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We study the stability of Stokes waves on a free surface of an ideal fluid of infinite depth. For
small steepness the modulational instability dominates the dynamics, but its growth rate is vastly
surpassed for steeper waves by an instability due to disturbances localized at the wave crest, explain-
ing why long propagating ocean swell consists of small-amplitude waves. The dominant localized
disturbances are either co-periodic with the Stokes wave, or have twice its period. The nonlinear
stage of instability for steep wave evolution reveals the formation of a plunging breaker.

Ocean swell in the wake of a storm or driven by the
force of strong wind is seen as a collection of almost peri-
odic unidirectional waves from a beach or an ocean liner.
The waves that do not vary in the direction transverse
to propagation are known as Stokes waves. Such waves
were discovered by Stokes [1] who conjectured [2] that the
wave of greatest height, referred to as the extreme Stokes
wave, has a crest angle of 120◦. That conjecture was
proven more than 100 years later, see [3, 4]. The study of
Stokes waves has been the subject of numerous works, see
e.g. [3–20]. Stokes waves are a one-parameter family of
solutions often characterized by the steepness s = H/L,
where H is the crest-to-trough height and L is the wave
length. The steepness of the extreme Stokes wave is
reached at slim = 0.14106348398 . . . [20] (see also [21] for
a more accurate value). However, the curvature radius
at the crest of the Stokes wave vanishes as the extreme
wave is approached. In the ocean, once the capillary
length scale ≃ 1.7cm (for ocean water) is reached, the
surface tension effects cannot be disregarded. This limits
the physical relevance of Stokes waves in the immediate
vicinity of the extreme wave. Nevertheless, the wave-
length of gravity waves in ocean swell often ranges from
a dozen centimeters to a few kilometers, see e.g. [22, 23].
Thus, without oversimplification, a wide range of Stokes
waves is relevant for modeling oceanic swell. The Stokes
waves found in [18, 20] were used to determine the ra-
dius of curvature at the crest. Surface tension effects are
small for s . s50 = 0.14100 and s . s100 = 0.141034
for Stokes waves with wave length 50 and 100 meters re-
spectively. In what follows we provide stability results
for s ≤ 0.1408627 that are well below these applicability
estimates. The nonlinear stage of instability, as observed
in experiments or computation, reveals that wave break-
ing leads to the rapid vanishing of the curvature radius
to the point that surface tension becomes non-negligible,
and whitecaps form through ejection of capillary waves
from spilling/plunging breakers, see [24–26].

Since [27] indicates that transverse perturbations of
steep waves have smaller growth rates than do longitu-
dinal ones, we examine the growth rates of longitudinal
instabilities of Stokes waves in water of infinite depth, ig-
noring the effects of surface tension, vorticity, wind and
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FIG. 1: Initial stage of instability development at the crest of
a Stokes wave (solid black) from the nonlinear dynamics (red
line) compared to a perturbation of the Stokes wave by the
eigenfunction corresponding to a localized instability (black
dashed line). The later stage of the dynamics reveals the for-
mation of a breaker (orange & green) and overturning (inset).

dissipation. We consider all quasiperiodic perturbations,
i.e., we include superharmonic (with period L) and sub-

harmonic (with larger period, an integer multiple of L)
perturbations, using the terminology of [28, 29]. The
subharmonic instability of small-amplitude Stokes waves
(in water waves and other fields) has been studied since
1965, see Refs. [30–35] and is now well understood [36–
38]. This instability is referred to as the Benjamin-Feir
(BF) or modulational instability. The growth rate of the
BF instability increases with s, passes through its max-
imum and decays to zero. The so-called localized insta-
bility branch appears for steep waves before the BF in-
stability ceases. The eigenfunctions associated with this
branch change rapidly in the vicinity of the wave-crest.
Increasing s gives rise to additional localized instability
branches. These branches correspond to both the sub-
[27, 29, 39] and the superharmonic disturbances (the lat-
ter form at the extrema of the Hamiltonian, see Fig. 2)
[28, 40–42]. See also [27, 42] for earlier numerical studies
of different branches.

It has been unclear as to which of the instabilities dom-
inates the dynamics of almost-extreme Stokes waves. The
present work elucidates this long-standing question and
establishes the localized branch as the dominant one for
steep waves. Depending on the value of s, either a pertur-
bation co-periodic with the Stokes wave, or the one hav-
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FIG. 2: (Left panel) Hamiltonian H given by (1) as a function of steepness s. Green denotes the region of dominance of the
BF instability, red corresponds to dominance of the localized branch. (Right panel) H as a function of − ln (slim − s) oscillates
near the extreme wave. The points marked smax,1, smin,1, smax,2 are the first three extrema of H. For details about s1, s2, s3
and s4 we refer the reader to the main body of the text.

