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Abstract

Using standard calculus, explicit formulas for the one-dimensional continuous and
discrete homotopy operators are derived. It is shown that these formulas are equiv-
alent to those in terms of Euler operators obtained from the variational complex.

The continuous homotopy operator automates integration by parts on the jet
space. Its discrete analogue can be used in applications where summation by parts
is essential. Several example illustrate the use of the homotopy operators.

The calculus-based formulas for the homotopy operators are easy to implement in
computer algebra systems such as Mathematica and Maple. The homotopy operators
can be readily applied to the symbolic computation of conservation laws of nonlinear
partial differential equations and differential-difference equations.
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1 Introduction

During the development of symbolic algorithms [4–6] for the computation
of conservation laws of nonlinear partial differential equations (PDEs) and
nonlinear differential-difference equations (DDEs) we encountered powerful
tools from the calculus of variations and differential geometry that deserve
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attention in their own right. This paper focuses on one of these tools: the
homotopy operator.

Inspired by work of Kruskal et al. [9], we give a straightforward derivation of
formulas for the continuous homotopy operator and its discrete counterpart.
We show that our formulas are equivalent to those in terms of Euler operators
obtained from the variational complex [6]. For lack of space, we only cover the
one-dimensional cases (1D) with independent variable x or lattice variable n.
The generalization to multiple independent variables is cumbersome [5].

The continuous homotopy operator goes back to Volterra’s work [13] on the
inverse problem of the calculus of variations. The homotopy operator also
appears in the proof of the converse of Poincaré’s lemma [12], which states
that exact differential forms are closed and vice versa (at least on a star-shaped
domain in Euclidean space). Poincaré’s lemma is a special case of the so-called
de Rham complex, where one investigates the equivalence of closedness and
exactness of differential k−forms in generality. The key to exactness proofs
of various complexes (such as the de Rham complex) is the construction of
suitable homotopy operators [12].

In basic terms, the 1D continuous homotopy operator reduces the problem of
integration by parts on the jet space to a sequence of differentiations followed
by a single definite integration with respect to an auxiliary variable. In 2D
and 3D, the homotopy operator allows one to invert the total divergence op-
erator [12]. Irrespective of the number of independent or dependent variables,
the problem can be reduced to a single definite integral. Applications of the
continuous homotopy operator in multi-dimensions can be found in [4,5,12].

Likewise, the discrete homotopy operator is a tool to invert the forward dif-
ference operator whatever the application is. It circumvents summation by
parts by applying shifts and differentiations followed by a one-dimensional in-
tegration with respect to an auxiliary variable [6]. Applications of the discrete
homotopy operator are given in [5,6].

As shown in [8,10], the parallelism between the continuous and discrete cases
can be made rigorous as both can be formulated in terms of variational bi-
complexes. We do not use the abstract framework in order to make this paper
accessible to as wide an audience as possible. Aficionados of de Rham com-
plexes should consult [2,3] and [8,10,11]. The latter set of papers covers the
discrete variational bicomplex.

Several examples illustrate the inner workings of the homotopy operator at
the calculus level, without “wedges and hooks” or differential forms. Avoid-
ing sophisticated arguments from differential geometry, we can introduce the
powerful concept of homotopy operators to a wider audience.
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In [4–6] we apply homotopy operators to the symbolic computation of conser-
vation laws of nonlinear PDEs and DDEs. Beyond DDEs, the discrete homo-
topy operator is useful in the study of difference equations [8,10,11].

Despite their universality and applicability, homotopy operators have not been
implemented in major computer algebra systems (CAS) like Mathematica and
Maple. CAS offer few reliable tools for integration (or summation) by parts of
expressions involving unknown functions and their derivatives (or shifts). We
hope that the calculus-based formulas for the homotopy operator presented in
this paper will lead to more sophisticated integration algorithms within CAS.

In summary, our paper has the following objectives: (i) Give a straightforward
derivation of the 1D continuous homotopy operator, (ii) Present the discrete
homotopy operator by analogy with the continuous case, (iii) Illustrate the
inner workings of the homotopy operators at the calculus level, (iv) Present
alternate, readily applicable formulas for the homotopy operators which lead
to efficient and fast symbolic codes for integration and summation by parts.

