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ABSTRACT. Going back to considerations of Benjamin (1974), there has been
significant interest in the question of stability for the stationary periodic solu-
tions of the Korteweg-deVries equation, the so-called cnoidal waves. In this pa-
per, we exploit the squared-eigenfunction connection between the linear stabil-
ity problem and the Lax pair for the Korteweg-deVries equation to completely
determine the spectrum of the linear stability problem for perturbations that
are bounded on the real line. We find that this spectrum is confined to the
imaginary axis, leading to the conclusion of spectral stability. An additional
argument allows us to conclude the completeness of the associated eigenfunc-
tions.

1. Introduction. The Korteweg-deVries equation (KdV) for the dependent vari-
able u(z,t)

Ut + Uy + Uggy = 0 (1)

(indices denote partial differentiation;  and ¢ are real independent variables) is one

of the canonical integrable equations of mathematical physics and applied mathe-

matics [2, 38]. It describes the weakly nonlinear dynamics of long one-dimensional

waves propagating in a dispersive medium. For instance, KdV has been used to

model long waves in shallow water [2] and ion-acoustic waves in plasmas [10].
Beyond doubt, the most famous solution of KdV is its soliton solution:

u = ug + 12k%sech? (K (z =z — (46% +uo)t)) , (2)
where ug, k and g are arbitrary parameters. For physically relevant solutions, these
parameters should be chosen to be real. Note that the presence of the parameter ug
implies that the soliton does not necessarily approach 0 as © — £oo. The stability of
this solution was first studied by Benjamin [6], and later by Bona [8], who sharpened
Benjamin’s methods. Neither made use of the integrability of KAV, beyond its first
few conserved quantities. Benjamin’s methods use ideas from Lyapunov theory,
and as such his results establish nonlinear orbital stability of the KdV soliton in a
suitable function space.
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KdV also possesses a family of periodic time-translating solutions expressed in
terms of elliptic functions, referred to as the cnoidal waves. These were first written
down by Korteweg and deVries [25]:

u = ug + 12k*k%en® (k(x — 2o — (852K — 4k% + uo)t), k), (3)

where, as for the soliton solution, ug, k¥ and zy are arbitrary parameters that should
be chosen real, for physically relevant solutions. Here cn(-, k) denotes the Jacobi
elliptic cosine function [29, 9] with elliptic modulus k£ € [0,1). A more detailed
discussion of the solutions (3) is presented in the next section.

The stability of the cnoidal waves has received far less attention than that of the
soliton. Benjamin contemplated various aspects of this problem [7], suggesting that
it is likely that the cnoidal waves (3) are stable with respect to perturbations of the
same period, but unstable with respect to perturbations of larger periods. The first
conjecture was verified by McKean [33], who considered the orbital stability of all
periodic finite-genus solutions of KdV with respect to perturbations of the same pe-
riod. McKean relied heavily on the integrable structure of KdV. Earlier, Kuznetsov
and Mikhailov [27] demonstrated stability of (3) with respect to localized perturba-
tions, by examining the KdV initial-value problem for such perturbations, using the
inverse scattering method. In the 1980’s, Ercolani, Flaschka, Forest and McLaugh-
lin considered both the modulational stability of KdV wavetrains (containing (3) as
a special case) [16, 35] and the stability of wave trains of perturbed KdV equations
[17, 15], with results varying, depending on which perturbations are considered.
Around the same time, Kuznetsov, Spector and Fal’kovich [28, 46] approached the
cnoidal-wave stability problem using integrability by way of the dressing method.
They focused to a large extent on the stability of the cnoidal waves with respect to
transverse perturbations.

Much more recently, Angulo, Bona and Scialom [3] returned to Benjamin’s origi-
nal question of the stability of (3) within the context of KdV. Extending Benjamin’s
Lyapunov methods to periodic problems, they proved that (3) is nonlinearly or-
bitally stable with respect to perturbations of the same period. This reconfirms
Benjamin’s first conjecture, without relying on the integrability of KdV more than
Benjamin [6] or Bona [8] did.

Currently under review is a manuscript by Angulo and Munoz Grajales [4], where
the spectral instability of (3) with respect to perturbations of twice the period of (3)
is claimed. This result, if correct, would prove the second of Benjamin’s conjectures.
As in [3], the integrability of KdV is not used in an essential way to obtain this
result.

