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DIRECT CHARACTERIZATION OF SPECTRAL STABILITY
OF SMALL-AMPLITUDE PERIODIC WAVES IN SCALAR

HAMILTONIAN PROBLEMS VIA DISPERSION RELATION∗

RICHARD KOLLÁR† , BERNARD DECONINCK‡ , AND OLGA TRICHTCHENKO§

Abstract. Various approaches to studying the stability of solutions of nonlinear PDEs lead
to explicit formulae determining the stability or instability of the wave for a wide range of classes
of equations. However, these are typically specialized to a particular equation and checking the
stability conditions may not be straightforward. We present results for a large class of problems
that reduce the determination of spectral stability of a wave to a simple task of locating zeros of
explicitly constructed polynomials. We study spectral stability of small-amplitude periodic waves in
scalar Hamiltonian problems as a perturbation of the zero-amplitude case. A necessary condition for
stability of the wave is that the unperturbed spectrum is restricted to the imaginary axis. Instabil-
ity can come about through a Hamiltonian-Hopf bifurcation, i.e., of a collision of purely imaginary
eigenvalues of the Floquet spectrum of opposite Krein signature. In recent work on the stability
of small-amplitude waves the dispersion relation of the unperturbed problem was shown to play a
central role. We demonstrate that the dispersion relation provides even more explicit information
about wave stability: we construct a polynomial of half the degree of the dispersion relation, and its
roots directly characterize not only collisions of eigenvalues at zero amplitude but also an agreement
or a disagreement of their Krein signatures. Based on this explicit information it is possible to detect
instabilities of non-zero-amplitude waves. In our analysis we stay away from the possible instabil-
ities at the origin of the spectral plane corresponding to modulation or Benjamin–Fair instability.
Generalized KdV and its higher-order analogues are used as illustrating examples.
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1. Introduction. We study the spectral stability of small-amplitude periodic
traveling waves in scalar Hamiltonian partial differential equations:

(1.1) ut = ∂x
δH

δu
.

Here

u = u(x, t) = u(x+ L, t), x ∈ [0, L], t > 0, and H =

∫ L

0

H(u, ux, . . . ) dx
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is the Hamiltonian with density H. Without loss of generality, we let L = 2π.
This class of equations includes the Korteweg–de Vries (KdV) equation, the gen-
eralized (gKdV) and modified (mKdV) KdV equations, the Kawahara equation, and
other equations that arise in the study of dispersive problems in water waves, plasma
physics, etc. [1, 13].

We assume that (1.1) has a trivial solution, i.e., δH/δu = 0 for u = 0, and H has
an expansion H = H0 + H1, where H0 is the quadratic part of H and H1 contains
the higher-order terms:

(1.2) H0 = −1

2

∫ 2π

0

N∑
j=0

αj(∂
j
xu)2 .

As a consequence, all linear terms in (1.1) are of odd degree, as even degree terms
would introduce dissipation. We assume that N is a finite positive integer, and αj ∈ R.
These assumptions exclude problems like the Whitham equation [7] (N =∞), which
remains a topic of investigation.

The now-standard approach to examining the stability of waves in Hamiltonian
problems with symmetries is the theory developed by Vakhitov and Kolokolov [27] and
Grillakis, Shatah, and Strauss [9, 10], which allows for the determination of spectral
stability of waves of arbitrary amplitude. In that setup, spectral stability implies
orbital (nonlinear) stability under certain conditions, emphasizing the importance
of the spectral information of the linearized problem. Extensions of these results are
found in [16, 19, 24, 25]. Periodic problems within the same framework were considered
in [15, 11]. The use of any of these results relies on index theory requiring additional
information about the PDE. That information is typically provided, for instance, by
assuming something about the dimension of the kernel of the linearized problem. For
small-amplitude waves extra information is often obtained through a perturbation of
the zero-amplitude problem. We avoid index theory and study directly the collision
of eigenvalues. The parallel work [26] illustrates how small-amplitude information
is used to characterize the (in)stability of the waves. Here, we reduce the spectral
stability problem for small-amplitude waves to the investigation of zeros of certain
recurrently defined polynomials, which appear in the theory of proper polynomial
mappings [3, p. 172] and in orthogonal polynomial theory [23, Chapter 18]. To our
knowledge, the connection between stability theory and these polynomials is new to
the literature.

Our approach allows us to rigorously analyze the stability of KdV-type equations,
including the gKdV, its higher-order analogues, and the two-term balanced KdV
equation. The results agree with the existing literature of spectral stability of periodic
waves for gKdV and in the case of balanced high-order KdV equations they confirm
and extend the analytical and numerical predictions in [26]. Our method is closely
related to the results in [7], where the spectrum of small-amplitude periodic solutions
of Hamiltonian PDEs is determined directly from the dispersion relation of the PDE
linearized about the zero solution. Our theory adds to the results in [7] and provides
a simple and, importantly, a natural framework for studying the spectral stability of
waves by perturbative methods. We refer the reader to [7] and [26] for a number of
numerical illustrations of the results presented here for KdV-type equations.

The spectral stability of small-amplitude waves bifurcating from the trivial solu-
tion u = 0 at a critical velocity c = c0 can be examined using regular perturbation
theory of the spectrum of (1.1) linearized about u = 0 at c = c0. Our assumptions
guarantee that u = 0 is spectrally stable, i.e., the spectrum of the linearized problem
is restricted to the imaginary axis, since (1.1) is Hamiltonian.
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In the periodic setting the whole spectrum of the zero-amplitude problem is
needed. However, Floquet theory [18] allows us to decompose the continuous spectrum
to an infinite union of sets of discrete eigenvalues of eigenvalue problems parametrized
by the Floquet multiplier µ. An important scenario for instability of small-amplitude
waves on the bifurcation branch comes about through Hamiltonian-Hopf bifurcations
[22, 28] producing symmetric pairs of eigenvalues off the imaginary axis, i.e., expo-
nentially growing and therefore unstable modes. Such bifurcations require nonsimple
eigenvalues of the linearized problem at zero amplitude, i.e., “collided eigenvalues.”
Furthermore, such colliding eigenvalues can split off from the imaginary axis only if
they have opposite Krein signatures [22, 20]. Note that we stay away from the ori-
gin of the spectral plane and thus we do not consider modulation or Benjamin–Feir
instability.

Both the location of the eigenvalues and their Krein signatures are characterized
by the dispersion relation of the linearized problem [7]. We show that even the collision
of eigenvalues and the agreement of their signatures is directly characterized by the
dispersion relation. This characterization is through the roots of a polynomial, which
is a reduction of the dispersion relation to a polynomial approximately half its degree.
This is a surprising fact as it is by no means clear why such a characterization is
possible, as the collisions of eigenvalues and their types are not themselves objects that
can be identified directly algebraically, particularly with a simpler algebraic relation
than the eigenvalues themselves.

2. General setting. We follow the steps outlined in section III of [7]. We use
a coordinate transformation x→ x− ct to a frame moving with the wave,

(2.1) ∂tu = ∂x
δH

δu
+ c∂xu = ∂x

(
δH

δu
+ cu

)
= ∂x

δHc

δu
,

where Hc is the modified Hamiltonian. The quadratic part of Hc is

(2.2) H0
c =

c

2

∫ 2π

0

u2 dx− 1

2

∫ 2π

0

N∑
j=0

αj(∂
j
xu)2 dx .

Traveling wave solutions of (1.1) are stationary solutions U(x) of (2.1) and stationary
points of Hc.

2.1. Perturbation from the trivial state. Dispersion relation. For all
c ∈ R, (2.1) has the trivial solution u(x, t) = 0. We linearize (2.1) about the zero
solution to obtain an equation for the perturbation v = v(x, t) from the trivial state

(2.3) ∂tv = c∂xv −
N∑
j=0

(−1)jαj∂
2j+1
x v .

We decompose v into a Fourier series in x, v =
∑∞
k=−∞ exp(ikx)v̂k, to obtain decou-

pled evolution equations for each of the Fourier coefficients v̂k = v̂k(t):

(2.4) ∂tv̂k = −iΩ(k)v̂k, k ∈ Z,

where Ω(k) is given by

(2.5) Ω(k) = ω(k)− ck =

N∑
j=0

ηjk
2j+1 , ω(k) =

N∑
j=0

αjk
2j+1 , ηj = αj − cδj1 ,
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is the dispersion relation of (2.3), obtained by letting v(x, t) = exp(ikx − iΩt) in
(2.3). Here ω = ω(k) is the dispersion relation in the original frame of reference
corresponding to (1.1)–(1.2). Note that ω(k) is an odd function.

