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Abstract

Hill’s method is a means to numerically approximate spectra of linear differential
operators with periodic coefficients. In this paper, we address different issues related
to the convergence of Hill’s method. We show the method does not produce any
spurious approximations, and that for self-adjoint operators, the method converges in a
restricted sense. Further, assuming convergence of an eigenvalue, we prove convergence
of the associated eigenfunction approximation in the L2-norm. These results are not
restricted to self-adjoint operators. Finally, for certain self-adjoint operators, we prove
that the rate of convergence of Hill’s method to the least eigenvalue is faster than any
polynomial power.

1 Introduction

In this paper we study a numerical method, henceforth called Hill’s method, used to approx-
imate the spectrum of the operator

Spψ ≡ ∂pxψ +

p−1∑
k=0

fk (x) ∂kxψ, (1)

where ψ is in some appropriate space to be defined later. The coefficient functions fk(x) are
smooth, T -periodic functions: fk(x+ T ) = fk(x), k = 0, . . . , p− 1. This is denoted as

fk ∈ C∞ (ST ) . (2)

Using Floquet and Fourier theory, our approximation starts by computing a bi-infinite
matrix representing a parameter-dependent symbol of Sp. We make the problem finite
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dimensional by truncating the bi-infinite matrix in both rows and columns; we then compute
the eigenvalues of the resulting finite-dimensional matrix. Such an approach is commonly
used. This is made more precise in the following section. In modern terminology, this
truncation may be called a Galerkin approximation [2], though it is also called a projection
method in [3].

In its full generality, Hill’s method was first developed in [6]. However, the method has
appeared in more specialized contexts as early as 1886, when George Hill published [10]. This
paper detailed his investigations into the reduced three-body problem, where an analysis of
small perturbations led him to seek solutions to the linear problem

d2ψ

dx2
+

(
θ0 + 2

∞∑
n=1

θn cos(2nx)

)
φ = 0. (3)

Here θk, k = 1, 2, . . ., are real parameters. In his analysis, Hill incorporated both Floquet
and Fourier theory, which led him to consider infinite-dimensional matrices and their cor-
responding determinants. Hill used these determinants in a formal way, and he attempted
to approximate the spectra of the infinite-dimensional matrices using the spectra of three-
by-three truncations. Inspired by Hill’s work, a rigorous theory on determinants of infinite
matrices was initiated by Poincaré [17] and von Koch [22]. This in turn has led to a modern
theory of determinants of operators defined over Banach spaces. The treatise by Gohberg,
Goldberg, and Krupnick [9] provides an excellent introduction to both the classical origins
and modern developments of infinite dimensional determinants, and our work relies heavily
on the material in [9] (see also [8] and [4]). However, we do not develop this theory any
further.

Instead, we focus on proving the validity of Hill’s truncation. This problem, in turn, has
its own deep and storied history. A wonderful introduction can be found in [3]. Likewise,
in the same reference, one can find a number of examples where using finite-dimensional
approximations to compute the spectra of infinite-dimensional operators fails spectacularly.
For our problem, however, we show that for general Sp, Hill’s method never converges to
spurious eigenvalues in compact domains. In the case that Sp is self-adjoint, we go further
and show, again on any compact domain, that Hill’s method converges to the spectrum
of Sp restricted to said domain. Further, assuming the convergence of an approximate
sequence of eigenvalues to a simple eigenvalue, we show that the corresponding eigenvector
approximations converge to a true eigenvector in the L2-norm.

As shown in [6], Hill’s method is exact for constant-coefficient problems. By restricting
ourselves to a particular class of self-adjoint operators, which represent the simplest case of
non-constant coefficient equations, we show Hill’s method approximates the smallest eigen-
value faster than any polynomial power. This restricted class of operators includes classic
problems such as Mathieu’s equation, and it represents a non-trivial and interesting body of
problems for which Hill’s method is an excellent approximation scheme.

Another, more abstract but also more general, approach for analyzing Hill’s method can
be found in the notes of G.M. Vainikko (Chapter 4 of [13]). This approach applies to a more
general class of problems than just Hill’s method, and once the approach is mastered, its
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application to Hill’s method can be viewed as a corollary. The results in [13] not only allow
for establishing the convergence of Hill’s method, but the rate of convergence can also be
determined. The rate thus found is identical to the one we establish in this paper. In the case
of symmetric operators, a convergence proof and rate can also be found in [7]. However, the
class of operators considered in [7] is far more restricted than in this paper or [13]. Further,
the rate of convergence obtained is far slower than what we or [13] are able to show.

The key to the deeper results in [13] is the notion of the aperture between subspaces
of a Banach space (see also Chapter 4 of [12]). We make no use of this idea, or any other
result found in [13]. Instead, we use a more direct and explicit approach, which may be
more natural or intuitive if one is interested in Hill’s method in its own right, as opposed to
regarding it as a special case of a more general problem. Indeed, as mentioned above, Hill’s
method led us to consider determinants of infinite-dimensional operators and the work of
[9]. Thus, the methods presented in this paper are new and hopefully insightful.

On a final note, our manuscript contains neither numerical illustrations of our results nor
examples where the method fails. There are two reasons for this. First, many examples have
already been demonstrated in [4]. Second, our results are positive results about the validity
of Hill’s truncation. This implies the nonexistence of numerical counterexamples to what we
prove, hence precluding any numerical illustrations of the method’s failure.

Remarks.

• The form of the operator (1) is restrictive in that we equate the coefficient of the
highest-order derivative to one. Were the coefficient a constant, this would not change
our results. The affect of a non-constant coefficient on our work is non-trivial. However,
in many problems (linear stability, scattering) the spectral problems that arise are of
the form used here (see the examples in [6]), although variations occur.