2 Derivation of the continuous homotopy operator in 1D

In [4,5], we presented the homotopy operator and referred to [12] for a proof,
which involves working with differential forms. Inspired by [9], we give a
calculus-based derivation of the homotopy operator Hu(x). For simplicity and
clarity, we show the derivation for one dependent variable u and one indepen-
dent variable x (henceforth referred to as the 1D case).

To do so, we first introduce a “degree” operator M and its inverse, the to-
tal derivative Dx, and the Euler operator L(0)

u(x). The latter is also called the
variational derivative or Euler-Lagrange operator.

The calculations below are carried out in the jet space where one treats
u, ux, u2x, etc., as independent. As usual, ux = ∂u

∂x
, u2x = ∂2u

∂x2 , etc. The opera-
tors act on f(u, ux, u2x, . . . , uMx). Such functions are called differential func-
tions [12]. Throughout this paper we assume that the differential functions
lack constant terms and that the upper bounds in the summations equal the
order M of the differential function the operators are applied to.

Definition 1 The degree operator M is defined by

Mf =
M∑
i=0

uix
∂f

∂uix

= u
∂f

∂u
+ ux

∂f

∂ux

+ u2x
∂f

∂u2x

+ · · ·+ uMx
∂f

∂uMx

, (1)

where f is a differential function of order M.

Example 2 If f = upuq
xu

r
3x, where p, q, and r are non-negative integers, then

g = Mf =
3∑

i=0

uix
∂f

∂uix

= (p + q + r) upuq
xu

r
3x. (2)
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Thus, application of M to a monomial results in multiplication of the mono-
mial with its degree, i.e. the total number of factors in that monomial.

We use the homotopy concept to construct the inverse operator, M−1. Given
a differential function g(u), let g[λu] denote g(u) where u is replaced by λu,
ux is replaced by λux, etc., where λ is an auxiliary parameter. We now show

M−1g(u) =

1∫
0

g[λu]
dλ

λ
. (3)

Indeed, if g(u) has order M then so does g[λu], and

d

dλ
g[λu] =

M∑
i=0

∂g[λu]

∂λuix

dλuix

dλ
=

1

λ

M∑
i=0

uix
∂g[λu]

∂uix

=
1

λ
Mg[λu]. (4)

Upon integration of both sides with respect to λ, we get

1∫
0

d

dλ
g[λu] dλ = g[λu]|λ=1

λ=0 =g(u)− g(0) =

1∫
0

Mg[λu]
dλ

λ
= M

1∫
0

g[λu]
dλ

λ
. (5)

Assuming g(0) = 0 and applying M−1 to both sides of (5), Eq. (3) readily
follows. The assumption g(0) = 0 restricts the choice for f. We only con-
sider differential functions involving monomials in u, ux, etc., and on occasion
multiplied by sin u or cos u.

Example 3 For g in (2), we have g[λu] = (p + q + r)λp+q+r upuq
xu

r
3x.

Using (3),

M−1g =

1∫
0

(p + q + r) λp+q+r−1 upuq
xu

r
3x dλ (6)

= upuq
xu

r
3x λp+q+r

∣∣∣λ=1

λ=0
= upuq

xu
r
3x. (7)

Definition 4 The total derivative operator Dx is defined by

Dxf =
M∑
i=0

u(i+1)x
∂f

∂uix

= ux
∂f

∂u
+ u2x

∂f

∂ux

+ · · ·+ u(M+1)x
∂f

∂uMx

. (8)

Example 5 If f = upuq
xu

r
3x, then

Dxf =
3∑

i=0

u(i+1)x
∂f

∂uix

= pup−1uq
xu

r
3x + qupuq−1

x u2xu
r
3x + rupuq

xu
r−1
3x u4x. (9)

Theorem 6 The operators M and Dx commute as do M−1 and Dx.

Proof. The proof that M and Dx commute is straightforward: applying M
to Dxf gives the same result as applying Dx to Mf, using standard calculus
manipulations. Proving that M−1 commutes with Dx is then immediate. �
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Definition 7 The continuous Euler operator of order zero (variational deriva-

tive) L(0)
u(x) is defined [12] by

L(0)
u(x)f =

M∑
k=0

(−Dx)
k ∂f

∂ukx

=
∂f

∂u
−Dx

∂f

∂ux

+D2
x

∂f

∂u2x

−D3
x

∂f

∂u3x

+ · · ·+ (−1)MDM
x

∂f

∂uMx

. (10)

Definition 8 A differential function f of order M is called exact if there
exists a differential function F of order M − 1 so that f = DxF.

