. Thus, as k → 1,
the potential (3) is a periodic lattice of separated peaks or troughs, depending on the sign of V0j .
Hence, by changing the parameter k, various interesting regimes of the BECs are considered. This
is the reason for considering potentials that are more general than the standing light wave potential.
From (3) it follows that the potentials considered here are identical for all condensates, modulo an
amplitude factor. The − sign is part of the definition of the potential because in the important
limit, as the elliptic modulus k → 0, Vj(x) = −V0j sin2(mx), which equals V0j cos 2mx, up to an
additive constant.
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3 Exact solutions

This section gives a dictionary of the families of exact solutions we were able to find. These families
are extensions of the families found for the scalar case, discussed in [19, 20]. There are two distinct
types of solutions. Both types of solutions require all components of the condensate to have the
same functional form, i.e., the types cannot be mixed.

Type A

Solutions of Type A are solutions for which the density of each condensate |Ψk(x, t)|2 is a quadratic
function of sn(x, k). These solutions are given by Ψj(x, t) = exp(−iωjt + iθj(x))rj(x), θjx =
cj/r

2
j (x), j = 1, . . . , n, with

r2j = Ajsn
2(mx, k) +Bj , (4a)

n
∑

l=1

αjlAl = V0j +m2k2µj, (4b)

ωj =
1

2
m2(1 + k2)µj +

1

2
m2k2µj

Bj
Aj

+
n
∑

l=1

αjlBl, (4c)

c2j = m2Bj
Aj

(Aj +Bj)(Aj + k2Bj), (4d)

and j = 1, . . . , n. Thus, in order to uniquely determine the amplitude of the elliptic oscillations
Aj , j = 1, . . . , n, the matrix α needs to be inverted. The resulting family of solutions has n free
parameters Bj, j = 1, . . . , n, playing the role of an offset. Trivial-phase solutions (θj(x) = 0) occur
for those values of Bj for which the corresponding cj = 0. Specifically,

Bj = 0 : Ψj(x, t) =
√

Aj sn(mx, k)e−iωj t (5a)

Bj = −Aj : Ψj(x, t) =
√

−Aj cn(mx, k)e−iωj t (5b)

Bj = −Aj/k2 : Ψj(x, t) =
√

−Aj/k2 dn(mx, k)e−iωj t (5c)

Here cn(mx, k) and dn(mx, k) denote the Jacobian elliptic cosine and the third Jacobian elliptic
function respectively [32]. Note that it is possible for some component solutions Ψj(x, t) to have
trivial phase, whereas others may have nontrivial phase. The solutions (4a-d) have both trigono-
metric (k → 0, sn → sin) and hyperbolic (k → 1, sn → tanh) limits. As mentioned in the previous
sections, especially the trigonometric limit is relevant for applications. These limiting solutions are
discussed in more detail in [19]. In contrast to the trivial-phase limit, it is not possible for some
components to have trigonometric or hyperbolic profiles, while others have elliptic profiles, since
the elliptic parameter k is identical for all components.

In order to use the trivial-phase solutions in numerical simulations, it is necessary to establish
their existence regions, i.e, the regions in parameter space where a certain type of solution is
defined. This is a daunting task for n ≥ 3, and is very tedious even for n = 2. It is essential to
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reduce the dimension of parameter space as much as possible. The parameters in question are the
n(n+1)/2 entries of the matrix α, the n reduced masses µj, j = 1, . . . , n, and the n components of
the potential amplitude V0j , j = 1, . . . , n. In what follows, the effective masses µj , j = 1, . . . , n are
all equated to one. Although this does affect the size and shape of the distinct existence regions,
it does not affect their number, since all the effective masses are positive. Another observation is
that by the use of a scaling transformation, the diagonal elements of α can be rescaled to ±1.

As an example, consider the case of n = 2, with both species having repulsive self-interaction:
α11 = α22 = 1. Then the equations determining A1 and A2 are

{

A1 + αA2 = V01 +m2k2,
αA1 +A2 = V02 +m2k2,

(6)

with α = α12 = α21. From (5a-c) it follows that the solution (5a) is defined in regions where the
corresponding amplitude is positive, whereas the solutions (5b-c) are defined in regions where the
corresponding amplitude is negative. This is illustrated in Figure 1a for α > 1. Other regimes exist
for α < 1, and for different choices of the self-interaction.