• Numerically computing the eigenvalues of a matrix is a nontrivial problem. It is not
a problem we consider in this paper. Our sole interest is in the relation between the
finite-dimensional approximations as obtained through Hill’s method and the problem
they are meant to approximate.

• The work in this paper focuses on spectral problems defined by scalar differential
operators (1). This restriction is made for ease of presentation. Hill’s method, in
essence a Galerkin method, works equally well for systems of equations or for problems
with multiple independent variables [6]. Our methods of analysis used apply to the
system case, but modifications are necessary for the multi-dimensional case.

• Combining the ideas of Floquet decomposition and the truncation of matrix represen-
tations of operators is frequently done when considering periodic operator equations.
Three contemporary examples of this can be found in [19], [23], and [24]. Special
mention should be made with regards to [24].

The outline of this paper is as follows. In the next section we present the details of the
method for the scalar problem. That section is also used to settle various notational issues.

3



Section 3 presents our proofs relating to the convergence of Hill’s method. We break the
section into two parts, the first dealing with non-self-adjoint operators, the second dealing
with self-adjoint operators in particular. Section 4 contains our proof of the convergence of
the associated eigenvector approximations. Again we emphasize that this result holds for
general operators. Next, Section 5 presents our proof of spectral convergence for the least
eigenvalue. Finally, the last section summarizes our findings.

2 Hill’s Method

Hill’s method is discussed in great detail in [6]. In essence the method combines a Floquet (or
Bloch) decomposition with a Fourier expansion so as to reduce the numerical computation
of the spectrum of a periodic differential operator to the computation of spectra of a family
of (finite-dimensional) matrices. Before we continue, we define some relevant spaces that
will be used throughout the rest of the paper. Let L2 (ST ) be defined as the completion of
C (ST ), the space of T -periodic, continuous functions, with respect to the L2 norm on the
interval [−T/2, T/2]. Let

en (x) =
e−i2πnx/T√

T
, n ∈ Z, (4)

so that for φ ∈ L2 (ST ), we have the associated Fourier series

φ (x) =
∞∑

n=−∞

φ̂nen (x) , (5)

with

φ̂n = 〈φ, en〉 =
1√
T

∫ T/2

−T/2
φ(x)e∗n(x)dx. (6)

This allows us to associate with every function φ ∈ L2 (ST ) its Fourier transform

φ̂ ≡
{
φ̂n

}∞
n=−∞

. (7)

We define the Sobolev spaces Hp (ST ) in a similar fashion, and in our paper, we define
the norm on Hp (ST ) as ([2], pg. 308)

||φ||22,p ≡
∣∣∣φ̂0

∣∣∣2 +
∑
|k|>0

(
2πk

T

)2p ∣∣∣φ̂k∣∣∣2 . (8)

The Floquet-Bloch Decomposition

First, we define Sp over the Sobolev space Hp (R), with

Hp (R) =

{
f ∈ L2 (R) |

p∑
k=0

∫
R
|fk(x)|2dx <∞

}
, (9)
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where fk denotes the kth weak derivative of f . This makes Sp closed and densely defined.
We can likewise turn the operator Sp − λ into a first-order differential operator defined
on H1 (R; Cp), where the notation means that the space H1 (R; Cp) consists of Cp valued
functions with one weak derivative, and for which the function and its derivate have Cp

norms that are both in L2 (R) (see [18] for more details). Denote the first-order differential
operator as S(x;λ) = d

dx
−B(x;λ), where B(x;λ) is a p× p matrix. By definition,

σ(Sp) = {λ ∈ C : S(x;λ) does not have a bounded inverse} . (10)

Following [20], we use the following decomposition of σ(Sp) (see also [5], [16]).

• σpt(Sp) = {λ ∈ C : S(x;λ) is Fredholm with zero index.}

• σess(Sp) = σ(Sp)\σpt(Sp).

Since Sp has only periodic coefficients, we need only compute σess(Sp) [20]. This reduces to
the following problem.

Theorem 1. λ ∈ σ(Sp) if and only if the differential equation

du

dx
= B(x;λ)u, 0 < x < T

u(T ) = eiµTu(0)

(11)

has a solution for some µ ∈ [0, 2π/T ).

Proof. See [20], page 1001.

We transform the differential equation in Theorem 1 into

dψ

dx
= B̃(x;λ, µ)ψ, 0 < x < T

ψ(T ) = ψ(0)

(12)

via the transformation ψ(x) = e−iµxu(x). Note, B̃(x;λ, µ) = B(x;λ) − iµ. We can then
restate Theorem 1 as

Theorem 2. λ ∈ σ(Sp) if and only if the differential equation

dψ

dx
= B̃(x;λ, µ)ψ, ψ ∈ H1 (ST ; Cp) (13)

has a solution for some µ ∈ [0, 2π/T ).
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It is easy to show that the pth-order system in Theorem 2 is equivalent to the scalar
problem

Sµpφ = λφ, φ ∈ Hp (ST ) , (14)

where

Sµpφ = e−iµxSp
(
eiµxφ

)
. (15)

An explicit form for Sµp is found in [6]. Theorem 2 implies that we can write σ(Sp) as

σ(Sp) =
⋃
µ

σ(Sµp ). (16)

As implied by (14), for each value of µ, σ(Sµp ) consists only of point spectra. We approximate
these point sets numerically for a fixed value of µ.

