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Abstract

The Riemann constant vector is a fundamental ingredient in the study of Riemann
surfaces and their Jacobians. It is necessary to discuss the Jacobi inversion problem, for
the study of the theta divisor, and for periodic solutions to integrable partial differential
equations.

We present a mathematical algorithm and an implementation for computing the
Riemann constant vector on a Riemann surface given by the desingularization and
compactification of a complex plane algebraic curve. The source code of the imple-
mentation is provided in the Python software package abelfunctions [33].

1 Introduction

This paper presents the next step in an ongoing research program to make effective the
calculus on Riemann surfaces represented by complex plane algebraic curves. Here, “effec-
tive” means algorithms are devised and implemented in the form of black-box programs so
that different relevant quantities associated with Riemann surfaces may be computed using
a combination of symbolic and numerical tools in an efficient way. One of our main objec-
tives in this program is to compute the so-called finite-genus solutions of integrable partial
differential equations, such as the Korteweg-deVries (KdV), Nonlinear Schrödinger (NLS),
and Kadomtsev-Petviashvili (KP) equations. These partial differential equations have been
used extensively for describing a wide variety of physical phenomena ranging from water
waves, nonlinear optics, and plasma physics to biological applications and cellular automata
[1, 2, 13, 19]. Other applications are found in convex optimization and number theory
[3, 23, 26, 27, 28].
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As an example, consider the finite-genus solutions u = u(x, y, t) to the KP equation given
by

u = c+ 2∂2
x log θ

(

Ux+ V y +W t +A
(

P∞,D
)

−K(P∞),Ω
)

, (1)

where c is a constant, U ,V , and W are vectors, and θ(z,Ω) denotes the Riemann theta
function parameterized by the Riemann matrix Ω of Riemann surface X . D is a divisor on
X , A(P∞,D) is its Abel map with initial place P∞, and K(P∞) is the Riemann constant
vector at P∞. Details on all of these components and discussion of the finite-genus solution
above are found in [4, 15]. The computation of the Riemann matrix Ω is the main topic of [14].
The numerical calculation of the Riemann theta function is discussed in [10]. Future papers
will present algorithms for computing the remaining quantities and efficiently computing
u = u(x, y, t).

Other approaches exist for computing with Riemann surfaces. Bobenko and collaborators
[4, 7] compute solutions of integrable equations using a Schottky group representation for
the associated surface. To our knowledge, the only paper dealing with all Riemann surfaces
represented by algebraic curves is by Frauendiener, Klein, and Shramchenko who compute
the homology of a Riemann surface from the monodromy of an underlying algebraic curve,
following [14]. Otherwise, authors have restricted themselves to specific families of Riemann
surfaces such as hyperelliptic ones [20, 21] or low genus ones [16, 30, 34]. Our aim through-
out is the development of algorithms capable of dealing with arbitrary compact connected
Riemann surfaces, as is required for the investigation of solutions of, for instance, the KP
equation [13, 31].

In this paper we present a mathematical algorithm for computing the Riemann constant
vector (RCV) and a demonstration of an implementation of this algorithm in abelfunc-

tions, an open–source Python library. The software implementation details, documentation,
additional examples, and installation instructions are found on the project website [33]. The
computational examples are presented in the style of an iPython notebook. The notebook
itself can be downloaded from the project website.

2 Definitions and Background

In this section the required ingredients from the theory of Riemann surfaces are introduced.
Details can be found in the standard references [18, 32] and the review paper [15]. A
computational approach to these topics is found in [6, 11] and [12].

Let C be a complex plane algebraic curve C = {(α, β) ∈ C
2 : f(α, β) = 0} where

f ∈ C[x, y] is a polynomial f(x, y) =
∑n

k=0 αk(x)y
k with αk ∈ C[x]. Let X be the genus

g compact and connected Riemann surface obtained by desingularizing and compactifying
the curve C; i.e., X is a compact, connected, complex manifold of complex dimension one.
Every compact and connected Riemann surface can be obtained this way [22].

Given X of genus g we choose a canonical basis of cycles {a1, . . . , ag, b1, . . . , bg} for the
first homology group as well as a normalized basis of Abelian differentials of the first kind
{ω1, . . . , ωg}. We define the Jacobian J(X) of X using these two ingredients. The period
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matrix [I Ω] ∈ C
g×2g of X is constructed by

∮

aj

ωi = δij,

∮

bj

ωi = Ωij . (2)

The matrix Ω ∈ C
g×g is a Riemann matrix: a symmetric complex g× g matrix with positive

definite imaginary part. The Jacobian is given by the quotient space J(X) = C
g /Λ where

Λ = Z
g +ΩZ

g is the period lattice.
Algorithms for computing a canonical basis of cycles, a basis of Abelian differentials of

the first kind, and Riemann matrices are given in [35], [24, 36], and [14], respectively. The
basis of differentials {ω̃1, . . . , ω̃g} returned by the algorithm in [24, 36] is not necessarily
normalized. If a normalized basis is desired one can be determined by computing the period
matrix [A B] ∈ C

g×2g defined by
∮

aj

ω̃i = Aij ,

∮

bj

ω̃i = Bij . (3)

The associated Riemann matrix is constructed by Ω = A−1B and a normalized basis of
Abelian differentials is determined by ω = A−1ω̃ with ω̃ = [ω̃1, . . . , ω̃g]

T .