ing twice its period is the most unstable. The dominance
of the latter perturbations interchanges repeatedly as the
extreme wave is approached. Growth rates observed for
near-extreme waves achieve large values, resulting in in-
stabilities that would swiftly disintegrate wave trains of
large-amplitude Stokes waves. This is crucial for under-
standing why long-lived oceanic swell is never observed
in the ocean.
Problem Formulation. We consider potential motion
of an ideal fluid in a 2D domain, r = (x, y)T ∈ D(t) ⊂ R2.
The fluid velocity v is the gradient of the potential ϕ(r, t):
v = ∇ϕ with ∇ ≡ (∂x, ∂y) which satisfies ∇2ϕ = 0. The
fluid domain is bounded by a 2π-periodic free surface
and extends downward to infinity. The Hamiltonian of
the Euler equations with a free surface is recast in terms
of surface variables [34], and the conformal mapping ap-
proach from [14, 43] is used. Here w = u + iv ∈ C

−

parameterizes the fluid domain through the conformal
mapping z(w, t) = x(w, t) + iy(w, t) ∈ D(t).
The Hamiltonian of the fluid flow is the sum of the ki-

netic and potential energy due to gravity. The Eulerian
dynamics with a free surface is obtained from the least
action principle [44]. The Hamiltonian in conformal vari-
ables is

H = −
1

2

π
∫

−π

ψĤψu du+
g

2

π
∫

−π

y2xu du, (1)

where g is the acceleration of gravity, and Ĥ is the cir-
cular Hilbert transform. The Lagrangian has the form

L =

π
∫

−π

ψ (ytxu − yuxt) du −H. (2)

Varying the action
∫

L dt, with respect to x, y and ψ,
holding the Cauchy-Riemann relations for x and y as a
constraint, one arrives at the equations of motion [44, 45]:

ytxu − yuxt = −Ĥψu,

xtψu−xuψt−Ĥ [ytψu − yuψt] = g(xuy−Ĥ [yyu]),
(3)

where x = u − Ĥy. It has been shown [46] that y and

P = xuψ − Ĥ [yuψ] are canonical conformal variables.
The Stokes wave is a solution of (3), traveling at con-

stant speed c, measured in units of c0 =
√

g/k, the speed

of linear gravity waves. The time variable is normalized
to the frequency of linear gravity waves and is measured
in units (gk)−1/2. After rescaling the spatial and confor-
mal coordinates we set the period of the Stokes wave to
be 2π in u (and x) without loss of generality. Writing
(3) in the moving frame using y(u − ct) and ψ(u − ct),
we linearize around the Stokes wave in canonical con-
formal variables y and P as in [47]. This results in a
linear integro-differential equation with variable periodic
coefficients. Quasi-periodic solutions are sought in the
form [48]

(

δP(u, t)
δy(u, t)

)

= eiµu+λt

(

δP0(u)
δy0(u)

)

(4)

where δy0(u) and δP0(u) are 2π-periodic functions, µ ∈
(−1/2, 1/2] is the Floquet exponent, and λ is a complex
eigenvalue whose real part is the growth rate γ = Reλ
(if positive). The stability spectrum of a Stokes wave
is found as the union of point spectra for all values of
µ [48, 49].
The fast Fourier transform (FFT) is used to apply

the linearization operator to the periodic functions ap-
pearing in the eigenvalue problem. The resulting spec-
tral problem in canonical conformal variables y and
P [47] is amenable to the shift-invert method, applied
in O(mN lnN) flops, where N is the number of Fourier
modes and m is the number of iterations to solve the lin-
ear system embedded in the shift-invert operator, using
the MINRES method [50]. Combined with the Krylov-
Schur algorithm [51], the numerical solution of the eigen-
value problem is solved with up to N = 106 Fourier
modes.
Main Results. The stability of Stokes waves of small
to moderate steepness was studied using variations of the
Fourier-Floquet-Hill method [48] by many authors, e.g.,
[27, 52, 53]. Our results confirm that for s < 0.1381465,
all Stokes waves are found to be unstable, see Fig. 3. For
higher steepness waves, our results are new for subhar-
monic perturbations (µ 6= 0). They are in agreement
with [42] for superharmonic perturbations (µ = 0).
For steepness 0 < s < s2 = 0.12894, we find that the

dominant instability of Stokes waves is the modulational
(BF) instability, corresponding to subharmonic pertur-
bations, see Fig. 3. The figure-8 detaches from the origin
at s1 = 0.10423, shortly after the maximum growth rate,
γBF = 0.02357 is attained. At s2 = 0.12894, the domi-
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FIG. 3: (Left panel) The maximal instability growth rate γ as a function of steepness s. BF (green) is the dominant instability
for small steepness, and the localized branch (red) dominates for large steepness. The blue curve is the theoretical curve
from [37]. The BF figure eight detaches at steepness s1 and begins to shrink. At s = s2, the dominant instability transitions
to the localized branch with real eigenvalue. The inset shows how the transition to the localized branch occurs. The spectral
plane for waves (a)-(d) is shown on the right. (Right panel) Spectrum of the problem (real part vs. imaginary part) in the
transition region (a)-(d) from the inset of the left panel. Red circles correspond to the subharmonic instability (µ = 0.5) of the
localized branch and green circles are the eigenvalues with largest real part of the BF remnant.
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FIG. 4: (Left panel) The maximal growth rate γ as a function of the variable − ln(slim − s). The red curve represents the
localized instability with real eigenvalues for µ = 0 and µ = 1/2. At s = s3, the dominant instability becomes superharmonic
(µ = 0). At s4 it switches back to subharmonic. (Right panel) Eigenvalues for steepness (e)-(h) in the vicinity of smax,1:
(from left to right) s = 0.1341061714, s = 0.1364173038, s = 0.1366051511 and s = 0.1378879221. As the steepness increases,
superharmonic eigenvalues (green) move along the imaginary axis toward the origin and collide. As a result a pair of symmetric
instability isole (h) appear and move away from the origin.

nant instability switches (Fig. 3) to the localized branch,
described next.