The Fourier Decomposition

To reduce the problem to linear algebra, we resort to a Galerkin method [2] using the
orthonormal basis en given at the beginning of this section. Of course, given any orthonormal
basis {ϕj}, we can generate a matrix representation for any linear operator M with entries
〈Mϕj, ϕk〉, (j, k) ∈ Z2. Our particular choice of basis reflects the boundary conditions of
our eigenvalue problem (14). We interchangeably refer to the bi-infinite matrix, with entries〈
Sµp ej, ek

〉
, as the Fourier transform or symbol of the linear operator Sµp . We denote the

symbol (or Fourier transform, or bi-infinite matrix representation) of Sµp as Ŝµp , where the

(n,m)th entry of Ŝµp is denoted by Ŝµp,nm =
〈
Sµp em, en

〉
. We write the Fourier transform of

our eigenvalue problem (14) as

Ŝµp φ̂ = λφ̂. (17)

Finite-Dimensional Projection

The last step of Hill’s method requires the introduction of the orthogonal projection operator
PN onto the subspace spanned by the Fourier modes from −N to N . The effect of PN applied
to a periodic function is truncation of the Fourier series i.e.

PNφ(x) =
N∑

n=−N

φ̂nen (x) . (18)

Likewise, the action of the symbol of PN , P̂N , will give

(
P̂N φ̂

)
n

=


0 |n| > N

φ̂n |n| ≤ N

. (19)
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Define the (2N + 1)× (2N + 1) matrix Ŝµ,τN via

P̂N Ŝ
µ
p P̂N =



. . .
... . ..

0 0 0

· · · 0 Ŝµ,τN 0 · · ·

0 0 0

. ..
...

. . .


, (20)

where the τ emphasizes that Ŝµ,τN is a truncation of a bi-infinite matrix. As a matter of

convention, for any operator A with symbol Â, we define ÂτN in the same fashion, namely

P̂N ÂP̂N =



. . .
... . ..

0 0 0

· · · 0 ÂτN 0 · · ·

0 0 0

. ..
...

. . .


. (21)

Likewise we introduce the shorthand ÂN = P̂N ÂP̂N .
Finally, we define the approximate eigenvalue problem

Ŝµ,τN φ̂τN = λN φ̂
τ
N , (22)

where the subscript N on λN reinforces the order of the approximation. A more detailed
derivation is presented in [6].

3 Proof of Convergence

By the convergence of Hill’s method, we mean that the following two properties are satisfied.

1. For a given sequence {λN}∞N=1, λN ∈ σ(Ŝµ,τN ), and for any ε > 0, there exists an integer
M such that any λN , N ≥M , is in an ε-neighborhood of some λ ∈ σ(Sµp ).

2. For all λ ∈ σ(Sµp ), there exists some sequence {λN}∞N=1, λN ∈ σ(ŜµpN), such that
λN → λ.

The first condition ensures that Hill’s method is accurate, but it leaves open the possibility
that the method may not produce all of σ(Sµp ). Likewise, the second statement ensures that
the method will faithfully reproduce all of σ(Sµp ), but it does not rule out that the method
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will produce spurious information. It is this distinction that leads us to refer to the first
condition as the “no-spurious modes” condition.

We are able to prove a slightly restricted version of the no-spurious modes condition
for any operator Sµp . We modify the condition only by requiring the arbitrary sequence
{λN}∞N=1 to be confined to a compact subset of the complex plane. The second condition is
essentially proved in [18], for self-adjoint operators. We have not been able to improve upon
this restriction. However, we present the outline of the proof provided in [18] for the sake of
completeness.

3.1 Proof of the No-Spurious-Modes Condition

Our proof of the first condition relies upon one major theorem. Before proving this theorem,
we need to develop and explain the basic machinery necessary for our proof. First, for
notational ease, we define the operator S1

• D (S1) = Hp (ST ), S1φ = Sµpφ.

We now provide a brief introduction to the theory of determinants of operators on a
separable Hilbert Space, say H. This material was developed in [9], and we reproduce it here
only for completeness or to clarify some points made in [9]. Let B (H) denote the space of
all bounded operators from H into itself. Let F denote the space of finite-rank operators.
For our purposes, it is not sufficient to use the operator norm induced by the norm on H,
say ||·||. Instead, we need to introduce a new norm ||·||Z, where Z denotes a sub-algebra of
B (H) such that F ∩ Z is dense in Z and

||·|| ≤ C ||·||Z , (23)

where C is a constant. Thus Z is an embedded sub-algebra in B (H). Likewise, if the space of
finite-rank operators is dense in Z, this implies every element in Z is compact. Next, define
the trace of K ∈ F ∩ Z by

tr (K) =
n∑
k=1

λk, (24)

and define the determinant of I +K as

det (I +K) =
n∏
k=1

(1 + λk) , (25)

where n is the rank of K and λk are the eigenvalues of K.
The issue at hand is whether we can find some continuous function that will serve as

an extension of the determinant, which has only been defined on F ∩ Z. A necessary and
sufficient condition for this (see [9]) is if the trace is a bounded linear functional in the Z
norm, i.e.

|tr (K)| ≤ M ||K||Z (26)
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holds for all K ∈ F ∩ Z, where M is a constant independent of K. If this condition holds,
then for K ∈ Z, we know there exists a sequence of finite-rank operators KN such that

lim
N→∞

||KN −K||Z = 0, (27)

and we can define the Z-determinant of I +K as

detZ (I +K) = lim
N→∞

det (I +KN) . (28)

Using the above definitions, one can prove [9]:

Theorem 3. (I+K)−1 exists if and only if detZ (I+K) 6= 0.