2.2. Non-zero-amplitude branches. Next, we discuss non-zero-amplitude pe-
riodic solution branches of (2.1) bifurcating from the trivial state. A requirement for
this is that a nontrivial stationary solution of (2.4) exists, i.e., Ω(k) = 0, for k ∈ N,
since we have imposed that the solutions are 2π periodic. Thus

(2.6) c = ck =
ω(k)

k
, k ∈ N.

For simplicity, we assume that a unique bifurcating branch emanates from c = ck.
The solutions with k > 1 are 2π/k periodic. We focus on k = 1, i.e., c = ω(1). The
cases with k > 1 may be treated analogously (see section 5.2 for a discussion of the
k ≥ 2 in the context of gKdV equation).

2.3. Floquet theory at zero amplitude. Using Floquet theory [4, 18] the
spectral stability of the nontrivial solution U = U(x) of (2.1) on the bifurcation
branch starting at c is determined by the growth rates of perturbations of the form

(2.7) v(x, t) = eλtV (x), V (x) = eiµ̃x
∞∑

n=−∞
ane

inx .

Here µ̃ ∈ (−1/2, 1/2] is the Floquet exponent. Using (2.4) for the zero-amplitude
case,

(2.8) λ = λ(µ̃)n = −iΩ(n+ µ̃) = −iω(n+ µ̃) + i(n+ µ̃)c, n ∈ Z .

The expression (2.8) is an explicit expression for the spectrum of the linearized sta-
bility problem for solutions of zero amplitude. Next, we examine how the spectrum
of the linearization changes as the solution bifurcates away from zero amplitude.

2.4. Collisions of eigenvalues, Hamiltonian-Hopf bifurcations. After Flo-
quet decomposition (2.7), the elements of the spectrum become eigenvalues of the
µ̃-parameterized operator obtained by replacing ∂x → ∂x + iµ̃ in the linear stability
problem. The eigenfunctions associated with these eigenvalues are (quasi-)periodic
and are bounded on the whole real line; see [18, 6] for details. For zero amplitude, the
spectrum (2.8) is on the imaginary axis. Instabilities for small amplitude come about
through collisions of purely imaginary eigenvalues at zero amplitude for a fixed value
of µ̃. Away from the origin, eigenvalues generically split off from the axis through the
Hamiltonian-Hopf bifurcations [22, 28] as the solution amplitude increases. Each such
Hamiltonian-Hopf bifurcation produces a pair of eigenvalues off the imaginary axis
that is symmetric with respect to the imaginary axis, thus yielding an exponentially
growing eigenmode.

From (2.8), it is easy to detect eigenvalue collisions away from the origin. They

correspond to solutions of λ
(µ̃)
n1 = λ

(µ̃)
n2 6= 0, n1, n2 ∈ Z, n1 6= n2, µ̃ ∈ (−1/2, 1/2], i.e.,

(2.9)
− iΩ(n1 + µ̃) = −iω(n1 + µ̃) + i(n1 + µ̃)c = −iω(n2 + µ̃) + i(n2 + µ̃)c = −iΩ(n2 + µ̃) ,

where c = c1 is given by (2.6) with k = 1. Solving this equation results in values of

µ̃ and n1 for which λ
(µ̃)
n1 is an eigenvalue colliding with another one. Typically this is

done by solving (2.9) for µ̃ for different fixed n1.
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2.5. Krein signature. A necessary condition for two eigenvalues colliding on
the imaginary axis to cause a Hamiltonian-Hopf bifurcation is that the eigenvalues
have opposite Krein signatures. The Krein signature is the sign of the energy of the
eigenmode associated with the eigenvalue. For a collision of eigenvalues to produce
an instability this energy needs to be indefinite: a definite sign would entail bounded
level sets of the energy, leading to perturbations remaining bounded.

For Hamiltonian systems with quadratic part given by (2.2) the eigenmode of the

form v(x, t) = an exp[i(n+ µ̃)x+λ
(µ̃)
n t]+c.c., where c.c. stands for complex conjugate

of the preceding term, contributes to H0
c the relative energy (see [7])

H0
c |(n,µ̃) ∼ −|ap|2

Ω(n+ µ̃)

n+ µ̃
.

Thus the Krein signature of λ
(µ̃)
n is given by

κ(λ(µ̃)n ) = − sign

(
Ω(n+ µ̃)

n+ µ̃

)
.

A simple characterization of agreement of the signatures of two colliding eigenvalues

λ
(µ̃)
n1 and λ

(µ̃)
n2 immediately follows.

Proposition 2.1. Let two eigenvalues λ
(µ̃)
n1 = λ

(µ̃)
n2 = λ 6= 0, n1 6= n2, of the

Bloch wave decomposition (2.7) of (2.3) coincide, i.e., (2.9) holds. Then the product
of Krein signatures of the eigenvalues is characterized by the sign of the quantity

(2.10) q = q(µ̃)n1,n2
=

Ω(n1 + µ̃)

n1 + µ̃
· Ω(n2 + µ̃)

n2 + µ̃
=

|λ|2

(n1 + µ̃)(n2 + µ̃)
.

Let Z = Z
(µ̃)
n1,n2 = (n1 + µ̃)(n2 + µ̃). Since λ 6= 0 the sign of Z characterizes an

agreement of Krein signatures of the coinciding eigenvalues:

(2.11) κ(λ(µ̃)n1
)κ(λ(µ̃)n2

) = sign(q) = sign [(n1 + µ̃)(n2 + µ̃)] = sign(Z) .

We denote

(2.12) µ := n2 + µ̃, and 4n := n1 − n2 .

Here 4n > 0. Then Z = µ(4n+ µ) and the collision condition (2.9) reduces to

(2.13) Ω(4n+ µ) = Ω(µ) .

3. Recurrent sequences of polynomials. Before we revisit (2.13) in the next
section, we need to define some particular recurrent sequences of polynomials.

Lemma 3.1. Let a, b ∈ C, m ∈ N0, and

tm = am + (−b)m .

Then

tm+1 = (a− b)tm + (ab)tm−1 , m ≥ 1.
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Proof. The proof is as follows:

tm+1 = (a− b)(am + (−1)mbm) + ab(am−1 + (−1)m−1bm−1) = (a− b)tm + (ab)tm−1 .

Since t0 = 2 and t1 = a − b, by induction all tm can be written as polynomials
in the two variables a − b and ab, tm = tm(a − b, ab). Further, tm is a homogeneous
polynomial in a and b of degree m. We introduce sm by tm = (a− b)msm(γ), i.e.,

(3.1) sm = sm(γ) :=
tm(a− b, ab)

(a− b)m
with γ :=

ab

(a− b)2
.

The sequence sm is characterized recursively by

sm+1 = sm + γsm−1 , m ≥ 1, s0 = 2, s1 = 1,(3.2)

which shows that sm is a polynomial in γ of degree m/2 (m even) or (m − 1)/2 (m
odd). One can easily see that

s2(γ) = 1 + 2γ, s3(γ) = 1 + 3γ, s4(γ) = 1 + 4γ + 2γ2, s5(γ) = 1 + 5γ + 5γ2 ,

s6(γ) = 1 + 6γ + 9γ2 + 3γ3, s7(γ) = 1 + 7γ + 14γ2 + 7γ3 .

Solving the recurrence relationship,

(3.3) sm(γ) = ψm+ + ψm− , m ≥ 0, ψ± :=
1

2

(
1±

√
1 + 4γ

)
.

That implies

(3.4) sm(0) = 1, sm(−1/4) = 21−m.

Note that sm(γ) is increasing on (−1/4, 0) as

(3.5) s′m(γ) =
m√

1 + 4γ
(ψm−1+ − ψm−1− ) > 0 .

A few lemmas characterizing the behavior of sm(γ) are proved in the appendix.

4. Reduction of the equation for signatures of colliding eigenvalues. We
prove that for scalar Hamiltonian problems (2.1)–(2.2) of order 2N+1, the polynomial
equation (2.13) characterizing the collision of eigenvalues with indices n + µ and µ
at zero amplitude resulting in Hamiltonian-Hopf bifurcations, and thus instability of
non-zero-amplitude periodic waves, can be expressed as a polynomial of degree N in
a real variable γ with coefficients independent of µ, where γ is defined as

(4.1) γ :=
µ(4n+ µ)

(4n)2
.

