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Abstract

The dynamics of a one-dimensional slowly modulated, nearly monochromatic localized wave
train in deep water is described by a one-dimensional soliton solution of a two-dimensional
nonlinear Schridinger equation. In this paper, the instability of such a wave train with respect
to transverse perturbations is examined numerically in the context of the nonlinear Schrédinger
equation, using Hill’s method. A variety of instabilities are obtained and discussed. Among
these, we show that the solitary wave is susceptible to an oscillatory instability (complex growth
rate) due to perturbations with arbitrarily short wavelength. Further, there is a cut-off on the
instability with real growth rates. We show analytically that the nature of this cut-off is different
from what is claimed in previous works.

1 Introduction
The hyperbolic nonlinear Schrédinger (NLS) equation in non-dimensional variables is

'I:'lpt + 'lpzz - 'wyy + 2|¢|2¢ =0, (1)

for a complex wave function 9(x,y,t). It describes the evolution of gravity-capillary waves in deep
water that may be two-dimensional, nearly monochromatic, and are slowly modulated. Subscripts
in (1) are used to denote partial derivatives. A derivation of this equation may be found in [2]. Up
to scaling, the elevation of the water wave surface is given by

n= R (weikow*iumt) , (2)



Figure 1: A contour plot of the water wave surface ng(z,y,t) with kg = 1, ¢t = 0. Higher values
correspond to lighter colors.

where R denotes the real part, kg is the wave number of the carrier wave train, and wy = v/kg is
the carrier frequency given by the deep-water dispersion relation.

A trivial-phase one-soliton solution of the one-dimensional NLS equation (Eqn. (1), ignoring
dependence on y) is given by

Y = e'’sechz. (3)

This solution corresponds to a one-dimensional localized wave train:

no(z,y,t) = cos(kor — (wo — 1)t)sechz. (4)
A contourplot of ng(z,y,t) is shown in Fig. 1.
Remarks:

e By using the Lie point symmetries of (1) [23], this solution may be transformed into the most
general form of a one-dimensional soliton solution with trivial spatial phase profile of (1).
Thus, only considering (3) is not as restrictive as it appears.

e Using a linear transformation on the spatial variables, the solution (3) may be oriented so
as to propagate at a non-zero angle with the z-axis [21]. The analysis of these solutions is
similar to that considered here.

In order to examine the stability of (3) with respect to two-dimensional perturbations, consider

¢ = (sechz + eu(z,y,t) + iev(z,y,t)) e (5)



where € is a small, real constant and u(z,y,t), v(z,y,t) are real-valued functions. The result-
ing equation is polynomial in e. Its constant term vanishes, since (3) is a solution of (1). The
order € term is dominant, and its coefficient is a linear partial differential equation for u(z,y,t)
and v(z,y,t). Separating its real and imaginary parts gives the following coupled set of partial
differential equations:

(6)

Since the coeflicients of these equations do not explicitly depend on y or ¢, we may separate variables,
and let

—Up = Ugy — Vyy + (25ech2:1: — 1) v
Vg = Ugg — Uyy + (Gsecth — 1) U

U’('Ta Y, t) = U('T, P Q)eipy+§2t + c.c. (7)
v(z,y,t) = V(z,p,0)ePy* ¥ 4cec

where p € R, as only perturbations that are bounded in space are considered. Further, +c.c.
denotes that the complex conjugate of the previous term is added. Lastly, €2 is a complex constant
that determines the stability of the solitary wave solution with respect to perturbations with z-
dependence given by U (z, p, ) and V (z, p, 2) and y-dependence characterized by the wave number
p. Then U(z, p, ), V(z, p, Q) satisfy the coupled system of ordinary differential equations

QU = (L--p)V (8)
—QV = (Ly-pU "’
where
L = —-02 +1—2sech’z, 9)
Ly =-02+1-6sech’z.

Thus, if eigenfunctions U(z, p,2), V(z,p,Q) of the system are found for which Q has a strictly
positive real part, the solitary wave solution (3) is unstable with respect to perturbations with
wave number p. The growth rate of the perturbation is (£2). For real €2, (U, V) are real-valued,
and the form of the perturbed solution is

ne = 1o + 2€ cos(py) e (U cos(kox — (wo — 1)t) — V sin(koz — (wo — 1)t) . (10)

This shows that a real positive eigenvalue €2 gives rise to uniform exponential growth of the per-
turbation, i.e., the entire profile of the perturbation is multiplied by the same factor e!*. On the
other hand, for complex €2,

Ne = no+ eeQRt(%(U +iV) cos(kox — (wo — 1)t + py + Qpt) —
(U +iV) sin(kor — (wo — 1)t + py + Qrt) + R(U —iV) cos(koz — (wo — 1)t — py — Qrt) +
(U — iV) sin(koz — (wo — 1)t — py — Q,t)). (11)

R
R

In this case, the effect of the instability is not a mere amplification of the perturbation profile, as
there is an additional oscillatory effect. We refer to instabilities due to non-real eigenvalues 2 as
oscillatory instabilities.



In this paper, the spectral problem (8) is investigated numerically and analytically. A review
of previous works on this problem is given in Section 2. The numerical results are discussed in
Section 3. Sections 4 and 5 describe analytical results on the spectrum of (8). Section 6 concludes
the paper. The Appendix contains the outline of the numerical method.

2 Literature review

An overview of previous work was already presented in [17]. For the sake of contrasting our results
with those in the literature, this overview is partially repeated here, although different points are
emphasized. Different reviews may be found in [25, 15, 14]. Similar considerations for a different
but related problem are discussed in [22].