A space well suited for our purposes was developed by Gohberg et al [9]. Define the
sub-algebra Ω via:

Ω ≡

A ∈ B (L2 (ST )) : max

 lim
M→∞

∣∣∣∣∣
M∑

n=−M

Ânn

∣∣∣∣∣ ,
(

∞∑
n,m=−∞

∣∣∣Ânm∣∣∣2)1/2
 <∞

 . (29)

For A ∈ Ω, we have the corresponding norm ||A||Ω defined by

||A||Ω ≡ max

∣∣∣∣∣ lim
M→∞

M∑
n=−M

Ânn

∣∣∣∣∣ ,
(

∞∑
n,m=−∞

∣∣∣Ânm∣∣∣2)1/2
 , (30)

where Ânm = 〈Aem, en〉, and en is defined as in (4). If A ∈ Ω, we see that

||Aφ||22 =
∞∑

n=−∞

∣∣∣∣∣
∞∑

m=−∞

Ânmφ̂m

∣∣∣∣∣
2

≤ ||φ||22
∞∑

n=−∞

∞∑
m=−∞

∣∣∣Ânm∣∣∣2 , (31)

and therefore ||A||2 ≤ ||A||Ω. The next lemma easily follows.

Lemma 4. For all finite rank operators A, we have

|tr (A)| ≤ ||A||Ω . (32)

Proof. Given A has finite rank, let ψ1, · · · , ψn be an orthonormal basis for the range of A.
Then we may write A as

A =
n∑
k=1

ψk 〈A ·, ψk〉 . (33)

It is clear that
tr (ψk 〈A·, ψk〉) = 〈Aψk, ψk〉 , (34)
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and therefore

tr (A) =
n∑
k=1

〈Aψk, ψk〉 . (35)

Since ψk ∈ L2 (ST ), we can expand ψk as

ψk =
∞∑

j=−∞

ψ̂kjej. (36)

Note that

〈Aej, ej〉 =
n∑
k=1

ψ̂kj 〈Aej, ψk〉 . (37)

Therefore we can rewrite the trace of a finite-rank operator as

tr (A) =
n∑
k=1

〈Aψk, ψk〉

=
n∑
k=1

∞∑
j=−∞

ψ̂kj 〈Aej, ψk〉

=
∞∑

j=−∞

n∑
k=1

ψ̂kj 〈Aej, ψk〉

=
∞∑

j=−∞

〈Aej, ej〉 . (38)

Thus from the definition of ||·||Ω we have the result.

Similarly, we have

Lemma 5. Every finite-rank operator is in Ω.

Proof. We know that the trace of a finite-rank operator, say A, is bounded, and thus from

the previous lemma we know that

∣∣∣∣∣
∞∑

j=−∞

Âjj

∣∣∣∣∣ <∞. Likewise we have

∑
j,k

|〈Aej, ek〉|2 =
∑
j,k

∣∣∣∣∣
n∑
l=1

ψ̂lk 〈Aej, ψl〉

∣∣∣∣∣
2

≤

(∑
k

n∑
l=1

∣∣∣ψ̂lk∣∣∣2)(∑
j

n∑
l=1

∣∣〈ej, A†ψl〉∣∣2)

≤ n
n∑
l=1

∣∣∣∣A†ψl∣∣∣∣22 <∞, (39)

where A† denotes the adjoint of A. Therefore every finite-rank operator is in Ω.
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Lastly, we need to show is that F is dense in Ω. We do this, and also establish a useful
result for our main theorem, in the following lemma.

Lemma 6. If A ∈ Ω, then lim
N→∞

||A− PNAPN ||Ω = 0.

Proof. It is clear that

||A− PNAPN ||Ω ≤ ||(I − PN)A||Ω + ||PNA(I − PN)||Ω . (40)

With

||(I − PN)A||Ω = max


∣∣∣∣∣∣
∑
|n|>N

Ânn

∣∣∣∣∣∣ ,
∑
|n|>N

∞∑
m=−∞

∣∣∣Ânm∣∣∣2
1/2

 , (41)

and

||PNA(I − PN)||2Ω =
∑
|n|≤N

∑
|m|>N

∣∣∣Ânm∣∣∣2 , (42)

the result follows, since ||A||Ω <∞.

This shows that for A ∈ Ω, we have

detΩ (I + A) = lim
N→∞

det (I + PNAPN) , (43)

where
det (I + PNAPN) ≡ det

(
ÎτN + ÂτN

)
. (44)

For omitted proofs and more detail on this material the interested reader is advised to consult
[9].

Finally, we need two key facts about operators of the form I +K, where I is the identity
and K is compact.

• I +K is a Fredholm operator.

• i (I +K) = 0.

Note, for any Fredholm operator F ,

i(F ) ≡ dim(ker(F ))− dim(ker(F †)), (45)

where F † again denotes the adjoint of F . For proof, see [21].
With these tools in hand, we prove the following theorem. This theorem will be the

engine to drive the proof of the no-spurious-mode condition.

Theorem 7. Let γ ∈ ρ(S1). Then there exists some constant Mγ such that for N ≥ Mγ,

γ ∈ ρ(Ŝ1,τ
N ).
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Proof. Define the operator B : L2 (ST ) → L2 (ST ) via

(B̂ψ̂)n =


(

2πni
T

)−p
ψ̂n n 6= 0

i−pψ̂0 n = 0

, (46)

where ψ̂n are the components of the vector ψ̂ ∈ l2, and B̂ is the symbol of B. B, when
applied to S1 − γ, is introduced to nullify the growth along the diagonal of Ŝ1 − γ. Clearly
Hp (ST ) ⊂ R (B). With γ ∈ ρ(S1), we have that S1− γ is a bijection from Hp (ST ) to L2 (ST )
by definition. Therefore, we define the operator A whose symbol is B̂(Ŝ1 − γ), noting that
Hp (ST ) ⊂ R(A).