Theorem 4.1. Let

Ω := Ω(k) =

N∑
j=0

ηjk
2j+1

be an odd polynomial of degree 2N + 1, ηj ∈ C for j = 0, . . . , N . Then

(4.2) Ω(4n+ µ)− Ω(µ) =

N∑
j=0

ηj(4n)2j+1s2j+1 (γ) ,

where the polynomial s2j+1 = s2j+1(γ) of degree j is defined recurrently by (3.2).
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Proof. The claim follows immediately by (3.1) and Lemma 3.1 by setting a :=
4n+ µ and b := µ:

Ω(a)−Ω(b)=

N∑
j=0

ηj(a
2j+1 − b2j+1)=

N∑
j=0

ηjt2j+1(a− b, ab)=
N∑
j=0

ηj(4n)2j+1s2j+1(γ) .

As before, the collision condition (2.13) expressed using (4.2) is solved for γ for
different fixed values of 4n. After solving for γ, it is necessary to check that γ gives
rise to a real value of µ by solving the quadratic equation with the unknown µ:

µ(µ+4n) = γ(4n)2 .

Thus

(4.3) µ1,2 =
−4n±

√
(4n)2 + 4γ(4n)2

2
=
4n
2

(
−1±

√
1 + 4γ

)
.

By Proposition (2.1) we are interested in negative values of γ that characterize a
possible coincidence of two eigenvalues of opposite signature, as γ has by (4.1) the
same sign as Z in (2.11). Then any root γ ∈ [−1/4, 0) corresponds to a collision of two
eigenvalues of opposite signature. If γ < −1/4, γ does not correspond to a collision of
two purely imaginary eigenvalues as µ is not real. If γ > 0, then there is a collision of
two eigenvalues of the same signature. If γ = 0 the collision is located at the origin of
the spectral plane, i.e., it does not correspond to the Hamiltonian-Hopf bifurcation.

We have proved the following main theorem characterizing the spectral stability
of small-amplitude traveling waves of (1.1).

Theorem 4.2. Consider a scalar 2π-periodic Hamiltonian partial differential
equation of the form (1.1) and assume that u = 0 is a spectrally stable solution. Let
(2.5) be the dispersion relation of the equation linearized about u = 0 in a reference
frame moving with the velocity c. Then a branch of traveling wave solutions of (1.1)
with velocity c bifurcates from the trivial solution at c = ω(1); see (2.6). A necessary
condition for a Hamiltonian-Hopf bifurcation at zero amplitude characterizing a loss
of spectral stability of small-amplitude solutions on the bifurcating branch is that

(4.4)

N∑
j=0

ηj(4n)2j+1s2j+1(γ) = 0

has a root γ, γ ∈ [−1/4, 0).

5. Generalized KdV equations. As a simple example illustrating an applica-
tion of Theorem 4.2 to study spectral stability of small-amplitude periodic traveling
waves, we consider the gKdV

(5.1) ∂tv + α∂3xv + ∂xf(v) = 0

and the generalized higher-order KdV equation (p ≥ 2)

(5.2) ∂tv + α∂2p+1
x v + ∂xf(v) = 0 .

Here we assume f(0) = 0 and periodic boundary conditions, x ∈ [0, 2π]. Within
this work we study high-frequency instabilities, staying away from the origin in the
spectral plane, i.e., we do not discuss the modulational or Benjamin–Feir instability.
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For simplicity we consider (5.1) first and then discuss the case of (5.2) as the
reduction process and the results are completely analogous. We will pay particular
attention to the case of the KdV equation with f(v) = v2 in (5.1).

For a detailed history of stability results of periodic traveling waves for KdV,
mKdV ((5.1) with f(u) = u3), and gKdV we refer the reader to [2, 15] (see also [11, 14,
5], and see [7, section 3.1] for numerical results illustrating the theory developed here).
The results in the literature can be summarized as follows: periodic traveling waves
are spectrally stable away from the origin of the spectral plane (with the exception
of cn solutions to mKdV) and also nonlinearly orbitally stable with respect to certain
classes of perturbations. The techniques used to prove the results for KdV are based
on its integrability.

The dispersion relation of the linearization of (5.1) in the traveling frame is

(5.3) Ω = Ω(k) = ck + αk3 .

Branches of small-amplitude waves are bifurcating from the trivial solution for the
critical values of c for which Ω(k) = 0 for a nonzero integer value of k:

(5.4) ck = −αk2 .

Let us now fix k ∈ Z/{0} and set c = ck. The condition for a collision of eigenvalues
(2.13) has the form

(5.5) c4n+ α
[
(4n)3 + 34nµ(4n+ µ)

]
= 0 .

According to Theorem 4.2, (5.5) can be rewritten in the form (4.4), i.e.,

(5.6) c(4n) + α(4n)3(1 + 3γ) = 0 .

The root γ of (5.6) that characterizes the nature of collisions of eigenvalues at zero
amplitude is given by

(5.7) γ = − c

3α(4n)2
− 1

3
=

1

3

(
k2

(4n)2
− 1

)
.

The condition −1/4 ≤ γ < 0 can be expressed as

−3

4
≤ k2

(4n)2
− 1 < 0, i.e.,

1

4
(4n)2 ≤ k2 < (4n)2 ,

or equivalently

(5.8) k2 < (4n)2 ≤ 4k2 , and thus |k| < |4n| ≤ 2|k| .

It is easy to see that in this special case the equality in the upper bound in (5.8)
corresponds to a collision of eigenvalues λ with indices n1 + µ̃ = 1 and n2 + µ̃ = −1 in
(2.8). But Ω(1) = Ω(−1) = 0 for (5.3)–(5.4). Thus the collision of opposite signature
eigenvalues corresponding to the root γ = −1/4 in this particular case is located at the
origin of the spectral plane and thus it is not associated with the Hamiltonian-Hopf
bifurcation. Thus the instability condition is

(5.9) |k| < |4n| < 2|k| .

Since the stability results are independent of α without loss of generality we assume
α = 1 in the rest of this section.
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5.1. gKdV equation. Solutions with base period 2π2π2π. First, we consider
KdV, i.e., f(x) = u2, as the linear analysis is identical for all f(x) satisfying f(0) = 0
and the characterization of the collision condition in Theorem 4.2 does not dependent
on the form of nonlinearity. In that case, the solution branch indexed by k = 1
bifurcating at c1 = −1 from the trivial solution corresponds to the cnoidal waves with
base period 2π; see [7, section 3.1] for the solution formula, numerical results, and
analysis. The condition (5.9) implies that collisions of eigenvalues with opposite Krein
signature at zero amplitude happen only for two eigenmodes of the form (2.7) with
Fourier indices n1, n2, 4n = n1 − n2, where 1 < 4n < 2. As no such 4n exists the
small-amplitude cnoidal waves of base period 2π are spectrally stable (away from the
origin of the spectral plane). This is in agreement with the results obtained in [2] and
[7, section 3.1, step 5]. The same result is true for any nonlinearity f(x), including
the case of mKdV, and thus, not accounting for a possible modulational instability,
small-amplitude periodic traveling waves with base period 2π are spectrally stable for
gKdV (5.1).

5.2. KdV equation. Solutions with base period 2π/k2π/k2π/k. We discuss the case
k ≥ 2. Solutions on the branch bifurcating from the trivial solution at ck = −k2
also correspond in the case of KdV to the cnoidal wave solutions, as the cnoidal
waves comprise all periodic traveling waves to KdV. However, these solutions are
subharmonic compared to the solutions on the branch with index k = 1, i.e., their
base period is 2π/k. One way to see this is to consider (5.1) with f(v) = v2 in the
frame traveling with velocity c:

(5.10) vt + αvxxx + (v2)x + cvx = 0 .

We set

(5.11) y =
x

k
, τ =

t

k3
, u = k2v, c̃ = k2c.

Then (5.10) transforms to

(5.12) uτ + αuyyy + (u2)y + c̃u = 0 .

Thus any solution v(x, t) of (5.10) with the base period 2π traveling with velocity c
corresponds 1-to-1 to a solution u(y, τ) of (5.12) with the base period 2π/k traveling
with velocity c̃ = ck2. The k-repetition of the 2π/k-periodic solution of (5.12) is also
a 2π-periodic solution of (5.12) that is equivalent to (5.10) with c = ck. This relation
allows us to identify through (5.11) the branch of 2π periodic solutions of (5.10)
bifurcating at c = ck with the branch of solutions of the same equation bifurcating
at c = c1, i.e., the branch of solutions of (5.10) bifurcating at c = ck consists of
properly rescaled multicopies of the solutions of the same equation located on the
branch bifurcating at c = c1. Therefore perturbations that are subharmonic for k = 1
are co-periodic for k ≥ 2, etc. This leads to more eigenvalue collisions for k ≥ 2 than
for k = 1 since the co-periodic spectrum, e.g., the spectrum for k ≥ 2 for the Floquet
multiplier µ = 0 includes (after a proper rescaling) the union of the spectrum for
k = 1 and µ = 0, µ = 1/k, µ = 2/k, . . . .