In the current manuscript, we use the integrability of KdV to great advantage.
We are able to prove the spectral stability of (3) with respect to perturbations of
arbitrary period, or even perturbations that are quasi-periodic. Using the integrable
structure of KdV, we are able to explicitly determine the essential spectrum' of the
linear stability problem of (3). We show that this spectrum is confined to the
imaginary axis, leading to the conclusion of spectral stability. In addition, we show
that the spectrum covers the whole imaginary axis once, except for a region around
the origin, which is covered thrice. An additional completeness argument allows us
to generalize our result to obtain linear stability. Our results agree completely with
numerical results obtained using Hill’s method [13]. These numerical results are

'n the sense of “spectrum independent of the boundary conditions”, see [41], pp244
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shown in Section 4. As an interesting side note, we are able to recover the known
results for the soliton case, as a limit of our results. Our results overlap with those
obtained by Spector [46] and Kuznetsov, Spector and Fal’kovich [28], although our
methods are more systematic. Our results contradict those of Angulo [4], mentioned
above. The rest of the paper deals with the different steps of our method.

Remark 1. Since the completion of this paper Deconinck and Kapitula [11] have
completed a follow-up manuscript where the nonlinear stability of the cnoidal wave
is proven with respect to perturbations that are periodic with period NT', where
N is any positive integer and T is the period of the cnoidal wave. That work relies
on the results presented here. The integrability of the KAV equation is necessary
to prove the nonlinear stability. The results of [11] conclusively answer Benjamin’s
question about the stability of the cnoidal wave solution of the KdV equation.

2. The cnoidal wave solution of the KdV equation. In this section, we exam-
ine the class of cnoidal-wave solutions in more detail. The results mentioned here
are not new. Most of these considerations may be found, for instance, in [3] or [45].
Overviews of the applicability of cnoidal waves in coastal engineering are found in
[44, 48]. Lastly, all facts about elliptic functions stated here are well-known. They
are found in all standard works, such as [29, 9].

As stated above, the cnoidal waves are given by (3). Here the elliptic modulus
k of the Jacobian cosine function cn(z, k) is constrained to the interval [0,1). The
solutions (3) are periodic in z, with period given by

Ty = 202 / L (4)
K K Jo 1—k2sins

where K (k) is the complete elliptic integral of the first kind. Further, cn(z,0) =
cosz and K(0) = w/2, but the cnoidal wave (3) reduces to a trivial (i.e., constant)
solution. On the other hand, as k — 1, en(z, k) — sechz and K(k) — oo and (3)
reduces to (2).

The solution (3) depends on four parameters. All but the elliptic modulus have
direct analogues in (2). The elliptic modulus stands out for another reason. As
shown above it determines the period of the solution, and in that sense the space of
functions we choose to work with. The three remaining parameters are reflections
of the classical Lie-point symmetries of the KdV equation. The parameter zq is
inherited from the translational invariance of the equation; x reflects the scaling
symmetry; and ug represents the effect of a Galilean boost.

The cnoidal-wave solutions are the simplest nontrivial examples of the large class
of so-called finite-genus solutions of the KdV equation [5, 38]. The genus g solu-
tions may be characterized as stationary solutions of the g-th member of the KdV
hierarchy [31, 37]. This fact is used below, although restricted to the g = 1 case for
the cnoidal waves, where it is easily explicitly verified.

3. The linear stability problem. To examine the stability of the cnoidal waves
(3), we change to a moving coordinate frame by introducing the coordinates

y=xz—-Vt, 7=t (5)
with V' = 8x2k? — 4x% + ug. In the (y,7) coordinates the KAV equation becomes
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Ur — Vg + utty + tyyy = 0. (6)
The cnoidal wave is rewritten as

u=U(y) = ug + 12k*k%en?(k(y — x0), k), (7)
and is a stationary (i.e. time-independent) solution of (6). Note that (7) retains only
the single symmetry parameter xg, as the other two appear in the definition of the
velocity V: moving to a translating frame of reference with velocity V' broke two of
the three Lie symmetries: the parameters x and uy (and k) define the equation (6)
and the “stationary point” of the equation (6) depends on only one free parameter.

Next we consider perturbations of this stationary cnoidal wave:

u(y,m) = Uly) + ew(y,7) + 6(e?), (8)
where € is a small parameter. Substituting this in (6) and ignoring higher-than-
first-order terms in €, we find

wr — Vwy +wUy + Uwy + wyy, =0, (9)
at first order in €. The zeroth order terms vanish since U(y) solves KdV. By ignoring
the higher-order terms in €, we are restricting our attention to examining linear
stability. This is a restriction of our approach. The cnoidal-wave solution is defined
to be linearly stable if for all € > 0, there is a § > 0 such that if ||w(y,0)|| < ¢ then
[lw(y, )|| < e for all 7 > 0. This definition depends on our choice of the norm || ||,
to be determined in the next section.