Now consider computing the matrix product of B̂ and (Ŝ1 − γ). Clearly this operator is
the extension of Â, and we will show that it is a bounded operator on l2. Therefore, it must
be the unique bounded extension of Â [18]. We refer to the extension of Â as Â to economize
on notation. Given that δnm is the Kroenecker delta function, the terms of Â are then

Ânm =



(
2πni

T

)−p((
ip
(
µ+ 2πn

T

)p − γ
)
δnm +

p−1∑
k=0

f̂k,n−mi
k

(
µ+

2πn

T

)k)
n 6= 0

(µp − γ) δ0m +

p−1∑
k=0

f̂k,−mµ
kik−p n = 0

.

(47)
See [6], equation 17, for an explicit derivation. Therefore, for n 6= 0

Ânn = 1 +
T

2π

(
pµ− if̂p−1,0

) 1

n
+ O

(
1

n2

)
, (48)

which shows

lim
M→∞

M∑
n=−M

(
Ânn − 1

)
<∞. (49)

Likewise, we have also shown
∞∑

n=−∞

∣∣∣Ânn − 1
∣∣∣2 <∞. (50)

For n 6= m and n 6= 0, we have

∣∣∣Ânm∣∣∣2 ≤
(

T

2πn

)2p
(
p−1∑
k=0

∣∣∣f̂k,n−m∣∣∣ ∣∣∣∣µ+
2πn

T

∣∣∣∣k
)2

≤

(
p−1∑
k=0

∣∣∣f̂k,n−m∣∣∣2)(p−1∑
k=0

(
T

2πn

)2p ∣∣∣∣µ+
2πn

T

∣∣∣∣2k
)
, (51)
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while for n = 0 we have ∣∣∣Â0m

∣∣∣2 ≤ µ2p − 1

µ2 − 1

p−1∑
k=0

∣∣∣f̂k,−m∣∣∣2 . (52)

Therefore ∑
m6=n,|n|>0

∣∣∣Ânm∣∣∣2 ≤
∑
|n|>0

p−1∑
k=0

(
T

2πn

)2p ∣∣∣∣µ+
2πn

T

∣∣∣∣2k
( ∞∑

m=−∞

p−1∑
k=0

∣∣∣f̂k,m∣∣∣2) . (53)

The above shows that ∑
n,m

∣∣∣Ânm − δnm

∣∣∣2 <∞, (54)

and therefore A − I ∈ Ω. Let K = A − I, and so K is compact. It is then clear that
A ∈ B (L2 (ST )), and that A is Fredholm. Therefore the range of A is closed. We know
Hp (ST ) ⊂ R (A), Hp (ST ) is dense in L2 (ST ), and so together these facts imply R (A) =
L2 (ST ). Hence dim

(
ker
(
A†
))

= 0, and i (A) = 0, so dim (ker (A)) = 0. Therefore A is a
bounded bijection from L2 (ST ) to L2 (ST ), which means A has a bounded inverse by the
Open Mapping Theorem.

Knowing that A has a bounded inverse and that A ∈ Ω, it follows from Theorem 3 that
detΩ (A) 6= 0. We have

detΩ (A) = lim
N→∞

det (I + PNKPN)

= lim
N→∞

det
(
ÎτN + K̂τ

N

)
, (55)

and thus there exists constant Mγ such that for N ≥ Mγ, det
(
ÎτN + K̂τ

N

)
6= 0. Since

P̂N B̂ = B̂P̂N ,
ÂτN = B̂τ

N(Ŝ1,τ
N − γÎN), (56)

which means that B̂T
N(Ŝ1,τ

N − γÎN) has trivial kernel. Since B̂N has trivial kernel, we know
that

ker
(
Ŝ1,τ
N − γÎN

)
= {0}, (57)

and therefore γ ∈ ρ(Ŝ1,τ
N − γÎN) for N ≥Mγ.

Given this theorem, we prove the following corollary.

Corollary 8. If λNj
∈ σ(Ŝ1,τ

Nj
) and λNj

→ γ, then γ ∈ σ(S1).

Proof. Suppose in contradiction that γ ∈ ρ(S1). Then, by Theorem 7, we know for some
value M that γ ∈ ρ(Ŝ1,τ

N ) for N ≥M . Then∣∣∣∣∣∣(Ŝ1,τ
N − γ)−1

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣(B̂τ

N(Ŝ1,τ
N − γ))−1B̂τ

N

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣(B̂τ

N(Ŝ1,τ
N − γ))−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣B̂τ
N

∣∣∣∣∣∣
2

≤
∣∣∣∣∣∣(B̂τ

N(Ŝ1,τ
N − γ))−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣B̂∣∣∣∣∣∣
2
. (58)
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Following the notation in Theorem 7, B̂T
N(Ŝ1,τ

N −γ) = ÎN+K̂τ
N . Likewise, per our convention,

let K̂N denote the l2 operator such that K̂τ
N is the (2N+1)×(2N+1) truncation of K̂N , and

K̂N = P̂NK̂N P̂N = P̂NK̂P̂N . From Theorem 7, we know that K is compact, and therefore
K̂N converges to K in the uniform operator topology. Clearly∣∣∣∣∣∣(ÎτN + K̂τ

N)−1
∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣(Î + K̂N)−1

∣∣∣∣∣∣
2
, (59)

and we know that I +K has a bounded inverse. This implies∣∣∣∣∣∣(Î + K̂N)−1
∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣(Î + K̂)−1

∣∣∣∣∣∣
2

∣∣∣∣∣∣(Î + (Î + K̂)−1(K̂N − K̂))−1
∣∣∣∣∣∣

2
(60)

Since K̂N converges uniformly to K̂, there exists L such that
∣∣∣∣∣∣(Î + K̂)−1(K̂N − K̂)

∣∣∣∣∣∣
2
< 1/2

for N ≥ L, and therefore ∣∣∣∣∣∣(Î + (Î + K̂)−1(K̂N − K̂))−1
∣∣∣∣∣∣

2
≤ 2. (61)

Finally, we know that ∣∣∣∣∣∣(Ŝ1,τ
N − γ)−1

∣∣∣∣∣∣
2
≥ 1

d
(
γ, σ(Ŝ1,τ

N )
) , (62)

where
d(γ, σ(Ŝ1,τ

N )) = inf
s∈σ(Ŝ1,τ

N )
|γ − s| . (63)

This implies that

d(γ, σ(Ŝ1,τ
N )) ≥ 2∣∣∣∣∣∣B̂∣∣∣∣∣∣

2

∣∣∣∣∣∣(Î + K̂)−1

∣∣∣∣∣∣
2

(64)

for N ≥ S. Hence, if γ ∈ ρ(S1), there can be no subsequence λNj
∈ σ(Ŝ1,τ

Nj
) converging to

γ.