01

V02

-m k 2 2

-m k 
2 2

3

V0

P

α=1α=∞

α=∞

2

2

 m k (α−1)

2 2(α−1)

1

 m k 

2 2

α−1 1

Β  −Β  
Β  −Β  1b
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Figure 1: Parameter space for a two-component condensate with repulsive self-interactions. (a)
Parameter space for Type A solutions with coupling interaction α > 1. In Region 1, only the
trivial-phase sn − sn solution is defined. In Region 2, trivial-phase solutions sn − cn and sn − dn
are possible, whereas in Region 3, the trivial-phase solution types cn − cn, cn − dn and dn − dn
exist. (b) Parameter space for Type B1.

Type B

Solutions of Type B are solutions for which the density of each condensate |Ψk(x, t)|2 is a linear
function of a Jacobian elliptic function. For these solutions, the potential strengths are limited by
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V0j = −3

8
m2k2µj , j = 1, . . . , n. (7)

It is clear from this that these solutions have no trigonometric limit: (2) degenerates to the VNLS
equation without external potential, which does not have solutions whose density is linear in terms
of Jacobi elliptic functions. Indeed, all solutions of Type B approach zero in the trigonometric
limit. Hyperbolic limits do exist, however. All of the solution families of Type B have n free
parameters. It is convenient to choose these as the amplitude of the oscillations Aj , j = 1, . . . , n.
As before the expressions for these solutions use an amplitude-phase decomposition: Ψj(x, t) =
rj(x) exp(−iωjt+ iθj(x)), θjx = cj/r

2
j (x), j = 1, . . . , n. Then

• Type B1:

r2j = Ajsn(mx, k) +Bj, (8a)

Bj =
−4Aj
µjm2k2

n
∑

l=1

αjlAl, (8b)

ωj =
1

8
µjm

2(1 + k2) − 1

8
µjm

2k2
B2
j

A2
j

+
n
∑

l=1

αjlBl, (8c)

c2j =
m2

4A2
j

(B2
j −A2

j )(A
2
j − k2B2

j ). (8d)

Several trivial-phase solutions exist, for those values of Aj that annihilate c2j : Ψj(x, t) =

σj
√

Aj(sn(mx, k) + 1) exp(−iωjt) (Aj = Bj > 0, Type B1a); Ψj(x, t) = σj
√

Aj(sn(mx, k) − 1)

exp(−iωjt) (Aj = −Bj < 0, Type B1b); Ψj(x, t) =
√

Aj(sn(mx, k) + 1/k) exp(−iωjt) (Aj =

kBj > 0, Type B1c); and Ψj(x, t) =
√

Aj(sn(mx, k) − 1/k) exp(−iωjt) (Aj = −kBj < 0,

Type B1d); Here σj = ±1, chosen so as to ensure Ψj(x, t) is analytic in x.

• Type B2:

r2j = Ajcn(mx, k) +Bj , (9a)

Bj =
4Aj

µjm2k2

n
∑

l=1

αjlAl, (9b)

ωj =
1

8
µjm

2(1 + k2) +
1

8
µjm

2k2
B2
j

A2
j

+
n
∑

l=1

αjlBl, (9c)

c2j =
m2

4A2
j

(B2
j −A2

j )(A
2
j + k2B2

j − k2A2
j ). (9d)

For Type B2, two types of trivial-phase solutions exist: Ψj(x, t) = σj
√

Aj(cn(mx, k) + 1)

exp(−iωjt), (Aj = Bj > 0, Type B2a); and Ψj(x, t) = σj
√

Aj(cn(mx, k) − 1) exp(−iωjt),
(Aj = Bj < 0, Type B2b), where σj is as before.
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• Type B3:

r2j = Ajdn(mx, k) +Bj , (10a)

Bj =
4Aj
µjm2

n
∑

l=1

αjlAl, (10b)

ωj =
1

8
µjm

2(1 + k2) +
1

8
µjm

2
B2
j

A2
j

+
n
∑

l=1

αjlBl, (10c)

c2j =
m2

4A2
j

(A2
j −B2

j )(A
2
j −B2

j − k2A2
j ). (10d)

Here four types of trivial-phase solutions exist: Ψj(x, t) =
√

Aj(dn(mx, k) + 1) exp(−iωjt),
(Aj = Bj > 0, Type B3a); Ψj(x, t) =

√

Aj(dn(mx, k) − 1) exp(−iωjt), (Aj = −Bj < 0, Type

B3b); Ψj(x, t) =
√

Aj(dn(mx, k) +
√

1 − k2) exp(−iωjt), (Aj = Bj/
√

1 − k2 > 0, Type B3c);

Ψj(x, t) = σj

√

Aj(dn(mx, k) −
√

1 − k2) exp(−iωjt), (Aj = −Bj/
√

1 − k2 > 0, Type B3d),
where σj is as before.