Next, since (9) is autonomous in time, we may separate variables. Let

w(y, ) =MW (y, ), (10)
then W (y, \) satisfies
Wy + (V — U)W, — U,W = AW, (11)
or
LW =AW, L=-8+(V-U)d, —U,. (12)

In what follows, the A dependence of W will be suppressed. Thus, we address
the stability problem for the cnoidal wave by examining the spectrum o (L) of the
differential operator £. To avoid confusion with other spectra arising below, we
refer to o(L) as the stability spectrum of the cnoidal waves of KdV. Of course, the
definition of o(£) depends on the space of functions we are considering [22, 41, 42],
which goes back to the question of which function norm we elect to use. The cnoidal-
wave solution of KdV is defined to be spectrally stable if o(£) does not intersect
the right half of the complex A plane. Since KdV is a Hamiltonian equation [18],
o(L) is symmetric under reflection with respect to both the real and imaginary axis.
Thus, the cnoidal wave is spectrally stable, if o(£) is contained on the imaginary
axis. Spectral stability of the cnoidal wave will imply its linear stability if the set
of eigenfunctions corresponding to o(£) can be shown to be complete in the space
defined by || - ||, so that all solutions of (9) in that space can be obtained as linear
combinations of solutions of (11).

Benjamin [7] pointed out several stumbling blocks in the road to proving non-
linear stability of the cnoidal-wave solution of KAV with respect to perturbations
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of period equal to an integer (> 1) multiple of the cnoidal wave. If one tries to
generalize the nonlinear stability proof for the soliton (2) [6], different obstacles
are encountered. Some of these may be interpreted at hinting at the possibility
of instability of the cnoidal wave with respect to these long period perturbations.
Nevertheless, none of this is conclusive. Benjamin concluded his ruminations by
briefly discussing the linear stability problem and how the conclusions reached from
its study are indicators as to the stronger results desired. The question about the
stability of the cnoidal waves remained open.

Remark 2. Since KdV is an integrable equation, we might investigate the stability
of the cnoidal waves by solving the initial-value problem for initial conditions that
start near the cnoidal wave (this point of view was put forward by Harvey Segur at
the Workshop on Stability and Instability of Nonlinear Waves at the University of
Washington in September of 2006). This is in essence what is done by Kuznetsov
and Mikhailov [27], for a restricted class of perturbations. We agree with this
point of view if one is only interested in the stability of the exact solution of the
integrable equation. On the other hand, if one wants to consider the stability
of stationary solutions of near-integrable equations (equations that in some limit
reduce to an integrable one), it might be beneficial to know as much as possible
about the stability spectrum of the solution of the integrable equation. This is
likely to be the starting point for a perturbative approach to examine the spectral
stability of the non-integrable case. This is what is accomplished here: we will
present a completely explicit analytical determination of the stability spectrum of
the cnoidal waves.

4. Numerical Results. Before we determine the spectrum of (12) analytically,
we compute it numerically, using Hill’s method [13]. Hill’'s method is ideally suited
to a problem such as (12) with periodic coeflicients. It allows us to compute all
eigenfunctions of the form

W =" W(y), W(y+T(k) =W(y), (13)
with p € [-7n/2T(k), n/2T(k)). It follows from Floquet’s theorem that all bounded
solutions of (12) are of this form. Here bounded means that maxger |W(z)| is
finite. Thus W € Cj(R). On the other hand, we also have W € L2 . (=T/2,T/2)
(the square-integrable functions of period T') since the exponential factor in (13)
disappears in the computation of the L?-norm. Thus

WeCy(R)N Ly, (-T/2,T/2). (14)
It should be noted that by this choice our investigations include perturbations of an
arbitrary period that is an integer multiple of T'(k), specifically those of period 27'(k)
remarked on by Benjamin [7] and examined in [4]. Indeed, periodic perturbations
are obtained for those p-values for which pT'(k)/7 is rational.