The transverse instability of the one-dimensional NLS equation soliton (3) was first discussed
by Zakharov and Rubenchik [26] in 1974. The one-dimensional (i.e., p = 0) problem (8) has a
quadruple zero eigenvalue, i.e., 2 = 0 for p = 0. Zakharov and Rubenchik used regular perturbation
theory near (p,Q) = (0,0) to find asymptotic expressions for four branches Q(p). Two of these
branches result in imaginary (neutrally stable) values of (2, whereas the other two give a real
positive (unstable) and a real negative (stable) value of . In effect, this settles the global stability
question of the one-dimensional soliton solution: it is unstable because it is unstable with respect
to two-dimensional perturbations with long-wavelength (small p) transverse perturbations. The
method of Zakharov and Rubenchik leads to

4 4 (n?
gt (T 1\ 6 12
for the two real branches ©; (unstable) and —; (stable), and
2 o 4 4 6
Q2=—4p—§ 3+1 p*+0(p°), (13)

for the two imaginary branches Q9 and —9, both neutrally stable [3, 20, 14, 24].

Successively, attention focused on the transverse stability of (3) with respect to short waves
(large p). Plotting the positive root of (12) may lead one to believe that there is a cut-off p. on the
set of p values for which (3) is unstable with respect to transverse perturbations with wave number
p. However, this argument is based on a perturbation expansion around (p, ) = (0,0), and is not
valid for large p. Different authors examined this behavior, see for instance [6, 3, 21].

Cohen et al. (1976) [6] appear to be the first to consider (8) from a numerical point of view,
for a large range of p values. Their results agree well with the perturbation result (12) for small
values of p. For larger values of p they found that the instability growth rate due to real {2 reaches
a maximum, around p = 0.85, after which it decreases. Their numerical results for values of p > 1
were sufficiently problematic that they were not displayed in their paper. Some unstable growth
was observed for p = 1.5, but not for p = 2. At p = 1, they found that Q is at around 90% of its
maximal value.

Saffman & Yuen (1978) [21], apparently unaware of this work, solved the eigenvalue problem (8)
numerically as well. They concluded that the growth due to real eigenvalues reaches a maximum
around p = 0.8, after which it decreases to zero, at p =~ 1.09. Some of these results were extended



to periodic solutions with increasingly longer periods by Martin et al. [16]. These authors also dis-
cussed instabilities due to complex eigenvalues corresponding to short-wave (large p) perturbations,
but no concrete claims about the soliton limit were made.

Anderson et al. (1979) [3] revisit earlier numerical results by Pereira et al. [20]. No references
to [6] or [21] are made. Anderson et al. solve (8) numerically, using a leap-frog finite-difference
method. They report excellent agreement with (12), almost up to the maximal value of (2, obtained
at p = 0.8. As p is advanced beyond p = 1, a bifurcation of the growth rate to complex values
is observed, at p ~ 1.08. Their results are corroborated by use of the Rayleigh-Ritz variational
quotient, using a variety of test functions.

Also in 1979, Ablowitz & Segur [1] considered this same problem, using mostly perturbation
theory. Specifically, considering real 92, they found that in the short-wave limit (p — o0), Q% =
—p* 4+ O(p?). This establishes neutral stability at the leading order. These authors referred to
experiments done in one-dimensional (i.e., narrow) wave tanks by Hammack [9] at the University
of Florida in 1979, which showed good agreement with the dynamics of (3) in a one-dimensional NLS
equation setting. As the presence of transverse short-wave instabilities would appear to contradict
these experimental observations, Ablowitz & Segur concluded that “short waves are not unstable.
Indeed if they were, it would be difficult to observe envelope solitons even in narrow wave tanks.”

Remarks

e It should be pointed out that many of the works discussed above claim to numerically solve
the problem (8). In all cases, these authors presumably reduced (8) to a periodic problem,
possibly with large period. The effect of this truncation is not discussed. The numerical
method used in the present paper does this as well, but the effects due to a finite period are
carefully controlled and can be made arbitrarily small by tuning the input parameters (see
Appendix).

e The majority of the works cited are interested in the dominant unstable mode at any p.
Starting from random perturbations, it is this mode which might be observed in experiments,
or in numerical solutions of (1).

3 Numerical results

In this paper, the spectral problem (8) is solved numerically, for a discrete set of p-values, ranging
from p = 0 to p = 1.5. The numerical method is described in the Appendix. The results of these
numerical runs are presented in Figs. 2 and 3. Also indicated there are solid curves, depicting
known and new analytical results. Note that Fig. 2a could be extended to stable modes, by
including negative 2. The resulting figure is reflection symmetric with respect to the horizontal
axis. For values of p > 1, a spurious cloud of eigenvalues surrounds the eigenvalue 2 = 0. This is
a numerical effect. The size of this cloud can be made arbitrarily small by using larger values of L
and N (see Appendix). For the runs here, £(Q2) < 0.02 for any of the numerical eigenvalues in the
spurious cloud. These points were removed before producing the plots shown here.

Fig. 4 displays the different bifurcations as p changes from p = 0 to p = 1.5. Note the fourfold
symmetry due to the Hamiltonian character of (1). Finally, a variety of computed eigenfunctions



and the water wave surface they give rise to, using (10) or (11) is shown in Figs. 5, 6 and 7,
corresponding to real and complex values of ().
From these figures the following conclusions may be drawn:

1. Small-p instability: as predicted by Zakharov and Rubenchik [26] (and verified by all cited
in the previous section), as p moves away from 0, the quadruple eigenvalue at the origin splits
in four, resulting in two real eigenvalues £{2; and two imaginary eigenvalues £€9. This is
illustrated in Fig. 4a. The numerical results show excellent agreement with the perturbation
results (12) and (13). A representative eigenfunction for the unstable eigenvalue Q; is shown
in Fig. 5i. As noted by Zakharov and Rubenchik, this eigenfunction is odd, and it gives rise
to a so-called “snaking” instability, whereby the solitary wave ridge oscillates forward and
backward.