As an illustration consider the case k = 2. The spectrum of the linearized problem
is given by

(5.13) σ(2) =
⋃

µ∈(−1/2,1/2]

σ(k=2)
µ =

{
λ(µ)n ; λ(µ)n = −i

[
4(n+ µ)− (n+ µ)3

]
, n ∈ Z

}
.
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Fig. 5.1. Illustration of the relation (5.15) of the spectrum σ(2) (left) and σ(1) (right) for
KdV equation. Individual curves correspond to different values of n with the index n indicated. The

spectrum partitions σµ correspond to all λ for a given µ. Displayed are λ = λ
(µ)
n values for µ = −0.4

(k = 2, left) and µ = −0.2 and µ = 0.3 (k = 1, right). For better visibility we have removed the
branches with indices n, −2 ≤ n ≤ 3 (k = 2), and −1 ≤ n ≤ 1 (k = 1), and all undisplayed branches
lie close to the horizontal axis. Note the scaling factor 8 on the λ axis (left) for σ(2) compared to
σ(1) (right).

On the other hand, the spectrum for k = 1 is given by

(5.14) σ(1) =
⋃

µ∈(−1/2,1/2]

σ(k=1)
µ =

{
λ(µ)n ; λ(µ)n = −i

[
(n+ µ)− (n+ µ)3

]
, n ∈ Z

}
.

It is easy to see (see Figure 5.1 for a visualization) that for all µ ∈ (−1/2, 1/2]

(5.15)
1

8
σ(k=2)
µ = σ

(k=1)
µ/2 ∪ σ(k=1)

µ/2+1/2 .

Here multiplication of the set by a scalar means multiplication of each of its elements
by the scalar and we use the periodicity σµ = σµ+1 for all µ ∈ R to properly define

the second term σ
(k=1)
µ/2+1/2.

The condition (5.9) indicates that there are collisions of the eigenvalues of opposite
signature at zero amplitude for modes of the form (2.7) for Fourier indices n1, n2, with
4n = n1−n2 satisfying4n ∈ {k+1, . . . , 2k−1} and that is for k ≥ 2 a nonempty set.
Generically, this would imply spectral instability of the waves. However, none of these
collisions unfolds for non-zero-amplitude to a Hamiltonian-Hopf bifurcation. Such
bifurcations are not possible as according to [2] all periodic traveling wave solutions to
KdV are spectrally stable. As a collision of eigenvalues of opposite Krein signature is
only a necessary condition for a Hamiltonian-Hopf bifurcation, the analysis presented
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here does not allow us to see this phenomenon directly. Some indication can be found
in the fact that these new collisions at c = ck correspond to collisions of opposite
signature eigenvalues arising from different components (as opposed to from the same
component) of the union on the right-hand side of (5.15). The different spectrum
partitions and associated eigenspaces do not interact with each other; see [8] and [21]
for a thorough discussion of avoided Hamiltonian-Hopf bifurcations.

It is possible to see within the analysis presented here that the collisions of the
opposite Krein signature eigenvalues of the 2π/k periodic solutions are just an artifact
of the 2π periodic setting, i.e., when one considers the stability of the 2π/k periodic
solutions as the stability of its k-repetition in the 2π periodic frame in (5.10). Due to
the periodic character of the solution the stability of such a k-repetition is equivalent
to the stability of a single 2π/k periodic repetition in (5.12). But we have proved above
that the waves with period L considered on the interval [0, L] are spectrally stable
(this corresponds to k = 1 for (5.10), where we have set without loss of generality
L = 2π). Therefore the 2π/k periodic waves are spectrally stable and all collisions at
zero amplitude of (5.10) at c = ck are only due to multicoverage of the spectrum σ(k)

as in (5.15).
The same argument can be used for gKdV with the nonlinearity f(v) = vn,

n ≥ 2. However, in regard to the spectral stability of small-amplitude waves lying
on branches bifurcating at c = ck for k ≥ 2 for a general f(v), f(0) = 0, we can
only conclude that there are collisions of the opposite signature eigenvalues at zero
amplitude. A lack of a transformation analogous to (5.11), that requires existence of
a positive r such that f(au) = arf(u) for all a ∈ R, does not allow us to rule out the
potential Hamiltonian-Hopf bifurcations.

5.3. Higher-order gKdV equation. A similar analysis can be performed for
the higher-order gKdV equation (5.2). In that case Ω(k) = −ck + (−1)p+1αkp and
ck = (−1)pαkp−1. The relation Ω(n + µ) = Ω(µ) reduces to a polynomial equation
of degree p for γ. Similarly as for p = 1 it is possible for p = 2 to explicitly show
that all the waves on the branch k = 1 are spectrally stable, as none of the roots of
Ω(4n+µ) = Ω(µ) in terms of γ are located in the interval (−1/4, 0). To see this one
needs to determine for which integer values of 4n the roots of

−k4 + (4n)4
(
1 + 5γ + 5γ2

)
= 0

lie in the interval γ ∈ (−1/4, 0). A short calculation reveals that the condition reduces
to |k| < |4n| < 2|k|, i.e., the same condition as for p = 1 analyzed above leading to
stability for k = 1. The same statement can be proved for any p ≥ 1 for which the
equation for γ has the form

(5.16) − k2p + (4n)2ps2p+1(γ) = 0 .

There s2p+1(−1/4) = 2−2p and s2p+1(0) = 1 by (3.4), and also s2p+1(γ) is continuous
on [−1/4, 0] and increasing on (−1/4, 0) by (3.5). Therefore the roots of (5.16) lie
in the interval γ ∈ (−1/4, 0) if and only if |k| < |4n| < 2|k|. Hence the small-
amplitude periodic traveling wave solutions to (5.2) with the base period 2π (k = 1)
are spectrally stable, except perhaps with respect to modulational perturbations. The
question of spectral stability of small-amplitude wave solutions to (5.2) with the base
period 2π/k, k ≥ 2 is not addressed here.
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6. Balanced higher-order KdV equations. We demonstrate the full power of
Theorem 4.2 on a more complicated example. Here we explicitly characterize stability
regions for small-amplitude periodic traveling wave solutions of KdV-type equations
with two balanced linear terms of odd order:

(6.1) ut = ∂xf(u) +A∂2q+1
x u+B ∂2p+1

x u,

subject to periodic boundary conditions. Here p > q are positive integers, A,B ∈ R
are nonzero coefficients, and f(u) is a smooth function of u and its spatial derivatives
with f(0) = 0, containing no linear terms. The literature on this topic is limited.
Most relevant is [12], where f(u) ∼ u2 (the Kawahara equation), and the period
of the solutions is not fixed. It is concluded there that for solutions for which the
amplitude scales as the 1.25th power of the speed, solutions are spectrally stable. No
conclusion is obtained for other solutions. Our investigation does not require this
scaling, nor does it restrict the type of nonlinearity. Also relevant is [15], where the
typical stability approach of [11] is extended to systems with singular Poisson operator
like (1.1), but the theory is not applied to (6.1). A mostly numerical investigation
of equations like (6.1) is undertaken in [26]. As stated, our theory builds almost
exclusively on [7] and our rigorous results agree with numerical results in [26], where
the special case p = 2, q = 1, and A,B > 0 was considered.

Traveling wave solutions u = U(x− ct) with wave velocity c satisfy

−cU ′ = ∂xf(U) +AU (2q+1) +BU (2p+1).

The spectral stability of small-amplitude waves that bifurcate at zero amplitude from
the trivial solution U = 0 is characterized by the growth of the solutions of the linear
equation

(6.2) vt = cvx +Av(2q+1)x +Bv(2p+1)x,

with dispersion relation

Ω = Ωp,q(k) = −ck −A(−1)qk2q+1 −B(−1)pk2p+1 = −ck − αk2q+1 + βk2p+1,

where we have introduced

(6.3) α = A(−1)q, β = −B(−1)p.

Without loss of generality, we assume that α > 0. If not, the transformation x→ −x
(i.e., k → −k) and c→ −c can be used to switch the sign of α. The scaling symmetry
of the equation allows us to equate α = 1 hereafter. The choice of opposite signs in
front of α and β in (6.3) is intuitive: if α and β have opposite sign the Hamiltonian
energy (2.2) is definite and all eigenvalues have the same signature. This rules out
Hamiltonian-Hopf bifurcations and the spectral instabilities following from them. In
other words, the interesting case for our considerations is that both α and β are
positive. Last, since we study bifurcations from the first Fourier mode k = 1, c =
β − α = β − 1.