Note that mixing of these solution types is not allowed: it is not possible for one component of
the condensate to correspond to a solution of Type B1, while another corresponds to Type B2 or
B3. Mixing of different types of trivial-phase solutions of the same type is possible.

Since the potential strengths V0j , j = 1, . . . , n are constrained for Type B solutions, parameter
space is lower dimensional than for the solutions of Type A. Specifically, for the case of a two-
component condensate with preset self-interactions, there is only one parameter, α, the off-diagonal
element of the interaction matrix. The n = 2 case of Type B1 solutions with repulsive self-
interactions is illustrated in Fig. 6b. Many other regimes exist for different self-interactions and
different solution types.

4 Stability analysis

To examine the linear stability of these exact solutions analytically, the governing equations (2) are
linearized around the exact solution,

Ψj(x, t) = eiθj(x)−iωjt(rj(x) + εφj(x, t)), (11)

for a small parameter ε. Substitution of (11) in (2) and ignoring terms containing higher than
linear powers in ε gives

∂

∂t

(

u
v

)

= J

(

L+ S
−S L−

)(

u
v

)

, (12)

where u = (u1, . . . , un)
T , v = (v1, . . . , vn)

T , and uj , vj are the real and imaginary parts of φj. Also

J =

(

0n 1n
−1n 0n

)

, (13)

7



where 0n and 1n are the n× n zero and identity matrix, respectively. The n× n matrix operators
L+, L−, S are given by

(L+)jk =

{

L+
j , j = k

2αjkrjrk, j 6= k
, (14)

(L−)jk =

{

L−
j , j = k

0, j 6= k
, (15)

(S)jk =

{

Sj, j = k
0, j 6= k

, (16)

with

L+
j = −1

2
∂2
x +

c2j
2r4j

+
n
∑

k=1

αjkr
2
k + Vj − ωj + 2αjjr

2
j , j = 1, . . . , n, (17)

L−
j = −1

2
∂2
x +

c2j
2r4j

+
n
∑

k=1

αjkr
2
k + Vj − ωj, j = 1, . . . , n, (18)

Sj =
cj
rj
∂x

1

rj
, j = 1, . . . , n. (19)

The treatment of the linear stability analysis for nontrivial phase solutions (cj 6= 0, for any
j) is beyond the scope of our methods, even in the scalar case (n=1). However, if all condensate
components are described by trivial solutions, more analysis is possible [18, 19, 20].

In the trivial-phase case cj = 0 and thus Sj = 0, j = 1, . . . , n. Upon using separation of
variables (u(x, t), v(x, t)) → eλt(u(x), v(x)) in (12), the spectral problem reduces to

{

L−v = λu,
L+u = −λv. (20)

Thus, if the spectral problem (20) has any positive eigenvalues, then the solution is linearly unstable.
However, if all eigenvalues are imaginary, then the solution is linearly stable.

Note that

L−







r1
...
rn






= 0,

and thus λ = 0 is an eigenvalue of L−, with eigenfunction (r1, . . . , rn)
T . Next, let

λ± = inf
||ψ||=1

〈

ψ|L±|ψ
〉

,

where ||ψ|| = (
∫ 4K(k)/m
0 |ψ|2dx)1/2 is the standard L2-norm, and 〈ψ1|L±|ψ2〉 =

∫ 4K(k)/m
0 ψ∗

1L
±ψ2dx,

and ψ∗
1 denotes the complex conjugate of ψ1. Thus, λ+ (λ−) is the smallest eigenvalue of L+ (L−).

Next, L+ = L− + 2(αR2), where (αR2)jk = αjkrjrk, for j, k = 1, . . . , n.
Then
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Lemma 1 The n × n matrix (αR2)nj,k=1 is positive (negative) definite if and only if the matrix
(α)nj,k=1 is positive (negative) definite.

