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Abstract

The stability of periodic solutions of partial differential equations has been an area of in-
creasing interest in the last decade. In this paper, we derive all periodic traveling wave solutions
of the focusing and defocusing mKdV equations. We show that in the defocusing case all such
solutions are orbitally stable with respect to subharmonic perturbations: perturbations that are
periodic with period equal to an integer multiple of the period of the underlying solution. We do
this by explicitly computing the spectrum and the corresponding eigenfunctions associated with
the linear stability problem. Next, we bring into play different members of the mKdV hierarchy.
Combining this with the spectral stability results allows for the construction of a Lyapunov
function for the periodic traveling waves. Using the seminal results of Grillakis, Shatah, and
Strauss, we are able to conclude orbital stability. In the focusing case, we show how instabilities
arise.
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1 Introduction

The modified Korteweg-de Vries (mKdV) equation is given by

ut + 6δu2ux + uxxx = 0, (1.1)

where δ = −1 corresponds to the defocusing case and δ = 1 corresponds to the focusing case. It
arises in many of the same physical contexts as the KdV equation, such as water waves and plasma
physics, but in different parameter regimes [1].

It is well known (see [2], for instance) that the defocusing mKdV equation possesses the periodic
traveling wave solution

u = ksn(x− (−k2 − 1)t, x),

whereas the focusing equation has the solutions

u = kcn(x− (2k2 − 1)t, x), u = dn(x− (−k2 + 2)t, x),

where sn(·, k), cn(·, k), dn(·, k) denote the Jacobi elliptic functions [3, 4] with elliptic modulus
k ∈ [0, 1). These do not constitute the full class of periodic traveling wave solutions of the mKdV
equation, as is shown in Section 2. The orbital stability of the dn solutions was first studied in [5],
where they were proven to be orbitally stable with respect to periodic perturbations of the same
period. However, as noted in [2], that proof fails for the other solutions mentioned above. More
recently in [2], a modified version of the Bloch decomposition and counting techniques in [6, 7] to
Hamiltonian equations with a singular Poisson structure was developed. It is proven there that the
sn and dn solutions are orbitally stable with respect to periodic perturbations of the same period
for all values of the elliptic modulus k. The dynamics of the cn solutions changes from stable
to unstable as the elliptic modulus passes through a fixed value k∗. However, the accompanying
numerical investigation of the spectral stability of the cn solutions with respect to subharmonic
perturbations suggests instability for all values of the elliptic modulus.

Stability results for other subclasses of solutions of the mKdV equation have been obtained
in recent years as well. In [6], the spectral stability of small-amplitude periodic traveling wave
solutions with respect to periodic perturbations of the same period was established. This result
was recently extended beyond spectral stability in the work of [8]. Through the use of the periodic
instability index developed in [9] in combination with a periodic version of the Evans function
technique employed in [10, 11], it was proven that the small-amplitude solutions are orbitally stable
with respect to periodic perturbations of the same period. The same result is also established for
solutions in neighborhoods of homoclinic orbits.

There are two limitations in all the results discussed above: (i) they are restricted to special
cases of traveling wave solutions. (ii) Only periodic perturbations of the same period are considered.
Here we examine the spectral and (nonlinear) orbital stability of all periodic traveling wave solutions
of the mKdV equation with respect to subharmonic perturbations: perturbations that are periodic
with period equal to an integer multiple of the period of the underlying solution. Extension beyond
periodic perturbations of the same period to subharmonic perturbations is important in that: (i)
they are a significantly larger class of perturbations than the periodic ones of the same period, while
retaining our ability to discuss completeness in and separability of a suitable function space. For
example, this would not be the case for quasi-periodic or almost periodic perturbations [12]. (ii)
There are nontrivial examples of solutions which are stable with respect to periodic perturbations
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of the same period, but unstable with respect to subharmonic perturbations, such as cnoidal wave
solutions of the focusing nonlinear Schrödinger equation [6]. (iii) They have a greater physical
relevance than periodic perturbations of the same period, since in applications one usually considers
domains which are larger than the period of the solution, e.g., ocean wave dynamics.

The basis of our procedure is the Lyapunov method, which was first extended to infinite-
dimensional systems (partial differential equations) by V.I. Arnold [13, 14] in his study of incom-
pressible ideal fluid flows. Since its introduction, the Lyapunov method has formed the crux of
subsequent nonlinear stability techniques (see [15, 16, 17] for instance). We follow the ideas pre-
sented in [2, 18, 19], and use the algebraic connection between the eigenfunctions of the Lax pair
and those of the spectral stability problem.

Due to difficulties that arise with the spectral parameter in the Lax pair for the focusing mKdV
equation (see Section 8), we first restrict ourselves to the defocusing case, equating δ = −1. After
deriving all periodic traveling wave solutions of the defocusing mKdV equation in terms of the
Weierstrass elliptic function (surprisingly, this result appears to be new), we analytically prove
that all bounded periodic traveling wave solutions are spectrally and orbitally stable with respect
to subharmonic perturbations. Next, we return to the focusing case. We construct all periodic
traveling wave solutions, and employ a combination of analytical and numerical techniques to
study their stability.

Remarks.

• Superharmonic perturbations (perturbations whose period is the base period divided by a
positive integer) are covered by studying perturbations that have the same period as the
underlying solution.

• Many of the details will be omitted as they are similar to what happens for the KdV equation
in [18, 20].

2 Periodic traveling wave solutions

In this section we construct all periodic traveling wave solutions of the defocusing mKdV equation,
see Section 8 for their construction in the focusing case. We employ a technique originally due to
Poincaré, Painlevé, Briot, and Bouquet [21], though most recently reformulated in [22, 23].

Remark. A large class of solutions of the mKdV equation in terms of the Weierstrass elliptic
function is derived using a different method in [24]. However, it is straightforward to check that
the solutions in [24] do not constitute the full set of periodic traveling wave solutions.

To examine traveling wave solutions, we change to a moving coordinate frame

y = x− V t, τ = t.