Figure la shows a discrete approximation to the spectrum of (12), computed
using SpectrUW 2.0 [12]. The parameters are k = 0.8, kK = 1, g = 0 and ug = 0.
The numerical parameters (see [13, 12]) are N = 40 (81 Fourier modes) and D = 50
(49 different Floquet exponents). Figure 1b is a blow-up of Fig. la around the
origin. First, it appears that the spectrum is on the imaginary axis?, indicating

2The largest real part computed (in absolute value) is 1.363353910711.
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FIGURE 1. (a) The numerically computed spectrum of (12) with
k=0.8, k=1, g =0and uy = 0, using Hill’s method with N = 40
(81 Fourier modes) and D = 50 (49 different Floquet exponents),
see [13, 12]; (b) A blow-up of (a) around the origin, showing a band
of higher spectral density.

spectral stability of the cnoidal wave. Second, the numerics shows that a symmetric
band around the origin has a higher spectral density than does the rest of the
imaginary axis. This is examined in more detail in Fig. 2, where the imaginary
parts € [—2.5,2.5] of the computed eigenvalues are displayed as a function of pu.
This shows that A values with Im(X) € [—1.32,1.32] (approximately) are attained
for three different p values in [—7 /2T (k), 7/2T(k)). The rest of the imaginary axis
is only attained for a single p value. This picture persists if a larger portion of
the imaginary A axis is examined. Also indicated in Fig. 2 is the analytical result
obtained in Section 7. Note that the analytical and numerical results appear to
agree perfectly.

The above considerations remain true for different values of the elliptic modulus
k € [0,1), although the spectrum does depend on k. Note that the parameters
(z0, K, up) may be eliminated by simple transformations and they do not affect the
spectra. Thus, for all values of k € [0, 1), the spectrum of the cnoidal-wave solution
appears to be confined to the imaginary axis, indicating the spectral stability of the
cnoidal waves. Also, for all these k values, the spectrum o(L£) covers a symmetric
interval around the origin three times, whereas the rest of the imaginary axis is
single covered. The edge point on the imaginary axis where the transition from
spectral density three to one occurs depends on k and is denoted A.(k). The k-
dependence of A.(k) is shown in Fig. 3. Again, both numerical and analytical
results (see Section 7) are displayed. For these numerical results, Hill’'s method
with N = 50 was used.

5. The Lax pair restricted to the cnoidal wave. It is well known [19, 30] that
KdV is equivalent to the compatibility condition of two linear ordinary differential
systems:

s 0 1Y\ - Uy /6 —4¢—u/3 \ »
Vo = ( ¢C—u/6 0 >w’ Ve = < —4¢? + (u? 4+ 6Cu + 3uyg,) /18  —u, /6 )w'
(15)
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FIGURE 2. The imaginary part of A as a function of y, demon-
strating the higher spectral density (three vs. one) in Fig. 1b. The
small circles indicate the numerical data, whereas the solid curve
corresponds to the analytical result (44).

In other words, the compatibility condition &It = 1/;,595 requires that u satisfies KdV.
For our purposes, it is more convenient to work with (6) instead. This equation
differs from KdV only by an additional u, term. Since the equation u, = u, is the
zeroth member of the KAV hierarchy [2], the Lax pair (15) is easily modified by
including the zeroth member of the linear Lax pair hierarchy [30]. We obtain

0 1
B Uy /6 —4(+V —u/3
vr = —4C% + ¢V + (u® = 3Vu + 6Cu + 3uy,)/18 —uy /6 ¥
(17)

Indeed, the condition v, = 1, results in (6). It is more common to use a scalar
form for the Lax pair of KdV [30], which involves the stationary Schrodinger equa-
tion. We prefer to use the equivalent systems form (16-17), since it suits our
methods better. Nevertheless, since ( is the spectral parameter for the station-
ary Schrodinger equation, we refer to the set of all ¢ values such that (16-17) has
bounded (in the same sense as above) solutions as the Laz spectrum oy,. Note that
because ( is a spectral parameter for the stationary Schrodinger equation, the Lax
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FIGURE 3. Numerical and analytical results for the imaginary part
of the edge point A.(k) of the triple-covered region as a function
of the elliptic modulus k. The solid curve displays the analytical
result, the small circles are obtained numerically.

spectrum of the cnoidal wave (7) is a subset of the real line: o7, C R. The goal of

this section is to determine this subset explicitly. In the next section, we connect

the Lax spectrum oy, of the KdV cnoidal wave to its stability spectrum o(L).
Thus we examine the problem

_ Uy,/6 —4C+V -U/3
¥r = ( —4¢% 4+ ¢V + (U? = 3VU + 6¢U + 3U,,)/18 -U,/6 ¥
(19)

Many solution methods for integrable systems use the first Lax equation (here (18))
to great extent, while the second equation (here (19)) plays only a minor role. Such
is true in the method of inverse scattering [19, 2], the use of Darboux transformations
[32], etc. In contrast, we obtain great benefits from using (19) first. This is in the
spirit of work of Krichever [26, 5]. Indeed, notice that the right-hand side of (19)
does not explicitly depend on 7, allowing us to separate variables: let