Proof The matrix (αR2)nj,k=1 is positive definite if and only if all its principal minors are positive

[33]. The principal minors of (αR2)nj,k=1 are the determinants of (αR2)mj,k=1, for m = 1, . . . , n. But

every element of the j-th row of the matrix in the m-th principal minor of (αR2)nj,k=1 contains rj ,
and every element of the k-th column of the matrix in the m-th principal minor contains rk, thus

det(αR2)mj,k=1 =





n
∏

j=1

r2j



 det(α)mj,k=1,

for m = 1, . . . , n. Here det(α)mj,k=1 is the m-th principal minor of (α)nj,k=1, which proves the
lemma. The negative definite case is identical to the proof given here, with “positive” replaced by
“negative”.

�

The above lemma lead to the following

Theorem 1 If α is positive definite, then

• if rj(x) > 0 for all x, j = 1, . . . , n then the trivial-phase solution Ψj(x, t) = e−iωjtrj(x) is
linearly stable;

• if rj(x) < 0 for any x, for any j ∈ [1, n] and the matrix operator L+ is positive, then the
trivial-phase solution Ψj(x, t) = e−iωjtrj(x) is linearly unstable.

Proof If α is a positive definite matrix, then by Lemma 1, L+ − L− = 2(αR2) is a positive
operator, or L+ > L−. If rj(x) > 0 for all x, j = 1, . . . , n, then (r1, . . . , rn)

T is a ground state of
L− [34], and λ− = 0 or L+ > L− is a positive operator. Then there exists a self-adjoint positive
operator H,

H = (L+)1/2L−(L+)1/2. (21)

In terms of this operator, the spectral problem (20) is rewritten as

(H + λ21n)w = 0, (22)

with w = (L+)1/2u. From this representation and the fact that H is positive, it follows that λ2 < 0,
thus all λ are imaginary. This proves the first assertion.

To prove the second assertion, note that if rj(x) < 0 for any x, for any j ∈ [1, n], then

(r1, . . . , rn)
T is not the groundstate of L− [34], thus λ− < 0, and there exists a ϕ(x) such that

〈ϕ|L−|ϕ〉 < 0. Assuming λ+ > 0, the construction leading to (22) remains valid. In particular, the
operator H in (21) is still defined. Let ϕ0 = (L+)−1/2ϕ, then

〈ϕ0|H|ϕ0〉 =
〈

ϕ0|(L+)1/2L−(L+)1/2|ϕ0

〉

=
〈

ϕ|L−|ϕ
〉

< 0,
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from which it follows that positive λ2 in (22) exist, leading to the presence of unstable modes. This
establishes the second assertion.

�

This theorem provides two criteria for establishing linear stability analytically for positive def-
inite α, i.e., the case of overall repulsive interaction. The first of these criteria is very practical,
requiring no more than an inspection of the solution. The second criterion is less practical, requir-
ing proving that L+ is a positive operator. If α is negative definite, (overall attractive interaction)
the following negative result holds:

Theorem 2 If α is negative definite, and rj(x) > 0 for all x, j = 1, . . . , n, then the trivial-phase
solution Ψj(x, t) = e−iωjtrj(x) is linearly unstable.

Proof If rj(x) > 0 for all x, j = 1, . . . , n, then (r1, . . . , rn)
T is a ground state of L− [34], and

λ− = 0 or L− is a non-negative operator. Then there exists a self-adjoint positive operator H,

H = (L−)1/2L+(L−)1/2.

In terms of this operator, the spectral problem (20) is rewritten as (22), with w = (L−)1/2u. If
α is a negative definite matrix, then by Lemma 1, L− − L+ = −2(αR2) is a positive operator, or
L− > L+, hence λ+ < λ−. Using a similar argument as to prove the second assertion of Theorem
1 concludes the proof.

�

Theorems 1 and 2 cover only few of the exact solutions described in the previous section. No
information is obtained about the stability of nontrivial phase solutions, or about the case when α

is neither positive or negative definite. For all of these cases, we resort to numerical methods.

5 Numerical simulations

In this section, the results of the numerical simulations are discussed. Equation (2) is solved
numerically with initial conditions chosen from the set of exact solutions given in Section 3. The
numerical procedure uses a fourth-order Runge-Kutta method to advance in time and a filtered
pseudo-spectral method in space. For each numerical experiment a small amount of white noise is
added as a perturbation to the initial condition.