Theorem 9 A necessary and sufficient condition for a differential function
f to be exact is that L(0)

u(x)f ≡ 0.

Proof. A proof is given in e.g. [9].

Example 10 Let f=2uxu2x cos u−u3
x sin u. Note that f=DxF with F=u2

x cos u.

We show that f is indeed exact. Using (10), we readily verify that

L(0)
u(x)f =

∂f

∂u
−Dx

∂f

∂ux

+D2
x

∂f

∂u2x

=−2uxu2x sin u−u3
x cos u−Dx[2u2x cos u−3u2

x sin u]+D2
x[2ux cos u]

=−2uxu2x sin u− u3
x cos u− [2u3x cos u− 8uxu2x sin u− 3u3

x cos u]

+ [2u3x cos u− 6uxu2x sin u− 2u3
x cos u] ≡ 0. (11)

Definition 11 The continuous homotopy operator with variable u(x) is

Hu(x)f =

1∫
0

(Iuf) [λu]
dλ

λ
, (12)

where the integrand Iuf is given by

Iuf =
M−1∑
i=0

uix

M∑
k=i+1

(−Dx)
k−(i+1) ∂f

∂ukx

. (13)

Theorem 12 Given an exact differential function f of order M one has
F = D−1

x f =
∫

f dx = Hu(x)f.

Proof. We multiply L(0)
u(x)f =

∑M
k=0(−Dx)

k ∂f
∂ukx

by u to restore the degree.

Next, we split off u∂f
∂u

. Then, we integrate by parts and split off ux
∂f
∂ux

. We

repeat this process until we split off uMx
∂f

∂uMx
. In detail,

uL(0)
u(x)f = u

M∑
k=0

(−Dx)
k ∂f

∂ukx

= u
∂f

∂u
−Dx

(
u

M∑
k=1

(−Dx)
k−1 ∂f

∂ukx

)
+ ux

M∑
k=1

(−Dx)
k−1 ∂f

∂ukx
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= u
∂f

∂u
+ ux

∂f

∂ux

−Dx

(
u

M∑
k=1

(−Dx)
k−1 ∂f

∂ukx

+ux

M∑
k=2

(−Dx)
k−2 ∂f

∂ukx

)
+ u2x

M∑
k=2

(−Dx)
k−2 ∂f

∂ukx

= . . .

= u
∂f

∂u
+ ux

∂f

∂ux

+ . . . + uMx
∂f

∂uMx

−Dx

(
u

M∑
k=1

(−Dx)
k−1 ∂f

∂ukx

+ux

M∑
k=2

(−Dx)
k−2 ∂f

∂ukx

+ . . . + u(M−1)x

M∑
k=M

(−Dx)
k−M ∂f

∂ukx

)

=
M∑
i=0

uix
∂f

∂uix

−Dx

M−1∑
i=0

uix

M∑
k=i+1

(−Dx)
k−(i+1) ∂f

∂ukx


=Mf −Dx

M−1∑
i=0

uix

M∑
k=i+1

(−Dx)
k−(i+1) ∂f

∂ukx

 . (14)

Since f is exact we have L(0)
u(x)f = 0. Eq. (14) then implies

Mf = Dx

M−1∑
i=0

uix

M∑
k=i+1

(−Dx)
k−(i+1) ∂f

∂ukx

 . (15)

Applying M−1 and using M−1Dx = DxM−1 from Theorem 6, we obtain

f = Dx

M−1
M−1∑
i=0

uix

M∑
k=i+1

(−Dx)
k−(i+1) ∂f

∂ukx

 . (16)

Applying D−1
x and using (3), we get

F = D−1
x f =

1∫
0

M−1∑
i=0

uix

M∑
k=i+1

(−Dx)
k−(i+1) ∂f

∂ukx

 [λu]
dλ

λ
= Hu(x)f (17)

using (12) and (13). �

Example 13 Let f = 2uxu2x cos u − u3
x sin u which is exact as shown in Ex-

ample 10. Using (13) with M = 2, we readily compute

Iuf =
1∑

i=0

uix

2∑
k=i+1

(−Dx)
k−i−1 ∂f

∂ukx

= u
∂f

∂ux

− uDx(
∂f

∂u2x

) + ux(
∂f

∂u2x

)

= u(2u2x cos u− 3u2
x sin u)− uDx(2ux cos u) + ux(2ux cos u)

=−uu2
x sin u + 2u2

x cos u. (18)

Using (12),

F =Hu(x)f =

1∫
0

(Iuf) [λu]
dλ

λ
=

1∫
0

(
−λ2uu2

x sin(λu) + 2λu2
x cos(λu)

)
dλ

= u2
x cos u. (19)

6



Thus, application of (12) yields F without integration by parts with respect
to x. Indeed, F can be computed via repeated differentiation followed by a
one-dimensional integration with respect to an auxiliary variable λ.