In the (y, τ) coordinates the mKdV equation becomes

uτ − V uy − 6u2uy + uyyy = 0. (2.1)

Stationary solutions (1.1) are time-independent solutions of (2.1). Letting u(y, τ) = U(y), station-
ary solutions satisfy the ordinary differential equation
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−V Uy − 6U2Uy + Uyyy = 0. (2.2)

Integrating (2.2) gives

−V U − 2U3 + Uyy = C, (2.3)

for some constant C. Multiplying (2.3) by Uy and integrating a second time gives

−V
2
U2 − 1

2
U4 +

1
2
U2
y − CU = E, (2.4)

for some constant E. Thus, all stationary solutions U(y) satisfy the first-order ordinary differential
equation (2.4).

Defining the new variable P = Uy, (2.4) becomes

1
2
P 2 − 1

2
U4 − V

2
U2 − CU − E = 0.

This defines a genus one algebraic curve [25], birationally equivalent to (using the normal form
algorithm found in [26], and implemented in the Maple command algcurves[Weierstrassform])

r2 = 4s3 − g2s− g3, (2.5)

where

U = R(s, r), P = S(s, r),

are rational functions of s and r (we omit the explicit form of R and S for brevity). The elliptic
invariants g2 and g3 are given by

g2 =
4
3
V 2 + 32E, g3 = − 8

27
V 3 +

64
3
V E − 16C2.

As the curve (2.5) is in Weierstrass form, it can be parameterized in terms of the Weierstrass
℘-function ℘(x, g2, g3) [27], with

r = ℘′(ωx, g2, g3), s = ℘(ωx, g2, g3),

for some constant ω. Transforming back to our original variables gives

U = R(℘(ωx, g2, g3), ℘′(ωx, g2, g3)), P = S(℘(ωx, g2, g3), ℘′(ωx, g2, g3)).

Imposing our original assumption, Uy = P , gives ω = 1
2 . Thus our final solution form is

U(y) =
±
√

2E℘′(1
2(y + y0), g2, g3) + C(2℘(1

2(y + y0), g2, g3)− 2
3V )(

℘(1
2(y + y0), g2, g3)− V

3

)2 − 8E
. (2.6)

Here y0 is an arbitrary shift in y determined by the initial conditions. These solutions are doubly
periodic in the complex plane. When considered on the real line, they have period 2T determined
by
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2T = 4
∫ ∞
e1

1√
4z3 − g2z − g3

dz,

where e1 is the largest root of the equation obtained by setting r = 0 in (2.5). This gives all periodic
solutions of (2.2) due to a classic theorem by Briot and Bouquet [21].

We now determine which values of V , C, and E give rise to real bounded periodic solutions.
Equating v = Uy in (2.3), we have the first-order two-dimensional system

Uy = P, Py = V U + 2U3 + C.

All fixed points (U0, P0) satisfy

P0 = 0, V U0 + 2U3
0 + C = 0. (2.7)

After linearizing about (U0, 0), the resulting linear system has eigenvalues

λ = ±
√
V + 6U2

0 . (2.8)

We have two saddles and a center when the discriminant of the second equation in (2.7)

d = −8V 3 − 108C2

is greater than zero, and one saddle when the discriminant is less than zero. Therefore, we can
only expect periodic solutions for V < 0 and d > 0 which gives

|C| <
√
−8V 3

108
.

Using (2.4), we see that for fixed V and C the phase space is foliated by the family of curves

P 2 = U4 + V U2 + 2CU + 2E. (2.9)

The parameter E is specified by the initial condition. Periodic solutions are separated from un-
bounded solutions by two heteroclinc orbits in the case C = 0, and by one homoclinc orbit in the
case C 6= 0, see Fig. 1. All values of E which give rise to a solution lying inside the separatrix
correspond to periodic solutions. Thinking of the right-hand side of (2.9) as a polynomial in U , all
values of E which make its discriminant positive give rise to periodic solutions. For C = 0 we can
write the solution in the particularly simple form

U(y) = ±k
√
−V

1 + k2
sn

(√
−V

1 + k2
y, k

)
,

where E is parameterized by the elliptic modulus k

E =
k2V 2

2(k4 + 2k2 + 1)
.
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(a)

(b)

Figure 1: (a) Typical (U, v) phase plane in the defocusing case for C = 0 (here V = −10). The
two heteroclinic orbits are in bold. (b) For C 6= 0 (here C = 0.5, V = −10), the heteroclinc orbits

break into a single homoclinic orbit (bold line). The homoclinic orbit exists for 0 < |C| <
√
−8V
108 .

3 The linear stability problem

Before we study the orbital stability of the stationary solutions, we examine their spectral and
linear stability. To this end, we consider perturbations of a stationary solution

u(y, τ) = U(y) + εw(y, τ) +O(ε2),

where ε is a small parameter. Substituting this in (2.1) and ignoring higher-than-first-order terms
in ε, we find

wτ = 6U2wy + 12UUyw − wyyy + V wy, (3.1)

at first order in ε. The zero order terms vanish since U(y) solves the mKdV equation. By ignoring
the higher-order terms in ε, we are restricting our attention to linear stability. The traveling wave
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solution is defined to be linearly stable if for all ε > 0, there is a δ > 0 such that if ||w(y, 0)|| < δ
then ||w(y, τ)|| < ε for all τ > 0. This definition depends on our choice of the norm || · ||, to be
discussed later.

Next, since (3.1) is autonomous in time, we may separate variables. Let

w(y, τ) = eλτW (y, λ). (3.2)

Then W (y, λ) satisfies

−Wyyy + (V + 6U2)Wy + 12UUyW = λW, (3.3)

or

JLW = λW, J = ∂y, L = −∂2
y + V + 6U2. (3.4)

In what follows, the λ dependence of W will be suppressed. To avoid confusion with other spectra
arising below, we refer to σ(JL) as the stability spectrum.