Py, 7) = €7 ( ggz; ) : (20)

We refer to the collection of all Q values such that (20) is bounded as a function of
x as the 7-spectrum o, of the cnoidal wave. Then

U, /6 —Q —4C+V -U/3 a_,
—4C? + ¢V + (U? = 3VU + 6CU 4 3Uy,) /18 —U,/6 —Q g )
(21)
It follows that  is determined by the eigenvalue equation



KDV CNOIDAL WAVES ARE SPECTRALLY STABLE 9

201 Cy C1V
0% =16¢3 — 8V ¢? a—— — 4+ — 22
¢ ¢+ 5 St T (22)
where the constants C; and Cy are given by
1 1
o :Uyy+§U2—UV, 02=U§+§U3—VU2—201U. (23)

That C; and Cs are indeed independent of y follows immediately from the ordinary
differential equation —V U, + UU, + Uy, = 0, which the cnoidal wave (7) satisfies.
Alternatively, one might use the different commutation relations (see [14], using
that the trace of a commutator vanishes) between the coefficient matrices in (16-
17) to prove the y-independence of €. In our case, a more explicit calculation is
possible, since we know the functional form (7) of U(y) explicitly. We find that

C = 24K%K?, Cy =0, (24)
where k' = /1 — k2 is the complimentary elliptic modulus. Note that in the above,

and from here on out, we have equated xg = 0, ug = 0, K = 1. These choices do
not affect our results. Our equation (22) for 22 becomes

0 =16(¢C — 1) (¢ — )¢ — &), (25)
with

GQ=k-1<(=2-1<G=FK. (26)
The inequalities above are easily verified. The first one becomes an equality for
k =0, the last one for & — 1.
Having determined €2, we turn to the vector (o, 3)T. Clearly, it is the eigenvector
corresponding to the eigenvalue :

( g ) = ) < 4<@/Vt;fg/3 ) &)
o(y) < —4C2 +(V + (UQU—yé?/JIFJ?L 6CU + 3Uy,)/18 ) '

Of course, there are two eigenvectors to be considered. But, (22) is an algebraic
curve representation for a genus one (elliptic, if k¥ # 0, 1) Riemann surface [47, 5],
and we may think of («, 3)T as being a single-valued vector on this double-sheeted
surface. This interpretation is valid for all ¢ values, except ( = (, i = 1,2,3,
which are branch points of (25) with = 0, and only one eigenvector is obtained.
We return to this issue below. Equation (27) gives two representations of this
eigenvector, referred to as the v- and d-representations. Which one is used is largely
a matter of convenience. Both representations depend on a scalar function of y,
which is undetermined for now. It cannot be determined by using (19). Instead we
have to resort to (18). This equation is a two-dimensional linear differential system,
but substitution of either the - or J-representation collapses it to a scalar linear
first-order differential equation for either v or §. Thus, this equation may be solved
explicitly. Using either representation, we find

B ~U,/6 -9
Y = 7o €xXp (/ 4<—yV—|—U/3dy) ) (28)



10 NATE BOTTMAN AND BERNARD DECONINCK

or

- CUJ3—4¢2 + ¢V +U?/18 —=UV/6
6 = dpexp </ 0,76+ 9 dy) . (29)

Combined with (27), these equations completely determine all two-dimensional vec-
tor functions that solve both (18) and (19). Since we are interested in the Lax
spectrum of the cnoidal wave, we need to determine for which values of ¢ (28), (29)
are bounded as functions of y.

Since the vector parts (given in (27)) of the eigenvectors are bounded for all
choices of ¢, we need the exponential contributions to be bounded. To this end, it
is necessary and sufficient that

(2 0m)) = (30)

or a similar condition using (29). Here ( - ) = ﬁfoﬂk) - dy denotes the average
over a period and R denotes the real part. One easily checks that this average
is well defined for all real ¢ < k2 — 1 or ¢ > 2k? — 1, as the denominator of
(30) has no zeros then. For ¢ € (¢; = k* —1,(a = 2k? — 1) this results in both
eigenvector solutions being unbounded, thus these { values do not belong to the
Lax spectrum or. For ¢ = ¢; = k% — 1, both representations result in the same
bounded eigenfunction: « ~ sn(z, k), 8 ~ cn(z, k)dn(x, k). Thus ¢ = (; € oy.
Similarly, for ¢ = (o = 2k? — 1, we obtain one bounded eigenfunction: o ~ cn(z, k),
B ~ —sn(z, k)dn(z, k), thus { = {; € or. For all other values of {, we examine the
average defined above. The condition (30) easily simplifies. First, it is equivalent
to