Example 1. Let X be the Riemann surface obtained via desingularization and compactifi-
cation of the non-hyperelliptic, genus 4 curve

C : f(x, y) = x2y3 − x4 + 1 = 0. (4)

We use this Riemann surface as an example throughout this paper. First we compute a
basis, not necessarily normalized, for the space of Abelian differentials of the first kind.

✞ ☎

In [1]: from sympy.abc import x,y

from abelfunctions import (RiemannSurface, RiemannTheta, Jacobian,

AbelMap, RiemannConstantVector, puiseux)

f = x**2*y**3 - x**4 + 1

X = RiemannSurface(f,x,y)

g = X.genus()

omega = X.holomorphic_differentials()

print 'differentials:'

for omegai in omega:

print omegai

print 'genus:', g
✝ ✆

Out[1]: differentials:

1/(3*x**2*y**2)

x/(3*x**2*y**2)

x*y/(3*x**2*y**2)

x**2/(3*x**2*y**2)

genus: 4
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Next, we compute a canonical basis of cycles on X . We plot the projection of the cycle a1
in the complex x- and y-planes, respectively.

✞ ☎

In [2]: a = X.a_cycles()

b = X.b_cycles()

# use 256 points to plot the x- and y-parts of the path

a[0].plot_x(256, color='blue', linewidth=2, linestyle='dashed')

a[0].plot_y(256, color='green', linewidth=2)
✝ ✆

Out[2]:
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Finally, we compute the associated Riemann matrix by numerically integrating the non-
normalized basis of holomorphic differentials around the a- and b-cycles and computing
Ω = A−1B. By default, abelfunctions numerically integrates differentials along Riemann
surface paths using a tolerance of 10−8. We verify that Ω is symmetric and has positive
definite imaginary part by computing ||Ω− ΩT ||2 and the eigenvalues of Im(Ω).

✞ ☎

In [3]: # for brevity, we only print the first four significant digits

import numpy

numpy.set_printoptions(precision=4, suppress=True)

tau = X.period_matrix()

A = tau[:g,:g]

B = tau[:g,g:]

Omega = X.riemann_matrix() # returns A**(-1)*B

print A

print B

print Omega
✝ ✆

Out[3]: [[ 0.2800+1.045j 0.2800-0.485j -1.8100+1.045j 0.0000-0.j ]

[ 0.6625-1.1475j 0.6625+0.3825j -0.6625-1.1475j -0.0000+1.53j ]

[-0.8347+0.4819j -0.8347+0.4819j 0.8347-1.4457j 0.0000+1.9276j]

[-1.0450+0.28j -1.0450+1.81j -0.4850+0.28j 0.0000+0.j ]]
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[[-0.2800+0.485j 0.2800-1.045j 0.0000-2.09j 0.7650-1.325j ]

[ 0.6625+0.3825j -0.6625+0.3825j 0.0000-0.765j 0.0000-1.53j ]

[-0.8347+0.4819j 0.8347-1.4457j 0.0000-0.9638j -1.6694-0.9638j]

[ 1.0450-1.81j -1.0450-0.28j -0.0000-0.56j 0.7650-1.325j ]]

[[ 0.3934+0.795j -0.7541-0.3691j -0.4426-0.0284j 0.2049+0.2697j]

[-0.7541-0.3691j 0.2787+0.8518j 0.0984+0.1988j -0.4344-0.1562j]

[-0.4426-0.0284j 0.0984+0.1988j -0.3770+0.6815j -0.9180+0.4543j]

[ 0.2049+0.2697j -0.4344-0.1562j -0.9180+0.4543j -1.2787+0.8802j]]

✞ ☎

In [4]: symmetric_error = numpy.linalg.norm(Omega - Omega.T)

imag_part_evals = numpy.linalg.eigvals(Omega.imag)

print 'error:', symmetric_error

print 'evals:', imag_part_evals
✝ ✆

Out[4]: error: 3.54420889595e-10

evals: [ 1.4038 1.1654 0.4294 0.21 ]

2.1 Places and Divisors

Definition 2. Given a place P ∈ X, a local representation of the Riemann surface centered
at P is given using a Puiseux series

P =

{

xP (t) = α + λte,

yP (t) =
∑∞

k=0 βkt
nk ,

(5)

where α, λ, βk ∈ C, and e, nk ∈ Z [5].

Places lie “above” the curve C in the sense that evaluating P = (xP (t), yP (t)) at t = 0 maps
the place P onto a point (α, β) of the curve.