The localized instability branch first appears at the
steepness sloc,1 = 0.12890308 from a collision of eigen-
values with µ = 1/2 at the origin, resulting in an oval
of eigenvalues, see Fig. 4e. As s increases, the oval is
pinched vertically (Fig. 4f) as more eigenvalues from the
imaginary axis flood onto it. This results in formation of
a figure “infinity” at s = smax,1 (Fig. 4g), for the Stokes
wave corresponding to the first maximum of the Hamil-
tonian (Fig. 2). With further increase of s, the figure in-
finity is pinched at the origin, its two isole drifting away
along the real axis, as their diameter decreases (Fig. 4h).
We refer to the localized instability branch as such be-
cause its eigenvalues for µ ∈ (− 1

2
, 1
2
] have eigenfunctions

that are localized near the wave crest as the extreme wave
is approached, see Fig. 6. After detachment (s > smax,1)
the entire range of the Floquet parameter µ ∈ (− 1

2
, 1
2
]

covers the localized instability branch, in contrast to the
high-frequency instabilities discussed in [52, 54].

On the unstable localized branch isola, the subhar-
monic mode with µ = 1/2 has the dominant growth
rate for smax,1 < s < s3 = 0.139492. Through a se-
quence of topological changes to the isola (Fig. 5i-l),

the superharmonic mode (µ = 0) becomes dominant for
s3 < s < s4 = 0.140613. For Stokes waves with larger
steepness, these switches repeat. One such additional
switch is illustrated in Fig. 5m-p. We conjecture that
the dominance of unstable mode switches between µ = 0
and µ = 1/2 an infinite number of times as the extreme
wave is approached.

As s increases, a secondary modulational instability
branch appears and vanishes, repeating the stages of the
BF instability. Similarly, a secondary localized branch
appears through the collision of a pair of µ = 1/2 eigen-
values at the origin, repeating the stages seen in Fig. 5i-l.
The figure infinity detaches from the origin at the next
extremum of the Hamiltonian at s = smin,1. We conjec-
ture that new modulational and new localized instability
branches appear infinitely many times as the extreme
wave is approached.

Eigenfunctions on the localized instability branch are
shown in Fig. 6 for µ = 0 (two periods) and µ = 1/2 (one
period). As s increases, the eigenfunctions are increas-
ingly localized near the crest of the wave. When used as
a perturbation to seed the nonlinear dynamics about a
Stokes wave, the localized instability leads to the steep-
ening and overturning of the wave, see Fig. 1. Simulta-
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FIG. 5: Spectrum in transition regions (i)-(l) and (m)-
(p) from the left panel of Fig. 4: around s3 (top panel,
from left to right) s = 0.13946478, 0.13948945, 0.13951484
and 0.13953804; and around s4 (bottom panel, from left to
right) s = 0.1405850778, 0.1406007221, 0.1406080087 and
0.1406384552. Red circles correspond to µ = 0.5 (subhar-
monic) and green circles to µ = 0 (superharmonic). This
demonstrates the switch between the two types of instabili-
ties. At s5 = 0.14077 < smin,1, the interchange of dominance
between µ = 0 and µ = 1/2 occurs again.
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FIG. 6: Eigenfunctions of the localized instability branch
for µ = 0 (red) and µ = 1/2 (green) of the Stokes wave with
steepness s = 0.1406007221 (blue). The corresponding wave
is sketched in a dashed line. Insets show zooms near peaks.

neously, the dominant unstable isola drifts to infinity, as
the extreme wave is approached. An infinite growth rate
is not physical, indicating the breakdown of our model.
Indeed, as increasingly steep waves approach the extreme
120◦ Stokes wave, the effects of surface tension, among
others, play a role and have to be incorporated [55].

Conclusion While the instability spectrum is quite
complicated, the instability consequences for highly non-
linear Stokes waves are straightforward. Unlike for small-
amplitude waves [52], the dominant eigenvalue is real
and is associated with eigenfunctions (i.e., perturbations)
that are co-periodic with the Stokes wave or have double
its period. In either case, the instabilities that dominate
the dynamics are localized near the wave’s crest.
Our numerical observations are particularly significant

because they answer long-standing questions of which in-
stability dominates the evolution of steep ocean waves.
Further, our computations illustrate the complexity of
the spectral stability problem governing the different in-
stabilities of large-steepness Stokes waves. We have fo-
cused on the dominant instabilities of steep waves, but
the stability spectrum of such waves has many sub-
dominant components, which will be discussed elsewhere.
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