<4c—V1+U/3> R(€Q) =0, (31)

since Uy is odd over a period and ( is real. It follows from (25) that  is either real
or imaginary. The condition (31) implies that all ¢ € R for which 2 is negative or
zero are part of the Lax spectrum o,. This requires ¢ € (—oo, k? — 1JU[2k? — 1, k?].
Next, it is easy to show that if ¢ is outside of this set, then the average term is not
zero. We conclude that the Lax spectrum of the cnoidal wave is given by

o = (—oo,k? — 1] U [2k* — 1, k). (32)
Also, we have established that the allowed () values are imaginary, covering the
entire imaginary axis, thus

o, =iR. (33)
Indeed, 2 takes on all negative values for ¢ € (—o0,k? — 1], implying that Q =
+v/02 covers the imaginary axis. Furthermore, for ¢ € [2k? — 1, k%], Q? takes on all
negative values in [Q2 . 0] twice, where Q2. is the minimal value of Q? attained

for ¢ in this interval. Upon taking square roots, this implies that the interval on the

imaginary axis [fi\/ 192, ,i\/|§212nin\] is double covered in addition to the single
covering already mentioned. Thus this symmetric interval around the origin is triple
covered, whereas the rest of the imaginary axis is single covered. Symbolically, we
might write
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FIGURE 4. €2 as a function of real ¢, for £ = 0.8. The union of
the thick line segments is the Lax spectrum o, of the cnoidal wave.

2
o= e [ ]| o

instead of (33). Here the square is used to denote multiplicity. The expressions
used above can be calculated explicitly in terms of the elliptic modulus. We have

1
02| :2—$(k2+1+A)(1—2k2+A)(k2—2+A), (35)
where A2 =1 — k2k'2 > 0. This value is attained for
4% -2+ A
¢ = — (36)

Remark 3. e The condition (30) may be obtained differently. It is possible (see
e.g. [5]) to express the solutions of the Lax pair (18-19) using Riemann theta
functions of an argument that is linear in x. The condition determining the
spectrum is that the coefficient of x is so that the theta function is bounded
for real x. Of course, the condition obtained is equivalent to (30).

e For ( = (;, i =1,2,3, the second linearly independent solution of the differen-
tial equation (18) is found using reduction of order, resulting in algebraically
growing solutions as y — +oo. It should be remarked that these algebraically
growing solutions solve (18), but they do not provide solutions of (19). It
is remarkable that all solutions of (18) give rise to simultaneous solutions of
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(19), except these three. Indeed, for all values of { € C, (27) gives rise to a
simultaneous solution of both (18) and (19), even if ( ¢ or. This is used in
Section 7.

6. The squared-eigenfunction connection. It is well known that there exists
a connection between the eigenfunctions of the Lax pair of an integrable equation
and the eigenfunctions of the linear stability problem for this integrable equation
[1, 2, 20, 36, 43]. This connection has been used extensively to study the soliton
solutions and their stability, but to our knowledge, it has not been exploited to
do the same for the finite-gap solutions of integrable equations. This is surprising,
as the same connection exists. After all, establishing the squared-eigenfunction
connection is an algebraic statement, which does not involve boundary conditions.
The essence of this calculation is included below.

Theorem 6.1. The product w(y, ) = ¥1(y, T)Y2(y, 7) = 0,03 (y, 7)/2 satisfies the
linear stability problem (9) for U(y). Here v = (11,%2)7 is any solution of (18-19)
with the corresponding coefficient function U (y).

Proof. The proof is a straightforward calculation: calculate w, = (¥11)3), using the
product rule and (19). Alternatively, calculate w, using (9), substituting w = 11 1)s.
In both expressions so obtained, eliminate y-derivatives of 11 and 9 (up to order
3) using (18). The resulting expressions are equal, finishing the proof. O

Remark 4. e Of course, boundary conditions do come into play when one wor-
ries about the completeness of these squared eigenfunctions. Again, much
work has been done for the case of the whole line problem, see for instance
[23, 24]. For the case of periodic solutions of KdV, the completeness of peri-
odic eigenfunctions (with period equal to or double that of the KAV solution)
was proven by McKean and Trubowitz [34], but we are not aware of any re-
sults about the full set of eigenfunctions, including those of arbitrary large
periods, and those that are not periodic.

e It is possible to repeat this calculation for any solution w(y,7) of (6). It is
not necessary that the solution is stationary in some appropriately translating
frame.

e More often, the above argument for KdV uses the eigenfunction of the sta-
tionary Schrédinger equation 1 (z,t) (¢ playing a parametric role), and one
shows that 17 solves the formal adjoint equation to the linear stability prob-
lem. This extra complication is avoided by working with a first-order system
instead.