4 Numerical Results

Before we determine the spectrum of (3.4) analytically, we compute it numerically, using Hill’s
method [28, 29]. Hill’s method is ideally suited to a problem such as (3.4) with periodic coefficients.
It allows us to compute all eigenfunctions of the form

W = eiµyŴ (y), Ŵ (y + 2T ) = Ŵ (y), (4.1)

with µ ∈ [−π/4T, π/4T ). It follows from Floquet’s theorem that all bounded solutions of (3.4)
are of this form. Here bounded means that supx∈R |W (x)| is finite. Thus W ∈ C0

b (R). On the
other hand, we also have W ∈ L2(−T, T ) (the square-integrable functions of period 2T ) since the
exponential factor in (4.1) disappears in the computation of the L2-norm. Thus

W ∈ C0
b (R) ∩ L2(−T, T ). (4.2)

It should be noted that by this choice our investigations include perturbations of an arbitrary period
that is an integer multiple of 2T , i.e., subharmonic perturbations.

Figure (2) shows discrete approximations to the spectrum of (3.4), computed using SpectrUW2.0
[28]. The solution parameters are V = −10, C = 0, and E ≈ 11.9 (k = 0.8). The numerical param-
eters (see [28, 29]) are N = 40 (81 Fourier modes) and D = 80 (79 different Floquet exponents).
The right panel (b) is a blow-up of the left panel (a) around the origin. First, it appears that
the spectrum is on the imaginary axis, indicating spectral stability of the solution. Second, the
numerics shows that a symmetric band around the origin has a higher spectral density than the
rest of the imaginary axis. This is indeed the case, as shown in more detail in Fig. 4, where the
imaginary parts ∈ [−1.5, 1.5] of the computed eigenvalues are displayed as a function of the Flo-
quet parameter µ (here 199 different Floquet exponents were used). This shows that λ values with
Im(λ) ∈ [−0.54, 0.54] (approximately) are attained for three different µ values in [−π/4T, π/4T ).
The rest of the imaginary axis is only attained for one µ value. This picture persists if a larger
portion of the imaginary λ axis is examined. These numerical results are in perfect agreement with
the theoretical results below.
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Figure 2: (a) The numerically computed spectrum for the traveling wave solution with V = −10,
C = 0, and E = 11.9 (k = .8) using Hill’s method with 81 Fourier modes and 79 different Floquet
exponents, see [28, 29]; (b) A blow-up of (a) around the origin, showing a band of higher spectral
density;

Figure 3 shows discrete approximations to the spectrum for C 6= 0. The solution parameters
are V = −10, C = 10

√
15/9, and E ≈ −1. We see the same structure as for the C = 0 case.

5 Lax pair representation

Equation (2.2) is equivalent to the compatibility of two linear ordinary differential systems:

ψy =
(
−iζ u
u iζ

)
ψ, (5.1)

ψτ =
(

−iV ζ − 4iζ3 − 2iζu2 V u+ 4ζ2u+ 2u3 − uyy + 2iζuy
V u+ 4ζ2u+ 2u3 − uyy − 2iζuy iV ζ + 4iζ3 + 2iζu2

)
ψ. (5.2)

In other words, the compatibility condition ψyτ = ψτy requires that u satisfies the defocusing mKdV
equation. We can rewrite (5.1) as the spectral problem(

i∂y −iu
iu −i∂y

)
ψ = ζψ. (5.3)
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Figure 3: (a) The numerically computed spectrum for the traveling wave solution with V = −10,
C = 10

√
15/9, and E ≈ −1 using Hill’s method with 81 Fourier modes and 79 different Floquet

exponents, see [28, 29]; (b) A blow-up of (a) around the origin, showing a band of higher spectral
density;

This problem is self-adjoint, therefore ζ ∈ R. Evaluating (5.1-5.2) at the stationary solution
u(y, τ) = U(y), we find

ψy =
(
−iζ U
U iζ

)
ψ, (5.4)

ψτ =
(

−iV ζ−4iζ3−2iζU2 V U+4ζ2U+2U3 − Uyy+2iζUy
V U+4ζ2U+2U3−Uyy−2iζUy iV ζ+4iζ3+2iζU2

)
ψ. (5.5)

We refer to the set of all ζ values such that (5.4-5.5) has bounded solutions as the Lax spectrum
σL. Since the spectral problem (5.3) is self-adjoint, the Lax spectrum is a subset of the real line:
σL ⊂ R . The goal of this section is to determine this subset explicitly. In the next section, we
connect the Lax spectrum to the stability spectrum.

Equation (5.5) simplifies. Using (2.3) to eliminate Uyy gives

ψτ =
(
−iV ζ − 4iζ3 − 2iζU2 4ζ2U + C + 2iζUy

4ζ2U + C − 2iζUy iV ζ + 4iζ3 + 2iζU2

)
ψ =

(
A B

B −A

)
ψ, (5.6)

where B denotes the complex conjugate of B. Since A and B do not explicitly depend on τ , we
separate variables
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Figure 4: The imaginary part of λ as a function of µ, demonstrating the higher spectral density of
the band on the imaginary axis around the origin. The parameter values are identical to those of
Fig. 2, except 199 different Floquet exponents are used here.

ψ(y, τ) = eΩτ

(
α(y)
β(y)

)
. (5.7)

Substituting (5.7) into (5.6) and canceling the exponential, we find(
A B

B −A

)(
α
β

)
= 0.

This implies that the existence of nontrivial solutions requires

Ω2 = A2 + |B|2 = −16ζ6 − 8V ζ4 − (V 2 + 8E)ζ2 + C2 = 0, (5.8)

where we have used the explicit form of the stationary solution U(y) derived earlier. This determines
Ω in terms of the spectral parameter ζ. Thinking of Ω2 as a polynomial in ζ2, one finds that the
discriminant of (5.8) has the same sign as the discriminant of the right hand side of (2.9). As
discussed earlier, this discriminant is positive for periodic solutions. Also, Ω2 is an even function
of ζ. Therefore, for periodic stationary solutions, (5.8) can be written as

Ω2 = −16(ζ − ζ1)(ζ + ζ1)(ζ − ζ2)(ζ + ζ2)(ζ − ζ3)(ζ + ζ3)

for positive constants 0 ≤ ζ3 < ζ2 < ζ1.
The eigenvector corresponding to the eigenvalue Ω is(

α
β

)
= γ(y)

(
−B
A− Ω

)
, (5.9)
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Figure 5: The imaginary part of λ as a function of µ, demonstrating the higher spectral density of
the band on the imaginary axis around the origin. The parameter values are identical to those of
Fig. 3, except 199 different Floquet exponents are used here.

where γ is a scalar function of x. It is determined by substitution of the above into the first equation
of the Lax pair, resulting in a first-order scalar differential equation for γ. This equation may be
solved explicitly giving

γ = exp
∫ (

iζ − A′

A− Ω
− UB

A− Ω

)
dy,

up to a multiplicative constant. This simplifies to

γ =
1

A− Ω
exp

∫ (
iζ − UB

A− Ω

)
dy. (5.10)

Each value of ζ results in two values of Ω (except for the six branch points ±ζi, i = 1, 2, 3,
where Ω = 0) and therefore (5.9) represents two eigenvectors. These solutions are clearly linearly
independent. For those values of ζ for which Ω = 0, only one solution is generated. A second one
may be found using reduction of order, resulting in algebraically growing solutions.