The figures in this section show the dynamics, as obtained from the numerical computations, for
the n interacting condensates in side-by-side stacks. Each stack displays, from top to bottom, the
modulus of the solution squared |Ψj(x, t)|2, a contour plot of the same, the potential Vj(x) = V (x),
and the inverse tangent of the Fourier spectrum of |Ψj(x, t)|, arctan |Ψ̃j(k)|. For convenience, we use
“repulsive” to imply that all n condensates are self-repelling, whereas “attractive” is used to denote
that all n condensates are self-attracting. The connotation “mixed” denotes there is a combination
of self-repelling and self-attracting condensates. In the case of two condensates “mixed” means one
of each kind.

Numerically, stability for trivial-phase solutions is found only for solutions satisfying the first
assertion of Theorem 1. Although stability or instability is independent of the elliptic modulus k,
the onset of instabilities is found to be accelerated by high values of k > 0.9.
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Figure 2 shows the dynamics for a type A repulsive dn-dn solution with V01 = V02 = −1. Figure
3 shows a type B repulsive dn-dn solution. Both exact solutions satisfy the first part of Theorem
1. The numerical results confirm the analytical proof of stability. Note that in the numerical
experiments for figures 2 and 3 both condensates are localized in the troughs of the potential. Thus
the stability of these exact solutions appears similar to the stable behavior in a linear system.
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Figure 2: A stable, repulsive, type A dn-dn solution. Here V01 = V02 = −1, α = 1/2, k = 1/2, and
m = 1.

Figure 4 illustrates that not all stationary repulsive dn-dn solutions are stable. The density of
the wave function describing the condensate on the right is never zero, but the density of the wave
function describing the condensate on the left has isolated zeros, and the first criterion of Theorem 1
no longer applies. This solution remains coherent for almost 500 time units. It displays behavior
quite typical of unstable repulsive solutions. These solutions break up, and their density maxima
seem drawn to the peaks of the potential. In this case, the initial condition for the condensate on
the left is localized on the peaks of the potential, whereas the condensate on the right is localized
in the troughs of the potential.

Figure 5 shows the typical dynamics of an attractive solution. The instability mechanisms
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Figure 3: A stable, repulsive, type B3 dn-dn solution. Here α = 1/2, k = 1/2, and m = 1. The
condensate on the left is in a B3a state, and the condensate on the right is in a B3c state.

for attractive condensates tend to focus the condensates into non-stationary peaks. Note that
the instability does not occur until after approximately 300 time units, hence the configuration
illustrated in figure 5 may be long-lived enough to be realized experimentally. The analogous
solution for one condensate (n = 1) was found to be stable numerically in [20].

Figure 6 shows the dynamics of a stationary mixed dn-dn solution. Again, this solution persists
for approximately 300 time units before the onset of instability. Mixed solutions also were found
that persisted for more than 3000 time units. This figure allows us to analyze the process that
leads to the onset of instability. The Fourier spectrum displays new modes that are gradually being
activated. These new modes quickly reach amplitudes comparable to those of the original modes.
This process is repeated as more modes are added, resulting in a quick evolution of the spectrum
to one such as seen in figure 5.

In figure 7 the dynamics of a stable three-species (n = 3) repulsive dn-dn-dn condensate is
shown, for the case of a positive definite interaction matrix α. Figure 8 displays the dynamics of
an unstable type A three-species repulsive dn-dn-dn condensate. Unlike the stable run of figure 7,

12



|ψ
(  

)|
~

 t
a
n
  
( 

  
  
  
)

2|ψ(  )|

+1-1

� �� �

��

��

��

-1

0.00

0.09

0.00

0

0.42

0.09

0.00

0
x x

wave numberwave number

1000

 2000

0

1000

 2000

-1 +1

0.087

0

 V(x)

0.096

x

�
�
	
	

L-L

t

x-L L

t

k

Figure 4: An unstable, repulsive, type B3 dn-dn solution. Here α = −0.4, k = 1/2, and m = 1.
The condensate on the left is in a B3b state, and the condensate on the right is in a B3c state.

now the interaction matrix α is not positive definite and the results of Theorem 1 do not apply.
For nontrivial-phase solutions, analytical methods provide no answers. The numerics can be

used to investigate the stability of these solutions. For the elliptic solutions, this is problematic,
because it requires the periods of the phase and amplitude to be commensurate, effectively quantiz-
ing the parameter space of the solutions. If this is not done, the solutions are quasiperiodic. Using
spectral methods to solve the initial-value problem for these solutions results in boundary effects.
On the other hand, the quantization condition on parameter space is a nonlocal condition, whose
solution is quite involved. In the trigonometric limit (k → 0), the phase quantization condition is
automatically satisfied. It is this limit which we examine numerically.