Also at p = 0, a discrete eigenvalue £€)3 emerges from the edge point of each component
of the continuous spectrum located at +i(1 + k2), with & € R. Note that Saffman & Yuen
[21] already reported the emergence from the continuous spectrum at p = 0 of the isolated
eigenvalue (3. Such a bifurcation is known as an edge bifurcation. It may be analyzed using
a modified Evans function [12, 13, 19].

2. An oscillatory instability: at p = 0.31, the isolated imaginary eigenvalues £ collide with
the imaginary eigenvalues £€3. This gives rise to two complex conjugate pairs of eigenvalues
+Q4(p) and £Q%(p), past p = 0.3, due to a Hamiltonian Hopf bifurcation. This bifurcation
may be explained from the collision of eigenvalues of opposite (negative and positive) Krein
signatures, where the Krein signature is the sign of the Hamiltonian of (6) computed for the
eigenvector corresponding to the colliding imaginary eigenvalues [11].

The real part of {24 and (2} on these curves reaches a maximum at p ~ 0.55, after which
it monotonically decreases. The corresponding eigenfunction and the resulting water wave
surface are shown in Fig. 7vii. These eigenfunctions appear to be even, resulting in “neck”
instability, where the ridge of the soliton alternates between being high and narrow, and low
and broad. For all p, the growth rate R(Q4) = R(2}) along this curve is less than that
of some other curve of unstable eigenvalues Q(p) (i.e., for any p in the domain of €y, at
least one other eigenvalue € exists such that R(2) > R(€4), see below). Thus this curve
of complex eigenvalues and its eigenfunctions lead to oscillatory instabilities, but these are
always dominated by other instabilities. The birth of these complex eigenvalues is illustrated
in Fig. 4b. To our knowledge, the existence of the branch of oscillatory instabilities (complex
eigenvalues) for the solitary wave solution (3) is a new result. Similar oscillatory instabilities
for periodic waves were reported in [16].

3. Maximal growth rate: at p = 0.8, 21 reaches its maximum 2y =~ 0.657, resulting in the
largest growth rate for perturbations of the solution (3) of (1). For p > 0.8, ©; decreases
monotonically. This agrees qualitatively with the results in [6, 21] and quantitatively with
[3]. A numerical computation of the resulting eigenfunction is shown in Fig 5ii. The resulting
instability is still of snaking type.

4. Behavior at p = 1: the behavior at p = 1 has been the subject of much discussion. The
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Figure 2: Real (a) and imaginary (b) parts of the spectrum of (8) as functions of varying p, obtained
using the numerical method described in the Appendix. Also indicated are various analytical results,
obtained using perturbation methods. Apart from the analytical results, all points plotted were
computed numerically, and no filling in of one- or two-dimensional regions was done. The different
bifurcation points of Fig. 4 are also indicated (P,, Py, P., P;), as are the points corresponding
to the eigenfunctions of Figs. 5-7. Points of the continuous spectrum are plotted as points, real
discrete eigenvalues are shown as diamonds, complex discrete eigenvalues as circles. The solid line
in Fig. (b) is the analytical result +i(1 — p?), p < 1 for the boundary of the continuous spectrum.
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Figure 3: Q spectrum of (8) for 150 equally-spaced values of p € [0,1.5], obtained using the
numerical method described in the Appendix. All points plotted were computed numerically, and
no interpolation was done on the curves shown. The different bifurcation points of Fig. 4 are also

indicated.
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Figure 4: A conceptual picture of the bifurcations of discrete eigenvalues as a function of p in the
complex Q-plane. For (a) p =0, (b) p = 0.31, (¢) p =1, and (d) p = 1.08. Arrows denote the
change in )-values for increasing values of p.
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Figure 5: Numerically computed eigenfunctions (left) for real eigenvalues Q. U(zx) is shown in black,
V(z) in grey. Also shown is a contour plot (right) of the water wave surface these eigenfunctions
give rise to, using (10) and incorporating the contributions from (p,2) and (p, —2). Higher values
correspond to lighter colors. Eigenfunctions are normalized so that S0 |Ug|? + [Vi|*> = 1. For
all plots e = 0.1, kp = 1, ¢t = 0 and P = 2. For (i) and (ii) the parameter values are N = 100
and L = 50. For (i) (p, Q) = (0.1,0.115), for (ii) (p, Q) = (0.8,0.657). For (iii) and (iv), N = 500,
L = 500. For (iii) (p,2) = (1.07,0.286454), for (iv) (p,2) = (1.07,0.135085). The different scales
on the axes in these figures should be noted.
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Figure 6: A continuation of the previous figure. For both (v) and (vi) N = 500, L = 500. For (v)
(p,9) = (1.05,0.0556008), for (vi) (p, ) = (1.03,0.0205356).

continuous spectrum for (8) is always confined to the imaginary Q axis. It may be found
exactly by considering the behavior as x — +o0o in (8), leading to

Qr=+i(1-p* +k%), keR (14)

as an explicit characterization of the continuous spectrum. Thus, for a given p > 0 the
continuous spectrum is given by

p<1:{QeC:R(N) =0, I(N>1-p}u{QeC: RQ) =0, H(Q) <1+ p*}(15a)
p>1:{2eC:R(Q) =0} (15b)