To determine the Lax spectrum σL, we need to determine the set of all ζ ⊂ R such that (5.9)
is bounded as a function of x. Thus, we need to determine for which ζ the scalar function γ(x) is
bounded. First, one can readily check that the only values of ζ for which the denominator in (5.9)
is singular are the branch points ±ζi, i = 1, 2, 3, where Ω = 0. One finds that the vector part of
(5.9) cancels the singularity in γ(y). Thus, ±ζi, i = 1, 2, 3, are part of the Lax spectrum. For all
other values of ζ, it is necessary and sufficient that〈

<
(
− uB

A− Ω

)〉
= 0. (5.11)
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Here 〈 · 〉 = 1
2T

∫ T
−T · dy denotes the average over a period. The explicit form of the above

depends on whether Ω is real or imaginary. It should be noted that since ζ ∈ R, it follows from
(5.8) that these are the only possibilities. Let us investigate each case separately:

• If Ω is imaginary then

− UB

A− Ω
=
−URe(B)
Im(A− Ω)

i+
∂y
(

1
2 Im(A− Ω)

)
Im(A− Ω)

, (5.12)

where we used that

∂y

(
1
2

(Im(A)− Ω)
)

= −2ζUUy = −U Im(B).

The first term in (5.12) is imaginary and the second term is a total derivative, thus giving
zero average. Therefore, all ζ values for which Ω is imaginary are in the Lax spectrum.

• If Ω is real, then ignoring total derivatives and using (2.3) one finds〈
Re
(
− UB

A− Ω

)〉
=
〈

URe(B)
Ω2 + (Im(A))2

〉
Ω =

〈
4ζ2U2 + CU

Ω2 + (Im(A))2

〉
Ω = 0.

Obviously, the first factor in the last equality is not zero for C = 0. A similar argument as
for the case of non-trivial phase in the defocusing NLS equation gives that this average term
is never zero [30]. Therefore, Ω must be identically zero, and all values of ζ for which Ω is
real are not part of the Lax spectrum.

We conclude that the Lax spectrum consists of all ζ values for which Ω2 ≤ 0:

σL = (−∞,−ζ1] ∪ [−ζ2,−ζ3] ∪ [ζ3, ζ2] ∪ [ζ1,∞).

Furthermore, for all values of ζ ∈ σL:

Ω ∈ iR.

In fact, Ω2 takes on all negative values for ζ ∈ (−∞,−ζ1], implying that Ω = ±
√
|Ω2| covers the

imaginary axis. The same is true for the segment ζ ∈ [ζ1,∞). Furthermore, for ζ ∈ [−ζ2,−ζ3], Ω2

takes on all negative values in [Ω2(ζ∗), 0] twice, where Ω2(ζ∗) is the minimal value of Ω2 attained
for ζ ∈ [−ζ2,−ζ3]. Since Ω2 is an even function of ζ, the same is true for the segment [ζ3, ζ2]. Upon
taking square roots, this implies that the interval on the imaginary axis

[
−i
√
|Ω2(ζ∗)|, i

√
|Ω2(ζ∗)|

]
is covered six times, while the rest of the imaginary axis is double covered. Symbolically, we write
[18]

Ω ∈ (iR)2 ∪
[
−i
√
|Ω2(ζ∗)|, i

√
|Ω2(ζ∗)|

]4
, (5.13)

where the exponents denote multiplicities (see Figs. 6 and 7).
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Figure 6: (a) Ω2 as a function of real ζ, with the same paramter values as Fig. 2. The union of the
dotted line segments is the numerically computed Lax spectrum (in the complex ζ-plane) with 81
Fourier modes and 49 different Floquet exponents. (b) A blow-up of (a) around the origin;

6 Spectral stability

It is well known that there exists a connection between the eigenfunctions of the Lax pair of an
integrable equation and the eigenfunctions of the linear stability problem for this integrable equation
[31, 1, 32, 33, 34]. A direct calculation proves that the function

w(y, τ) = ψ2
1(y, τ) + ψ2

2(y, τ) =
1

2iζ
∂y
(
ψ2

2(y, τ)− ψ2
1(y, τ)

)
satisfies the linear stability problem (3.1). Here ψ = (ψ1, ψ2)T is any solution of (5.4-5.5) with the
corresponding stationary solution U(y).

In order to establish the spectral stability of equilibrium solutions of (2.2), we need to establish
that all bounded solutions W (y) of (3.3) are obtained through the squared eigenfunction connection
by

W (y) = α2(y) + β2(y).

If we manage to do so then we may immediately conclude that

λ = 2Ω.
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Figure 7: Ω2 as a function of real ζ, for C 6= 0 (same parameter values as Fig. 3). The union of
the dotted line segments is the numerically computed Lax spectrum (in the complex ζ-plane) with
81 Fourier modes and 49 different Floquet exponents.

Since Ω ∈ iR, we conclude that the stability spectrum is given by

σ(JL) = iR.

In order to obtain this conclusion, we need the following theorem.

Theorem 1 All but six solutions of (3.3) may be written as W (y) = α2(y) + β2(y), where (α, β)T

solves (5.4-5.5). Specifically, all solutions of (3.3) bounded on the whole real line are obtained
through the squared eigenfunction connection, with one exception corresponding to λ = 0.