Theorem 1 suggests that solutions whose density is never zero have the possibility of being
stable for condensates with repulsive self-interaction, as long as the interaction matrix α is positive
definite. Indeed, the only trigonometric nontrivial phase solutions that appear to be stable numer-
ically occur in this regime. As in [19], a sufficient amount of offset appears to be a requirement for
stability. Figure 9 displays an unstable trigonometric nontrivial-phase solution, corresponding to
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Figure 5: An unstable, attractive, type A Cn-Cn solution. Here V01 = −0.1, V02 = −0.01, α = 1/2,
k = 1

2 , and m = 1.

offset parameters B1 = B2 = 1/2. On the other hand, for more offset (B1 = B2 = 1), it appears
that the condensates are stable. Of course, the numerics do not allow such a conclusion. It does
however suggest that the onset of instability time of this solution is larger than t = 2000, the
duration of the numerical runs. It is therefore conceivable that these solutions are observable, since
their lifetime exceeds the duration of current experiments (see [35], for the time scale comparisons).

6 Conclusions

We have constructed large families of stationary solutions of the vector NLS 2 with periodic poten-
tial, modeling the interaction of different components of a Bose-Einstein Condensate in a lattice
potential. Some of these solutions (Type A) degenerate to solutions of the free NLS equation as
the potential strength → 0. These solutions have both trigonometric and hyperbolic (soliton) lim-
its. The trigonometric limit is especially relevant, as it models the dynamics of a multicomponent
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Figure 6: An unstable, type B, mixed dn-dn solution. Here α = 0.4, k = 1/2, and m = 1. The
wave function for the condensate on the left is given by a repulsive type B3c. The right condensate
corresponds to an attractive type B3d wave function.

condensate in an optical potential. Other solutions (Type B) degenerate to the zero solution of the
free NLS equation as the potential strength → 0. These solutions have hyperbolic (soliton) limits,
but no trigonometric limits. Both families of solutions have trivial-phase solutions and solutions
with a nontrivial-phase profile.

For some trivial-phase solutions, stability analysis is possible: we proved that for a positive-
definite interaction matrix α (mostly repulsive interactions), solutions without zeros are linearly
stable. Likewise, if the interaction matrix α is negative definite (mostly attractive interactions),
solutions without zeros are unstable.

For all other solutions, numerical methods provide the main means of investigating their dy-
namical stability. Of all trivial-phase solutions, only the ones without zeros and a positive definite
interaction matrix α are found to be stable. For the nontrivial-phase solutions, we restricted our-
selves to the trigonometric limit, in which no quantization of parameter space is required. It appears
that solutions whose density profile has sufficient offset are stable, or at least that their onset of

15



wave number

|ψ(  )|2

 t
a
n
  
( 

  
  
  
)

wave number

0.37

0.50

0.00

0.50

-1

wave number

+1

~

0

0.37

0.50

0.00

0.50

-1 +10

0.37

0.50

0.00

-1 +10

0.50

 V(x)

-1
|ψ

(  
)|

x

-L +L
x

t

-L +L
x

t

-L +L
x

t

2000

0

2000

00

k
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instability time becomes unbounded as the offset becomes infinite.

Acknowledgements

This work was supported by NSF grants DMS-0071568 (B.D.), DMS-0092682 (J.N.K.) and DMS-
9810726. (VIGRE) (M.S.P. and B. W. W.)

References

[1] N. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science
269, 198 (1995).

[2] W. Ketterle, D. S. Sturfee, and D. M. Stamper-Kurn, in Proceedings of the International School
of Physics ”Enrico Fermi” (IOS Press, Amsterdam; Washington, D.C., 1999), pp. 67–176.

16



wave number

|ψ(  )|2

-1 +1 -1 +1 -1 +1

wave number

 t
a
n
  
( 

  
  
  
)

~

wave number

0.0

0.0

-.5

0.54

0.0

0.0

-.5

1.4

0.0

0.0

-.5

1.4

 V(x)

-1
|ψ

(  
)|

x

-L +L
x

t

-L +L
x

t

-L +L
x

t

2000

0

2000

00

k

Figure 8: An unstable, 3-species, repulsive dn-dn-dn solution with V01 = V02 = V03 = 1
2 , k = 1

2 ,
m = 1, and the interaction matrix α that is not positive definite.