Note that the edge of the continuous spectrum is given by Q1 = +i(1 — p?). Our numerical
results are in excellent agreement with this analytical result, as can be seen in Fig. 2b. At
p = 1, the two previously disconnected parts of the continuous spectrum merge, after which
they overlap for larger values of p. As depicted in Fig. 4c the consequence of this merger is
the ejection of a pair of real eigenvalues £Q5 for p > 1, given by

Q5 = 2v2(p — 1)/ + O((p — 1)/?), (16)

10



(vii)

Figure 7: Numerically computed eigenfunctions (left) for complex eigenvalues . U(z) is shown in
black, V(z) in grey, real parts are shown with a thick line, imaginary parts with a thin line. Also
shown is a contour plot (right) of the water wave surface these eigenfunctions give rise to, using
(11) and incorporating the contributions from (p, 2), (p, —2), (p, 2*) and (p, —Q2*). Higher values
correspond to lighter colors. All eigenfunctions are normalized so that 2527 ~ |[Uk|>+|Vk|? = 1. For
all plots e = 0.1, kg = 1, t = 0 and P = 2. For (vii) the parameter values are N = 100 and L = 50,
(p,2) = (0.55,0.25 + 1.02%). For (viii), N = 500, L = 500, (p,2) = (1.09,0.199897 + 0.1432381).

which is proven in Section 5. To our knowledge this is a new result. Two eigenfunctions on
this branch are shown in Figs. 6v,vi.

5. Existence of a cut-off for real 2 instabilities: there is a largest p value p. such that
for p > p. no instabilities due to real Q(p) exist. Approximately, p. =~ 1.08. At p., the two
eigenvalues 1 and 5 collide. Their corresponding eigenfunctions near the collision appear
qualitatively similar. They are shown in Figs. 5iii,iv.

6. Large-p instability: the solitary wave is unstable with respect to perturbations with arbi-
trarily large transverse wave number p. This instability is due to a pair of complex conjugate
eigenvalues (Qg, ) (emerging from the collision of Q; and Q5 at p.), as well as the pair
of complex conjugate eigenvalues (€4,}). For both branches R(Qs) > R(Q4) > 0, but
() # 0, and thus the instability is oscillatory in nature. The behavior near p = p.

is illustrated in Fig. 4d. This appears to be in agreement with the results of Anderson
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et al. [3], and the results hinted at by Cohen et al. [6]. The eigenfunction corresponding
to (p, ) = (1.09,0.199897 + 0.1432384%) and the resulting water wave surface are shown in
Fig. 7viii. These eigenfunctions are odd, resulting in “snake” instability.

Note that the existence of a large-p instability does not contradict the conclusions reached
by Ablowitz & Segur [1] because those authors only considered real Q2. Tt follows from their
results that no real discrete eigenvalues exist for large p.

4 Bifurcations in the spectrum for p? < 1.

The spectra of the operators Ly are known analytically. The continuous spectrum of L_¢p = Ap is
{A € C: R(A) > 1} and the discrete spectrum has an isolated eigenvalue at A = 0. Similarly, the
continuous spectrum of Lo = Ap is {A € C: £(A) > 1} as well. In this case the discrete spectrum
has two isolated eigenvalues at A = 0 and at A = —3.

When 0 < p? < 1, the stability problem (8) satisfies the assumptions of the recent work [18].
Two negative eigenvalues of L —p? and one negative eigenvalue of L_ — p? must match the unstable
eigenvalues and the eigenvalues of negative Krein signature of the problem (8) (see Proposition 8.3
in [18]). Indeed, there is one real (unstable) eigenvalue €2; and a pair of eigenvalues of negative
Krein signatures (£, —$22) for 0 < p? < p%, where p.1 ~ 0.3. (The fact that the pair (Q2, —22) has
negative Krein signature follows from Lyapunov—Schmidt reduction, see [22] for a similar analysis).
The other pair of eigenvalues (€23, —€23) has positive Krein signature, which follows from general
properties of edge bifurcations [11]. The number of unstable eigenvalues (three total: one real and
two complex) is preserved after the Hamiltonian-Hopf bifurcation for p% < p? < 1.

5 Analysis of the behavior of the spectrum near p? = 1

It was previously hypothesized in the literature that the curve of the real unstable eigenvalue Q1 (p)
touches the horizontal axis at some cut-off value (see the discussion in [17]), and various values were
mentioned (for example p = 1.09 in [21]), with p = 1 always being a contender. Our numerical
results show that the curve 21(p) does not touch the horizontal axis. Instead a new curve of
eigenvalues +5 emanates from the origin for p > 1 as a consequence of the collision of the two
parts of the continuous spectrum, as mentioned in Section 3. Therefore, in this section, we prove
the asymptotic formula (16).

When p? > 1, the assumptions of [18] are violated since the negative index of the operators
L_ — p? and Ly — p? becomes infinite. It was suggested in [17] that at p?> = 1 a modified edge
bifurcation takes place, which would be responsible for the disappearing of the unstable eigenvalues
as p? is increased past 1. An analytical method was developed, based on eigenfunction decomposi-
tions and asymptotic analysis of singular integral equations (adopted from [19]). Unfortunately, a
miscalculation was made. The integral kernel K (k,%') defined below Eqn. (12) in [17] is singular
in the limit k,%" — 0, while it was assumed in Eq. (13) that limj_,qlimg_,o K(k, k") = 0. With
this correction in mind, the results of Section 4 of [17] on the modified edge bifurcations cannot
be justified. Note that the results of Section 5 of [17] remain valid, as they are based on regular
perturbation theory.
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In this section, we develop an alternative analysis based on the modified Evans function (fol-
lowing [12]). We confirm that the point p? = 1 does indeed give rise to a modified edge bifurcation,
which leads to a new pair of real eigenvalues (Q5, —€s5) for p? > 1, but to no additional eigenvalues
for p? < 1.