3 Alternate form of the continuous homotopy operator in 1D

Formulas (12) and (13) are valid for one dependent variable u. In [5] we pre-
sented a calculus-based formula for the homotopy operator for N dependent
variables in 1D based on work by Anderson and Olver in [12, p. 372]:

Hu(x)f =

1∫
0

N∑
j=1

(Iu(j)f) [λu]
dλ

λ
, (20)

where u(j) is the jth component of u = (u(1), u(2), · · · , u(j), · · · , u(N)). The
integrand,

Iu(j)f =
M(j)−1∑

i=0

Di
x

(
u(j) L(i+1)

u(j)(x)
f
)
, (21)

where M (j) is the order of the variable u(j) in f, involves the continuous 1D
higher Euler operators [9,12] defined as follows.

Definition 14 The continuous higher Euler operators for component u(j)(x)
are

L(i)

u(j)(x)
f =

M(j)∑
k=i

(
k

i

)
(−Dx)

k−i ∂f

∂u(j)
kx

, (22)

where
(

k
i

)
is the binomial coefficient.

Note that the higher Euler operator for i = 0 and one dependent variable
u(1)(x) = u(x) matches the variational derivative (10).

In the case of one dependent variable, u, we denote M (1) by M. After substi-
tution of L(i+1)

u(x) f into (21), we obtain

Iuf =
M−1∑
i=0

Di
x

u
M∑

k=i+1

(
k

i + 1

)
(−Dx)

k−(i+1) ∂f

∂ukx

 . (23)

Theorem 15 The integrands (13) and (23) are equal.

Proof. Starting from (23), we use Leibniz’s rule to propagate Dx to the right

Iuf =
M−1∑
i=0

Di
x

u
M∑

k=i+1

(
k

i + 1

)
(−Dx)

k−(i+1) ∂f

∂ukx


=

M−1∑
i=0

i∑
j=0

(
i

j

)
ujxDi−j

x

 M∑
k=i+1

(
k

i + 1

)
(−Dx)

k−(i+1) ∂f

∂ukx


=

M−1∑
i=0

i∑
j=0

(
i

j

)
ujx(−1)j−i

M∑
k=i+1

(
k

i + 1

)
(−Dx)

k−(j+1) ∂f

∂ukx

. (24)
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Next, we interchange the sums over i and j (to bring ujx up front), followed
by an interchange of the sums over i and k (to bring Dx and ∂f/∂ukx outside
the sum over i). So,

Iuf =
M−1∑
j=0

ujx

M−1∑
i=j

(
i

j

)
(−1)j−i

M∑
k=i+1

(
k

i + 1

)
(−Dx)

k−(j+1) ∂f

∂ukx

=
M−1∑
j=0

ujx

M∑
k=j+1

(−Dx)
k−(j+1) ∂f

∂ukx

k−1∑
i=j

(−1)i−j

(
i

j

)(
k

i + 1

)

=
M−1∑
j=0

ujx

M∑
k=j+1

(−Dx)
k−(j+1) ∂f

∂ukx

, (25)

where we have used the identity

k−1∑
i=j

(−1)i−j

(
i

j

)(
k

i + 1

)
= 1 if k ≥ j + 1, (26)

which is straightforward to prove using mathematical induction. �

Homotopy operator (20) can easily be implemented in CAS. In our experience,
integrand (13) leads to a more efficient and faster algorithm for it requires
substantially less differentiations then (23).

4 Discrete Euler and homotopy operators

We now turn to the discrete analogues of differential functions, Euler operators
and homotopy operators. For simplicity we consider the case of one lattice
variable n which results, for example, from a discretization of the variable x.
We allow N dependent variables, i.e. un = (u(1)

n , u(2)
n , · · · , u(j)

n , · · · , u(N)
n ). For

simplicity, in the examples we denote these components by un, vn, etc.