According to Theorem 4.1, eigenvalue collisions at zero amplitude are character-
ized by the roots γ of

4nR(γ) := −c4n− (4n)2q+1s2q+1(γ) + β(4n)2p+1s2p+1(γ) = 0.
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This is rewritten as

(6.4) β
[
(4n)2ps2p+1(γ)− 1

]
−
[
(4n)2qs2q+1(γ)− 1

]
= 0.

Our goal is to find the parameter range (β,4n) for which the root γ of (6.4) satis-
fies γ ∈ [−1/4, 0). The results obtained in the next section are graphically summarized
in Figure 6.1.

Fig. 6.1. Spectral stability regimes of the small-amplitude 2π periodic traveling waves for the
Kawahara equation (6.1), p = 2, q = 1, α = 1, k = 1. Unstable pairs (4n, β) are indicated by the
dashed line segments, stable pairs (4n, β) are above the curve β = β−1/4(4n) and below the curve
β = β0(4n) given by (6.5)−(6.6) for 4n ≥ 3, by (6.18) for 4n = 2, and by (6.13) for 4n = 1.

An important role is played by the interval end points γ = 0 and γ = −1/4. By
(3.4) for γ = 0 we have

β((4n)2p − 1)− ((4n)2q − 1) = 0

and therefore we set

(6.5) β0 = β0(4n) =
(4n)2q − 1

(4n)2p − 1
.

On the other hand (6.4) reduces for γ = −1/4 by (3.4) to

(6.6) β−1/4 = β−1/4(4n) =

[(
4n
2

)2q

− 1

]/[(
4n
2

)2p

− 1

]
.

It follows immediately from Lemma A.2 that for 4n ≥ 3, β0(4n) < β−1/4(4n),
since this inequality may be rewritten as f2p,2q(4n) < f2p,2q(2) (in the notation of
the lemma).
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6.1. Collisions of eigenvalues of opposite signature. Since the thresholds
γ = 0 and γ = −1/4 correspond, respectively, to β = β0(4n) and β = β−1/4(4n),
where β0(4n) < β−1/4(4n), one may conjecture (for 4n ≥ 3, since for 4n = 1, 2
either β0 or β−1/4 is not defined) that collisions of eigenvalues of opposite Krein sig-
nature happen for β ∈ (β0(4n), β−1/4(4n)].1 For β < β0(4n) one expects collisions
of eigenvalues of the same signature and finally for β > β−1/4(4n) one expects no
collisions as the roots µ of (4.3) are not real (see Figure 6.2). As we prove next, this
is true. The cases 4n = 1 and 4n = 2 are treated separately.

See [26] for detailed numerical results (wave profiles and Fourier coefficients,
spectrum diagrams) in the case p = 2, q = 1, and f(u) = u2 (Kawahara equa-
tion), particularly numerical simulations at non-zero amplitude confirming presence
of Hamiltonian-Hopf bifurcations (and thus spectral instability) that completely agree
with the collisions of opposite Krein signature eigenvalues at zero amplitude described
here. In the numerical experiments all such collisions studied actually yielded the bi-
furcation.

Fig. 6.2. Parameter regimes for β, β ≤ β0(4n), β ∈ (β0(4n), β−1/4(4n)], and β > β−1/4(4n).

Theorem 6.1. Case 4n ≥ 3. Let p, q, p > q, be positive integers and let 4n is
an integer, 4n ≥ 3. The presence and character of collisions of eigenvalues of the
linearized problem (6.2) at zero amplitude at c = c1 = β − α depend on the difference
of the indices of the Fourier modes 4n of the perturbation in the following way:

(i) If 4n is such that β < β0(4n), then there is a collision of eigenvalues of the
same signature, i.e., there is a root of (6.4) with γ > 0 and there is no root
with γ ∈ [−1/4, 0).

(ii) If 4n is such that β0(4n) < β ≤ β−1/4(4n), then there is a collision of
eigenvalues of opposite signature, i.e., there is a root γ of (6.4) such that
γ ∈ [−1/4, 0).

(iii) If 4n is such that β−1/4(4n) < β, then there is no collision of eigenvalues,
i.e., all roots γ of (6.4) satisfy γ < −1/4.

Proof. Part (ii). We show that for all 4n ≥ 3 and β0(4n) < β ≤ β−1/4(4n)
there exists γ ∈ [−1/4, 0) satisfying R(γ) = 0. Therefore by (6.4), in such a parameter
regime there is a collision of eigenvalues of opposite Krein signature.

It is easy to see that

R(0) = β[(4n)2p − 1]− [(4n)2q − 1] > β0[(4n)2p − 1]− [(4n)2q − 1] = 0

and

R(−1/4) = β

(
(4n)2p

22p
− 1

)
−
(

(4n)2q

22q
− 1

)
≤ β−1/4

(
(4n)2p

22p
− 1

)
−
(

(4n)2q

22q
− 1

)
= 0.

1Such a result would follow from monotonicity properties of the location of roots γ with respect
to β. Alternatively, we use an argument that proves that β0 and β−1/4 are the bounds of the stability
region.
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Thus R(0) > 0 ≥ R (−1/4) and the polynomial R(γ) has a real root γ ∈ [−1/4, 0).
Part (i). Since β < β0(4n) < β−1/4(4n) the same argument as in part (ii) yields

R(−1/4) < 0. Also,

R(0) = β[(4n)2p − 1]− [(4n)2q − 1] < β0[(4n)2p − 1]− [(4n)2q − 1] = 0 .

We prove that R(γ) = β[(4n)2ps2p+1(γ) − 1] − [(4n)2qs2q+1(γ) − 1] < 0 for all
γ ∈ [−1/4, 0]. By Lemma A.3 for 4n ≥ 3 and p ≥ 1,

(4n)2ps2p+1(γ) ≥ 32p

22p+1
> 1 .

Thus for all γ ∈ [−1/4, 0) and β < β0,

R(γ) = β[(4n)2ps2p+1(γ)− 1]− [4n)2qs2q+1(γ)− 1]

< β0(4n)[(4n)2ps2p+1(γ)− 1]− [(4n)2qs2q+1(γ)− 1] .(6.7)

We prove that the right-hand side of (6.7) is nonpositive. This is equivalent to

(6.8) β0(4n) =
(4n)2q − 1

(4n)2p − 1
≤ (4n)2qs2q+1(γ)− 1

(4n)2ps2p+1(γ)− 1

or to

(6.9) s2q+1 ≥ s2p+1[1− θ(4n)] + θ(4n) , where θ(n) :=
n2p − n2q

n2p+2q − n2q
.

Clearly 0 < θ(n) < 1. Since s2p+1 < 1 it suffices to prove (6.9) for 4n that maximizes
θ(4n), 4n ≥ 2. However, by Lemma A.2 for p > q ≥ 1, maxn≥2 θ(n) = θ(2), and it
suffices to prove s2q+1 ≥ s2p+1(1− θ(2)) + θ(2), i.e.,

s2q+122q(22p − 1) ≥ s2p+122p(22q − 1) + 22p − 22q.

Therefore (6.8) follows directly from Lemma A.6 as it is equivalent for p > q ≥ 1 to

22qs2q+1 − 1

22q − 1
≥ 22ps2p+1 − 1

22p − 1
.

Hence we proved R(γ) < 0 for all γ ∈ [−1/4, 0]. On the other hand R(γ) is an
even-order polynomial with a positive leading coefficient, i.e., R(γ) → ∞ as γ → ∞.
Therefore there exists γ0 > 0 such that R(γ0) = 0. Such a root corresponds by (4.3)
to a real value of µ. Therefore in this regime there is a collision of two eigenvalues of
the same signature.

Part (iii). Note that R(0) > 0. We show that R(γ) > 0 for γ ≥ −1/4. First,

R(−1/4) = β

(
n2p

22p
− 1

)
−
(
n2q

22q
− 1

)
> β−1/4

(
n2p

22p
− 1

)
−
(
n2q

22q
− 1

)
= 0.

For γ ≥ −1/4,

R(γ) = β
[
(4n)2ps2p+1(γ)− 1

]
−
[
(4n)2qs2q+1(γ)− 1

]
> β−1/4

[
(4n)2ps2p+1(γ)− 1

]
−
[
(4n)2qs2q+1(γ)− 1

]
,(6.10)

since, by Lemma A.3, (4n)2ps2p+1(γ) ≥ 1.
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We prove that

(6.11)
(4n/2)q − 1

(4n/2)p − 1
≥ (4n)qsq+1(γ)− 1

(4n)psp+1(γ)− 1

for any p > q. From (6.10), with p → 2p and q → 2q, we obtain R(γ) > 0 for
γ ≥ −1/4.