5.1 The Evans function

In order to define the Evans function for the stability problem (8), we define a map from the
parameters (p?,Q) to the new parameters (k.p, 5 ),

(17)

Near the point of interest (p?,Q) = (1,0), the new parameters (k. , % ) provide a multiple cover of
the original parameter plane (p?, Q). Using the new parameters, the Evans function can be locally
extended in an analytic way. To find the eigenvalues of the stability problem (8), some care is
required to ensure that the zeros of the extended Evans function are found on the correct Riemann
sheet. Using the new parameters (k4,k_), the stability problem (8) is rewritten as

) :

(—02 — 6sech?z) U = —5(/%3_ + KU + %("‘ﬁi ~ K1)V, (18a)
; 1

(—8% - 2sech2:1:) vV = —%("53— — &)U - 5(“?% +K2)V. (18b)

Let u = (U,U',V,V")T. The eigenfunctions corresponding to the discrete spectrum of (18a-b)
decay exponentially as e"+* as |z| — oo in the no-potential case. In the domain R(ky) > 0, we
define four fundamental solutions of (18a-b) specified by their exponential behavior as |z| — oo:

1

Uy (T3 Ky, ko) = 'j;; erEr, as T — —oo, (19)

+iky
and
1
Ky
+3
Firkt

The Evans function is defined as the Wronskian determinant of these fundamental solutions:

vy (T Ky, ko) — e rEr as x — +oo. (20)

E(K’-H H—) = det (U+(.'E; H+,KZ_),U_(£K; K,_|_,K,_),U+(.’B; K,_|_,I$_),U_(.’L'; K—HK‘—)) . (21)

By Abel’s theorem, this Wronskian determinant is independent of z. In the no-potential case,
an easy calculation gives E(k4,k_) = 16kyk_. Following standard techniques (e.g. see [12]),
the fundamental solutions (19-20) and the Evans function (21) are well-defined when the potential
functions decay exponentially. Zeros (including multiplicities) of E(k4,%_) in the domain (k) >
0 and R(k_) > 0 coincide with eigenvalues of the system (18a-b) with an exponentially decaying
eigenfunction. The analyticity properties of E(k,k_) are described in the following proposition:
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Proposition 1 The fundamental solutions uy(z;ky, k) and vy (z;ky, k) characterized by (19-
20) and the Evans function E(k4,k_) defined by (21) are analytic functions near (k4,k—_) = (0,0).

Proof. In the domain R(ky) > 0, we express the fundamental solutions wy (z;K+,kx—_) in the
form:
U+
!
Uy + K+Ut KL 929
+iw4 ¢ (22)
:ti(w'i + I‘&i’wi)

us (T3 k4, K) =

where the component functions (uy,w4) solve the coupled system

(=02 — 6sech?z) uy = 2rpuly £iQ(uy —wy), (23a)
(—83 — 2sech2x) wy = ZKiw'i FiQ(ur — wy), (23b)

subject to the boundary conditions

) ) / . . /

zglzloo us(z) =1, zgr_noo uy (z) =0, IEIPOO wy(z) =1, JCll)r_noo wy (z) = 0. (24)
Since the system (23a-b) depends analytically on the parameters (k4 ,x_) € C? and the boundary
conditions (24) are independent of (x4, x_), the fundamental solutions w4 (x; K+, k_) depend ana-
lytically on these parameters near the point (k4,x_) = (0,0), see [8]. The same statement extends
to the fundamental solutions v (z; K4,k ) and hence to the Evans function F(k4,x_) computed
at any z € R. (]

5.2 Eigenvalues at (2 =0

2 —

The point 2 = 0 corresponds to the case nﬁ_ =K k2, so that p? = 1 — k2. We compute Ey, the
value of E(k4,k_) at k2 = k2, to determine the possible values of p? at which bifurcations may
occur. The value Ey depends on whether p? > 1 or p? < 1.

For p? < 1 and Q = 0, the system (8) decouples, and its solutions may be written in terms of
the exact eigenfunctions of the operators L_ and L:

f+ f-
_| S _|
’U,j:(l') - :}:Zg+ ’ ’Ui(l‘) - :}:Zg_ ? (25)
+ig, +ig"

where (fi,g+) are given explicitly in [17] as

2 + ¢> F 3¢ tanhz — 3sech’z otz
(1+49)(2+a)
g F tanhz ot
1+¢q

7

fx(z)

g9+ (z)

bl

with ¢ = /1 — p? > 0. It is easy to verify that (25) satisfies (19) and (20) with the correspondence

k4 = Kk_ = ¢. Substituting (25) in the Evans function (21), we obtain the exact value of Ey for
2

pr<1:

14



1-¢\?(q-2
mpﬂ®2( q)(i—g, with ¢ = /1 — p2 > 0. (26)

