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NL2735 Poisson brackets

Let M be an n-dimensional manifold, refered to as the phase space. Let f g, and

h denote analytic functions on M ; A Poisson bracket of any two analytic functions on

the phase space is defined as an operation which satisfies

(i) {αf + βg, h} = α{f, h} + β{g, h}, (linearity in the first component)

(ii) {f, g} = −{g, f}, (skew-symmetry)

(iii) {f, {g, h}} + {g, {h, f}}+ {h, {f, g}} = 0, (Jacobi identity)

(iv) {f, gh} = g{f, h} + {f, g}h, (Leibniz property)

where α, β are numbers. The first two properties ensure that a Poisson bracket is a

bilinear operation on M . Properties (i)–(iii) imply that the analytic functions on M

form a Lie algebra with respect to the Poisson bracket.

If local coordinates zi, i = 1, . . . , n are chosen on M , then the Poisson bracket has

the coordinate representation

{f, g} =
n

∑

j,k=1

ωjk(z)
∂f

∂zj

∂g

∂zk

= (∇f)T
ω∇g, (1)

where ∇f = (∂f/∂z1, . . . , ∂f/∂zn), and the Poisson matrix ω(z) = (ωjk(z))n
j,k=1

is a

skew-symmetric square matrix, satisfying a technical condition enforced by the Jacobi

identity.

Any nonconstant function C on M that Poisson commutes with all other functions

on M is called a Casimir of the Poisson bracket. From (1) it follows that the existence

of a Casimir requires ω to be singular, and ∇C is in the null space of ω. Furthermore,

the number of independent Casimirs is the corank of ω. For a Poisson bracket with

r Casimirs C1, . . . , Cr, Darboux’s theorem states that it is always possible to find

coordinates (q1, . . . , qN , p1, . . . , pN , C1, . . . , Cr) on M such that in these coordinates

ω =







0 IN 0

−IN 0 0

0 0 0






, (2)

where IN is the N dimensional identity matrix, and 0 is the zero matrix of the

appropriate dimensions. In these coordinates,

{f, g} =
N

∑

j=1

(

∂f

∂qj

∂g

∂pj

−
∂f

∂pj

∂g

∂qj

)

. (3)

This representation of the Poisson bracket is called the canonical Poisson bracket, and

the coordinates (q1, . . . , qn, p1, . . . , pn) are called canonical coordinates.

The importance of Poisson brackets derives from their relationship to Hamiltonian

systems: let H be a function on M . Hamiltonian dynamics with Hamiltonian function

H are defined on any function f on M by

ḟ = {f, H}. (4)



NL2735 Poisson brackets 2

Using the coordinate representation (1), the Hamiltonian dynamics for the coordinates

is

żj = {zj, H} =

n
∑

k=1

ωjk

∂H

∂zk

, (5)

which reduces to the standard definition of a Hamiltonian system if canonical coordinates

are used. From (4) it is clear that any function which Poisson commutes with the

Hamiltonian is conserved for the Hamiltonian system defined by the Poisson bracket

and the Hamiltonian H. In particular, H is conserved. Also, any Casimir is conserved.

Since the conservation of the Casimirs is independent of the choice of H, they do not

contain dynamical information. Rather, as obvious from Darboux’s theorem, they foliate

the phase space and represent geometric restrictions on the possible motions in phase

space. The Hamiltonian system can also be defined using the Hamiltonian function H

and a symplectic two-form, of which ω is the coordinate representation (Weinstein ,

1984).

As an example, consider Euler’s equations of a free rigid body (Weinstein , 1984).

Denote the angular momentum by (M1, M2, M3), and the moments of inertia by I1, I2,

I3. The Poisson matrix is

ω =







0 M3 −M2

−M3 0 M1

M2 −M1 0






. (6)

The Hamiltonian is H = (M 2

1
/I1 + M2

2
/I2 + M2

3
/I3)/2. The Poisson matrix has rank 2

(except at the origin), and there is one Casimir: C1 = M2

1
+ M2

2
+ M2

3
.

The notion of Poisson brackets is extendable to infinite-dimensional phase spaces, so

as to describe dynamics governed by evolution (partial differential) equations (Marsden

and Morrison , 1984). In this case, the Poisson matrix ω is replaced by a skew-adjoint

differential operator B. If the evolution equation is first-order in the dynamical variable

t, this operator is scalar. Otherwise it is a matrix operator of the same dimension as

the order of the evolution equation. Instead of functions on phase space, we consider

functionals

F [u] =

∫

f [u]dx. (7)

Here u(x, t) is an infinite-dimensional coordinate on the phase space, indexed by the

independent variable x. The square brackets denote that f [u] depends not only on

u, but possibly also on its derivatives with respect to x: ux, uxx, . . .. The limits of

integration depend on the boundary conditions imposed on the evolution equation. In

the above, the variable x is assumed to be one dimensional. This is extended to higher

dimensions in obvious fashion.

The Poisson bracket between any two functionals on phase space is the functional

given by

{F, G} =

∫

δF

δu
B

δG

δu
dx, (8)
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where δF/δu is the variational derivative of F with respect to u:

δF

δu
=

∂f

∂u
−

∂

∂x

∂f

∂ux

+
∂2

∂x2

∂f

∂uxx

− . . . (9)

The Poisson bracket defined this way satisfies the properties (i), (ii), and (iv). The

operator B is chosen so that the Jacobi identity (iii) is also satisfied.

A functional H on the phase space defines Hamiltonian dynamics on any functional

by

∂F

∂t
= {F, H} ⇔

∂u

∂t
= {u, H} = B

δH

δu
. (10)

As an example, consider the Korteweg-de Vries equation ut = uux + uxxx (Gardner ,

1971; Zakharov and Faddeev , 1971). This equation with −∞ < x < ∞ is Hamiltonian

with B = ∂/∂x and H =
∫

∞

−∞
(u3/6 − u2

x/2)dx. Thus, the Poisson bracket is

{F, G} =

∫

∞

−∞

δF

δu

∂

∂x

δG

δu
dx, (11)

and
∫

∞

−∞
udx is its only Casimir.

The Poisson bracket formulation of a Hamiltonian system is especially significant

when a quantum description of the dynamics is required. Dirac’s principle of canonical

quantization postulates that such a quantum description is obtained by replacing all

classical quantities by their quantum mechanical operator counterparts (generalized

coordinates q → q̂, the operation of multiplying by q; momentum p → −i~∂/∂q,

etc, and all Poisson brackets by commutators/(i~)). Then, in the classical limit as

~ → 0, the quantum mechanical equations reduce to classical equations, as desired by

the correspondence principle.

Poisson brackets were introduced by Poisson (1809) during his investigations on

perturbation theory in classical mechanics. Poisson’s Traité de mécanique (two volumes,

1811 & 1833) were standard texts for many years.

Bernard Deconinck

See also Conservation laws and constants of motion; Hamiltonian systems; Korteweg–de

Vries equation; Lie algebras and Lie groups; Quantum theory;
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