Proof. For any given value of λ ∈ C, (3.3) is a third-order linear ordinary differential equation.
Thus, it has three linearly independent solutions. On the other hand, we have already shown (see
the previous theorem) that the formula

W (y) = α2(y) + β2(y) (6.1)

provides solutions of this ordinary differential equation. Let us count how many solutions are
obtained this way, for a fixed value of λ. For any value of λ ∈ C, exactly one value of Ω ∈ C is
obtained through Ω = λ/2. Excluding the six values of λ for which the discriminant of (5.8) as a
function of ζ is zero (these are the only values of λ for which Ω2 reaches its maximum or minimum
value, keeping in mind that Ω2 is an even function of ζ), (5.8) gives rise to six values of ζ ∈ C. It
should be noted that we are not restricting ourselves to ζ ∈ σL now, since the boundedness of the
solutions is not a concern in this counting argument. Next, for a given pair (Ω, ζ) ∈ C2, (5.9) defines
a unique solution of (5.4, 5.5). Thus, any choice of λ ∈ C not equal to the six values mentioned
above, gives rise to exactly six solutions of (3.3), through the squared eigenfunction connection.
Let us examine how many of these solutions are linearly independent.

• Since Ω2 is an even function of ζ, the six values of ζ mentioned above come in pairs: ±ζi, i =
1, 2, 3. It can be checked that if ζ corresponds to the eigenfunction W , then −ζ corresponds
to its complex conjugate W . Therefore, when considering the general solution to the linear
stability problem w = a1e

ΩtW + a2e
−ΩtW , half of the ζ values provide no new solutions.
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Also, if there is an exponential contribution from γ(y) then an argument similar to that in
[18] establishes the linear independence of the remaining three solutions.

• As in [18], the only possibility for the exponential factor from γ(y) not to contribute is
if λ = 0 = Ω. Only one linearly independent solution is obtained through the squared
eigenfunction connection, corresponding to translational invariance, W = Uy. The other
two can be obtained through reduction of order. Just as for the KdV equation in [18], this
allows one to construct two solutions whose amplitude grows linearly in x. A suitable linear
combination of these solutions is bounded. Thus, corresponding to λ = 0 there are two
eigenfunctions. One of these is obtained through the squared eigenfunction connection.

Lastly, consider the six excluded values of λ. For the two λ values where Ω2 reaches a local
minimum, the two solutions obtained through the squared eigenfunction connection are bounded,
thus, these values of λ are part of the spectrum. The third solution may be constructed using
reduction of order, and introduces algebraic growth. For the two values of λ where Ω2 obtains a
global maximum, three solutions are obtained through the squared eigenfunction connection, all of
which are unbounded. For the other two λ values where Ω2 reaches a local maximum, two solutions
are obtained through the squared eigenfunction connection, both of which are unbounded. The
third solution may be constructed using reduction of order, and introduces algebraic growth.

We have established the following theorem.

Theorem 2 (Spectral Stability) The periodic traveling wave solutions of the defocusing mKdV
equation are spectrally stable. The spectrum of their associated linear stability problem is explicitly
given by σ(JL) = iR, or, accounting for multiple coverings,

σ(JL) = iR ∪
[
−2i

√
|Ω2(ζ∗)|, 2i

√
|Ω2(ζ∗)|

]2
, (6.2)

where |Ω2(ζ∗)| is as before.

Remark. As previously mentioned, for a fixed value of Ω, only three of the six solutions (cor-
responding to the six different values of ζ) obtained through the squared eigenfunction connection
contribute as independent solutions to the linear stability problem. Therefore, the double and
sextuple coverings in the Ω representation (5.13) drop to single and triple coverings in (6.2).

It is an application of the SCS basis lemma in [2, 6] that the eigenfunctions W form a basis for
L2
per([−NT,NT ]), for any integer N , when the potential U is periodic in y with period 2L. This

allows us to conclude linear stability with respect to subharmonic perturbations.

Theorem 3 (Linear Stability) The periodic traveling wave solutions of the defocusing mKdV
equation are linearly stable with respect to square-integrable subharmonic perturbations.

In other words, all solutions of the defocusing mKdV equation with sufficiently small square
integrable initial conditions remain small for all t > 0.
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7 Nonlinear stability

7.1 Hamiltonian structure

To begin, we recall the formulation of the defocusing mKdV equation as a Hamiltonian system.
We are concerned with the stability of 2T -periodic traveling wave solutions of equation (1.1) with
respect to subharmonic perturbations of period 2NT for any fixed positive integer N . There-
fore, we naturally consider solutions u in the space of square-integrable functions of period 2NT ,
L2
per[−NT,NT ]. In order to properly define the higher-order equations in the mKdV hierarchy that

are necessary for our stability argument (see Section 7.2), we further require u and its derivatives of
up to order three to be square-integrable as well. Therefore, we consider solutions of (2.1) defined
on the function space

V = H3
per[−NT,NT ],

equipped with natural inner product

〈v, w〉 =
∫ NT

−NT
v̄w dx.

We write the mKdV equation in Hamiltonian form

uτ = JH ′(u) (7.1)

on V. Here J is the skew-symmetric operator

J = ∂y,

the Hamiltonian H is the functional

H(u) =
∫ NT

−NT

(
1
2
u2
y +

1
2
V u2 +

1
2
u4

)
dy, (7.2)

and the notation E′ denotes the variational derivative of E =
∫ NL

−NL
E(u, ux, . . .)dx,

E′(u) =
∞∑
i=0

(−1)i∂iy
∂E(u)
∂uiy

, (7.3)

where the sum in (7.3) terminates at the order of the highest derivatives involved. For instance, in
the computation of H ′ the sum terminates after accounting for first derivative terms.

We allow for perturbations in a function space V0 ⊂ V. In order to apply the stability result of
[35], we follow [2] and restrict ourselves to the space of perturbations on which J has a well-defined
and bounded inverse. This amounts to fixing the spatial average of u on H3

per[−NL,NL], which
poses no problem since it is a Casimir of the Poisson operator J , hence, it is conserved under
the mKdV flow. Therefore, we consider perturbations in ker(J)⊥, i.e., zero-average subharmonic
perturbations

V0 =
{
v ∈ H3

per([−NL,NL]) :
∫ NL

−NL
v dx = 0

}
. (7.4)
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Remark. Physically, requiring perturbations to be zero-average makes sense. Simply stated,
this means we are not allowing perturbations to add mass to or subtract mass from the system.