1+4¢ qg+2
For p? > 1 and Q = 0, the fundamental solutions of (8) have another representation:
f:l: Jf:F
wir)=| JE | oaw=| [ (27)
+igy |’ +ige |’
+ig, :i:zgéF
where
folz) = k% — 2 + 3ik ‘Fanhx -|— 3sech’z otiks
(k F2)(k + 2i)
_ k+itanhz ;.
and
Folz) = k% — 2 £ 3ik "nanhw -l-' 3sech’z eike.
(k £14)(k £ 21)
~ . k + itanhl‘ +ikz
gxle) = gy @
with k = 1/p2 —1 > 0. As before, it is easy to verify that (27) satisfies (19) and (20) with the
correspondence k4 = —k_ = ik. Substituting (27) in the Evans function (21), we obtain the exact
value of Ej for p? > 1:
We see from (26) and (28) that Ey = 0 at p? = —3, p? = 0, and p? = 1, which are the only
bifurcation points from the origin Q2 = 0 (see also [17]). The first case (p> = —3) is not of interest

here, because it results in an imaginary transverse wave number. Note that for the elliptic NLS
equation this case corresponds to the cut-off on the range of transversely unstable wave numbers
of the soliton solution (3), as shown by Janssen and Rasmussen [10]. The second case (p? = 0) has
been analyzed in the past, originally by Zakharov & and Rubenchik [26], as reviewed in Section 2.
We focus on the case p? = 1 in what follows.

5.3 Bifurcation analysis near p? =1

The bifurcation point p? = 1 and € = 0 corresponds to the origin (k4 ,%_) = (0,0) in the system
(18a-b). Using Proposition 1, we study the Taylor series expansion of E(k,k_) near (ky,k_) =
(0,0). Let the fundamental solutions uy(z;%4,%_) be represented by (22). The Taylor series
approximation for the scalar functions (u+,w4) up to quadric terms in x4+ can be written as

ur = up(x) + wauy (x) + wLuo(x) + klusz(z) + wug(x)

i) (u"(2) + maul” (@) + 120 (2)) — Q2 () + O(5), (29)
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and
we = wo(z) + krw(z) + KLwe(x) + kLws(z) + kLws(z)
i (0" (2) + ka0l () + B (@) - 020 (@) + O(5), (30)
where Q is defined by (17), and the terms O(5) represent the remainder of the Taylor series.

At zeroth order in k., we find decoupled ordinary differential equations for the functions (ug, wp)
satisfying the boundary conditions (24), so that

3
up=1— 2 sech?z, wo = —tanhz. (31)

The higher-order corrections solve a sequence of linear inhomogeneous problems with zero
boundary conditions as z — —oo. The correction functions (uy,w,) solve the equations

(—83 - Gsecth) Up = 2ul,_q, (32a)

(—02% — 2sech®z) wy, = 2w],_,, (32b)

for n > 1. The equations (32a-b) can be solved analytically, since all solutions with Q2 = 0 are

known in closed form, see (25) and (27). For instance, the first few solutions of the inhomogeneous
problems (32a) are found explicitly as follows:

3 3
u; = —3 (1 + tanhz — §sech2:t) , wy = 1 + tanhx (33a)
9 3 2 3 2
up = 7 1+ tanhz — Esech z )+ Zsech T, wy = — (1 + tanhz) (33b)
21
uz = 3 (1 + tanh x — %sech%) — gsech%, w3 = 1 + tanhz. (33¢c)

(1 (1)

The correction functions (uy, ', wy, ') solve the equations

(—3% - Gsecth) u,(ll) = ZUSZ'l + Up—1 — Wp—1, (34a)
(—02% — 2sech’z) wl) = 2w£1_)'1 — Up_1 + Wp_1, (34b)
forn > 1 and u(()l) =0= w(()l). Since the homogeneous problems (34a-b) have non-zero solutions,

solutions of the inhomogeneous problems with zero boundary conditions as £ — —oc grow alge-

(1) (1))

braically as z — +oo. This follows easily from variation of parameters. For instance (uj’,w;
grow as 2, (ugl),wgl)) grow as =3, an so on. Similarly, the correction functions (ug),wg)) satisfy
inhomogeneous problems, from which it follows that these correction functions grow as z* in the
limit £ — +o0.

Replacing the other set of fundamental solutions v (z; x4, k_) by its asymptotic values (20) as

z — 400, we express the Evans function F(k4,x_) in its explicit form (after some simplification):

U4 U_ 1 1
! ! _ _
BE(ky k) = — lim uy + KpUy U F KU K4 K— (35)
T—+00 w4 —w_ 1 -1
wh +kpwy —wl —k_wo —Ky Ko
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The function E(ky,x_) is expanded using the Taylor series expansions (29-30) for (u4,wy) and
the explicit analytical solutions (31), (33a—c). Explicit computations using symbolic manipulations
in either Maple or Mathematica results in

E(ky, k) = —4(ky + k)2 +10(k4 + ) — 13(k2 + £L) — 51(k% + 62Kk — T2675 K2
—ag(k% — £2)% + O(5), (36)
where «q is a numerical coefficient, given by
ap = Tim [ Sul o _ Ty _ 0 (37)
e g™ 2 oW1 2 1 Wy :

Although the correction functions (ugl),wgl)) and (ugl),wél)) grow algebraically as z — +o00, one

readily shows using the inhomogeneous problems (34a-b) that the algebraically growing terms cancel
and a finite value for g exists. This fact is also implied from Proposition 1, since the function
E(k4,k_) is well-defined, z-independent and analytic for small k1. Let us define new variables

a=kKy+ K, B=kKy—K_. (38)

This allows us to rewrite the Taylor series approximation (36) using these variables (o, 3) as

2% , 1 3
E(a, f) = —40” +100” — T~ + 25" — (ao + Z) o2+ 0(5). (39)

The main consequence for our purposes of the Taylor series approximation is formulated below.