Now we can prove the restricted no-spurious-mode condition.

Theorem 9. Let D be some compact set in the complex plane, and let {λN}∞N=1 be a sequence
contained in D with λN ∈ σ(Ŝ1,τ

N ). Then for all ε > 0, there exists some integer M such that
λN is in an ε-neighborhood of some value λ ∈ D ∩ σ(S1) for N ≥M .

Proof. Suppose instead that there exists a subsequence λNj
such that d(λNj

, D ∩ σ(S1)) ≥
ε > 0. However, since D is compact, λNj

must have a convergent subsequence, and this
subsequence must converge to some element in σ(S1) by Corollary 8. Hence our original
assumption cannot hold, and the theorem is proved.
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3.2 Proof of the Second Condition

We were able to prove the first condition under quite general assumptions. Specifically, it
was not necessary to impose that S1 was a self-adjoint operator. We are unable to prove
the second condition without making this assumption. However, it should be noted that
for non-self-adjoint operators, we have been unable to find numerical examples where the
second condition appears not to hold.

Our proof relies on a number of results from [18]. To apply these, we need the following
lemma.

Lemma 10. PNS
1PN converges strongly to S1.

Proof. Let ψ ∈ Hp (ST ). Then∣∣∣∣S1ψ − PNS
1PNψ

∣∣∣∣
2

=
∣∣∣∣PNS1 (I− PN)ψ + (I− PN)S1ψ

∣∣∣∣
2

≤
∣∣∣∣S1 (I− PN)ψ

∣∣∣∣
2
+
∣∣∣∣(I− PN)S1ψ

∣∣∣∣
2

(65)

≤ C ||(I− PN)ψ||2,p +
∣∣∣∣(I− PN)S1ψ

∣∣∣∣
2
.

This must become arbitrarily small as N →∞. Therefore the lemma is proved.

The results we need from [18] will now be stated for the sake of completeness. Proofs of
the lemmas and theorem can be found in [18], pages 290-292.

Definition 11. For any linear operator T, if γ ∈ ρ(T ), the resolvent operator of T is defined
as

Rγ(T ) ≡ (T − γ)−1. (66)

Lemma 12. If T is a self-adjoint operator, then

||Rγ(T )||2 =
1

d(γ, σ(T ))
, (67)

where d(γ, σ(T )) = infs∈σ(T ) |γ − s|

Lemma 13. If T is self adjoint and Im(γ) 6= 0, then

||Rγ(T )||2 ≤
1

|Im(γ)|
. (68)

Definition 14. Given a linear operator T with domain D (T ), a core of T is a subset D ⊂
D (T ) such that

T |D = T, (69)

where T |D is the smallest closed extension of T |D.

Our operator S1 is closed over Hp (ST ) [15]. Therefore Hp (ST ) is a core for S1. Likewise,
each of the finite-rank operators PNS

1PN is continuous, and consequently, closed on Hp (ST ).
This makes Hp (ST ) a common core for S1 and PNS

1PN . We can then use
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Lemma 15. Let PNS
1PN and S1 be self-adjoint operators on common core D. If PNS

1PN
converges strongly to S1 on D, then Rγ(PNS

1PN) converges strongly to Rγ(S
1) if Im(γ) 6= 0.

Finally, given the above lemma, we use the following theorem.

Theorem 16. Let PNS
1PN and S1 be self adjoint on common core D. If Rγ(PNS

1PN)
converges strongly to Rγ(S

1) for Im(γ) 6= 0, and if a < b and (a, b) ⊂ ρ(PNS
1PN) for N

sufficiently large, then (a, b) ⊂ ρ(S1).

Proof. See [18], page 290.

Theorem 16 can be modified to accommodate subsequences, since the strong convergence
of PNS

1PN to S1 also holds for subsequences. This lets us prove the second condition.
Suppose the second condition were false. This implies that there exists λ ∈ σ(S1) such that

d(λ, σ(Ŝ1,τ
Nj

)) ≥ ε (70)

for j sufficiently large. Suppose further that λ 6= 0. This implies that the disc Bλ(ε) =
{z ∈ C : |z − λ| < ε} is a subset of ρ(Ŝ1,τ

Nj
), which implies Bλ(ε̃) ⊂ ρ(PNS

1PN), where ε̃ ≤ ε.

Therefore, by Theorem 16, Bλ(ε̃) ⊂ ρ(S1). This is a contradiction, which implies the second
condition for λ 6= 0. If λ = 0, we need only pick some c ∈ ρ(S1) and repeat our steps for
S1 − c.

4 Convergence of Eigenfunctions

We assume in advance that the approximate eigenvalues, λN ∈ σ(Ŝ1,τ
N ), converge to some

λ ∈ σ(S1). Given λN ∈ σ(Ŝ1,τ
N ), there exists a (2N + 1)-dimensional vector φ̂τN such that

Ŝ1,τ
N φ̂τN = λN φ̂

τ
N ,
∣∣∣∣∣∣φ̂τN ∣∣∣∣∣∣

2
= 1 (71)

We prove the following proposition.

