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NL3395 Kadomtsev-Petviashvili equation

The Kadomtsev-Petviashvili (KP) equation was derived by Kadomtsev &
Petviashvili (1970) to examine the stability of the one-soliton solution of the Korteweg—-
de Vries (KdV) equation under transverse perturbations. As such, it is relevant for
almost all applications where the KdV equation arises. After rescaling of its coefficients,
the equation takes the form

(—4uy + 6ty + Uggs) + 302Uy, = 0, (1)

where indices denote differentiation, and o is a constant parameter. If 02 = —1 (+1),
the equation is referred to as the KP1 (KP2) equation. All other real values of 0% can
be rescaled to one of these two cases. In what follows, a reference to KP as opposed to
KP1 or KP2 implies that the result in question is independent of the sign of o2.
Depending on the physical context, an asymptotic derivation can result in either the
KP1 or the KP2 equation. In all such derivations, the equation describes the dynamics of
weakly dispersive, nonlinear waves whose wavelength is long compared to its amplitude,
and whose variations in the second space dimension (rescaled y) are slow compared to
their variations in the main direction of propagation (rescaled z). Two examples are

e Surface waves in shallow water: in this case u is a rescaled wave amplitude, and
a rescaled velocity. The wavelength is long compared to the depth of the water
h, which is large compared to the wave amplitude. The sign of o2 is determined
by the magnitude of the coefficient of surface tension 7. KP1 results for large
surface tension 7/(gh?) > 1/3, i.e., thin films. Otherwise KP2 results. Here g is
the acceleration of gravity. For most applications in shallow water surface tension
plays a sufficiently unimportant role and KP2 is the relevant equation (Ablowitz &
Segur, 1979).

e Magneto-elastic waves in antiferromagnetic materials: here v is a rescaled strain

2 is determined by the difference

tensor and a rescaled velocity. The sign of o
between the linear velocities of the magnons and phonons, and the strength and

direction of the external magnetic field. (Turitsyn & Fal’kovich, 1979)

The KP equation has different classes of soliton solutions. A first class is a
generalization of the solitons of the KdV equation. These solutions decay exponentially
as r,y — oo, in all but a finite number of directions along which they limit to a
constant. For this reason these solutions are referred to as line solitons. By appropriately
choosing their parameters the direction of propagation of each line soliton can be chosen
to be anything but the y-direction. In the simplest case the solitons all propagate in
the z-direction, adding a second dimension to the KdV solitons. Many other scenarios
are possible. Two line solitons can interact with different types of interaction regions
to produce two line solitons, but two line solitons can also merge to produce a single
line soliton. Alternatively, a single line soliton can disintegrate in two line solitons. The
production or annihilation of a line soliton is sometimes referred to as soliton resonance.
Although both KP1 and KP2 have line soliton solutions, soliton resonance only occurs
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for the KP2 equation. Line soliton solutions of the KP2 equation are stable, whereas line
soliton solutions of the KP1 equation are unstable. More possibilities exist when more
than two line solitons are involved. Two distinct line soliton interactions are illustrated
in Fig. 1.

(a) (b)

Figure 1. Two types of spatial (t = 0) line soliton interactions for the KP2
equation: (a) Two identical line solitons with an interaction that does not change
their characterists; (b) Two line solitons merge to produce one line soliton.

Another class of soliton solutions exists only for the KP1 equation and decays
algebraically in all directions as /22 4+ y2 — 0o0. These soliton solutions are referred to
as lumps and are unstable. Individual lumps in multi-lump solutions do interact with
each other, but leave no trace of this interaction. A lump soliton is shown in Fig. 2
(Ablowitz & Segur, 1981).

Figure 2. A lump soliton (¢ = 0) solution of the KP1 equation

Another important class of solutions of the KP equation generalizes the exact
periodic and quasiperiodic solutions of the KdV equation. A (quasi)periodic solution

with g phases is expressed in terms of the Riemann theta function 6(z|B) by
2

u(z,y,t) :c+2%ln9(kx+ly+wt+¢|B). (2)
z
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Here ¢ is a constant, k, I, w and ¢ are g-dimensional vectors that are interpreted as
wave vectors (k, 1), frequencies (w) and phases (¢). These parameters and the g X g
Riemann matrix B are determined by a genus g compact connected Riemann surface,
and a set of g points on it.

For ¢ = 1, the solution (2) generalizes the cnoidal-wave solution of the KdV
equation to two spatial dimensions. For g = 2, the solution is still periodic in space. Its
basic period cell is a hexagon, which tiles the (z,y)-plane. These solutions translate
along a direction in the (x,y)-plane. For g > 3 the solution (2) is typically no
longer periodic or translating in time. For some values of their parameters, these
(quasi)periodic solutions can be interpreted as infinite nonlinear superpositions of line
solitons. Solutions with ¢ < 2 have been compared to experiments in shallow water,
with agreement being more than satisfactory (Hammack, et al , 1995). A two-phase
solution of the KP2 equation is shown in Fig. 3. A good review of the finite-phase
solutions of the KP equation is given by Dubrovin (1981).

Figure 3. A two-phase periodic solution of the KP2 equation

Unlike for the KdV equation, where only a restricted class of Riemann surfaces
arises, any compact connected Riemann surface gives rise to a set of solutions of the KP
equation. The reverse statement is also true: if (2) is a solution of the KP equation,
then the matrix B is the normalized period matrix of a genus g Riemann surface. This
statement is due to Novikov. It provides a solution to the century-old Schottky problem.
Its proof is due to Shiota (1986).

The KP equation is the compatibility condition ¥,, = W, of the two linear
equations

3 3
oV, =V, +u¥, V¥, =V, + Eu\Ilm + Z(uz + w)V, (3)
with w, = ou,. These equations constitute the Lax Pair of the KP equation. Using
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the inverse scattering method, it is the starting point for the solution of the initial-
value problem for the KP equation on the whole (z, y)-plane with initial conditions that
decay at infinity. The inclusion of line solitons is possible as well (Ablowitz & Clarkson,
1981). Although the initial-value problem with periodic boundary conditions for KP2
was solved by Krichever (1989), this approach was unable to solve the same problem
for the KP1 equation. In this context, the solutions (2) are referred to as finite-gap
solutions, as they give rise to operators (3) with spectra that have a finite-number of
forbidden gaps in them.

More details and different aspects of the theory of the KP equation are found
in Ablowitz & Segur (1981); Ablowitz & Clarkson (1981); Dubrovin (1981); Krichever
(1989); Shiota (1986), and references therein.

BERNARD DECONINCK

See also Inverse scattering method; Korteweg-de Vries equation; Multidimensional
solitons; Theta functions; Water waves
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