Proposition 2 There exists only one family of zeros of E(a,3) = 0 in a local neighborhood of the
point (a, 8) = (0,0). This family of zeros is given asymptotically by

o = = p' +0(5") (40)

Proof. Since E(a,f) is analytic near («,3) = (0,0), all zeros of E(a,f) in a neighborhood of
(0,0) may be obtained using the Newton polygon technique (see Section 2.8 in [4]). Constructing
the convex Newton polygon from the fourth-order terms (39), we obtain only one line segment,
namely between the terms o and 3*, which proves the leading-order result (40) by invoking the
Implicit Function Theorem (see Section 2.2 in [4]), modulo the actual coefficient of 4%, which is
easily found using a regular scaling argument.

In order to prove that the next-order term in (40) is on the order of O(3%), we need to prove
that the term % is absent in the remainder O(5) terms of the expansion (39). Since this term
should also be present if we let a = 0, this may be inferred from the exact solution (28) for Q = 0.

Indeed, for that case we have k = \/p? — 1, with ky =ik, k. = —ik, a = 0, and 8 = 2ik. Since
the expression (28) is even in k, the term k® is absent, therefore the term with 35 is absent from
(39). n
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5.4 Proof of the asymptotic formula (16)

The inverse mapping of (17) is
ke =1 p2 £i9, (41)

where we consider the right half-plane of the complex plane of Q2. The two branches of the square
root function are defined as usual:

Yz =+/]z|*8@2 vz e, (42)

with arg(z) € [0,27). When p? < 1, R(Q) > 0, and |3(R2)| < (1 — p?), the numbers 1 — p? £ i)
lie in the first (+) and fourth (—) quadrants of the complex plane. When p? > 1, £(Q) > 0, and
|S()| < p? — 1, the numbers 1 — p? £ iQ lie in the second (4) and third (—) quadrants. For both
of these cases, the + square root function (42) is used for the mapping x; and the — square root
function is used for the mapping x_. Thus, x4 maps to the first quadrant, while x_ maps to the
fourth quadrant. Since the new eigenvalue (25 is real, we only need to consider the mappings x4 in
a narrow strip |$(Q)| < |1 — p?| around the real axis, as above. Thus, the parameters o and 3 in
Proposition 2 are defined explicitly in terms of p and  as

a = Y1-p2+iQ+ V1-p2—iQ, (43a)
B = Y1-p2+iQ— V/1—-p2—iqQ. (43b)
The balance in (40) implies that || can not be of order |1 — p?| as p? — 1. Therefore, we consider

three separate cases, when (| is of different orders in |1 — p?| and the definitions of o and 3 can
be simplified.

Case I: Let K = v/p> —1 > 0 and |Q| < k2. The Taylor series expansions of the mappings
(43a-b) converge and result in

5o ()). - (o ()

With this expansion, the asymptotic result (40) is equivalent to the pair of real eigenvalues
Q= +k3 + O(K°).

Therefore, we have established an asymptotic approximation for the real unstable eigenvalue 5(p),
bifurcating for p? > 1 from the point (p, Q) = (1,0):

Qs = (p* = 1)*? +0((p* = 1)*?) = 2v2(p = 1)*/* + O((p — 1)*?). (44)

Case IT: Let ¢ = /1 — p2 > 0 and || < ¢2. Then the Taylor series expansions of the mappings
(43a-b) converge and give

(o (). -2 (ue0(2)
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Using this expansion, the asymptotic result (40) is equivalent to four eigenvalues defined by
0% = £8¢° + O(¢").

However, the scaling || = O(¢%/?) violates the assumption that |A| < ¢% as ¢ — 0. Therefore, this
case does not produce non-zero eigenvalues of the discrete spectrum.

Case III: Let Q2| > |1 — p?|. The Taylor series expansions of the mappings (43a-b) converge
and result in

2

a = iy/2[Qle/? <1+O<1 Qp >>,
)

V2[0ei?/? (1+o (1 Q” ))

where 0 = arg(€2). With this expansion the asymptotic result (40) produces only one solution
Q = 0, which is consistent with the assumptions only if ¢ = 0. Therefore, this case does not
produce non-zero eigenvalues of the discrete spectrum either.

B

The above analysis proves the following theorem.

Theorem The modified edge bifurcation for the stability problem (8) at p> = 1 results in a
pair of discrete eigenvalues (Qs,—5) in the domain p? > 1 given by the asymptotic approzimation
(16). No eigenvalues bifurcate from Q =0 at p?> = 1 into the domain p* < 1.

The result (44) is plotted in Figs. 2 and 8 as a solid curve. Figure 8 shows the real parts of
eigenvalues zoomed near the point p = 1. This figure illustrates the correctness of the asymptotic
approximation (44), but it also demonstrates its small range of validity. This is somewhat expected.
First, (44) is a low-order approximation. The inclusion of higher-order terms should improve the
range of validity of the approximation. Second, at p =~ 1.08 the bifurcation (1,5) — (s, 2)
takes place, and one cannot expect the approximation (44) to be valid near or beyond where this
other bifurcation occurs.

6 Concluding remarks

In this paper we have considered the linear stability problem (8), for the parameter p € [0,1.5]. We
have considered both real and complex eigenvalues, and the discrete and the continuous spectrum
were computed. Wherever both are available, the agreement between numerical and analytical
results is excellent, serving to validate both.

From the point of physical applications, the most important result presented in this paper is the
existence of €4 and g, which implies the instability of the one-dimensional NLS soliton (3) with
respect to perturbations of all wave lengths, including arbitrarily short ones. As outlined in Section
2, it was known previously that (3) is unstable with respect to long-wave (small-p) perturbations.
Instabilities with respect to short-wave (large-p) perturbations were first hinted at by Cohen et
al. [6]. The presence of such oscillatory instabilities was shown in more detail by Anderson et
al. [3].
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Figure 8: The unstable eigenvalue Q5 of the stability problem (8) as a function of the parameter p
near (p,Q) = (1,0). The asymptotic result (44) is shown as a solid curve. The numerical results
are shown as dots.