Let R(f, ∂yf)(x) be the resultant of f(x, y) and ∂yf(x, y) with respect to y [22]. The
roots α ∈ C of R correspond to the discriminant points of C, which consist of the branch
points and singular points of the curve. A place is called discriminant if it lies above a
discriminant point of C. Otherwise, it is regular. An algorithm for computing Puiseux series
expansions is found in [17] and [29].

Example 3. Continuing from Example 1, there is one place on X lying above the discrimi-
nant point x = 0:

P =

{

xP (t) = −t3,

yP (t) = −t−2 +O (t2) .
(6)
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Let α1, α2, and α3 denote the roots of the polynomial f(2, y) = 4y3 − 15. There are three
regular places P1,P2, and P3 lying above x = 2:

Pi =

{

xPi
(t) = 2 + t,

yPi
(t) = αi +

17
45
αit+O (t2) ,

(7)

We confirm the form of these places computationally.
✞ ☎

In [5]: places_above_zero = X(0)

print places_above_zero
✝ ✆

Out[5]: [(-t**3, -1/t**2 + O(t**2))]

By default, abelfunctions does not determine the Puiseux series expansions of regular
places since each regular place above a given x = α maps to a unique point (α, β) ∈ C. We
can request these series expansions using the puiseux() function.

✞ ☎

In [6]: print 'Places:'

places_above_two = X(2)

for P in places_above_two:

print P

print 'Puiseux:'

series_at_two = puiseux(f,x,y,2)

for p in series_at_two:

print p
✝ ✆

Out[6]: Places:

(2, RootOf(4*_y**3 - 15, 0))

(2, RootOf(4*_y**3 - 15, 1))

(2, RootOf(4*_y**3 - 15, 2))

Puiseux:

(t + 2, RootOf(4*_y**3 - 15, 0) + 17*t*RootOf(4*_y**3 - 15, 0)/45 + O(t**2))

(t + 2, RootOf(4*_y**3 - 15, 1) + 17*t*RootOf(4*_y**3 - 15, 1)/45 + O(t**2))

(t + 2, RootOf(4*_y**3 - 15, 2) + 17*t*RootOf(4*_y**3 - 15, 2)/45 + O(t**2))

Related to places is the notion of a divisor [22, 32].

Definition 4. A divisor D on the Riemann surface X is a finite formal linear combination
of places Pi with multiplicities ni:

D =
∑

i

niPi. (8)

The sum
degD =

∑

i

ni (9)

is called the degree of D.
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The set of all divisors on a Riemann surface forms an Abelian group Div(X) under
addition. A divisor with all ni ≥ 0 is called positive or effective. A valuation divisor,
important for the calculation of the Riemann constant vector, is obtained by examining the
root and pole structure of a meromorphic one-form on X .

Definition 5. Let Ω1
X denote the set of meromorphic one-forms on X and let ν ∈ Ω1

X have
m zeros of multiplicity pj at the places Pj and n poles of multiplicity qj at the places Qj.
Then

(ν)val =

m
∑

i=1

piPi −

n
∑

j=1

qjQj (10)

is called the valuation divisor of ν. A divisor C ∈ Div(X) is called canonical if C = (ν)val for
some ν ∈ Ω1

X .

All canonical divisors have the same degree and, by the Riemann–Roch Theorem, this
degree is deg C = 2g−2 [32]. Note that every Abelian differential of the first kind is trivially
meromorphic, since it is a holomorphic one-form, and its valuation divisor has qj = 0 for all
j. Consequently, every such differential has exactly 2g − 2 zeros including multiplicities.

Example 6. We use the places computed in Example 3 to construct divisors on the Riemann
surface X .

✞ ☎

In [7]: P = places_above_zero[0]

Q = places_above_two[0]

D = 3*P + Q

print 'Divisor:', D

print 'Degree:', D.degree
✝ ✆

Out[7]: Divisor: 3(-t**3, -1/t**2 + O(t**2)) + (2, RootOf(4*_y**3 - 15, 0))

Degree: 4

2.2 The Abel Map

Definition 7. Let P ∈ X be a fixed place. The Abel Map A : X → J(X) is defined by

A(P,Q) =
(

A1(P,Q), . . . , Ag(P,Q)
)

, (11)

where

Aj(P,Q) =

∫ Q

P

ωj , (12)

and the path chosen from P to Q is the same for each Aj. The Abel map is written in vector
form as

A(P,Q) =

∫ Q

P

ω. (13)
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The definition of the Abel map can be extended to divisors: let D =
∑

i niPi. We define

A(P,D) =
∑

i

niA(P, Pi). (14)

The Abel Map is independent of the path γ from P to Q chosen on X for if γ and η are
two such paths then their difference is a linear combination of homology basis cycles. The
integral of ω along this closed path is a lattice element and therefore is congruent to zero in
J(X).

An algorithm for computing the Abel map is described in [12]. The implementation in
abelfunctions is based on this algorithm.