Denote m = 4n/2 ≥ 1 and uj = 2jsj+1 for j ≥ 0 to rewrite (6.11) as

(6.12) uq ≤ up(1− ω(m)) + ω(m) , where ω(m) =
mp −mq

mp+q −mq
.

By Lemma A.2, the sequence ω(m) ∈ (0, 1) is nonincreasing for m ≥ 1. Also, by
Lemma A.3, up = 2psp+1 ≥ 1, and (6.12) follows from uq ≤ up[1−ω(1)]+ω(1), where
ω(1) = (p− q)/p. Equation (6.12) reduces to (uq − 1)/q ≤ (up − 1)/p for p > q ≥ 1.
In terms of sq(γ) this is equivalent to

2qsq+1(γ)− 1

q
≤ 2psp+1(γ)− 1

p
for p > q ≥ 1,

which follows for γ ≥ −1/4 from Lemma A.7, since monotonicity of the positive

sequence 2msm+1−1
m(m+1) directly implies monotonicity of the sequence 2msm+1−1

m .

Thus R(γ) > 0 for all γ ≥ −1/4 and R(γ) has no roots in [−1/4,∞) and there
are no collisions of eigenvalues in this regime.

For 4n = 1, we use a similar argument. For 4n = 1 and γ = 0, R(0) = 0. Hence
γ = 0 is always a root of R(γ) = 0, corresponding to the relation2 Ω(1) = 0 = Ω(0).
For p > q > 0, denote

(6.13) β
(4n=1)
0 =

2q + 1

2p+ 1
and β

(4n=1)
−1/4 =

1− 2−2q

1− 2−2p
.

Theorem 6.2. Case 4n = 1. Let p, q be positive integers with p > q. For the
linearized problem (6.2) at zero amplitude with c = c1, the presence and the character
of eigenvalue collisions depend on the difference 4n of the indices of the Fourier
modes of the perturbation as follows:

(i) for β < β
(4n=1)
0 , eigenvalues of the same signature collide, i.e., there is a

root of (6.4) with γ > 0 and there is no root with γ ∈ [−1/4, 0);

(ii) for β
(4n=1)
0 < β < β

(4n=1)
−1/4 , eigenvalues of opposite signature collide, i.e.,

there is a root γ of (6.4) so that γ ∈ [−1/4, 0);

(iii) for β
(4n=1)
−1/4 < β, eigenvalues do not collide, i.e., γ < −1/4, for all roots γ of

(6.4).

Proof. First, we show that β
(4n=1)
0 < β

(4n=1)
−1/4 , which follows from the function

f(y) = (1− 2−y)/(1 + y) being decreasing for y > 2. Its derivative has the numerator
(1 + y)2−y ln 2 + 2−y − 1, which is negative at y = 2, and itself has a derivative that
is negative for y > 2.

Next, for β ≤ β(4n=1)
−1/4 ,

R(−1/4) = β (s2p+1(−1/4)− 1)− (s2q+1(−1/4)− 1) = β(2−2p − 1)− (2−2q − 1)

≥ β(n=1)
−1/4 (2−2p − 1)− (2−2q − 1) = 0 ,(6.14)

2These eigenvalues are present due to symmetries; they do not leave the imaginary axis.
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where equality holds only for β = β
(4n=1)
−1/4 . On the other hand, if β > β

(4n=1)
−1/4 ,

then R(−1/4) < 0. Further, for γ = 0 and all values of β, R(0) = 0. Finally, for
γ ∈ [−1/4, 0)

R′(0) = β(2p+ 1)− (2q + 1).

Therefore, for β < β
(4n=1)
0 ,

(6.15) R(0) = 0, R′(0) < 0,

and, for β > β
(4n=1)
0 ,

R(0) = 0, R′(0) > 0.

Note that R(0) = R′(0) = 0 for β = β
(4n=1)
0 .

Part (i). By (6.14) one has R(−1/4) > 0, and by (6.15) R(0) = 0 and R′(0) < 0.
We prove that R(γ) > 0 for all γ ∈ [−1/4, 0). Thus R = R(γ) does not have any roots
in (−1/4, 0). Moreover, R(γ) is an odd-degree polynomial with a positive leading
coefficient, R(γ) → ∞ as γ → ∞, and R(0) = 0 and R′(0) < 0. Therefore R has a
positive root.

Assume γ ∈ [−1/4, 0) and β < β
(4n=1)
0 . Then, using (A.3),

R(γ) = β(s2p+1(γ)− 1)− (s2q+1(γ)− 1) > β
(4n=1)
0 (s2p+1(γ)− 1)− (s2q+1(γ)− 1) .

To establish R(γ) > 0 it is enough to prove

(6.16) β
(4n=1)
0 ≤ s2q+1(γ)− 1

s2p+1(γ)− 1
for γ ∈ [−1/4, 0).

By Lemma A.3 one has sm(γ) < 1 for m ≥ 2, γ ∈ [−1/4, 0). Hence (6.16) can be
rewritten as

s2p+1(γ)− 1

2p+ 1
≥ s2q+1(γ)− 1

2q + 1
,

which follows for p > q > 0 and γ ∈ [−1/4, 0) from Lemma A.8. Therefore R(γ) > 0
for γ ∈ [−1/4, 0).

Part (ii). By (6.14) one has R(−1/4) > 0, and by (6.15) R(0) = 0, R′(0) > 0.
Therefore there exists a γ ∈ (−1/4, 0) such that R(γ) = 0.

Part (iii). In this case R(−1/4) < 0, and by (6.15) R(0) = 0 and R′(0) > 0. We
prove that R(γ) < 0 for γ ∈ [−1/4, 0) and R(γ) > 0 for γ > 0. Therefore R(γ) does
not have a nonzero root for γ ≥ −1/4.

First assume that γ ∈ [−1/4, 0). Then β > β
(4n=1)
−1/4 implies, using (A.3),

R(γ) = β(s2p+1(γ)− 1)− (s2q+1(γ)− 1) < β
(4n=1)
−1/4 (s2p+1(γ)− 1)− (s2q+1(γ)− 1) .

It suffices to prove

(6.17) β
(4n=1)
−1/4 ≥ s2q+1(γ)− 1

s2p+1(γ)− 1
for γ ∈ [−1/4, 0)
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to establish R(γ) < 0. The inequality (6.17) is rewritten as

s2p+1(γ)− 1

2−2p − 1
≥ s2q+1(γ)− 1

2−2q − 1
,

which follows from Lemma A.9. Thus R(γ) < 0 for γ ∈ [−1/4, 0).

Next, we assume γ > 0. With β > β
(4n=1)
−1/4 and using (A.4),

R(γ) = β(s2p+1(γ)− 1)− (s2q+1(γ)− 1) > β
(4n=1)
−1/4 (s2p+1(γ)− 1)− (s2q+1(γ)− 1) .

It suffices to prove

s2p+1(γ)− 1

2−2p − 1
≤ s2q+1(γ)− 1

2−2q − 1
,

which follows from Lemma A.9. Thus R(γ) > 0 for γ > 0.

It is easy to see that for 4n = 2, R(−1/4) = 0. Thus γ = −1/4 is a root of
R(γ) = 0 for all β. It corresponds to the fact that Ω(−1) = 0 = Ω(1), i.e., there is a
collision of two eigenvalues of opposite Krein signature at the origin for all β. This
collision is due to the symmetries of the problem and these eigenvalues do not leave
the imaginary axis in the weakly nonlinear regime. Thus this collision does not affect
stability. We focus on the remaining roots of R(γ) = 0.

We denote

(6.18) β
(4n=2)
0 =

22q − 1

22p − 1
and β

(4n=2)
−1/4 =

(2q + 1)2q

(2p+ 1)2p
.

The inequality β
(4n=2)
0 < β

(4n=2)
−1/4 follows similarly to β

(4n=1)
0 < β

(4n=1)
−1/4 , in the

proof of the previous theorem.

Theorem 6.3. Case 4n = 2. Let p, q, p > q, be positive integers. For the lin-
earized problem (6.2) at zero amplitude at c = c1 the presence and the character of
collisions of eigenvalues depend on the Fourier mode parameter n of the perturbation
in the following way:

(i) for β < β
(4n=2)
0 , eigenvalues of the same signature collide, i.e., there is a

root of (6.4) with γ > 0 and there is no root with γ ∈ (−1/4, 0);

(ii) for β
(4n=2)
0 < β < β

(4n=2)
−1/4 , eigenvalues of the opposite signature collide, i.e.,

there is a root γ of (6.4) such that γ ∈ (−1/4, 0);

(iii) for β
(4n=2)
−1/4 < β, eigenvalues do not collide, i.e., all roots γ of (6.4) satisfy

γ ≤ −1/4.