How is this consistent with the remarks of Ablowitz & Segur [1]? They state that the obser-
vations of Hammack [9] imply the stability of (3) with respect to short-wave perturbations. This
issue may be resolved by a closer look at Fig. 2a. It is clear from that figure that the growth rate
associated with such instabilities is smaller by an approximate factor of at least 4: the maximal
growth rate at p = 0.8 is approximately 0.657. The largest growth rate associated with (g is
approximately 0.2 at p = p.. The experiments performed by Hammack [9] were done in a long,
narrow wave tank. In such a setting, the smallest value of p resulting in a transverse perturbation of
wave length A = 27 /p that will fit in the transverse direction of the wave tank is found significantly
beyond the critical value p. =~ 1.08. For those values of p, the associated growth rate is small,
and observing this instability experimentally is difficult. One possibility is to employ a longer or
wider tank, which is not a practical suggestion. The other possibility is to seed the instability by
letting the wave pattern evolve according to (11), as opposed to according to (3). This might be
accomplished using a suitably shaped paddle at the wave maker.

From a mathematical point of view, the main result of this paper is the bifurcation of the eigen-
values (5, —5) from the continuous spectrum, at the parameter value p = 1 before which both
parts of the continuous spectrum are disconnected. This result was established both numerically
and analytically, resulting in the asymptotic approximation (44).

Mathematically, it would be desirable to also have asymptotic approximation results for the
discrete but complex eigenvalue branches 24 and g. Since these bifurcations do not occur from
the origin, the analysis near their point of origin may be more complicated. Since for both Q4 and
Q¢ the imaginary part — oo as p — oo, it seems reasonable that one may be able to establish a
large p result, valid near the point at infinity on the complex 2 sphere.

Appendix: The numerical method

The numerical method used to solve (8) is in essence due to Hill, who used it for the study of
the equation that now bears his name. The method is discussed in extensive detail in [7]. It is
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especially suitable for equations with periodic coefficients. In this paper, we restrict the infinite-

line problem to the interval x € [—L, L]. This restriction is then periodically extended. For all

numerical simulations, it is essential to ensure that a sufficiently large value of L has been used.

This is easily verified by examining the degeneration of periodic bands to isolated eigenvalues.
For z € [-L, L],

sech?z = Z S/l (45)
n=—o0
with
|
S :—/ e """ sech’r dx. (46)
"L ),

Next, we assume that both U and V' are periodic with period 2L P, where P is a positive integer.
Letting P = 1 gives rise to perturbations that have the same period as the truncated coefficient, P =
2 allows for period and anti-periodic perturbations, and so on. Further, an overall multiplicative
phase factor may be present as well, according to Floquet theory [5, 7]. Thus

00
U(:I?,p,Q) — ez Z Uneimrw/LP’

e (47)
V(z,p,Q) = einT Z Vnez’mrx/LP’
n=-—00

with p € [-7/2LP, 7 /2LP), and

1 P P .
— —inmwx 0)e"ine

U, 9LP /LPe U(z,p,Q)e dz,

(48)
1 LP ) /LP )

- —InTx Q —tUT d .

Va 2LP/LP6 V(z,p, Qe x
These series are substituted in (8). First, the common factor of e’** is canceled, after which the

coeflicients of all distinct exponentials are equated to zero. This gives rise to the coupled bi-infinite
difference equations

nm\ 2 ad
((M + ﬁ) +1- 92> Vn =2 Z Sin—kypVe = QUp,
k=—00

nm\ 2 > (49)
2 —
((/J-f— ﬁ) +1—p > U,—6 Z S(n_k)/pUk = —QV,,
k=—00

for n € Z. In these equations S, ) p = 0 unless n — k is divisible by P. In order to use these bi-
infinite difference equations as the basis for a numerical method, they are truncated to incorporate
only n = —N,..., N, for some positive integer N. Thus, for any simulation, two numerical choices
need to be made: the period 2L at which sech?z is cut off, and the truncation on the number N of
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Fourier modes used in (49). Two more algorithm choices are required as well: which value of P is
used, and which values of i are used. Once these parameters are fixed, the QR algorithm is used to
find the eigenvalues Q of the resulting (4N +2) x (4N + 2)-dimensional matrix. This is repeated for
any choice of u and p. These eigenvalues give approximations to elements of the spectrum of (8).
Any desired corresponding eigenfunctions are easily recovered from the corresponding eigenvectors.

This numerical method certainly has its limitations. Many of these are discussed in [7], but one
also finds there a discussion of many advantages of the method, such as its spectral convergence
and its ability to approximate the entire spectrum in a compact region of the complex plane. In
the context of this problem, the method should be compared with the other methods that have
been employed, as discussed in Section 2. Many of those are continuation methods which work
well in many respects, but they only give one branch of the spectrum if there are multiple ones.
Further, if the spectral branches have vertical tangents as functions of p, continuation methods used
carelessly may either break down or they tend to overshoot the value of p at which this happens,
as was hypothesized in [17]. Our method does not rely on any previously obtained spectrum at p
to determine the spectrum at p + Ap. Instead, at any p value, the spectra of an entirely new set
of matrices is computed. To the best of our knowledge, finite-difference methods have not been
used on this problem. Indeed, using finite-difference methods on this problem does not appear to
be a good idea: the number of grid points required for a decent accuracy in this problem seems
prohibitive. A comparison of matrix sizes required for equal accuracy using either Hill’s method or
a finite-difference method is given in [7].
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