7.2 The mKdV hierarchy

By virtue of its integrability, the mKdV equation possesses an infinite number of conserved quanti-
ties H0, H1, H2, . . ., and just as the functional H1 = H defines the mKdV equation, each Hi defines
a Hamiltonian system with time variable τi through

uτi = JH ′i(u). (7.5)

This defines an infinite hierarchy of equations, the mKdV hierarchy. It has the following properties:

• All the functionals Hi, i = 0, 1, . . ., are conserved for each member of the mKdV hierarchy
(7.5).

• The flows of the mKdV hierarchy (7.5) mutually commute, and we can think of u as solving
all of these equations simultaneously, i.e., u = u(τ0, τ1, . . .) [36].

As all the flows in the mKdV hierarchy commute, we may take any linear combination of the
above Hamiltonians to define a new Hamiltonian system. For our purposes, we define the n-th
mKdV equation with time variable tn as

utn = JĤ ′n(u), (7.6)

where each Ĥn is defined as

Ĥn := Hn +
n−1∑
i=0

cn,iHi, Ĥ0 := H0, (7.7)

for constants cn,i, i = 0 . . . n− 1.
Since every member of the nonlinear hierarchy (7.5) is integrable, each possesses a Lax pair.

The collection of the linear equations in the Lax pairs is known as the linear mKdV hierarchy. We
construct the Lax pair for the n-th mKdV equation (7.6) by taking the same linear combination of
the lower-order flows as for the nonlinear hierarchy, and define the n-th linear mKdV equation as

ψtn = T̂nψ =
(
Ân B̂n
Ĉn −Ân

)
ψ, (7.8)

T̂n := Tn +
n−1∑
i=0

cn,iTi, T̂0 := T0.
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7.3 Stationary solutions

Stationary solutions of the mKdV hierarchy are defined as solutions such that

utn = 0

for some integer n and constants cn,0, . . . , cn,n−1 in (7.6-7.7). Thus, a stationary solution of the
n-th mKdV equation satisfies the ordinary differential equation

JĤ ′n(u) = 0

with independent variable y.
The stationary solutions have the following properties:

• Since all the flows commute, the set of stationary solutions is invariant under any of the mKdV
equations, i.e., a stationary solution of the n-th equation remains a stationary solution after
evolving under any of the other flows.

• Any stationary solution of the n-th mKdV equation is also stationary with respect to all
of the higher-order time variables tm, m > n. In such cases, the constants cm,i, i ≥ n are
undetermined coefficients. We make use of this fact when constructing a Lyapunov function
later.

The traveling wave solution U is a stationary solution of the first mKdV equation with c1,0 = V .
It fact, it is stationary with respect to all the higher-order flows. For example, it is a stationary
solution of the second mKdV equation with

c2,0 = c2,1(V 2 − 4E) + V 2 − 4E (7.9)

for any value of c2,1.

7.4 Stability

Consider the problem of nonlinear stability. The invariance of the mKdV equation under translation
is represented by the Lie group

G = R,

which acts on u(y, τ) according to

T (g)u(y, τ) = u(y + y0, τ), g = y0 ∈ G.

Stability is considered modulo this symmetry. We use the following definition.

Definition 1 The equilibrium solution U is orbitally stable with respect to perturbations in V0 if
for a given ε > 0 there exists a δ > 0 such that

||u(y, 0)− U(y)|| < δ ⇒ inf
g∈G
||u(y, τ)− T (g)U(y)|| < ε,

where || · || denotes the norm obtained through 〈·, ·〉 on V0.

18



As a first step to prove orbital stability, we search for a Lyapunov function. For Hamiltonian
systems, this is a constant of the motion E(u) for which U is an unconstrained minimum:

∂

∂τ
E(u) = 0, E′(U) = 0, 〈v,E′′(U)v〉 > 0, ∀v ∈ V0, v 6= 0.

We obtain an infinite number of candidate Lyapunov functions through the mKdV hierarchy.
Linearizing (7.6) about the equilibrium solution U gives

wtn = JLnw,

where Ln is the Hessian of Ĥn evaluated at the stationary solution. Through the same squared
eigenfunction connection we have

2ΩnW (x) = JLnW (x), (7.10)

where Ωn is defined through

ψ(x, tn) = eΩntn

(
α
β

)
, (7.11)

and due to the commuting property of the flows, the Lax hierarchy shares the common (complete)

set of eigenfunctions
(
α
β

)
from before (still assuming the solution is stationary with respect to the

first flow). Substituting (7.11) into the second equation in (7.8) determines a relationship between
Ωn and ζ, and in general, Ω2

n is a polynomial of degree 2n+1 in ζ2. When evaluated at a stationary
solution of the mKdV equation, Ω2

n takes a degenerate form.

Theorem 4 Let U be a stationary solution of the first mKdV equation. Then for all n > 1, the
equation for the n-th algebraic curve becomes

Ω2
n(ζ) = p2

n(ζ)Ω2(ζ),

where pn(ζ) is a polynomial of degree n−1 in ζ2. Furthermore, pn(ζ) depends on the free parameters
cn,1, . . . , cn,n−1 in such a way that we have total control over the roots when considered as a function
of ζ2.

Proof. When evaluated at a stationary solution of the mKdV equation, all the higher-order
flows become linearly dependent. The theorem is a direct consequence of this linear dependence
and the functional form the Lax operators take as polynomials in ζ. The proof follows the same
outline as in [20].

With the above facts established, we return to nonlinear stability. Just as we considered the
norm of a solution modulo symmetries, we shall in effect do the same when considering a Lyapunov
function. We have the following theorem due to [37, 38]:

Theorem 5 Let U be a spectrally stable equilibrium solution of equation (7.1) such that the eigen-
functions W of the linear stability problem (3.3) form a basis for the space of allowed perturbations
V0, on which the operator J has bounded inverse. Furthermore, suppose there exists an integer
n ≥ 1 and constants cn,0, . . . , cn,n−1 such that the Hamiltonian for the n-th equation in the nonlin-
ear hierarchy satisfies the following:
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1. The kernel of Ĥ ′′n(U) on V0 is spanned by the infinitesimal generators of the symmetry group
G acting on U .