Example 8. abelfunctions selects a regular “base place” P0 from which to construct all
paths on X . When given a single argument AbelMap() returns A(P0, P ).

✞ ☎

In [8]: J = Jacobian(X) # reduces vectors modulo lattice ZZˆg + Omega ZZˆg

z1 = AbelMap(P) # Abel map from P0 to P

z2 = AbelMap(Q) # Abel map from P0 to Q

z3 = AbelMap(P,Q) # Abel map from P to Q

print z1

print z2

print z3

# numerically verify that A(P,Q) = A(P0,Q) - A(P0,P)

print numpy.linalg.norm( J((z2-z1) - z3) )
✝ ✆

Out[8]: [[-0.5261+0.0864j 0.0669+0.6392j -0.7495+1.1037j -1.5030+1.0356j]]

[[-0.3875+0.1157j -0.0290+0.4437j -0.4532+0.7774j -0.9721+0.6732j]]

[[ 0.1468-0.0985j 0.8467+0.6989j 0.0996+1.0083j -1.1003+0.8159j]]

3.80631643473e-16

The Abel map accepts divisors as well.
✞ ☎

In [9]: w = AbelMap(D)

print w

# verify that w = 3*z1 + z2 mod period lattice

z = J(3*z1 + z2)

print numpy.linalg.norm(w-z)
✝ ✆

Out[9]: [[ 0.0670-0.1361j 0.9421+0.7429j -0.4887+0.7663j -1.5057+0.6992j]]

1.57107346e-15
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2.3 The Riemann Constant Vector

Definition 9. Let X be a genus g Riemann surface with associated Riemann matrix Ω. The
Riemann constant vector K : X → J(X) is defined as

K(P ) =
(

K1(P ), . . . , Kg(P )
)

, (15)

where

Kj(P ) =
1 + Ωjj

2
−

g
∑

k 6=j

∮

ak

ωk(Q)Aj(P,Q). (16)

Once we know the value of K(P0) the value of K(P ) is determined using only a shift by
the Abel map:

Theorem 10. Let P0, P be places on a genus g Riemann surface X. Then

K(P ) = K(P0) + (g − 1)A(P0, P ). (17)

Proof. Let Q be an arbitrary place on X . By the definition of the Abel map, A(P,Q) =
A(P, P0) +A(P0, Q). Using this identity in the definition of the RCV we obtain

Kj(P ) =
1 + Ωjj

2
−

g
∑

k 6=j

∮

ak

ωk(Q)Aj(P,Q) dQ

=
1 + Ωjj

2
−

g
∑

k 6=j

∮

ak

ωk(Q)
(

Aj(P, P0) + Aj(P0, Q)
)

dQ

=
1 + Ωjj

2
−

g
∑

k 6=j

∮

ak

ωk(Q)Aj(P, P0) dQ−

g
∑

k 6=j

∮

ak

ωk(Q)Aj(P0, Q) dQ. (18)

The jth-component of the Abel map appearing in the first sum has no dependence on the
variable of integration Q nor on the summation index k. Therefore,

Kj(P ) =
1 + Ωjj

2
− Aj(P, P0)

g
∑

k 6=j

∮

ak

ωk(Q) dQ−

g
∑

k 6=j

∮

ak

ωk(Q)Aj(P0, Q) dQ

=
1 + Ωjj

2
− Aj(P, P0)(g − 1)−

g
∑

k 6=j

∮

ak

ωk(Q)Aj(P0, Q) dQ

= Kj(P0) + (g − 1)Aj(P0, P ). (19)

The primary computational benefit to using the result of Theorem 10 is that most of the
work in evaluating K comes from evaluating it at a fixed place P0. Once this is done, we
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only need the Abel map to determine K for all other places P ∈ X . In abelfunctions a
fixed place of the Riemann surface is automatically chosen.

The inspiration behind the algorithm for computing the RCV described in the following
section comes from the following two theorems. Theorem 11 characterizes a certain class of
divisors in terms of the RCV, a proof of which is found in [18].

Theorem 11. Let C be a divisor on a genus g Riemann surface X of degree 2g − 2. Then
C is a canonical divisor if and only if

2K(P ) ≡ −A(P, C). (20)

Theorem 13 establishes a connection between the Riemann theta function and the RCV, a
proof of which is also found in [18].

Definition 12. The Riemann theta function θ : J(X)× hg → C is defined by

θ(z,Ω) =
∑

n∈Zg

e
2πi

(

1
2
n·Ωn+n·z

)

. (21)

This series converges absolutely and uniformly on compact sets in J(X)× hg where hg is the
space of all Riemann matrices.