Theorem 17. If λN ∈ σ(Ŝ1,τ
N ) converges to λ ∈ σ(S1), then there exists a vector φ̂ such that

a subsequence of φ̂N converges to φ̂ in ||·||2 and S1φ = λφ.

Proof. We extend the vectors φ̂τN to vectors φ̂N so that P̂N φ̂N = φ̂N . Given that ||φ̂N ||2 = 1,

by Alaoglu’s theorem [14] there exists a vector φ̂ such that some subsequence of φ̂N , denoted
as φ̂N , converges weakly to φ̂. Using the operator B from the proof of Theorem 7, and noting
that B commutes with the projection operator PN , we get

λN B̂φ̂N = B̂P̂N Ŝ
1P̂N φ̂N

= P̂N B̂Ŝ
1φ̂N

= P̂N(Î + K̂)φ̂N

= φ̂N + P̂NK̂φN . (72)
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B is a compact operator since∣∣∣∣∣∣(B̂P̂N − B̂)ψ̂
∣∣∣∣∣∣2

2
≤

∑
|n|>N

(
2πn

T

)−2p ∣∣∣ψ̂n∣∣∣2
≤

(
2πN

T

)−2p ∣∣∣∣∣∣ψ̂∣∣∣∣∣∣2
2
. (73)

This implies that
∣∣∣∣∣∣B̂P̂N − B̂

∣∣∣∣∣∣
2
≤
(

2πN

T

)−p
, and so B is a uniform limit of finite-rank

operators and is therefore compact. B compact then implies that B̂φ̂N → B̂φ̂. Likewise,
since K is compact, we have K̂φ̂N → K̂φ̂, P̂NK̂ → K̂ uniformly, and∣∣∣∣∣∣P̂NK̂φ̂N − K̂φ̂

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣K̂φ̂N − K̂φ̂

∣∣∣∣∣∣
2
+
∣∣∣∣∣∣P̂NK̂ − K̂

∣∣∣∣∣∣
2

∣∣∣∣∣∣φ̂∣∣∣∣∣∣
2
, (74)

which implies P̂NK̂φ̂N → K̂φ̂. Therefore, we have

φ̂N → λB̂φ̂− K̂φ̂. (75)

Our weakly convergent sequence φ̂N has been shown to converge strongly. This implies

φ̂N → φ̂, (76)

and using (75)
(Î + K̂)φ̂ = λB̂φ̂. (77)

We still need to show that the function φ, corresponding to symbol φ̂, is in D (S1), and
that it is an eigenfunction. There are two cases to consider. The first is λ 6= 0. This implies
Ŝ1 is invertible, and we showed in Theorem 7 that the operator Î + K̂ is invertible. If Î + K̂
is invertible, then

(Î + K̂)−1(B̂S1) = Î , (78)

where B̂S1 denotes the extension of B̂Ŝ1. Likewise, if S1 is invertible, then for φ ∈ L2 (ST )
there must exist some ψ ∈ Hp (ST ), with symbol ψ̂, such that Ŝ1ψ̂ = φ̂. This implies

φ̂ = λ(Î + K̂)−1B̂φ̂

= λ(Î + K̂)−1B̂Ŝ1ψ̂

= λ(Î + K̂)−1B̂S1ψ̂

= λψ̂, (79)

and therefore φ is an eigenfunction of S1.
The second case to consider is λ = 0. In that case let c ∈ ρ (S1) so that the operator

S1 − c is invertible. Repeat the steps for the λ 6= 0 case.

If we assume that the eigenvalue λ is simple, then we see that every subsequence of
φN converges to some unit multiple of φ since we claimed every sequence of approximate
eigenvectors φN has a convergent subsequence. We can then say, upon appropriate rescalings,
that the sequence is convergent. The general problem for non-simple eigenvalues appears to
be rather difficult, and we do not address it here.
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5 Rate of Convergence

Before proceeding, we need two technical lemmas. The first lemma is from [1], page 69. We
include the proof for clarity.

Lemma 18. If φ ∈ C∞ (ST ), then ||(I − PN)φ||2 = O (N−p) for all integer values of p > 0.

Proof. Since C∞ (ST ) ⊂ Hp (ST ) for arbitrary p, we can write

||(I − PN)φ||22 =
∑
|n|>N

∣∣∣φ̂n∣∣∣2
=

(
T

2πN

)2p ∑
|n|>N

(
2πN

T

)2p ∣∣∣φ̂n∣∣∣2
≤

(
T

2πN

)2p ∑
|n|>N

(
2πn

T

)2p ∣∣∣φ̂n∣∣∣2
≤

(
T

2πN

)2p

||φ||22,p . (80)

Therefore
||(I − PN)φ||2 = O

(
N−p) , p > 0. (81)

The second lemma relies upon a restriction of the self-adjoint operator S1 to the form

S1 = ∂px +

p−1∑
k=1

ck∂
k
x + f(x), (82)

where the ci are constants. We denote the constant-coefficient differential operator as Dµ
p .

This restriction greatly simplifies our work since the operator PN commutes with Dµ
p . We

now prove our second technical lemma:

Lemma 19. If φN and φ are the approximate and true eigenfunctions, respectively, of the
operator Dµ

p + f(x), then convergence in ||·||2 implies convergence in ||·||2,k for all positive
integers k.