2. For all eigenfunctions not in the kernel of Ĥ ′′n(U)

Kn(W ) := 〈W, Ĥ ′′n(U)W 〉 > 0.

Then U is orbitally stable with respect to perturbations in V0.

Let us consider the implications of this theorem for the problem at hand:

• An application of the SCS basis lemma in [6] establishes that the eigenfunctions W form a
basis for L2

per([−NT,NT ]), for any integer N , when the potential U is periodic in y with
period 2T .

• Due to translation invariance, we know that Uy is in the kernel of Ĥ ′′1 (U). It is well established
[2, 35] that the kernel of Ĥ ′′1 (U) is spanned by Uy when considered on V0. This is the
infinitesimal generator of G, ∂y, acting on U . Furthermore, it is a direct consequence of the
Riemann surface relations that the kernel of Ĥ ′′1 (U) is equal to the kernel of Ĥ ′′n(U), for all
n ≥ 1.

What is left to verify is condition 2 in the nonlinear stability theorem, i.e., to prove orbital
stability we need to find an n such that

Kn = 〈W,LnW 〉 =
∫ NT

−NT
WLnWdy ≥ 0,

with equality obtained only on the kernel of Ln, i.e., only for Ω = 0.
To calculate the higher-order Kn, we make use of the following. Assume our solution is an

equilibrium solution of the n-th flow. Then from equation (7.10) we have

LnW = 2ΩnJ
−1W.

This gives

Kn =
∫ NT

−NT
WLnWdx = 2Ωn

∫ NT

−NT
WJ−1Wdy.

Using that U is a stationary solution of the second flow and substituting for Ωn in the above gives

Kn(ζ) = Ωn(ζ)
K1(ζ)
Ω(ζ)

= pn(ζ)K1(ζ). (7.12)

Therefore, when considering stationary solutions of the defocusing mKdV equation, one simply
needs to calculate K1 in order to calculate any of the higher order Ki. Let us do so. From (3.3)
and the squared eigenfunction connection we have

LW = 2ΩJ−1W =
Ω
iζ

(
β2 − α2

)
.

This gives
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WLW =
Ω
iζ

(
|β|4 − |α|4 + (α)2β2 − (β)2α2

)
.

Now

α = −γB, β = γ(A− Ω).

Using (5.12), we have (up to a multiplicative constant)

γ =
1√

(Im(A− Ω))
exp

(
i

∫
uRe(B)

Im(A− Ω)
dy

)
exp

(∫
iζdy

)
.

Therefore,

|γ|2 =
1

Im(A− Ω)
.

Along with Ω2 −A2 − |B|2 = 0, the above implies

|β|2 = Im(A− Ω), |α|2 = Im(A+ Ω), α2β2 = −B2
, β

2
α2 = −B2.

Therefore, ∫ NT

−NT
WL1Wdy =

∫ NT

−NT

Ω
iζ

(4AΩ + 4Re(B)Im(B)i) dy.

Using that Re(B)Im(B) is a total derivative gives

K1 = 4Ω2

∫ NT

−NT

A

iζ
dy = 4Ω2

∫ NT

−NT

(
−V − 4ζ2 − 2u2

)
dy.

Let us revisit the second condition of the nonlinear stability theorem. Using Ω2 = A2 + |B|2
we see that K1 can be zero only if Ω ≥ 0. We also see that K1 is linear in ζ2, thus, it may change
sign at some point ζ2

0 . Therefore, no stability conclusion can be drawn from K1. However, let us
go one flow higher and calculate K2. A direct calculation gives

Ω2
2 = (−4ζ2 + V + c2,1)2Ω2,

with c2,0 as in (7.9). Therefore, choosing c2,1 = 4ζ2
0 − V makes K2 of definite sign.

We have proved the following theorem:

Theorem 6 (Orbital Stability) There exists a constant c2,1 such that K2 is positive on the Lax
spectrum. Therefore, all traveling wave solutions U of the defocusing mKdV equation are orbitally
stable with respect to zero-average subharmonic perturbations, i.e., perturbations in the function
space

V0 =
{
v ∈ H3

per([−NT,NT ]) :
∫ NT

−NT
v dx = 0

}
,

where 2T is the period of the initial condition and N is any integer.

Remark. There is no restriction on the spatial average of the traveling wave solution, only on
the spatial average of the perturbation.
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8 Focusing case

We now examine the focusing mKdV equation

ut + 6u2ux + uxxx = 0. (8.1)

8.1 Traveling wave solutions

We change to a moving coordinate frame

y = x− V t, τ = t.

In the (y, τ) coordinates the focusing mKdV equation becomes

uτ − V uy + 6u2uy + uyyy = 0. (8.2)

We look for stationary solutions uτ = 0. Letting u(y, τ) = U(y), stationary solutions satisfy the
ordinary differential equation

−V Uy + 6U2Uy + Uyyy = 0. (8.3)

Integrating (8.3) gives

−V U + 2U3 + Uyy = C, (8.4)

for some constant C. Multiplying (8.4) by Uy and integrating a second time gives

−V
2
U2 +

1
2
U4 +

1
2
U2
y − CU = E, (8.5)

for some constant E. Therefore, all stationary solutions U(y) satisfy the first-order ordinary dif-
ferential equation (8.5). Following the same procedure as for the defocusing case, we find that all
periodic solutions are given by

U(y) =
±
√

2E℘′(1
2(y + y0), g2, g3) + C(2℘(1

2(y + y0), g2, g3)− 2
3V )(

℘(1
2(y + y0), g2, g3)− V

3 − 2
√
−2E

) (
℘(1

2(y + y0), g2, g3)− V
3 + 2

√
−2E

) . (8.6)

Here y0 is an arbitrary shift in y determined by the initial conditions.
We now determine which values of V , C, and E give rise to bounded periodic solutions. Letting

P = Uy in (2.3), we have the first-order two-dimensional system

Uy = P, Py = V U − 2U3 + C.