Proof. Part (i). We prove that R(γ) < 0 for γ ∈ (−1/4, 0). First, R(γ) is an
odd-degree polynomial and R(γ)→∞ as γ →∞ and R(0) = 0 and R′(0) < 0. Thus
R has a root γ > 0.

Assume γ ∈ [−1/4, 0) and β < β
(4n=2)
0 . Then

R(γ) = β(22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1)

< β
(4n=2)
0 (22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1) .

To establish R(γ) < 0 it suffices to prove

β
(4n=2)
0 ≤ 22qs2q+1(γ)− 1

22ps2p+1(γ)− 1
for γ ∈ (−1/4, 0].
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This inequality is rewritten as

22ps2p+1(γ)− 1

22p − 1
≤ 22qs2q+1(γ)− 1

22q − 1
,

which follows from Lemma A.6. Therefore R(γ) < 0 for γ ∈ (−1/4, 0].
Part (ii). First,

R(0) = β(22ps2p+1(0)− 1)− (22qs2q+1 − 1) = β(22p − 1)− (22q − 1)

> β
(4n=2)
0 (22p − 1)− (22q − 1) = 0.

Next we show that limγ→−1/4+ R
′(γ) < 0. Indeed, for γ > −1/4, we have

R′(γ) = β
2p+ 1√
1 + 4γ

22p(ψ2p
+ − ψ

2p
− )− 22q(ψ2q

+ − ψ
2q
− )

< β
(4n=2)
−1/4

2p+ 1√
1 + 4γ

22p(ψ2p
+ − ψ

2p
− )− 2q + 1√

1 + 4γ
22q(ψ2q

+ − ψ
2q
− )

as ψ2
+ > ψ2

− ≥ 0. The result follows from l’Hôpital’s rule, since

lim
γ→−1/4+

(2q + 1)22q(ψ2q
+ (γ)− ψ2q

− (γ))

(2p+ 1)22p(ψ2p
+ (γ)− ψ2p

− (γ))

= lim
γ→−1/4+

2q(2q + 1)22q 1√
1+4γ

(ψ2q−1
+ (γ) + ψ2q−1

− (γ))

2p(2p+ 1)22p 1√
1+4γ

(ψ2p−1
+ (γ) + ψ2p−1

− (γ))

= lim
γ→−1/4+

2q(2q + 1)22qs2q−1(γ)

2p(2p+ 1)22ps2p−1(γ)

=
2q(2q + 1)22q2−(2q−2)

2p(2p+ 1)22p2−(2p−2)
=

2q(2q + 1)

2p(2p+ 1)
= β

(4n=2)
−1/4 .

Thus R(γ) < 0 for γ ∈ (−1/4,−1/4 + ε), ε > 0, small. Since R(0) > 0, there
exists γ ∈ (−1/4, 0) so that R(γ) = 0.

Part (iii). We show that R(γ) > 0 for γ > −1/4. One has

R(γ) = β(22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1)

> β
(4n=2)
−1/4 (22ps2p+1(γ)− 1)− (22qs2q+1(γ)− 1) .

We show that

β
(4n=2)
−1/4 =

2q(2q + 1)

2p(2p+ 1)
≥ 22qs2q+1(γ)− 1

22ps2p+1(γ)− 1
,

which is equivalent to

22ps2p+1(γ)− 1

2p(2p+ 1)
≥ 22qs2q+1(γ)− 1

2q(2q + 1)
.

This inequality follows from Lemma A.7. Therefore R(γ) = 0 has no roots γ > −1/4

for β > β
(4n=2)
−1/4 .
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Appendix A.

Lemma A.1. Let α > 0. The function

g(x) =
xαx

αx − 1

is increasing on (0,∞).

Proof. The condition g′(x) > 0 is equivalent to αx = ex lnα > 1 + x lnα. This
follows directly from the Taylor expansion of ex at x = 0 with equality reached for
x = 0.

Lemma A.2. Let a > b > 0. Define

f(n) = fa,b(n) =
na−b − 1

na − 1
.

We define f(1) = limn→1 f(n) = (a − b)/a. Then f(n) is a decreasing function on
[1,∞).

Proof. The inequality f ′(n) < 0 is equivalent to a(nb − 1) < b(na − 1), i.e.,

(A.1)
a

b
<
na − 1

nb − 1
.

The estimate (A.1) for n > 1 follows from the fact that the function

h(n) =
na − 1

nb − 1
, a > b > 0,

is increasing on [1,∞), where h(1) = limn→1 h(n) = a/b. The inequality h′(n) > 0
reduces to

ana

na − 1
>

bnb

nb − 1
,

which holds for a > b > 0 and n > 1 by Lemma A.1. Lemma A.2 follows by continuity
of h(n) at n = 1.

Lemma A.3. Let sm(γ) be as above. Then

sm(γ) ≥ 2−(m−1) for all γ ≥ −1/4 and m ≥ 0,(A.2)

sm(γ) < 1 for all γ ∈ [−1/4, 0) and m ≥ 2,(A.3)

sm(γ) > 1 for all γ > 0 and m ≥ 2.(A.4)

Proof. First, for γ ≥ −1/4, sm(γ) is an increasing function of γ since s′m(γ) =
(m/
√

1 + 4γ)
(
ψm−1+ (γ)− ψm−1− (γ)

)
> 0. The inequality (A.2) follows from this and

sm(−1/4) = 21−m.
Equation (A.3) follows from the fact that ψ± ∈ (0, 1) for γ ∈ [−1/4, 0). Hence

sm+1(γ) < sm(γ) for all m ≥ 0. Then s1(γ) = 1 yields the claim.
Finally, we prove (A.4). For m = 2 and m = 3, s2(γ) = 1 + 2γ > 1, and

s3(γ) = 1 + 3γ > 1 for γ > 0. Then (A.4) follows directly from (3.2).

Lemma A.4. For all m ≥ 0 and γ ≥ −1/4,

sm+2(γ) ≥ −γsm(γ),(A.5)

sm+1(γ) ≥ sm(γ)/2,(A.6)

sm+1(γ) ≤ [1 +m(1 + 4γ)] sm(γ)/2.(A.7)
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Proof. The inequality (A.5) is equivalent to sm+2 − sm+1 + (sm+1 + γsm) ≥ 0.
Using the recurrence relation (3.2), it reduces to 2sm+2 − sm+1 ≥ 0, i.e., 2sm+2 ≥
sm+1, m ≥ 0. Thus (A.5) and (A.6) are equivalent except for (A.6) with m = 0,
which is trivially satisfied (2s1 = 2 = s0). Also note that sm(γ) ≥ 0 for m ≥ 0 and
γ ≥ 0 and (A.5) is satisfied for γ ≥ 0. In the rest of the proof of (A.5), we assume
that m ≥ 1 and γ ∈ [−1/4, 0). We shift m→ m+ 1 in (A.6), m ≥ 0, which becomes

(A.8)

(
ψ+ −

1

2

)
ψm+1
+ +

(
ψ− −

1

2

)
ψm+1
− ≥ 0 .

Since ψ− = 1− ψ+ for γ ∈ [−1/4, 0), (A.8) is equivalent to(
ψ+ −

1

2

)[
ψm+1
+ − ψm+1

−
]
≥ 0 ,

which is satisfied for γ ∈ [−1/4, 0) since ψ+ ≥ 1/2 and ψ+ > ψ−. This proves (A.6)
and (A.5).

We turn to (A.7). Note that (A.7) holds for m = 0. For m ≥ 1, first we consider
γ ≥ 0. Using (3.2),

2(sm + γsm−1) ≤ [m(1 + 4γ) + 1] sm,

i.e.,

(A.9) 2γsm−1 ≤ [m(1 + 4γ)− 1] sm = (m− 1)sm + 4mγsm.

But m ≥ 1 and sm ≥ 0. Therefore (m− 1)sm ≥ 0 and (A.9) follows from 2γsm−1 ≤
4mγsm, i.e., sm ≥ sm−1/2m, which holds, according to (A.6).

Next, consider γ ∈ [−1/4, 0). We write (A.7) as 2sm+1 − sm ≤ m(1 + 4γ)sm and
use (3.3) to obtain

ψm+

(
ψ+ −

1

2

)
+ ψm−

(
ψ− −

1

2

)
≤ m(1 + 4γ)

2
(ψm+ + ψm− ) .