Proof. We have PNS
1φN = Dµ

pφN +PNf(x)φN . As shown in the previous section, if approx-
imate eigenfunctions φN converge to φ in the ||·||2 norm, then

lim
N→∞

||PNf(x)φN − f(x)φ||2 = 0. (83)

This implies
lim
N→∞

∣∣∣∣Dµ
pφN −Dµ

pφ
∣∣∣∣

2
= 0, (84)
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which means that φN converges to φ in the graph norm associated with S1, i.e.

lim
N→∞

(
||φN − φ||2 +

∣∣∣∣S1φN − S1φ
∣∣∣∣

2

)
= 0. (85)

The graph norm associated with the operator S1 is equivalent to the pth Sobolev norm [15],
which implies that

lim
N→∞

||φN − φ||2,p = 0. (86)

Convergence in ||·||2,p implies ∂xφN → ∂xφ in ||·||2, and thus ∂x(D
µ
pφN+f(x)φN) converges

to ∂xS
1φ in ||·||2. This implies that φN converges to φ in ||·||2,p+1. Proceeding this way, we

see that φN converges to φ in ||·||2,k for all integers k > 0.

Finally, we need the following min-max theorem [11]:

Theorem 20. Suppose the self-adjoint operator S1 has least eigenvalue λ0 > −∞. Then

λ0 = inf
||ψ||2=1

〈
S1ψ, ψ

〉
, (87)

where ψ is understood to be in the domain of S1.

Using Theorem 20 and our technical lemmas, we prove the next theorem.

Theorem 21. Let λ = minσ(S1) > −∞, λ simple. Then there exists a sequence λN → λ,
λN ∈ σ(Ŝ1,τ

N ), and
|λN − λ| = O

(
N−q) , q ≥ 1. (88)

Proof. By Theorem 20, we have

λ = inf
||ψ||2=1

〈
S1ψ, ψ

〉
. (89)

Define the sequence {λN}∞N=1 via

λN = inf
||ψ̂τ

N ||2=1

〈
Ŝ1,τ
N ψ̂τN , ψ̂

τ
N

〉
, (90)

where ψ̂τN ∈ C2N+1. Let ψ̂N denote the extension of ψ̂τN , i.e. P̂N ψ̂N = ψ̂N . We can
equivalently define λN as

λN = inf
||ψN ||2=1

〈
S1ψN , ψN

〉
. (91)

This shows that λN ≥ λN+1 ≥ · · · ≥ λ. Since the λN ’s are a monotone sequence, they must
have a limit, say λ̃. Suppose λ̃ > λ. Since we know λ ∈ σ(S1) and S1 is self adjoint, by our
second condition for convergence, we know there exists a sequence γN ∈ σ(Ŝ1,τ

N ) such that
γN → λ. This implies for N large enough that γN < λ̃, but this would imply that γN < λN ,
which is impossible. Therefore λ̃ = λ and λN → λ.
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Let c > λ1, c 6= 0. We can alter our definition of λN to

λN = inf
||ψ||2=1

(〈
S1PNψ, PNψ

〉
+ c 〈(I − PN)ψ, ψ〉

)
. (92)

We introduce this alteration in order to take infimums over the same domain. Let each
eigenvalue λN have corresponding eigenvector φN , and let λ have eigenvector φ. We showed
in Section 4 that φN → φ in ||·||2, so we can restrict ourselves to the set

EN = {φj}j≥N . (93)

Assume that λ > 0, which implies λN > 0. Consider the difference

1

λ
− 1

λN
= sup

EN

1

〈S1ψ, ψ〉
− sup

EN

1

(〈S1PNψ, PNψ〉+ c 〈(I − PN)ψ, ψ〉)
. (94)

We have 〈
S1ψ, ψ

〉
=
〈
S1PNψ, PNψ

〉
+RN (ψ) , (95)

RN (ψ) ≡
〈
(I − PN)ψ, S1PNψ

〉
+
〈
S1ψ, (I − PN)ψ

〉
, (96)

and so
1

λ
− 1

λN
≤ 1

λλN
sup
EN

|−RN (ψ) + c 〈(I − PN)ψ, ψ〉| , (97)

or
λN − λ ≤ sup

EN

|−RN (ψ) + c 〈(I − PN)ψ, ψ〉| . (98)

Using Cauchy-Schwartz,

|RN (ψ) | ≤
(∣∣∣∣S1PNψ

∣∣∣∣
2
+
∣∣∣∣S1ψ

∣∣∣∣
2

)
||(I − PN)ψ||2 , (99)

|c 〈(I − PN)ψ, ψ〉 | ≤ c ||ψ||2 ||(I − PN)ψ||2 . (100)

Given the result of Lemma 19, we bound (||S1PNψ||2 + ||S1ψ||2) by some constant M . Since
EN is closed, there must be some vector φK ∈ EN such that

sup
EN

|−RN (ψ) + c 〈(I − PN)ψ, ψ〉| ≤ (M + c) ||(I − PN)φK ||2 . (101)

Knowing that each φK is smooth, Lemma 18 implies

λN − λ ≤ (M + c)

(
T

2πN

)q
||φK ||2,q (102)

for all q > 0. Lemma 19 shows that ||φK ||2,q → ||ψ||2,q. So, for a given ε, there must be some
value L such that ||φK ||2,q ≤ (1 + ε) ||ψ||2,q for all K ≥ L. Hence, for N ≥ L, we have

λN − λ ≤ (M + c)(1 + ε)

(
T

2πN

)q
||ψ||2,q . (103)
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In the case that λ ≤ 0, pick α such that α+ λ > 0. Likewise we see that

α+ λ = inf
||ψ||2=1

〈
(S1 + α)ψ, ψ

〉
, (104)

α+ λN = inf
||ψN ||2=1

〈
(S1 + α)ψN , ψN

〉
. (105)

Then we repeat our argument from above.

Note, in the case that inf σ(S1) = −∞, but supσ(S1) < ∞, we can apply the theorem
just proved to the operator −S1.
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