7. Spectral and linear stability. In order to establish the spectral stability of
the cnoidal wave solutions (3) of (1), we need to establish that all bounded solutions
W (y) of (11) are obtained through the squared-eigenfunction connection by

w(y,t) = e**a(y)B(y)- (37)
If we manage to do so then we may immediately conclude that

A =20 (38)
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Since o, = iR, we conclude that the stability spectrum is given by

o(L) = iR. (39)

In order to obtain this conclusion, we need the following theorem.

Theorem 7.1. All but siz solutions of (11) may be written as W (y) = a(y)B(y) =
0ya®(y)/2, where (o, B)T solves (18,21). More specifically, all but one solution of
(11) bounded on the whole real line are obtained through the squared eigenfunction
connection.

Proof. For any given value of A € C, (11) is a third-order linear ordinary differential
equation. Thus, it has three linearly independent solutions. On the other hand, we
have already shown (see Theorem 1) that the formula

W(y) = a(y)B(y) = 9,0°(y)/2 (40)
provides solutions of this ordinary differential equation. Let us count how many
solutions are obtained this way, for a fixed value of A. For any value of A € C,
exactly one value of 2 € C is obtained through 2 = \/2. Excluding the four values
of A for which the discriminant of (25) as a function of ¢ is zero (these turn out
to be only the values of A for which Q2 reaches its maximum or minimum value in
Fig. 4), (25) gives rise to three values of ¢ € C. It should be noted that we are not
restricting ourselves to ¢ € o, now, since the boundedness of the solutions is not a
concern in this counting argument. Next, for a given pair (£2,¢) € C2, (27) defines
a unique solution of (18,21). Thus, any choice of A € C not equal to the four values
mentioned above, gives rise to exactly three solutions of (11), through the squared
eigenfunction connection of Theorem 1. Before we consider the excluded values
separately, we need to show that the three functions W (y) obtained as described
above are indeed linearly independent. This argument proceeds as follows:

e Provided there is an exponential contribution from v(y) in the solutions W (y),
the solutions W (y) are linearly independent: indeed for fixed A (i.e., for fixed
) the exponents are so that for the three different ¢ values, the three cor-
responding W (y) are linearly independent. This is easily seen by using the
second representation in (27) with d(y) given in (29). Using this representa-
tion the ¢ dependence is confined to the numerator of the integrand in the
exponent. For different ¢ different terms with singularities of different order
in the complex y-plane are present with different coefficients.

e The only possibility for the exponential v(y) to not contribute to the solution
W (y) is if the integrand in (28) is proportional to a logarithmic derivative.
A quick calculation confirms that this happens only for A = 0 (thus Q =
0). For this value, it is easily checked that the three resulting W(y) are all
proportional to sn(y, k)en(y, k)dn(y, k), resulting in a single eigenfunction for
A = 0. This is not a surprise: the solution U(y) (7) has only one invariance
(translational invariance, marked by the presence of xg) resulting in a single
eigenfunction proportional to OU/0xg ~ sn(y, k)cn(y, k)dn(y, k). The other
solutions of (11) are obtained through reduction of order. This allows one
to construct two solutions whose amplitude grows linearly in x. A suitable
linear combination of these solutions is bounded. Thus, corresponding to
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A = 0 there are two eigenfunctions. One of these is not obtained through the
squared-eigenfunction connection.

For the four excluded values, two linearly independent solutions of (11) are found.
The third one may be constructed using reduction of order, and introduces algebraic
growth. For the two A\ values for which Q2 reaches its minimum value, the two
solutions obtained from (40) are bounded, thus these values of A are part of the
spectrum. The two values of A for which Q? reaches its maximum value only give
rise to unbounded solutions and are not part of the spectrum.