All fixed points (U0, P0) satisfy

P0 = 0, V U0 − 2U3
0 + C = 0. (8.7)

After linearizing about (U0, 0), the resulting linear system has eigenvalues

λ = ±
√
V − 6U2

0 . (8.8)
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We have two centers and a saddle when the discriminant

d = 8V 3 − 108C2

is greater than zero, and one center when the discriminant is less than zero. Consider the following
cases

• V < 0. This implies d < 0, giving one center and periodic solutions for all values of C. For
C = 0 the solution reduces to U(y) = ±k

√
V

2k2−1
cn
(√

V
2k2−1

y, k
)

. This solution is imaginary

for k > 1√
2

and lim
k→ 1√

2

−
U = ±∞ .

• V > 0, |C| <
√

8V 3

108 . There are two centers and one saddle. Periodic solutions exist for all
values of E, except for one value giving rise to two homoclinic orbits, corresponding to the
saddle, see Fig. 8. For C = 0 the solution reduces to U(y) = ±k

√
V

2k2−1
cn
(√

V
2k2−1

y, k
)

.
This solution is inside the homoclinic orbits for |k| > 1, and goes to zero as k → ∞, using

cn(y, k) = dn(ky,
√

1
k2 ) [27]. It is outside the homoclinic orbits for 1√

2
< k < 1. For k = 1 it

gives the soliton solution, which corresponds to the homoclinic orbit.

• V > 0, |C| >
√

8V 3

108 . There is one center and the solutions are periodic solutions for all values
of E.

8.2 Stability

The linear stability problem for the focusing mKdV equation takes the form

wτ = JLw, JLW = λW, J = ∂y, L = −∂yy + V − 6U2. (8.9)

The squared eigenfunction connection is given by

w(y, τ) = ψ1(y, τ)2 − ψ2(y, τ)2 = − 1
2iζ

∂y
(
ψ2(y, τ)2 + ψ1(y, τ)2

)
where ψ1 and ψ2 are obtained from the Lax pair representation

ψy =
(
−iζ u
−u iζ

)
ψ, ψτ =

(
−iV ζ − 4iζ3 + 2iζu2 4ζ2u+ C + 2iζuy
−4ζ2u− C + 2iζuy iV ζ + 4iζ3 − 2iζu2

)
ψ. (8.10)

However, unlike the defocusing case, the associated spectral problem for ζ,(
i∂y −iu
−iu −i∂y

)
ψ = ζψ,

is not self-adjoint. Therefore, ζ is not necessarily restricted to the real axis. Several difficulties
arise as a result:

23



(a)

(b)

Figure 8: (a) Typical (U,P ) phase plane in the focusing case for C = 0. The two homoclinic
orbits are in bold. (b) For C 6= 0, the homoclinic orbits change size relative to each other. Both

homoclinic orbits persist until |C| =
√

8V 3

108 , at which point only one center remains, surrounded by
periodic orbits.

• As in the defocusing case, we separate variables and find a relationship between Ω and ζ:

Ω2 = −16ζ6 − 8V ζ4 + (−V 2 + 8E)ζ2 − C2.

However, since ζ is not confined to the real axis, Ω is no longer restricted to R ∪ iR.

• Looking for bounded eigenfunctions, one arrives at the necessary and sufficient condition〈
Re
(
iζ − A′

A− Ω
+

uB

A− Ω

)〉
= 0, (8.11)

which is nearly identical to the condition obtained in the defocusing case. However, since ζ is
no longer confined to the real axis, explicit analysis of (8.11) is much more difficult. This is
the main stumbling block to examining stability in the focusing case. It should be noted that
(8.11) still lends itself to numerical computation, which is simpler than numerically tackling
the original spectral problem since it does not involve solving any differential equations.
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We make several observations. For real ζ, the spectral problem for Ω is skew-adjoint. Therefore,
for all real ζ in the Lax spectrum Ω(ζ) is imaginary. For such ζ values the squared eigenfunction con-
nection immediately implies the corresponding solution to the linear stability problem is bounded.
However, numerical results suggest that ζ is not confined to the real axis (see Figs. 9 and 13).

For solutions lying within the homoclinic orbits in Fig. 8 (i.e., the dn solutions when C = 0),
it appears from the numerical results that the Lax spectrum is confined to the union of the real
and imaginary axis (see Fig. 9). We hypothesize that this is due to an underlying symmetry of the
spectral problem (

i∂y −iu
−iu −i∂y

)2

ψ = ζ2ψ.

Although this problem is not self-adjoint, it may have PT-symmetry (for instance, see [39]), which
would confine ζ2 to the real axis, and hence ζ ∈ R ∪ iR. Also, we see numerically that the dn
solution appears to be stable with respect to subharmonic perturbations. Furthermore, under
such assumptions the analytic formula for Ω(ζ) predicts the band of higher spectral density on
the imaginary axis seen in the numerically computed spectrum, see Figs. 10-12. In addition, if
one assumes that ζ ∈ R ∪ iR then the essential parts of the nonlinear stability calculations in
the defocusing case carry over to the focusing case. In fact, one finds c1,0 = V 2 + 4E, c2,0 =
(V 2 + 4E)c2,1 + V 2 + 4E, and

K2 = (−4ζ2 + V + c2,1)K1 = (−4ζ2 + V + c2,1)
∫ NT

−NT

(
−V − 4ζ2 + 2u2

)
dy

Therefore, we should expect spectrally stable solutions to also be nonlinearly (orbitally) stable.
For the solutions outside the homoclinic orbits in Fig. 8, (i.e., the cn solutions for C = 0), the

Lax spectrum appears much more complicated (see Fig. 13), and numerical studies of the stability
spectrum point to spectral instability, see Fig. 14 and Figure 1 in [2]. It is interesting to note that
in numerical investigations the cn solutions appear stable with respect to periodic perturbations of
the same period, but unstable with respect to subharmonic perturbations [2].
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Figure 9: Numerically computed Lax spectrum for the traveling wave solution (8.6) with V = 10,
C = 0, and k = 1.8 using Hill’s method with 81 Fourier modes and 49 different Floquet exponents.
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