Theorem 13. Let Ω be the Riemann matrix associated with the Riemann surface X and
P0 ∈ X an arbitrary place. Then a vector W ∈ J(X) satisfies

θ(W ,Ω) = 0, (22)

if and only if there exists a divisor D = P1 + · · ·Pg−1 such that

W = A(P0,D) +K(P0). (23)

Note that D may contain a place of multiplicity greater than one. The primary require-
ment of D is that it is of degree g−1 and is effective. The set Θ := {W ∈ J(X) : θ(W ,Ω) =
0} is known as the theta divisor of the Riemann surfaceX . It is a (g−1) complex–dimensional
subvariety of J(X). Theorem 13 states that Θ = A (P0, SX

g−1) + K(P0) where SXg−1 is
the (g − 1)–fold symmetric product of the Riemann surface.

3 Computing the Riemann Constant Vector

In this section we present an algorithm for computing the Riemann constant vector as well
as a demonstration of its implementation in abelfunctions. First we present an overview
of and the motivation behind the algorithm. We describe the two primary components of
the algorithm later in this section.
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Theorem 11 suggests an approach to computing the RCV provided we can compute a
canonical divisor of the Riemann surface. However, even with such a divisor the theorem
only makes a statement about the value of 2K(P0). That is, one would like to say

K(P0) ≡ −
1
2
A(P0, C), (24)

but division is not unique in this equivalence class. In general, there are 22g half-lattice
vectors h ∈ 1

2
Λ such that K(P0) ≡ h − 1

2
A(P0, C). Therefore, a second objective is to find

an appropriate half-lattice vector.

Algorithm 1 riemann constant vector

Input: Riemann surface X given by the desingularization and compactification of complex
plane algebraic curve C : f(x, y) = 0

Input: place P ∈ X
Output: Riemann constant vector K(P )
1: compute the Riemann matrix Ω
2: C ← canonical_divisor() ⊲ Algorithm 2
3: h← half_lattice_vector() ⊲ Algorithm 3
4: K0 ← h− 1

2
A(P0, C) mod Λ

5: K ←K0+(g − 1)A(P0, P )
6: return K

The rest of this section presents in detail the subroutines canonical_divisor and
half_lattice_vector which provide the necessary remaining ingredients for the above
algorithm.

3.1 Computing a Canonical Divisor

Determining the zeros and poles of a meromorphic one-form

ν =
p(x, y)

q(x, y)
dx (25)

is not as straightforward as finding the roots of the polynomials p and q. One challenge comes
from analyzing the local behavior of dx. Furthermore, it may occur that the numerator and
denominator have the same order of vanishing at some place P ∈ X in which case P is
neither a root nor pole of ν.

Let P ∈ X be a place with Puiseux series representation (xP (t), yP (t)) where t is a local
parameter as given in Definition 2. A necessary condition for P to be a root or pole of ν is
that

p
(

xP (t), yP (t)
)

∣

∣

∣

t=0
= 0, q

(

xP (t), yP (t)
)

∣

∣

∣

t=0
= 0, or

dxP

dt

(

0
)

= 0. (26)
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In particular, to determine if P ∈ (ν)val we substitute the Puiseux series representation into
ν and expand as a Laurent series in t:

ν
∣

∣

∣

P
=

p
(

xP (t), yP (t)
)

q
(

xP (t), yP (t)
) dxP (t)

=
p(t)

q(t)
x′
P (t) dt

=
(

ctval(ν,P ) + · · ·
)

dt, (27)

where val(ν, P ) is the leading order behavior of ν at P . This gives us a test for determining
if P is a member of the set of places appearing in (ν)val: if val(ν, P ) < 0 then P is a pole,
if val(ν, P ) > 0 then P is a zero, otherwise P does not appear in the valuation divisor of ν.
The multiplicity of the zero or pole is equal to |val(ν, P )|.

With the above membership test what remains is to construct a set of places Pν guaran-
teed to contain the places appearing in (ν)val. We obtain the valuation divisor by applying
the membership test to each P ∈ Pν . Consider the resultant R(f, p)(x) of f and p with
respect to y. By definition, the roots of R are the points α ∈ C such that

f(α, y) = 0 and p(α, y) = 0 (28)

have simultaneous solutions. Therefore, for a place P to be a zero of p it must be the case
that the x-projection of P , xP (0), is a root of the resultant R. Similarly, for P to be a zero of
q its x-projection xP (0) must be a root of the resultant R(f, q)(x). We also need to include
the places P which cause dx to vanish. This occurs when ( dxP/ dt)(0) = x′

P (0) = 0. That
is, when P lies above a branch point of f .