[3] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

[4] T. Tsurumi, H. Morise, and M. Wadati, Int. J. Mod. Phys. 14 655 (2000)

[5] K. Huang, Statistical Mechanics, (John Wiley, New York, 1963).

[6] K. Bongs, S. Burger, S. Dettmer, D. Hellweg, J. Arlt, W. Ertmer, and K. Sengstock, Phys.
Rev. A 63, 031602(R) (2001).

[7] B. P. Anderson and M. A. Kasevich, Science 282, 1686 (1998).

[8] E. W. Hagley, L. Deng, L. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, W. D. Phillips,
Science 283, 1706 (1999).

[9] M.L. Chiofalo and M.P. Tosi, Phys. Lett. A 268 406 (2000).

17



|ψ
(  

)|
~

 t
a
n
  
( 

  
  
  
)

2|ψ(  )|

+1-1

� �� �

��

��

��

-1

0.0

0.5

0.0

0

1.1

0.0

0.5

0.0

0
x x

wave numberwave number

200

 400

0

200

 400

1.1

0

 V(x)

-1 +1 t

�	

x L-L

t

-L L

x

Figure 9: An unstable, 2-species, repulsive trigonometric nontrivial phase solution with V01 = V02 =
−1

2 , α = 1/2, B1 = B2 = 1/2, and m = 1.

[10] Y. B. Ovchinnikov, J. H. Müller, M. R. Doery, E. J. D. Vredenbregt, K. Helmerson, S. L.
Rolston, W. D. Phillips, Phys. Rev. Lett. 83, 284 (1999).

[11] D.-I. Choi and Q. Niu, Phys. Rev. Lett. 82, 2022 (1999).

[12] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 81, 3108
(1998);

[13] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, Phys. Rev. Letts. 82, 1060
(1999).

[14] C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett.
78, 586 (1997).

[15] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wiemann, and E. A. Cornell, Phys. Rev.
Lett. 81, 1539 (1998).

18



|ψ
(  

)|
~

 t
a
n
  
( 

  
  
  
)

2|ψ(  )|

+1-1

� �� �

��

��

��

-1

0.67

0.5

0.0

0

1.00

0.67

0.5

0.0

0
x x

wave numberwave number

1000

 2000

0

1000

 2000

1.00

0

 V(x)

+1 -1 t

�	

x L-L

t

-L L

x

Figure 10: A numerically stable, 2-species, repulsive trigonometric nontrivial phase solution with
V01 = V02 = −1

2 , α = 1/2, B1 = B2 = 1, and m = 1.

[16] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger,
and W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998).

[17] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio, Phys. Rev. Lett. 89, 190404
(2002).

[18] J. C. Bronski, L. Carr, B. Deconinck, and J. N. Kutz, Phys. Rev. Lett. 86, 1402 (2001).

[19] J. C. Bronski, L. Carr, B. Deconinck, J. N. Kutz, and K. Promislow, Phys. Rev. E 63, 036612
(2001).

[20] J. C. Bronski, L. Carr, R. Carretero-Gonzalez, B. Deconinck, J. N. Kutz, and K. Promislow,
Phys. Rev. E 64, 056615 (2001).

[21] G. Baym, Lectures in Quantum Mechanics, (Addison-Wesley, Redwood City, CA), Ch. 20.

19



[22] L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).

[23] E. P. Gross, Nuovo Cimento 20, 454 (1961).

[24] E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. A 61, 043602 (2000)

[25] E. H. Lieb and R. Seiringer, Phys. Rev. Lett. 88, 170409 (2002).

[26] D. S. Petrov, M. Holzmann, and G. V. Shylapnikov, Phys. Rev. Letts. 84, 2551 (2000).

[27] D.S. Petrov, G.V. Shlyapnikov, and J.T.M. Walraven, Phys. Rev. Lett. 85, 3745 (2000).

[28] L.D. Carr, C.W. Clark, and W.P. Reinhardt, Phys. Rev. A 62 063610 and 063611 (2000).

[29] L.D. Carr, M. A. Leung, and W.P. Reinhardt, J. Phys. B 33, 3983 (2000).

[30] B. D. Esry, C. H. Greene, J. P. Burke, Jr., and J. L. Bohn, Phys. Rev. Lett. 78, 0013-9007
(1997)
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