Using ψ+ + ψ− = 1,(
ψ+ −

1

2

)
(ψm+ − ψm− ) ≤ m(1 + 4γ)

2
(ψm+ + ψm− ) .

Since

ψ+ −
1

2
=

√
1 + 4γ

2
,

(A.7) is equivalent to

(ψm+ − ψm− ) ≤ m
√

1 + 4γ(ψm+ + ψm− )

or

(A.10) ψm+

(
1−m

√
1 + 4γ

)
≤ ψm−

(
1 +m

√
1 + 4γ

)
.

Both ψ+ and 1 +m
√

1 + 4γ are positive, and

ψ−
ψ+

=
1−
√

1 + 4γ

1 +
√

1 + 4γ
=

1 + 2γ −
√

1 + 4γ

−2γ
.
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It follows that proving (A.10) is equivalent to proving

(A.11)
1−m

√
1 + 4γ

1 +m
√

1 + 4γ
≤
(

1 + 2γ −
√

1 + 4γ

−2γ

)m
.

We prove (A.11) by induction for m ≥ 0. For m = 0, (A.11) is trivially satisfied.
Assume that (A.11) holds for m. Using this, we have to show that (A.11) holds for
m+ 1. This amounts to showing that

(A.12)
1−m

√
1 + 4γ

1 +m
√

1 + 4γ

1 + 2γ −
√

1 + 4γ

−2γ
≥ 1− (m+ 1)

√
1 + 4γ

1 + (m+ 1)
√

1 + 4γ
.

Multiplying (A.12) by all (positive) denominators simplifies to an inequality which
holds for all γ ∈ [−1/4, 0):

m(m+ 1)(1 + 4γ)3/2
(

1−
√

1 + 4γ
)
≥ 0.

Lemma A.5. For all m ≥ 2,

−γ(2m − 1)sm−1(γ) + sm+1(γ) ≥ 1 for γ ∈ [−1/4, 0].(A.13)

−γ(2m − 1)sm−1(γ) + sm+1(γ) ≤ 1 for γ ≥ 0.(A.14)

Proof. We prove (A.13) using induction. For m = 2 and m = 3

−γ(22 − 1)s1(γ) + s3(γ) = −3γ + 1 + 3γ = 1,

−γ(23 − 1)s2(γ) + s4(γ) = 1− 3γ(1 + 4γ) ≥ 1.

Assume (A.13) holds for some m ≥ 3, i.e.,

(A.15) − γ(2m − 1)sm−1 + sm+1 ≥ 1.

By Lemma A.4, sm+γsm−2 ≥ 0. Using (3.2) this becomes sm−1 +2γsm−2 ≥ 0. After
multiplication by 2m − 1 > 0, we obtain the equivalent form

(2m − 1)sm−1 + 2γ(2m − 1)sm−2 = (2m − 1)sm−1 + γ(2m+1 − 2)sm−2 ≥ 0,

which, using (3.2), is rewritten as

(A.16) 2msm−1 + γ(2m+1 − 1)sm−2 − sm ≥ 0.

Multiplying (A.16) by −γ ≥ 0 and adding (A.15) gives

−γ(2m+1 − 1)(sm−1 + γsm−2) + (sm+1 + γsm) ≥ 1,

which is rewritten as
−γ(2m+1 − 1)sm + sm+2 ≥ 1 .

This concludes the proof of the second induction step.
Next we prove (A.14). The statement is true for m = 2 and m = 3:

−γ(22 − 1)s1(γ) + s3(γ) = 1 , −γ(23 − 1)s2(γ) + s4(γ) = 1− 3γ − 12γ2 ≤ 1.
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Assume (A.14) holds for some m ≥ 3, i.e.,

(A.17) − γ(2m − 1)sm−1 + sm+1 ≤ 1.

By Lemma A.4, sm + γsm−2 ≥ 0 or equivalently sm−1 + 2γsm−2 ≥ 0, so that

(2m − 1)sm−1 + 2γ(2m − 1)sm−2 = (2m − 1)sm−1 + γ(2m+1 − 2)sm−2 ≥ 0.

This is rewritten as

2msm−1 + γ(2m+1 − 1)sm−2 − sm ≥ 0.

We reverse this inequality by multiplying it by −γ ≤ 0, and we add (A.17) to it to
obtain

−γ(2m − 1)sm−1 + sm+1 − γ2msm−1 − γ(2m+1 − 1)γsm−2 + γsm ≤ 1,

which reduces to
−γ(2m+1 − 1)sm + sm+2 ≤ 1 .

This concludes the proof of the second induction step.

Lemma A.6. The sequence

2msm+1(γ)− 1

2m − 1
, m ≥ 1,

is nonincreasing in m for γ ∈ [−1/4, 0].

Proof. We prove that for m ≥ 1,

2msm+1 − 1

2m − 1
≥ 2m+1sm+2 − 1

2m+1 − 1
.

Using the recurrence relation (3.2), this is equivalent to

sm+1 ≥ γ(2m+1 − 2)sm + 1 ⇐⇒ sm+2 − γ(2m+1 − 1)sm ≥ 1,

which follows directly from Lemma A.5.

Lemma A.7. The sequence

2msm+1(γ)− 1

m(m+ 1)
, m ≥ 1,

is nondecreasing in m for γ ≥ −1/4.

Proof. We use induction to show that for m ≥ 1

2msm+1 − 1

m(m+ 1)
≤ 2m+1sm+2 − 1

(m+ 1)(m+ 2)
,

or equivalently, for m ≥ 1,

(A.18) (m+ 2)2msm+1 ≤ m2m+1sm+2 + 2 .

The inequality (A.18) holds for m = 1 as 6s2 = 6(1+2γ) = 4(1+3γ)+2 = 4s3+2.
Using (3.2) to expand sm+2 in (A.18) we obtain

(m+ 2)2msm+1 ≤ m2m+1(sm+1 + γsm) + 2,
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and (A.18) is equivalent to

2msm+1 − γm2m+1sm ≤ (m− 1)2msm+1 + 2 .

It suffices to prove that

(A.19) 2msm+1 − γm2m+1sm ≤ (m+ 1)2m−1sm ,

since the induction assumption (A.18) for m → m − 1 implies (m + 1)2m−1sm ≤
(m − 1)2msm+1 + 2. But (A.19) follows directly from (A.7) of Lemma A.4 as it is
equivalent to 2sm+1 ≤ [1 +m(1 + 4γ)] sm.

Finally, we prove two lemmas that provide bounds for growth of the sequence
{sm(γ)− 1}.

Lemma A.8. The sequence

(sm(γ)− 1)/m, m ≥ 3,

is nondecreasing in m for γ ∈ [−1/4, 0).

Proof. The statement is equivalent to (m+1)sm ≤ msm+1+1, which we prove by
induction. First, for m = 3 we have 4s3 < 3s4 +1, i.e., 4(1+3γ) < 3(1+4γ+2γ2)+1,
which holds for γ 6= 0.

Assume that the statement holds for m→ m− 1, i.e., msm−1 ≤ (m− 1)sm + 1,
which is equivalent to sm ≤ m(sm − sm−1) + 1. Thus sm ≤ mγsm−2 + 1. However,
for γ ∈ [−1/4, 0) and m ≥ 2 one has 0 < sm−1 < sm−2 and thus sm ≤ mγsm−1 + 1.
The claim follows by an application of (3.2) to sm−1.

Lemma A.9. The sequence

(sm+1(γ)− 1)/(2−m − 1), m ≥ 1,

is (i) nondecreasing in m for γ ∈ [−1/4, 0); (ii) nonincreasing in m for γ > 0.

Proof. First, we prove (i), which is equivalent to (2m+1 − 2)sm+2 + 1 ≤ (2m+1 −
1)sm+1. Using (3.2) in the form sm+2 = sm+1 + γsm, this reduces to sm+1− 2γ(2m−
1)sm ≥ 1. This follows directly from a combination of −γ(2m − 1)sm−1 + sm+1 ≥ 1,
which holds for all m ≥ 2, and γ ∈ [−1/4, 0) by Lemma A.5 and sm−1 ≤ 2sm (see
(A.6)).

Next we prove (ii) by an analogous argument. We have to show that (2m+1 −
2)sm+2+1 ≥ (2m+1−1)sm+1, which reduces (by (3.2) in the form sm+2 = sm+1+γsm)
to sm+1 − 2γ(2m − 1)sm ≤ 1. This follows from −γ(2m − 1)sm−1 + sm+1 ≤ 1 (by
Lemma A.5) and sm−1 ≤ 2sm (by (A.6)) for all m ≥ 2.
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