Define the sets

X (1)
ν = {α ∈ C | R(f, p)(α) = 0} ,

X (2)
ν = {α ∈ C | R(f, q)(α) = 0} ,

and X (3)
ν = {α ∈ C | α is a branch point of f} . (29)

Since the representation of the one-form in (25) only captures its affine behavior it is necessary
to examine its behavior at all places lying above x =∞. Define

Xν = X (1)
ν ∪ X

(2)
ν ∪ X

(3)
ν ∪ {∞}. (30)

This consists of all x-points above which there may be a place P where ν vanishes. That is,
the only places we need to check are those with x-projections in Xν . Therefore, the set

Pν = {P ∈ X | xP (0) ∈ Xν} , (31)

is guaranteed to contain the places appearing in (ν)val. The Puiseux algorithm is well-
designed to compute this set.
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This procedure is simplified when computing the valuation divisor of an Abelian differen-
tial of the first kind. Recall that every such differential is trivially a meromorphic one-form
and therefore can be used to compute a canonical divisor. We could use one of the normal-
ized basis elements {ω1, . . . , ωg} to obtain a canonical divisor on X but it is preferred to use
the non-normalized differentials {ω̃1, . . . , ω̃g} returned by abelfunctions. This is done for
several performance-related reasons:

• We already compute these differentials for the purposes of determining the period
matrix of X as well as in defining the Abel map.

• Fewer resolvent sets need to be determined. The denominator of every Abelian differ-
ential of the first kind is ∂yf(x, y) [8, 25] so one can compute the resolvent set of f
with ∂yf once and use the results for any given basis element ω̃ = ω̃i. This particular
resolvent set consists of the discriminant points of f and is already used in the period
matrix calculations.

• The non-normalized differentials usually have simple, often monomial, numerators
making the set X

(1)
ω̃ easier to compute and have smaller cardinality.

• The set of P such that xP (0) is a branch point of f is contained in the set of discriminant

points of f . Therefore, the computation of the set X
(3)
ω̃ is a redundant calculation and

is omitted.

• In general, the valuation divisors of Abelian differentials of the first kind consist of
fewer distinct places. The degree of every canonical divisor is 2g − 2. Therefore, there
must always be 2g − 2 more zeros than poles, counting multiplicities. Since Abelian
differentials of the first kind have no poles, no negative degree places appear in the
valuation divisor thus minimizing the total number of places to check.

• Algorithm 2 iteratively checks each P ∈ Pω̃ for membership in the set of places in
C = (ω̃)val. By using Abelian differentials of the first kind we can terminate this
procedure the moment deg C reaches 2g − 2 since each P ∈ Pω̃ contributes a non-
negative amount to the degree. For this reason, we distinguish between the set of Xω̃

and corresponding places Pω̃ in order to avoid unnecessarily computing Puiseux series
expansions.

An algorithm for computing the valuation divisor of an Abelian differential of the first
kind is given below.

13



Algorithm 2 canonical divisor - canonical divisor of a Riemann surface

Input: Riemann surface X given by the desingularization and compactification of complex
plane algebraic curve C : f(x, y) = 0

Input: an Abelian differential of the first kind ω̃ = p(x, y)/∂yf(x, y) dx on X
Output: canonical divisor C = (ω̃)val
1: C ← zero divisor
2: X

(1)
ω̃ ← roots of resolvent R(f, p)(x) = 0

3: X
(2)
ω̃ ← discriminant points of f

4: Xω̃ ← X
(1)
ω̃ ∪ X

(2)
ω̃ ∪ {∞}

5: for α ∈ Xω̃ do
6: Pα

ω̃ ← {P ∈ X | xP (0) = α}
7: for P ∈ Pα

ω̃ do
8: n← val (ω̃, P )
9: C ← C+nP
10: if deg C = 2g − 2 then
11: return C
12: end if
13: end for
14: end for
15: raise error(“Not enough places found.”)

Some notes about the algorithm:

• Only the leading order behavior of the Puiseux series of each place P ∈ Pα
ω deter-

mining val(ω̃, P ) is needed implying that computing only the “singular part” of these
expansions using the method of Duval is sufficient [17].

• Since any Abelian differential of the first kind is sufficient for computing a canonical
divisor we can choose the basis element ω̃i with lowest total degree numerator p =
p(x, y) to reduce the number of places to check and amount of symbolic arithmetic to
perform.

• Algorithm 2 terminates once the target degree is met and will spend no further effort
computing places and valuations. Since the numerators of ω̃i are often monomial,
a significant gain in efficiency is observed when Xω̃ is ordered such that places over
x ∈ {0,∞} are checked first. For testing purposes, the algorithm can be modified to
verify that val(ω̃, P ) = 0 for all remaining P ∈ Pω̃ after the degree requirement is met.

• If the main loop in Algorithm 2 terminates before the requisite degree is achieved then
an error is reported. This is included as an additional check for the algorithm. Yet
another test is to verify that deg(ω̃i)val = 2g− 2 for all basis elements ω̃i. Because this
is an expensive calculation it is not performed by default. Instead it is relegated to the
abelfunctions test suite.
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Example 14. For each non-normalized Abelian differential of the first kind from Example 1,

ω̃1 =
dx

3x2y2
, ω̃2 =

x dx

3x2y2
, ω̃3 =

xy dx

3x2y2
, ω̃4 =

x2 dx

3x2y2
, (32)

we compute its corresponding canonical divisor. First, we verify that

(ω̃1)val = 6Px=∞ where Px=∞ =
(

t−3, t−2 +O
(

t2
))