By analogy with Dx and D−1
x , we define shift operators acting on fn(un).

Definition 16 D is the up-shift operator (also known as forward- or right-
shift) such that D fn = fn+1. Its inverse, D−1, is the down-shift operator (or
backward- or left-shift) such that D−1 fn = fn−1. The identity operator is
denoted by I. Lastly, ∆ = D − I is the forward difference operator so that
∆ fn = (D− I) fn = fn+1 − fn.

Given are functions fn in discrete variables un, vn, . . . and their up and down
shifts. If fn(un−p, vn−r, · · · , un, vn, · · · , un+q, vn+s) with p ≥ r involves negative
shifts, one must first remove these by replacing fn by f̃n = Dpfn. From this
point we assume that all negative shifts have been removed.

Definition 17 fn is called exact if it is a total difference, i.e. there exists a
Fn so that fn = ∆ Fn.
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Example 18 Let

fn = sin(un+3) cos2(v2
n+2)− sin(un+1) cos2(v2

n). (27)

By hand, we readily verify that fn = ∆Fn with

Fn = sin(un+2) cos2(v2
n+1) + sin(un+1) cos2(v2

n). (28)

So, fn is exact.

Below we address the following questions. (i) How can one test whether or not
fn is exact? Equivalently, how does one know that Fn exists in closed form?
(ii) Can one compute Fn =∆−1fn in a way analogous to the continuous case?

Definition 19 L(0)

u
(j)
n

is the discrete Euler operator of order zero (discrete vari-

ational derivative) for component u(j)
n , defined [1] by

L(0)

u
(j)
n

fn =
M(j)∑
k=0

D−k ∂fn

∂u
(j)
n+k

=
∂

∂u
(j)
n

M(j)∑
k=0

D−kfn

=
∂

∂u
(j)
n

(
I + D−1 + D−2 + · · ·+ D−M(j)

)
fn, (29)

where M (j) is the highest shift of u(j)
n occurring in fn.

With respect to the existence of Fn, the following exactness criterion is well-
known and frequently used [1].

Theorem 20 A necessary and sufficient condition for a function fn with pos-
itive shifts to be exact is that L(0)

u
(j)
n

fn ≡ 0, j = 1, 2, 3, · · · , N.

Proof. A proof is given in e.g. [7]. �

Example 21 To test that (27) is exact we apply (29) to fn for each component
of un = (u(1)

n , u(2)
n ) = (un, vn) separately. For component un with maximum

shift M (1) = 3 we readily verify that L(0)
un

fn = ∂
∂un

(I + D−1 + D−2 + D−3) fn ≡
0. Similarly, for component vn with maximum shift M (2) = 2 we check that
L(0)

vn
fn = ∂

∂vn
(I + D−1 + D−2) fn ≡ 0.

Next, we compute Fn so that fn = ∆ Fn = Fn+1 − Fn.

Definition 22 The discrete homotopy operator for un is

Hunfn =

1∫
0

N∑
j=1

(
I
u
(j)
n

fn

)
[λun]

dλ

λ
, (30)

where the integrand I
u
(j)
n

fn is given by

I
u
(j)
n

fn =
M(j)−1∑

i=0

u
(j)
n+i

∂

∂u
(j)
n+i

M(j)∑
k=i+1

D−(k−i)fn. (31)

9



As in the continuous case,
(
I
u
(j)
n

fn

)
[λun] means that after I

u
(j)
n

fn is computed

one replaces un by λun, un+1 by λun+1, etc.

One can use the following theorem [6,8,10] to compute Fn.

Theorem 23 Given an exact function fn one has Fn = ∆−1fn = Hunfn.

Proof. The proof is similar to that of Theorem 12. For simplicity we show
it for one dependent variable, u(1)

n = un, and we denote M (1) by M. After
multiplication of L(0)

un
fn = ∂

∂un

∑M
k=0 D−kfn with un, we isolate un

∂fn

∂un
and apply

∆ to the remaining term in order to sum by parts. Next, we isolate un+1
∂fn

∂un+1
,

followed by another summation by parts.
This process is repeated M − 1 times, so that

unL(0)
un

fn =
M∑
i=0

un+i
∂fn

∂un+i

−∆

M−1∑
i=0

un+i
∂

∂un+i

M∑
k=i+1

D−(k−i)fn

 . (32)