We conclude that all but one bounded solution of (11) are obtained through the
squared eigenfunction connection. O

The above considerations are summarized in the following theorem.
Theorem 7.2 (Spectral stability). The cnoidal wave solutions (3) of the KdV

equation (1) are spectrally stable. The spectrum of their associated linear stability
problem (11) is explicitly given by o(L) = iR, or, accounting for multiple coverings,

2
() = R U |20/ |03, 20y 28] (a1)
where \o(k) = 2i|Qumin|, and |92, is defined by (35).

min
At this point, we are also able to compare our analytical results with the nu-
merical results shown in Fig. 2. To this end, we obtain parametric expressions for
the Floquet parameter p and the spectral elements. Comparing the expression (13)
with our analytical expression for the eigenfunctions, we find that

_ Nm /) -U,/6—-9Q
'u_T(k:)_Z<4§—V+U/3>’ (42)

where N is an integer. This may be simplified to

LI <3\/16(C — )= )¢ - C3)>

H= () A-V+U/3 (43)

using (30) and (25). Here & denotes the imaginary part. With the explicit expres-
sions for U(y) and V, we find a parametric form for the curves in Fig. 2:

Nr | /IC=GlIE=&lI¢— & /KW dy
0

S Rm) T KR) R R)

SA = +8/[C—Gll¢— GII¢— Gl

for ¢ < k* — 1 and ¢ € [2k? — 1,k?]. The integral on the right-hand side can be
rewritten using elliptic integrals of the third kind. The solid curves in Fig. 2 were
obtained using a direct numerical evaluation of (44) instead.

In order to work towards nonlinear stability of the solution (3) of (1) (see [11]), we
need to show that all solutions (in a suitable space) of the linearized KdV equation
(9) can be expanded in terms of the eigenfunction solutions of (11). In order to
accomplish this, it suffices to show that this set of eigenfunctions is complete in
the same space. Here, we argue that the set of eigenfunctions of (11) of period
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NT (0 < N € N) is complete in L?2(—NT /2, NT/2), which allows us to establish
the linear stability of the cnoidal wave solution (3) of the KdV equation (1) with
respect to perturbations of period NT, for any positive integer N.

Indeed, for the case of periodic perturbations of period T, this was shown by
McKean and Trubowitz [34]. For N > 1, the result follows from the work of Haragus
and Kapitula [21]. They prove spectral stability of the cnoidal wave solution with
respect to perturbations of the form (13). Further, for any Floquet parameter p # 0,
they obtain L?-completess of the eigenfunctions from the general considerations
of the SCS Basis Lemma [21]. By grouping solution sets with common period
(corresponding to Floquet exponents that are commensurate with T with common
denominators) the result follows. The result of Haragus and Kapitula applies to
cnoidal wave solutions of small amplitude (in essence, small values of k). However
that restriction was necessary for their spectral stability result. Once that result is
established, their completeness argument carries through without obstructions.

This allows us to formulate the following theorem.

Theorem 7.3 (Completeness). The eigenfunctions with period an integer multiple
of the period of the cnoidal wave solutions (3) of the KdV equation (1) are complete
in L2,

8. The soliton limit. It is tempting to push our arguments to the soliton limit
k — 1 and see to what extent the known results in that case are recovered here.
To the extent we do this here, this is no more than an entertaining observation,
and more work is required if one desires to turn this observation into rigorous
mathematics. Recall [6, 8] that the soliton solution is known to be nonlinearly
(orbitally) stable.

In the limit k¥ — 1, the cnoidal wave solution (3) reduces to the soliton solution
(2). The spectral stability problem (11) maintains its formal appearance, but is
now defined on the entire real line. Thus, the spectrum consists of a collection
of discrete eigenvalues and the essential spectrum. Using a standard asymptotic
constant-coefficient argument, one finds the essential spectrum to be the entire
imaginary axis. Finding the discrete spectrum is more involved.

Proceeding with the study of the Lax pair restricted to the soliton, one finds that
the Riemann surface (25) degenerates to the rational (i.e., genus 0) algebraic curve

Q% =16¢(¢ — 1)% (45)
From this, one might want to conclude that the Lax spectrum o, is given by the
negative real line (essential spectrum), and an eigenvalue at ¢ = 1 (discrete spec-
trum). This is indeed the result obtained using the forward scattering method
[19], using a one-soliton initial condition. Pushing this further, one sees that the
T-spectrum o, is the imaginary line, with an added embedded eigenvalue at the
origin. An irrelevant scaling factor of 2 results in a conjectured stability spectrum
o(L) = iR, with an eigenvalue at the origin. These conclusions, obtained rather
carelessly here, are indeed correct [39, 40].

9. Conclusion. Using explicit constructions, we have shown that the cnoidal wave
solutions of the integrable KdV equation are spectrally stable. Specifically, we
have constructed the spectrum and the set of eigenfunctions for the linear stability
problem analytically. To prepare for the proof of nonlinear stability in [11], we
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have also provided a completeness argument of the eigenfunctions with period any
integer multiple of the cnoidal wave period. To obtain our results we have used the
well-known squared eigenfunction connection and extended their use to a problem
with periodic coefficients, but not restricted to periodic boundary conditions.
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