. (33)

That is, the valuation divisor consists of the single place, Px=∞, of multiplicity six.
✞ ☎

In [10]: C0 = omega[0].valuation_divisor()

for place,multiplicity in C0:

print multiplicity, place

print 'Degree:', C0.degree
✝ ✆

Out[10]: 6 (t**(-3), t**(-2) + O(t**2))

Degree: 6

On the other hand, (ω̃2)val consists of two distinct places each of multiplicity three:

(ω̃2)val = 3Px=∞ + 3Px=0 where Px=0 =
(

−t3,−t−2 +O(t2)
)

. (34)

✞ ☎

In [11]: C1 = omega[1].valuation_divisor()

for place,multiplicity in C1:

print multiplicity, place

print 'Degree:', C1.degree
✝ ✆

Out[11]: 3 (t**(-3), t**(-2) + O(t**2))

3 (-t**3, -1/t**2 + O(t**2))

Degree: 6

For the canonical divisor obtained from (ω̃3)val we have

Xω̃3
= {0,∞, 1,−1, i,−i}, (35)

which consists of the discriminant points of f and the point at infinity. The divisor (ω̃3)val
happens to have non-zero valuation at the places lying above each of these points:

(ω̃3)val =
∑

α∈Xω̃3

Px=α. (36)
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✞ ☎

In [12]: C2 = omega[2].valuation_divisor()

for place,multiplicity in C2:

print multiplicity, place

print 'Degree:', C2.degree
✝ ✆

Out[12]: 1 (-t**3, -1/t**2 + O(t**2))

1 (-t**3/4 - 1, t + O(t**2))

1 (-t**3*RootOf(_x**2 + 1, 0)/4 + RootOf(_x**2 + 1, 0), t + O(t**2))

1 (t**(-3), t**(-2) + O(t**2))

1 (t**3/4 + 1, t + O(t**2))

1 (-t**3*RootOf(_x**2 + 1, 1)/4 + RootOf(_x**2 + 1, 1), t + O(t**2))

Degree: 6

Finally, we verify that (ω̃4)val = 6Px=0.
✞ ☎

In [13]: C3 = omega[3].valuation_divisor()

for place,multiplicity in C3:

print multiplicity, place

print 'Degree:', C3.degree
✝ ✆

Out[13]: 6 (-t**3, -1/t**2 + O(t**2))

Degree: 6

Each of these canonical divisors satisfy the degree requirement deg C = 2g − 2 = 6.

3.2 Computing a Half-Lattice Vector

Now that we have a canonical divisor C it remains to determine K(P0) knowing that
2K(P0) ≡ −A(P0, C). For now, consider K(P0) and A(P0, C) to be vectors in C

g and
set K0 := K(P0) and A

C
0 := A(P0, C), for notational convenience. In C

g we have

2K0+A
C
0 = λ, (37)

where λ ∈ C
g is unknown and λ ≡ 0 mod Λ, i.e. the vector λ is one of the 22g lattice vectors

lying in the fundamental region of Λ. Division by two is now legal: setting h = λ/2 yields

K0 = h− 1
2
A

C
0 . (38)

Reducing this expression modulo Λ gives the corresponding equivalence in J(X)

K0 ≡ h− 1
2
A

C
0 , (39)

where the half-lattice vector h is unknown.
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Algorithm 3 half lattice vector(X, C)

Input: a Riemann surface X
Input: a canonical divisor C
Output: a half lattice vector h
1: J ← {1, . . . , 22g}
2: D ← (g − 1)P0

3: J ← half lattice filter(J , C,D) ⊲ filter pass #1
4: if J = {j∗} return hj∗

5: D0 ← P1 + · · ·Pg−1 where the Pi’s are distinct regular places
6: J ← half lattice filter(J , C,D0) ⊲ filter pass #2
7: if J = {j∗} return hj∗

8: for each m1, . . . , mg−1 ≥ 0 with m1 + · · ·+mg−1 = g − 1 do ⊲ filter pass #3
9: Dk ← m1P1 + · · ·+mg−1Pg−1

10: J ← half lattice filter(J , C,Dk)
11: if J = {j∗} return hj∗

12: end for
13: raise error(“Could not find appropriate half-lattice vector.”)

To determine which of the 22g half-lattice vectors hj , j = 1, . . . , 22g is the correct half-
lattice vector we use Theorem 13. The theorem requires a degree g − 1 effective divisor.
Consider the divisor

D = (g − 1)P0. (40)

Then

θ
(

A(P0,D) +K(P0)
)

= θ

(

A
(

P0, (g − 1)P0

)

+K(P0)

)

= θ
(

0+K(P0)
)

= θ
(

K(P0)
)

= 0. (41)

Therefore, it is necessary that
θ
(

hj −
1
2
A

C
0 ,Ω

)

= 0 (42)

for at least one of the 22g half lattice vectors hj . The choice of divisor D above simplifies the
computations. However, any appropriate divisor can be used in conjunction with Theorem 13
to obtain the RCV.