The inverse of the discrete operator Mfn =
∑M

i=0 un+i
∂fn

∂un+i
is computed as

M−1fn =
∫ 1
0 fn[λun] dλ

λ
. Since fn is exact and M−1 and ∆ commute, we get

Fn = ∆−1fn =

1∫
0

M−1∑
i=0

un+i
∂

∂un+i

M∑
k=i+1

D−(k−i)fn

[λun]
dλ

λ
= Hunfn (33)

using (30) and (31). �

Thus, the homotopy operator reduces summation by parts needed for the
inversion of ∆ to a set of shifts and differentiations followed by a single definite
integral with respect to a scaling parameter λ.

Example 24 We return to (27) where fn involves un and vn with maximal
shifts M (1) = 3 and M (2) = 2. Using (31), we get

Iunfn = un
∂

∂un

(D−1+D−2+D−3)fn+un+1
∂

∂un+1

(D−1+D−2)fn+un+2
∂

∂un+2

D−1fn

= un
∂

∂un

(
sin(un+2) cos2(v2

n+1) + sin(un+1) cos2(v2
n)

− sin(un−1) cos2(v2
n−2)− sin(un−2) cos2(v2

n−3)
)

+un+1
∂

∂un+1

(
sin(un+2) cos2(v2

n+1)− sin(un) cos2(v2
n−1)

+ sin(un+1) cos2(v2
n)− sin(un−1) cos2(v2

n−2)
)

+un+2
∂

∂un+2

(
sin(un+2) cos2(v2

n+1)− sin(un) cos2(v2
n−1)

)
.

= un+1 cos(un+1) cos2(v2
n) + un+2 cos(un+2) cos2(v2

n+1). (34)
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and, analogously,

Ivnfn =−4
(
v2

n sin(un+1) cos(v2
n) sin(v2

n)+v2
n+1 sin(un+2) cos(v2

n+1) sin(v2
n+1)

)
.(35)

Based on (30), we compute

Fn =

1∫
0

(Iunfn + Ivnfn) [λun]
dλ

λ

=

1∫
0

(
un+1 cos(λun+1) cos2(λ2v2

n) + un+2 cos(λun+2) cos2(λ2v2
n+1)

− 4 λ v2
n sin(λun+1) cos(λ2v2

n) sin(λ2v2
n)

− 4 λ v2
n+1 sin(λun+2) cos(λ2v2

n+1) sin(λ2v2
n+1)

)
dλ

= sin(un+2) cos2(v2
n+1) + sin(un+1) cos2(v2

n), (36)

which agrees with (28) previously computed by hand in Example 18.

5 Alternate form of the discrete homotopy operator

In [5] we presented the following formula for the discrete homotopy operator
with one lattice variable (n) and with N dependent variables u(j)

n :

Hunfn =

1∫
0

N∑
j=1

(
I
u
(j)
n

fn

)
[λun]

dλ

λ
(37)

with

I
u
(j)
n

fn =
M(j)−1∑

i=0

∆i
(
u(j)

n L
(i+1)

u
(j)
n

fn

)
, (38)

where the discrete higher Euler operators are defined as follows.

Definition 25 The discrete higher Euler operators for component u(j)
n are

L(i)

u
(j)
n

fn =
M(j)∑
k=i

(
k

i

)
D−k ∂fn

∂u
(j)
n+k

=
∂

∂u
(j)
n

M(j)∑
k=i

(
k

i

)
D−kfn. (39)

Theorem 26 The integrands (31) and (38) are equal, i.e.

I
u
(j)
n

fn =
M(j)−1∑

i=0

∆i

u(j)
n

∂

∂u
(j)
n

M(j)∑
k=i+1

(
k

i + 1

)
D−kfn


=

M(j)−1∑
i=0

u
(j)
n+i

∂

∂u
(j)
n+i

M(j)∑
k=i+1

D−(k−i)fn (40)

Proof. The proof is analogous to that of Theorem 15. �
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6 Conclusions

In this paper we derived formulas for the 1D continuous and discrete homotopy
operators. We showed that our calculus-based formulas are equivalent to those
obtained from the variational complexes. The simplified formulas no longer
involve higher Euler operators which makes them easier to implement and
faster to execute in major computer algebra systems. Simplified versions of
the continuous homotopy operator in 2D and 3D will be presented elsewhere.
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