The idea behind Algorithm 3 is to perform a number of “filter passes” to eliminate
incorrect half-lattice vectors using the subroutine described in Algorithm 4. Each pass uses
a different effective degree g−1 divisor beginning with the one defined in (40). This heuristic
approach is used due to the numerical approximation inherent in evaluating the Riemann
theta function as well as in numerically integrating the differentials along the Riemann
surface paths.

Some notes on Algorithms 3 and 4:
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Algorithm 4 half lattice filter(J , C,D)

Input: index set J ⊂ {1, . . . , 22g}
Input: a canonical divisor C
Input: effective, degree g − 1 divisor D
Output: filtered index set J̃
1: J̃ ← J
2: θ(·,Ω)← the Riemann theta function uniformly accurate to order ǫ
3: Z ← A(P0,D)−

1
2
A(P0, C)

4: for j ∈ J do
5: κj ← hj +Z mod Λ
6: if ||θ(κj)|| > ǫ then
7: remove j from J̃
8: end if
9: end for
10: return J̃

• If a candidate vector κj ∈ J(X) is, in fact, the sought-after vector such that θ(κj) = 0
then it must be so for all effective degree g − 1 divisors D. That is, for every such
divisor

θ
(

κj +A(P0,D)
)

= 0. (43)

This can be used for additional verification of our results.

• Care must be used when setting the numerical accuracy for the computation of the
Riemann theta function. The default accuracy of ǫ = 10−8 used in abelfunctions

may be insufficient for finding a unique solution. All numerical computations are
performed using native double precision so one must not set ǫ too close to 10−16 or else
numerical round-off error may affect results as well.

• In practice it is observed that only one of the 22g half-lattice vectors hj yields θ(K(P0),Ω) =
0. We have yet to find an example where the solution is not unique and expect that
uniqueness can be shown mathematically.

Example 15. Finally, we provide examples of computing with the RCV.
✞ ☎

In [14]: K = RiemannConstantVector # alias the RCV function for brevity

P0 = X.base_place()

print K(P0)
✝ ✆

Out[14]: [[ 0.8488+0.7203j -0.5941-0.1146j -0.7432+0.8913j -0.8189+1.1381j]]

We computationally verify that the RCV satisfies Theorems 11 and 13. First, we demonstrate
that

2K(P0) +A(P0, C) ≡ 0. (44)
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Figure 1: The sorted magnitudes of the oscillatory parts of θ
(

hj −
1
2
A

C
0 ,Ω

)

for each of the
256 half-lattice vectors hj . Note that the half-lattice vector resulting in the correct RCV
produces a theta value approximately five orders of magnitude closer to zero than the others.

✞ ☎

In [15]: z = J(2*K(P0) + AbelMap(C3))

print z
✝ ✆

Out[15]: [[ 0.+0.j 0.+0.j -0.-0.j -0.-0.j]]

Next, we verify that K(P0) belongs to the theta divisor. To test for membership we factor
the Riemann theta function into its exponential and oscillatory parts [9, 10],

θ(z,Ω) = euv. (45)

Since the exponential part never vanishes we only examine the vanishing of the oscillatory
part when determining K(P0).

✞ ☎

In [16]: W = K(P0)

v = RiemannTheta.oscillatory_part(W,Omega)

print abs(v)
✝ ✆

Out[16]: 2.60180216631e-08

Even with the default numerical integration and Riemann theta accuracy of 10−8 the
choice of half-lattice vector producing the above RCV results in a Riemann theta value that
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is several orders of magnitude closer to zero than with the incorrect choices of half-lattice
vector, as shown in Figure 1.

Let D be the divisor consisting of the three places lying above x = 2 each of multiplicity
one. D is an effictive divisor of degree g − 1 = 3. Therefore, K(P0) + A(P0,D) is also a
member of the theta divisor.

✞ ☎

In [17]: D = sum(places_above_two)

W = J(AbelMap(D) + K(P0))

v = RiemannTheta.oscillatory_part(W, Omega)

print abs(v)
✝ ✆

Out[17]: 1.09506634962e-10
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[24] M. Mňuk, An algebraic approach to computing adjoint curves, J. Symbolic Comput. 23
(1997), no. 2-3, 229–240, Parametric algebraic curves and applications (Albuquerque,
NM, 1995). MR 1448696 (98f:14049)

[25] M. Noether, Rationale ausführungen der operationen in der theorie der algebraischen
funktionen, Math. Ann. 23 (1983), 311–358.

[26] D. Plaumann, B. Sturmfels, and C. Vinzant, Quartic curves and their bitangents, J.
Symbolic Comput. 46 (2011), no. 6, 712–733. MR 2781949 (2012e:14065)

[27] , Computing linear matrix representations of Helton-Vinnikov curves, Mathe-
matical methods in systems, optimization, and control, Oper. Theory Adv. Appl., vol.
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